Marlin_main.cpp 269 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  524. st_reset_timer();
  525. sei();
  526. }
  527. void crashdet_detected()
  528. {
  529. // printf("CRASH_DETECTED");
  530. /* while (!is_buffer_empty())
  531. {
  532. process_commands();
  533. cmdqueue_pop_front();
  534. }*/
  535. st_synchronize();
  536. lcd_update_enable(true);
  537. lcd_implementation_clear();
  538. lcd_update(2);
  539. // Increment crash counter
  540. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  541. crash_count++;
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  543. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  544. bool yesno = true;
  545. #else
  546. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  547. #endif
  548. lcd_update_enable(true);
  549. lcd_update(2);
  550. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  551. if (yesno)
  552. {
  553. enquecommand_P(PSTR("G28 X Y"));
  554. enquecommand_P(PSTR("CRASH_RECOVER"));
  555. }
  556. else
  557. {
  558. enquecommand_P(PSTR("CRASH_CANCEL"));
  559. }
  560. }
  561. void crashdet_recover()
  562. {
  563. crashdet_restore_print_and_continue();
  564. tmc2130_sg_stop_on_crash = true;
  565. }
  566. void crashdet_cancel()
  567. {
  568. card.sdprinting = false;
  569. card.closefile();
  570. tmc2130_sg_stop_on_crash = true;
  571. }
  572. #ifdef MESH_BED_LEVELING
  573. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  574. #endif
  575. // Factory reset function
  576. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  577. // Level input parameter sets depth of reset
  578. // Quiet parameter masks all waitings for user interact.
  579. int er_progress = 0;
  580. void factory_reset(char level, bool quiet)
  581. {
  582. lcd_implementation_clear();
  583. int cursor_pos = 0;
  584. switch (level) {
  585. // Level 0: Language reset
  586. case 0:
  587. WRITE(BEEPER, HIGH);
  588. _delay_ms(100);
  589. WRITE(BEEPER, LOW);
  590. lcd_force_language_selection();
  591. break;
  592. //Level 1: Reset statistics
  593. case 1:
  594. WRITE(BEEPER, HIGH);
  595. _delay_ms(100);
  596. WRITE(BEEPER, LOW);
  597. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  598. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  600. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  601. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  602. lcd_menu_statistics();
  603. break;
  604. // Level 2: Prepare for shipping
  605. case 2:
  606. //lcd_printPGM(PSTR("Factory RESET"));
  607. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  608. // Force language selection at the next boot up.
  609. lcd_force_language_selection();
  610. // Force the "Follow calibration flow" message at the next boot up.
  611. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  612. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  613. farm_no = 0;
  614. farm_mode == false;
  615. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  616. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. //_delay_ms(2000);
  621. break;
  622. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  623. case 3:
  624. lcd_printPGM(PSTR("Factory RESET"));
  625. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  626. WRITE(BEEPER, HIGH);
  627. _delay_ms(100);
  628. WRITE(BEEPER, LOW);
  629. er_progress = 0;
  630. lcd_print_at_PGM(3, 3, PSTR(" "));
  631. lcd_implementation_print_at(3, 3, er_progress);
  632. // Erase EEPROM
  633. for (int i = 0; i < 4096; i++) {
  634. eeprom_write_byte((uint8_t*)i, 0xFF);
  635. if (i % 41 == 0) {
  636. er_progress++;
  637. lcd_print_at_PGM(3, 3, PSTR(" "));
  638. lcd_implementation_print_at(3, 3, er_progress);
  639. lcd_printPGM(PSTR("%"));
  640. }
  641. }
  642. break;
  643. case 4:
  644. bowden_menu();
  645. break;
  646. default:
  647. break;
  648. }
  649. }
  650. #include "LiquidCrystal.h"
  651. extern LiquidCrystal lcd;
  652. FILE _lcdout = {0};
  653. int lcd_putchar(char c, FILE *stream)
  654. {
  655. lcd.write(c);
  656. return 0;
  657. }
  658. FILE _uartout = {0};
  659. int uart_putchar(char c, FILE *stream)
  660. {
  661. MYSERIAL.write(c);
  662. return 0;
  663. }
  664. void lcd_splash()
  665. {
  666. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  667. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  668. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  669. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  670. }
  671. void factory_reset()
  672. {
  673. KEEPALIVE_STATE(PAUSED_FOR_USER);
  674. if (!READ(BTN_ENC))
  675. {
  676. _delay_ms(1000);
  677. if (!READ(BTN_ENC))
  678. {
  679. lcd_implementation_clear();
  680. lcd_printPGM(PSTR("Factory RESET"));
  681. SET_OUTPUT(BEEPER);
  682. WRITE(BEEPER, HIGH);
  683. while (!READ(BTN_ENC));
  684. WRITE(BEEPER, LOW);
  685. _delay_ms(2000);
  686. char level = reset_menu();
  687. factory_reset(level, false);
  688. switch (level) {
  689. case 0: _delay_ms(0); break;
  690. case 1: _delay_ms(0); break;
  691. case 2: _delay_ms(0); break;
  692. case 3: _delay_ms(0); break;
  693. }
  694. // _delay_ms(100);
  695. /*
  696. #ifdef MESH_BED_LEVELING
  697. _delay_ms(2000);
  698. if (!READ(BTN_ENC))
  699. {
  700. WRITE(BEEPER, HIGH);
  701. _delay_ms(100);
  702. WRITE(BEEPER, LOW);
  703. _delay_ms(200);
  704. WRITE(BEEPER, HIGH);
  705. _delay_ms(100);
  706. WRITE(BEEPER, LOW);
  707. int _z = 0;
  708. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  709. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  710. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  711. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  712. }
  713. else
  714. {
  715. WRITE(BEEPER, HIGH);
  716. _delay_ms(100);
  717. WRITE(BEEPER, LOW);
  718. }
  719. #endif // mesh */
  720. }
  721. }
  722. else
  723. {
  724. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  725. }
  726. KEEPALIVE_STATE(IN_HANDLER);
  727. }
  728. void show_fw_version_warnings() {
  729. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  730. switch (FW_DEV_VERSION) {
  731. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  732. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  733. case(FW_VERSION_DEVEL):
  734. case(FW_VERSION_DEBUG):
  735. lcd_update_enable(false);
  736. lcd_implementation_clear();
  737. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  738. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  739. #else
  740. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  741. #endif
  742. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  743. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  744. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  745. lcd_wait_for_click();
  746. break;
  747. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  748. }
  749. lcd_update_enable(true);
  750. }
  751. // "Setup" function is called by the Arduino framework on startup.
