Marlin_main.cpp 397 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "backlight.h"
  63. #include "planner.h"
  64. #include "stepper.h"
  65. #include "temperature.h"
  66. #include "motion_control.h"
  67. #include "cardreader.h"
  68. #include "ConfigurationStore.h"
  69. #include "language.h"
  70. #include "pins_arduino.h"
  71. #include "math.h"
  72. #include "util.h"
  73. #include "Timer.h"
  74. #include <avr/wdt.h>
  75. #include <avr/pgmspace.h>
  76. #include "Dcodes.h"
  77. #include "AutoDeplete.h"
  78. #ifndef LA_NOCOMPAT
  79. #include "la10compat.h"
  80. #endif
  81. #include "spi.h"
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #ifdef IR_SENSOR
  85. #include "pat9125.h" // for pat9125_probe
  86. #endif
  87. #endif //FILAMENT_SENSOR
  88. #ifdef TMC2130
  89. #include "tmc2130.h"
  90. #endif //TMC2130
  91. #ifdef W25X20CL
  92. #include "w25x20cl.h"
  93. #include "optiboot_w25x20cl.h"
  94. #endif //W25X20CL
  95. #ifdef BLINKM
  96. #include "BlinkM.h"
  97. #include "Wire.h"
  98. #endif
  99. #ifdef ULTRALCD
  100. #include "ultralcd.h"
  101. #endif
  102. #if NUM_SERVOS > 0
  103. #include "Servo.h"
  104. #endif
  105. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  106. #include <SPI.h>
  107. #endif
  108. #include "mmu.h"
  109. #define VERSION_STRING "1.0.2"
  110. #include "ultralcd.h"
  111. #include "sound.h"
  112. #include "cmdqueue.h"
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = _millis();
  131. unsigned long NcTime;
  132. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  133. //used for PINDA temp calibration and pause print
  134. #define DEFAULT_RETRACTION 1
  135. #define DEFAULT_RETRACTION_MM 4 //MM
  136. float default_retraction = DEFAULT_RETRACTION;
  137. float homing_feedrate[] = HOMING_FEEDRATE;
  138. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  139. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  140. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  141. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  142. uint8_t axis_relative_modes = 0;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. unsigned long kicktime = _millis()+100000;
  157. unsigned int usb_printing_counter;
  158. int8_t lcd_change_fil_state = 0;
  159. unsigned long pause_time = 0;
  160. unsigned long start_pause_print = _millis();
  161. unsigned long t_fan_rising_edge = _millis();
  162. LongTimer safetyTimer;
  163. static LongTimer crashDetTimer;
  164. //unsigned long load_filament_time;
  165. bool mesh_bed_leveling_flag = false;
  166. bool mesh_bed_run_from_menu = false;
  167. bool prusa_sd_card_upload = false;
  168. unsigned int status_number = 0;
  169. unsigned long total_filament_used;
  170. unsigned int heating_status;
  171. unsigned int heating_status_counter;
  172. bool loading_flag = false;
  173. char snmm_filaments_used = 0;
  174. bool fan_state[2];
  175. int fan_edge_counter[2];
  176. int fan_speed[2];
  177. float extruder_multiplier[EXTRUDERS] = {1.0
  178. #if EXTRUDERS > 1
  179. , 1.0
  180. #if EXTRUDERS > 2
  181. , 1.0
  182. #endif
  183. #endif
  184. };
  185. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  186. //shortcuts for more readable code
  187. #define _x current_position[X_AXIS]
  188. #define _y current_position[Y_AXIS]
  189. #define _z current_position[Z_AXIS]
  190. #define _e current_position[E_AXIS]
  191. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  192. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  193. bool axis_known_position[3] = {false, false, false};
  194. // Extruder offset
  195. #if EXTRUDERS > 1
  196. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  197. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  198. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  199. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  200. #endif
  201. };
  202. #endif
  203. uint8_t active_extruder = 0;
  204. int fanSpeed=0;
  205. uint8_t newFanSpeed = 0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. int8_t busy_state = NOT_BUSY;
  233. static long prev_busy_signal_ms = -1;
  234. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  235. const char errormagic[] PROGMEM = "Error:";
  236. const char echomagic[] PROGMEM = "echo:";
  237. const char G28W0[] PROGMEM = "G28 W0";
  238. bool no_response = false;
  239. uint8_t important_status;
  240. uint8_t saved_filament_type;
  241. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  242. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  243. // save/restore printing in case that mmu was not responding
  244. bool mmu_print_saved = false;
  245. // storing estimated time to end of print counted by slicer
  246. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  247. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  248. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint16_t print_time_to_change_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  251. uint16_t print_time_to_change_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  252. uint32_t IP_address = 0;
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. // Current feedrate
  262. float feedrate = 1500.0;
  263. // Feedrate for the next move
  264. static float next_feedrate;
  265. // Original feedrate saved during homing moves
  266. static float saved_feedrate;
  267. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  268. //static float tt = 0;
  269. //static float bt = 0;
  270. //Inactivity shutdown variables
  271. static unsigned long previous_millis_cmd = 0;
  272. unsigned long max_inactive_time = 0;
  273. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  274. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  275. unsigned long starttime=0;
  276. unsigned long stoptime=0;
  277. unsigned long _usb_timer = 0;
  278. bool Stopped=false;
  279. #if NUM_SERVOS > 0
  280. Servo servos[NUM_SERVOS];
  281. #endif
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  295. static int saved_feedmultiply2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. class AutoReportFeatures {
  303. union {
  304. struct {
  305. uint8_t temp : 1; //Temperature flag
  306. uint8_t fans : 1; //Fans flag
  307. uint8_t pos: 1; //Position flag
  308. uint8_t ar4 : 1; //Unused
  309. uint8_t ar5 : 1; //Unused
  310. uint8_t ar6 : 1; //Unused
  311. uint8_t ar7 : 1; //Unused
  312. } __attribute__((packed)) bits;
  313. uint8_t byte;
  314. } arFunctionsActive;
  315. uint8_t auto_report_period;
  316. public:
  317. LongTimer auto_report_timer;
  318. AutoReportFeatures():auto_report_period(0){
  319. #if defined(AUTO_REPORT)
  320. arFunctionsActive.byte = 0xff;
  321. #else
  322. arFunctionsActive.byte = 0;
  323. #endif //AUTO_REPORT
  324. }
  325. inline bool Temp()const { return arFunctionsActive.bits.temp != 0; }
  326. inline void SetTemp(uint8_t v){ arFunctionsActive.bits.temp = v; }
  327. inline bool Fans()const { return arFunctionsActive.bits.fans != 0; }
  328. inline void SetFans(uint8_t v){ arFunctionsActive.bits.fans = v; }
  329. inline bool Pos()const { return arFunctionsActive.bits.pos != 0; }
  330. inline void SetPos(uint8_t v){ arFunctionsActive.bits.pos = v; }
  331. inline void SetMask(uint8_t mask){ arFunctionsActive.byte = mask; }
  332. /// sets the autoreporting timer's period
  333. /// setting it to zero stops the timer
  334. void SetPeriod(uint8_t p){
  335. auto_report_period = p;
  336. if (auto_report_period != 0){
  337. auto_report_timer.start();
  338. } else{
  339. auto_report_timer.stop();
  340. }
  341. }
  342. inline void TimerStart() { auto_report_timer.start(); }
  343. inline bool TimerRunning()const { return auto_report_timer.running(); }
  344. inline bool TimerExpired() { return auto_report_timer.expired(auto_report_period * 1000ul); }
  345. };
  346. AutoReportFeatures autoReportFeatures;
  347. //===========================================================================
  348. //=============================Routines======================================
  349. //===========================================================================
  350. static void get_arc_coordinates();
  351. static bool setTargetedHotend(int code, uint8_t &extruder);
  352. static void print_time_remaining_init();
  353. static void wait_for_heater(long codenum, uint8_t extruder);
  354. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  355. static void gcode_M105(uint8_t extruder);
  356. static void temp_compensation_start();
  357. static void temp_compensation_apply();
  358. static bool get_PRUSA_SN(char* SN);
  359. uint16_t gcode_in_progress = 0;
  360. uint16_t mcode_in_progress = 0;
  361. void serial_echopair_P(const char *s_P, float v)
  362. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. void serial_echopair_P(const char *s_P, double v)
  364. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  365. void serial_echopair_P(const char *s_P, unsigned long v)
  366. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  367. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  368. {
  369. #if 0
  370. char ch=pgm_read_byte(str);
  371. while(ch)
  372. {
  373. MYSERIAL.write(ch);
  374. ch=pgm_read_byte(++str);
  375. }
  376. #else
  377. // hmm, same size as the above version, the compiler did a good job optimizing the above
  378. while( uint8_t ch = pgm_read_byte(str) ){
  379. MYSERIAL.write((char)ch);
  380. ++str;
  381. }
  382. #endif
  383. }
  384. #ifdef SDSUPPORT
  385. #include "SdFatUtil.h"
  386. int freeMemory() { return SdFatUtil::FreeRam(); }
  387. #else
  388. extern "C" {
  389. extern unsigned int __bss_end;
  390. extern unsigned int __heap_start;
  391. extern void *__brkval;
  392. int freeMemory() {
  393. int free_memory;
  394. if ((int)__brkval == 0)
  395. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  396. else
  397. free_memory = ((int)&free_memory) - ((int)__brkval);
  398. return free_memory;
  399. }
  400. }
  401. #endif //!SDSUPPORT
  402. void setup_killpin()
  403. {
  404. #if defined(KILL_PIN) && KILL_PIN > -1
  405. SET_INPUT(KILL_PIN);
  406. WRITE(KILL_PIN,HIGH);
  407. #endif
  408. }
  409. // Set home pin
  410. void setup_homepin(void)
  411. {
  412. #if defined(HOME_PIN) && HOME_PIN > -1
  413. SET_INPUT(HOME_PIN);
  414. WRITE(HOME_PIN,HIGH);
  415. #endif
  416. }
  417. void setup_photpin()
  418. {
  419. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  420. SET_OUTPUT(PHOTOGRAPH_PIN);
  421. WRITE(PHOTOGRAPH_PIN, LOW);
  422. #endif
  423. }
  424. void setup_powerhold()
  425. {
  426. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  427. SET_OUTPUT(SUICIDE_PIN);
  428. WRITE(SUICIDE_PIN, HIGH);
  429. #endif
  430. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  431. SET_OUTPUT(PS_ON_PIN);
  432. #if defined(PS_DEFAULT_OFF)
  433. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  434. #else
  435. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  436. #endif
  437. #endif
  438. }
  439. void suicide()
  440. {
  441. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  442. SET_OUTPUT(SUICIDE_PIN);
  443. WRITE(SUICIDE_PIN, LOW);
  444. #endif
  445. }
  446. void servo_init()
  447. {
  448. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  449. servos[0].attach(SERVO0_PIN);
  450. #endif
  451. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  452. servos[1].attach(SERVO1_PIN);
  453. #endif
  454. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  455. servos[2].attach(SERVO2_PIN);
  456. #endif
  457. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  458. servos[3].attach(SERVO3_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 5)
  461. #error "TODO: enter initalisation code for more servos"
  462. #endif
  463. }
  464. bool fans_check_enabled = true;
  465. #ifdef TMC2130
  466. void crashdet_stop_and_save_print()
  467. {
  468. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  469. }
  470. void crashdet_restore_print_and_continue()
  471. {
  472. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  473. // babystep_apply();
  474. }
  475. void crashdet_stop_and_save_print2()
  476. {
  477. cli();
  478. planner_abort_hard(); //abort printing
  479. cmdqueue_reset(); //empty cmdqueue
  480. card.sdprinting = false;
  481. card.closefile();
  482. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  483. st_reset_timer();
  484. sei();
  485. }
  486. void crashdet_detected(uint8_t mask)
  487. {
  488. st_synchronize();
  489. static uint8_t crashDet_counter = 0;
  490. bool automatic_recovery_after_crash = true;
  491. if (crashDet_counter++ == 0) {
  492. crashDetTimer.start();
  493. }
  494. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  495. crashDetTimer.stop();
  496. crashDet_counter = 0;
  497. }
  498. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  499. automatic_recovery_after_crash = false;
  500. crashDetTimer.stop();
  501. crashDet_counter = 0;
  502. }
  503. else {
  504. crashDetTimer.start();
  505. }
  506. lcd_update_enable(true);
  507. lcd_clear();
  508. lcd_update(2);
  509. if (mask & X_AXIS_MASK)
  510. {
  511. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  512. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  513. }
  514. if (mask & Y_AXIS_MASK)
  515. {
  516. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  517. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  518. }
  519. lcd_update_enable(true);
  520. lcd_update(2);
  521. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  522. gcode_G28(true, true, false); //home X and Y
  523. st_synchronize();
  524. if (automatic_recovery_after_crash) {
  525. enquecommand_P(PSTR("CRASH_RECOVER"));
  526. }else{
  527. setTargetHotend(0, active_extruder);
  528. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  529. lcd_update_enable(true);
  530. if (yesno)
  531. {
  532. enquecommand_P(PSTR("CRASH_RECOVER"));
  533. }
  534. else
  535. {
  536. enquecommand_P(PSTR("CRASH_CANCEL"));
  537. }
  538. }
  539. }
  540. void crashdet_recover()
  541. {
  542. crashdet_restore_print_and_continue();
  543. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  544. }
  545. void crashdet_cancel()
  546. {
  547. saved_printing = false;
  548. tmc2130_sg_stop_on_crash = true;
  549. if (saved_printing_type == PRINTING_TYPE_SD) {
  550. lcd_print_stop();
  551. }else if(saved_printing_type == PRINTING_TYPE_USB){
  552. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  553. cmdqueue_reset();
  554. }
  555. }
  556. #endif //TMC2130
  557. void failstats_reset_print()
  558. {
  559. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  560. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  561. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  562. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  564. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  565. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  566. fsensor_softfail = 0;
  567. #endif
  568. }
  569. void softReset()
  570. {
  571. cli();
  572. wdt_enable(WDTO_15MS);
  573. while(1);
  574. }
  575. #ifdef MESH_BED_LEVELING
  576. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  577. #endif
  578. static void factory_reset_stats(){
  579. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  580. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  588. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  589. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  590. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  593. }
  594. // Factory reset function
  595. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  596. // Level input parameter sets depth of reset
  597. static void factory_reset(char level)
  598. {
  599. lcd_clear();
  600. Sound_MakeCustom(100,0,false);
  601. switch (level) {
  602. case 0: // Level 0: Language reset
  603. lang_reset();
  604. break;
  605. case 1: //Level 1: Reset statistics
  606. factory_reset_stats();
  607. lcd_menu_statistics();
  608. break;
  609. case 2: // Level 2: Prepare for shipping
  610. factory_reset_stats();
  611. // [[fallthrough]] // there is no break intentionally
  612. case 4: // Level 4: Preparation after being serviced
  613. // Force language selection at the next boot up.
  614. lang_reset();
  615. // Force the "Follow calibration flow" message at the next boot up.
  616. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  617. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 2); //run wizard
  618. farm_mode = false;
  619. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  620. #ifdef FILAMENT_SENSOR
  621. fsensor_enable();
  622. fsensor_autoload_set(true);
  623. #endif //FILAMENT_SENSOR
  624. break;
  625. case 3:
  626. menu_progressbar_init(EEPROM_TOP, PSTR("ERASING all data"));
  627. // Erase EEPROM
  628. for (uint16_t i = 0; i < EEPROM_TOP; i++) {
  629. eeprom_update_byte((uint8_t*)i, 0xFF);
  630. menu_progressbar_update(i);
  631. }
  632. menu_progressbar_finish();
  633. softReset();
  634. break;
  635. #ifdef SNMM
  636. case 5:
  637. bowden_menu();
  638. break;
  639. #endif
  640. default:
  641. break;
  642. }
  643. }
  644. extern "C" {
  645. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  646. }
  647. int uart_putchar(char c, FILE *)
  648. {
  649. MYSERIAL.write(c);
  650. return 0;
  651. }
  652. void lcd_splash()
  653. {
  654. lcd_clear(); // clears display and homes screen
  655. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  656. }
  657. void factory_reset()
  658. {
  659. KEEPALIVE_STATE(PAUSED_FOR_USER);
  660. if (!READ(BTN_ENC))
  661. {
  662. _delay_ms(1000);
  663. if (!READ(BTN_ENC))
  664. {
  665. lcd_clear();
  666. lcd_puts_P(PSTR("Factory RESET"));
  667. SET_OUTPUT(BEEPER);
  668. if(eSoundMode!=e_SOUND_MODE_SILENT)
  669. WRITE(BEEPER, HIGH);
  670. while (!READ(BTN_ENC));
  671. WRITE(BEEPER, LOW);
  672. _delay_ms(2000);
  673. char level = reset_menu();
  674. factory_reset(level);
  675. switch (level) {
  676. case 0:
  677. case 1:
  678. case 2:
  679. case 3:
  680. case 4: _delay_ms(0); break;
  681. }
  682. }
  683. }
  684. KEEPALIVE_STATE(IN_HANDLER);
  685. }
  686. void show_fw_version_warnings() {
  687. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  688. switch (FW_DEV_VERSION) {
  689. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  690. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  691. case(FW_VERSION_DEVEL):
  692. case(FW_VERSION_DEBUG):
  693. lcd_update_enable(false);
  694. lcd_clear();
  695. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  696. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  697. #else
  698. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  699. #endif
  700. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  701. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  702. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  703. lcd_wait_for_click();
  704. break;
  705. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  706. }
  707. lcd_update_enable(true);
  708. }
  709. //! @brief try to check if firmware is on right type of printer
  710. static void check_if_fw_is_on_right_printer(){
  711. #ifdef FILAMENT_SENSOR
  712. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  713. #ifdef IR_SENSOR
  714. if (pat9125_probe()){
  715. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////c=20 r=3
  716. #endif //IR_SENSOR
  717. #ifdef PAT9125
  718. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  719. const uint8_t ir_detected = !READ(IR_SENSOR_PIN);
  720. if (ir_detected){
  721. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////c=20 r=3
  722. #endif //PAT9125
  723. }
  724. #endif //FILAMENT_SENSOR
  725. }
  726. uint8_t check_printer_version()
  727. {
  728. uint8_t version_changed = 0;
  729. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  730. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  731. if (printer_type != PRINTER_TYPE) {
  732. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  733. else version_changed |= 0b10;
  734. }
  735. if (motherboard != MOTHERBOARD) {
  736. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  737. else version_changed |= 0b01;
  738. }
  739. return version_changed;
  740. }
  741. #ifdef BOOTAPP
  742. #include "bootapp.h" //bootloader support
  743. #endif //BOOTAPP
  744. #if (LANG_MODE != 0) //secondary language support
  745. #ifdef W25X20CL
  746. // language update from external flash
  747. #define LANGBOOT_BLOCKSIZE 0x1000u
  748. #define LANGBOOT_RAMBUFFER 0x0800
  749. void update_sec_lang_from_external_flash()
  750. {
  751. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  752. {
  753. uint8_t lang = boot_reserved >> 4;
  754. uint8_t state = boot_reserved & 0xf;
  755. lang_table_header_t header;
  756. uint32_t src_addr;
  757. if (lang_get_header(lang, &header, &src_addr))
  758. {
  759. lcd_puts_at_P(1,3,PSTR("Language update."));
  760. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  761. _delay(100);
  762. boot_reserved = (state + 1) | (lang << 4);
  763. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  764. {
  765. cli();
  766. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  767. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  768. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  769. if (state == 0)
  770. {
  771. //TODO - check header integrity
  772. }
  773. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  774. }
  775. else
  776. {
  777. //TODO - check sec lang data integrity
  778. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  779. }
  780. }
  781. }
  782. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  783. }
  784. #ifdef DEBUG_W25X20CL
  785. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  786. {
  787. lang_table_header_t header;
  788. uint8_t count = 0;
  789. uint32_t addr = 0x00000;
  790. while (1)
  791. {
  792. printf_P(_n("LANGTABLE%d:"), count);
  793. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  794. if (header.magic != LANG_MAGIC)
  795. {
  796. puts_P(_n("NG!"));
  797. break;
  798. }
  799. puts_P(_n("OK"));
  800. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  801. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  802. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  803. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  804. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  805. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  806. addr += header.size;
  807. codes[count] = header.code;
  808. count ++;
  809. }
  810. return count;
  811. }
  812. void list_sec_lang_from_external_flash()
  813. {
  814. uint16_t codes[8];
  815. uint8_t count = lang_xflash_enum_codes(codes);
  816. printf_P(_n("XFlash lang count = %hhd\n"), count);
  817. }
  818. #endif //DEBUG_W25X20CL
  819. #endif //W25X20CL
  820. #endif //(LANG_MODE != 0)
  821. static void w25x20cl_err_msg()
  822. {
  823. lcd_clear();
  824. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  825. }
  826. // "Setup" function is called by the Arduino framework on startup.
  827. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  828. // are initialized by the main() routine provided by the Arduino framework.
  829. void setup()
  830. {
  831. timer2_init(); // enables functional millis
  832. mmu_init();
  833. ultralcd_init();
  834. spi_init();
  835. lcd_splash();
  836. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  837. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  838. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  839. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  840. MYSERIAL.begin(BAUDRATE);
  841. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  842. stdout = uartout;
  843. #ifdef W25X20CL
  844. bool w25x20cl_success = w25x20cl_init();
  845. uint8_t optiboot_status = 1;
  846. if (w25x20cl_success)
  847. {
  848. optiboot_status = optiboot_w25x20cl_enter();
  849. #if (LANG_MODE != 0) //secondary language support
  850. update_sec_lang_from_external_flash();
  851. #endif //(LANG_MODE != 0)
  852. }
  853. else
  854. {
  855. w25x20cl_err_msg();
  856. }
  857. #else
  858. const bool w25x20cl_success = true;
  859. #endif //W25X20CL
  860. setup_killpin();
  861. setup_powerhold();
  862. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  863. if (farm_mode == 0xFF)
  864. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  865. if (farm_mode)
  866. {
  867. no_response = true; //we need confirmation by recieving PRUSA thx
  868. important_status = 8;
  869. prusa_statistics(8);
  870. #ifdef HAS_SECOND_SERIAL_PORT
  871. selectedSerialPort = 1;
  872. #endif //HAS_SECOND_SERIAL_PORT
  873. MYSERIAL.begin(BAUDRATE);
  874. #ifdef TMC2130
  875. //increased extruder current (PFW363)
  876. tmc2130_current_h[E_AXIS] = 36;
  877. tmc2130_current_r[E_AXIS] = 36;
  878. #endif //TMC2130
  879. #ifdef FILAMENT_SENSOR
  880. //disabled filament autoload (PFW360)
  881. fsensor_autoload_set(false);
  882. #endif //FILAMENT_SENSOR
  883. // ~ FanCheck -> on
  884. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  885. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  886. }
  887. //saved EEPROM SN is not valid. Try to retrieve it.
  888. //SN is valid only if it is NULL terminated. Any other character means either uninitialized or corrupted
  889. if (eeprom_read_byte((uint8_t*)EEPROM_PRUSA_SN + 19))
  890. {
  891. char SN[20];
  892. if (get_PRUSA_SN(SN))
  893. {
  894. eeprom_update_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  895. puts_P(PSTR("SN updated"));
  896. }
  897. else
  898. puts_P(PSTR("SN update failed"));
  899. }
  900. #ifndef W25X20CL
  901. SERIAL_PROTOCOLLNPGM("start");
  902. #else
  903. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  904. SERIAL_PROTOCOLLNPGM("start");
  905. #endif
  906. SERIAL_ECHO_START;
  907. puts_P(PSTR(" " FW_VERSION_FULL));
  908. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  909. #ifdef DEBUG_SEC_LANG
  910. lang_table_header_t header;
  911. uint32_t src_addr = 0x00000;
  912. if (lang_get_header(1, &header, &src_addr))
  913. {
  914. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  915. #define LT_PRINT_TEST 2
  916. // flash usage
  917. // total p.test
  918. //0 252718 t+c text code
  919. //1 253142 424 170 254
  920. //2 253040 322 164 158
  921. //3 253248 530 135 395
  922. #if (LT_PRINT_TEST==1) //not optimized printf
  923. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  924. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  925. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  926. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  927. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  928. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  929. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  930. #elif (LT_PRINT_TEST==2) //optimized printf
  931. printf_P(
  932. _n(
  933. " _src_addr = 0x%08lx\n"
  934. " _lt_magic = 0x%08lx %S\n"
  935. " _lt_size = 0x%04x (%d)\n"
  936. " _lt_count = 0x%04x (%d)\n"
  937. " _lt_chsum = 0x%04x\n"
  938. " _lt_code = 0x%04x (%c%c)\n"
  939. " _lt_resv1 = 0x%08lx\n"
  940. ),
  941. src_addr,
  942. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  943. header.size, header.size,
  944. header.count, header.count,
  945. header.checksum,
  946. header.code, header.code >> 8, header.code & 0xff,
  947. header.signature
  948. );
  949. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  950. MYSERIAL.print(" _src_addr = 0x");
  951. MYSERIAL.println(src_addr, 16);
  952. MYSERIAL.print(" _lt_magic = 0x");
  953. MYSERIAL.print(header.magic, 16);
  954. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  955. MYSERIAL.print(" _lt_size = 0x");
  956. MYSERIAL.print(header.size, 16);
  957. MYSERIAL.print(" (");
  958. MYSERIAL.print(header.size, 10);
  959. MYSERIAL.println(")");
  960. MYSERIAL.print(" _lt_count = 0x");
  961. MYSERIAL.print(header.count, 16);
  962. MYSERIAL.print(" (");
  963. MYSERIAL.print(header.count, 10);
  964. MYSERIAL.println(")");
  965. MYSERIAL.print(" _lt_chsum = 0x");
  966. MYSERIAL.println(header.checksum, 16);
  967. MYSERIAL.print(" _lt_code = 0x");
  968. MYSERIAL.print(header.code, 16);
  969. MYSERIAL.print(" (");
  970. MYSERIAL.print((char)(header.code >> 8), 0);
  971. MYSERIAL.print((char)(header.code & 0xff), 0);
  972. MYSERIAL.println(")");
  973. MYSERIAL.print(" _lt_resv1 = 0x");
  974. MYSERIAL.println(header.signature, 16);
  975. #endif //(LT_PRINT_TEST==)
  976. #undef LT_PRINT_TEST
  977. #if 0
  978. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  979. for (uint16_t i = 0; i < 1024; i++)
  980. {
  981. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  982. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  983. if ((i % 16) == 15) putchar('\n');
  984. }
  985. #endif
  986. uint16_t sum = 0;
  987. for (uint16_t i = 0; i < header.size; i++)
  988. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  989. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  990. sum -= header.checksum; //subtract checksum
  991. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  992. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  993. if (sum == header.checksum)
  994. puts_P(_n("Checksum OK"), sum);
  995. else
  996. puts_P(_n("Checksum NG"), sum);
  997. }
  998. else
  999. puts_P(_n("lang_get_header failed!"));
  1000. #if 0
  1001. for (uint16_t i = 0; i < 1024*10; i++)
  1002. {
  1003. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1004. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1005. if ((i % 16) == 15) putchar('\n');
  1006. }
  1007. #endif
  1008. #if 0
  1009. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1010. for (int i = 0; i < 4096; ++i) {
  1011. int b = eeprom_read_byte((unsigned char*)i);
  1012. if (b != 255) {
  1013. SERIAL_ECHO(i);
  1014. SERIAL_ECHO(":");
  1015. SERIAL_ECHO(b);
  1016. SERIAL_ECHOLN("");
  1017. }
  1018. }
  1019. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1020. #endif
  1021. #endif //DEBUG_SEC_LANG
  1022. // Check startup - does nothing if bootloader sets MCUSR to 0
  1023. byte mcu = MCUSR;
  1024. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  1025. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1026. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1027. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1028. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1029. if (mcu & 1) puts_P(MSG_POWERUP);
  1030. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1031. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1032. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1033. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1034. MCUSR = 0;
  1035. //SERIAL_ECHORPGM(MSG_MARLIN);
  1036. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1037. #ifdef STRING_VERSION_CONFIG_H
  1038. #ifdef STRING_CONFIG_H_AUTHOR
  1039. SERIAL_ECHO_START;
  1040. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1041. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1042. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1043. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1044. SERIAL_ECHOPGM("Compiled: ");
  1045. SERIAL_ECHOLNPGM(__DATE__);
  1046. #endif
  1047. #endif
  1048. SERIAL_ECHO_START;
  1049. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1050. SERIAL_ECHO(freeMemory());
  1051. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1052. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1053. //lcd_update_enable(false); // why do we need this?? - andre
  1054. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1055. bool previous_settings_retrieved = false;
  1056. uint8_t hw_changed = check_printer_version();
  1057. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1058. previous_settings_retrieved = Config_RetrieveSettings();
  1059. }
  1060. else { //printer version was changed so use default settings
  1061. Config_ResetDefault();
  1062. }
  1063. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1064. tp_init(); // Initialize temperature loop
  1065. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1066. else
  1067. {
  1068. w25x20cl_err_msg();
  1069. puts_P(_n("W25X20CL not responding."));
  1070. }
  1071. #ifdef EXTRUDER_ALTFAN_DETECT
  1072. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1073. if (extruder_altfan_detect())
  1074. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1075. else
  1076. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1077. #endif //EXTRUDER_ALTFAN_DETECT
  1078. plan_init(); // Initialize planner;
  1079. factory_reset();
  1080. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1081. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1082. {
  1083. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1084. // where all the EEPROM entries are set to 0x0ff.
  1085. // Once a firmware boots up, it forces at least a language selection, which changes
  1086. // EEPROM_LANG to number lower than 0x0ff.
  1087. // 1) Set a high power mode.
  1088. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1089. #ifdef TMC2130
  1090. tmc2130_mode = TMC2130_MODE_NORMAL;
  1091. #endif //TMC2130
  1092. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1093. }
  1094. lcd_encoder_diff=0;
  1095. #ifdef TMC2130
  1096. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1097. if (silentMode == 0xff) silentMode = 0;
  1098. tmc2130_mode = TMC2130_MODE_NORMAL;
  1099. if (lcd_crash_detect_enabled() && !farm_mode)
  1100. {
  1101. lcd_crash_detect_enable();
  1102. puts_P(_N("CrashDetect ENABLED!"));
  1103. }
  1104. else
  1105. {
  1106. lcd_crash_detect_disable();
  1107. puts_P(_N("CrashDetect DISABLED"));
  1108. }
  1109. #ifdef TMC2130_LINEARITY_CORRECTION
  1110. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1111. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1112. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1113. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1114. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1115. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1116. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1117. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1118. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1119. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1120. #endif //TMC2130_LINEARITY_CORRECTION
  1121. #ifdef TMC2130_VARIABLE_RESOLUTION
  1122. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1123. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1124. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1125. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1126. #else //TMC2130_VARIABLE_RESOLUTION
  1127. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1128. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1129. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1130. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1131. #endif //TMC2130_VARIABLE_RESOLUTION
  1132. #endif //TMC2130
  1133. st_init(); // Initialize stepper, this enables interrupts!
  1134. #ifdef TMC2130
  1135. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1136. update_mode_profile();
  1137. tmc2130_init();
  1138. #endif //TMC2130
  1139. #ifdef PSU_Delta
  1140. init_force_z(); // ! important for correct Z-axis initialization
  1141. #endif // PSU_Delta
  1142. setup_photpin();
  1143. servo_init();
  1144. // Reset the machine correction matrix.
  1145. // It does not make sense to load the correction matrix until the machine is homed.
  1146. world2machine_reset();
  1147. // Initialize current_position accounting for software endstops to
  1148. // avoid unexpected initial shifts on the first move
  1149. clamp_to_software_endstops(current_position);
  1150. plan_set_position_curposXYZE();
  1151. #ifdef FILAMENT_SENSOR
  1152. fsensor_init();
  1153. #endif //FILAMENT_SENSOR
  1154. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1155. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1156. #endif
  1157. setup_homepin();
  1158. #if defined(Z_AXIS_ALWAYS_ON)
  1159. enable_z();
  1160. #endif
  1161. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1162. if (farm_mode == 0xFF) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1163. if (farm_mode)
  1164. {
  1165. prusa_statistics(8);
  1166. }
  1167. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1168. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1169. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1170. // but this times out if a blocking dialog is shown in setup().
  1171. card.initsd();
  1172. #ifdef DEBUG_SD_SPEED_TEST
  1173. if (card.cardOK)
  1174. {
  1175. uint8_t* buff = (uint8_t*)block_buffer;
  1176. uint32_t block = 0;
  1177. uint32_t sumr = 0;
  1178. uint32_t sumw = 0;
  1179. for (int i = 0; i < 1024; i++)
  1180. {
  1181. uint32_t u = _micros();
  1182. bool res = card.card.readBlock(i, buff);
  1183. u = _micros() - u;
  1184. if (res)
  1185. {
  1186. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1187. sumr += u;
  1188. u = _micros();
  1189. res = card.card.writeBlock(i, buff);
  1190. u = _micros() - u;
  1191. if (res)
  1192. {
  1193. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1194. sumw += u;
  1195. }
  1196. else
  1197. {
  1198. printf_P(PSTR("writeBlock %4d error\n"), i);
  1199. break;
  1200. }
  1201. }
  1202. else
  1203. {
  1204. printf_P(PSTR("readBlock %4d error\n"), i);
  1205. break;
  1206. }
  1207. }
  1208. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1209. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1210. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1211. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1212. }
  1213. else
  1214. printf_P(PSTR("Card NG!\n"));
  1215. #endif //DEBUG_SD_SPEED_TEST
  1216. eeprom_init();
  1217. #ifdef SNMM
  1218. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1219. int _z = BOWDEN_LENGTH;
  1220. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1221. }
  1222. #endif
  1223. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1224. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1225. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1226. #if (LANG_MODE != 0) //secondary language support
  1227. #ifdef DEBUG_W25X20CL
  1228. W25X20CL_SPI_ENTER();
  1229. uint8_t uid[8]; // 64bit unique id
  1230. w25x20cl_rd_uid(uid);
  1231. puts_P(_n("W25X20CL UID="));
  1232. for (uint8_t i = 0; i < 8; i ++)
  1233. printf_P(PSTR("%02hhx"), uid[i]);
  1234. putchar('\n');
  1235. list_sec_lang_from_external_flash();
  1236. #endif //DEBUG_W25X20CL
  1237. // lang_reset();
  1238. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1239. lcd_language();
  1240. #ifdef DEBUG_SEC_LANG
  1241. uint16_t sec_lang_code = lang_get_code(1);
  1242. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1243. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1244. lang_print_sec_lang(uartout);
  1245. #endif //DEBUG_SEC_LANG
  1246. #endif //(LANG_MODE != 0)
  1247. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1248. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1249. }
  1250. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1251. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1252. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1253. int16_t z_shift = 0;
  1254. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1255. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1256. }
  1257. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1258. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1259. }
  1260. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1261. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1262. }
  1263. //mbl_mode_init();
  1264. mbl_settings_init();
  1265. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1266. if (SilentModeMenu_MMU == 255) {
  1267. SilentModeMenu_MMU = 1;
  1268. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1269. }
  1270. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1271. setup_fan_interrupt();
  1272. #endif //DEBUG_DISABLE_FANCHECK
  1273. #ifdef PAT9125
  1274. fsensor_setup_interrupt();
  1275. #endif //PAT9125
  1276. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1277. #ifndef DEBUG_DISABLE_STARTMSGS
  1278. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1279. if (!farm_mode) {
  1280. check_if_fw_is_on_right_printer();
  1281. show_fw_version_warnings();
  1282. }
  1283. switch (hw_changed) {
  1284. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1285. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1286. case(0b01):
  1287. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1288. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1289. break;
  1290. case(0b10):
  1291. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1292. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1293. break;
  1294. case(0b11):
  1295. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1296. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1297. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1298. break;
  1299. default: break; //no change, show no message
  1300. }
  1301. if (!previous_settings_retrieved) {
  1302. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=5
  1303. Config_StoreSettings();
  1304. }
  1305. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) >= 1) {
  1306. lcd_wizard(WizState::Run);
  1307. }
  1308. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1309. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1310. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1311. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1312. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1313. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1314. // Show the message.
  1315. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1316. }
  1317. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1318. // Show the message.
  1319. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1320. lcd_update_enable(true);
  1321. }
  1322. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1323. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1324. lcd_update_enable(true);
  1325. }
  1326. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1327. // Show the message.
  1328. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1329. }
  1330. }
  1331. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1332. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1333. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1334. update_current_firmware_version_to_eeprom();
  1335. lcd_selftest();
  1336. }
  1337. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1338. KEEPALIVE_STATE(IN_PROCESS);
  1339. #endif //DEBUG_DISABLE_STARTMSGS
  1340. lcd_update_enable(true);
  1341. lcd_clear();
  1342. lcd_update(2);
  1343. // Store the currently running firmware into an eeprom,
  1344. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1345. update_current_firmware_version_to_eeprom();
  1346. #ifdef TMC2130
  1347. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1348. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1349. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1350. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1351. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1352. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1353. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1354. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1355. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1356. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1357. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1358. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1359. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1360. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1361. #endif //TMC2130
  1362. #ifdef UVLO_SUPPORT
  1363. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1364. /*
  1365. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1366. else {
  1367. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1368. lcd_update_enable(true);
  1369. lcd_update(2);
  1370. lcd_setstatuspgm(_T(WELCOME_MSG));
  1371. }
  1372. */
  1373. manage_heater(); // Update temperatures
  1374. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1375. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1376. #endif
  1377. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1378. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1379. puts_P(_N("Automatic recovery!"));
  1380. #endif
  1381. recover_print(1);
  1382. }
  1383. else{
  1384. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1385. puts_P(_N("Normal recovery!"));
  1386. #endif
  1387. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1388. else {
  1389. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1390. lcd_update_enable(true);
  1391. lcd_update(2);
  1392. lcd_setstatuspgm(_T(WELCOME_MSG));
  1393. }
  1394. }
  1395. }
  1396. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1397. // the entire state machine initialized.
  1398. setup_uvlo_interrupt();
  1399. #endif //UVLO_SUPPORT
  1400. fCheckModeInit();
  1401. fSetMmuMode(mmu_enabled);
  1402. KEEPALIVE_STATE(NOT_BUSY);
  1403. #ifdef WATCHDOG
  1404. wdt_enable(WDTO_4S);
  1405. #endif //WATCHDOG
  1406. }
  1407. void trace();
  1408. #define CHUNK_SIZE 64 // bytes
  1409. #define SAFETY_MARGIN 1
  1410. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1411. int chunkHead = 0;
  1412. void serial_read_stream() {
  1413. setAllTargetHotends(0);
  1414. setTargetBed(0);
  1415. lcd_clear();
  1416. lcd_puts_P(PSTR(" Upload in progress"));
  1417. // first wait for how many bytes we will receive
  1418. uint32_t bytesToReceive;
  1419. // receive the four bytes
  1420. char bytesToReceiveBuffer[4];
  1421. for (int i=0; i<4; i++) {
  1422. int data;
  1423. while ((data = MYSERIAL.read()) == -1) {};
  1424. bytesToReceiveBuffer[i] = data;
  1425. }
  1426. // make it a uint32
  1427. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1428. // we're ready, notify the sender
  1429. MYSERIAL.write('+');
  1430. // lock in the routine
  1431. uint32_t receivedBytes = 0;
  1432. while (prusa_sd_card_upload) {
  1433. int i;
  1434. for (i=0; i<CHUNK_SIZE; i++) {
  1435. int data;
  1436. // check if we're not done
  1437. if (receivedBytes == bytesToReceive) {
  1438. break;
  1439. }
  1440. // read the next byte
  1441. while ((data = MYSERIAL.read()) == -1) {};
  1442. receivedBytes++;
  1443. // save it to the chunk
  1444. chunk[i] = data;
  1445. }
  1446. // write the chunk to SD
  1447. card.write_command_no_newline(&chunk[0]);
  1448. // notify the sender we're ready for more data
  1449. MYSERIAL.write('+');
  1450. // for safety
  1451. manage_heater();
  1452. // check if we're done
  1453. if(receivedBytes == bytesToReceive) {
  1454. trace(); // beep
  1455. card.closefile();
  1456. prusa_sd_card_upload = false;
  1457. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1458. }
  1459. }
  1460. }
  1461. /**
  1462. * Output a "busy" message at regular intervals
  1463. * while the machine is not accepting commands.
  1464. */
  1465. void host_keepalive() {
  1466. #ifndef HOST_KEEPALIVE_FEATURE
  1467. return;
  1468. #endif //HOST_KEEPALIVE_FEATURE
  1469. if (farm_mode) return;
  1470. long ms = _millis();
  1471. #if defined(AUTO_REPORT)
  1472. {
  1473. if (autoReportFeatures.TimerExpired())
  1474. {
  1475. if(autoReportFeatures.Temp()){
  1476. gcode_M105(active_extruder);
  1477. }
  1478. if(autoReportFeatures.Pos()){
  1479. gcode_M114();
  1480. }
  1481. #if defined(AUTO_REPORT) && (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  1482. if(autoReportFeatures.Fans()){
  1483. gcode_M123();
  1484. }
  1485. #endif //AUTO_REPORT and (FANCHECK and TACH_0 or TACH_1)
  1486. autoReportFeatures.TimerStart();
  1487. }
  1488. }
  1489. #endif //AUTO_REPORT
  1490. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1491. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1492. switch (busy_state) {
  1493. case IN_HANDLER:
  1494. case IN_PROCESS:
  1495. SERIAL_ECHO_START;
  1496. SERIAL_ECHOLNPGM("busy: processing");
  1497. break;
  1498. case PAUSED_FOR_USER:
  1499. SERIAL_ECHO_START;
  1500. SERIAL_ECHOLNPGM("busy: paused for user");
  1501. break;
  1502. case PAUSED_FOR_INPUT:
  1503. SERIAL_ECHO_START;
  1504. SERIAL_ECHOLNPGM("busy: paused for input");
  1505. break;
  1506. default:
  1507. break;
  1508. }
  1509. }
  1510. prev_busy_signal_ms = ms;
  1511. }
  1512. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1513. // Before loop(), the setup() function is called by the main() routine.
  1514. void loop()
  1515. {
  1516. KEEPALIVE_STATE(NOT_BUSY);
  1517. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1518. {
  1519. is_usb_printing = true;
  1520. usb_printing_counter--;
  1521. _usb_timer = _millis();
  1522. }
  1523. if (usb_printing_counter == 0)
  1524. {
  1525. is_usb_printing = false;
  1526. }
  1527. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1528. {
  1529. is_usb_printing = true;
  1530. }
  1531. #ifdef FANCHECK
  1532. if (fan_check_error && isPrintPaused && !IS_SD_PRINTING) {
  1533. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1534. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1535. }
  1536. #endif
  1537. if (prusa_sd_card_upload)
  1538. {
  1539. //we read byte-by byte
  1540. serial_read_stream();
  1541. }
  1542. else
  1543. {
  1544. get_command();
  1545. #ifdef SDSUPPORT
  1546. card.checkautostart(false);
  1547. #endif
  1548. if(buflen)
  1549. {
  1550. cmdbuffer_front_already_processed = false;
  1551. #ifdef SDSUPPORT
  1552. if(card.saving)
  1553. {
  1554. // Saving a G-code file onto an SD-card is in progress.
  1555. // Saving starts with M28, saving until M29 is seen.
  1556. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1557. card.write_command(CMDBUFFER_CURRENT_STRING);
  1558. if(card.logging)
  1559. process_commands();
  1560. else
  1561. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1562. } else {
  1563. card.closefile();
  1564. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1565. }
  1566. } else {
  1567. process_commands();
  1568. }
  1569. #else
  1570. process_commands();
  1571. #endif //SDSUPPORT
  1572. if (! cmdbuffer_front_already_processed && buflen)
  1573. {
  1574. // ptr points to the start of the block currently being processed.
  1575. // The first character in the block is the block type.
  1576. char *ptr = cmdbuffer + bufindr;
  1577. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1578. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1579. union {
  1580. struct {
  1581. char lo;
  1582. char hi;
  1583. } lohi;
  1584. uint16_t value;
  1585. } sdlen;
  1586. sdlen.value = 0;
  1587. {
  1588. // This block locks the interrupts globally for 3.25 us,
  1589. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1590. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1591. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1592. cli();
  1593. // Reset the command to something, which will be ignored by the power panic routine,
  1594. // so this buffer length will not be counted twice.
  1595. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1596. // Extract the current buffer length.
  1597. sdlen.lohi.lo = *ptr ++;
  1598. sdlen.lohi.hi = *ptr;
  1599. // and pass it to the planner queue.
  1600. planner_add_sd_length(sdlen.value);
  1601. sei();
  1602. }
  1603. }
  1604. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1605. cli();
  1606. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1607. // and one for each command to previous block in the planner queue.
  1608. planner_add_sd_length(1);
  1609. sei();
  1610. }
  1611. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1612. // this block's SD card length will not be counted twice as its command type has been replaced
  1613. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1614. cmdqueue_pop_front();
  1615. }
  1616. host_keepalive();
  1617. }
  1618. }
  1619. //check heater every n milliseconds
  1620. manage_heater();
  1621. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1622. checkHitEndstops();
  1623. lcd_update(0);
  1624. #ifdef TMC2130
  1625. tmc2130_check_overtemp();
  1626. if (tmc2130_sg_crash)
  1627. {
  1628. uint8_t crash = tmc2130_sg_crash;
  1629. tmc2130_sg_crash = 0;
  1630. // crashdet_stop_and_save_print();
  1631. switch (crash)
  1632. {
  1633. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1634. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1635. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1636. }
  1637. }
  1638. #endif //TMC2130
  1639. mmu_loop();
  1640. }
  1641. #define DEFINE_PGM_READ_ANY(type, reader) \
  1642. static inline type pgm_read_any(const type *p) \
  1643. { return pgm_read_##reader##_near(p); }
  1644. DEFINE_PGM_READ_ANY(float, float);
  1645. DEFINE_PGM_READ_ANY(signed char, byte);
  1646. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1647. static const PROGMEM type array##_P[3] = \
  1648. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1649. static inline type array(int axis) \
  1650. { return pgm_read_any(&array##_P[axis]); } \
  1651. type array##_ext(int axis) \
  1652. { return pgm_read_any(&array##_P[axis]); }
  1653. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1654. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1655. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1656. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1657. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1658. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1659. static void axis_is_at_home(int axis) {
  1660. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1661. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1662. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1663. }
  1664. //! @return original feedmultiply
  1665. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1666. saved_feedrate = feedrate;
  1667. int l_feedmultiply = feedmultiply;
  1668. feedmultiply = 100;
  1669. previous_millis_cmd = _millis();
  1670. enable_endstops(enable_endstops_now);
  1671. return l_feedmultiply;
  1672. }
  1673. //! @param original_feedmultiply feedmultiply to restore
  1674. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1675. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1676. enable_endstops(false);
  1677. #endif
  1678. feedrate = saved_feedrate;
  1679. feedmultiply = original_feedmultiply;
  1680. previous_millis_cmd = _millis();
  1681. }
  1682. #ifdef ENABLE_AUTO_BED_LEVELING
  1683. #ifdef AUTO_BED_LEVELING_GRID
  1684. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1685. {
  1686. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1687. planeNormal.debug("planeNormal");
  1688. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1689. //bedLevel.debug("bedLevel");
  1690. //plan_bed_level_matrix.debug("bed level before");
  1691. //vector_3 uncorrected_position = plan_get_position_mm();
  1692. //uncorrected_position.debug("position before");
  1693. vector_3 corrected_position = plan_get_position();
  1694. // corrected_position.debug("position after");
  1695. current_position[X_AXIS] = corrected_position.x;
  1696. current_position[Y_AXIS] = corrected_position.y;
  1697. current_position[Z_AXIS] = corrected_position.z;
  1698. // put the bed at 0 so we don't go below it.
  1699. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1700. plan_set_position_curposXYZE();
  1701. }
  1702. #else // not AUTO_BED_LEVELING_GRID
  1703. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1704. plan_bed_level_matrix.set_to_identity();
  1705. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1706. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1707. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1708. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1709. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1710. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1711. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1712. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1713. vector_3 corrected_position = plan_get_position();
  1714. current_position[X_AXIS] = corrected_position.x;
  1715. current_position[Y_AXIS] = corrected_position.y;
  1716. current_position[Z_AXIS] = corrected_position.z;
  1717. // put the bed at 0 so we don't go below it.
  1718. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1719. plan_set_position_curposXYZE();
  1720. }
  1721. #endif // AUTO_BED_LEVELING_GRID
  1722. static void run_z_probe() {
  1723. plan_bed_level_matrix.set_to_identity();
  1724. feedrate = homing_feedrate[Z_AXIS];
  1725. // move down until you find the bed
  1726. float zPosition = -10;
  1727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1728. st_synchronize();
  1729. // we have to let the planner know where we are right now as it is not where we said to go.
  1730. zPosition = st_get_position_mm(Z_AXIS);
  1731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1732. // move up the retract distance
  1733. zPosition += home_retract_mm(Z_AXIS);
  1734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1735. st_synchronize();
  1736. // move back down slowly to find bed
  1737. feedrate = homing_feedrate[Z_AXIS]/4;
  1738. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1740. st_synchronize();
  1741. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1742. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1743. plan_set_position_curposXYZE();
  1744. }
  1745. static void do_blocking_move_to(float x, float y, float z) {
  1746. float oldFeedRate = feedrate;
  1747. feedrate = homing_feedrate[Z_AXIS];
  1748. current_position[Z_AXIS] = z;
  1749. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1750. st_synchronize();
  1751. feedrate = XY_TRAVEL_SPEED;
  1752. current_position[X_AXIS] = x;
  1753. current_position[Y_AXIS] = y;
  1754. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1755. st_synchronize();
  1756. feedrate = oldFeedRate;
  1757. }
  1758. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1759. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1760. }
  1761. /// Probe bed height at position (x,y), returns the measured z value
  1762. static float probe_pt(float x, float y, float z_before) {
  1763. // move to right place
  1764. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1765. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1766. run_z_probe();
  1767. float measured_z = current_position[Z_AXIS];
  1768. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1769. SERIAL_PROTOCOLPGM(" x: ");
  1770. SERIAL_PROTOCOL(x);
  1771. SERIAL_PROTOCOLPGM(" y: ");
  1772. SERIAL_PROTOCOL(y);
  1773. SERIAL_PROTOCOLPGM(" z: ");
  1774. SERIAL_PROTOCOL(measured_z);
  1775. SERIAL_PROTOCOLPGM("\n");
  1776. return measured_z;
  1777. }
  1778. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1779. #ifdef LIN_ADVANCE
  1780. /**
  1781. * M900: Set and/or Get advance K factor
  1782. *
  1783. * K<factor> Set advance K factor
  1784. */
  1785. inline void gcode_M900() {
  1786. float newK = code_seen('K') ? code_value_float() : -2;
  1787. #ifdef LA_NOCOMPAT
  1788. if (newK >= 0 && newK < LA_K_MAX)
  1789. extruder_advance_K = newK;
  1790. else
  1791. SERIAL_ECHOLNPGM("K out of allowed range!");
  1792. #else
  1793. if (newK == 0)
  1794. {
  1795. extruder_advance_K = 0;
  1796. la10c_reset();
  1797. }
  1798. else
  1799. {
  1800. newK = la10c_value(newK);
  1801. if (newK < 0)
  1802. SERIAL_ECHOLNPGM("K out of allowed range!");
  1803. else
  1804. extruder_advance_K = newK;
  1805. }
  1806. #endif
  1807. SERIAL_ECHO_START;
  1808. SERIAL_ECHOPGM("Advance K=");
  1809. SERIAL_ECHOLN(extruder_advance_K);
  1810. }
  1811. #endif // LIN_ADVANCE
  1812. bool check_commands() {
  1813. bool end_command_found = false;
  1814. while (buflen)
  1815. {
  1816. if ((code_seen_P(PSTR("M84"))) || (code_seen_P(PSTR("M 84")))) end_command_found = true;
  1817. if (!cmdbuffer_front_already_processed)
  1818. cmdqueue_pop_front();
  1819. cmdbuffer_front_already_processed = false;
  1820. }
  1821. return end_command_found;
  1822. }
  1823. // raise_z_above: slowly raise Z to the requested height
  1824. //
  1825. // contrarily to a simple move, this function will carefully plan a move
  1826. // when the current Z position is unknown. In such cases, stallguard is
  1827. // enabled and will prevent prolonged pushing against the Z tops
  1828. void raise_z_above(float target, bool plan)
  1829. {
  1830. if (current_position[Z_AXIS] >= target)
  1831. return;
  1832. // Z needs raising
  1833. current_position[Z_AXIS] = target;
  1834. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1835. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1836. #else
  1837. bool z_min_endstop = false;
  1838. #endif
  1839. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1840. {
  1841. // current position is known or very low, it's safe to raise Z
  1842. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1843. return;
  1844. }
  1845. // ensure Z is powered in normal mode to overcome initial load
  1846. enable_z();
  1847. st_synchronize();
  1848. // rely on crashguard to limit damage
  1849. bool z_endstop_enabled = enable_z_endstop(true);
  1850. #ifdef TMC2130
  1851. tmc2130_home_enter(Z_AXIS_MASK);
  1852. #endif //TMC2130
  1853. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1854. st_synchronize();
  1855. #ifdef TMC2130
  1856. if (endstop_z_hit_on_purpose())
  1857. {
  1858. // not necessarily exact, but will avoid further vertical moves
  1859. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1860. plan_set_position_curposXYZE();
  1861. }
  1862. tmc2130_home_exit();
  1863. #endif //TMC2130
  1864. enable_z_endstop(z_endstop_enabled);
  1865. }
  1866. #ifdef TMC2130
  1867. bool calibrate_z_auto()
  1868. {
  1869. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1870. lcd_clear();
  1871. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1872. bool endstops_enabled = enable_endstops(true);
  1873. int axis_up_dir = -home_dir(Z_AXIS);
  1874. tmc2130_home_enter(Z_AXIS_MASK);
  1875. current_position[Z_AXIS] = 0;
  1876. plan_set_position_curposXYZE();
  1877. set_destination_to_current();
  1878. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1879. feedrate = homing_feedrate[Z_AXIS];
  1880. plan_buffer_line_destinationXYZE(feedrate / 60);
  1881. st_synchronize();
  1882. // current_position[axis] = 0;
  1883. // plan_set_position_curposXYZE();
  1884. tmc2130_home_exit();
  1885. enable_endstops(false);
  1886. current_position[Z_AXIS] = 0;
  1887. plan_set_position_curposXYZE();
  1888. set_destination_to_current();
  1889. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1890. feedrate = homing_feedrate[Z_AXIS] / 2;
  1891. plan_buffer_line_destinationXYZE(feedrate / 60);
  1892. st_synchronize();
  1893. enable_endstops(endstops_enabled);
  1894. if (PRINTER_TYPE == PRINTER_MK3) {
  1895. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1896. }
  1897. else {
  1898. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1899. }
  1900. plan_set_position_curposXYZE();
  1901. return true;
  1902. }
  1903. #endif //TMC2130
  1904. #ifdef TMC2130
  1905. static void check_Z_crash(void)
  1906. {
  1907. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1908. FORCE_HIGH_POWER_END;
  1909. current_position[Z_AXIS] = 0;
  1910. plan_set_position_curposXYZE();
  1911. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1912. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1913. st_synchronize();
  1914. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1915. }
  1916. }
  1917. #endif //TMC2130
  1918. #ifdef TMC2130
  1919. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1920. #else
  1921. void homeaxis(int axis, uint8_t cnt)
  1922. #endif //TMC2130
  1923. {
  1924. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1925. #define HOMEAXIS_DO(LETTER) \
  1926. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1927. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1928. {
  1929. int axis_home_dir = home_dir(axis);
  1930. feedrate = homing_feedrate[axis];
  1931. #ifdef TMC2130
  1932. tmc2130_home_enter(X_AXIS_MASK << axis);
  1933. #endif //TMC2130
  1934. // Move away a bit, so that the print head does not touch the end position,
  1935. // and the following movement to endstop has a chance to achieve the required velocity
  1936. // for the stall guard to work.
  1937. current_position[axis] = 0;
  1938. plan_set_position_curposXYZE();
  1939. set_destination_to_current();
  1940. // destination[axis] = 11.f;
  1941. destination[axis] = -3.f * axis_home_dir;
  1942. plan_buffer_line_destinationXYZE(feedrate/60);
  1943. st_synchronize();
  1944. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1945. endstops_hit_on_purpose();
  1946. enable_endstops(false);
  1947. current_position[axis] = 0;
  1948. plan_set_position_curposXYZE();
  1949. destination[axis] = 1. * axis_home_dir;
  1950. plan_buffer_line_destinationXYZE(feedrate/60);
  1951. st_synchronize();
  1952. // Now continue to move up to the left end stop with the collision detection enabled.
  1953. enable_endstops(true);
  1954. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1955. plan_buffer_line_destinationXYZE(feedrate/60);
  1956. st_synchronize();
  1957. for (uint8_t i = 0; i < cnt; i++)
  1958. {
  1959. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1960. endstops_hit_on_purpose();
  1961. enable_endstops(false);
  1962. current_position[axis] = 0;
  1963. plan_set_position_curposXYZE();
  1964. destination[axis] = -10.f * axis_home_dir;
  1965. plan_buffer_line_destinationXYZE(feedrate/60);
  1966. st_synchronize();
  1967. endstops_hit_on_purpose();
  1968. // Now move left up to the collision, this time with a repeatable velocity.
  1969. enable_endstops(true);
  1970. destination[axis] = 11.f * axis_home_dir;
  1971. #ifdef TMC2130
  1972. feedrate = homing_feedrate[axis];
  1973. #else //TMC2130
  1974. feedrate = homing_feedrate[axis] / 2;
  1975. #endif //TMC2130
  1976. plan_buffer_line_destinationXYZE(feedrate/60);
  1977. st_synchronize();
  1978. #ifdef TMC2130
  1979. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1980. if (pstep) pstep[i] = mscnt >> 4;
  1981. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1982. #endif //TMC2130
  1983. }
  1984. endstops_hit_on_purpose();
  1985. enable_endstops(false);
  1986. #ifdef TMC2130
  1987. uint8_t orig = tmc2130_home_origin[axis];
  1988. uint8_t back = tmc2130_home_bsteps[axis];
  1989. if (tmc2130_home_enabled && (orig <= 63))
  1990. {
  1991. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1992. if (back > 0)
  1993. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1994. }
  1995. else
  1996. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1997. tmc2130_home_exit();
  1998. #endif //TMC2130
  1999. axis_is_at_home(axis);
  2000. axis_known_position[axis] = true;
  2001. // Move from minimum
  2002. #ifdef TMC2130
  2003. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  2004. #else //TMC2130
  2005. float dist = - axis_home_dir * 0.01f * 64;
  2006. #endif //TMC2130
  2007. current_position[axis] -= dist;
  2008. plan_set_position_curposXYZE();
  2009. current_position[axis] += dist;
  2010. destination[axis] = current_position[axis];
  2011. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  2012. st_synchronize();
  2013. feedrate = 0.0;
  2014. }
  2015. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2016. {
  2017. #ifdef TMC2130
  2018. FORCE_HIGH_POWER_START;
  2019. #endif
  2020. int axis_home_dir = home_dir(axis);
  2021. current_position[axis] = 0;
  2022. plan_set_position_curposXYZE();
  2023. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2024. feedrate = homing_feedrate[axis];
  2025. plan_buffer_line_destinationXYZE(feedrate/60);
  2026. st_synchronize();
  2027. #ifdef TMC2130
  2028. check_Z_crash();
  2029. #endif //TMC2130
  2030. current_position[axis] = 0;
  2031. plan_set_position_curposXYZE();
  2032. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2033. plan_buffer_line_destinationXYZE(feedrate/60);
  2034. st_synchronize();
  2035. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2036. feedrate = homing_feedrate[axis]/2 ;
  2037. plan_buffer_line_destinationXYZE(feedrate/60);
  2038. st_synchronize();
  2039. #ifdef TMC2130
  2040. check_Z_crash();
  2041. #endif //TMC2130
  2042. axis_is_at_home(axis);
  2043. destination[axis] = current_position[axis];
  2044. feedrate = 0.0;
  2045. endstops_hit_on_purpose();
  2046. axis_known_position[axis] = true;
  2047. #ifdef TMC2130
  2048. FORCE_HIGH_POWER_END;
  2049. #endif
  2050. }
  2051. enable_endstops(endstops_enabled);
  2052. }
  2053. /**/
  2054. void home_xy()
  2055. {
  2056. set_destination_to_current();
  2057. homeaxis(X_AXIS);
  2058. homeaxis(Y_AXIS);
  2059. plan_set_position_curposXYZE();
  2060. endstops_hit_on_purpose();
  2061. }
  2062. void refresh_cmd_timeout(void)
  2063. {
  2064. previous_millis_cmd = _millis();
  2065. }
  2066. #ifdef FWRETRACT
  2067. void retract(bool retracting, bool swapretract = false) {
  2068. // Perform FW retraction, just if needed, but behave as if the move has never took place in
  2069. // order to keep E/Z coordinates unchanged. This is done by manipulating the internal planner
  2070. // position, which requires a sync
  2071. if(retracting && !retracted[active_extruder]) {
  2072. st_synchronize();
  2073. set_destination_to_current();
  2074. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2075. plan_set_e_position(current_position[E_AXIS]);
  2076. float oldFeedrate = feedrate;
  2077. feedrate=cs.retract_feedrate*60;
  2078. retracted[active_extruder]=true;
  2079. prepare_move();
  2080. if(cs.retract_zlift) {
  2081. st_synchronize();
  2082. current_position[Z_AXIS]-=cs.retract_zlift;
  2083. plan_set_position_curposXYZE();
  2084. prepare_move();
  2085. }
  2086. feedrate = oldFeedrate;
  2087. } else if(!retracting && retracted[active_extruder]) {
  2088. st_synchronize();
  2089. set_destination_to_current();
  2090. float oldFeedrate = feedrate;
  2091. feedrate=cs.retract_recover_feedrate*60;
  2092. if(cs.retract_zlift) {
  2093. current_position[Z_AXIS]+=cs.retract_zlift;
  2094. plan_set_position_curposXYZE();
  2095. prepare_move();
  2096. st_synchronize();
  2097. }
  2098. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2099. plan_set_e_position(current_position[E_AXIS]);
  2100. retracted[active_extruder]=false;
  2101. prepare_move();
  2102. feedrate = oldFeedrate;
  2103. }
  2104. } //retract
  2105. #endif //FWRETRACT
  2106. void trace() {
  2107. Sound_MakeCustom(25,440,true);
  2108. }
  2109. /*
  2110. void ramming() {
  2111. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2112. if (current_temperature[0] < 230) {
  2113. //PLA
  2114. max_feedrate[E_AXIS] = 50;
  2115. //current_position[E_AXIS] -= 8;
  2116. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2117. //current_position[E_AXIS] += 8;
  2118. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2119. current_position[E_AXIS] += 5.4;
  2120. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2121. current_position[E_AXIS] += 3.2;
  2122. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2123. current_position[E_AXIS] += 3;
  2124. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2125. st_synchronize();
  2126. max_feedrate[E_AXIS] = 80;
  2127. current_position[E_AXIS] -= 82;
  2128. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2129. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2130. current_position[E_AXIS] -= 20;
  2131. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2132. current_position[E_AXIS] += 5;
  2133. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2134. current_position[E_AXIS] += 5;
  2135. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2136. current_position[E_AXIS] -= 10;
  2137. st_synchronize();
  2138. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2139. current_position[E_AXIS] += 10;
  2140. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2141. current_position[E_AXIS] -= 10;
  2142. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2143. current_position[E_AXIS] += 10;
  2144. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2145. current_position[E_AXIS] -= 10;
  2146. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2147. st_synchronize();
  2148. }
  2149. else {
  2150. //ABS
  2151. max_feedrate[E_AXIS] = 50;
  2152. //current_position[E_AXIS] -= 8;
  2153. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2154. //current_position[E_AXIS] += 8;
  2155. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2156. current_position[E_AXIS] += 3.1;
  2157. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2158. current_position[E_AXIS] += 3.1;
  2159. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2160. current_position[E_AXIS] += 4;
  2161. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2162. st_synchronize();
  2163. //current_position[X_AXIS] += 23; //delay
  2164. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2165. //current_position[X_AXIS] -= 23; //delay
  2166. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2167. _delay(4700);
  2168. max_feedrate[E_AXIS] = 80;
  2169. current_position[E_AXIS] -= 92;
  2170. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2171. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2172. current_position[E_AXIS] -= 5;
  2173. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2174. current_position[E_AXIS] += 5;
  2175. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 5;
  2177. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2178. st_synchronize();
  2179. current_position[E_AXIS] += 5;
  2180. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2181. current_position[E_AXIS] -= 5;
  2182. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2183. current_position[E_AXIS] += 5;
  2184. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2185. current_position[E_AXIS] -= 5;
  2186. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2187. st_synchronize();
  2188. }
  2189. }
  2190. */
  2191. #ifdef TMC2130
  2192. void force_high_power_mode(bool start_high_power_section) {
  2193. #ifdef PSU_Delta
  2194. if (start_high_power_section == true) enable_force_z();
  2195. #endif //PSU_Delta
  2196. uint8_t silent;
  2197. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2198. if (silent == 1) {
  2199. //we are in silent mode, set to normal mode to enable crash detection
  2200. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2201. st_synchronize();
  2202. cli();
  2203. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2204. update_mode_profile();
  2205. tmc2130_init();
  2206. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2207. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2208. st_reset_timer();
  2209. sei();
  2210. }
  2211. }
  2212. #endif //TMC2130
  2213. void gcode_M105(uint8_t extruder)
  2214. {
  2215. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2216. SERIAL_PROTOCOLPGM("T:");
  2217. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2218. SERIAL_PROTOCOLPGM(" /");
  2219. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2220. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2221. SERIAL_PROTOCOLPGM(" B:");
  2222. SERIAL_PROTOCOL_F(degBed(),1);
  2223. SERIAL_PROTOCOLPGM(" /");
  2224. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2225. #endif //TEMP_BED_PIN
  2226. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2227. SERIAL_PROTOCOLPGM(" T");
  2228. SERIAL_PROTOCOL(cur_extruder);
  2229. SERIAL_PROTOCOL(':');
  2230. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2231. SERIAL_PROTOCOLPGM(" /");
  2232. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2233. }
  2234. #else
  2235. SERIAL_ERROR_START;
  2236. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2237. #endif
  2238. SERIAL_PROTOCOLPGM(" @:");
  2239. #ifdef EXTRUDER_WATTS
  2240. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2241. SERIAL_PROTOCOLPGM("W");
  2242. #else
  2243. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2244. #endif
  2245. SERIAL_PROTOCOLPGM(" B@:");
  2246. #ifdef BED_WATTS
  2247. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2248. SERIAL_PROTOCOLPGM("W");
  2249. #else
  2250. SERIAL_PROTOCOL(getHeaterPower(-1));
  2251. #endif
  2252. #ifdef PINDA_THERMISTOR
  2253. SERIAL_PROTOCOLPGM(" P:");
  2254. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2255. #endif //PINDA_THERMISTOR
  2256. #ifdef AMBIENT_THERMISTOR
  2257. SERIAL_PROTOCOLPGM(" A:");
  2258. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2259. #endif //AMBIENT_THERMISTOR
  2260. #ifdef SHOW_TEMP_ADC_VALUES
  2261. {
  2262. float raw = 0.0;
  2263. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2264. SERIAL_PROTOCOLPGM(" ADC B:");
  2265. SERIAL_PROTOCOL_F(degBed(),1);
  2266. SERIAL_PROTOCOLPGM("C->");
  2267. raw = rawBedTemp();
  2268. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2269. SERIAL_PROTOCOLPGM(" Rb->");
  2270. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2271. SERIAL_PROTOCOLPGM(" Rxb->");
  2272. SERIAL_PROTOCOL_F(raw, 5);
  2273. #endif
  2274. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2275. SERIAL_PROTOCOLPGM(" T");
  2276. SERIAL_PROTOCOL(cur_extruder);
  2277. SERIAL_PROTOCOLPGM(":");
  2278. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2279. SERIAL_PROTOCOLPGM("C->");
  2280. raw = rawHotendTemp(cur_extruder);
  2281. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2282. SERIAL_PROTOCOLPGM(" Rt");
  2283. SERIAL_PROTOCOL(cur_extruder);
  2284. SERIAL_PROTOCOLPGM("->");
  2285. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2286. SERIAL_PROTOCOLPGM(" Rx");
  2287. SERIAL_PROTOCOL(cur_extruder);
  2288. SERIAL_PROTOCOLPGM("->");
  2289. SERIAL_PROTOCOL_F(raw, 5);
  2290. }
  2291. }
  2292. #endif
  2293. SERIAL_PROTOCOLLN();
  2294. }
  2295. #ifdef TMC2130
  2296. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2297. #else
  2298. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2299. #endif //TMC2130
  2300. {
  2301. st_synchronize();
  2302. #if 0
  2303. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2304. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2305. #endif
  2306. // Flag for the display update routine and to disable the print cancelation during homing.
  2307. homing_flag = true;
  2308. // Which axes should be homed?
  2309. bool home_x = home_x_axis;
  2310. bool home_y = home_y_axis;
  2311. bool home_z = home_z_axis;
  2312. // Either all X,Y,Z codes are present, or none of them.
  2313. bool home_all_axes = home_x == home_y && home_x == home_z;
  2314. if (home_all_axes)
  2315. // No X/Y/Z code provided means to home all axes.
  2316. home_x = home_y = home_z = true;
  2317. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2318. if (home_all_axes) {
  2319. raise_z_above(MESH_HOME_Z_SEARCH);
  2320. st_synchronize();
  2321. }
  2322. #ifdef ENABLE_AUTO_BED_LEVELING
  2323. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2324. #endif //ENABLE_AUTO_BED_LEVELING
  2325. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2326. // the planner will not perform any adjustments in the XY plane.
  2327. // Wait for the motors to stop and update the current position with the absolute values.
  2328. world2machine_revert_to_uncorrected();
  2329. // For mesh bed leveling deactivate the matrix temporarily.
  2330. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2331. // in a single axis only.
  2332. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2333. #ifdef MESH_BED_LEVELING
  2334. uint8_t mbl_was_active = mbl.active;
  2335. mbl.active = 0;
  2336. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2337. #endif
  2338. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2339. if (home_z)
  2340. babystep_undo();
  2341. saved_feedrate = feedrate;
  2342. int l_feedmultiply = feedmultiply;
  2343. feedmultiply = 100;
  2344. previous_millis_cmd = _millis();
  2345. enable_endstops(true);
  2346. memcpy(destination, current_position, sizeof(destination));
  2347. feedrate = 0.0;
  2348. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2349. if(home_z)
  2350. homeaxis(Z_AXIS);
  2351. #endif
  2352. #ifdef QUICK_HOME
  2353. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2354. if(home_x && home_y) //first diagonal move
  2355. {
  2356. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2357. int x_axis_home_dir = home_dir(X_AXIS);
  2358. plan_set_position_curposXYZE();
  2359. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2360. feedrate = homing_feedrate[X_AXIS];
  2361. if(homing_feedrate[Y_AXIS]<feedrate)
  2362. feedrate = homing_feedrate[Y_AXIS];
  2363. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2364. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2365. } else {
  2366. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2367. }
  2368. plan_buffer_line_destinationXYZE(feedrate/60);
  2369. st_synchronize();
  2370. axis_is_at_home(X_AXIS);
  2371. axis_is_at_home(Y_AXIS);
  2372. plan_set_position_curposXYZE();
  2373. destination[X_AXIS] = current_position[X_AXIS];
  2374. destination[Y_AXIS] = current_position[Y_AXIS];
  2375. plan_buffer_line_destinationXYZE(feedrate/60);
  2376. feedrate = 0.0;
  2377. st_synchronize();
  2378. endstops_hit_on_purpose();
  2379. current_position[X_AXIS] = destination[X_AXIS];
  2380. current_position[Y_AXIS] = destination[Y_AXIS];
  2381. current_position[Z_AXIS] = destination[Z_AXIS];
  2382. }
  2383. #endif /* QUICK_HOME */
  2384. #ifdef TMC2130
  2385. if(home_x)
  2386. {
  2387. if (!calib)
  2388. homeaxis(X_AXIS);
  2389. else
  2390. tmc2130_home_calibrate(X_AXIS);
  2391. }
  2392. if(home_y)
  2393. {
  2394. if (!calib)
  2395. homeaxis(Y_AXIS);
  2396. else
  2397. tmc2130_home_calibrate(Y_AXIS);
  2398. }
  2399. #else //TMC2130
  2400. if(home_x) homeaxis(X_AXIS);
  2401. if(home_y) homeaxis(Y_AXIS);
  2402. #endif //TMC2130
  2403. if(home_x_axis && home_x_value != 0)
  2404. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2405. if(home_y_axis && home_y_value != 0)
  2406. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2407. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2408. #ifndef Z_SAFE_HOMING
  2409. if(home_z) {
  2410. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2411. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2412. st_synchronize();
  2413. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2414. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2415. raise_z_above(MESH_HOME_Z_SEARCH);
  2416. st_synchronize();
  2417. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2418. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2419. // 1st mesh bed leveling measurement point, corrected.
  2420. world2machine_initialize();
  2421. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2422. world2machine_reset();
  2423. if (destination[Y_AXIS] < Y_MIN_POS)
  2424. destination[Y_AXIS] = Y_MIN_POS;
  2425. feedrate = homing_feedrate[X_AXIS] / 20;
  2426. enable_endstops(false);
  2427. #ifdef DEBUG_BUILD
  2428. SERIAL_ECHOLNPGM("plan_set_position()");
  2429. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2430. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2431. #endif
  2432. plan_set_position_curposXYZE();
  2433. #ifdef DEBUG_BUILD
  2434. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2435. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2436. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2437. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2438. #endif
  2439. plan_buffer_line_destinationXYZE(feedrate);
  2440. st_synchronize();
  2441. current_position[X_AXIS] = destination[X_AXIS];
  2442. current_position[Y_AXIS] = destination[Y_AXIS];
  2443. enable_endstops(true);
  2444. endstops_hit_on_purpose();
  2445. homeaxis(Z_AXIS);
  2446. #else // MESH_BED_LEVELING
  2447. homeaxis(Z_AXIS);
  2448. #endif // MESH_BED_LEVELING
  2449. }
  2450. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2451. if(home_all_axes) {
  2452. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2453. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2454. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2455. feedrate = XY_TRAVEL_SPEED/60;
  2456. current_position[Z_AXIS] = 0;
  2457. plan_set_position_curposXYZE();
  2458. plan_buffer_line_destinationXYZE(feedrate);
  2459. st_synchronize();
  2460. current_position[X_AXIS] = destination[X_AXIS];
  2461. current_position[Y_AXIS] = destination[Y_AXIS];
  2462. homeaxis(Z_AXIS);
  2463. }
  2464. // Let's see if X and Y are homed and probe is inside bed area.
  2465. if(home_z) {
  2466. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2467. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2468. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2469. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2470. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2471. current_position[Z_AXIS] = 0;
  2472. plan_set_position_curposXYZE();
  2473. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2474. feedrate = max_feedrate[Z_AXIS];
  2475. plan_buffer_line_destinationXYZE(feedrate);
  2476. st_synchronize();
  2477. homeaxis(Z_AXIS);
  2478. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2479. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2480. SERIAL_ECHO_START;
  2481. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2482. } else {
  2483. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2484. SERIAL_ECHO_START;
  2485. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2486. }
  2487. }
  2488. #endif // Z_SAFE_HOMING
  2489. #endif // Z_HOME_DIR < 0
  2490. if(home_z_axis && home_z_value != 0)
  2491. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2492. #ifdef ENABLE_AUTO_BED_LEVELING
  2493. if(home_z)
  2494. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2495. #endif
  2496. // Set the planner and stepper routine positions.
  2497. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2498. // contains the machine coordinates.
  2499. plan_set_position_curposXYZE();
  2500. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2501. enable_endstops(false);
  2502. #endif
  2503. feedrate = saved_feedrate;
  2504. feedmultiply = l_feedmultiply;
  2505. previous_millis_cmd = _millis();
  2506. endstops_hit_on_purpose();
  2507. #ifndef MESH_BED_LEVELING
  2508. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2509. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2510. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2511. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2512. lcd_adjust_z();
  2513. #endif
  2514. // Load the machine correction matrix
  2515. world2machine_initialize();
  2516. // and correct the current_position XY axes to match the transformed coordinate system.
  2517. world2machine_update_current();
  2518. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2519. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2520. {
  2521. if (! home_z && mbl_was_active) {
  2522. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2523. mbl.active = true;
  2524. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2525. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2526. }
  2527. }
  2528. else
  2529. {
  2530. st_synchronize();
  2531. homing_flag = false;
  2532. }
  2533. #endif
  2534. if (farm_mode) { prusa_statistics(20); };
  2535. homing_flag = false;
  2536. #if 0
  2537. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2538. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2539. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2540. #endif
  2541. }
  2542. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2543. {
  2544. #ifdef TMC2130
  2545. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2546. #else
  2547. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2548. #endif //TMC2130
  2549. }
  2550. void adjust_bed_reset()
  2551. {
  2552. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2553. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2554. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2555. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2556. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2557. }
  2558. //! @brief Calibrate XYZ
  2559. //! @param onlyZ if true, calibrate only Z axis
  2560. //! @param verbosity_level
  2561. //! @retval true Succeeded
  2562. //! @retval false Failed
  2563. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2564. {
  2565. bool final_result = false;
  2566. #ifdef TMC2130
  2567. FORCE_HIGH_POWER_START;
  2568. #endif // TMC2130
  2569. FORCE_BL_ON_START;
  2570. // Only Z calibration?
  2571. if (!onlyZ)
  2572. {
  2573. setTargetBed(0);
  2574. setAllTargetHotends(0);
  2575. adjust_bed_reset(); //reset bed level correction
  2576. }
  2577. // Disable the default update procedure of the display. We will do a modal dialog.
  2578. lcd_update_enable(false);
  2579. // Let the planner use the uncorrected coordinates.
  2580. mbl.reset();
  2581. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2582. // the planner will not perform any adjustments in the XY plane.
  2583. // Wait for the motors to stop and update the current position with the absolute values.
  2584. world2machine_revert_to_uncorrected();
  2585. // Reset the baby step value applied without moving the axes.
  2586. babystep_reset();
  2587. // Mark all axes as in a need for homing.
  2588. memset(axis_known_position, 0, sizeof(axis_known_position));
  2589. // Home in the XY plane.
  2590. //set_destination_to_current();
  2591. int l_feedmultiply = setup_for_endstop_move();
  2592. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2593. raise_z_above(MESH_HOME_Z_SEARCH);
  2594. st_synchronize();
  2595. home_xy();
  2596. enable_endstops(false);
  2597. current_position[X_AXIS] += 5;
  2598. current_position[Y_AXIS] += 5;
  2599. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2600. st_synchronize();
  2601. // Let the user move the Z axes up to the end stoppers.
  2602. #ifdef TMC2130
  2603. if (calibrate_z_auto())
  2604. {
  2605. #else //TMC2130
  2606. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2607. {
  2608. #endif //TMC2130
  2609. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2610. if(onlyZ){
  2611. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2612. lcd_set_cursor(0, 3);
  2613. lcd_print(1);
  2614. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2615. }else{
  2616. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2617. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2618. lcd_set_cursor(0, 2);
  2619. lcd_print(1);
  2620. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2621. }
  2622. refresh_cmd_timeout();
  2623. #ifndef STEEL_SHEET
  2624. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2625. {
  2626. lcd_wait_for_cool_down();
  2627. }
  2628. #endif //STEEL_SHEET
  2629. if(!onlyZ)
  2630. {
  2631. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2632. #ifdef STEEL_SHEET
  2633. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2634. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2635. #endif //STEEL_SHEET
  2636. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2637. KEEPALIVE_STATE(IN_HANDLER);
  2638. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2639. lcd_set_cursor(0, 2);
  2640. lcd_print(1);
  2641. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2642. }
  2643. bool endstops_enabled = enable_endstops(false);
  2644. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2645. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2646. st_synchronize();
  2647. // Move the print head close to the bed.