  752. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  753. // are initialized by the main() routine provided by the Arduino framework.
  754. void setup()
  755. {
  756. lcd_init();
  757. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  758. lcd_splash();
  759. setup_killpin();
  760. setup_powerhold();
  761. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  762. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  763. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  764. if (farm_no == 0xFFFF) farm_no = 0;
  765. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  766. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  767. if (farm_mode)
  768. {
  769. prusa_statistics(8);
  770. selectedSerialPort = 1;
  771. }
  772. MYSERIAL.begin(BAUDRATE);
  773. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  774. stdout = uartout;
  775. SERIAL_PROTOCOLLNPGM("start");
  776. SERIAL_ECHO_START;
  777. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  778. #if 0
  779. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  780. for (int i = 0; i < 4096; ++i) {
  781. int b = eeprom_read_byte((unsigned char*)i);
  782. if (b != 255) {
  783. SERIAL_ECHO(i);
  784. SERIAL_ECHO(":");
  785. SERIAL_ECHO(b);
  786. SERIAL_ECHOLN("");
  787. }
  788. }
  789. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  790. #endif
  791. // Check startup - does nothing if bootloader sets MCUSR to 0
  792. byte mcu = MCUSR;
  793. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  794. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  795. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  796. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  797. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  798. if (mcu & 1) puts_P(MSG_POWERUP);
  799. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  800. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  801. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  802. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  803. MCUSR = 0;
  804. //SERIAL_ECHORPGM(MSG_MARLIN);
  805. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  806. #ifdef STRING_VERSION_CONFIG_H
  807. #ifdef STRING_CONFIG_H_AUTHOR
  808. SERIAL_ECHO_START;
  809. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  810. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  811. SERIAL_ECHORPGM(MSG_AUTHOR);
  812. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  813. SERIAL_ECHOPGM("Compiled: ");
  814. SERIAL_ECHOLNPGM(__DATE__);
  815. #endif
  816. #endif
  817. SERIAL_ECHO_START;
  818. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  819. SERIAL_ECHO(freeMemory());
  820. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  821. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  822. //lcd_update_enable(false); // why do we need this?? - andre
  823. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  824. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  825. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  826. tp_init(); // Initialize temperature loop
  827. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  828. plan_init(); // Initialize planner;
  829. watchdog_init();
  830. factory_reset();
  831. #ifdef TMC2130
  832. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  833. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  834. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  835. if (crashdet)
  836. {
  837. crashdet_enable();
  838. MYSERIAL.println("CrashDetect ENABLED!");
  839. }
  840. else
  841. {
  842. crashdet_disable();
  843. MYSERIAL.println("CrashDetect DISABLED");
  844. }
  845. #endif //TMC2130
  846. st_init(); // Initialize stepper, this enables interrupts!
  847. setup_photpin();
  848. servo_init();
  849. // Reset the machine correction matrix.
  850. // It does not make sense to load the correction matrix until the machine is homed.
  851. world2machine_reset();
  852. #ifdef PAT9125
  853. fsensor_init();
  854. #endif //PAT9125
  855. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  856. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  857. #endif
  858. #ifdef DIGIPOT_I2C
  859. digipot_i2c_init();
  860. #endif
  861. setup_homepin();
  862. if (1) {
  863. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  864. // try to run to zero phase before powering the Z motor.
  865. // Move in negative direction
  866. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  867. // Round the current micro-micro steps to micro steps.
  868. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  869. // Until the phase counter is reset to zero.
  870. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  871. delay(2);
  872. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  873. delay(2);
  874. }
  875. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  876. }
  877. #if defined(Z_AXIS_ALWAYS_ON)
  878. enable_z();
  879. #endif
  880. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  881. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  882. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  883. if (farm_no == 0xFFFF) farm_no = 0;
  884. if (farm_mode)
  885. {
  886. prusa_statistics(8);
  887. }
  888. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  889. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  890. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  891. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  892. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  893. // where all the EEPROM entries are set to 0x0ff.
  894. // Once a firmware boots up, it forces at least a language selection, which changes
  895. // EEPROM_LANG to number lower than 0x0ff.
  896. // 1) Set a high power mode.
  897. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  898. tmc2130_mode = TMC2130_MODE_NORMAL;
  899. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  900. }
  901. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  902. // but this times out if a blocking dialog is shown in setup().
  903. card.initsd();
  904. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  905. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  906. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  907. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  908. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  909. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  910. #ifdef SNMM
  911. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  912. int _z = BOWDEN_LENGTH;
  913. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  914. }
  915. #endif
  916. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  917. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  918. // is being written into the EEPROM, so the update procedure will be triggered only once.
  919. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  920. if (lang_selected >= LANG_NUM){
  921. lcd_mylang();
  922. }
  923. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  924. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  925. temp_cal_active = false;
  926. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  927. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  928. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  929. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  930. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  931. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  932. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  933. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  934. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  935. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  936. temp_cal_active = true;
  937. }
  938. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  939. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  940. }
  941. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  942. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  943. }
  944. check_babystep(); //checking if Z babystep is in allowed range
  945. setup_uvlo_interrupt();
  946. #ifndef DEBUG_DISABLE_FANCHECK
  947. setup_fan_interrupt();
  948. #endif //DEBUG_DISABLE_FANCHECK
  949. #ifndef DEBUG_DISABLE_FSENSORCHECK
  950. fsensor_setup_interrupt();
  951. #endif //DEBUG_DISABLE_FSENSORCHECK
  952. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  953. #ifndef DEBUG_DISABLE_STARTMSGS
  954. KEEPALIVE_STATE(PAUSED_FOR_USER);
  955. show_fw_version_warnings();
  956. if (!previous_settings_retrieved) lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  957. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  958. lcd_wizard(0);
  959. }
  960. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  961. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  962. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  963. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  964. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  965. // Show the message.
  966. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  967. }
  968. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  969. // Show the message.
  970. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  971. lcd_update_enable(true);
  972. }
  973. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  974. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  975. lcd_update_enable(true);
  976. }
  977. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  978. // Show the message.