  2648. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2649. enable_endstops(true);
  2650. #ifdef TMC2130
  2651. tmc2130_home_enter(Z_AXIS_MASK);
  2652. #endif //TMC2130
  2653. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2654. st_synchronize();
  2655. #ifdef TMC2130
  2656. tmc2130_home_exit();
  2657. #endif //TMC2130
  2658. enable_endstops(endstops_enabled);
  2659. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2660. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2661. {
  2662. if (onlyZ)
  2663. {
  2664. clean_up_after_endstop_move(l_feedmultiply);
  2665. // Z only calibration.
  2666. // Load the machine correction matrix
  2667. world2machine_initialize();
  2668. // and correct the current_position to match the transformed coordinate system.
  2669. world2machine_update_current();
  2670. //FIXME
  2671. bool result = sample_mesh_and_store_reference();
  2672. if (result)
  2673. {
  2674. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2675. // Shipped, the nozzle height has been set already. The user can start printing now.
  2676. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2677. final_result = true;
  2678. // babystep_apply();
  2679. }
  2680. }
  2681. else
  2682. {
  2683. // Reset the baby step value and the baby step applied flag.
  2684. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2685. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2686. // Complete XYZ calibration.
  2687. uint8_t point_too_far_mask = 0;
  2688. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2689. clean_up_after_endstop_move(l_feedmultiply);
  2690. // Print head up.
  2691. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2692. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2693. st_synchronize();
  2694. //#ifndef NEW_XYZCAL
  2695. if (result >= 0)
  2696. {
  2697. #ifdef HEATBED_V2
  2698. sample_z();
  2699. #else //HEATBED_V2
  2700. point_too_far_mask = 0;
  2701. // Second half: The fine adjustment.
  2702. // Let the planner use the uncorrected coordinates.
  2703. mbl.reset();
  2704. world2machine_reset();
  2705. // Home in the XY plane.
  2706. int l_feedmultiply = setup_for_endstop_move();
  2707. home_xy();
  2708. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2709. clean_up_after_endstop_move(l_feedmultiply);
  2710. // Print head up.
  2711. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2712. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2713. st_synchronize();
  2714. // if (result >= 0) babystep_apply();
  2715. #endif //HEATBED_V2
  2716. }
  2717. //#endif //NEW_XYZCAL
  2718. lcd_update_enable(true);
  2719. lcd_update(2);
  2720. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2721. if (result >= 0)
  2722. {
  2723. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2724. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2725. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2726. final_result = true;
  2727. }
  2728. }
  2729. #ifdef TMC2130
  2730. tmc2130_home_exit();
  2731. #endif
  2732. }
  2733. else
  2734. {
  2735. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2736. final_result = false;
  2737. }
  2738. }
  2739. else
  2740. {
  2741. // Timeouted.
  2742. }
  2743. lcd_update_enable(true);
  2744. #ifdef TMC2130
  2745. FORCE_HIGH_POWER_END;
  2746. #endif // TMC2130
  2747. FORCE_BL_ON_END;
  2748. return final_result;
  2749. }
  2750. void gcode_M114()
  2751. {
  2752. SERIAL_PROTOCOLPGM("X:");
  2753. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2754. SERIAL_PROTOCOLPGM(" Y:");
  2755. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2756. SERIAL_PROTOCOLPGM(" Z:");
  2757. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2758. SERIAL_PROTOCOLPGM(" E:");
  2759. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2760. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2761. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2762. SERIAL_PROTOCOLPGM(" Y:");
  2763. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2764. SERIAL_PROTOCOLPGM(" Z:");
  2765. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2766. SERIAL_PROTOCOLPGM(" E:");
  2767. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2768. SERIAL_PROTOCOLLN();
  2769. }
  2770. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  2771. void gcode_M123()
  2772. {
  2773. printf_P(_N("E0:%d RPM PRN1:%d RPM E0@:%u PRN1@:%d\n"), 60*fan_speed[active_extruder], 60*fan_speed[1], newFanSpeed, fanSpeed);
  2774. }
  2775. #endif //FANCHECK and TACH_0 or TACH_1
  2776. //! extracted code to compute z_shift for M600 in case of filament change operation
  2777. //! requested from fsensors.
  2778. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2779. //! unlike the previous implementation, which was adding 25mm even when the head was
  2780. //! printing at e.g. 24mm height.
  2781. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2782. //! the printout.
  2783. //! This function is templated to enable fast change of computation data type.
  2784. //! @return new z_shift value
  2785. template<typename T>
  2786. static T gcode_M600_filament_change_z_shift()
  2787. {
  2788. #ifdef FILAMENTCHANGE_ZADD
  2789. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2790. // avoid floating point arithmetics when not necessary - results in shorter code
  2791. T ztmp = T( current_position[Z_AXIS] );
  2792. T z_shift = 0;
  2793. if(ztmp < T(25)){
  2794. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2795. }
  2796. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2797. #else
  2798. return T(0);
  2799. #endif
  2800. }
  2801. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2802. {
  2803. st_synchronize();
  2804. float lastpos[4];
  2805. if (farm_mode)
  2806. {
  2807. prusa_statistics(22);
  2808. }
  2809. //First backup current position and settings
  2810. int feedmultiplyBckp = feedmultiply;
  2811. float HotendTempBckp = degTargetHotend(active_extruder);
  2812. int fanSpeedBckp = fanSpeed;
  2813. lastpos[X_AXIS] = current_position[X_AXIS];
  2814. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2815. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2816. lastpos[E_AXIS] = current_position[E_AXIS];
  2817. //Retract E
  2818. current_position[E_AXIS] += e_shift;
  2819. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  2820. st_synchronize();
  2821. //Lift Z
  2822. current_position[Z_AXIS] += z_shift;
  2823. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  2824. st_synchronize();
  2825. //Move XY to side
  2826. current_position[X_AXIS] = x_position;
  2827. current_position[Y_AXIS] = y_position;
  2828. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2829. st_synchronize();
  2830. //Beep, manage nozzle heater and wait for user to start unload filament
  2831. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2832. lcd_change_fil_state = 0;
  2833. // Unload filament
  2834. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2835. else unload_filament(); //unload filament for single material (used also in M702)
  2836. //finish moves
  2837. st_synchronize();
  2838. if (!mmu_enabled)
  2839. {
  2840. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2841. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2842. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2843. if (lcd_change_fil_state == 0)
  2844. {
  2845. lcd_clear();
  2846. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  2847. current_position[X_AXIS] -= 100;
  2848. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2849. st_synchronize();
  2850. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2851. }
  2852. }
  2853. if (mmu_enabled)
  2854. {
  2855. if (!automatic) {
  2856. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2857. mmu_M600_wait_and_beep();
  2858. if (saved_printing) {
  2859. lcd_clear();
  2860. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  2861. mmu_command(MmuCmd::R0);
  2862. manage_response(false, false);
  2863. }
  2864. }
  2865. mmu_M600_load_filament(automatic, HotendTempBckp);
  2866. }
  2867. else
  2868. M600_load_filament();
  2869. if (!automatic) M600_check_state(HotendTempBckp);
  2870. lcd_update_enable(true);
  2871. //Not let's go back to print
  2872. fanSpeed = fanSpeedBckp;
  2873. //Feed a little of filament to stabilize pressure
  2874. if (!automatic)
  2875. {
  2876. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2877. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  2878. }
  2879. //Move XY back
  2880. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2881. FILAMENTCHANGE_XYFEED, active_extruder);
  2882. st_synchronize();
  2883. //Move Z back
  2884. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2885. FILAMENTCHANGE_ZFEED, active_extruder);
  2886. st_synchronize();
  2887. //Set E position to original
  2888. plan_set_e_position(lastpos[E_AXIS]);
  2889. memcpy(current_position, lastpos, sizeof(lastpos));
  2890. memcpy(destination, current_position, sizeof(current_position));
  2891. //Recover feed rate
  2892. feedmultiply = feedmultiplyBckp;
  2893. char cmd[9];
  2894. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2895. enquecommand(cmd);
  2896. #ifdef IR_SENSOR
  2897. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2898. fsensor_check_autoload();
  2899. #endif //IR_SENSOR
  2900. lcd_setstatuspgm(_T(WELCOME_MSG));
  2901. custom_message_type = CustomMsg::Status;
  2902. }
  2903. void gcode_M701()
  2904. {
  2905. printf_P(PSTR("gcode_M701 begin\n"));
  2906. if (farm_mode)
  2907. {
  2908. prusa_statistics(22);
  2909. }
  2910. if (mmu_enabled)
  2911. {
  2912. extr_adj(tmp_extruder);//loads current extruder
  2913. mmu_extruder = tmp_extruder;
  2914. }
  2915. else
  2916. {
  2917. enable_z();
  2918. custom_message_type = CustomMsg::FilamentLoading;
  2919. #ifdef FSENSOR_QUALITY
  2920. fsensor_oq_meassure_start(40);
  2921. #endif //FSENSOR_QUALITY
  2922. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2923. current_position[E_AXIS] += 40;
  2924. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2925. st_synchronize();
  2926. raise_z_above(MIN_Z_FOR_LOAD, false);
  2927. current_position[E_AXIS] += 30;
  2928. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2929. load_filament_final_feed(); //slow sequence
  2930. st_synchronize();
  2931. Sound_MakeCustom(50,500,false);
  2932. if (!farm_mode && loading_flag) {
  2933. lcd_load_filament_color_check();
  2934. }
  2935. lcd_update_enable(true);
  2936. lcd_update(2);
  2937. lcd_setstatuspgm(_T(WELCOME_MSG));
  2938. disable_z();
  2939. loading_flag = false;
  2940. custom_message_type = CustomMsg::Status;
  2941. #ifdef FSENSOR_QUALITY
  2942. fsensor_oq_meassure_stop();
  2943. if (!fsensor_oq_result())
  2944. {
  2945. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2946. lcd_update_enable(true);
  2947. lcd_update(2);
  2948. if (disable)
  2949. fsensor_disable();
  2950. }
  2951. #endif //FSENSOR_QUALITY
  2952. }
  2953. }
  2954. /**
  2955. * @brief Get serial number from 32U2 processor
  2956. *
  2957. * Typical format of S/N is:CZPX0917X003XC13518
  2958. *
  2959. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2960. * reply is stored in *SN.
  2961. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2962. * it is interrupted, so less, or no characters are retransmitted, the function returns false
  2963. * The command will fail if the 32U2 processor is unpowered via USB since it is isolated from the rest of the electronics.
  2964. * In that case the value that is stored in the EEPROM should be used instead.
  2965. *
  2966. * @return 1 on success
  2967. * @return 0 on general failure
  2968. */
  2969. static bool get_PRUSA_SN(char* SN)
  2970. {
  2971. uint8_t selectedSerialPort_bak = selectedSerialPort;
  2972. selectedSerialPort = 0;
  2973. SERIAL_ECHOLNRPGM(PSTR(";S"));
  2974. uint8_t numbersRead = 0;
  2975. ShortTimer timeout;
  2976. timeout.start();
  2977. while (numbersRead < 19) {
  2978. if (MSerial.available() > 0) {
  2979. SN[numbersRead] = MSerial.read();
  2980. numbersRead++;
  2981. }
  2982. if (timeout.expired(100u)) break;
  2983. }
  2984. SN[numbersRead] = 0;
  2985. selectedSerialPort = selectedSerialPort_bak;
  2986. return (numbersRead == 19);
  2987. }
  2988. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2989. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2990. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2991. //! it may even interfere with other functions of the printer! You have been warned!
  2992. //! The test idea is to measure the time necessary to charge the capacitor.
  2993. //! So the algorithm is as follows:
  2994. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2995. //! 2. Wait a few ms
  2996. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2997. //! Repeat 1.-3. several times
  2998. //! Good RAMBo's times are in the range of approx. 260-320 us
  2999. //! Bad RAMBo's times are approx. 260-1200 us
  3000. //! So basically we are interested in maximum time, the minima are mostly the same.
  3001. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  3002. static void gcode_PRUSA_BadRAMBoFanTest(){
  3003. //printf_P(PSTR("Enter fan pin test\n"));
  3004. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  3005. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  3006. unsigned long tach1max = 0;
  3007. uint8_t tach1cntr = 0;
  3008. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  3009. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  3010. SET_OUTPUT(TACH_1);
  3011. WRITE(TACH_1, LOW);
  3012. _delay(20); // the delay may be lower
  3013. unsigned long tachMeasure = _micros();
  3014. cli();
  3015. SET_INPUT(TACH_1);
  3016. // just wait brutally in an endless cycle until we reach HIGH
  3017. // if this becomes a problem it may be improved to non-endless cycle
  3018. while( READ(TACH_1) == 0 ) ;
  3019. sei();
  3020. tachMeasure = _micros() - tachMeasure;
  3021. if( tach1max < tachMeasure )
  3022. tach1max = tachMeasure;
  3023. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  3024. }
  3025. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  3026. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  3027. if( tach1max > 500 ){
  3028. // bad RAMBo
  3029. SERIAL_PROTOCOLLNPGM("BAD");
  3030. } else {
  3031. SERIAL_PROTOCOLLNPGM("OK");
  3032. }
  3033. // cleanup after the test function
  3034. SET_INPUT(TACH_1);
  3035. WRITE(TACH_1, HIGH);
  3036. #endif
  3037. }
  3038. // G92 - Set current position to coordinates given
  3039. static void gcode_G92()
  3040. {
  3041. bool codes[NUM_AXIS];
  3042. float values[NUM_AXIS];
  3043. // Check which axes need to be set
  3044. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3045. {
  3046. codes[i] = code_seen(axis_codes[i]);
  3047. if(codes[i])
  3048. values[i] = code_value();
  3049. }
  3050. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3051. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3052. {
  3053. // As a special optimization, when _just_ clearing the E position
  3054. // we schedule a flag asynchronously along with the next block to
  3055. // reset the starting E position instead of stopping the planner
  3056. current_position[E_AXIS] = 0;
  3057. plan_reset_next_e();
  3058. }
  3059. else
  3060. {
  3061. // In any other case we're forced to synchronize
  3062. st_synchronize();
  3063. for(uint8_t i = 0; i < 3; ++i)
  3064. {
  3065. if(codes[i])
  3066. current_position[i] = values[i] + cs.add_homing[i];
  3067. }
  3068. if(codes[E_AXIS])
  3069. current_position[E_AXIS] = values[E_AXIS];
  3070. // Set all at once
  3071. plan_set_position_curposXYZE();
  3072. }
  3073. }
  3074. #ifdef EXTENDED_CAPABILITIES_REPORT
  3075. static void cap_line(const char* name, bool ena = false) {
  3076. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  3077. }
  3078. static void extended_capabilities_report()
  3079. {
  3080. // AUTOREPORT_TEMP (M155)
  3081. cap_line(PSTR("AUTOREPORT_TEMP"), ENABLED(AUTO_REPORT));
  3082. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3083. // AUTOREPORT_FANS (M123)
  3084. cap_line(PSTR("AUTOREPORT_FANS"), ENABLED(AUTO_REPORT));
  3085. #endif //FANCHECK and TACH_0 or TACH_1
  3086. // AUTOREPORT_POSITION (M114)
  3087. cap_line(PSTR("AUTOREPORT_POSITION"), ENABLED(AUTO_REPORT));
  3088. //@todo Update RepRap cap
  3089. }
  3090. #endif //EXTENDED_CAPABILITIES_REPORT
  3091. #ifdef BACKLASH_X
  3092. extern uint8_t st_backlash_x;
  3093. #endif //BACKLASH_X
  3094. #ifdef BACKLASH_Y
  3095. extern uint8_t st_backlash_y;
  3096. #endif //BACKLASH_Y
  3097. //! \ingroup marlin_main
  3098. //! @brief Parse and process commands
  3099. //!
  3100. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3101. //!
  3102. //!
  3103. //! Implemented Codes
  3104. //! -------------------
  3105. //!
  3106. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3107. //!
  3108. //!@n PRUSA CODES
  3109. //!@n P F - Returns FW versions
  3110. //!@n P R - Returns revision of printer
  3111. //!
  3112. //!@n G0 -> G1
  3113. //!@n G1 - Coordinated Movement X Y Z E
  3114. //!@n G2 - CW ARC
  3115. //!@n G3 - CCW ARC
  3116. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3117. //!@n G10 - retract filament according to settings of M207
  3118. //!@n G11 - retract recover filament according to settings of M208
  3119. //!@n G28 - Home all Axes
  3120. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3121. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3122. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3123. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3124. //!@n G80 - Automatic mesh bed leveling
  3125. //!@n G81 - Print bed profile
  3126. //!@n G90 - Use Absolute Coordinates
  3127. //!@n G91 - Use Relative Coordinates
  3128. //!@n G92 - Set current position to coordinates given
  3129. //!
  3130. //!@n M Codes
  3131. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3132. //!@n M1 - Same as M0
  3133. //!@n M17 - Enable/Power all stepper motors
  3134. //!@n M18 - Disable all stepper motors; same as M84
  3135. //!@n M20 - List SD card
  3136. //!@n M21 - Init SD card
  3137. //!@n M22 - Release SD card
  3138. //!@n M23 - Select SD file (M23 filename.g)
  3139. //!@n M24 - Start/resume SD print
  3140. //!@n M25 - Pause SD print
  3141. //!@n M26 - Set SD position in bytes (M26 S12345)
  3142. //!@n M27 - Report SD print status
  3143. //!@n M28 - Start SD write (M28 filename.g)
  3144. //!@n M29 - Stop SD write
  3145. //!@n M30 - Delete file from SD (M30 filename.g)
  3146. //!@n M31 - Output time since last M109 or SD card start to serial
  3147. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3148. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3149. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3150. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3151. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3152. //!@n M73 - Show percent done and print time remaining
  3153. //!@n M80 - Turn on Power Supply
  3154. //!@n M81 - Turn off Power Supply
  3155. //!@n M82 - Set E codes absolute (default)
  3156. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3157. //!@n M84 - Disable steppers until next move,
  3158. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3159. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3160. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3161. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3162. //!@n M104 - Set extruder target temp
  3163. //!@n M105 - Read current temp
  3164. //!@n M106 - Fan on
  3165. //!@n M107 - Fan off
  3166. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3167. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3168. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3169. //!@n M112 - Emergency stop
  3170. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3171. //!@n M114 - Output current position to serial port
  3172. //!@n M115 - Capabilities string
  3173. //!@n M117 - display message
  3174. //!@n M119 - Output Endstop status to serial port
  3175. //!@n M123 - Tachometer value
  3176. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3177. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3178. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3179. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3180. //!@n M140 - Set bed target temp
  3181. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3182. //!@n M155 - Automatically send temperatures, fan speeds, position
  3183. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3184. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3185. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3186. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3187. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3188. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3189. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3190. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3191. //!@n M206 - set additional homing offset
  3192. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3193. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3194. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3195. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3196. //!@n M220 S<factor in percent>- set speed factor override percentage
  3197. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3198. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3199. //!@n M240 - Trigger a camera to take a photograph
  3200. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3201. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3202. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3203. //!@n M301 - Set PID parameters P I and D
  3204. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3205. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3206. //!@n M304 - Set bed PID parameters P I and D
  3207. //!@n M400 - Finish all moves
  3208. //!@n M401 - Lower z-probe if present
  3209. //!@n M402 - Raise z-probe if present
  3210. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3211. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3212. //!@n M406 - Turn off Filament Sensor extrusion control
  3213. //!@n M407 - Displays measured filament diameter
  3214. //!@n M500 - stores parameters in EEPROM
  3215. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3216. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3217. //!@n M503 - print the current settings (from memory not from EEPROM)
  3218. //!@n M509 - force language selection on next restart
  3219. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3220. //!@n M552 - Set IP address
  3221. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3222. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3223. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3224. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3225. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3226. //!@n M907 - Set digital trimpot motor current using axis codes.
  3227. //!@n M908 - Control digital trimpot directly.
  3228. //!@n M350 - Set microstepping mode.
  3229. //!@n M351 - Toggle MS1 MS2 pins directly.
  3230. //!
  3231. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3232. //!@n M999 - Restart after being stopped by error
  3233. //! <br><br>
  3234. /** @defgroup marlin_main Marlin main */
  3235. /** \ingroup GCodes */
  3236. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3237. /**
  3238. They are shown in order of appearance in the code.
  3239. There are reasons why some G Codes aren't in numerical order.
  3240. */
  3241. void process_commands()
  3242. {
  3243. #ifdef FANCHECK
  3244. if(fan_check_error == EFCE_DETECTED) {
  3245. fan_check_error = EFCE_REPORTED;
  3246. if (is_usb_printing)
  3247. lcd_pause_usb_print();
  3248. else
  3249. lcd_pause_print();
  3250. }
  3251. #endif
  3252. if (!buflen) return; //empty command
  3253. #ifdef FILAMENT_RUNOUT_SUPPORT
  3254. SET_INPUT(FR_SENS);
  3255. #endif
  3256. #ifdef CMDBUFFER_DEBUG
  3257. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3258. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3259. SERIAL_ECHOLNPGM("");
  3260. SERIAL_ECHOPGM("In cmdqueue: ");
  3261. SERIAL_ECHO(buflen);
  3262. SERIAL_ECHOLNPGM("");
  3263. #endif /* CMDBUFFER_DEBUG */
  3264. unsigned long codenum; //throw away variable
  3265. char *starpos = NULL;
  3266. #ifdef ENABLE_AUTO_BED_LEVELING
  3267. float x_tmp, y_tmp, z_tmp, real_z;
  3268. #endif
  3269. // PRUSA GCODES
  3270. KEEPALIVE_STATE(IN_HANDLER);
  3271. #ifdef SNMM
  3272. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3273. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3274. int8_t SilentMode;
  3275. #endif
  3276. /*!
  3277. ---------------------------------------------------------------------------------
  3278. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3279. This causes the given message to be shown in the status line on an attached LCD.
  3280. It is processed early as to allow printing messages that contain G, M, N or T.
  3281. ---------------------------------------------------------------------------------
  3282. ### Special internal commands
  3283. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3284. They are processed early as the commands are complex (strings).
  3285. These are only available on the MK3(S) as these require TMC2130 drivers:
  3286. - CRASH DETECTED
  3287. - CRASH RECOVER
  3288. - CRASH_CANCEL
  3289. - TMC_SET_WAVE
  3290. - TMC_SET_STEP
  3291. - TMC_SET_CHOP
  3292. */
  3293. if (code_seen_P(PSTR("M117"))) //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3294. {
  3295. starpos = (strchr(strchr_pointer + 5, '*'));
  3296. if (starpos != NULL)
  3297. *(starpos) = '\0';
  3298. lcd_setstatus(strchr_pointer + 5);
  3299. custom_message_type = CustomMsg::MsgUpdate;
  3300. }
  3301. /*!
  3302. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  3303. #### Usage
  3304. M0 [P<ms<] [S<sec>] [string]
  3305. M1 [P<ms>] [S<sec>] [string]
  3306. #### Parameters
  3307. - `P<ms>` - Expire time, in milliseconds
  3308. - `S<sec>` - Expire time, in seconds
  3309. - `string` - Must for M1 and optional for M0 message to display on the LCD
  3310. */
  3311. else if (code_seen_P(PSTR("M0")) || code_seen_P(PSTR("M1 "))) {// M0 and M1 - (Un)conditional stop - Wait for user button press on LCD
  3312. char *src = strchr_pointer + 2;
  3313. codenum = 0;
  3314. bool hasP = false, hasS = false;
  3315. if (code_seen('P')) {
  3316. codenum = code_value(); // milliseconds to wait
  3317. hasP = codenum > 0;
  3318. }
  3319. if (code_seen('S')) {
  3320. codenum = code_value() * 1000; // seconds to wait
  3321. hasS = codenum > 0;
  3322. }
  3323. starpos = strchr(src, '*');
  3324. if (starpos != NULL) *(starpos) = '\0';
  3325. while (*src == ' ') ++src;
  3326. custom_message_type = CustomMsg::M0Wait;
  3327. if (!hasP && !hasS && *src != '\0') {
  3328. lcd_setstatus(src);
  3329. } else {
  3330. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  3331. }
  3332. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3333. st_synchronize();
  3334. previous_millis_cmd = _millis();
  3335. if (codenum > 0) {
  3336. codenum += _millis(); // keep track of when we started waiting
  3337. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3338. while(_millis() < codenum && !lcd_clicked()) {
  3339. manage_heater();
  3340. manage_inactivity(true);
  3341. lcd_update(0);
  3342. }
  3343. KEEPALIVE_STATE(IN_HANDLER);
  3344. lcd_ignore_click(false);
  3345. } else {
  3346. marlin_wait_for_click();
  3347. }
  3348. if (IS_SD_PRINTING)
  3349. custom_message_type = CustomMsg::Status;
  3350. else
  3351. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3352. }
  3353. #ifdef TMC2130
  3354. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3355. {
  3356. // ### CRASH_DETECTED - TMC2130
  3357. // ---------------------------------
  3358. if(code_seen_P(PSTR("CRASH_DETECTED")))
  3359. {
  3360. uint8_t mask = 0;
  3361. if (code_seen('X')) mask |= X_AXIS_MASK;
  3362. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3363. crashdet_detected(mask);
  3364. }
  3365. // ### CRASH_RECOVER - TMC2130
  3366. // ----------------------------------
  3367. else if(code_seen_P(PSTR("CRASH_RECOVER")))
  3368. crashdet_recover();
  3369. // ### CRASH_CANCEL - TMC2130
  3370. // ----------------------------------
  3371. else if(code_seen_P(PSTR("CRASH_CANCEL")))
  3372. crashdet_cancel();
  3373. }
  3374. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3375. {
  3376. // ### TMC_SET_WAVE_
  3377. // --------------------
  3378. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3379. {
  3380. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3381. axis = (axis == 'E')?3:(axis - 'X');
  3382. if (axis < 4)
  3383. {
  3384. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3385. tmc2130_set_wave(axis, 247, fac);
  3386. }
  3387. }
  3388. // ### TMC_SET_STEP_
  3389. // ------------------
  3390. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3391. {
  3392. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3393. axis = (axis == 'E')?3:(axis - 'X');
  3394. if (axis < 4)
  3395. {
  3396. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3397. uint16_t res = tmc2130_get_res(axis);
  3398. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3399. }
  3400. }
  3401. // ### TMC_SET_CHOP_
  3402. // -------------------
  3403. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3404. {
  3405. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3406. axis = (axis == 'E')?3:(axis - 'X');
  3407. if (axis < 4)
  3408. {
  3409. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3410. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3411. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3412. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3413. char* str_end = 0;
  3414. if (CMDBUFFER_CURRENT_STRING[14])
  3415. {
  3416. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3417. if (str_end && *str_end)
  3418. {
  3419. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3420. if (str_end && *str_end)
  3421. {
  3422. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3423. if (str_end && *str_end)
  3424. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3425. }
  3426. }
  3427. }
  3428. tmc2130_chopper_config[axis].toff = chop0;
  3429. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3430. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3431. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3432. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3433. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3434. }
  3435. }
  3436. }
  3437. #ifdef BACKLASH_X
  3438. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3439. {
  3440. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3441. st_backlash_x = bl;
  3442. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3443. }
  3444. #endif //BACKLASH_X
  3445. #ifdef BACKLASH_Y
  3446. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3447. {
  3448. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3449. st_backlash_y = bl;
  3450. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3451. }
  3452. #endif //BACKLASH_Y
  3453. #endif //TMC2130
  3454. else if(code_seen_P(PSTR("PRUSA"))){
  3455. /*!
  3456. ---------------------------------------------------------------------------------
  3457. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3458. Set of internal PRUSA commands
  3459. #### Usage
  3460. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3461. #### Parameters
  3462. - `Ping`
  3463. - `PRN` - Prints revision of the printer
  3464. - `FAN` - Prints fan details
  3465. - `fn` - Prints farm no.
  3466. - `thx`
  3467. - `uvlo`
  3468. - `MMURES` - Reset MMU
  3469. - `RESET` - (Careful!)
  3470. - `fv` - ?
  3471. - `M28`
  3472. - `SN`
  3473. - `Fir` - Prints firmware version
  3474. - `Rev`- Prints filament size, elelectronics, nozzle type
  3475. - `Lang` - Reset the language
  3476. - `Lz`
  3477. - `Beat` - Kick farm link timer
  3478. - `FR` - Full factory reset
  3479. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3480. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3481. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3482. */
  3483. if (code_seen_P(PSTR("Ping"))) { // PRUSA Ping
  3484. if (farm_mode) {
  3485. PingTime = _millis();
  3486. }
  3487. }
  3488. else if (code_seen_P(PSTR("PRN"))) { // PRUSA PRN
  3489. printf_P(_N("%d"), status_number);
  3490. } else if( code_seen_P(PSTR("FANPINTST"))){
  3491. gcode_PRUSA_BadRAMBoFanTest();
  3492. }else if (code_seen_P(PSTR("FAN"))) { // PRUSA FAN
  3493. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3494. }
  3495. else if (code_seen_P(PSTR("thx"))) // PRUSA thx
  3496. {
  3497. no_response = false;
  3498. }
  3499. else if (code_seen_P(PSTR("uvlo"))) // PRUSA uvlo
  3500. {
  3501. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3502. enquecommand_P(PSTR("M24"));
  3503. }
  3504. else if (code_seen_P(PSTR("MMURES"))) // PRUSA MMURES
  3505. {
  3506. mmu_reset();
  3507. }
  3508. else if (code_seen_P(PSTR("RESET"))) { // PRUSA RESET
  3509. #ifdef WATCHDOG
  3510. #if defined(W25X20CL) && defined(BOOTAPP)
  3511. boot_app_magic = BOOT_APP_MAGIC;
  3512. boot_app_flags = BOOT_APP_FLG_RUN;
  3513. #endif //defined(W25X20CL) && defined(BOOTAPP)
  3514. softReset();
  3515. #elif defined(BOOTAPP) //this is a safety precaution. This is because the new bootloader turns off the heaters, but the old one doesn't. The watchdog should be used most of the time.
  3516. asm volatile("jmp 0x3E000");
  3517. #endif
  3518. }else if (code_seen_P("fv")) { // PRUSA fv
  3519. // get file version
  3520. #ifdef SDSUPPORT
  3521. card.openFileReadFilteredGcode(strchr_pointer + 3,true);
  3522. while (true) {
  3523. uint16_t readByte = card.getFilteredGcodeChar();
  3524. MYSERIAL.write(readByte);
  3525. if (readByte=='\n') {
  3526. break;
  3527. }
  3528. }
  3529. card.closefile();
  3530. #endif // SDSUPPORT
  3531. } else if (code_seen_P(PSTR("M28"))) { // PRUSA M28
  3532. trace();
  3533. prusa_sd_card_upload = true;
  3534. card.openFileWrite(strchr_pointer+4);
  3535. } else if (code_seen_P(PSTR("SN"))) { // PRUSA SN
  3536. char SN[20];
  3537. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  3538. if (SN[19])
  3539. puts_P(PSTR("SN invalid"));
  3540. else
  3541. puts(SN);
  3542. } else if(code_seen_P(PSTR("Fir"))){ // PRUSA Fir
  3543. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3544. } else if(code_seen_P(PSTR("Rev"))){ // PRUSA Rev
  3545. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3546. } else if(code_seen_P(PSTR("Lang"))) { // PRUSA Lang
  3547. lang_reset();
  3548. } else if(code_seen_P(PSTR("Lz"))) { // PRUSA Lz
  3549. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3550. } else if(code_seen_P(PSTR("Beat"))) { // PRUSA Beat
  3551. // Kick farm link timer
  3552. kicktime = _millis();
  3553. } else if(code_seen_P(PSTR("FR"))) { // PRUSA FR
  3554. // Factory full reset
  3555. factory_reset(0);
  3556. } else if(code_seen_P(PSTR("MBL"))) { // PRUSA MBL
  3557. // Change the MBL status without changing the logical Z position.
  3558. if(code_seen('V')) {
  3559. bool value = code_value_short();
  3560. st_synchronize();
  3561. if(value != mbl.active) {
  3562. mbl.active = value;
  3563. // Use plan_set_z_position to reset the physical values
  3564. plan_set_z_position(current_position[Z_AXIS]);
  3565. }
  3566. }
  3567. //-//
  3568. /*
  3569. } else if(code_seen("rrr")) {
  3570. MYSERIAL.println("=== checking ===");
  3571. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3572. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3573. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3574. MYSERIAL.println(farm_mode,DEC);
  3575. MYSERIAL.println(eCheckMode,DEC);
  3576. } else if(code_seen("www")) {
  3577. MYSERIAL.println("=== @ FF ===");
  3578. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3579. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3580. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3581. */
  3582. } else if (code_seen_P(PSTR("nozzle"))) { // PRUSA nozzle
  3583. uint16_t nDiameter;
  3584. if(code_seen('D'))
  3585. {
  3586. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3587. nozzle_diameter_check(nDiameter);
  3588. }
  3589. else if(code_seen_P(PSTR("set")) && farm_mode)
  3590. {
  3591. strchr_pointer++; // skip 1st char (~ 's')
  3592. strchr_pointer++; // skip 2nd char (~ 'e')
  3593. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3594. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3595. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3596. }
  3597. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3598. //-// !!! SupportMenu
  3599. /*
  3600. // musi byt PRED "PRUSA model"
  3601. } else if (code_seen("smodel")) { //! PRUSA smodel
  3602. size_t nOffset;
  3603. // ! -> "l"
  3604. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3605. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3606. if(*(strchr_pointer+1+nOffset))
  3607. printer_smodel_check(strchr_pointer);
  3608. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3609. } else if (code_seen("model")) { //! PRUSA model
  3610. uint16_t nPrinterModel;
  3611. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3612. nPrinterModel=(uint16_t)code_value_long();
  3613. if(nPrinterModel!=0)
  3614. printer_model_check(nPrinterModel);
  3615. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3616. } else if (code_seen("version")) { //! PRUSA version
  3617. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3618. while(*strchr_pointer==' ') // skip leading spaces
  3619. strchr_pointer++;
  3620. if(*strchr_pointer!=0)
  3621. fw_version_check(strchr_pointer);
  3622. else SERIAL_PROTOCOLLN(FW_VERSION);
  3623. } else if (code_seen("gcode")) { //! PRUSA gcode
  3624. uint16_t nGcodeLevel;
  3625. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3626. nGcodeLevel=(uint16_t)code_value_long();
  3627. if(nGcodeLevel!=0)
  3628. gcode_level_check(nGcodeLevel);
  3629. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3630. */
  3631. }
  3632. //else if (code_seen('Cal')) {
  3633. // lcd_calibration();
  3634. // }
  3635. }
  3636. // This prevents reading files with "^" in their names.
  3637. // Since it is unclear, if there is some usage of this construct,
  3638. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3639. // else if (code_seen('^')) {
  3640. // // nothing, this is a version line
  3641. // }
  3642. else if(code_seen('G'))
  3643. {
  3644. gcode_in_progress = (int)code_value();
  3645. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3646. switch (gcode_in_progress)
  3647. {
  3648. /*!
  3649. ---------------------------------------------------------------------------------
  3650. # G Codes
  3651. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3652. In Prusa Firmware G0 and G1 are the same.
  3653. #### Usage
  3654. G0 [ X | Y | Z | E | F | S ]
  3655. G1 [ X | Y | Z | E | F | S ]
  3656. #### Parameters
  3657. - `X` - The position to move to on the X axis
  3658. - `Y` - The position to move to on the Y axis
  3659. - `Z` - The position to move to on the Z axis
  3660. - `E` - The amount to extrude between the starting point and ending point
  3661. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3662. */
  3663. case 0: // G0 -> G1
  3664. case 1: // G1
  3665. if(Stopped == false) {
  3666. #ifdef FILAMENT_RUNOUT_SUPPORT
  3667. if(READ(FR_SENS)){
  3668. int feedmultiplyBckp=feedmultiply;
  3669. float target[4];
  3670. float lastpos[4];
  3671. target[X_AXIS]=current_position[X_AXIS];
  3672. target[Y_AXIS]=current_position[Y_AXIS];
  3673. target[Z_AXIS]=current_position[Z_AXIS];
  3674. target[E_AXIS]=current_position[E_AXIS];
  3675. lastpos[X_AXIS]=current_position[X_AXIS];
  3676. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3677. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3678. lastpos[E_AXIS]=current_position[E_AXIS];
  3679. //retract by E
  3680. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3681. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3682. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3684. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3685. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3686. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3687. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3688. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3689. //finish moves
  3690. st_synchronize();
  3691. //disable extruder steppers so filament can be removed
  3692. disable_e0();
  3693. disable_e1();
  3694. disable_e2();
  3695. _delay(100);
  3696. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3697. uint8_t cnt=0;
  3698. int counterBeep = 0;
  3699. lcd_wait_interact();
  3700. while(!lcd_clicked()){
  3701. cnt++;
  3702. manage_heater();
  3703. manage_inactivity(true);
  3704. //lcd_update(0);
  3705. if(cnt==0)
  3706. {
  3707. #if BEEPER > 0
  3708. if (counterBeep== 500){
  3709. counterBeep = 0;
  3710. }
  3711. SET_OUTPUT(BEEPER);
  3712. if (counterBeep== 0){
  3713. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3714. WRITE(BEEPER,HIGH);
  3715. }
  3716. if (counterBeep== 20){
  3717. WRITE(BEEPER,LOW);
  3718. }
  3719. counterBeep++;
  3720. #else
  3721. #endif
  3722. }
  3723. }
  3724. WRITE(BEEPER,LOW);
  3725. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3726. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3727. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3728. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3729. lcd_change_fil_state = 0;
  3730. lcd_loading_filament();
  3731. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3732. lcd_change_fil_state = 0;
  3733. lcd_alright();
  3734. switch(lcd_change_fil_state){
  3735. case 2:
  3736. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3737. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3738. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3739. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3740. lcd_loading_filament();
  3741. break;
  3742. case 3:
  3743. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3744. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3745. lcd_loading_color();
  3746. break;
  3747. default:
  3748. lcd_change_success();
  3749. break;
  3750. }
  3751. }
  3752. target[E_AXIS]+= 5;
  3753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3754. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3756. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3757. //plan_set_e_position(current_position[E_AXIS]);
  3758. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3759. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3760. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3761. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3762. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3763. plan_set_e_position(lastpos[E_AXIS]);
  3764. feedmultiply=feedmultiplyBckp;
  3765. char cmd[9];
  3766. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3767. enquecommand(cmd);
  3768. }
  3769. #endif
  3770. get_coordinates(); // For X Y Z E F
  3771. // When recovering from a previous print move, restore the originally
  3772. // calculated target position on the first USB/SD command. This accounts
  3773. // properly for relative moves
  3774. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3775. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3776. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3777. {
  3778. memcpy(destination, saved_target, sizeof(destination));
  3779. saved_target[0] = SAVED_TARGET_UNSET;
  3780. }
  3781. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3782. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3783. }
  3784. #ifdef FWRETRACT
  3785. if(cs.autoretract_enabled) {
  3786. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3787. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3788. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3789. st_synchronize();
  3790. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3791. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3792. retract(!retracted[active_extruder]);
  3793. return;
  3794. }
  3795. }
  3796. }
  3797. #endif //FWRETRACT
  3798. prepare_move();
  3799. //ClearToSend();
  3800. }
  3801. break;
  3802. /*!
  3803. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3804. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  3805. #### Usage
  3806. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3807. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3808. #### Parameters
  3809. - `X` - The position to move to on the X axis
  3810. - `Y` - The position to move to on the Y axis
  3811. - `I` - The point in X space from the current X position to maintain a constant distance from
  3812. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3813. - `E` - The amount to extrude between the starting point and ending point
  3814. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3815. */
  3816. case 2:
  3817. if(Stopped == false) {
  3818. get_arc_coordinates();
  3819. prepare_arc_move(true);
  3820. }
  3821. break;
  3822. // -------------------------------
  3823. case 3:
  3824. if(Stopped == false) {
  3825. get_arc_coordinates();
  3826. prepare_arc_move(false);
  3827. }
  3828. break;
  3829. /*!