  979. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  980. }
  981. }
  982. KEEPALIVE_STATE(IN_PROCESS);
  983. #endif //DEBUG_DISABLE_STARTMSGS
  984. lcd_update_enable(true);
  985. lcd_implementation_clear();
  986. lcd_update(2);
  987. // Store the currently running firmware into an eeprom,
  988. // so the next time the firmware gets updated, it will know from which version it has been updated.
  989. update_current_firmware_version_to_eeprom();
  990. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  991. /*
  992. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  993. else {
  994. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  995. lcd_update_enable(true);
  996. lcd_update(2);
  997. lcd_setstatuspgm(WELCOME_MSG);
  998. }
  999. */
  1000. manage_heater(); // Update temperatures
  1001. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1002. MYSERIAL.println("Power panic detected!");
  1003. MYSERIAL.print("Current bed temp:");
  1004. MYSERIAL.println(degBed());
  1005. MYSERIAL.print("Saved bed temp:");
  1006. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1007. #endif
  1008. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1009. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1010. MYSERIAL.println("Automatic recovery!");
  1011. #endif
  1012. recover_print(1);
  1013. }
  1014. else{
  1015. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1016. MYSERIAL.println("Normal recovery!");
  1017. #endif
  1018. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1019. else {
  1020. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1021. lcd_update_enable(true);
  1022. lcd_update(2);
  1023. lcd_setstatuspgm(WELCOME_MSG);
  1024. }
  1025. }
  1026. }
  1027. KEEPALIVE_STATE(NOT_BUSY);
  1028. wdt_enable(WDTO_4S);
  1029. }
  1030. #ifdef PAT9125
  1031. void fsensor_init() {
  1032. int pat9125 = pat9125_init();
  1033. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1034. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1035. if (!pat9125)
  1036. {
  1037. fsensor = 0; //disable sensor
  1038. fsensor_not_responding = true;
  1039. }
  1040. else {
  1041. fsensor_not_responding = false;
  1042. }
  1043. puts_P(PSTR("FSensor "));
  1044. if (fsensor)
  1045. {
  1046. puts_P(PSTR("ENABLED\n"));
  1047. fsensor_enable();
  1048. }
  1049. else
  1050. {
  1051. puts_P(PSTR("DISABLED\n"));
  1052. fsensor_disable();
  1053. }
  1054. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1055. filament_autoload_enabled = false;
  1056. fsensor_disable();
  1057. #endif //DEBUG_DISABLE_FSENSORCHECK
  1058. }
  1059. #endif //PAT9125
  1060. void trace();
  1061. #define CHUNK_SIZE 64 // bytes
  1062. #define SAFETY_MARGIN 1
  1063. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1064. int chunkHead = 0;
  1065. int serial_read_stream() {
  1066. setTargetHotend(0, 0);
  1067. setTargetBed(0);
  1068. lcd_implementation_clear();
  1069. lcd_printPGM(PSTR(" Upload in progress"));
  1070. // first wait for how many bytes we will receive
  1071. uint32_t bytesToReceive;
  1072. // receive the four bytes
  1073. char bytesToReceiveBuffer[4];
  1074. for (int i=0; i<4; i++) {
  1075. int data;
  1076. while ((data = MYSERIAL.read()) == -1) {};
  1077. bytesToReceiveBuffer[i] = data;
  1078. }
  1079. // make it a uint32
  1080. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1081. // we're ready, notify the sender
  1082. MYSERIAL.write('+');
  1083. // lock in the routine
  1084. uint32_t receivedBytes = 0;
  1085. while (prusa_sd_card_upload) {
  1086. int i;
  1087. for (i=0; i<CHUNK_SIZE; i++) {
  1088. int data;
  1089. // check if we're not done
  1090. if (receivedBytes == bytesToReceive) {
  1091. break;
  1092. }
  1093. // read the next byte
  1094. while ((data = MYSERIAL.read()) == -1) {};
  1095. receivedBytes++;
  1096. // save it to the chunk
  1097. chunk[i] = data;
  1098. }
  1099. // write the chunk to SD
  1100. card.write_command_no_newline(&chunk[0]);
  1101. // notify the sender we're ready for more data
  1102. MYSERIAL.write('+');
  1103. // for safety
  1104. manage_heater();
  1105. // check if we're done
  1106. if(receivedBytes == bytesToReceive) {
  1107. trace(); // beep
  1108. card.closefile();
  1109. prusa_sd_card_upload = false;
  1110. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1111. return 0;
  1112. }
  1113. }
  1114. }
  1115. #ifdef HOST_KEEPALIVE_FEATURE
  1116. /**
  1117. * Output a "busy" message at regular intervals
  1118. * while the machine is not accepting commands.
  1119. */
  1120. void host_keepalive() {
  1121. if (farm_mode) return;
  1122. long ms = millis();
  1123. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1124. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1125. switch (busy_state) {
  1126. case IN_HANDLER:
  1127. case IN_PROCESS:
  1128. SERIAL_ECHO_START;
  1129. SERIAL_ECHOLNPGM("busy: processing");
  1130. break;
  1131. case PAUSED_FOR_USER:
  1132. SERIAL_ECHO_START;
  1133. SERIAL_ECHOLNPGM("busy: paused for user");
  1134. break;
  1135. case PAUSED_FOR_INPUT:
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHOLNPGM("busy: paused for input");
  1138. break;
  1139. default:
  1140. break;
  1141. }
  1142. }
  1143. prev_busy_signal_ms = ms;
  1144. }
  1145. #endif
  1146. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1147. // Before loop(), the setup() function is called by the main() routine.
  1148. void loop()
  1149. {
  1150. KEEPALIVE_STATE(NOT_BUSY);
  1151. bool stack_integrity = true;
  1152. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1153. {
  1154. is_usb_printing = true;
  1155. usb_printing_counter--;
  1156. _usb_timer = millis();
  1157. }
  1158. if (usb_printing_counter == 0)
  1159. {
  1160. is_usb_printing = false;
  1161. }
  1162. if (prusa_sd_card_upload)
  1163. {
  1164. //we read byte-by byte
  1165. serial_read_stream();
  1166. } else
  1167. {
  1168. get_command();
  1169. #ifdef SDSUPPORT
  1170. card.checkautostart(false);
  1171. #endif
  1172. if(buflen)
  1173. {
  1174. cmdbuffer_front_already_processed = false;
  1175. #ifdef SDSUPPORT
  1176. if(card.saving)
  1177. {
  1178. // Saving a G-code file onto an SD-card is in progress.
  1179. // Saving starts with M28, saving until M29 is seen.
  1180. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1181. card.write_command(CMDBUFFER_CURRENT_STRING);
  1182. if(card.logging)
  1183. process_commands();
  1184. else
  1185. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1186. } else {
  1187. card.closefile();
  1188. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1189. }
  1190. } else {
  1191. process_commands();
  1192. }
  1193. #else
  1194. process_commands();
  1195. #endif //SDSUPPORT
  1196. if (! cmdbuffer_front_already_processed && buflen)
  1197. {
  1198. // ptr points to the start of the block currently being processed.
  1199. // The first character in the block is the block type.
  1200. char *ptr = cmdbuffer + bufindr;
  1201. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1202. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1203. union {
  1204. struct {
  1205. char lo;
  1206. char hi;
  1207. } lohi;
  1208. uint16_t value;
  1209. } sdlen;
  1210. sdlen.value = 0;
  1211. {
  1212. // This block locks the interrupts globally for 3.25 us,
  1213. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1214. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1215. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1216. cli();
  1217. // Reset the command to something, which will be ignored by the power panic routine,
  1218. // so this buffer length will not be counted twice.
  1219. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1220. // Extract the current buffer length.
  1221. sdlen.lohi.lo = *ptr ++;
  1222. sdlen.lohi.hi = *ptr;
  1223. // and pass it to the planner queue.
  1224. planner_add_sd_length(sdlen.value);
  1225. sei();
  1226. }
  1227. }
  1228. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1229. // this block's SD card length will not be counted twice as its command type has been replaced
  1230. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1231. cmdqueue_pop_front();
  1232. }
  1233. host_keepalive();
  1234. }
  1235. }
  1236. //check heater every n milliseconds
  1237. manage_heater();
  1238. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1239. checkHitEndstops();
  1240. lcd_update();
  1241. #ifdef PAT9125
  1242. fsensor_update();
  1243. #endif //PAT9125
  1244. #ifdef TMC2130
  1245. tmc2130_check_overtemp();
  1246. if (tmc2130_sg_crash)
  1247. {
  1248. tmc2130_sg_crash = false;
  1249. // crashdet_stop_and_save_print();
  1250. enquecommand_P((PSTR("CRASH_DETECTED")));
  1251. }
  1252. #endif //TMC2130
  1253. }
  1254. #define DEFINE_PGM_READ_ANY(type, reader) \
  1255. static inline type pgm_read_any(const type *p) \
  1256. { return pgm_read_##reader##_near(p); }
  1257. DEFINE_PGM_READ_ANY(float, float);
  1258. DEFINE_PGM_READ_ANY(signed char, byte);
  1259. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1260. static const PROGMEM type array##_P[3] = \
  1261. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1262. static inline type array(int axis) \
  1263. { return pgm_read_any(&array##_P[axis]); } \
  1264. type array##_ext(int axis) \
  1265. { return pgm_read_any(&array##_P[axis]); }
  1266. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1267. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1268. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1269. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1270. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1271. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1272. static void axis_is_at_home(int axis) {
  1273. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1274. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1275. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1276. }
  1277. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1278. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1279. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1280. saved_feedrate = feedrate;
  1281. saved_feedmultiply = feedmultiply;
  1282. feedmultiply = 100;
  1283. previous_millis_cmd = millis();
  1284. enable_endstops(enable_endstops_now);
  1285. }
  1286. static void clean_up_after_endstop_move() {
  1287. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1288. enable_endstops(false);
  1289. #endif
  1290. feedrate = saved_feedrate;
  1291. feedmultiply = saved_feedmultiply;
  1292. previous_millis_cmd = millis();
  1293. }
  1294. #ifdef ENABLE_AUTO_BED_LEVELING
  1295. #ifdef AUTO_BED_LEVELING_GRID
  1296. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1297. {
  1298. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1299. planeNormal.debug("planeNormal");
  1300. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1301. //bedLevel.debug("bedLevel");
  1302. //plan_bed_level_matrix.debug("bed level before");
  1303. //vector_3 uncorrected_position = plan_get_position_mm();
  1304. //uncorrected_position.debug("position before");
  1305. vector_3 corrected_position = plan_get_position();
  1306. // corrected_position.debug("position after");
  1307. current_position[X_AXIS] = corrected_position.x;
  1308. current_position[Y_AXIS] = corrected_position.y;
  1309. current_position[Z_AXIS] = corrected_position.z;
  1310. // put the bed at 0 so we don't go below it.
  1311. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1312. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1313. }
  1314. #else // not AUTO_BED_LEVELING_GRID
  1315. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1316. plan_bed_level_matrix.set_to_identity();
  1317. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1318. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1319. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1320. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1321. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1322. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1323. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1324. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1325. vector_3 corrected_position = plan_get_position();
  1326. current_position[X_AXIS] = corrected_position.x;
  1327. current_position[Y_AXIS] = corrected_position.y;
  1328. current_position[Z_AXIS] = corrected_position.z;
  1329. // put the bed at 0 so we don't go below it.
  1330. current_position[Z_AXIS] = zprobe_zoffset;
  1331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1332. }
  1333. #endif // AUTO_BED_LEVELING_GRID
  1334. static void run_z_probe() {
  1335. plan_bed_level_matrix.set_to_identity();
  1336. feedrate = homing_feedrate[Z_AXIS];
  1337. // move down until you find the bed
  1338. float zPosition = -10;
  1339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1340. st_synchronize();
  1341. // we have to let the planner know where we are right now as it is not where we said to go.