  3830. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3831. Pause the machine for a period of time.
  3832. #### Usage
  3833. G4 [ P | S ]
  3834. #### Parameters
  3835. - `P` - Time to wait, in milliseconds
  3836. - `S` - Time to wait, in seconds
  3837. */
  3838. case 4:
  3839. codenum = 0;
  3840. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3841. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3842. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3843. st_synchronize();
  3844. codenum += _millis(); // keep track of when we started waiting
  3845. previous_millis_cmd = _millis();
  3846. while(_millis() < codenum) {
  3847. manage_heater();
  3848. manage_inactivity();
  3849. lcd_update(0);
  3850. }
  3851. break;
  3852. #ifdef FWRETRACT
  3853. /*!
  3854. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3855. Retracts filament according to settings of `M207`
  3856. */
  3857. case 10:
  3858. #if EXTRUDERS > 1
  3859. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3860. retract(true,retracted_swap[active_extruder]);
  3861. #else
  3862. retract(true);
  3863. #endif
  3864. break;
  3865. /*!
  3866. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3867. Unretracts/recovers filament according to settings of `M208`
  3868. */
  3869. case 11:
  3870. #if EXTRUDERS > 1
  3871. retract(false,retracted_swap[active_extruder]);
  3872. #else
  3873. retract(false);
  3874. #endif
  3875. break;
  3876. #endif //FWRETRACT
  3877. /*!
  3878. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  3879. Units are in millimeters. Prusa doesn't support inches.
  3880. */
  3881. case 21:
  3882. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  3883. /*!
  3884. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3885. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  3886. #### Usage
  3887. G28 [ X | Y | Z | W | C ]
  3888. #### Parameters
  3889. - `X` - Flag to go back to the X axis origin
  3890. - `Y` - Flag to go back to the Y axis origin
  3891. - `Z` - Flag to go back to the Z axis origin
  3892. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  3893. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3894. */
  3895. case 28:
  3896. {
  3897. long home_x_value = 0;
  3898. long home_y_value = 0;
  3899. long home_z_value = 0;
  3900. // Which axes should be homed?
  3901. bool home_x = code_seen(axis_codes[X_AXIS]);
  3902. home_x_value = code_value_long();
  3903. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3904. home_y_value = code_value_long();
  3905. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3906. home_z_value = code_value_long();
  3907. bool without_mbl = code_seen('W');
  3908. // calibrate?
  3909. #ifdef TMC2130
  3910. bool calib = code_seen('C');
  3911. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3912. #else
  3913. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3914. #endif //TMC2130
  3915. if ((home_x || home_y || without_mbl || home_z) == false) {
  3916. // Push the commands to the front of the message queue in the reverse order!
  3917. // There shall be always enough space reserved for these commands.
  3918. goto case_G80;
  3919. }
  3920. break;
  3921. }
  3922. #ifdef ENABLE_AUTO_BED_LEVELING
  3923. /*!
  3924. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3925. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3926. See `G81`
  3927. */
  3928. case 29:
  3929. {
  3930. #if Z_MIN_PIN == -1
  3931. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3932. #endif
  3933. // Prevent user from running a G29 without first homing in X and Y
  3934. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3935. {
  3936. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3937. SERIAL_ECHO_START;
  3938. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3939. break; // abort G29, since we don't know where we are
  3940. }
  3941. st_synchronize();
  3942. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3943. //vector_3 corrected_position = plan_get_position_mm();
  3944. //corrected_position.debug("position before G29");
  3945. plan_bed_level_matrix.set_to_identity();
  3946. vector_3 uncorrected_position = plan_get_position();
  3947. //uncorrected_position.debug("position durring G29");
  3948. current_position[X_AXIS] = uncorrected_position.x;
  3949. current_position[Y_AXIS] = uncorrected_position.y;
  3950. current_position[Z_AXIS] = uncorrected_position.z;
  3951. plan_set_position_curposXYZE();
  3952. int l_feedmultiply = setup_for_endstop_move();
  3953. feedrate = homing_feedrate[Z_AXIS];
  3954. #ifdef AUTO_BED_LEVELING_GRID
  3955. // probe at the points of a lattice grid
  3956. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3957. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3958. // solve the plane equation ax + by + d = z
  3959. // A is the matrix with rows [x y 1] for all the probed points
  3960. // B is the vector of the Z positions
  3961. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3962. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3963. // "A" matrix of the linear system of equations
  3964. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3965. // "B" vector of Z points
  3966. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3967. int probePointCounter = 0;
  3968. bool zig = true;
  3969. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3970. {
  3971. int xProbe, xInc;
  3972. if (zig)
  3973. {
  3974. xProbe = LEFT_PROBE_BED_POSITION;
  3975. //xEnd = RIGHT_PROBE_BED_POSITION;
  3976. xInc = xGridSpacing;
  3977. zig = false;
  3978. } else // zag
  3979. {
  3980. xProbe = RIGHT_PROBE_BED_POSITION;
  3981. //xEnd = LEFT_PROBE_BED_POSITION;
  3982. xInc = -xGridSpacing;
  3983. zig = true;
  3984. }
  3985. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3986. {
  3987. float z_before;
  3988. if (probePointCounter == 0)
  3989. {
  3990. // raise before probing
  3991. z_before = Z_RAISE_BEFORE_PROBING;
  3992. } else
  3993. {
  3994. // raise extruder
  3995. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3996. }
  3997. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3998. eqnBVector[probePointCounter] = measured_z;
  3999. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  4000. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  4001. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  4002. probePointCounter++;
  4003. xProbe += xInc;
  4004. }
  4005. }
  4006. clean_up_after_endstop_move(l_feedmultiply);
  4007. // solve lsq problem
  4008. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  4009. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4010. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  4011. SERIAL_PROTOCOLPGM(" b: ");
  4012. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  4013. SERIAL_PROTOCOLPGM(" d: ");
  4014. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  4015. set_bed_level_equation_lsq(plane_equation_coefficients);
  4016. free(plane_equation_coefficients);
  4017. #else // AUTO_BED_LEVELING_GRID not defined
  4018. // Probe at 3 arbitrary points
  4019. // probe 1
  4020. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  4021. // probe 2
  4022. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4023. // probe 3
  4024. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4025. clean_up_after_endstop_move(l_feedmultiply);
  4026. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  4027. #endif // AUTO_BED_LEVELING_GRID
  4028. st_synchronize();
  4029. // The following code correct the Z height difference from z-probe position and hotend tip position.
  4030. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  4031. // When the bed is uneven, this height must be corrected.
  4032. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  4033. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  4034. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4035. z_tmp = current_position[Z_AXIS];
  4036. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  4037. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  4038. plan_set_position_curposXYZE();
  4039. }
  4040. break;
  4041. #ifndef Z_PROBE_SLED
  4042. /*!
  4043. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4044. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4045. */
  4046. case 30:
  4047. {
  4048. st_synchronize();
  4049. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4050. int l_feedmultiply = setup_for_endstop_move();
  4051. feedrate = homing_feedrate[Z_AXIS];
  4052. run_z_probe();
  4053. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  4054. SERIAL_PROTOCOLPGM(" X: ");
  4055. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4056. SERIAL_PROTOCOLPGM(" Y: ");
  4057. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4058. SERIAL_PROTOCOLPGM(" Z: ");
  4059. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4060. SERIAL_PROTOCOLPGM("\n");
  4061. clean_up_after_endstop_move(l_feedmultiply);
  4062. }
  4063. break;
  4064. #else
  4065. /*!
  4066. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  4067. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4068. */
  4069. case 31:
  4070. dock_sled(true);
  4071. break;
  4072. /*!
  4073. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4074. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4075. */
  4076. case 32:
  4077. dock_sled(false);
  4078. break;
  4079. #endif // Z_PROBE_SLED
  4080. #endif // ENABLE_AUTO_BED_LEVELING
  4081. #ifdef MESH_BED_LEVELING
  4082. /*!
  4083. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4084. Sensor must be over the bed.
  4085. The maximum travel distance before an error is triggered is 10mm.
  4086. */
  4087. case 30:
  4088. {
  4089. homing_flag = true;
  4090. st_synchronize();
  4091. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4092. int l_feedmultiply = setup_for_endstop_move();
  4093. feedrate = homing_feedrate[Z_AXIS];
  4094. find_bed_induction_sensor_point_z(-10.f, 3);
  4095. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  4096. clean_up_after_endstop_move(l_feedmultiply);
  4097. homing_flag = false;
  4098. }
  4099. break;
  4100. /*!
  4101. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  4102. Show/print PINDA temperature interpolating.
  4103. */
  4104. case 75:
  4105. {
  4106. for (int i = 40; i <= 110; i++)
  4107. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4108. }
  4109. break;
  4110. /*!
  4111. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4112. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4113. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4114. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4115. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4116. If PINDA_THERMISTOR and SUPERPINDA_SUPPORT is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4117. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4118. #### Example
  4119. ```
  4120. G76
  4121. echo PINDA probe calibration start
  4122. echo start temperature: 35.0°
  4123. echo ...
  4124. echo PINDA temperature -- Z shift (mm): 0.---
  4125. ```
  4126. */
  4127. case 76:
  4128. {
  4129. #ifdef PINDA_THERMISTOR
  4130. if (!has_temperature_compensation())
  4131. {
  4132. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4133. break;
  4134. }
  4135. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4136. //we need to know accurate position of first calibration point
  4137. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4138. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  4139. break;
  4140. }
  4141. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4142. {
  4143. // We don't know where we are! HOME!
  4144. // Push the commands to the front of the message queue in the reverse order!
  4145. // There shall be always enough space reserved for these commands.
  4146. repeatcommand_front(); // repeat G76 with all its parameters
  4147. enquecommand_front_P(G28W0);
  4148. break;
  4149. }
  4150. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4151. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  4152. if (result)
  4153. {
  4154. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4155. plan_buffer_line_curposXYZE(3000 / 60);
  4156. current_position[Z_AXIS] = 50;
  4157. current_position[Y_AXIS] = 180;
  4158. plan_buffer_line_curposXYZE(3000 / 60);
  4159. st_synchronize();
  4160. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4161. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4162. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4163. plan_buffer_line_curposXYZE(3000 / 60);
  4164. st_synchronize();
  4165. gcode_G28(false, false, true);
  4166. }
  4167. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4168. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4169. current_position[Z_AXIS] = 100;
  4170. plan_buffer_line_curposXYZE(3000 / 60);
  4171. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4172. lcd_temp_cal_show_result(false);
  4173. break;
  4174. }
  4175. }
  4176. homing_flag = true; // keep homing on to avoid babystepping while the LCD is enabled
  4177. lcd_update_enable(true);
  4178. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  4179. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4180. float zero_z;
  4181. int z_shift = 0; //unit: steps
  4182. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4183. if (start_temp < 35) start_temp = 35;
  4184. if (start_temp < current_temperature_pinda) start_temp += 5;
  4185. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4186. // setTargetHotend(200, 0);
  4187. setTargetBed(70 + (start_temp - 30));
  4188. custom_message_type = CustomMsg::TempCal;
  4189. custom_message_state = 1;
  4190. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4191. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4192. plan_buffer_line_curposXYZE(3000 / 60);
  4193. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4194. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4195. plan_buffer_line_curposXYZE(3000 / 60);
  4196. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4197. plan_buffer_line_curposXYZE(3000 / 60);
  4198. st_synchronize();
  4199. while (current_temperature_pinda < start_temp)
  4200. {
  4201. delay_keep_alive(1000);
  4202. serialecho_temperatures();
  4203. }
  4204. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4205. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4206. plan_buffer_line_curposXYZE(3000 / 60);
  4207. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4208. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4209. plan_buffer_line_curposXYZE(3000 / 60);
  4210. st_synchronize();
  4211. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4212. if (find_z_result == false) {
  4213. lcd_temp_cal_show_result(find_z_result);
  4214. homing_flag = false;
  4215. break;
  4216. }
  4217. zero_z = current_position[Z_AXIS];
  4218. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4219. int i = -1; for (; i < 5; i++)
  4220. {
  4221. float temp = (40 + i * 5);
  4222. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4223. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4224. if (start_temp <= temp) break;
  4225. }
  4226. for (i++; i < 5; i++)
  4227. {
  4228. float temp = (40 + i * 5);
  4229. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4230. custom_message_state = i + 2;
  4231. setTargetBed(50 + 10 * (temp - 30) / 5);
  4232. // setTargetHotend(255, 0);
  4233. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4234. plan_buffer_line_curposXYZE(3000 / 60);
  4235. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4236. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4237. plan_buffer_line_curposXYZE(3000 / 60);
  4238. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4239. plan_buffer_line_curposXYZE(3000 / 60);
  4240. st_synchronize();
  4241. while (current_temperature_pinda < temp)
  4242. {
  4243. delay_keep_alive(1000);
  4244. serialecho_temperatures();
  4245. }
  4246. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4247. plan_buffer_line_curposXYZE(3000 / 60);
  4248. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4249. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4250. plan_buffer_line_curposXYZE(3000 / 60);
  4251. st_synchronize();
  4252. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4253. if (find_z_result == false) {
  4254. lcd_temp_cal_show_result(find_z_result);
  4255. break;
  4256. }
  4257. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4258. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4259. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4260. }
  4261. lcd_temp_cal_show_result(true);
  4262. homing_flag = false;
  4263. #else //PINDA_THERMISTOR
  4264. setTargetBed(PINDA_MIN_T);
  4265. float zero_z;
  4266. int z_shift = 0; //unit: steps
  4267. int t_c; // temperature
  4268. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4269. // We don't know where we are! HOME!
  4270. // Push the commands to the front of the message queue in the reverse order!
  4271. // There shall be always enough space reserved for these commands.
  4272. repeatcommand_front(); // repeat G76 with all its parameters
  4273. enquecommand_front_P(G28W0);
  4274. break;
  4275. }
  4276. puts_P(_N("PINDA probe calibration start"));
  4277. custom_message_type = CustomMsg::TempCal;
  4278. custom_message_state = 1;
  4279. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4280. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4281. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4282. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4283. plan_buffer_line_curposXYZE(3000 / 60);
  4284. st_synchronize();
  4285. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4286. delay_keep_alive(1000);
  4287. serialecho_temperatures();
  4288. }
  4289. //enquecommand_P(PSTR("M190 S50"));
  4290. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4291. delay_keep_alive(1000);
  4292. serialecho_temperatures();
  4293. }
  4294. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4295. current_position[Z_AXIS] = 5;
  4296. plan_buffer_line_curposXYZE(3000 / 60);
  4297. current_position[X_AXIS] = BED_X0;
  4298. current_position[Y_AXIS] = BED_Y0;
  4299. plan_buffer_line_curposXYZE(3000 / 60);
  4300. st_synchronize();
  4301. find_bed_induction_sensor_point_z(-1.f);
  4302. zero_z = current_position[Z_AXIS];
  4303. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4304. for (int i = 0; i<5; i++) {
  4305. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4306. custom_message_state = i + 2;
  4307. t_c = 60 + i * 10;
  4308. setTargetBed(t_c);
  4309. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4310. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4311. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4312. plan_buffer_line_curposXYZE(3000 / 60);
  4313. st_synchronize();
  4314. while (degBed() < t_c) {
  4315. delay_keep_alive(1000);
  4316. serialecho_temperatures();
  4317. }
  4318. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4319. delay_keep_alive(1000);
  4320. serialecho_temperatures();
  4321. }
  4322. current_position[Z_AXIS] = 5;
  4323. plan_buffer_line_curposXYZE(3000 / 60);
  4324. current_position[X_AXIS] = BED_X0;
  4325. current_position[Y_AXIS] = BED_Y0;
  4326. plan_buffer_line_curposXYZE(3000 / 60);
  4327. st_synchronize();
  4328. find_bed_induction_sensor_point_z(-1.f);
  4329. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4330. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4331. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4332. }
  4333. custom_message_type = CustomMsg::Status;
  4334. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4335. puts_P(_N("Temperature calibration done."));
  4336. disable_x();
  4337. disable_y();
  4338. disable_z();
  4339. disable_e0();
  4340. disable_e1();
  4341. disable_e2();
  4342. setTargetBed(0); //set bed target temperature back to 0
  4343. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4344. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4345. lcd_update_enable(true);
  4346. lcd_update(2);
  4347. #endif //PINDA_THERMISTOR
  4348. }
  4349. break;
  4350. /*!
  4351. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4352. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4353. #### Usage
  4354. G80 [ N | R | V | L | R | F | B ]
  4355. #### Parameters
  4356. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4357. - `R` - Probe retries. Default 3 max. 10
  4358. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4359. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4360. #### Additional Parameters
  4361. - `L` - Left Bed Level correct value in um.
  4362. - `R` - Right Bed Level correct value in um.
  4363. - `F` - Front Bed Level correct value in um.
  4364. - `B` - Back Bed Level correct value in um.
  4365. */
  4366. /*
  4367. * Probes a grid and produces a mesh to compensate for variable bed height
  4368. * The S0 report the points as below
  4369. * +----> X-axis
  4370. * |
  4371. * |
  4372. * v Y-axis
  4373. */
  4374. case 80:
  4375. #ifdef MK1BP
  4376. break;
  4377. #endif //MK1BP
  4378. case_G80:
  4379. {
  4380. mesh_bed_leveling_flag = true;
  4381. #ifndef PINDA_THERMISTOR
  4382. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4383. #endif // ndef PINDA_THERMISTOR
  4384. #ifdef SUPPORT_VERBOSITY
  4385. int8_t verbosity_level = 0;
  4386. if (code_seen('V')) {
  4387. // Just 'V' without a number counts as V1.
  4388. char c = strchr_pointer[1];
  4389. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4390. }
  4391. #endif //SUPPORT_VERBOSITY
  4392. // Firstly check if we know where we are
  4393. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4394. // We don't know where we are! HOME!
  4395. // Push the commands to the front of the message queue in the reverse order!
  4396. // There shall be always enough space reserved for these commands.
  4397. repeatcommand_front(); // repeat G80 with all its parameters
  4398. enquecommand_front_P(G28W0);
  4399. break;
  4400. }
  4401. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4402. if (code_seen('N')) {
  4403. nMeasPoints = code_value_uint8();
  4404. if (nMeasPoints != 7) {
  4405. nMeasPoints = 3;
  4406. }
  4407. }
  4408. else {
  4409. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4410. }
  4411. uint8_t nProbeRetry = 3;
  4412. if (code_seen('R')) {
  4413. nProbeRetry = code_value_uint8();
  4414. if (nProbeRetry > 10) {
  4415. nProbeRetry = 10;
  4416. }
  4417. }
  4418. else {
  4419. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4420. }
  4421. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4422. #ifndef PINDA_THERMISTOR
  4423. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4424. {
  4425. temp_compensation_start();
  4426. run = true;
  4427. repeatcommand_front(); // repeat G80 with all its parameters
  4428. enquecommand_front_P(G28W0);
  4429. break;
  4430. }
  4431. run = false;
  4432. #endif //PINDA_THERMISTOR
  4433. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4434. CustomMsg custom_message_type_old = custom_message_type;
  4435. unsigned int custom_message_state_old = custom_message_state;
  4436. custom_message_type = CustomMsg::MeshBedLeveling;
  4437. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4438. lcd_update(1);
  4439. mbl.reset(); //reset mesh bed leveling
  4440. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  4441. babystep_undo();
  4442. // Cycle through all points and probe them
  4443. // First move up. During this first movement, the babystepping will be reverted.
  4444. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4445. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  4446. // The move to the first calibration point.
  4447. current_position[X_AXIS] = BED_X0;
  4448. current_position[Y_AXIS] = BED_Y0;
  4449. #ifdef SUPPORT_VERBOSITY
  4450. if (verbosity_level >= 1)
  4451. {
  4452. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4453. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4454. }
  4455. #else //SUPPORT_VERBOSITY
  4456. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4457. #endif //SUPPORT_VERBOSITY
  4458. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30);
  4459. // Wait until the move is finished.
  4460. st_synchronize();
  4461. uint8_t mesh_point = 0; //index number of calibration point
  4462. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4463. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4464. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4465. #ifdef SUPPORT_VERBOSITY
  4466. if (verbosity_level >= 1) {
  4467. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4468. }
  4469. #endif // SUPPORT_VERBOSITY
  4470. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4471. while (mesh_point != nMeasPoints * nMeasPoints) {
  4472. // Get coords of a measuring point.
  4473. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4474. uint8_t iy = mesh_point / nMeasPoints;
  4475. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4476. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4477. custom_message_state--;
  4478. mesh_point++;
  4479. continue; //skip
  4480. }*/
  4481. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4482. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4483. {
  4484. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4485. }
  4486. float z0 = 0.f;
  4487. if (has_z && (mesh_point > 0)) {
  4488. uint16_t z_offset_u = 0;
  4489. if (nMeasPoints == 7) {
  4490. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4491. }
  4492. else {
  4493. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4494. }
  4495. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4496. #ifdef SUPPORT_VERBOSITY
  4497. if (verbosity_level >= 1) {
  4498. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4499. }
  4500. #endif // SUPPORT_VERBOSITY
  4501. }
  4502. // Move Z up to MESH_HOME_Z_SEARCH.
  4503. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4504. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4505. float init_z_bckp = current_position[Z_AXIS];
  4506. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4507. st_synchronize();
  4508. // Move to XY position of the sensor point.
  4509. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4510. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4511. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4512. #ifdef SUPPORT_VERBOSITY
  4513. if (verbosity_level >= 1) {
  4514. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4515. SERIAL_PROTOCOL(mesh_point);
  4516. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4517. }
  4518. #else //SUPPORT_VERBOSITY
  4519. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4520. #endif // SUPPORT_VERBOSITY
  4521. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4522. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  4523. st_synchronize();
  4524. // Go down until endstop is hit
  4525. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4526. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4527. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4528. break;
  4529. }
  4530. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4531. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4532. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4533. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4534. st_synchronize();
  4535. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4536. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4537. break;
  4538. }
  4539. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4540. puts_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken."));
  4541. break;
  4542. }
  4543. }
  4544. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4545. puts_P(PSTR("Bed leveling failed. Sensor triggered too high."));
  4546. break;
  4547. }
  4548. #ifdef SUPPORT_VERBOSITY
  4549. if (verbosity_level >= 10) {
  4550. SERIAL_ECHOPGM("X: ");
  4551. MYSERIAL.print(current_position[X_AXIS], 5);
  4552. SERIAL_ECHOLNPGM("");
  4553. SERIAL_ECHOPGM("Y: ");
  4554. MYSERIAL.print(current_position[Y_AXIS], 5);
  4555. SERIAL_PROTOCOLPGM("\n");
  4556. }
  4557. #endif // SUPPORT_VERBOSITY
  4558. float offset_z = 0;
  4559. #ifdef PINDA_THERMISTOR
  4560. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4561. #endif //PINDA_THERMISTOR
  4562. // #ifdef SUPPORT_VERBOSITY
  4563. /* if (verbosity_level >= 1)
  4564. {
  4565. SERIAL_ECHOPGM("mesh bed leveling: ");
  4566. MYSERIAL.print(current_position[Z_AXIS], 5);
  4567. SERIAL_ECHOPGM(" offset: ");
  4568. MYSERIAL.print(offset_z, 5);
  4569. SERIAL_ECHOLNPGM("");
  4570. }*/
  4571. // #endif // SUPPORT_VERBOSITY
  4572. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4573. custom_message_state--;
  4574. mesh_point++;
  4575. lcd_update(1);
  4576. }
  4577. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4578. #ifdef SUPPORT_VERBOSITY
  4579. if (verbosity_level >= 20) {
  4580. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4581. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4582. MYSERIAL.print(current_position[Z_AXIS], 5);
  4583. }
  4584. #endif // SUPPORT_VERBOSITY
  4585. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4586. st_synchronize();
  4587. if (mesh_point != nMeasPoints * nMeasPoints) {
  4588. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4589. bool bState;
  4590. do { // repeat until Z-leveling o.k.
  4591. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4592. #ifdef TMC2130
  4593. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4594. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4595. #else // TMC2130
  4596. lcd_wait_for_click_delay(0); // ~ no timeout
  4597. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4598. #endif // TMC2130
  4599. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4600. bState=enable_z_endstop(false);
  4601. current_position[Z_AXIS] -= 1;
  4602. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4603. st_synchronize();
  4604. enable_z_endstop(true);
  4605. #ifdef TMC2130
  4606. tmc2130_home_enter(Z_AXIS_MASK);
  4607. #endif // TMC2130
  4608. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4609. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4610. st_synchronize();
  4611. #ifdef TMC2130
  4612. tmc2130_home_exit();
  4613. #endif // TMC2130
  4614. enable_z_endstop(bState);
  4615. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4616. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4617. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4618. lcd_update_enable(true); // display / status-line recovery
  4619. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4620. repeatcommand_front(); // re-run (i.e. of "G80")
  4621. break;
  4622. }
  4623. clean_up_after_endstop_move(l_feedmultiply);
  4624. // SERIAL_ECHOLNPGM("clean up finished ");
  4625. #ifndef PINDA_THERMISTOR
  4626. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4627. #endif
  4628. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4629. // SERIAL_ECHOLNPGM("babystep applied");
  4630. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4631. #ifdef SUPPORT_VERBOSITY
  4632. if (verbosity_level >= 1) {
  4633. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4634. }
  4635. #endif // SUPPORT_VERBOSITY
  4636. for (uint8_t i = 0; i < 4; ++i) {
  4637. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4638. long correction = 0;
  4639. if (code_seen(codes[i]))
  4640. correction = code_value_long();
  4641. else if (eeprom_bed_correction_valid) {
  4642. unsigned char *addr = (i < 2) ?
  4643. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4644. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4645. correction = eeprom_read_int8(addr);
  4646. }
  4647. if (correction == 0)
  4648. continue;
  4649. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4650. SERIAL_ERROR_START;
  4651. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4652. SERIAL_ECHO(correction);
  4653. SERIAL_ECHOLNPGM(" microns");
  4654. }
  4655. else {
  4656. float offset = float(correction) * 0.001f;
  4657. switch (i) {
  4658. case 0:
  4659. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4660. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4661. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4662. }
  4663. }
  4664. break;
  4665. case 1:
  4666. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4667. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4668. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4669. }
  4670. }
  4671. break;
  4672. case 2:
  4673. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4674. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4675. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4676. }
  4677. }
  4678. break;
  4679. case 3:
  4680. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4681. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4682. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4683. }
  4684. }
  4685. break;
  4686. }
  4687. }
  4688. }
  4689. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4690. if (nMeasPoints == 3) {
  4691. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4692. }
  4693. /*
  4694. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4695. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4696. SERIAL_PROTOCOLPGM(",");
  4697. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4698. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4699. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4700. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4701. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4702. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4703. SERIAL_PROTOCOLPGM(" ");
  4704. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4705. }
  4706. SERIAL_PROTOCOLPGM("\n");
  4707. }
  4708. */
  4709. if (nMeasPoints == 7 && magnet_elimination) {
  4710. mbl_interpolation(nMeasPoints);
  4711. }
  4712. /*
  4713. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4714. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4715. SERIAL_PROTOCOLPGM(",");
  4716. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4717. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4718. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4719. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4720. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4721. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4722. SERIAL_PROTOCOLPGM(" ");
  4723. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4724. }
  4725. SERIAL_PROTOCOLPGM("\n");
  4726. }
  4727. */
  4728. // SERIAL_ECHOLNPGM("Upsample finished");
  4729. mbl.active = 1; //activate mesh bed leveling
  4730. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4731. go_home_with_z_lift();
  4732. // SERIAL_ECHOLNPGM("Go home finished");
  4733. //unretract (after PINDA preheat retraction)
  4734. if ((degHotend(active_extruder) > EXTRUDE_MINTEMP) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  4735. current_position[E_AXIS] += default_retraction;
  4736. plan_buffer_line_curposXYZE(400);
  4737. }
  4738. KEEPALIVE_STATE(NOT_BUSY);
  4739. // Restore custom message state
  4740. lcd_setstatuspgm(_T(WELCOME_MSG));
  4741. custom_message_type = custom_message_type_old;
  4742. custom_message_state = custom_message_state_old;
  4743. mesh_bed_leveling_flag = false;
  4744. mesh_bed_run_from_menu = false;
  4745. lcd_update(2);
  4746. }
  4747. break;
  4748. /*!
  4749. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4750. Prints mesh bed leveling status and bed profile if activated.
  4751. */
  4752. case 81:
  4753. if (mbl.active) {
  4754. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4755. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4756. SERIAL_PROTOCOL(',');
  4757. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4758. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4759. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4760. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4761. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4762. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4763. SERIAL_PROTOCOLPGM(" ");
  4764. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4765. }
  4766. SERIAL_PROTOCOLLN();
  4767. }
  4768. }
  4769. else
  4770. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4771. break;
  4772. #if 0
  4773. /*!
  4774. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4775. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4776. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4777. */
  4778. case 82:
  4779. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4780. int l_feedmultiply = setup_for_endstop_move();
  4781. find_bed_induction_sensor_point_z();
  4782. clean_up_after_endstop_move(l_feedmultiply);
  4783. SERIAL_PROTOCOLPGM("Bed found at: ");
  4784. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4785. SERIAL_PROTOCOLPGM("\n");
  4786. break;
  4787. /*!
  4788. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4789. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4790. */
  4791. case 83:
  4792. {
  4793. int babystepz = code_seen('S') ? code_value() : 0;
  4794. int BabyPosition = code_seen('P') ? code_value() : 0;
  4795. if (babystepz != 0) {
  4796. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4797. // Is the axis indexed starting with zero or one?
  4798. if (BabyPosition > 4) {
  4799. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4800. }else{
  4801. // Save it to the eeprom
  4802. babystepLoadZ = babystepz;
  4803. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4804. // adjust the Z
  4805. babystepsTodoZadd(babystepLoadZ);
  4806. }
  4807. }
  4808. }
  4809. break;
  4810. /*!
  4811. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4812. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4813. */
  4814. case 84:
  4815. babystepsTodoZsubtract(babystepLoadZ);
  4816. // babystepLoadZ = 0;
  4817. break;
  4818. /*!
  4819. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4820. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4821. */
  4822. case 85:
  4823. lcd_pick_babystep();
  4824. break;
  4825. #endif
  4826. /*!
  4827. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4828. This G-code will be performed at the start of a calibration script.
  4829. (Prusa3D specific)
  4830. */
  4831. case 86:
  4832. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4833. break;
  4834. /*!
  4835. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4836. This G-code will be performed at the end of a calibration script.
  4837. (Prusa3D specific)
  4838. */
  4839. case 87:
  4840. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4841. break;
  4842. /*!
  4843. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4844. Currently has no effect.
  4845. */
  4846. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4847. case 88:
  4848. break;
  4849. #endif // ENABLE_MESH_BED_LEVELING
  4850. /*!
  4851. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4852. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4853. */
  4854. case 90: {
  4855. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4856. }
  4857. break;
  4858. /*!
  4859. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4860. All coordinates from now on are relative to the last position. E axis is left intact.
  4861. */
  4862. case 91: {
  4863. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4864. }
  4865. break;
  4866. /*!
  4867. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4868. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4869. If a parameter is omitted, that axis will not be affected.
  4870. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4871. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4872. #### Usage
  4873. G92 [ X | Y | Z | E ]
  4874. #### Parameters
  4875. - `X` - new X axis position
  4876. - `Y` - new Y axis position
  4877. - `Z` - new Z axis position
  4878. - `E` - new extruder position
  4879. */
  4880. case 92: {
  4881. gcode_G92();
  4882. }
  4883. break;
  4884. /*!
  4885. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4886. Enable Prusa-specific Farm functions and g-code.
  4887. See Internal Prusa commands.
  4888. */
  4889. case 98:
  4890. farm_mode = 1;
  4891. PingTime = _millis();
  4892. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4893. SilentModeMenu = SILENT_MODE_OFF;
  4894. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4895. fCheckModeInit(); // alternatively invoke printer reset
  4896. break;
  4897. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4898. Disables Prusa-specific Farm functions and g-code.
  4899. */
  4900. case 99:
  4901. farm_mode = 0;
  4902. lcd_printer_connected();
  4903. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4904. lcd_update(2);
  4905. fCheckModeInit(); // alternatively invoke printer reset
  4906. break;
  4907. default:
  4908. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4909. }
  4910. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4911. gcode_in_progress = 0;
  4912. } // end if(code_seen('G'))
  4913. /*!
  4914. ### End of G-Codes
  4915. */
  4916. /*!
  4917. ---------------------------------------------------------------------------------
  4918. # M Commands
  4919. */
  4920. else if(code_seen('M'))
  4921. {
  4922. int index;
  4923. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4924. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4925. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4926. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4927. } else
  4928. {
  4929. mcode_in_progress = (int)code_value();
  4930. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4931. switch(mcode_in_progress)
  4932. {
  4933. /*!
  4934. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4935. */
  4936. case 17:
  4937. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4938. enable_x();
  4939. enable_y();
  4940. enable_z();
  4941. enable_e0();
  4942. enable_e1();
  4943. enable_e2();
  4944. break;
  4945. #ifdef SDSUPPORT
  4946. /*!
  4947. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4948. #### Usage
  4949. M20 [ L ]
  4950. #### Parameters
  4951. - `L` - Reports ling filenames instead of just short filenames. Requires host software parsing.
  4952. */
  4953. case 20:
  4954. KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
  4955. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4956. card.ls(code_seen('L'));
  4957. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4958. break;
  4959. /*!
  4960. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4961. */
  4962. case 21:
  4963. card.initsd();
  4964. break;
  4965. /*!
  4966. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4967. */
  4968. case 22:
  4969. card.release();
  4970. break;
  4971. /*!
  4972. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4973. #### Usage
  4974. M23 [filename]
  4975. */
  4976. case 23:
  4977. starpos = (strchr(strchr_pointer + 4,'*'));
  4978. if(starpos!=NULL)
  4979. *(starpos)='\0';
  4980. card.openFileReadFilteredGcode(strchr_pointer + 4);
  4981. break;
  4982. /*!
  4983. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4984. */
  4985. case 24:
  4986. if (isPrintPaused)
  4987. lcd_resume_print();
  4988. else
  4989. {
  4990. if (!card.get_sdpos())
  4991. {
  4992. // A new print has started from scratch, reset stats
  4993. failstats_reset_print();
  4994. #ifndef LA_NOCOMPAT
  4995. la10c_reset();
  4996. #endif
  4997. }
  4998. card.startFileprint();
  4999. starttime=_millis();
  5000. }
  5001. break;
  5002. /*!
  5003. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  5004. Set position in SD card file to index in bytes.
  5005. This command is expected to be called after M23 and before M24.
  5006. Otherwise effect of this command is undefined.
  5007. #### Usage
  5008. M26 [ S ]
  5009. #### Parameters
  5010. - `S` - Index in bytes
  5011. */
  5012. case 26:
  5013. if(card.cardOK && code_seen('S')) {
  5014. long index = code_value_long();
  5015. card.setIndex(index);
  5016. // We don't disable interrupt during update of sdpos_atomic
  5017. // as we expect, that SD card print is not active in this moment
  5018. sdpos_atomic = index;
  5019. }
  5020. break;
  5021. /*!
  5022. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  5023. #### Usage
  5024. M27 [ P ]
  5025. #### Parameters
  5026. - `P` - Show full SFN path instead of LFN only.
  5027. */
  5028. case 27:
  5029. card.getStatus(code_seen('P'));
  5030. break;
  5031. /*!
  5032. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  5033. */
  5034. case 28:
  5035. starpos = (strchr(strchr_pointer + 4,'*'));
  5036. if(starpos != NULL){
  5037. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5038. strchr_pointer = strchr(npos,' ') + 1;
  5039. *(starpos) = '\0';
  5040. }
  5041. card.openFileWrite(strchr_pointer+4);
  5042. break;
  5043. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  5044. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  5045. */
  5046. case 29:
  5047. //processed in write to file routine above
  5048. //card,saving = false;
  5049. break;
  5050. /*!
  5051. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  5052. #### Usage
  5053. M30 [filename]
  5054. */
  5055. case 30:
  5056. if (card.cardOK){
  5057. card.closefile();
  5058. starpos = (strchr(strchr_pointer + 4,'*'));
  5059. if(starpos != NULL){
  5060. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5061. strchr_pointer = strchr(npos,' ') + 1;
  5062. *(starpos) = '\0';
  5063. }
  5064. card.removeFile(strchr_pointer + 4);
  5065. }
  5066. break;
  5067. /*!
  5068. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  5069. @todo What are the parameters P and S for in M32?
  5070. */
  5071. case 32:
  5072. {
  5073. if(card.sdprinting) {
  5074. st_synchronize();
  5075. }
  5076. starpos = (strchr(strchr_pointer + 4,'*'));
  5077. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  5078. if(namestartpos==NULL)
  5079. {
  5080. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  5081. }
  5082. else
  5083. namestartpos++; //to skip the '!'
  5084. if(starpos!=NULL)
  5085. *(starpos)='\0';
  5086. bool call_procedure=(code_seen('P'));
  5087. if(strchr_pointer>namestartpos)
  5088. call_procedure=false; //false alert, 'P' found within filename
  5089. if( card.cardOK )
  5090. {
  5091. card.openFileReadFilteredGcode(namestartpos,!call_procedure);
  5092. if(code_seen('S'))
  5093. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  5094. card.setIndex(code_value_long());
  5095. card.startFileprint();
  5096. if(!call_procedure)
  5097. {
  5098. if(!card.get_sdpos())
  5099. {
  5100. // A new print has started from scratch, reset stats
  5101. failstats_reset_print();
  5102. #ifndef LA_NOCOMPAT
  5103. la10c_reset();
  5104. #endif
  5105. }
  5106. starttime=_millis(); // procedure calls count as normal print time.
  5107. }
  5108. }
  5109. } break;
  5110. /*!
  5111. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  5112. #### Usage
  5113. M928 [filename]
  5114. */
  5115. case 928:
  5116. starpos = (strchr(strchr_pointer + 5,'*'));
  5117. if(starpos != NULL){
  5118. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5119. strchr_pointer = strchr(npos,' ') + 1;
  5120. *(starpos) = '\0';
  5121. }
  5122. card.openLogFile(strchr_pointer+5);
  5123. break;
  5124. #endif //SDSUPPORT
  5125. /*!
  5126. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  5127. */
  5128. case 31: //M31 take time since the start of the SD print or an M109 command
  5129. {
  5130. stoptime=_millis();
  5131. char time[30];
  5132. unsigned long t=(stoptime-starttime)/1000;
  5133. int sec,min;
  5134. min=t/60;
  5135. sec=t%60;
  5136. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  5137. SERIAL_ECHO_START;
  5138. SERIAL_ECHOLN(time);
  5139. lcd_setstatus(time);
  5140. autotempShutdown();
  5141. }
  5142. break;
  5143. /*!
  5144. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  5145. #### Usage
  5146. M42 [ P | S ]
  5147. #### Parameters
  5148. - `P` - Pin number.
  5149. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  5150. */
  5151. case 42:
  5152. if (code_seen('S'))
  5153. {
  5154. int pin_status = code_value();
  5155. int pin_number = LED_PIN;
  5156. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  5157. pin_number = code_value();
  5158. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5159. {
  5160. if (sensitive_pins[i] == pin_number)
  5161. {
  5162. pin_number = -1;
  5163. break;
  5164. }
  5165. }
  5166. #if defined(FAN_PIN) && FAN_PIN > -1
  5167. if (pin_number == FAN_PIN)
  5168. fanSpeed = pin_status;
  5169. #endif
  5170. if (pin_number > -1)
  5171. {
  5172. pinMode(pin_number, OUTPUT);
  5173. digitalWrite(pin_number, pin_status);
  5174. analogWrite(pin_number, pin_status);
  5175. }
  5176. }
  5177. break;
  5178. /*!