  1342. zPosition = st_get_position_mm(Z_AXIS);
  1343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1344. // move up the retract distance
  1345. zPosition += home_retract_mm(Z_AXIS);
  1346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1347. st_synchronize();
  1348. // move back down slowly to find bed
  1349. feedrate = homing_feedrate[Z_AXIS]/4;
  1350. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1352. st_synchronize();
  1353. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1354. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. }
  1357. static void do_blocking_move_to(float x, float y, float z) {
  1358. float oldFeedRate = feedrate;
  1359. feedrate = homing_feedrate[Z_AXIS];
  1360. current_position[Z_AXIS] = z;
  1361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1362. st_synchronize();
  1363. feedrate = XY_TRAVEL_SPEED;
  1364. current_position[X_AXIS] = x;
  1365. current_position[Y_AXIS] = y;
  1366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1367. st_synchronize();
  1368. feedrate = oldFeedRate;
  1369. }
  1370. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1371. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1372. }
  1373. /// Probe bed height at position (x,y), returns the measured z value
  1374. static float probe_pt(float x, float y, float z_before) {
  1375. // move to right place
  1376. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1377. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1378. run_z_probe();
  1379. float measured_z = current_position[Z_AXIS];
  1380. SERIAL_PROTOCOLRPGM(MSG_BED);
  1381. SERIAL_PROTOCOLPGM(" x: ");
  1382. SERIAL_PROTOCOL(x);
  1383. SERIAL_PROTOCOLPGM(" y: ");
  1384. SERIAL_PROTOCOL(y);
  1385. SERIAL_PROTOCOLPGM(" z: ");
  1386. SERIAL_PROTOCOL(measured_z);
  1387. SERIAL_PROTOCOLPGM("\n");
  1388. return measured_z;
  1389. }
  1390. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1391. #ifdef LIN_ADVANCE
  1392. /**
  1393. * M900: Set and/or Get advance K factor and WH/D ratio
  1394. *
  1395. * K<factor> Set advance K factor
  1396. * R<ratio> Set ratio directly (overrides WH/D)
  1397. * W<width> H<height> D<diam> Set ratio from WH/D
  1398. */
  1399. inline void gcode_M900() {
  1400. st_synchronize();
  1401. const float newK = code_seen('K') ? code_value_float() : -1;
  1402. if (newK >= 0) extruder_advance_k = newK;
  1403. float newR = code_seen('R') ? code_value_float() : -1;
  1404. if (newR < 0) {
  1405. const float newD = code_seen('D') ? code_value_float() : -1,
  1406. newW = code_seen('W') ? code_value_float() : -1,
  1407. newH = code_seen('H') ? code_value_float() : -1;
  1408. if (newD >= 0 && newW >= 0 && newH >= 0)
  1409. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1410. }
  1411. if (newR >= 0) advance_ed_ratio = newR;
  1412. SERIAL_ECHO_START;
  1413. SERIAL_ECHOPGM("Advance K=");
  1414. SERIAL_ECHOLN(extruder_advance_k);
  1415. SERIAL_ECHOPGM(" E/D=");
  1416. const float ratio = advance_ed_ratio;
  1417. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1418. }
  1419. #endif // LIN_ADVANCE
  1420. bool check_commands() {
  1421. bool end_command_found = false;
  1422. while (buflen)
  1423. {
  1424. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1425. if (!cmdbuffer_front_already_processed)
  1426. cmdqueue_pop_front();
  1427. cmdbuffer_front_already_processed = false;
  1428. }
  1429. return end_command_found;
  1430. }
  1431. #ifdef TMC2130
  1432. bool calibrate_z_auto()
  1433. {
  1434. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1435. lcd_implementation_clear();
  1436. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1437. bool endstops_enabled = enable_endstops(true);
  1438. int axis_up_dir = -home_dir(Z_AXIS);
  1439. tmc2130_home_enter(Z_AXIS_MASK);
  1440. current_position[Z_AXIS] = 0;
  1441. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1442. set_destination_to_current();
  1443. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1444. feedrate = homing_feedrate[Z_AXIS];
  1445. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1446. st_synchronize();
  1447. // current_position[axis] = 0;
  1448. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1449. tmc2130_home_exit();
  1450. enable_endstops(false);
  1451. current_position[Z_AXIS] = 0;
  1452. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1453. set_destination_to_current();
  1454. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1455. feedrate = homing_feedrate[Z_AXIS] / 2;
  1456. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1457. st_synchronize();
  1458. enable_endstops(endstops_enabled);
  1459. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. return true;
  1462. }
  1463. #endif //TMC2130
  1464. void homeaxis(int axis)
  1465. {
  1466. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1467. #define HOMEAXIS_DO(LETTER) \
  1468. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1469. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1470. {
  1471. int axis_home_dir = home_dir(axis);
  1472. feedrate = homing_feedrate[axis];
  1473. #ifdef TMC2130
  1474. tmc2130_home_enter(X_AXIS_MASK << axis);
  1475. #endif
  1476. // Move right a bit, so that the print head does not touch the left end position,
  1477. // and the following left movement has a chance to achieve the required velocity
  1478. // for the stall guard to work.
  1479. current_position[axis] = 0;
  1480. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1481. // destination[axis] = 11.f;
  1482. destination[axis] = 3.f;
  1483. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1484. st_synchronize();
  1485. // Move left away from the possible collision with the collision detection disabled.
  1486. endstops_hit_on_purpose();
  1487. enable_endstops(false);
  1488. current_position[axis] = 0;
  1489. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1490. destination[axis] = - 1.;
  1491. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1492. st_synchronize();
  1493. // Now continue to move up to the left end stop with the collision detection enabled.
  1494. enable_endstops(true);
  1495. destination[axis] = - 1.1 * max_length(axis);
  1496. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1497. st_synchronize();
  1498. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1499. endstops_hit_on_purpose();
  1500. enable_endstops(false);
  1501. current_position[axis] = 0;
  1502. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1503. destination[axis] = 10.f;
  1504. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1505. st_synchronize();
  1506. endstops_hit_on_purpose();
  1507. // Now move left up to the collision, this time with a repeatable velocity.
  1508. enable_endstops(true);
  1509. destination[axis] = - 15.f;
  1510. feedrate = homing_feedrate[axis]/2;
  1511. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1512. st_synchronize();
  1513. axis_is_at_home(axis);
  1514. axis_known_position[axis] = true;
  1515. #ifdef TMC2130
  1516. tmc2130_home_exit();
  1517. #endif
  1518. // Move the X carriage away from the collision.
  1519. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1520. endstops_hit_on_purpose();
  1521. enable_endstops(false);
  1522. {
  1523. // Two full periods (4 full steps).