  5179. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5180. */
  5181. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5182. // Reset the baby step value and the baby step applied flag.
  5183. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5184. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5185. // Reset the skew and offset in both RAM and EEPROM.
  5186. reset_bed_offset_and_skew();
  5187. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5188. // the planner will not perform any adjustments in the XY plane.
  5189. // Wait for the motors to stop and update the current position with the absolute values.
  5190. world2machine_revert_to_uncorrected();
  5191. break;
  5192. /*!
  5193. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5194. #### Usage
  5195. M45 [ V ]
  5196. #### Parameters
  5197. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5198. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5199. */
  5200. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5201. {
  5202. int8_t verbosity_level = 0;
  5203. bool only_Z = code_seen('Z');
  5204. #ifdef SUPPORT_VERBOSITY
  5205. if (code_seen('V'))
  5206. {
  5207. // Just 'V' without a number counts as V1.
  5208. char c = strchr_pointer[1];
  5209. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5210. }
  5211. #endif //SUPPORT_VERBOSITY
  5212. gcode_M45(only_Z, verbosity_level);
  5213. }
  5214. break;
  5215. /*!
  5216. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5217. */
  5218. case 46:
  5219. {
  5220. // M46: Prusa3D: Show the assigned IP address.
  5221. if (card.ToshibaFlashAir_isEnabled()) {
  5222. uint8_t ip[4];
  5223. if (card.ToshibaFlashAir_GetIP(ip)) {
  5224. // SERIAL_PROTOCOLPGM("Toshiba FlashAir current IP: ");
  5225. SERIAL_PROTOCOL(uint8_t(ip[0]));
  5226. SERIAL_PROTOCOL('.');
  5227. SERIAL_PROTOCOL(uint8_t(ip[1]));
  5228. SERIAL_PROTOCOL('.');
  5229. SERIAL_PROTOCOL(uint8_t(ip[2]));
  5230. SERIAL_PROTOCOL('.');
  5231. SERIAL_PROTOCOL(uint8_t(ip[3]));
  5232. SERIAL_PROTOCOLLN();
  5233. } else {
  5234. SERIAL_PROTOCOLPGM("?Toshiba FlashAir GetIP failed\n");
  5235. }
  5236. } else {
  5237. SERIAL_PROTOCOLLNPGM("n/a");
  5238. }
  5239. break;
  5240. }
  5241. /*!
  5242. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5243. */
  5244. case 47:
  5245. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5246. lcd_diag_show_end_stops();
  5247. KEEPALIVE_STATE(IN_HANDLER);
  5248. break;
  5249. #if 0
  5250. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5251. {
  5252. // Disable the default update procedure of the display. We will do a modal dialog.
  5253. lcd_update_enable(false);
  5254. // Let the planner use the uncorrected coordinates.
  5255. mbl.reset();
  5256. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5257. // the planner will not perform any adjustments in the XY plane.
  5258. // Wait for the motors to stop and update the current position with the absolute values.
  5259. world2machine_revert_to_uncorrected();
  5260. // Move the print head close to the bed.
  5261. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5263. st_synchronize();
  5264. // Home in the XY plane.
  5265. set_destination_to_current();
  5266. int l_feedmultiply = setup_for_endstop_move();
  5267. home_xy();
  5268. int8_t verbosity_level = 0;
  5269. if (code_seen('V')) {
  5270. // Just 'V' without a number counts as V1.
  5271. char c = strchr_pointer[1];
  5272. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5273. }
  5274. bool success = scan_bed_induction_points(verbosity_level);
  5275. clean_up_after_endstop_move(l_feedmultiply);
  5276. // Print head up.
  5277. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5278. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5279. st_synchronize();
  5280. lcd_update_enable(true);
  5281. break;
  5282. }
  5283. #endif
  5284. #ifdef ENABLE_AUTO_BED_LEVELING
  5285. #ifdef Z_PROBE_REPEATABILITY_TEST
  5286. /*!
  5287. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5288. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5289. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5290. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5291. #### Usage
  5292. M48 [ n | X | Y | V | L ]
  5293. #### Parameters
  5294. - `n` - Number of samples. Valid values 4-50
  5295. - `X` - X position for samples
  5296. - `Y` - Y position for samples
  5297. - `V` - Verbose level. Valid values 1-4
  5298. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5299. */
  5300. case 48: // M48 Z-Probe repeatability
  5301. {
  5302. #if Z_MIN_PIN == -1
  5303. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5304. #endif
  5305. double sum=0.0;
  5306. double mean=0.0;
  5307. double sigma=0.0;
  5308. double sample_set[50];
  5309. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5310. double X_current, Y_current, Z_current;
  5311. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5312. if (code_seen('V') || code_seen('v')) {
  5313. verbose_level = code_value();
  5314. if (verbose_level<0 || verbose_level>4 ) {
  5315. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5316. goto Sigma_Exit;
  5317. }
  5318. }
  5319. if (verbose_level > 0) {
  5320. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5321. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5322. }
  5323. if (code_seen('n')) {
  5324. n_samples = code_value();
  5325. if (n_samples<4 || n_samples>50 ) {
  5326. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5327. goto Sigma_Exit;
  5328. }
  5329. }
  5330. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5331. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5332. Z_current = st_get_position_mm(Z_AXIS);
  5333. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5334. ext_position = st_get_position_mm(E_AXIS);
  5335. if (code_seen('X') || code_seen('x') ) {
  5336. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5337. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5338. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5339. goto Sigma_Exit;
  5340. }
  5341. }
  5342. if (code_seen('Y') || code_seen('y') ) {
  5343. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5344. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5345. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5346. goto Sigma_Exit;
  5347. }
  5348. }
  5349. if (code_seen('L') || code_seen('l') ) {
  5350. n_legs = code_value();
  5351. if ( n_legs==1 )
  5352. n_legs = 2;
  5353. if ( n_legs<0 || n_legs>15 ) {
  5354. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5355. goto Sigma_Exit;
  5356. }
  5357. }
  5358. //
  5359. // Do all the preliminary setup work. First raise the probe.
  5360. //
  5361. st_synchronize();
  5362. plan_bed_level_matrix.set_to_identity();
  5363. plan_buffer_line( X_current, Y_current, Z_start_location,
  5364. ext_position,
  5365. homing_feedrate[Z_AXIS]/60,
  5366. active_extruder);
  5367. st_synchronize();
  5368. //
  5369. // Now get everything to the specified probe point So we can safely do a probe to
  5370. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5371. // use that as a starting point for each probe.
  5372. //
  5373. if (verbose_level > 2)
  5374. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5375. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5376. ext_position,
  5377. homing_feedrate[X_AXIS]/60,
  5378. active_extruder);
  5379. st_synchronize();
  5380. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5381. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5382. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5383. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5384. //
  5385. // OK, do the inital probe to get us close to the bed.
  5386. // Then retrace the right amount and use that in subsequent probes
  5387. //
  5388. int l_feedmultiply = setup_for_endstop_move();
  5389. run_z_probe();
  5390. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5391. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5392. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5393. ext_position,
  5394. homing_feedrate[X_AXIS]/60,
  5395. active_extruder);
  5396. st_synchronize();
  5397. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5398. for( n=0; n<n_samples; n++) {
  5399. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5400. if ( n_legs) {
  5401. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5402. int rotational_direction, l;
  5403. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5404. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5405. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5406. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5407. //SERIAL_ECHOPAIR(" theta: ",theta);
  5408. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5409. //SERIAL_PROTOCOLLNPGM("");
  5410. for( l=0; l<n_legs-1; l++) {
  5411. if (rotational_direction==1)
  5412. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5413. else
  5414. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5415. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5416. if ( radius<0.0 )
  5417. radius = -radius;
  5418. X_current = X_probe_location + cos(theta) * radius;
  5419. Y_current = Y_probe_location + sin(theta) * radius;
  5420. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5421. X_current = X_MIN_POS;
  5422. if ( X_current>X_MAX_POS)
  5423. X_current = X_MAX_POS;
  5424. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5425. Y_current = Y_MIN_POS;
  5426. if ( Y_current>Y_MAX_POS)
  5427. Y_current = Y_MAX_POS;
  5428. if (verbose_level>3 ) {
  5429. SERIAL_ECHOPAIR("x: ", X_current);
  5430. SERIAL_ECHOPAIR("y: ", Y_current);
  5431. SERIAL_PROTOCOLLNPGM("");
  5432. }
  5433. do_blocking_move_to( X_current, Y_current, Z_current );
  5434. }
  5435. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5436. }
  5437. int l_feedmultiply = setup_for_endstop_move();
  5438. run_z_probe();
  5439. sample_set[n] = current_position[Z_AXIS];
  5440. //
  5441. // Get the current mean for the data points we have so far
  5442. //
  5443. sum=0.0;
  5444. for( j=0; j<=n; j++) {
  5445. sum = sum + sample_set[j];
  5446. }
  5447. mean = sum / (double (n+1));
  5448. //
  5449. // Now, use that mean to calculate the standard deviation for the
  5450. // data points we have so far
  5451. //
  5452. sum=0.0;
  5453. for( j=0; j<=n; j++) {
  5454. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5455. }
  5456. sigma = sqrt( sum / (double (n+1)) );
  5457. if (verbose_level > 1) {
  5458. SERIAL_PROTOCOL(n+1);
  5459. SERIAL_PROTOCOL(" of ");
  5460. SERIAL_PROTOCOL(n_samples);
  5461. SERIAL_PROTOCOLPGM(" z: ");
  5462. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5463. }
  5464. if (verbose_level > 2) {
  5465. SERIAL_PROTOCOL(" mean: ");
  5466. SERIAL_PROTOCOL_F(mean,6);
  5467. SERIAL_PROTOCOL(" sigma: ");
  5468. SERIAL_PROTOCOL_F(sigma,6);
  5469. }
  5470. if (verbose_level > 0)
  5471. SERIAL_PROTOCOLPGM("\n");
  5472. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5473. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5474. st_synchronize();
  5475. }
  5476. _delay(1000);
  5477. clean_up_after_endstop_move(l_feedmultiply);
  5478. // enable_endstops(true);
  5479. if (verbose_level > 0) {
  5480. SERIAL_PROTOCOLPGM("Mean: ");
  5481. SERIAL_PROTOCOL_F(mean, 6);
  5482. SERIAL_PROTOCOLPGM("\n");
  5483. }
  5484. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5485. SERIAL_PROTOCOL_F(sigma, 6);
  5486. SERIAL_PROTOCOLPGM("\n\n");
  5487. Sigma_Exit:
  5488. break;
  5489. }
  5490. #endif // Z_PROBE_REPEATABILITY_TEST
  5491. #endif // ENABLE_AUTO_BED_LEVELING
  5492. /*!
  5493. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5494. #### Usage
  5495. M73 [ P | R | Q | S | C | D ]
  5496. #### Parameters
  5497. - `P` - Percent in normal mode
  5498. - `R` - Time remaining in normal mode
  5499. - `Q` - Percent in silent mode
  5500. - `S` - Time in silent mode
  5501. - `C` - Time to change/pause/user interaction in normal mode
  5502. - `D` - Time to change/pause/user interaction in silent mode
  5503. */
  5504. //!@todo update RepRap Gcode wiki
  5505. case 73: //M73 show percent done, time remaining and time to change/pause
  5506. {
  5507. if(code_seen('P')) print_percent_done_normal = code_value();
  5508. if(code_seen('R')) print_time_remaining_normal = code_value();
  5509. if(code_seen('Q')) print_percent_done_silent = code_value();
  5510. if(code_seen('S')) print_time_remaining_silent = code_value();
  5511. if(code_seen('C')) print_time_to_change_normal = code_value();
  5512. if(code_seen('D')) print_time_to_change_silent = code_value();
  5513. {
  5514. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d; Change in mins: %d\n");
  5515. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal, print_time_to_change_normal);
  5516. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent, print_time_to_change_silent);
  5517. }
  5518. break;
  5519. }
  5520. /*!
  5521. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5522. #### Usage
  5523. M104 [ S ]
  5524. #### Parameters
  5525. - `S` - Target temperature
  5526. */
  5527. case 104: // M104
  5528. {
  5529. uint8_t extruder;
  5530. if(setTargetedHotend(104,extruder)){
  5531. break;
  5532. }
  5533. if (code_seen('S'))
  5534. {
  5535. setTargetHotendSafe(code_value(), extruder);
  5536. }
  5537. break;
  5538. }
  5539. /*!
  5540. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5541. It is processed much earlier as to bypass the cmdqueue.
  5542. */
  5543. case 112:
  5544. kill(MSG_M112_KILL, 3);
  5545. break;
  5546. /*!
  5547. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5548. #### Usage
  5549. M140 [ S ]
  5550. #### Parameters
  5551. - `S` - Target temperature
  5552. */
  5553. case 140:
  5554. if (code_seen('S')) setTargetBed(code_value());
  5555. break;
  5556. /*!
  5557. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5558. Prints temperatures:
  5559. - `T:` - Hotend (actual / target)
  5560. - `B:` - Bed (actual / target)
  5561. - `Tx:` - x Tool (actual / target)
  5562. - `@:` - Hotend power
  5563. - `B@:` - Bed power
  5564. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5565. - `A:` - Ambient actual (only MK3/s)
  5566. _Example:_
  5567. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5568. */
  5569. case 105:
  5570. {
  5571. uint8_t extruder;
  5572. if(setTargetedHotend(105, extruder)){
  5573. break;
  5574. }
  5575. SERIAL_PROTOCOLPGM("ok ");
  5576. gcode_M105(extruder);
  5577. cmdqueue_pop_front(); //prevent an ok after the command since this command uses an ok at the beginning.
  5578. break;
  5579. }
  5580. #if defined(AUTO_REPORT)
  5581. /*!
  5582. ### M155 - Automatically send status <a href="https://reprap.org/wiki/G-code#M155:_Automatically_send_temperatures">M155: Automatically send temperatures</a>
  5583. #### Usage
  5584. M155 [ S ] [ C ]
  5585. #### Parameters
  5586. - `S` - Set autoreporting interval in seconds. 0 to disable. Maximum: 255
  5587. - `C` - Activate auto-report function (bit mask). Default is temperature.
  5588. bit 0 = Auto-report temperatures
  5589. bit 1 = Auto-report fans
  5590. bit 2 = Auto-report position
  5591. bit 3 = free
  5592. bit 4 = free
  5593. bit 5 = free
  5594. bit 6 = free
  5595. bit 7 = free
  5596. */
  5597. //!@todo update RepRap Gcode wiki
  5598. //!@todo Should be temperature always? Octoprint doesn't switch to M105 if M155 timer is set
  5599. case 155:
  5600. {
  5601. if (code_seen('S')){
  5602. autoReportFeatures.SetPeriod( code_value_uint8() );
  5603. }
  5604. if (code_seen('C')){
  5605. autoReportFeatures.SetMask(code_value());
  5606. } else{
  5607. autoReportFeatures.SetMask(1); //Backwards compability to host systems like Octoprint to send only temp if paramerter `C`isn't used.
  5608. }
  5609. }
  5610. break;
  5611. #endif //AUTO_REPORT
  5612. /*!
  5613. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5614. #### Usage
  5615. M104 [ B | R | S ]
  5616. #### Parameters (not mandatory)
  5617. - `S` - Set extruder temperature
  5618. - `R` - Set extruder temperature
  5619. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5620. Parameters S and R are treated identically.
  5621. Command always waits for both cool down and heat up.
  5622. If no parameters are supplied waits for previously set extruder temperature.
  5623. */
  5624. case 109:
  5625. {
  5626. uint8_t extruder;
  5627. if(setTargetedHotend(109, extruder)){
  5628. break;
  5629. }
  5630. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5631. heating_status = 1;
  5632. if (farm_mode) { prusa_statistics(1); };
  5633. #ifdef AUTOTEMP
  5634. autotemp_enabled=false;
  5635. #endif
  5636. if (code_seen('S')) {
  5637. setTargetHotendSafe(code_value(), extruder);
  5638. } else if (code_seen('R')) {
  5639. setTargetHotendSafe(code_value(), extruder);
  5640. }
  5641. #ifdef AUTOTEMP
  5642. if (code_seen('S')) autotemp_min=code_value();
  5643. if (code_seen('B')) autotemp_max=code_value();
  5644. if (code_seen('F'))
  5645. {
  5646. autotemp_factor=code_value();
  5647. autotemp_enabled=true;
  5648. }
  5649. #endif
  5650. codenum = _millis();
  5651. /* See if we are heating up or cooling down */
  5652. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5653. KEEPALIVE_STATE(NOT_BUSY);
  5654. cancel_heatup = false;
  5655. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5656. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5657. KEEPALIVE_STATE(IN_HANDLER);
  5658. heating_status = 2;
  5659. if (farm_mode) { prusa_statistics(2); };
  5660. //starttime=_millis();
  5661. previous_millis_cmd = _millis();
  5662. }
  5663. break;
  5664. /*!
  5665. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5666. #### Usage
  5667. M190 [ R | S ]
  5668. #### Parameters (not mandatory)
  5669. - `S` - Set extruder temperature and wait for heating
  5670. - `R` - Set extruder temperature and wait for heating or cooling
  5671. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5672. */
  5673. case 190:
  5674. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5675. {
  5676. bool CooldownNoWait = false;
  5677. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5678. heating_status = 3;
  5679. if (farm_mode) { prusa_statistics(1); };
  5680. if (code_seen('S'))
  5681. {
  5682. setTargetBed(code_value());
  5683. CooldownNoWait = true;
  5684. }
  5685. else if (code_seen('R'))
  5686. {
  5687. setTargetBed(code_value());
  5688. }
  5689. codenum = _millis();
  5690. cancel_heatup = false;
  5691. target_direction = isHeatingBed(); // true if heating, false if cooling
  5692. KEEPALIVE_STATE(NOT_BUSY);
  5693. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5694. {
  5695. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5696. {
  5697. if (!farm_mode) {
  5698. float tt = degHotend(active_extruder);
  5699. SERIAL_PROTOCOLPGM("T:");
  5700. SERIAL_PROTOCOL(tt);
  5701. SERIAL_PROTOCOLPGM(" E:");
  5702. SERIAL_PROTOCOL((int)active_extruder);
  5703. SERIAL_PROTOCOLPGM(" B:");
  5704. SERIAL_PROTOCOL_F(degBed(), 1);
  5705. SERIAL_PROTOCOLLN();
  5706. }
  5707. codenum = _millis();
  5708. }
  5709. manage_heater();
  5710. manage_inactivity();
  5711. lcd_update(0);
  5712. }
  5713. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5714. KEEPALIVE_STATE(IN_HANDLER);
  5715. heating_status = 4;
  5716. previous_millis_cmd = _millis();
  5717. }
  5718. #endif
  5719. break;
  5720. #if defined(FAN_PIN) && FAN_PIN > -1
  5721. /*!
  5722. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5723. #### Usage
  5724. M106 [ S ]
  5725. #### Parameters
  5726. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5727. */
  5728. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5729. if (code_seen('S')){
  5730. fanSpeed=constrain(code_value(),0,255);
  5731. }
  5732. else {
  5733. fanSpeed=255;
  5734. }
  5735. break;
  5736. /*!
  5737. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5738. */
  5739. case 107:
  5740. fanSpeed = 0;
  5741. break;
  5742. #endif //FAN_PIN
  5743. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5744. /*!
  5745. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5746. Only works if the firmware is compiled with PS_ON_PIN defined.
  5747. */
  5748. case 80:
  5749. SET_OUTPUT(PS_ON_PIN); //GND
  5750. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5751. // If you have a switch on suicide pin, this is useful
  5752. // if you want to start another print with suicide feature after
  5753. // a print without suicide...
  5754. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5755. SET_OUTPUT(SUICIDE_PIN);
  5756. WRITE(SUICIDE_PIN, HIGH);
  5757. #endif
  5758. powersupply = true;
  5759. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5760. lcd_update(0);
  5761. break;
  5762. /*!
  5763. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5764. Only works if the firmware is compiled with PS_ON_PIN defined.
  5765. */
  5766. case 81:
  5767. disable_heater();
  5768. st_synchronize();
  5769. disable_e0();
  5770. disable_e1();
  5771. disable_e2();
  5772. finishAndDisableSteppers();
  5773. fanSpeed = 0;
  5774. _delay(1000); // Wait a little before to switch off
  5775. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5776. st_synchronize();
  5777. suicide();
  5778. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5779. SET_OUTPUT(PS_ON_PIN);
  5780. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5781. #endif
  5782. powersupply = false;
  5783. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5784. lcd_update(0);
  5785. break;
  5786. #endif
  5787. /*!
  5788. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5789. Makes the extruder interpret extrusion as absolute positions.
  5790. */
  5791. case 82:
  5792. axis_relative_modes &= ~E_AXIS_MASK;
  5793. break;
  5794. /*!
  5795. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5796. Makes the extruder interpret extrusion values as relative positions.
  5797. */
  5798. case 83:
  5799. axis_relative_modes |= E_AXIS_MASK;
  5800. break;
  5801. /*!
  5802. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5803. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5804. This command can be used without any additional parameters. In that case all steppers are disabled.
  5805. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5806. M84 [ S | X | Y | Z | E ]
  5807. - `S` - Seconds
  5808. - `X` - X axis
  5809. - `Y` - Y axis
  5810. - `Z` - Z axis
  5811. - `E` - Exruder
  5812. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5813. Equal to M84 (compatibility)
  5814. */
  5815. case 18: //compatibility
  5816. case 84: // M84
  5817. if(code_seen('S')){
  5818. stepper_inactive_time = code_value() * 1000;
  5819. }
  5820. else
  5821. {
  5822. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5823. if(all_axis)
  5824. {
  5825. st_synchronize();
  5826. disable_e0();
  5827. disable_e1();
  5828. disable_e2();
  5829. finishAndDisableSteppers();
  5830. }
  5831. else
  5832. {
  5833. st_synchronize();
  5834. if (code_seen('X')) disable_x();
  5835. if (code_seen('Y')) disable_y();
  5836. if (code_seen('Z')) disable_z();
  5837. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5838. if (code_seen('E')) {
  5839. disable_e0();
  5840. disable_e1();
  5841. disable_e2();
  5842. }
  5843. #endif
  5844. }
  5845. }
  5846. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5847. print_time_remaining_init();
  5848. snmm_filaments_used = 0;
  5849. break;
  5850. /*!
  5851. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5852. #### Usage
  5853. M85 [ S ]
  5854. #### Parameters
  5855. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5856. */
  5857. case 85: // M85
  5858. if(code_seen('S')) {
  5859. max_inactive_time = code_value() * 1000;
  5860. }
  5861. break;
  5862. #ifdef SAFETYTIMER
  5863. /*!
  5864. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5865. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5866. #### Usage
  5867. M86 [ S ]
  5868. #### Parameters
  5869. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5870. */
  5871. case 86:
  5872. if (code_seen('S')) {
  5873. safetytimer_inactive_time = code_value() * 1000;
  5874. safetyTimer.start();
  5875. }
  5876. break;
  5877. #endif
  5878. /*!
  5879. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5880. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5881. #### Usage
  5882. M92 [ X | Y | Z | E ]
  5883. #### Parameters
  5884. - `X` - Steps per unit for the X drive
  5885. - `Y` - Steps per unit for the Y drive
  5886. - `Z` - Steps per unit for the Z drive
  5887. - `E` - Steps per unit for the extruder drive
  5888. */
  5889. case 92:
  5890. for(int8_t i=0; i < NUM_AXIS; i++)
  5891. {
  5892. if(code_seen(axis_codes[i]))
  5893. {
  5894. if(i == E_AXIS) { // E
  5895. float value = code_value();
  5896. if(value < 20.0) {
  5897. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5898. cs.max_jerk[E_AXIS] *= factor;
  5899. max_feedrate[i] *= factor;
  5900. axis_steps_per_sqr_second[i] *= factor;
  5901. }
  5902. cs.axis_steps_per_unit[i] = value;
  5903. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5904. fsensor_set_axis_steps_per_unit(value);
  5905. #endif
  5906. }
  5907. else {
  5908. cs.axis_steps_per_unit[i] = code_value();
  5909. }
  5910. }
  5911. }
  5912. break;
  5913. /*!
  5914. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5915. Sets the line number in G-code
  5916. #### Usage
  5917. M110 [ N ]
  5918. #### Parameters
  5919. - `N` - Line number
  5920. */
  5921. case 110:
  5922. if (code_seen('N'))
  5923. gcode_LastN = code_value_long();
  5924. break;
  5925. /*!
  5926. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5927. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5928. #### Usage
  5929. M113 [ S ]
  5930. #### Parameters
  5931. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5932. */
  5933. case 113:
  5934. if (code_seen('S')) {
  5935. host_keepalive_interval = (uint8_t)code_value_short();
  5936. // NOMORE(host_keepalive_interval, 60);
  5937. }
  5938. else {
  5939. SERIAL_ECHO_START;
  5940. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5941. SERIAL_PROTOCOLLN();
  5942. }
  5943. break;
  5944. /*!
  5945. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5946. Print the firmware info and capabilities
  5947. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5948. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5949. _Examples:_
  5950. `M115` results:
  5951. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5952. `M115 V` results:
  5953. `3.8.1`
  5954. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5955. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5956. #### Usage
  5957. M115 [ V | U ]
  5958. #### Parameters
  5959. - V - Report current installed firmware version
  5960. - U - Firmware version provided by G-code to be compared to current one.
  5961. */
  5962. case 115: // M115
  5963. if (code_seen('V')) {
  5964. // Report the Prusa version number.
  5965. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5966. } else if (code_seen('U')) {
  5967. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5968. // pause the print for 30s and ask the user to upgrade the firmware.
  5969. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5970. } else {
  5971. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5972. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5973. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5974. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5975. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5976. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5977. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5978. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5979. SERIAL_ECHOPGM(" UUID:");
  5980. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5981. #ifdef EXTENDED_CAPABILITIES_REPORT
  5982. extended_capabilities_report();
  5983. #endif //EXTENDED_CAPABILITIES_REPORT
  5984. }
  5985. break;
  5986. /*!
  5987. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5988. */
  5989. case 114:
  5990. gcode_M114();
  5991. break;
  5992. /*
  5993. M117 moved up to get the high priority
  5994. case 117: // M117 display message
  5995. starpos = (strchr(strchr_pointer + 5,'*'));
  5996. if(starpos!=NULL)
  5997. *(starpos)='\0';
  5998. lcd_setstatus(strchr_pointer + 5);
  5999. break;*/
  6000. /*!
  6001. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  6002. */
  6003. case 120:
  6004. enable_endstops(true) ;
  6005. break;
  6006. /*!
  6007. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  6008. */
  6009. case 121:
  6010. enable_endstops(false) ;
  6011. break;
  6012. /*!
  6013. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  6014. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  6015. */
  6016. case 119:
  6017. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  6018. SERIAL_PROTOCOLLN();
  6019. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  6020. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  6021. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  6022. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6023. }else{
  6024. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6025. }
  6026. SERIAL_PROTOCOLLN();
  6027. #endif
  6028. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  6029. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  6030. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  6031. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6032. }else{
  6033. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6034. }
  6035. SERIAL_PROTOCOLLN();
  6036. #endif
  6037. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  6038. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  6039. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  6040. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6041. }else{
  6042. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6043. }
  6044. SERIAL_PROTOCOLLN();
  6045. #endif
  6046. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  6047. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  6048. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  6049. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6050. }else{
  6051. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6052. }
  6053. SERIAL_PROTOCOLLN();
  6054. #endif
  6055. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  6056. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  6057. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  6058. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6059. }else{
  6060. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6061. }
  6062. SERIAL_PROTOCOLLN();
  6063. #endif
  6064. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  6065. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  6066. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  6067. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6068. }else{
  6069. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6070. }
  6071. SERIAL_PROTOCOLLN();
  6072. #endif
  6073. break;
  6074. //!@todo update for all axes, use for loop
  6075. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  6076. /*!
  6077. ### M123 - Tachometer value <a href="https://www.reprap.org/wiki/G-code#M123:_Tachometer_value_.28RepRap.29">M123: Tachometer value</a>
  6078. This command is used to report fan speeds and fan pwm values.
  6079. #### Usage
  6080. M123
  6081. - E0: - Hotend fan speed in RPM
  6082. - PRN1: - Part cooling fans speed in RPM
  6083. - E0@: - Hotend fan PWM value
  6084. - PRN1@: -Part cooling fan PWM value
  6085. _Example:_
  6086. E0:3240 RPM PRN1:4560 RPM E0@:255 PRN1@:255
  6087. */
  6088. //!@todo Update RepRap Gcode wiki
  6089. case 123:
  6090. gcode_M123();
  6091. break;
  6092. #endif //FANCHECK and TACH_0 and TACH_1
  6093. #ifdef BLINKM
  6094. /*!
  6095. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  6096. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  6097. #### Usage
  6098. M150 [ R | U | B ]
  6099. #### Parameters
  6100. - `R` - Red color value
  6101. - `U` - Green color value. It is NOT `G`!
  6102. - `B` - Blue color value
  6103. */
  6104. case 150:
  6105. {
  6106. byte red;
  6107. byte grn;
  6108. byte blu;
  6109. if(code_seen('R')) red = code_value();
  6110. if(code_seen('U')) grn = code_value();
  6111. if(code_seen('B')) blu = code_value();
  6112. SendColors(red,grn,blu);
  6113. }
  6114. break;
  6115. #endif //BLINKM
  6116. /*!
  6117. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  6118. #### Usage
  6119. M200 [ D | T ]
  6120. #### Parameters
  6121. - `D` - Diameter in mm
  6122. - `T` - Number of extruder (MMUs)
  6123. */
  6124. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6125. {
  6126. uint8_t extruder = active_extruder;
  6127. if(code_seen('T')) {
  6128. extruder = code_value();
  6129. if(extruder >= EXTRUDERS) {
  6130. SERIAL_ECHO_START;
  6131. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  6132. break;
  6133. }
  6134. }
  6135. if(code_seen('D')) {
  6136. float diameter = (float)code_value();
  6137. if (diameter == 0.0) {
  6138. // setting any extruder filament size disables volumetric on the assumption that
  6139. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6140. // for all extruders
  6141. cs.volumetric_enabled = false;
  6142. } else {
  6143. cs.filament_size[extruder] = (float)code_value();
  6144. // make sure all extruders have some sane value for the filament size
  6145. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6146. #if EXTRUDERS > 1
  6147. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6148. #if EXTRUDERS > 2
  6149. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6150. #endif
  6151. #endif
  6152. cs.volumetric_enabled = true;
  6153. }
  6154. } else {
  6155. //reserved for setting filament diameter via UFID or filament measuring device
  6156. break;
  6157. }
  6158. calculate_extruder_multipliers();
  6159. }
  6160. break;
  6161. /*!
  6162. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6163. For each axis individually.
  6164. */
  6165. case 201:
  6166. for (int8_t i = 0; i < NUM_AXIS; i++)
  6167. {
  6168. if (code_seen(axis_codes[i]))
  6169. {
  6170. unsigned long val = code_value();
  6171. #ifdef TMC2130
  6172. unsigned long val_silent = val;
  6173. if ((i == X_AXIS) || (i == Y_AXIS))
  6174. {
  6175. if (val > NORMAL_MAX_ACCEL_XY)
  6176. val = NORMAL_MAX_ACCEL_XY;
  6177. if (val_silent > SILENT_MAX_ACCEL_XY)
  6178. val_silent = SILENT_MAX_ACCEL_XY;
  6179. }
  6180. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6181. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6182. #else //TMC2130
  6183. max_acceleration_units_per_sq_second[i] = val;
  6184. #endif //TMC2130
  6185. }
  6186. }
  6187. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6188. reset_acceleration_rates();
  6189. break;
  6190. #if 0 // Not used for Sprinter/grbl gen6
  6191. case 202: // M202
  6192. for(int8_t i=0; i < NUM_AXIS; i++) {
  6193. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6194. }
  6195. break;
  6196. #endif
  6197. /*!
  6198. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6199. For each axis individually.
  6200. */
  6201. case 203: // M203 max feedrate mm/sec
  6202. for (uint8_t i = 0; i < NUM_AXIS; i++)
  6203. {
  6204. if (code_seen(axis_codes[i]))
  6205. {
  6206. float val = code_value();
  6207. #ifdef TMC2130
  6208. float val_silent = val;
  6209. if ((i == X_AXIS) || (i == Y_AXIS))
  6210. {
  6211. if (val > NORMAL_MAX_FEEDRATE_XY)
  6212. val = NORMAL_MAX_FEEDRATE_XY;
  6213. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6214. val_silent = SILENT_MAX_FEEDRATE_XY;
  6215. }
  6216. cs.max_feedrate_normal[i] = val;
  6217. cs.max_feedrate_silent[i] = val_silent;
  6218. #else //TMC2130
  6219. max_feedrate[i] = val;
  6220. #endif //TMC2130
  6221. }
  6222. }
  6223. break;
  6224. /*!
  6225. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6226. #### Old format:
  6227. ##### Usage
  6228. M204 [ S | T ]
  6229. ##### Parameters
  6230. - `S` - normal moves
  6231. - `T` - filmanent only moves
  6232. #### New format:
  6233. ##### Usage
  6234. M204 [ P | R | T ]
  6235. ##### Parameters
  6236. - `P` - printing moves
  6237. - `R` - filmanent only moves
  6238. - `T` - travel moves (as of now T is ignored)
  6239. */
  6240. case 204:
  6241. {
  6242. if(code_seen('S')) {
  6243. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6244. // and it is also generated by Slic3r to control acceleration per extrusion type
  6245. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6246. cs.acceleration = cs.travel_acceleration = code_value();
  6247. // Interpret the T value as retract acceleration in the old Marlin format.
  6248. if(code_seen('T'))
  6249. cs.retract_acceleration = code_value();
  6250. } else {
  6251. // New acceleration format, compatible with the upstream Marlin.
  6252. if(code_seen('P'))
  6253. cs.acceleration = code_value();
  6254. if(code_seen('R'))
  6255. cs.retract_acceleration = code_value();
  6256. if(code_seen('T'))
  6257. cs.travel_acceleration = code_value();
  6258. }
  6259. }
  6260. break;
  6261. /*!
  6262. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6263. Set some advanced settings related to movement.
  6264. #### Usage
  6265. M205 [ S | T | B | X | Y | Z | E ]
  6266. #### Parameters
  6267. - `S` - Minimum feedrate for print moves (unit/s)
  6268. - `T` - Minimum feedrate for travel moves (units/s)
  6269. - `B` - Minimum segment time (us)
  6270. - `X` - Maximum X jerk (units/s)
  6271. - `Y` - Maximum Y jerk (units/s)
  6272. - `Z` - Maximum Z jerk (units/s)
  6273. - `E` - Maximum E jerk (units/s)
  6274. */
  6275. case 205:
  6276. {
  6277. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6278. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6279. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6280. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6281. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6282. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6283. if(code_seen('E'))
  6284. {
  6285. float e = code_value();
  6286. #ifndef LA_NOCOMPAT
  6287. e = la10c_jerk(e);
  6288. #endif
  6289. cs.max_jerk[E_AXIS] = e;
  6290. }
  6291. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6292. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6293. }
  6294. break;
  6295. /*!
  6296. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6297. #### Usage
  6298. M206 [ X | Y | Z ]
  6299. #### Parameters
  6300. - `X` - X axis offset
  6301. - `Y` - Y axis offset
  6302. - `Z` - Z axis offset
  6303. */
  6304. case 206:
  6305. for(uint8_t i=0; i < 3; i++)
  6306. {
  6307. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6308. }
  6309. break;
  6310. #ifdef FWRETRACT
  6311. /*!
  6312. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6313. #### Usage
  6314. M207 [ S | F | Z ]
  6315. #### Parameters
  6316. - `S` - positive length to retract, in mm
  6317. - `F` - retraction feedrate, in mm/min
  6318. - `Z` - additional zlift/hop
  6319. */
  6320. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6321. {
  6322. if(code_seen('S'))
  6323. {
  6324. cs.retract_length = code_value() ;
  6325. }
  6326. if(code_seen('F'))
  6327. {
  6328. cs.retract_feedrate = code_value()/60 ;
  6329. }
  6330. if(code_seen('Z'))
  6331. {
  6332. cs.retract_zlift = code_value() ;
  6333. }
  6334. }break;
  6335. /*!
  6336. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6337. #### Usage
  6338. M208 [ S | F ]
  6339. #### Parameters
  6340. - `S` - positive length surplus to the M207 Snnn, in mm
  6341. - `F` - feedrate, in mm/sec
  6342. */
  6343. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6344. {
  6345. if(code_seen('S'))
  6346. {
  6347. cs.retract_recover_length = code_value() ;
  6348. }
  6349. if(code_seen('F'))
  6350. {
  6351. cs.retract_recover_feedrate = code_value()/60 ;
  6352. }
  6353. }break;
  6354. /*!
  6355. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6356. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6357. #### Usage
  6358. M209 [ S ]
  6359. #### Parameters
  6360. - `S` - 1=true or 0=false
  6361. */
  6362. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6363. {
  6364. if(code_seen('S'))
  6365. {
  6366. int t= code_value() ;
  6367. switch(t)
  6368. {
  6369. case 0:
  6370. {
  6371. cs.autoretract_enabled=false;
  6372. retracted[0]=false;
  6373. #if EXTRUDERS > 1
  6374. retracted[1]=false;
  6375. #endif
  6376. #if EXTRUDERS > 2
  6377. retracted[2]=false;
  6378. #endif
  6379. }break;
  6380. case 1:
  6381. {
  6382. cs.autoretract_enabled=true;
  6383. retracted[0]=false;
  6384. #if EXTRUDERS > 1
  6385. retracted[1]=false;
  6386. #endif
  6387. #if EXTRUDERS > 2
  6388. retracted[2]=false;
  6389. #endif
  6390. }break;
  6391. default:
  6392. SERIAL_ECHO_START;
  6393. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6394. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6395. SERIAL_ECHOLNPGM("\"(1)");
  6396. }
  6397. }
  6398. }break;
  6399. #endif // FWRETRACT
  6400. #if EXTRUDERS > 1
  6401. /*!
  6402. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6403. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6404. #### Usage
  6405. M218 [ X | Y ]
  6406. #### Parameters
  6407. - `X` - X offset
  6408. - `Y` - Y offset
  6409. */
  6410. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6411. {
  6412. uint8_t extruder;
  6413. if(setTargetedHotend(218, extruder)){
  6414. break;
  6415. }
  6416. if(code_seen('X'))
  6417. {
  6418. extruder_offset[X_AXIS][extruder] = code_value();
  6419. }
  6420. if(code_seen('Y'))
  6421. {
  6422. extruder_offset[Y_AXIS][extruder] = code_value();
  6423. }
  6424. SERIAL_ECHO_START;
  6425. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6426. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6427. {
  6428. SERIAL_ECHO(" ");
  6429. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6430. SERIAL_ECHO(",");
  6431. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6432. }
  6433. SERIAL_ECHOLN("");
  6434. }break;
  6435. #endif
  6436. /*!
  6437. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6438. #### Usage
  6439. M220 [ B | S | R ]
  6440. #### Parameters
  6441. - `B` - Backup current speed factor
  6442. - `S` - Speed factor override percentage (0..100 or higher)
  6443. - `R` - Restore previous speed factor
  6444. */
  6445. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6446. {
  6447. bool codesWereSeen = false;
  6448. if (code_seen('B')) //backup current speed factor
  6449. {
  6450. saved_feedmultiply_mm = feedmultiply;
  6451. codesWereSeen = true;
  6452. }
  6453. if (code_seen('S'))
  6454. {
  6455. feedmultiply = code_value();
  6456. codesWereSeen = true;
  6457. }
  6458. if (code_seen('R')) //restore previous feedmultiply
  6459. {
  6460. feedmultiply = saved_feedmultiply_mm;
  6461. codesWereSeen = true;
  6462. }
  6463. if (!codesWereSeen)
  6464. {
  6465. printf_P(PSTR("%i%%\n"), feedmultiply);
  6466. }
  6467. }
  6468. break;
  6469. /*!
  6470. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6471. #### Usage
  6472. M221 [ S | T ]
  6473. #### Parameters
  6474. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6475. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6476. */
  6477. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6478. {
  6479. if (code_seen('S'))
  6480. {
  6481. int tmp_code = code_value();
  6482. if (code_seen('T'))
  6483. {
  6484. uint8_t extruder;
  6485. if (setTargetedHotend(221, extruder))
  6486. break;
  6487. extruder_multiply[extruder] = tmp_code;
  6488. }
  6489. else
  6490. {
  6491. extrudemultiply = tmp_code ;
  6492. }
  6493. }
  6494. else
  6495. {
  6496. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6497. }
  6498. calculate_extruder_multipliers();
  6499. }
  6500. break;
  6501. /*!
  6502. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6503. Wait until the specified pin reaches the state required
  6504. #### Usage
  6505. M226 [ P | S ]
  6506. #### Parameters
  6507. - `P` - pin number
  6508. - `S` - pin state
  6509. */
  6510. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6511. {
  6512. if(code_seen('P')){
  6513. int pin_number = code_value(); // pin number
  6514. int pin_state = -1; // required pin state - default is inverted
  6515. if(code_seen('S')) pin_state = code_value(); // required pin state
  6516. if(pin_state >= -1 && pin_state <= 1){
  6517. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6518. {
  6519. if (sensitive_pins[i] == pin_number)
  6520. {
  6521. pin_number = -1;
  6522. break;
  6523. }
  6524. }
  6525. if (pin_number > -1)
  6526. {
  6527. int target = LOW;
  6528. st_synchronize();
  6529. pinMode(pin_number, INPUT);
  6530. switch(pin_state){
  6531. case 1:
  6532. target = HIGH;
  6533. break;
  6534. case 0:
  6535. target = LOW;
  6536. break;
  6537. case -1:
  6538. target = !digitalRead(pin_number);
  6539. break;
  6540. }
  6541. while(digitalRead(pin_number) != target){
  6542. manage_heater();
  6543. manage_inactivity();
  6544. lcd_update(0);
  6545. }
  6546. }
  6547. }
  6548. }
  6549. }
  6550. break;
  6551. #if NUM_SERVOS > 0
  6552. /*!
  6553. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6554. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6555. #### Usage
  6556. M280 [ P | S ]
  6557. #### Parameters
  6558. - `P` - Servo index (id)
  6559. - `S` - Target position
  6560. */
  6561. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6562. {
  6563. int servo_index = -1;
  6564. int servo_position = 0;
  6565. if (code_seen('P'))
  6566. servo_index = code_value();
  6567. if (code_seen('S')) {
  6568. servo_position = code_value();
  6569. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6570. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6571. servos[servo_index].attach(0);
  6572. #endif
  6573. servos[servo_index].write(servo_position);
  6574. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6575. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6576. servos[servo_index].detach();
  6577. #endif
  6578. }
  6579. else {
  6580. SERIAL_ECHO_START;
  6581. SERIAL_ECHO("Servo ");
  6582. SERIAL_ECHO(servo_index);
  6583. SERIAL_ECHOLN(" out of range");
  6584. }
  6585. }
  6586. else if (servo_index >= 0) {
  6587. SERIAL_PROTOCOL(MSG_OK);
  6588. SERIAL_PROTOCOL(" Servo ");
  6589. SERIAL_PROTOCOL(servo_index);
  6590. SERIAL_PROTOCOL(": ");
  6591. SERIAL_PROTOCOL(servos[servo_index].read());
  6592. SERIAL_PROTOCOLLN();
  6593. }
  6594. }
  6595. break;
  6596. #endif // NUM_SERVOS > 0
  6597. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6598. /*!
  6599. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6600. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6601. #### Usage
  6602. M300 [ S | P ]
  6603. #### Parameters
  6604. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6605. - `P` - duration in milliseconds
  6606. */
  6607. case 300: // M300
  6608. {
  6609. int beepS = code_seen('S') ? code_value() : 110;
  6610. int beepP = code_seen('P') ? code_value() : 1000;
  6611. if (beepS > 0)
  6612. {
  6613. #if BEEPER > 0
  6614. Sound_MakeCustom(beepP,beepS,false);
  6615. #endif
  6616. }
  6617. else
  6618. {
  6619. _delay(beepP);
  6620. }
  6621. }
  6622. break;
  6623. #endif // M300
  6624. #ifdef PIDTEMP
  6625. /*!
  6626. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6627. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6628. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6629. #### Usage
  6630. M301 [ P | I | D | C ]
  6631. #### Parameters
  6632. - `P` - proportional (Kp)
  6633. - `I` - integral (Ki)
  6634. - `D` - derivative (Kd)
  6635. - `C` - heating power=Kc*(e_speed0)
  6636. */
  6637. case 301:
  6638. {
  6639. if(code_seen('P')) cs.Kp = code_value();
  6640. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6641. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6642. #ifdef PID_ADD_EXTRUSION_RATE
  6643. if(code_seen('C')) Kc = code_value();
  6644. #endif
  6645. updatePID();
  6646. SERIAL_PROTOCOLRPGM(MSG_OK);
  6647. SERIAL_PROTOCOL(" p:");
  6648. SERIAL_PROTOCOL(cs.Kp);
  6649. SERIAL_PROTOCOL(" i:");
  6650. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6651. SERIAL_PROTOCOL(" d:");
  6652. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6653. #ifdef PID_ADD_EXTRUSION_RATE
  6654. SERIAL_PROTOCOL(" c:");
  6655. //Kc does not have scaling applied above, or in resetting defaults
  6656. SERIAL_PROTOCOL(Kc);
  6657. #endif
  6658. SERIAL_PROTOCOLLN();
  6659. }
  6660. break;
  6661. #endif //PIDTEMP
  6662. #ifdef PIDTEMPBED
  6663. /*!
  6664. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6665. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6666. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6667. #### Usage
  6668. M304 [ P | I | D ]
  6669. #### Parameters
  6670. - `P` - proportional (Kp)
  6671. - `I` - integral (Ki)
  6672. - `D` - derivative (Kd)
  6673. */
  6674. case 304:
  6675. {
  6676. if(code_seen('P')) cs.bedKp = code_value();
  6677. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6678. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6679. updatePID();
  6680. SERIAL_PROTOCOLRPGM(MSG_OK);
  6681. SERIAL_PROTOCOL(" p:");
  6682. SERIAL_PROTOCOL(cs.bedKp);
  6683. SERIAL_PROTOCOL(" i:");
  6684. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6685. SERIAL_PROTOCOL(" d:");
  6686. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6687. SERIAL_PROTOCOLLN();
  6688. }
  6689. break;
  6690. #endif //PIDTEMP
  6691. /*!
  6692. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6693. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6694. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6695. */
  6696. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6697. {
  6698. #ifdef CHDK
  6699. SET_OUTPUT(CHDK);
  6700. WRITE(CHDK, HIGH);
  6701. chdkHigh = _millis();
  6702. chdkActive = true;
  6703. #else
  6704. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6705. const uint8_t NUM_PULSES=16;
  6706. const float PULSE_LENGTH=0.01524;
  6707. for(int i=0; i < NUM_PULSES; i++) {
  6708. WRITE(PHOTOGRAPH_PIN, HIGH);
  6709. _delay_ms(PULSE_LENGTH);
  6710. WRITE(PHOTOGRAPH_PIN, LOW);
  6711. _delay_ms(PULSE_LENGTH);
  6712. }
  6713. _delay(7.33);
  6714. for(int i=0; i < NUM_PULSES; i++) {
  6715. WRITE(PHOTOGRAPH_PIN, HIGH);
  6716. _delay_ms(PULSE_LENGTH);
  6717. WRITE(PHOTOGRAPH_PIN, LOW);
  6718. _delay_ms(PULSE_LENGTH);
  6719. }
  6720. #endif
  6721. #endif //chdk end if
  6722. }
  6723. break;
  6724. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6725. /*!
  6726. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6727. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6728. #### Usage
  6729. M302 [ S ]
  6730. #### Parameters
  6731. - `S` - Cold extrude minimum temperature
  6732. */
  6733. case 302:
  6734. {
  6735. float temp = .0;
  6736. if (code_seen('S')) temp=code_value();
  6737. set_extrude_min_temp(temp);
  6738. }
  6739. break;
  6740. #endif
  6741. /*!
  6742. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6743. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6744. #### Usage
  6745. M303 [ E | S | C ]
  6746. #### Parameters
  6747. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6748. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6749. - `C` - Cycles, default `5`
  6750. */
  6751. case 303:
  6752. {
  6753. float temp = 150.0;
  6754. int e=0;
  6755. int c=5;
  6756. if (code_seen('E')) e=code_value();
  6757. if (e<0)
  6758. temp=70;
  6759. if (code_seen('S')) temp=code_value();
  6760. if (code_seen('C')) c=code_value();
  6761. PID_autotune(temp, e, c);
  6762. }
  6763. break;
  6764. /*!
  6765. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6766. Finishes all current moves and and thus clears the buffer.
  6767. Equivalent to `G4` with no parameters.
  6768. */
  6769. case 400:
  6770. {
  6771. st_synchronize();
  6772. }
  6773. break;
  6774. /*!
  6775. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6776. Currently three different materials are needed (default, flex and PVA).
  6777. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6778. #### Usage
  6779. M403 [ E | F ]
  6780. #### Parameters
  6781. - `E` - Extruder number. 0-indexed.
  6782. - `F` - Filament type
  6783. */
  6784. case 403:
  6785. {
  6786. // currently three different materials are needed (default, flex and PVA)
  6787. // add storing this information for different load/unload profiles etc. in the future
  6788. // firmware does not wait for "ok" from mmu
  6789. if (mmu_enabled)
  6790. {
  6791. uint8_t extruder = 255;
  6792. uint8_t filament = FILAMENT_UNDEFINED;
  6793. if(code_seen('E')) extruder = code_value();
  6794. if(code_seen('F')) filament = code_value();
  6795. mmu_set_filament_type(extruder, filament);
  6796. }
  6797. }
  6798. break;
  6799. /*!
  6800. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6801. Save current parameters to EEPROM.
  6802. */
  6803. case 500:
  6804. {
  6805. Config_StoreSettings();
  6806. }
  6807. break;
  6808. /*!
  6809. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6810. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6811. */
  6812. case 501:
  6813. {
  6814. Config_RetrieveSettings();
  6815. }
  6816. break;
  6817. /*!
  6818. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6819. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6820. */
  6821. case 502:
  6822. {
  6823. Config_ResetDefault();
  6824. }
  6825. break;
  6826. /*!
  6827. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6828. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6829. */
  6830. case 503:
  6831. {
  6832. Config_PrintSettings();
  6833. }
  6834. break;
  6835. /*!
  6836. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6837. Resets the language to English.
  6838. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6839. */
  6840. case 509:
  6841. {
  6842. lang_reset();
  6843. SERIAL_ECHO_START;
  6844. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6845. }
  6846. break;
  6847. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6848. /*!
  6849. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6850. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6851. #### Usage
  6852. M540 [ S ]
  6853. #### Parameters
  6854. - `S` - disabled=0, enabled=1
  6855. */
  6856. case 540:
  6857. {
  6858. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6859. }
  6860. break;
  6861. #endif
  6862. /*!
  6863. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6864. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6865. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6866. #### Usage
  6867. M851 [ Z ]
  6868. #### Parameters
  6869. - `Z` - Z offset probe to nozzle.
  6870. */
  6871. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6872. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6873. {
  6874. float value;
  6875. if (code_seen('Z'))
  6876. {
  6877. value = code_value();
  6878. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6879. {
  6880. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6881. SERIAL_ECHO_START;
  6882. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6883. SERIAL_PROTOCOLLN();
  6884. }
  6885. else
  6886. {
  6887. SERIAL_ECHO_START;
  6888. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6889. SERIAL_ECHORPGM(MSG_Z_MIN);
  6890. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6891. SERIAL_ECHORPGM(MSG_Z_MAX);
  6892. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6893. SERIAL_PROTOCOLLN();
  6894. }
  6895. }
  6896. else
  6897. {
  6898. SERIAL_ECHO_START;
  6899. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6900. SERIAL_ECHO(-cs.zprobe_zoffset);
  6901. SERIAL_PROTOCOLLN();
  6902. }
  6903. break;
  6904. }
  6905. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6906. /*!
  6907. ### M552 - Set IP address <a href="https://reprap.org/wiki/G-code#M552:_Set_IP_address.2C_enable.2Fdisable_network_interface">M552: Set IP address, enable/disable network interface"</a>
  6908. Sets the printer IP address that is shown in the support menu. Designed to be used with the help of host software.
  6909. If P is not specified nothing happens.
  6910. If the structure of the IP address is invalid, 0.0.0.0 is assumed and nothing is shown on the screen in the Support menu.
  6911. #### Usage
  6912. M552 [ P<IP_address> ]
  6913. #### Parameters
  6914. - `P` - The IP address in xxx.xxx.xxx.xxx format. Eg: P192.168.1.14
  6915. */
  6916. case 552:
  6917. {
  6918. if (code_seen('P'))
  6919. {
  6920. uint8_t valCnt = 0;
  6921. IP_address = 0;
  6922. do
  6923. {
  6924. *strchr_pointer = '*';
  6925. ((uint8_t*)&IP_address)[valCnt] = code_value_short();
  6926. valCnt++;
  6927. } while ((valCnt < 4) && code_seen('.'));
  6928. if (valCnt != 4)
  6929. IP_address = 0;
  6930. }
  6931. } break;
  6932. #ifdef FILAMENTCHANGEENABLE
  6933. /*!
  6934. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6935. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6936. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6937. #### Usage
  6938. M600 [ X | Y | Z | E | L | AUTO ]
  6939. - `X` - X position, default 211
  6940. - `Y` - Y position, default 0
  6941. - `Z` - relative lift Z, default 2.
  6942. - `E` - initial retract, default -2
  6943. - `L` - later retract distance for removal, default -80
  6944. - `AUTO` - Automatically (only with MMU)
  6945. */
  6946. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6947. {
  6948. st_synchronize();
  6949. float x_position = current_position[X_AXIS];
  6950. float y_position = current_position[Y_AXIS];
  6951. float z_shift = 0; // is it necessary to be a float?
  6952. float e_shift_init = 0;
  6953. float e_shift_late = 0;
  6954. bool automatic = false;
  6955. //Retract extruder
  6956. if(code_seen('E'))
  6957. {
  6958. e_shift_init = code_value();
  6959. }
  6960. else
  6961. {
  6962. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6963. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6964. #endif
  6965. }
  6966. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6967. if (code_seen('L'))
  6968. {
  6969. e_shift_late = code_value();
  6970. }
  6971. else
  6972. {
  6973. #ifdef FILAMENTCHANGE_FINALRETRACT
  6974. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6975. #endif
  6976. }
  6977. //Lift Z
  6978. if(code_seen('Z'))
  6979. {
  6980. z_shift = code_value();
  6981. }
  6982. else
  6983. {
  6984. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6985. }
  6986. //Move XY to side
  6987. if(code_seen('X'))
  6988. {
  6989. x_position = code_value();
  6990. }
  6991. else
  6992. {
  6993. #ifdef FILAMENTCHANGE_XPOS
  6994. x_position = FILAMENTCHANGE_XPOS;
  6995. #endif
  6996. }
  6997. if(code_seen('Y'))
  6998. {
  6999. y_position = code_value();
  7000. }
  7001. else
  7002. {
  7003. #ifdef FILAMENTCHANGE_YPOS
  7004. y_position = FILAMENTCHANGE_YPOS ;
  7005. #endif
  7006. }
  7007. if (mmu_enabled && code_seen_P(PSTR("AUTO")))
  7008. automatic = true;
  7009. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  7010. }
  7011. break;
  7012. #endif //FILAMENTCHANGEENABLE
  7013. /*!
  7014. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  7015. */
  7016. /*!
  7017. ### M125 - Pause print (TODO: not implemented)
  7018. */
  7019. /*!
  7020. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  7021. */
  7022. case 25:
  7023. case 601:
  7024. {
  7025. if (!isPrintPaused) {
  7026. st_synchronize();
  7027. ClearToSend(); //send OK even before the command finishes executing because we want to make sure it is not skipped because of cmdqueue_pop_front();
  7028. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  7029. lcd_pause_print();
  7030. }
  7031. }
  7032. break;
  7033. /*!
  7034. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  7035. */
  7036. case 602:
  7037. {
  7038. if (isPrintPaused) lcd_resume_print();
  7039. }
  7040. break;
  7041. /*!
  7042. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  7043. */
  7044. case 603: {
  7045. lcd_print_stop();
  7046. }
  7047. break;
  7048. #ifdef PINDA_THERMISTOR
  7049. /*!
  7050. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  7051. Wait for PINDA thermistor to reach target temperature
  7052. #### Usage
  7053. M860 [ S ]
  7054. #### Parameters
  7055. - `S` - Target temperature
  7056. */
  7057. case 860:
  7058. {
  7059. int set_target_pinda = 0;
  7060. if (code_seen('S')) {
  7061. set_target_pinda = code_value();
  7062. }
  7063. else {
  7064. break;
  7065. }
  7066. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  7067. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  7068. SERIAL_PROTOCOL(set_target_pinda);
  7069. SERIAL_PROTOCOLLN();
  7070. codenum = _millis();
  7071. cancel_heatup = false;
  7072. bool is_pinda_cooling = false;
  7073. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  7074. is_pinda_cooling = true;
  7075. }
  7076. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  7077. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  7078. {
  7079. SERIAL_PROTOCOLPGM("P:");
  7080. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  7081. SERIAL_PROTOCOL('/');
  7082. SERIAL_PROTOCOLLN(set_target_pinda);
  7083. codenum = _millis();
  7084. }
  7085. manage_heater();
  7086. manage_inactivity();
  7087. lcd_update(0);
  7088. }
  7089. LCD_MESSAGERPGM(MSG_OK);
  7090. break;
  7091. }
  7092. /*!
  7093. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  7094. Set compensation ustep value `S` for compensation table index `I`.
  7095. #### Usage
  7096. M861 [ ? | ! | Z | S | I ]
  7097. #### Parameters
  7098. - `?` - Print current EEPROM offset values
  7099. - `!` - Set factory default values
  7100. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7101. - `S` - Microsteps
  7102. - `I` - Table index
  7103. */
  7104. case 861:
  7105. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  7106. uint8_t cal_status = calibration_status_pinda();
  7107. int16_t usteps = 0;
  7108. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  7109. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  7110. for (uint8_t i = 0; i < 6; i++)
  7111. {
  7112. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  7113. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7114. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7115. SERIAL_PROTOCOLPGM(", ");
  7116. SERIAL_PROTOCOL(35 + (i * 5));
  7117. SERIAL_PROTOCOLPGM(", ");
  7118. SERIAL_PROTOCOL(usteps);
  7119. SERIAL_PROTOCOLPGM(", ");
  7120. SERIAL_PROTOCOL(mm * 1000);
  7121. SERIAL_PROTOCOLLN();
  7122. }
  7123. }
  7124. else if (code_seen('!')) { // ! - Set factory default values
  7125. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7126. int16_t z_shift = 8; //40C - 20um - 8usteps
  7127. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  7128. z_shift = 24; //45C - 60um - 24usteps
  7129. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  7130. z_shift = 48; //50C - 120um - 48usteps
  7131. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  7132. z_shift = 80; //55C - 200um - 80usteps
  7133. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  7134. z_shift = 120; //60C - 300um - 120usteps
  7135. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  7136. SERIAL_PROTOCOLLN("factory restored");
  7137. }
  7138. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7139. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7140. int16_t z_shift = 0;
  7141. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  7142. SERIAL_PROTOCOLLN("zerorized");
  7143. }
  7144. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  7145. int16_t usteps = code_value();
  7146. if (code_seen('I')) {
  7147. uint8_t index = code_value();
  7148. if (index < 5) {
  7149. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  7150. SERIAL_PROTOCOLLN("OK");
  7151. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  7152. for (uint8_t i = 0; i < 6; i++)
  7153. {
  7154. usteps = 0;
  7155. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  7156. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7157. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7158. SERIAL_PROTOCOLPGM(", ");
  7159. SERIAL_PROTOCOL(35 + (i * 5));
  7160. SERIAL_PROTOCOLPGM(", ");
  7161. SERIAL_PROTOCOL(usteps);
  7162. SERIAL_PROTOCOLPGM(", ");
  7163. SERIAL_PROTOCOL(mm * 1000);
  7164. SERIAL_PROTOCOLLN();
  7165. }
  7166. }
  7167. }
  7168. }
  7169. else {
  7170. SERIAL_PROTOCOLPGM("no valid command");
  7171. }
  7172. break;
  7173. #endif //PINDA_THERMISTOR
  7174. /*!
  7175. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7176. Checks the parameters of the printer and gcode and performs compatibility check
  7177. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7178. - M862.2 { P<model_code> | Q }
  7179. - M862.3 { P"<model_name>" | Q }
  7180. - M862.4 { P<fw_version> | Q }
  7181. - M862.5 { P<gcode_level> | Q }
  7182. When run with P<> argument, the check is performed against the input value.
  7183. When run with Q argument, the current value is shown.
  7184. M862.3 accepts text identifiers of printer types too.
  7185. The syntax of M862.3 is (note the quotes around the type):
  7186. M862.3 P "MK3S"
  7187. Accepted printer type identifiers and their numeric counterparts:
  7188. - MK1 (100)
  7189. - MK2 (200)
  7190. - MK2MM (201)
  7191. - MK2S (202)
  7192. - MK2SMM (203)
  7193. - MK2.5 (250)
  7194. - MK2.5MMU2 (20250)
  7195. - MK2.5S (252)
  7196. - MK2.5SMMU2S (20252)
  7197. - MK3 (300)
  7198. - MK3MMU2 (20300)
  7199. - MK3S (302)
  7200. - MK3SMMU2S (20302)
  7201. */
  7202. case 862: // M862: print checking
  7203. float nDummy;
  7204. uint8_t nCommand;
  7205. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7206. switch((ClPrintChecking)nCommand)
  7207. {
  7208. case ClPrintChecking::_Nozzle: // ~ .1
  7209. uint16_t nDiameter;
  7210. if(code_seen('P'))
  7211. {
  7212. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7213. nozzle_diameter_check(nDiameter);
  7214. }
  7215. /*
  7216. else if(code_seen('S')&&farm_mode)
  7217. {
  7218. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7219. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7220. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7221. }
  7222. */
  7223. else if(code_seen('Q'))
  7224. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7225. break;
  7226. case ClPrintChecking::_Model: // ~ .2
  7227. if(code_seen('P'))
  7228. {
  7229. uint16_t nPrinterModel;
  7230. nPrinterModel=(uint16_t)code_value_long();
  7231. printer_model_check(nPrinterModel);
  7232. }
  7233. else if(code_seen('Q'))
  7234. SERIAL_PROTOCOLLN(nPrinterType);
  7235. break;
  7236. case ClPrintChecking::_Smodel: // ~ .3
  7237. if(code_seen('P'))
  7238. printer_smodel_check(strchr_pointer);
  7239. else if(code_seen('Q'))
  7240. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7241. break;
  7242. case ClPrintChecking::_Version: // ~ .4
  7243. if(code_seen('P'))
  7244. fw_version_check(++strchr_pointer);
  7245. else if(code_seen('Q'))
  7246. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  7247. break;
  7248. case ClPrintChecking::_Gcode: // ~ .5
  7249. if(code_seen('P'))
  7250. {
  7251. uint16_t nGcodeLevel;
  7252. nGcodeLevel=(uint16_t)code_value_long();
  7253. gcode_level_check(nGcodeLevel);
  7254. }
  7255. else if(code_seen('Q'))
  7256. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7257. break;
  7258. }
  7259. break;
  7260. #ifdef LIN_ADVANCE
  7261. /*!
  7262. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7263. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7264. #### Usage
  7265. M900 [ K | R | W | H | D]
  7266. #### Parameters
  7267. - `K` - Advance K factor
  7268. - `R` - Set ratio directly (overrides WH/D)
  7269. - `W` - Width
  7270. - `H` - Height
  7271. - `D` - Diameter Set ratio from WH/D
  7272. */
  7273. case 900:
  7274. gcode_M900();
  7275. break;
  7276. #endif
  7277. /*!
  7278. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7279. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7280. #### Usage
  7281. M907 [ X | Y | Z | E | B | S ]
  7282. #### Parameters
  7283. - `X` - X motor driver
  7284. - `Y` - Y motor driver
  7285. - `Z` - Z motor driver
  7286. - `E` - Extruder motor driver
  7287. - `B` - Second Extruder motor driver
  7288. - `S` - All motors
  7289. */
  7290. case 907:
  7291. {
  7292. #ifdef TMC2130
  7293. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7294. for (int i = 0; i < NUM_AXIS; i++)
  7295. if(code_seen(axis_codes[i]))
  7296. {
  7297. long cur_mA = code_value_long();
  7298. uint8_t val = tmc2130_cur2val(cur_mA);
  7299. tmc2130_set_current_h(i, val);
  7300. tmc2130_set_current_r(i, val);
  7301. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7302. }
  7303. #else //TMC2130
  7304. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7305. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7306. if(code_seen('B')) st_current_set(4,code_value());
  7307. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7308. #endif
  7309. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7310. if(code_seen('X')) st_current_set(0, code_value());
  7311. #endif
  7312. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7313. if(code_seen('Z')) st_current_set(1, code_value());
  7314. #endif
  7315. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7316. if(code_seen('E')) st_current_set(2, code_value());
  7317. #endif
  7318. #endif //TMC2130
  7319. }
  7320. break;
  7321. /*!
  7322. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7323. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7324. #### Usage
  7325. M908 [ P | S ]
  7326. #### Parameters
  7327. - `P` - channel
  7328. - `S` - current
  7329. */
  7330. case 908:
  7331. {
  7332. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7333. uint8_t channel,current;
  7334. if(code_seen('P')) channel=code_value();
  7335. if(code_seen('S')) current=code_value();
  7336. digitalPotWrite(channel, current);
  7337. #endif
  7338. }
  7339. break;
  7340. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7341. /*!
  7342. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7343. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7344. */
  7345. case 910:
  7346. {
  7347. tmc2130_init();
  7348. }
  7349. break;
  7350. /*!
  7351. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7352. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7353. #### Usage
  7354. M911 [ X | Y | Z | E ]
  7355. #### Parameters
  7356. - `X` - X stepper driver holding current value
  7357. - `Y` - Y stepper driver holding current value
  7358. - `Z` - Z stepper driver holding current value
  7359. - `E` - Extruder stepper driver holding current value
  7360. */
  7361. case 911:
  7362. {
  7363. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7364. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7365. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7366. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7367. }
  7368. break;
  7369. /*!
  7370. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7371. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7372. #### Usage
  7373. M912 [ X | Y | Z | E ]
  7374. #### Parameters
  7375. - `X` - X stepper driver running current value
  7376. - `Y` - Y stepper driver running current value
  7377. - `Z` - Z stepper driver running current value
  7378. - `E` - Extruder stepper driver running current value
  7379. */
  7380. case 912:
  7381. {
  7382. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7383. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7384. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7385. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7386. }
  7387. break;
  7388. /*!
  7389. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7390. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7391. Shows TMC2130 currents.
  7392. */
  7393. case 913:
  7394. {
  7395. tmc2130_print_currents();
  7396. }
  7397. break;
  7398. /*!
  7399. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7400. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7401. */
  7402. case 914:
  7403. {
  7404. tmc2130_mode = TMC2130_MODE_NORMAL;
  7405. update_mode_profile();
  7406. tmc2130_init();
  7407. }
  7408. break;
  7409. /*!
  7410. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7411. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7412. */
  7413. case 915:
  7414. {
  7415. tmc2130_mode = TMC2130_MODE_SILENT;
  7416. update_mode_profile();
  7417. tmc2130_init();
  7418. }
  7419. break;
  7420. /*!
  7421. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7422. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7423. #### Usage
  7424. M916 [ X | Y | Z | E ]
  7425. #### Parameters
  7426. - `X` - X stepper driver stallguard sensitivity threshold value
  7427. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7428. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7429. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7430. */
  7431. case 916:
  7432. {
  7433. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7434. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7435. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7436. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7437. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7438. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7439. }
  7440. break;
  7441. /*!
  7442. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7443. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7444. #### Usage
  7445. M917 [ X | Y | Z | E ]
  7446. #### Parameters
  7447. - `X` - X stepper driver PWM amplitude offset value
  7448. - `Y` - Y stepper driver PWM amplitude offset value
  7449. - `Z` - Z stepper driver PWM amplitude offset value
  7450. - `E` - Extruder stepper driver PWM amplitude offset value
  7451. */
  7452. case 917:
  7453. {
  7454. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7455. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7456. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7457. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7458. }
  7459. break;
  7460. /*!
  7461. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7462. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7463. #### Usage
  7464. M918 [ X | Y | Z | E ]
  7465. #### Parameters
  7466. - `X` - X stepper driver PWM amplitude gradient value
  7467. - `Y` - Y stepper driver PWM amplitude gradient value
  7468. - `Z` - Z stepper driver PWM amplitude gradient value
  7469. - `E` - Extruder stepper driver PWM amplitude gradient value
  7470. */
  7471. case 918:
  7472. {
  7473. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7474. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7475. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7476. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7477. }
  7478. break;
  7479. #endif //TMC2130_SERVICE_CODES_M910_M918
  7480. /*!
  7481. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7482. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7483. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7484. #### Usage
  7485. M350 [ X | Y | Z | E | B | S ]
  7486. #### Parameters
  7487. - `X` - X new resolution
  7488. - `Y` - Y new resolution
  7489. - `Z` - Z new resolution
  7490. - `E` - E new resolution
  7491. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7492. - `B` - Second extruder new resolution
  7493. - `S` - All axes new resolution
  7494. */
  7495. case 350:
  7496. {
  7497. #ifdef TMC2130
  7498. for (int i=0; i<NUM_AXIS; i++)
  7499. {
  7500. if(code_seen(axis_codes[i]))
  7501. {
  7502. uint16_t res_new = code_value();
  7503. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7504. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7505. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7506. if (res_valid)
  7507. {
  7508. st_synchronize();
  7509. uint16_t res = tmc2130_get_res(i);
  7510. tmc2130_set_res(i, res_new);
  7511. cs.axis_ustep_resolution[i] = res_new;
  7512. if (res_new > res)
  7513. {
  7514. uint16_t fac = (res_new / res);
  7515. cs.axis_steps_per_unit[i] *= fac;
  7516. position[i] *= fac;
  7517. }
  7518. else
  7519. {
  7520. uint16_t fac = (res / res_new);
  7521. cs.axis_steps_per_unit[i] /= fac;
  7522. position[i] /= fac;
  7523. }
  7524. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7525. if (i == E_AXIS)
  7526. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7527. #endif
  7528. }
  7529. }
  7530. }
  7531. #else //TMC2130
  7532. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7533. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7534. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7535. if(code_seen('B')) microstep_mode(4,code_value());
  7536. microstep_readings();
  7537. #endif
  7538. #endif //TMC2130
  7539. }
  7540. break;
  7541. /*!
  7542. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7543. Toggle MS1 MS2 pins directly.
  7544. #### Usage
  7545. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7546. #### Parameters
  7547. - `X` - Update X axis
  7548. - `Y` - Update Y axis
  7549. - `Z` - Update Z axis
  7550. - `E` - Update E axis
  7551. - `S` - which MSx pin to toggle
  7552. - `B` - new pin value
  7553. */
  7554. case 351:
  7555. {
  7556. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7557. if(code_seen('S')) switch((int)code_value())
  7558. {
  7559. case 1:
  7560. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7561. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7562. break;
  7563. case 2:
  7564. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7565. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7566. break;
  7567. }
  7568. microstep_readings();
  7569. #endif
  7570. }
  7571. break;
  7572. /*!
  7573. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7574. */
  7575. case 701:
  7576. {
  7577. if (mmu_enabled && code_seen('E'))
  7578. tmp_extruder = code_value();
  7579. gcode_M701();
  7580. }
  7581. break;
  7582. /*!
  7583. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7584. #### Usage
  7585. M702 [ U | C ]
  7586. #### Parameters
  7587. - `U` - Unload all filaments used in current print
  7588. - `C` - Unload just current filament
  7589. - without any parameters unload all filaments
  7590. */
  7591. case 702:
  7592. {
  7593. #ifdef SNMM
  7594. if (code_seen('U'))
  7595. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7596. else if (code_seen('C'))
  7597. extr_unload(); //! if "C" unload just current filament
  7598. else
  7599. extr_unload_all(); //! otherwise unload all filaments
  7600. #else
  7601. if (code_seen('C')) {
  7602. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7603. }
  7604. else {
  7605. if(mmu_enabled) extr_unload(); //! unload current filament
  7606. else unload_filament();
  7607. }
  7608. #endif //SNMM
  7609. }
  7610. break;
  7611. /*!
  7612. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7613. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7614. */
  7615. case 999:
  7616. Stopped = false;
  7617. lcd_reset_alert_level();
  7618. gcode_LastN = Stopped_gcode_LastN;
  7619. FlushSerialRequestResend();
  7620. break;
  7621. /*!
  7622. #### End of M-Commands
  7623. */
  7624. default:
  7625. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7626. }
  7627. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7628. mcode_in_progress = 0;
  7629. }
  7630. }
  7631. // end if(code_seen('M')) (end of M codes)
  7632. /*!
  7633. -----------------------------------------------------------------------------------------
  7634. # T Codes
  7635. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7636. #### For MMU_V2:
  7637. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7638. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7639. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7640. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7641. */
  7642. else if(code_seen('T'))
  7643. {
  7644. static const char duplicate_Tcode_ignored[] PROGMEM = "Duplicate T-code ignored.";
  7645. int index;
  7646. bool load_to_nozzle = false;
  7647. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7648. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7649. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7650. SERIAL_ECHOLNPGM("Invalid T code.");
  7651. }
  7652. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7653. if (mmu_enabled)
  7654. {
  7655. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7656. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7657. {
  7658. puts_P(duplicate_Tcode_ignored);
  7659. }
  7660. else
  7661. {
  7662. st_synchronize();
  7663. mmu_command(MmuCmd::T0 + tmp_extruder);
  7664. manage_response(true, true, MMU_TCODE_MOVE);
  7665. }
  7666. }
  7667. }
  7668. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7669. if (mmu_enabled)
  7670. {
  7671. st_synchronize();
  7672. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7673. mmu_extruder = tmp_extruder; //filament change is finished
  7674. mmu_load_to_nozzle();
  7675. }
  7676. }
  7677. else {
  7678. if (*(strchr_pointer + index) == '?')
  7679. {
  7680. if(mmu_enabled)
  7681. {
  7682. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7683. load_to_nozzle = true;
  7684. } else
  7685. {
  7686. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7687. }
  7688. }
  7689. else {
  7690. tmp_extruder = code_value();
  7691. if (mmu_enabled && lcd_autoDepleteEnabled())
  7692. {
  7693. tmp_extruder = ad_getAlternative(tmp_extruder);
  7694. }
  7695. }
  7696. st_synchronize();
  7697. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7698. if (mmu_enabled)
  7699. {
  7700. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7701. {
  7702. puts_P(duplicate_Tcode_ignored);
  7703. }
  7704. else
  7705. {
  7706. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7707. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7708. {
  7709. mmu_command(MmuCmd::K0 + tmp_extruder);
  7710. manage_response(true, true, MMU_UNLOAD_MOVE);
  7711. }
  7712. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7713. mmu_command(MmuCmd::T0 + tmp_extruder);
  7714. manage_response(true, true, MMU_TCODE_MOVE);
  7715. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7716. mmu_extruder = tmp_extruder; //filament change is finished
  7717. if (load_to_nozzle)// for single material usage with mmu
  7718. {
  7719. mmu_load_to_nozzle();
  7720. }
  7721. }
  7722. }
  7723. else
  7724. {
  7725. #ifdef SNMM
  7726. mmu_extruder = tmp_extruder;
  7727. _delay(100);
  7728. disable_e0();
  7729. disable_e1();
  7730. disable_e2();
  7731. pinMode(E_MUX0_PIN, OUTPUT);
  7732. pinMode(E_MUX1_PIN, OUTPUT);
  7733. _delay(100);
  7734. SERIAL_ECHO_START;
  7735. SERIAL_ECHO("T:");
  7736. SERIAL_ECHOLN((int)tmp_extruder);
  7737. switch (tmp_extruder) {
  7738. case 1:
  7739. WRITE(E_MUX0_PIN, HIGH);
  7740. WRITE(E_MUX1_PIN, LOW);
  7741. break;
  7742. case 2:
  7743. WRITE(E_MUX0_PIN, LOW);
  7744. WRITE(E_MUX1_PIN, HIGH);
  7745. break;
  7746. case 3:
  7747. WRITE(E_MUX0_PIN, HIGH);
  7748. WRITE(E_MUX1_PIN, HIGH);
  7749. break;
  7750. default:
  7751. WRITE(E_MUX0_PIN, LOW);
  7752. WRITE(E_MUX1_PIN, LOW);
  7753. break;
  7754. }
  7755. _delay(100);
  7756. #else //SNMM
  7757. if (tmp_extruder >= EXTRUDERS) {
  7758. SERIAL_ECHO_START;
  7759. SERIAL_ECHO('T');
  7760. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7761. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7762. }
  7763. else {
  7764. #if EXTRUDERS > 1
  7765. boolean make_move = false;
  7766. #endif
  7767. if (code_seen('F')) {
  7768. #if EXTRUDERS > 1
  7769. make_move = true;
  7770. #endif
  7771. next_feedrate = code_value();
  7772. if (next_feedrate > 0.0) {
  7773. feedrate = next_feedrate;
  7774. }
  7775. }
  7776. #if EXTRUDERS > 1
  7777. if (tmp_extruder != active_extruder) {
  7778. // Save current position to return to after applying extruder offset
  7779. memcpy(destination, current_position, sizeof(destination));
  7780. // Offset extruder (only by XY)
  7781. int i;
  7782. for (i = 0; i < 2; i++) {
  7783. current_position[i] = current_position[i] -
  7784. extruder_offset[i][active_extruder] +
  7785. extruder_offset[i][tmp_extruder];
  7786. }
  7787. // Set the new active extruder and position
  7788. active_extruder = tmp_extruder;
  7789. plan_set_position_curposXYZE();
  7790. // Move to the old position if 'F' was in the parameters
  7791. if (make_move && Stopped == false) {
  7792. prepare_move();
  7793. }
  7794. }
  7795. #endif
  7796. SERIAL_ECHO_START;
  7797. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7798. SERIAL_PROTOCOLLN((int)active_extruder);
  7799. }
  7800. #endif //SNMM
  7801. }
  7802. }
  7803. } // end if(code_seen('T')) (end of T codes)
  7804. /*!
  7805. #### End of T-Codes
  7806. */
  7807. /**
  7808. *---------------------------------------------------------------------------------
  7809. *# D codes
  7810. */
  7811. else if (code_seen('D')) // D codes (debug)
  7812. {
  7813. switch((int)code_value())
  7814. {
  7815. /*!
  7816. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7817. */
  7818. case -1:
  7819. dcode__1(); break;
  7820. #ifdef DEBUG_DCODES
  7821. /*!
  7822. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7823. #### Usage
  7824. D0 [ B ]
  7825. #### Parameters
  7826. - `B` - Bootloader
  7827. */
  7828. case 0:
  7829. dcode_0(); break;
  7830. /*!
  7831. *
  7832. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7833. D1
  7834. *
  7835. */
  7836. case 1:
  7837. dcode_1(); break;
  7838. /*!
  7839. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7840. This command can be used without any additional parameters. It will read the entire RAM.
  7841. #### Usage
  7842. D2 [ A | C | X ]
  7843. #### Parameters
  7844. - `A` - Address (x0000-x1fff)
  7845. - `C` - Count (1-8192)
  7846. - `X` - Data
  7847. #### Notes
  7848. - The hex address needs to be lowercase without the 0 before the x
  7849. - Count is decimal
  7850. - The hex data needs to be lowercase
  7851. */
  7852. case 2:
  7853. dcode_2(); break;
  7854. #endif //DEBUG_DCODES
  7855. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7856. /*!