  1524. float gap = 0.32f * 2.f;
  1525. current_position[axis] -= gap;
  1526. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1527. current_position[axis] += gap;
  1528. }
  1529. destination[axis] = current_position[axis];
  1530. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1531. st_synchronize();
  1532. feedrate = 0.0;
  1533. }
  1534. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1535. {
  1536. int axis_home_dir = home_dir(axis);
  1537. current_position[axis] = 0;
  1538. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1539. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1540. feedrate = homing_feedrate[axis];
  1541. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1542. st_synchronize();
  1543. current_position[axis] = 0;
  1544. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1545. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1546. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1547. st_synchronize();
  1548. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1549. feedrate = homing_feedrate[axis]/2 ;
  1550. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1551. st_synchronize();
  1552. axis_is_at_home(axis);
  1553. destination[axis] = current_position[axis];
  1554. feedrate = 0.0;
  1555. endstops_hit_on_purpose();
  1556. axis_known_position[axis] = true;
  1557. }
  1558. enable_endstops(endstops_enabled);
  1559. }
  1560. /**/
  1561. void home_xy()
  1562. {
  1563. set_destination_to_current();
  1564. homeaxis(X_AXIS);
  1565. homeaxis(Y_AXIS);
  1566. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1567. endstops_hit_on_purpose();
  1568. }
  1569. void refresh_cmd_timeout(void)
  1570. {
  1571. previous_millis_cmd = millis();
  1572. }
  1573. #ifdef FWRETRACT
  1574. void retract(bool retracting, bool swapretract = false) {
  1575. if(retracting && !retracted[active_extruder]) {
  1576. destination[X_AXIS]=current_position[X_AXIS];
  1577. destination[Y_AXIS]=current_position[Y_AXIS];
  1578. destination[Z_AXIS]=current_position[Z_AXIS];
  1579. destination[E_AXIS]=current_position[E_AXIS];
  1580. if (swapretract) {
  1581. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1582. } else {
  1583. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1584. }
  1585. plan_set_e_position(current_position[E_AXIS]);
  1586. float oldFeedrate = feedrate;
  1587. feedrate=retract_feedrate*60;
  1588. retracted[active_extruder]=true;
  1589. prepare_move();
  1590. current_position[Z_AXIS]-=retract_zlift;
  1591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1592. prepare_move();
  1593. feedrate = oldFeedrate;
  1594. } else if(!retracting && retracted[active_extruder]) {
  1595. destination[X_AXIS]=current_position[X_AXIS];
  1596. destination[Y_AXIS]=current_position[Y_AXIS];
  1597. destination[Z_AXIS]=current_position[Z_AXIS];
  1598. destination[E_AXIS]=current_position[E_AXIS];
  1599. current_position[Z_AXIS]+=retract_zlift;
  1600. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1601. //prepare_move();
  1602. if (swapretract) {
  1603. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1604. } else {
  1605. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1606. }
  1607. plan_set_e_position(current_position[E_AXIS]);
  1608. float oldFeedrate = feedrate;
  1609. feedrate=retract_recover_feedrate*60;
  1610. retracted[active_extruder]=false;
  1611. prepare_move();
  1612. feedrate = oldFeedrate;
  1613. }
  1614. } //retract
  1615. #endif //FWRETRACT
  1616. void trace() {
  1617. tone(BEEPER, 440);
  1618. delay(25);
  1619. noTone(BEEPER);
  1620. delay(20);
  1621. }
  1622. /*
  1623. void ramming() {
  1624. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1625. if (current_temperature[0] < 230) {
  1626. //PLA
  1627. max_feedrate[E_AXIS] = 50;
  1628. //current_position[E_AXIS] -= 8;
  1629. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1630. //current_position[E_AXIS] += 8;
  1631. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1632. current_position[E_AXIS] += 5.4;
  1633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1634. current_position[E_AXIS] += 3.2;
  1635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1636. current_position[E_AXIS] += 3;
  1637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1638. st_synchronize();
  1639. max_feedrate[E_AXIS] = 80;
  1640. current_position[E_AXIS] -= 82;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1642. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1643. current_position[E_AXIS] -= 20;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1645. current_position[E_AXIS] += 5;
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1647. current_position[E_AXIS] += 5;
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1649. current_position[E_AXIS] -= 10;
  1650. st_synchronize();
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1652. current_position[E_AXIS] += 10;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1654. current_position[E_AXIS] -= 10;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1656. current_position[E_AXIS] += 10;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1658. current_position[E_AXIS] -= 10;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1660. st_synchronize();
  1661. }
  1662. else {
  1663. //ABS
  1664. max_feedrate[E_AXIS] = 50;
  1665. //current_position[E_AXIS] -= 8;
  1666. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1667. //current_position[E_AXIS] += 8;
  1668. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1669. current_position[E_AXIS] += 3.1;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1671. current_position[E_AXIS] += 3.1;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1673. current_position[E_AXIS] += 4;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1675. st_synchronize();
  1676. //current_position[X_AXIS] += 23; //delay
  1677. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1678. //current_position[X_AXIS] -= 23; //delay
  1679. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1680. delay(4700);
  1681. max_feedrate[E_AXIS] = 80;
  1682. current_position[E_AXIS] -= 92;
  1683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1684. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1685. current_position[E_AXIS] -= 5;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1687. current_position[E_AXIS] += 5;
  1688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1689. current_position[E_AXIS] -= 5;
  1690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1691. st_synchronize();
  1692. current_position[E_AXIS] += 5;
  1693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1694. current_position[E_AXIS] -= 5;
  1695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1696. current_position[E_AXIS] += 5;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1698. current_position[E_AXIS] -= 5;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1700. st_synchronize();
  1701. }
  1702. }
  1703. */
  1704. #ifdef TMC2130
  1705. void force_high_power_mode(bool start_high_power_section) {
  1706. uint8_t silent;
  1707. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1708. if (silent == 1) {
  1709. //we are in silent mode, set to normal mode to enable crash detection
  1710. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1711. st_synchronize();
  1712. cli();
  1713. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1714. tmc2130_init();
  1715. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1716. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1717. st_reset_timer();
  1718. sei();
  1719. digipot_init();
  1720. }
  1721. }
  1722. #endif //TMC2130
  1723. bool gcode_M45(bool onlyZ)
  1724. {
  1725. bool final_result = false;
  1726. #ifdef TMC2130
  1727. FORCE_HIGH_POWER_START;
  1728. #endif // TMC2130
  1729. // Only Z calibration?