  7857. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7858. This command can be used without any additional parameters. It will read the entire eeprom.
  7859. #### Usage
  7860. D3 [ A | C | X ]
  7861. #### Parameters
  7862. - `A` - Address (x0000-x0fff)
  7863. - `C` - Count (1-4096)
  7864. - `X` - Data (hex)
  7865. #### Notes
  7866. - The hex address needs to be lowercase without the 0 before the x
  7867. - Count is decimal
  7868. - The hex data needs to be lowercase
  7869. */
  7870. case 3:
  7871. dcode_3(); break;
  7872. #endif //DEBUG_DCODE3
  7873. #ifdef DEBUG_DCODES
  7874. /*!
  7875. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7876. To read the digital value of a pin you need only to define the pin number.
  7877. #### Usage
  7878. D4 [ P | F | V ]
  7879. #### Parameters
  7880. - `P` - Pin (0-255)
  7881. - `F` - Function in/out (0/1)
  7882. - `V` - Value (0/1)
  7883. */
  7884. case 4:
  7885. dcode_4(); break;
  7886. #endif //DEBUG_DCODES
  7887. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7888. /*!
  7889. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7890. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7891. #### Usage
  7892. D5 [ A | C | X | E ]
  7893. #### Parameters
  7894. - `A` - Address (x00000-x3ffff)
  7895. - `C` - Count (1-8192)
  7896. - `X` - Data (hex)
  7897. - `E` - Erase
  7898. #### Notes
  7899. - The hex address needs to be lowercase without the 0 before the x
  7900. - Count is decimal
  7901. - The hex data needs to be lowercase
  7902. */
  7903. case 5:
  7904. dcode_5(); break;
  7905. #endif //DEBUG_DCODE5
  7906. #ifdef DEBUG_DCODES
  7907. /*!
  7908. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7909. Reserved
  7910. */
  7911. case 6:
  7912. dcode_6(); break;
  7913. /*!
  7914. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7915. Reserved
  7916. */
  7917. case 7:
  7918. dcode_7(); break;
  7919. /*!
  7920. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7921. #### Usage
  7922. D8 [ ? | ! | P | Z ]
  7923. #### Parameters
  7924. - `?` - Read PINDA temperature shift values
  7925. - `!` - Reset PINDA temperature shift values to default
  7926. - `P` - Pinda temperature [C]
  7927. - `Z` - Z Offset [mm]
  7928. */
  7929. case 8:
  7930. dcode_8(); break;
  7931. /*!
  7932. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7933. #### Usage
  7934. D9 [ I | V ]
  7935. #### Parameters
  7936. - `I` - ADC channel index
  7937. - `0` - Heater 0 temperature
  7938. - `1` - Heater 1 temperature
  7939. - `2` - Bed temperature
  7940. - `3` - PINDA temperature
  7941. - `4` - PWR voltage
  7942. - `5` - Ambient temperature
  7943. - `6` - BED voltage
  7944. - `V` Value to be written as simulated
  7945. */
  7946. case 9:
  7947. dcode_9(); break;
  7948. /*!
  7949. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7950. */
  7951. case 10:
  7952. dcode_10(); break;
  7953. /*!
  7954. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7955. Writes the current time in the log file.
  7956. */
  7957. #endif //DEBUG_DCODES
  7958. #ifdef HEATBED_ANALYSIS
  7959. /*!
  7960. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7961. This command will log data to SD card file "mesh.txt".
  7962. #### Usage
  7963. D80 [ E | F | G | H | I | J ]
  7964. #### Parameters
  7965. - `E` - Dimension X (default 40)
  7966. - `F` - Dimention Y (default 40)
  7967. - `G` - Points X (default 40)
  7968. - `H` - Points Y (default 40)
  7969. - `I` - Offset X (default 74)
  7970. - `J` - Offset Y (default 34)
  7971. */
  7972. case 80:
  7973. dcode_80(); break;
  7974. /*!
  7975. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7976. This command will log data to SD card file "wldsd.txt".
  7977. #### Usage
  7978. D81 [ E | F | G | H | I | J ]
  7979. #### Parameters
  7980. - `E` - Dimension X (default 40)
  7981. - `F` - Dimention Y (default 40)
  7982. - `G` - Points X (default 40)
  7983. - `H` - Points Y (default 40)
  7984. - `I` - Offset X (default 74)
  7985. - `J` - Offset Y (default 34)
  7986. */
  7987. case 81:
  7988. dcode_81(); break;
  7989. #endif //HEATBED_ANALYSIS
  7990. #ifdef DEBUG_DCODES
  7991. /*!
  7992. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7993. */
  7994. case 106:
  7995. dcode_106(); break;
  7996. #ifdef TMC2130
  7997. /*!
  7998. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7999. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  8000. #### Usage
  8001. D2130 [ Axis | Command | Subcommand | Value ]
  8002. #### Parameters
  8003. - Axis
  8004. - `X` - X stepper driver
  8005. - `Y` - Y stepper driver
  8006. - `Z` - Z stepper driver
  8007. - `E` - Extruder stepper driver
  8008. - Commands
  8009. - `0` - Current off
  8010. - `1` - Current on
  8011. - `+` - Single step
  8012. - `-` - Single step oposite direction
  8013. - `NNN` - Value sereval steps
  8014. - `?` - Read register
  8015. - Subcommands for read register
  8016. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  8017. - `step` - Step
  8018. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  8019. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  8020. - `wave` - Microstep linearity compensation curve
  8021. - `!` - Set register
  8022. - Subcommands for set register
  8023. - `mres` - Micro step resolution
  8024. - `step` - Step
  8025. - `wave` - Microstep linearity compensation curve
  8026. - Values for set register
  8027. - `0, 180 --> 250` - Off
  8028. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  8029. - `@` - Home calibrate axis
  8030. Examples:
  8031. D2130E?wave
  8032. Print extruder microstep linearity compensation curve
  8033. D2130E!wave0
  8034. Disable extruder linearity compensation curve, (sine curve is used)
  8035. D2130E!wave220
  8036. (sin(x))^1.1 extruder microstep compensation curve used
  8037. Notes:
  8038. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  8039. *
  8040. */
  8041. case 2130:
  8042. dcode_2130(); break;
  8043. #endif //TMC2130
  8044. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  8045. /*!
  8046. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  8047. #### Usage
  8048. D9125 [ ? | ! | R | X | Y | L ]
  8049. #### Parameters
  8050. - `?` - Print values
  8051. - `!` - Print values
  8052. - `R` - Resolution. Not active in code
  8053. - `X` - X values
  8054. - `Y` - Y values
  8055. - `L` - Activate filament sensor log
  8056. */
  8057. case 9125:
  8058. dcode_9125(); break;
  8059. #endif //FILAMENT_SENSOR
  8060. #endif //DEBUG_DCODES
  8061. }
  8062. }
  8063. else
  8064. {
  8065. SERIAL_ECHO_START;
  8066. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  8067. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  8068. SERIAL_ECHOLNPGM("\"(2)");
  8069. }
  8070. KEEPALIVE_STATE(NOT_BUSY);
  8071. ClearToSend();
  8072. }
  8073. /*!
  8074. #### End of D-Codes
  8075. */
  8076. /** @defgroup GCodes G-Code List
  8077. */
  8078. // ---------------------------------------------------
  8079. void FlushSerialRequestResend()
  8080. {
  8081. //char cmdbuffer[bufindr][100]="Resend:";
  8082. MYSERIAL.flush();
  8083. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  8084. }
  8085. // Confirm the execution of a command, if sent from a serial line.
  8086. // Execution of a command from a SD card will not be confirmed.
  8087. void ClearToSend()
  8088. {
  8089. previous_millis_cmd = _millis();
  8090. if (buflen && ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  8091. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  8092. }
  8093. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8094. void update_currents() {
  8095. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  8096. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  8097. float tmp_motor[3];
  8098. //SERIAL_ECHOLNPGM("Currents updated: ");
  8099. if (destination[Z_AXIS] < Z_SILENT) {
  8100. //SERIAL_ECHOLNPGM("LOW");
  8101. for (uint8_t i = 0; i < 3; i++) {
  8102. st_current_set(i, current_low[i]);
  8103. /*MYSERIAL.print(int(i));
  8104. SERIAL_ECHOPGM(": ");
  8105. MYSERIAL.println(current_low[i]);*/
  8106. }
  8107. }
  8108. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  8109. //SERIAL_ECHOLNPGM("HIGH");
  8110. for (uint8_t i = 0; i < 3; i++) {
  8111. st_current_set(i, current_high[i]);
  8112. /*MYSERIAL.print(int(i));
  8113. SERIAL_ECHOPGM(": ");
  8114. MYSERIAL.println(current_high[i]);*/
  8115. }
  8116. }
  8117. else {
  8118. for (uint8_t i = 0; i < 3; i++) {
  8119. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  8120. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  8121. st_current_set(i, tmp_motor[i]);
  8122. /*MYSERIAL.print(int(i));
  8123. SERIAL_ECHOPGM(": ");
  8124. MYSERIAL.println(tmp_motor[i]);*/
  8125. }
  8126. }
  8127. }
  8128. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8129. void get_coordinates()
  8130. {
  8131. bool seen[4]={false,false,false,false};
  8132. for(int8_t i=0; i < NUM_AXIS; i++) {
  8133. if(code_seen(axis_codes[i]))
  8134. {
  8135. bool relative = axis_relative_modes & (1 << i);
  8136. destination[i] = (float)code_value();
  8137. if (i == E_AXIS) {
  8138. float emult = extruder_multiplier[active_extruder];
  8139. if (emult != 1.) {
  8140. if (! relative) {
  8141. destination[i] -= current_position[i];
  8142. relative = true;
  8143. }
  8144. destination[i] *= emult;
  8145. }
  8146. }
  8147. if (relative)
  8148. destination[i] += current_position[i];
  8149. seen[i]=true;
  8150. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8151. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  8152. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8153. }
  8154. else destination[i] = current_position[i]; //Are these else lines really needed?
  8155. }
  8156. if(code_seen('F')) {
  8157. next_feedrate = code_value();
  8158. #ifdef MAX_SILENT_FEEDRATE
  8159. if (tmc2130_mode == TMC2130_MODE_SILENT)
  8160. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  8161. #endif //MAX_SILENT_FEEDRATE
  8162. if(next_feedrate > 0.0) feedrate = next_feedrate;
  8163. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  8164. {
  8165. // float e_max_speed =
  8166. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  8167. }
  8168. }
  8169. }
  8170. void get_arc_coordinates()
  8171. {
  8172. #ifdef SF_ARC_FIX
  8173. bool relative_mode_backup = relative_mode;
  8174. relative_mode = true;
  8175. #endif
  8176. get_coordinates();
  8177. #ifdef SF_ARC_FIX
  8178. relative_mode=relative_mode_backup;
  8179. #endif
  8180. if(code_seen('I')) {
  8181. offset[0] = code_value();
  8182. }
  8183. else {
  8184. offset[0] = 0.0;
  8185. }
  8186. if(code_seen('J')) {
  8187. offset[1] = code_value();
  8188. }
  8189. else {
  8190. offset[1] = 0.0;
  8191. }
  8192. }
  8193. void clamp_to_software_endstops(float target[3])
  8194. {
  8195. #ifdef DEBUG_DISABLE_SWLIMITS
  8196. return;
  8197. #endif //DEBUG_DISABLE_SWLIMITS
  8198. world2machine_clamp(target[0], target[1]);
  8199. // Clamp the Z coordinate.
  8200. if (min_software_endstops) {
  8201. float negative_z_offset = 0;
  8202. #ifdef ENABLE_AUTO_BED_LEVELING
  8203. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8204. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8205. #endif
  8206. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8207. }
  8208. if (max_software_endstops) {
  8209. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8210. }
  8211. }
  8212. #ifdef MESH_BED_LEVELING
  8213. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8214. float dx = x - current_position[X_AXIS];
  8215. float dy = y - current_position[Y_AXIS];
  8216. int n_segments = 0;
  8217. if (mbl.active) {
  8218. float len = abs(dx) + abs(dy);
  8219. if (len > 0)
  8220. // Split to 3cm segments or shorter.
  8221. n_segments = int(ceil(len / 30.f));
  8222. }
  8223. if (n_segments > 1) {
  8224. // In a multi-segment move explicitly set the final target in the plan
  8225. // as the move will be recalculated in it's entirety
  8226. float gcode_target[NUM_AXIS];
  8227. gcode_target[X_AXIS] = x;
  8228. gcode_target[Y_AXIS] = y;
  8229. gcode_target[Z_AXIS] = z;
  8230. gcode_target[E_AXIS] = e;
  8231. float dz = z - current_position[Z_AXIS];
  8232. float de = e - current_position[E_AXIS];
  8233. for (int i = 1; i < n_segments; ++ i) {
  8234. float t = float(i) / float(n_segments);
  8235. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8236. current_position[Y_AXIS] + t * dy,
  8237. current_position[Z_AXIS] + t * dz,
  8238. current_position[E_AXIS] + t * de,
  8239. feed_rate, extruder, gcode_target);
  8240. if (waiting_inside_plan_buffer_line_print_aborted)
  8241. return;
  8242. }
  8243. }
  8244. // The rest of the path.
  8245. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8246. }
  8247. #endif // MESH_BED_LEVELING
  8248. void prepare_move()
  8249. {
  8250. clamp_to_software_endstops(destination);
  8251. previous_millis_cmd = _millis();
  8252. // Do not use feedmultiply for E or Z only moves
  8253. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8254. plan_buffer_line_destinationXYZE(feedrate/60);
  8255. }
  8256. else {
  8257. #ifdef MESH_BED_LEVELING
  8258. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8259. #else
  8260. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8261. #endif
  8262. }
  8263. set_current_to_destination();
  8264. }
  8265. void prepare_arc_move(char isclockwise) {
  8266. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8267. // Trace the arc
  8268. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8269. // As far as the parser is concerned, the position is now == target. In reality the
  8270. // motion control system might still be processing the action and the real tool position
  8271. // in any intermediate location.
  8272. for(int8_t i=0; i < NUM_AXIS; i++) {
  8273. current_position[i] = destination[i];
  8274. }
  8275. previous_millis_cmd = _millis();
  8276. }
  8277. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8278. #if defined(FAN_PIN)
  8279. #if CONTROLLERFAN_PIN == FAN_PIN
  8280. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8281. #endif
  8282. #endif
  8283. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8284. unsigned long lastMotorCheck = 0;
  8285. void controllerFan()
  8286. {
  8287. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8288. {
  8289. lastMotorCheck = _millis();
  8290. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8291. #if EXTRUDERS > 2
  8292. || !READ(E2_ENABLE_PIN)
  8293. #endif
  8294. #if EXTRUDER > 1
  8295. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8296. || !READ(X2_ENABLE_PIN)
  8297. #endif
  8298. || !READ(E1_ENABLE_PIN)
  8299. #endif
  8300. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8301. {
  8302. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8303. }
  8304. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8305. {
  8306. digitalWrite(CONTROLLERFAN_PIN, 0);
  8307. analogWrite(CONTROLLERFAN_PIN, 0);
  8308. }
  8309. else
  8310. {
  8311. // allows digital or PWM fan output to be used (see M42 handling)
  8312. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8313. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8314. }
  8315. }
  8316. }
  8317. #endif
  8318. #ifdef TEMP_STAT_LEDS
  8319. static bool blue_led = false;
  8320. static bool red_led = false;
  8321. static uint32_t stat_update = 0;
  8322. void handle_status_leds(void) {
  8323. float max_temp = 0.0;
  8324. if(_millis() > stat_update) {
  8325. stat_update += 500; // Update every 0.5s
  8326. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  8327. max_temp = max(max_temp, degHotend(cur_extruder));
  8328. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  8329. }
  8330. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  8331. max_temp = max(max_temp, degTargetBed());
  8332. max_temp = max(max_temp, degBed());
  8333. #endif
  8334. if((max_temp > 55.0) && (red_led == false)) {
  8335. digitalWrite(STAT_LED_RED, 1);
  8336. digitalWrite(STAT_LED_BLUE, 0);
  8337. red_led = true;
  8338. blue_led = false;
  8339. }
  8340. if((max_temp < 54.0) && (blue_led == false)) {
  8341. digitalWrite(STAT_LED_RED, 0);
  8342. digitalWrite(STAT_LED_BLUE, 1);
  8343. red_led = false;
  8344. blue_led = true;
  8345. }
  8346. }
  8347. }
  8348. #endif
  8349. #ifdef SAFETYTIMER
  8350. /**
  8351. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8352. *
  8353. * Full screen blocking notification message is shown after heater turning off.
  8354. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8355. * damage print.
  8356. *
  8357. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8358. */
  8359. static void handleSafetyTimer()
  8360. {
  8361. #if (EXTRUDERS > 1)
  8362. #error Implemented only for one extruder.
  8363. #endif //(EXTRUDERS > 1)
  8364. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8365. {
  8366. safetyTimer.stop();
  8367. }
  8368. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8369. {
  8370. safetyTimer.start();
  8371. }
  8372. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8373. {
  8374. setTargetBed(0);
  8375. setAllTargetHotends(0);
  8376. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8377. }
  8378. }
  8379. #endif //SAFETYTIMER
  8380. #ifdef IR_SENSOR_ANALOG
  8381. #define FS_CHECK_COUNT 16
  8382. /// Switching mechanism of the fsensor type.
  8383. /// Called from 2 spots which have a very similar behavior
  8384. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8385. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8386. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8387. bool bTemp = (!CHECK_ALL_HEATERS);
  8388. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8389. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8390. bTemp = bTemp && fsensor_enabled;
  8391. if (bTemp) {
  8392. nFSCheckCount++;
  8393. if (nFSCheckCount > FS_CHECK_COUNT) {
  8394. nFSCheckCount = 0; // not necessary
  8395. oFsensorPCB = switchTo;
  8396. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8397. printf_IRSensorAnalogBoardChange();
  8398. lcd_setstatuspgm(statusLineTxt_P);
  8399. }
  8400. } else {
  8401. nFSCheckCount = 0;
  8402. }
  8403. }
  8404. #endif
  8405. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8406. {
  8407. #ifdef FILAMENT_SENSOR
  8408. bool bInhibitFlag = false;
  8409. #ifdef IR_SENSOR_ANALOG
  8410. static uint16_t nFSCheckCount=0;
  8411. #endif // IR_SENSOR_ANALOG
  8412. if (mmu_enabled == false)
  8413. {
  8414. //-// if (mcode_in_progress != 600) //M600 not in progress
  8415. if (!PRINTER_ACTIVE) bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); //Block Filament sensor actions if PRINTER is not active and Support::SensorInfo menu active
  8416. #ifdef IR_SENSOR_ANALOG
  8417. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Block Filament sensor actions if Settings::HWsetup::FSdetect menu active
  8418. #endif // IR_SENSOR_ANALOG
  8419. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag) && (menu_menu != lcd_move_e)) //M600 not in progress, preHeat @ autoLoad menu not active
  8420. {
  8421. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8422. {
  8423. #ifdef IR_SENSOR_ANALOG
  8424. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8425. // detect min-max, some long term sliding window for filtration may be added
  8426. // avoiding floating point operations, thus computing in raw
  8427. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8428. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8429. #if 0 // Start: IR Sensor debug info
  8430. { // debug print
  8431. static uint16_t lastVolt = ~0U;
  8432. if( current_voltage_raw_IR != lastVolt ){
  8433. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8434. lastVolt = current_voltage_raw_IR;
  8435. }
  8436. }
  8437. #endif // End: IR Sensor debug info
  8438. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8439. //! to be detected as the new fsensor
  8440. //! We can either fake it by extending the detection window to a looooong time
  8441. //! or do some other countermeasures
  8442. //! what we want to detect:
  8443. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8444. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8445. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8446. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8447. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8448. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8449. ){
  8450. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////c=18
  8451. }
  8452. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8453. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8454. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8455. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8456. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8457. ){
  8458. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////c=18
  8459. }
  8460. #endif // IR_SENSOR_ANALOG
  8461. if (fsensor_check_autoload())
  8462. {
  8463. #ifdef PAT9125
  8464. fsensor_autoload_check_stop();
  8465. #endif //PAT9125
  8466. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8467. if(0)
  8468. {
  8469. Sound_MakeCustom(50,1000,false);
  8470. loading_flag = true;
  8471. enquecommand_front_P((PSTR("M701")));
  8472. }
  8473. else
  8474. {
  8475. /*
  8476. lcd_update_enable(false);
  8477. show_preheat_nozzle_warning();
  8478. lcd_update_enable(true);
  8479. */
  8480. eFilamentAction=FilamentAction::AutoLoad;
  8481. bFilamentFirstRun=false;
  8482. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8483. bFilamentPreheatState=true;
  8484. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8485. menu_submenu(mFilamentItemForce);
  8486. } else {
  8487. menu_submenu(lcd_generic_preheat_menu);
  8488. lcd_timeoutToStatus.start();
  8489. }
  8490. }
  8491. }
  8492. }
  8493. else
  8494. {
  8495. #ifdef PAT9125
  8496. fsensor_autoload_check_stop();
  8497. #endif //PAT9125
  8498. if (fsensor_enabled && !saved_printing)
  8499. fsensor_update();
  8500. }
  8501. }
  8502. }
  8503. #endif //FILAMENT_SENSOR
  8504. #ifdef SAFETYTIMER
  8505. handleSafetyTimer();
  8506. #endif //SAFETYTIMER
  8507. #if defined(KILL_PIN) && KILL_PIN > -1
  8508. static int killCount = 0; // make the inactivity button a bit less responsive
  8509. const int KILL_DELAY = 10000;
  8510. #endif
  8511. if(buflen < (BUFSIZE-1)){
  8512. get_command();
  8513. }
  8514. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8515. if(max_inactive_time)
  8516. kill(_n("Inactivity Shutdown"), 4);
  8517. if(stepper_inactive_time) {
  8518. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8519. {
  8520. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8521. disable_x();
  8522. disable_y();
  8523. disable_z();
  8524. disable_e0();
  8525. disable_e1();
  8526. disable_e2();
  8527. }
  8528. }
  8529. }
  8530. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8531. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8532. {
  8533. chdkActive = false;
  8534. WRITE(CHDK, LOW);
  8535. }
  8536. #endif
  8537. #if defined(KILL_PIN) && KILL_PIN > -1
  8538. // Check if the kill button was pressed and wait just in case it was an accidental
  8539. // key kill key press
  8540. // -------------------------------------------------------------------------------
  8541. if( 0 == READ(KILL_PIN) )
  8542. {
  8543. killCount++;
  8544. }
  8545. else if (killCount > 0)
  8546. {
  8547. killCount--;
  8548. }
  8549. // Exceeded threshold and we can confirm that it was not accidental
  8550. // KILL the machine
  8551. // ----------------------------------------------------------------
  8552. if ( killCount >= KILL_DELAY)
  8553. {
  8554. kill(NULL, 5);
  8555. }
  8556. #endif
  8557. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8558. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8559. #endif
  8560. #ifdef EXTRUDER_RUNOUT_PREVENT
  8561. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8562. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8563. {
  8564. bool oldstatus=READ(E0_ENABLE_PIN);
  8565. enable_e0();
  8566. float oldepos=current_position[E_AXIS];
  8567. float oldedes=destination[E_AXIS];
  8568. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8569. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8570. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8571. current_position[E_AXIS]=oldepos;
  8572. destination[E_AXIS]=oldedes;
  8573. plan_set_e_position(oldepos);
  8574. previous_millis_cmd=_millis();
  8575. st_synchronize();
  8576. WRITE(E0_ENABLE_PIN,oldstatus);
  8577. }
  8578. #endif
  8579. #ifdef TEMP_STAT_LEDS
  8580. handle_status_leds();
  8581. #endif
  8582. check_axes_activity();
  8583. mmu_loop();
  8584. }
  8585. void kill(const char *full_screen_message, unsigned char id)
  8586. {
  8587. printf_P(_N("KILL: %d\n"), id);
  8588. //return;
  8589. cli(); // Stop interrupts
  8590. disable_heater();
  8591. disable_x();
  8592. // SERIAL_ECHOLNPGM("kill - disable Y");
  8593. disable_y();
  8594. poweroff_z();
  8595. disable_e0();
  8596. disable_e1();
  8597. disable_e2();
  8598. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8599. pinMode(PS_ON_PIN,INPUT);
  8600. #endif
  8601. SERIAL_ERROR_START;
  8602. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8603. if (full_screen_message != NULL) {
  8604. SERIAL_ERRORLNRPGM(full_screen_message);
  8605. lcd_display_message_fullscreen_P(full_screen_message);
  8606. } else {
  8607. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8608. }
  8609. // FMC small patch to update the LCD before ending
  8610. sei(); // enable interrupts
  8611. for ( int i=5; i--; lcd_update(0))
  8612. {
  8613. _delay(200);
  8614. }
  8615. cli(); // disable interrupts
  8616. suicide();
  8617. while(1)
  8618. {
  8619. #ifdef WATCHDOG
  8620. wdt_reset();
  8621. #endif //WATCHDOG
  8622. /* Intentionally left empty */
  8623. } // Wait for reset
  8624. }
  8625. // Stop: Emergency stop used by overtemp functions which allows recovery
  8626. //
  8627. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8628. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8629. // manually started from scratch with the LCD.
  8630. //
  8631. // Note that the current instruction is completely discarded, so resuming from Stop()
  8632. // will introduce either over/under extrusion on the current segment, and will not
  8633. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8634. // the addition of disabling the headers) could allow true recovery in the future.
  8635. void Stop()
  8636. {
  8637. disable_heater();
  8638. if(Stopped == false) {
  8639. Stopped = true;
  8640. lcd_print_stop();
  8641. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8642. SERIAL_ERROR_START;
  8643. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8644. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8645. }
  8646. }
  8647. bool IsStopped() { return Stopped; };
  8648. void finishAndDisableSteppers()
  8649. {
  8650. st_synchronize();
  8651. disable_x();
  8652. disable_y();
  8653. disable_z();
  8654. disable_e0();
  8655. disable_e1();
  8656. disable_e2();
  8657. #ifndef LA_NOCOMPAT
  8658. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8659. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8660. // state for the next print.
  8661. la10c_reset();
  8662. #endif
  8663. }
  8664. #ifdef FAST_PWM_FAN
  8665. void setPwmFrequency(uint8_t pin, int val)
  8666. {
  8667. val &= 0x07;
  8668. switch(digitalPinToTimer(pin))
  8669. {
  8670. #if defined(TCCR0A)
  8671. case TIMER0A:
  8672. case TIMER0B:
  8673. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8674. // TCCR0B |= val;
  8675. break;
  8676. #endif
  8677. #if defined(TCCR1A)
  8678. case TIMER1A:
  8679. case TIMER1B:
  8680. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8681. // TCCR1B |= val;
  8682. break;
  8683. #endif
  8684. #if defined(TCCR2)
  8685. case TIMER2:
  8686. case TIMER2:
  8687. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8688. TCCR2 |= val;
  8689. break;
  8690. #endif
  8691. #if defined(TCCR2A)
  8692. case TIMER2A:
  8693. case TIMER2B:
  8694. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8695. TCCR2B |= val;
  8696. break;
  8697. #endif
  8698. #if defined(TCCR3A)
  8699. case TIMER3A:
  8700. case TIMER3B:
  8701. case TIMER3C:
  8702. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8703. TCCR3B |= val;
  8704. break;
  8705. #endif
  8706. #if defined(TCCR4A)
  8707. case TIMER4A:
  8708. case TIMER4B:
  8709. case TIMER4C:
  8710. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8711. TCCR4B |= val;
  8712. break;
  8713. #endif
  8714. #if defined(TCCR5A)
  8715. case TIMER5A:
  8716. case TIMER5B:
  8717. case TIMER5C:
  8718. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8719. TCCR5B |= val;
  8720. break;
  8721. #endif
  8722. }
  8723. }
  8724. #endif //FAST_PWM_FAN
  8725. //! @brief Get and validate extruder number
  8726. //!
  8727. //! If it is not specified, active_extruder is returned in parameter extruder.
  8728. //! @param [in] code M code number
  8729. //! @param [out] extruder
  8730. //! @return error
  8731. //! @retval true Invalid extruder specified in T code
  8732. //! @retval false Valid extruder specified in T code, or not specifiead
  8733. bool setTargetedHotend(int code, uint8_t &extruder)
  8734. {
  8735. extruder = active_extruder;
  8736. if(code_seen('T')) {
  8737. extruder = code_value();
  8738. if(extruder >= EXTRUDERS) {
  8739. SERIAL_ECHO_START;
  8740. switch(code){
  8741. case 104:
  8742. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8743. break;
  8744. case 105:
  8745. SERIAL_ECHORPGM(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8746. break;
  8747. case 109:
  8748. SERIAL_ECHORPGM(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8749. break;
  8750. case 218:
  8751. SERIAL_ECHORPGM(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8752. break;
  8753. case 221:
  8754. SERIAL_ECHORPGM(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8755. break;
  8756. }
  8757. SERIAL_PROTOCOLLN((int)extruder);
  8758. return true;
  8759. }
  8760. }
  8761. return false;
  8762. }
  8763. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8764. {
  8765. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8766. {
  8767. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8768. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8769. }
  8770. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8771. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8772. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8773. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8774. total_filament_used = 0;
  8775. }
  8776. float calculate_extruder_multiplier(float diameter) {
  8777. float out = 1.f;
  8778. if (cs.volumetric_enabled && diameter > 0.f) {
  8779. float area = M_PI * diameter * diameter * 0.25;
  8780. out = 1.f / area;
  8781. }
  8782. if (extrudemultiply != 100)
  8783. out *= float(extrudemultiply) * 0.01f;
  8784. return out;
  8785. }
  8786. void calculate_extruder_multipliers() {
  8787. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8788. #if EXTRUDERS > 1
  8789. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8790. #if EXTRUDERS > 2
  8791. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8792. #endif
  8793. #endif
  8794. }
  8795. void delay_keep_alive(unsigned int ms)
  8796. {
  8797. for (;;) {
  8798. manage_heater();
  8799. // Manage inactivity, but don't disable steppers on timeout.
  8800. manage_inactivity(true);
  8801. lcd_update(0);
  8802. if (ms == 0)
  8803. break;
  8804. else if (ms >= 50) {
  8805. _delay(50);
  8806. ms -= 50;
  8807. } else {
  8808. _delay(ms);
  8809. ms = 0;
  8810. }
  8811. }
  8812. }
  8813. static void wait_for_heater(long codenum, uint8_t extruder) {
  8814. if (!degTargetHotend(extruder))
  8815. return;
  8816. #ifdef TEMP_RESIDENCY_TIME
  8817. long residencyStart;
  8818. residencyStart = -1;
  8819. /* continue to loop until we have reached the target temp
  8820. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8821. cancel_heatup = false;
  8822. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8823. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8824. #else
  8825. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8826. #endif //TEMP_RESIDENCY_TIME
  8827. if ((_millis() - codenum) > 1000UL)
  8828. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8829. if (!farm_mode) {
  8830. SERIAL_PROTOCOLPGM("T:");
  8831. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8832. SERIAL_PROTOCOLPGM(" E:");
  8833. SERIAL_PROTOCOL((int)extruder);
  8834. #ifdef TEMP_RESIDENCY_TIME
  8835. SERIAL_PROTOCOLPGM(" W:");
  8836. if (residencyStart > -1)
  8837. {
  8838. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8839. SERIAL_PROTOCOLLN(codenum);
  8840. }
  8841. else
  8842. {
  8843. SERIAL_PROTOCOLLN('?');
  8844. }
  8845. }
  8846. #else
  8847. SERIAL_PROTOCOLLN();
  8848. #endif
  8849. codenum = _millis();
  8850. }
  8851. manage_heater();
  8852. manage_inactivity(true); //do not disable steppers
  8853. lcd_update(0);
  8854. #ifdef TEMP_RESIDENCY_TIME
  8855. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8856. or when current temp falls outside the hysteresis after target temp was reached */
  8857. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8858. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8859. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8860. {
  8861. residencyStart = _millis();
  8862. }
  8863. #endif //TEMP_RESIDENCY_TIME
  8864. }
  8865. }
  8866. void check_babystep()
  8867. {
  8868. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8869. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8870. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8871. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8872. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8873. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8874. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8875. babystep_z);
  8876. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8877. lcd_update_enable(true);
  8878. }
  8879. }
  8880. #ifdef HEATBED_ANALYSIS
  8881. void d_setup()
  8882. {
  8883. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8884. pinMode(D_DATA, INPUT_PULLUP);
  8885. pinMode(D_REQUIRE, OUTPUT);
  8886. digitalWrite(D_REQUIRE, HIGH);
  8887. }
  8888. float d_ReadData()
  8889. {
  8890. int digit[13];
  8891. String mergeOutput;
  8892. float output;
  8893. digitalWrite(D_REQUIRE, HIGH);
  8894. for (int i = 0; i<13; i++)
  8895. {
  8896. for (int j = 0; j < 4; j++)
  8897. {
  8898. while (digitalRead(D_DATACLOCK) == LOW) {}
  8899. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8900. bitWrite(digit[i], j, digitalRead(D_DATA));
  8901. }
  8902. }
  8903. digitalWrite(D_REQUIRE, LOW);
  8904. mergeOutput = "";
  8905. output = 0;
  8906. for (int r = 5; r <= 10; r++) //Merge digits
  8907. {
  8908. mergeOutput += digit[r];
  8909. }
  8910. output = mergeOutput.toFloat();
  8911. if (digit[4] == 8) //Handle sign
  8912. {
  8913. output *= -1;
  8914. }
  8915. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8916. {
  8917. output /= 10;
  8918. }
  8919. return output;
  8920. }
  8921. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8922. int t1 = 0;
  8923. int t_delay = 0;
  8924. int digit[13];
  8925. int m;
  8926. char str[3];
  8927. //String mergeOutput;
  8928. char mergeOutput[15];
  8929. float output;
  8930. int mesh_point = 0; //index number of calibration point
  8931. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8932. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8933. float mesh_home_z_search = 4;
  8934. float measure_z_height = 0.2f;
  8935. float row[x_points_num];
  8936. int ix = 0;
  8937. int iy = 0;
  8938. const char* filename_wldsd = "mesh.txt";
  8939. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8940. char numb_wldsd[8]; // (" -A.BCD" + null)
  8941. #ifdef MICROMETER_LOGGING
  8942. d_setup();
  8943. #endif //MICROMETER_LOGGING
  8944. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8945. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8946. unsigned int custom_message_type_old = custom_message_type;
  8947. unsigned int custom_message_state_old = custom_message_state;
  8948. custom_message_type = CustomMsg::MeshBedLeveling;
  8949. custom_message_state = (x_points_num * y_points_num) + 10;
  8950. lcd_update(1);
  8951. //mbl.reset();
  8952. babystep_undo();
  8953. card.openFile(filename_wldsd, false);
  8954. /*destination[Z_AXIS] = mesh_home_z_search;
  8955. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8956. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8957. for(int8_t i=0; i < NUM_AXIS; i++) {
  8958. current_position[i] = destination[i];
  8959. }
  8960. st_synchronize();
  8961. */
  8962. destination[Z_AXIS] = measure_z_height;
  8963. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8964. for(int8_t i=0; i < NUM_AXIS; i++) {
  8965. current_position[i] = destination[i];
  8966. }
  8967. st_synchronize();
  8968. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8969. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8970. SERIAL_PROTOCOL(x_points_num);
  8971. SERIAL_PROTOCOLPGM(",");
  8972. SERIAL_PROTOCOL(y_points_num);
  8973. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8974. SERIAL_PROTOCOL(mesh_home_z_search);
  8975. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8976. SERIAL_PROTOCOL(x_dimension);
  8977. SERIAL_PROTOCOLPGM(",");
  8978. SERIAL_PROTOCOL(y_dimension);
  8979. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8980. while (mesh_point != x_points_num * y_points_num) {
  8981. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8982. iy = mesh_point / x_points_num;
  8983. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8984. float z0 = 0.f;
  8985. /*destination[Z_AXIS] = mesh_home_z_search;
  8986. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8987. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8988. for(int8_t i=0; i < NUM_AXIS; i++) {
  8989. current_position[i] = destination[i];
  8990. }
  8991. st_synchronize();*/
  8992. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8993. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8994. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8995. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8996. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  8997. set_current_to_destination();
  8998. st_synchronize();
  8999. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9000. delay_keep_alive(1000);
  9001. #ifdef MICROMETER_LOGGING
  9002. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9003. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9004. //strcat(data_wldsd, numb_wldsd);
  9005. //MYSERIAL.println(data_wldsd);
  9006. //delay(1000);
  9007. //delay(3000);
  9008. //t1 = millis();
  9009. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9010. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9011. memset(digit, 0, sizeof(digit));
  9012. //cli();
  9013. digitalWrite(D_REQUIRE, LOW);
  9014. for (int i = 0; i<13; i++)
  9015. {
  9016. //t1 = millis();
  9017. for (int j = 0; j < 4; j++)
  9018. {
  9019. while (digitalRead(D_DATACLOCK) == LOW) {}
  9020. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9021. //printf_P(PSTR("Done %d\n"), j);
  9022. bitWrite(digit[i], j, digitalRead(D_DATA));
  9023. }
  9024. //t_delay = (millis() - t1);
  9025. //SERIAL_PROTOCOLPGM(" ");
  9026. //SERIAL_PROTOCOL_F(t_delay, 5);
  9027. //SERIAL_PROTOCOLPGM(" ");
  9028. }
  9029. //sei();
  9030. digitalWrite(D_REQUIRE, HIGH);
  9031. mergeOutput[0] = '\0';
  9032. output = 0;
  9033. for (int r = 5; r <= 10; r++) //Merge digits
  9034. {
  9035. sprintf(str, "%d", digit[r]);
  9036. strcat(mergeOutput, str);
  9037. }
  9038. output = atof(mergeOutput);
  9039. if (digit[4] == 8) //Handle sign
  9040. {
  9041. output *= -1;
  9042. }
  9043. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9044. {
  9045. output *= 0.1;
  9046. }
  9047. //output = d_ReadData();
  9048. //row[ix] = current_position[Z_AXIS];
  9049. //row[ix] = d_ReadData();
  9050. row[ix] = output;
  9051. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9052. memset(data_wldsd, 0, sizeof(data_wldsd));
  9053. for (int i = 0; i < x_points_num; i++) {
  9054. SERIAL_PROTOCOLPGM(" ");
  9055. SERIAL_PROTOCOL_F(row[i], 5);
  9056. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9057. dtostrf(row[i], 7, 3, numb_wldsd);
  9058. strcat(data_wldsd, numb_wldsd);
  9059. }
  9060. card.write_command(data_wldsd);
  9061. SERIAL_PROTOCOLPGM("\n");
  9062. }
  9063. custom_message_state--;
  9064. mesh_point++;
  9065. lcd_update(1);
  9066. }
  9067. #endif //MICROMETER_LOGGING
  9068. card.closefile();
  9069. //clean_up_after_endstop_move(l_feedmultiply);
  9070. }
  9071. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9072. int t1 = 0;
  9073. int t_delay = 0;
  9074. int digit[13];
  9075. int m;
  9076. char str[3];
  9077. //String mergeOutput;
  9078. char mergeOutput[15];
  9079. float output;
  9080. int mesh_point = 0; //index number of calibration point
  9081. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9082. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9083. float mesh_home_z_search = 4;
  9084. float row[x_points_num];
  9085. int ix = 0;
  9086. int iy = 0;
  9087. const char* filename_wldsd = "wldsd.txt";
  9088. char data_wldsd[70];
  9089. char numb_wldsd[10];
  9090. d_setup();
  9091. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  9092. // We don't know where we are! HOME!
  9093. // Push the commands to the front of the message queue in the reverse order!
  9094. // There shall be always enough space reserved for these commands.