  1730. if (!onlyZ)
  1731. {
  1732. setTargetBed(0);
  1733. setTargetHotend(0, 0);
  1734. setTargetHotend(0, 1);
  1735. setTargetHotend(0, 2);
  1736. adjust_bed_reset(); //reset bed level correction
  1737. }
  1738. // Disable the default update procedure of the display. We will do a modal dialog.
  1739. lcd_update_enable(false);
  1740. // Let the planner use the uncorrected coordinates.
  1741. mbl.reset();
  1742. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1743. // the planner will not perform any adjustments in the XY plane.
  1744. // Wait for the motors to stop and update the current position with the absolute values.
  1745. world2machine_revert_to_uncorrected();
  1746. // Reset the baby step value applied without moving the axes.
  1747. babystep_reset();
  1748. // Mark all axes as in a need for homing.
  1749. memset(axis_known_position, 0, sizeof(axis_known_position));
  1750. // Home in the XY plane.
  1751. //set_destination_to_current();
  1752. setup_for_endstop_move();
  1753. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1754. home_xy();
  1755. enable_endstops(false);
  1756. current_position[X_AXIS] += 5;
  1757. current_position[Y_AXIS] += 5;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1759. st_synchronize();
  1760. // Let the user move the Z axes up to the end stoppers.
  1761. #ifdef TMC2130
  1762. if (calibrate_z_auto())
  1763. {
  1764. #else //TMC2130
  1765. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1766. {
  1767. #endif //TMC2130
  1768. refresh_cmd_timeout();
  1769. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1770. //{
  1771. // lcd_wait_for_cool_down();
  1772. //}
  1773. if(!onlyZ)
  1774. {
  1775. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1776. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1777. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1778. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1779. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1780. KEEPALIVE_STATE(IN_HANDLER);
  1781. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1782. lcd_implementation_print_at(0, 2, 1);
  1783. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1784. }
  1785. // Move the print head close to the bed.
  1786. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1787. bool endstops_enabled = enable_endstops(true);
  1788. tmc2130_home_enter(Z_AXIS_MASK);
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1790. st_synchronize();
  1791. tmc2130_home_exit();
  1792. enable_endstops(endstops_enabled);
  1793. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1794. {
  1795. //#ifdef TMC2130
  1796. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1797. //#endif
  1798. int8_t verbosity_level = 0;
  1799. if (code_seen('V'))
  1800. {
  1801. // Just 'V' without a number counts as V1.
  1802. char c = strchr_pointer[1];
  1803. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1804. }
  1805. if (onlyZ)
  1806. {
  1807. clean_up_after_endstop_move();
  1808. // Z only calibration.
  1809. // Load the machine correction matrix
  1810. world2machine_initialize();
  1811. // and correct the current_position to match the transformed coordinate system.
  1812. world2machine_update_current();
  1813. //FIXME
  1814. bool result = sample_mesh_and_store_reference();
  1815. if (result)
  1816. {
  1817. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1818. // Shipped, the nozzle height has been set already. The user can start printing now.
  1819. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1820. final_result = true;
  1821. // babystep_apply();
  1822. }
  1823. }
  1824. else
  1825. {
  1826. // Reset the baby step value and the baby step applied flag.
  1827. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1828. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1829. // Complete XYZ calibration.
  1830. uint8_t point_too_far_mask = 0;
  1831. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1832. clean_up_after_endstop_move();
  1833. // Print head up.
  1834. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1836. st_synchronize();
  1837. if (result >= 0)
  1838. {
  1839. point_too_far_mask = 0;
  1840. // Second half: The fine adjustment.
  1841. // Let the planner use the uncorrected coordinates.
  1842. mbl.reset();
  1843. world2machine_reset();
  1844. // Home in the XY plane.
  1845. setup_for_endstop_move();
  1846. home_xy();
  1847. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1848. clean_up_after_endstop_move();
  1849. // Print head up.
  1850. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1852. st_synchronize();
  1853. // if (result >= 0) babystep_apply();
  1854. }
  1855. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1856. if (result >= 0)
  1857. {
  1858. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1859. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1860. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1861. final_result = true;
  1862. }
  1863. }
  1864. #ifdef TMC2130
  1865. tmc2130_home_exit();
  1866. #endif
  1867. }
  1868. else
  1869. {
  1870. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1871. final_result = false;
  1872. }
  1873. }
  1874. else
  1875. {
  1876. // Timeouted.
  1877. }
  1878. lcd_update_enable(true);
  1879. #ifdef TMC2130
  1880. FORCE_HIGH_POWER_END;
  1881. #endif // TMC2130
  1882. return final_result;
  1883. }
  1884. void gcode_M701()
  1885. {
  1886. #ifdef SNMM
  1887. extr_adj(snmm_extruder);//loads current extruder
  1888. #else
  1889. enable_z();
  1890. custom_message = true;
  1891. custom_message_type = 2;
  1892. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1893. current_position[E_AXIS] += 70;
  1894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1895. current_position[E_AXIS] += 25;
  1896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1897. st_synchronize();
  1898. tone(BEEPER, 500);
  1899. delay_keep_alive(50);
  1900. noTone(BEEPER);
  1901. if (!farm_mode && loading_flag) {
  1902. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1903. while (!clean) {
  1904. lcd_update_enable(true);
  1905. lcd_update(2);
  1906. current_position[E_AXIS] += 25;
  1907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1908. st_synchronize();