  9095. repeatcommand_front(); // repeat G80 with all its parameters
  9096. enquecommand_front_P(G28W0);
  9097. enquecommand_front_P((PSTR("G1 Z5")));
  9098. return;
  9099. }
  9100. unsigned int custom_message_type_old = custom_message_type;
  9101. unsigned int custom_message_state_old = custom_message_state;
  9102. custom_message_type = CustomMsg::MeshBedLeveling;
  9103. custom_message_state = (x_points_num * y_points_num) + 10;
  9104. lcd_update(1);
  9105. mbl.reset();
  9106. babystep_undo();
  9107. card.openFile(filename_wldsd, false);
  9108. current_position[Z_AXIS] = mesh_home_z_search;
  9109. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  9110. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9111. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9112. int l_feedmultiply = setup_for_endstop_move(false);
  9113. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9114. SERIAL_PROTOCOL(x_points_num);
  9115. SERIAL_PROTOCOLPGM(",");
  9116. SERIAL_PROTOCOL(y_points_num);
  9117. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9118. SERIAL_PROTOCOL(mesh_home_z_search);
  9119. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9120. SERIAL_PROTOCOL(x_dimension);
  9121. SERIAL_PROTOCOLPGM(",");
  9122. SERIAL_PROTOCOL(y_dimension);
  9123. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9124. while (mesh_point != x_points_num * y_points_num) {
  9125. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9126. iy = mesh_point / x_points_num;
  9127. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9128. float z0 = 0.f;
  9129. current_position[Z_AXIS] = mesh_home_z_search;
  9130. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  9131. st_synchronize();
  9132. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9133. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9134. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  9135. st_synchronize();
  9136. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  9137. break;
  9138. card.closefile();
  9139. }
  9140. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9141. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9142. //strcat(data_wldsd, numb_wldsd);
  9143. //MYSERIAL.println(data_wldsd);
  9144. //_delay(1000);
  9145. //_delay(3000);
  9146. //t1 = _millis();
  9147. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9148. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9149. memset(digit, 0, sizeof(digit));
  9150. //cli();
  9151. digitalWrite(D_REQUIRE, LOW);
  9152. for (int i = 0; i<13; i++)
  9153. {
  9154. //t1 = _millis();
  9155. for (int j = 0; j < 4; j++)
  9156. {
  9157. while (digitalRead(D_DATACLOCK) == LOW) {}
  9158. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9159. bitWrite(digit[i], j, digitalRead(D_DATA));
  9160. }
  9161. //t_delay = (_millis() - t1);
  9162. //SERIAL_PROTOCOLPGM(" ");
  9163. //SERIAL_PROTOCOL_F(t_delay, 5);
  9164. //SERIAL_PROTOCOLPGM(" ");
  9165. }
  9166. //sei();
  9167. digitalWrite(D_REQUIRE, HIGH);
  9168. mergeOutput[0] = '\0';
  9169. output = 0;
  9170. for (int r = 5; r <= 10; r++) //Merge digits
  9171. {
  9172. sprintf(str, "%d", digit[r]);
  9173. strcat(mergeOutput, str);
  9174. }
  9175. output = atof(mergeOutput);
  9176. if (digit[4] == 8) //Handle sign
  9177. {
  9178. output *= -1;
  9179. }
  9180. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9181. {
  9182. output *= 0.1;
  9183. }
  9184. //output = d_ReadData();
  9185. //row[ix] = current_position[Z_AXIS];
  9186. memset(data_wldsd, 0, sizeof(data_wldsd));
  9187. for (int i = 0; i <3; i++) {
  9188. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9189. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9190. strcat(data_wldsd, numb_wldsd);
  9191. strcat(data_wldsd, ";");
  9192. }
  9193. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9194. dtostrf(output, 8, 5, numb_wldsd);
  9195. strcat(data_wldsd, numb_wldsd);
  9196. //strcat(data_wldsd, ";");
  9197. card.write_command(data_wldsd);
  9198. //row[ix] = d_ReadData();
  9199. row[ix] = output; // current_position[Z_AXIS];
  9200. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9201. for (int i = 0; i < x_points_num; i++) {
  9202. SERIAL_PROTOCOLPGM(" ");
  9203. SERIAL_PROTOCOL_F(row[i], 5);
  9204. }
  9205. SERIAL_PROTOCOLPGM("\n");
  9206. }
  9207. custom_message_state--;
  9208. mesh_point++;
  9209. lcd_update(1);
  9210. }
  9211. card.closefile();
  9212. clean_up_after_endstop_move(l_feedmultiply);
  9213. }
  9214. #endif //HEATBED_ANALYSIS
  9215. #ifndef PINDA_THERMISTOR
  9216. static void temp_compensation_start() {
  9217. custom_message_type = CustomMsg::TempCompPreheat;
  9218. custom_message_state = PINDA_HEAT_T + 1;
  9219. lcd_update(2);
  9220. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9221. current_position[E_AXIS] -= default_retraction;
  9222. }
  9223. plan_buffer_line_curposXYZE(400, active_extruder);
  9224. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9225. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9226. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9227. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9228. st_synchronize();
  9229. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9230. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9231. delay_keep_alive(1000);
  9232. custom_message_state = PINDA_HEAT_T - i;
  9233. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9234. else lcd_update(1);
  9235. }
  9236. custom_message_type = CustomMsg::Status;
  9237. custom_message_state = 0;
  9238. }
  9239. static void temp_compensation_apply() {
  9240. int i_add;
  9241. int z_shift = 0;
  9242. float z_shift_mm;
  9243. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9244. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9245. i_add = (target_temperature_bed - 60) / 10;
  9246. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  9247. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9248. }else {
  9249. //interpolation
  9250. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9251. }
  9252. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9253. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9254. st_synchronize();
  9255. plan_set_z_position(current_position[Z_AXIS]);
  9256. }
  9257. else {
  9258. //we have no temp compensation data
  9259. }
  9260. }
  9261. #endif //ndef PINDA_THERMISTOR
  9262. float temp_comp_interpolation(float inp_temperature) {
  9263. //cubic spline interpolation
  9264. int n, i, j;
  9265. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9266. int shift[10];
  9267. int temp_C[10];
  9268. n = 6; //number of measured points
  9269. shift[0] = 0;
  9270. for (i = 0; i < n; i++) {
  9271. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  9272. temp_C[i] = 50 + i * 10; //temperature in C
  9273. #ifdef PINDA_THERMISTOR
  9274. constexpr int start_compensating_temp = 35;
  9275. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9276. #ifdef SUPERPINDA_SUPPORT
  9277. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9278. #endif //SUPERPINDA_SUPPORT
  9279. #else
  9280. temp_C[i] = 50 + i * 10; //temperature in C
  9281. #endif
  9282. x[i] = (float)temp_C[i];
  9283. f[i] = (float)shift[i];
  9284. }
  9285. if (inp_temperature < x[0]) return 0;
  9286. for (i = n - 1; i>0; i--) {
  9287. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9288. h[i - 1] = x[i] - x[i - 1];
  9289. }
  9290. //*********** formation of h, s , f matrix **************
  9291. for (i = 1; i<n - 1; i++) {
  9292. m[i][i] = 2 * (h[i - 1] + h[i]);
  9293. if (i != 1) {
  9294. m[i][i - 1] = h[i - 1];
  9295. m[i - 1][i] = h[i - 1];
  9296. }
  9297. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9298. }
  9299. //*********** forward elimination **************
  9300. for (i = 1; i<n - 2; i++) {
  9301. temp = (m[i + 1][i] / m[i][i]);
  9302. for (j = 1; j <= n - 1; j++)
  9303. m[i + 1][j] -= temp*m[i][j];
  9304. }
  9305. //*********** backward substitution *********
  9306. for (i = n - 2; i>0; i--) {
  9307. sum = 0;
  9308. for (j = i; j <= n - 2; j++)
  9309. sum += m[i][j] * s[j];
  9310. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9311. }
  9312. for (i = 0; i<n - 1; i++)
  9313. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9314. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9315. b = s[i] / 2;
  9316. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9317. d = f[i];
  9318. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9319. }
  9320. return sum;
  9321. }
  9322. #ifdef PINDA_THERMISTOR
  9323. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9324. {
  9325. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9326. if (!calibration_status_pinda()) return 0;
  9327. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9328. }
  9329. #endif //PINDA_THERMISTOR
  9330. void long_pause() //long pause print
  9331. {
  9332. st_synchronize();
  9333. start_pause_print = _millis();
  9334. // Stop heaters
  9335. setAllTargetHotends(0);
  9336. //lift z
  9337. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9338. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9339. plan_buffer_line_curposXYZE(15);
  9340. //Move XY to side
  9341. current_position[X_AXIS] = X_PAUSE_POS;
  9342. current_position[Y_AXIS] = Y_PAUSE_POS;
  9343. plan_buffer_line_curposXYZE(50);
  9344. // Turn off the print fan
  9345. fanSpeed = 0;
  9346. }
  9347. void serialecho_temperatures() {
  9348. float tt = degHotend(active_extruder);
  9349. SERIAL_PROTOCOLPGM("T:");
  9350. SERIAL_PROTOCOL(tt);
  9351. SERIAL_PROTOCOLPGM(" E:");
  9352. SERIAL_PROTOCOL((int)active_extruder);
  9353. SERIAL_PROTOCOLPGM(" B:");
  9354. SERIAL_PROTOCOL_F(degBed(), 1);
  9355. SERIAL_PROTOCOLLN();
  9356. }
  9357. #ifdef UVLO_SUPPORT
  9358. void uvlo_drain_reset()
  9359. {
  9360. // burn all that residual power
  9361. wdt_enable(WDTO_1S);
  9362. WRITE(BEEPER,HIGH);
  9363. lcd_clear();
  9364. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9365. while(1);
  9366. }
  9367. void uvlo_()
  9368. {
  9369. unsigned long time_start = _millis();
  9370. bool sd_print = card.sdprinting;
  9371. // Conserve power as soon as possible.
  9372. #ifdef LCD_BL_PIN
  9373. backlightMode = BACKLIGHT_MODE_DIM;
  9374. backlightLevel_LOW = 0;
  9375. backlight_update();
  9376. #endif //LCD_BL_PIN
  9377. disable_x();
  9378. disable_y();
  9379. #ifdef TMC2130
  9380. tmc2130_set_current_h(Z_AXIS, 20);
  9381. tmc2130_set_current_r(Z_AXIS, 20);
  9382. tmc2130_set_current_h(E_AXIS, 20);
  9383. tmc2130_set_current_r(E_AXIS, 20);
  9384. #endif //TMC2130
  9385. // Stop all heaters
  9386. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9387. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9388. setAllTargetHotends(0);
  9389. setTargetBed(0);
  9390. // Calculate the file position, from which to resume this print.
  9391. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9392. {
  9393. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9394. sd_position -= sdlen_planner;
  9395. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9396. sd_position -= sdlen_cmdqueue;
  9397. if (sd_position < 0) sd_position = 0;
  9398. }
  9399. // save the global state at planning time
  9400. uint16_t feedrate_bckp;
  9401. if (current_block)
  9402. {
  9403. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9404. feedrate_bckp = current_block->gcode_feedrate;
  9405. }
  9406. else
  9407. {
  9408. saved_target[0] = SAVED_TARGET_UNSET;
  9409. feedrate_bckp = feedrate;
  9410. }
  9411. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9412. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9413. // get the physical Z for further manipulation.
  9414. bool mbl_was_active = mbl.active;
  9415. mbl.active = false;
  9416. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9417. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9418. // are in action.
  9419. planner_abort_hard();
  9420. // Store the print logical Z position, which we need to recover (a slight error here would be
  9421. // recovered on the next Gcode instruction, while a physical location error would not)
  9422. float logical_z = current_position[Z_AXIS];
  9423. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9424. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9425. // Store the print E position before we lose track
  9426. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9427. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9428. // Clean the input command queue, inhibit serial processing using saved_printing
  9429. cmdqueue_reset();
  9430. card.sdprinting = false;
  9431. saved_printing = true;
  9432. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9433. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9434. sei();
  9435. // Retract
  9436. current_position[E_AXIS] -= default_retraction;
  9437. plan_buffer_line_curposXYZE(95);
  9438. st_synchronize();
  9439. disable_e0();
  9440. // Read out the current Z motor microstep counter to move the axis up towards
  9441. // a full step before powering off. NOTE: we need to ensure to schedule more
  9442. // than "dropsegments" steps in order to move (this is always the case here
  9443. // due to UVLO_Z_AXIS_SHIFT being used)
  9444. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9445. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9446. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9447. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9448. + UVLO_Z_AXIS_SHIFT;
  9449. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9450. st_synchronize();
  9451. poweroff_z();
  9452. // Write the file position.
  9453. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9454. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9455. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9456. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9457. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9458. // Scale the z value to 1u resolution.
  9459. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9460. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9461. }
  9462. // Write the _final_ Z position and motor microstep counter (unused).
  9463. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9464. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9465. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9466. // Store the current position.
  9467. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9468. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9469. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9470. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9471. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9472. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9473. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9474. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9475. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9476. #if EXTRUDERS > 1
  9477. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9478. #if EXTRUDERS > 2
  9479. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9480. #endif
  9481. #endif
  9482. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9483. eeprom_update_float((float*)(EEPROM_UVLO_ACCELL), cs.acceleration);
  9484. eeprom_update_float((float*)(EEPROM_UVLO_RETRACT_ACCELL), cs.retract_acceleration);
  9485. eeprom_update_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL), cs.travel_acceleration);
  9486. // Store the saved target
  9487. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9488. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9489. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9490. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9491. #ifdef LIN_ADVANCE
  9492. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9493. #endif
  9494. // Finaly store the "power outage" flag.
  9495. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9496. // Increment power failure counter
  9497. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9498. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9499. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9500. WRITE(BEEPER,HIGH);
  9501. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9502. poweron_z();
  9503. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9504. plan_buffer_line_curposXYZE(500);
  9505. st_synchronize();
  9506. wdt_enable(WDTO_1S);
  9507. while(1);
  9508. }
  9509. void uvlo_tiny()
  9510. {
  9511. unsigned long time_start = _millis();
  9512. // Conserve power as soon as possible.
  9513. disable_x();
  9514. disable_y();
  9515. disable_e0();
  9516. #ifdef TMC2130
  9517. tmc2130_set_current_h(Z_AXIS, 20);
  9518. tmc2130_set_current_r(Z_AXIS, 20);
  9519. #endif //TMC2130
  9520. // Stop all heaters
  9521. setAllTargetHotends(0);
  9522. setTargetBed(0);
  9523. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9524. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9525. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9526. // Disable MBL (if not already) to work with physical coordinates.
  9527. mbl.active = false;
  9528. planner_abort_hard();
  9529. // Allow for small roundoffs to be ignored
  9530. if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9531. {
  9532. // Clean the input command queue, inhibit serial processing using saved_printing
  9533. cmdqueue_reset();
  9534. card.sdprinting = false;
  9535. saved_printing = true;
  9536. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9537. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9538. sei();
  9539. // The axis was moved: adjust Z as done on a regular UVLO.
  9540. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9541. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9542. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9543. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9544. + UVLO_TINY_Z_AXIS_SHIFT;
  9545. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9546. st_synchronize();
  9547. poweroff_z();
  9548. // Update Z position
  9549. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9550. // Update the _final_ Z motor microstep counter (unused).
  9551. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9552. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9553. }
  9554. // Update the the "power outage" flag.
  9555. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9556. // Increment power failure counter
  9557. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9558. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9559. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9560. uvlo_drain_reset();
  9561. }
  9562. #endif //UVLO_SUPPORT
  9563. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9564. void setup_fan_interrupt() {
  9565. //INT7
  9566. DDRE &= ~(1 << 7); //input pin
  9567. PORTE &= ~(1 << 7); //no internal pull-up
  9568. //start with sensing rising edge
  9569. EICRB &= ~(1 << 6);
  9570. EICRB |= (1 << 7);
  9571. //enable INT7 interrupt
  9572. EIMSK |= (1 << 7);
  9573. }
  9574. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9575. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9576. ISR(INT7_vect) {
  9577. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9578. #ifdef FAN_SOFT_PWM
  9579. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9580. #else //FAN_SOFT_PWM
  9581. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9582. #endif //FAN_SOFT_PWM
  9583. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9584. t_fan_rising_edge = millis_nc();
  9585. }
  9586. else { //interrupt was triggered by falling edge
  9587. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9588. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9589. }
  9590. }
  9591. EICRB ^= (1 << 6); //change edge
  9592. }
  9593. #endif
  9594. #ifdef UVLO_SUPPORT
  9595. void setup_uvlo_interrupt() {
  9596. DDRE &= ~(1 << 4); //input pin
  9597. PORTE &= ~(1 << 4); //no internal pull-up
  9598. // sensing falling edge
  9599. EICRB |= (1 << 0);
  9600. EICRB &= ~(1 << 1);
  9601. // enable INT4 interrupt
  9602. EIMSK |= (1 << 4);
  9603. // check if power was lost before we armed the interrupt
  9604. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9605. {
  9606. SERIAL_ECHOLNPGM("INT4");
  9607. uvlo_drain_reset();
  9608. }
  9609. }
  9610. ISR(INT4_vect) {
  9611. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9612. SERIAL_ECHOLNPGM("INT4");
  9613. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9614. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9615. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9616. }
  9617. void recover_print(uint8_t automatic) {
  9618. char cmd[30];
  9619. lcd_update_enable(true);
  9620. lcd_update(2);
  9621. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20
  9622. // Recover position, temperatures and extrude_multipliers
  9623. bool mbl_was_active = recover_machine_state_after_power_panic();
  9624. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9625. // and second also so one may remove the excess priming material.
  9626. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9627. {
  9628. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9629. enquecommand(cmd);
  9630. }
  9631. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9632. // transformation status. G28 will not touch Z when MBL is off.
  9633. enquecommand_P(PSTR("G28 X Y"));
  9634. // Set the target bed and nozzle temperatures and wait.
  9635. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9636. enquecommand(cmd);
  9637. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9638. enquecommand(cmd);
  9639. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9640. enquecommand(cmd);
  9641. enquecommand_P(PSTR("M83")); //E axis relative mode
  9642. // If not automatically recoreverd (long power loss)
  9643. if(automatic == 0){
  9644. //Extrude some filament to stabilize the pressure
  9645. enquecommand_P(PSTR("G1 E5 F120"));
  9646. // Retract to be consistent with a short pause
  9647. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9648. enquecommand(cmd);
  9649. }
  9650. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9651. // Restart the print.
  9652. restore_print_from_eeprom(mbl_was_active);
  9653. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9654. }
  9655. bool recover_machine_state_after_power_panic()
  9656. {
  9657. // 1) Preset some dummy values for the XY axes
  9658. current_position[X_AXIS] = 0;
  9659. current_position[Y_AXIS] = 0;
  9660. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9661. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9662. bool mbl_was_active = false;
  9663. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9664. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9665. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9666. // Scale the z value to 10u resolution.
  9667. int16_t v;
  9668. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9669. if (v != 0)
  9670. mbl_was_active = true;
  9671. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9672. }
  9673. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9674. // The current position after power panic is moved to the next closest 0th full step.
  9675. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9676. // Recover last E axis position
  9677. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9678. memcpy(destination, current_position, sizeof(destination));
  9679. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9680. print_world_coordinates();
  9681. // 3) Initialize the logical to physical coordinate system transformation.
  9682. world2machine_initialize();
  9683. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9684. // print_mesh_bed_leveling_table();
  9685. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9686. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9687. babystep_load();
  9688. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9689. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9690. plan_set_position_curposXYZE();
  9691. // 6) Power up the Z motors, mark their positions as known.
  9692. axis_known_position[Z_AXIS] = true;
  9693. enable_z();
  9694. // 7) Recover the target temperatures.
  9695. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9696. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9697. // 8) Recover extruder multipilers
  9698. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9699. #if EXTRUDERS > 1
  9700. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9701. #if EXTRUDERS > 2
  9702. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9703. #endif
  9704. #endif
  9705. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9706. // 9) Recover the saved target
  9707. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9708. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9709. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9710. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9711. #ifdef LIN_ADVANCE
  9712. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9713. #endif
  9714. return mbl_was_active;
  9715. }
  9716. void restore_print_from_eeprom(bool mbl_was_active) {
  9717. int feedrate_rec;
  9718. int feedmultiply_rec;
  9719. uint8_t fan_speed_rec;
  9720. char cmd[30];
  9721. char filename[13];
  9722. uint8_t depth = 0;
  9723. char dir_name[9];
  9724. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9725. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9726. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9727. SERIAL_ECHOPGM("Feedrate:");
  9728. MYSERIAL.print(feedrate_rec);
  9729. SERIAL_ECHOPGM(", feedmultiply:");
  9730. MYSERIAL.println(feedmultiply_rec);
  9731. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9732. MYSERIAL.println(int(depth));
  9733. for (int i = 0; i < depth; i++) {
  9734. for (int j = 0; j < 8; j++) {
  9735. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9736. }
  9737. dir_name[8] = '\0';
  9738. MYSERIAL.println(dir_name);
  9739. // strcpy(card.dir_names[i], dir_name);
  9740. card.chdir(dir_name, false);
  9741. }
  9742. for (int i = 0; i < 8; i++) {
  9743. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9744. }
  9745. filename[8] = '\0';
  9746. MYSERIAL.print(filename);
  9747. strcat_P(filename, PSTR(".gco"));
  9748. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9749. enquecommand(cmd);
  9750. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9751. SERIAL_ECHOPGM("Position read from eeprom:");
  9752. MYSERIAL.println(position);
  9753. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9754. // without shifting Z along the way. This requires performing the move without mbl.
  9755. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"),
  9756. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
  9757. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
  9758. enquecommand(cmd);
  9759. // Enable MBL and switch to logical positioning
  9760. if (mbl_was_active)
  9761. enquecommand_P(PSTR("PRUSA MBL V1"));
  9762. // Move the Z axis down to the print, in logical coordinates.
  9763. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9764. enquecommand(cmd);
  9765. // Restore acceleration settings
  9766. float acceleration = eeprom_read_float((float*)(EEPROM_UVLO_ACCELL));
  9767. float retract_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_RETRACT_ACCELL));
  9768. float travel_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL));
  9769. sprintf_P(cmd, PSTR("M204 P%f R%f T%f"), acceleration, retract_acceleration, travel_acceleration);
  9770. enquecommand(cmd);
  9771. // Unretract.
  9772. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9773. enquecommand(cmd);
  9774. // Recover final E axis position and mode
  9775. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9776. sprintf_P(cmd, PSTR("G92 E"));
  9777. dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
  9778. enquecommand(cmd);
  9779. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9780. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9781. // Set the feedrates saved at the power panic.
  9782. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9783. enquecommand(cmd);
  9784. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9785. enquecommand(cmd);
  9786. // Set the fan speed saved at the power panic.
  9787. strcpy_P(cmd, PSTR("M106 S"));
  9788. strcat(cmd, itostr3(int(fan_speed_rec)));
  9789. enquecommand(cmd);
  9790. // Set a position in the file.
  9791. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9792. enquecommand(cmd);
  9793. enquecommand_P(PSTR("G4 S0"));
  9794. enquecommand_P(PSTR("PRUSA uvlo"));
  9795. }
  9796. #endif //UVLO_SUPPORT
  9797. //! @brief Immediately stop print moves
  9798. //!
  9799. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9800. //! If printing from sd card, position in file is saved.
  9801. //! If printing from USB, line number is saved.
  9802. //!
  9803. //! @param z_move
  9804. //! @param e_move
  9805. void stop_and_save_print_to_ram(float z_move, float e_move)
  9806. {
  9807. if (saved_printing) return;
  9808. #if 0
  9809. unsigned char nplanner_blocks;
  9810. #endif
  9811. unsigned char nlines;
  9812. uint16_t sdlen_planner;
  9813. uint16_t sdlen_cmdqueue;
  9814. cli();
  9815. if (card.sdprinting) {
  9816. #if 0
  9817. nplanner_blocks = number_of_blocks();
  9818. #endif
  9819. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9820. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9821. saved_sdpos -= sdlen_planner;
  9822. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9823. saved_sdpos -= sdlen_cmdqueue;
  9824. saved_printing_type = PRINTING_TYPE_SD;
  9825. }
  9826. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9827. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9828. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9829. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9830. saved_sdpos -= nlines;
  9831. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9832. saved_printing_type = PRINTING_TYPE_USB;
  9833. }
  9834. else {
  9835. saved_printing_type = PRINTING_TYPE_NONE;
  9836. //not sd printing nor usb printing
  9837. }
  9838. #if 0
  9839. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9840. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9841. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9842. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9843. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9844. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9845. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9846. {
  9847. card.setIndex(saved_sdpos);
  9848. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9849. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9850. MYSERIAL.print(char(card.get()));
  9851. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9852. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9853. MYSERIAL.print(char(card.get()));
  9854. SERIAL_ECHOLNPGM("End of command buffer");
  9855. }
  9856. {
  9857. // Print the content of the planner buffer, line by line:
  9858. card.setIndex(saved_sdpos);
  9859. int8_t iline = 0;
  9860. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9861. SERIAL_ECHOPGM("Planner line (from file): ");
  9862. MYSERIAL.print(int(iline), DEC);
  9863. SERIAL_ECHOPGM(", length: ");
  9864. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9865. SERIAL_ECHOPGM(", steps: (");
  9866. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9867. SERIAL_ECHOPGM(",");
  9868. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9869. SERIAL_ECHOPGM(",");
  9870. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9871. SERIAL_ECHOPGM(",");
  9872. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9873. SERIAL_ECHOPGM("), events: ");
  9874. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9875. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9876. MYSERIAL.print(char(card.get()));
  9877. }
  9878. }
  9879. {
  9880. // Print the content of the command buffer, line by line:
  9881. int8_t iline = 0;
  9882. union {
  9883. struct {
  9884. char lo;
  9885. char hi;
  9886. } lohi;
  9887. uint16_t value;
  9888. } sdlen_single;
  9889. int _bufindr = bufindr;
  9890. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9891. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9892. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9893. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9894. }
  9895. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9896. MYSERIAL.print(int(iline), DEC);
  9897. SERIAL_ECHOPGM(", type: ");
  9898. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9899. SERIAL_ECHOPGM(", len: ");
  9900. MYSERIAL.println(sdlen_single.value, DEC);
  9901. // Print the content of the buffer line.
  9902. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9903. SERIAL_ECHOPGM("Buffer line (from file): ");
  9904. MYSERIAL.println(int(iline), DEC);
  9905. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9906. MYSERIAL.print(char(card.get()));
  9907. if (-- _buflen == 0)
  9908. break;
  9909. // First skip the current command ID and iterate up to the end of the string.
  9910. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9911. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9912. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9913. // If the end of the buffer was empty,
  9914. if (_bufindr == sizeof(cmdbuffer)) {
  9915. // skip to the start and find the nonzero command.
  9916. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9917. }
  9918. }
  9919. }
  9920. #endif
  9921. // save the global state at planning time
  9922. if (current_block)
  9923. {
  9924. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9925. saved_feedrate2 = current_block->gcode_feedrate;
  9926. }
  9927. else
  9928. {
  9929. saved_target[0] = SAVED_TARGET_UNSET;
  9930. saved_feedrate2 = feedrate;
  9931. }
  9932. planner_abort_hard(); //abort printing
  9933. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9934. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9935. saved_active_extruder = active_extruder; //save active_extruder
  9936. saved_extruder_temperature = degTargetHotend(active_extruder);
  9937. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9938. saved_fanSpeed = fanSpeed;
  9939. cmdqueue_reset(); //empty cmdqueue
  9940. card.sdprinting = false;
  9941. // card.closefile();
  9942. saved_printing = true;
  9943. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9944. st_reset_timer();
  9945. sei();
  9946. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9947. #if 1
  9948. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9949. // the caller can continue processing. This is used during powerpanic to save the state as we
  9950. // move away from the print.
  9951. char buf[48];
  9952. if(e_move)
  9953. {
  9954. // First unretract (relative extrusion)
  9955. if(!saved_extruder_relative_mode){
  9956. enquecommand(PSTR("M83"), true);
  9957. }
  9958. //retract 45mm/s
  9959. // A single sprintf may not be faster, but is definitely 20B shorter
  9960. // than a sequence of commands building the string piece by piece
  9961. // A snprintf would have been a safer call, but since it is not used
  9962. // in the whole program, its implementation would bring more bytes to the total size
  9963. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9964. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9965. enquecommand(buf, false);
  9966. }
  9967. if(z_move)
  9968. {
  9969. // Then lift Z axis
  9970. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9971. enquecommand(buf, false);
  9972. }
  9973. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9974. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9975. repeatcommand_front();
  9976. #else
  9977. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9978. st_synchronize(); //wait moving
  9979. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9980. memcpy(destination, current_position, sizeof(destination));
  9981. #endif
  9982. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9983. }
  9984. }
  9985. //! @brief Restore print from ram
  9986. //!
  9987. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9988. //! print fan speed, waits for extruder temperature restore, then restores
  9989. //! position and continues print moves.
  9990. //!
  9991. //! Internally lcd_update() is called by wait_for_heater().
  9992. //!
  9993. //! @param e_move
  9994. void restore_print_from_ram_and_continue(float e_move)
  9995. {
  9996. if (!saved_printing) return;
  9997. #ifdef FANCHECK
  9998. // Do not allow resume printing if fans are still not ok
  9999. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  10000. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  10001. #endif
  10002. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  10003. // current_position[axis] = st_get_position_mm(axis);
  10004. active_extruder = saved_active_extruder; //restore active_extruder
  10005. fanSpeed = saved_fanSpeed;
  10006. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  10007. {
  10008. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  10009. heating_status = 1;
  10010. wait_for_heater(_millis(), saved_active_extruder);
  10011. heating_status = 2;
  10012. }
  10013. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  10014. float e = saved_pos[E_AXIS] - e_move;
  10015. plan_set_e_position(e);
  10016. #ifdef FANCHECK
  10017. fans_check_enabled = false;
  10018. #endif
  10019. //first move print head in XY to the saved position:
  10020. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10021. //then move Z
  10022. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10023. //and finaly unretract (35mm/s)
  10024. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  10025. st_synchronize();
  10026. #ifdef FANCHECK
  10027. fans_check_enabled = true;
  10028. #endif
  10029. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  10030. feedrate = saved_feedrate2;
  10031. feedmultiply = saved_feedmultiply2;
  10032. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10033. memcpy(destination, current_position, sizeof(destination));
  10034. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  10035. card.setIndex(saved_sdpos);
  10036. sdpos_atomic = saved_sdpos;
  10037. card.sdprinting = true;
  10038. }
  10039. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  10040. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  10041. serial_count = 0;
  10042. FlushSerialRequestResend();
  10043. }
  10044. else {
  10045. //not sd printing nor usb printing
  10046. }
  10047. lcd_setstatuspgm(_T(WELCOME_MSG));
  10048. saved_printing_type = PRINTING_TYPE_NONE;
  10049. saved_printing = false;
  10050. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10051. }
  10052. // Cancel the state related to a currently saved print
  10053. void cancel_saved_printing()
  10054. {
  10055. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  10056. saved_target[0] = SAVED_TARGET_UNSET;
  10057. saved_printing_type = PRINTING_TYPE_NONE;
  10058. saved_printing = false;
  10059. }
  10060. void print_world_coordinates()
  10061. {
  10062. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  10063. }
  10064. void print_physical_coordinates()
  10065. {
  10066. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  10067. }
  10068. void print_mesh_bed_leveling_table()
  10069. {
  10070. SERIAL_ECHOPGM("mesh bed leveling: ");
  10071. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  10072. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  10073. MYSERIAL.print(mbl.z_values[y][x], 3);
  10074. SERIAL_ECHO(' ');
  10075. }
  10076. SERIAL_ECHOLN();
  10077. }
  10078. uint8_t calc_percent_done()
  10079. {
  10080. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  10081. uint8_t percent_done = 0;
  10082. #ifdef TMC2130
  10083. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100)
  10084. {
  10085. percent_done = print_percent_done_normal;
  10086. }
  10087. else if (print_percent_done_silent <= 100)
  10088. {
  10089. percent_done = print_percent_done_silent;
  10090. }
  10091. #else
  10092. if (print_percent_done_normal <= 100)
  10093. {
  10094. percent_done = print_percent_done_normal;
  10095. }
  10096. #endif //TMC2130
  10097. else
  10098. {
  10099. percent_done = card.percentDone();
  10100. }
  10101. return percent_done;
  10102. }
  10103. static void print_time_remaining_init()
  10104. {
  10105. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  10106. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  10107. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  10108. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  10109. print_time_to_change_normal = PRINT_TIME_REMAINING_INIT;
  10110. print_time_to_change_silent = PRINT_TIME_REMAINING_INIT;
  10111. }
  10112. void load_filament_final_feed()
  10113. {
  10114. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  10115. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  10116. }
  10117. //! @brief Wait for user to check the state
  10118. //! @par nozzle_temp nozzle temperature to load filament
  10119. void M600_check_state(float nozzle_temp)
  10120. {
  10121. lcd_change_fil_state = 0;
  10122. while (lcd_change_fil_state != 1)
  10123. {
  10124. lcd_change_fil_state = 0;
  10125. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10126. lcd_alright();
  10127. KEEPALIVE_STATE(IN_HANDLER);
  10128. switch(lcd_change_fil_state)
  10129. {
  10130. // Filament failed to load so load it again
  10131. case 2:
  10132. if (mmu_enabled)
  10133. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  10134. else
  10135. M600_load_filament_movements();
  10136. break;
  10137. // Filament loaded properly but color is not clear
  10138. case 3:
  10139. st_synchronize();
  10140. load_filament_final_feed();
  10141. lcd_loading_color();
  10142. st_synchronize();
  10143. break;
  10144. // Everything good
  10145. default:
  10146. lcd_change_success();
  10147. break;
  10148. }
  10149. }
  10150. }
  10151. //! @brief Wait for user action
  10152. //!
  10153. //! Beep, manage nozzle heater and wait for user to start unload filament
  10154. //! If times out, active extruder temperature is set to 0.
  10155. //!
  10156. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  10157. void M600_wait_for_user(float HotendTempBckp) {
  10158. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10159. int counterBeep = 0;
  10160. unsigned long waiting_start_time = _millis();
  10161. uint8_t wait_for_user_state = 0;
  10162. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10163. bool bFirst=true;
  10164. while (!(wait_for_user_state == 0 && lcd_clicked())){
  10165. manage_heater();
  10166. manage_inactivity(true);
  10167. #if BEEPER > 0
  10168. if (counterBeep == 500) {
  10169. counterBeep = 0;
  10170. }
  10171. SET_OUTPUT(BEEPER);
  10172. if (counterBeep == 0) {
  10173. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10174. {
  10175. bFirst=false;
  10176. WRITE(BEEPER, HIGH);
  10177. }
  10178. }
  10179. if (counterBeep == 20) {
  10180. WRITE(BEEPER, LOW);
  10181. }
  10182. counterBeep++;
  10183. #endif //BEEPER > 0
  10184. switch (wait_for_user_state) {
  10185. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10186. delay_keep_alive(4);
  10187. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10188. lcd_display_message_fullscreen_P(_i("Press the knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10189. wait_for_user_state = 1;
  10190. setAllTargetHotends(0);
  10191. st_synchronize();
  10192. disable_e0();
  10193. disable_e1();
  10194. disable_e2();
  10195. }
  10196. break;
  10197. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10198. delay_keep_alive(4);
  10199. if (lcd_clicked()) {
  10200. setTargetHotend(HotendTempBckp, active_extruder);
  10201. lcd_wait_for_heater();
  10202. wait_for_user_state = 2;
  10203. }
  10204. break;
  10205. case 2: //waiting for nozzle to reach target temperature
  10206. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10207. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10208. waiting_start_time = _millis();
  10209. wait_for_user_state = 0;
  10210. }
  10211. else {
  10212. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10213. lcd_set_cursor(1, 4);
  10214. lcd_print(ftostr3(degHotend(active_extruder)));
  10215. }
  10216. break;
  10217. }
  10218. }
  10219. WRITE(BEEPER, LOW);
  10220. }
  10221. void M600_load_filament_movements()
  10222. {
  10223. #ifdef SNMM
  10224. display_loading();
  10225. do
  10226. {
  10227. current_position[E_AXIS] += 0.002;
  10228. plan_buffer_line_curposXYZE(500, active_extruder);
  10229. delay_keep_alive(2);
  10230. }
  10231. while (!lcd_clicked());
  10232. st_synchronize();
  10233. current_position[E_AXIS] += bowden_length[mmu_extruder];
  10234. plan_buffer_line_curposXYZE(3000, active_extruder);
  10235. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  10236. plan_buffer_line_curposXYZE(1400, active_extruder);
  10237. current_position[E_AXIS] += 40;
  10238. plan_buffer_line_curposXYZE(400, active_extruder);
  10239. current_position[E_AXIS] += 10;
  10240. plan_buffer_line_curposXYZE(50, active_extruder);
  10241. #else
  10242. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  10243. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10244. #endif
  10245. load_filament_final_feed();
  10246. lcd_loading_filament();
  10247. st_synchronize();
  10248. }
  10249. void M600_load_filament() {
  10250. //load filament for single material and SNMM
  10251. lcd_wait_interact();
  10252. //load_filament_time = _millis();
  10253. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10254. #ifdef PAT9125
  10255. fsensor_autoload_check_start();
  10256. #endif //PAT9125
  10257. while(!lcd_clicked())
  10258. {
  10259. manage_heater();
  10260. manage_inactivity(true);
  10261. #ifdef FILAMENT_SENSOR
  10262. if (fsensor_check_autoload())
  10263. {
  10264. Sound_MakeCustom(50,1000,false);
  10265. break;
  10266. }
  10267. #endif //FILAMENT_SENSOR
  10268. }
  10269. #ifdef PAT9125
  10270. fsensor_autoload_check_stop();
  10271. #endif //PAT9125
  10272. KEEPALIVE_STATE(IN_HANDLER);
  10273. #ifdef FSENSOR_QUALITY
  10274. fsensor_oq_meassure_start(70);
  10275. #endif //FSENSOR_QUALITY
  10276. M600_load_filament_movements();
  10277. Sound_MakeCustom(50,1000,false);
  10278. #ifdef FSENSOR_QUALITY
  10279. fsensor_oq_meassure_stop();
  10280. if (!fsensor_oq_result())
  10281. {
  10282. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10283. lcd_update_enable(true);
  10284. lcd_update(2);
  10285. if (disable)
  10286. fsensor_disable();
  10287. }
  10288. #endif //FSENSOR_QUALITY
  10289. lcd_update_enable(false);
  10290. }
  10291. //! @brief Wait for click
  10292. //!
  10293. //! Set
  10294. void marlin_wait_for_click()
  10295. {
  10296. int8_t busy_state_backup = busy_state;
  10297. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10298. lcd_consume_click();
  10299. while(!lcd_clicked())
  10300. {
  10301. manage_heater();
  10302. manage_inactivity(true);
  10303. lcd_update(0);
  10304. }
  10305. KEEPALIVE_STATE(busy_state_backup);
  10306. }
  10307. #define FIL_LOAD_LENGTH 60
  10308. #ifdef PSU_Delta
  10309. bool bEnableForce_z;
  10310. void init_force_z()
  10311. {
  10312. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10313. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10314. disable_force_z();
  10315. }
  10316. void check_force_z()
  10317. {
  10318. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10319. init_force_z(); // causes enforced switching into disable-state
  10320. }
  10321. void disable_force_z()
  10322. {
  10323. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10324. bEnableForce_z=false;
  10325. // switching to silent mode
  10326. #ifdef TMC2130
  10327. tmc2130_mode=TMC2130_MODE_SILENT;
  10328. update_mode_profile();
  10329. tmc2130_init(true);
  10330. #endif // TMC2130
  10331. }
  10332. void enable_force_z()
  10333. {
  10334. if(bEnableForce_z)
  10335. return; // motor already enabled (may be ;-p )
  10336. bEnableForce_z=true;
  10337. // mode recovering
  10338. #ifdef TMC2130
  10339. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10340. update_mode_profile();
  10341. tmc2130_init(true);
  10342. #endif // TMC2130
  10343. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10344. }
  10345. #endif // PSU_Delta