  1909. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1910. }
  1911. }
  1912. lcd_update_enable(true);
  1913. lcd_update(2);
  1914. lcd_setstatuspgm(WELCOME_MSG);
  1915. disable_z();
  1916. loading_flag = false;
  1917. custom_message = false;
  1918. custom_message_type = 0;
  1919. #endif
  1920. }
  1921. void process_commands()
  1922. {
  1923. #ifdef FILAMENT_RUNOUT_SUPPORT
  1924. SET_INPUT(FR_SENS);
  1925. #endif
  1926. #ifdef CMDBUFFER_DEBUG
  1927. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1928. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1929. SERIAL_ECHOLNPGM("");
  1930. SERIAL_ECHOPGM("In cmdqueue: ");
  1931. SERIAL_ECHO(buflen);
  1932. SERIAL_ECHOLNPGM("");
  1933. #endif /* CMDBUFFER_DEBUG */
  1934. unsigned long codenum; //throw away variable
  1935. char *starpos = NULL;
  1936. #ifdef ENABLE_AUTO_BED_LEVELING
  1937. float x_tmp, y_tmp, z_tmp, real_z;
  1938. #endif
  1939. // PRUSA GCODES
  1940. KEEPALIVE_STATE(IN_HANDLER);
  1941. #ifdef SNMM
  1942. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1943. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1944. int8_t SilentMode;
  1945. #endif
  1946. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1947. starpos = (strchr(strchr_pointer + 5, '*'));
  1948. if (starpos != NULL)
  1949. *(starpos) = '\0';
  1950. lcd_setstatus(strchr_pointer + 5);
  1951. }
  1952. else if(code_seen("CRASH_DETECTED"))
  1953. crashdet_detected();
  1954. else if(code_seen("CRASH_RECOVER"))
  1955. crashdet_recover();
  1956. else if(code_seen("CRASH_CANCEL"))
  1957. crashdet_cancel();
  1958. else if(code_seen("PRUSA")){
  1959. if (code_seen("Ping")) { //PRUSA Ping
  1960. if (farm_mode) {
  1961. PingTime = millis();
  1962. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1963. }
  1964. }
  1965. else if (code_seen("PRN")) {
  1966. MYSERIAL.println(status_number);
  1967. }else if (code_seen("FAN")) {
  1968. MYSERIAL.print("E0:");
  1969. MYSERIAL.print(60*fan_speed[0]);
  1970. MYSERIAL.println(" RPM");
  1971. MYSERIAL.print("PRN0:");
  1972. MYSERIAL.print(60*fan_speed[1]);
  1973. MYSERIAL.println(" RPM");
  1974. }else if (code_seen("fn")) {
  1975. if (farm_mode) {
  1976. MYSERIAL.println(farm_no);
  1977. }
  1978. else {
  1979. MYSERIAL.println("Not in farm mode.");
  1980. }
  1981. }else if (code_seen("fv")) {
  1982. // get file version
  1983. #ifdef SDSUPPORT
  1984. card.openFile(strchr_pointer + 3,true);
  1985. while (true) {
  1986. uint16_t readByte = card.get();
  1987. MYSERIAL.write(readByte);
  1988. if (readByte=='\n') {
  1989. break;
  1990. }
  1991. }
  1992. card.closefile();
  1993. #endif // SDSUPPORT
  1994. } else if (code_seen("M28")) {
  1995. trace();
  1996. prusa_sd_card_upload = true;
  1997. card.openFile(strchr_pointer+4,false);
  1998. } else if (code_seen("SN")) {
  1999. if (farm_mode) {
  2000. selectedSerialPort = 0;
  2001. MSerial.write(";S");
  2002. // S/N is:CZPX0917X003XC13518
  2003. int numbersRead = 0;
  2004. while (numbersRead < 19) {
  2005. while (MSerial.available() > 0) {
  2006. uint8_t serial_char = MSerial.read();
  2007. selectedSerialPort = 1;
  2008. MSerial.write(serial_char);
  2009. numbersRead++;
  2010. selectedSerialPort = 0;
  2011. }
  2012. }
  2013. selectedSerialPort = 1;
  2014. MSerial.write('\n');
  2015. /*for (int b = 0; b < 3; b++) {
  2016. tone(BEEPER, 110);
  2017. delay(50);
  2018. noTone(BEEPER);
  2019. delay(50);
  2020. }*/
  2021. } else {
  2022. MYSERIAL.println("Not in farm mode.");
  2023. }
  2024. } else if(code_seen("Fir")){
  2025. SERIAL_PROTOCOLLN(FW_VERSION);
  2026. } else if(code_seen("Rev")){
  2027. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2028. } else if(code_seen("Lang")) {
  2029. lcd_force_language_selection();
  2030. } else if(code_seen("Lz")) {
  2031. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2032. } else if (code_seen("SERIAL LOW")) {
  2033. MYSERIAL.println("SERIAL LOW");
  2034. MYSERIAL.begin(BAUDRATE);
  2035. return;
  2036. } else if (code_seen("SERIAL HIGH")) {
  2037. MYSERIAL.println("SERIAL HIGH");
  2038. MYSERIAL.begin(1152000);
  2039. return;
  2040. } else if(code_seen("Beat")) {
  2041. // Kick farm link timer
  2042. kicktime = millis();
  2043. } else if(code_seen("FR")) {
  2044. // Factory full reset
  2045. factory_reset(0,true);
  2046. }
  2047. //else if (code_seen('Cal')) {
  2048. // lcd_calibration();
  2049. // }
  2050. }
  2051. else if (code_seen('^')) {
  2052. // nothing, this is a version line
  2053. } else if(code_seen('G'))
  2054. {
  2055. switch((int)code_value())
  2056. {
  2057. case 0: // G0 -> G1
  2058. case 1: // G1
  2059. if(Stopped == false) {
  2060. #ifdef FILAMENT_RUNOUT_SUPPORT
  2061. if(READ(FR_SENS)){
  2062. feedmultiplyBckp=feedmultiply;
  2063. float target[4];
  2064. float lastpos[4];
  2065. target[X_AXIS]=current_position[X_AXIS];
  2066. target[Y_AXIS]=current_position[Y_AXIS];
  2067. target[Z_AXIS]=current_position[Z_AXIS];
  2068. target[E_AXIS]=current_position[E_AXIS];
  2069. lastpos[X_AXIS]=current_position[X_AXIS];
  2070. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2071. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2072. lastpos[E_AXIS]=current_position[E_AXIS];
  2073. //retract by E
  2074. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2076. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2078. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2079. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2081. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2083. //finish moves
  2084. st_synchronize();
  2085. //disable extruder steppers so filament can be removed
  2086. disable_e0();
  2087. disable_e1();
  2088. disable_e2();
  2089. delay(100);
  2090. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2091. uint8_t cnt=0;
  2092. int counterBeep = 0;
  2093. lcd_wait_interact();
  2094. while(!lcd_clicked()){
  2095. cnt++;
  2096. manage_heater();
  2097. manage_inactivity(true);
  2098. //lcd_update();
  2099. if(cnt==0)
  2100. {
  2101. #if BEEPER > 0
  2102. if (counterBeep== 500){
  2103. counterBeep = 0;
  2104. }
  2105. SET_OUTPUT(BEEPER);
  2106. if (counterBeep== 0){
  2107. WRITE(BEEPER,HIGH);
  2108. }
  2109. if (counterBeep== 20){
  2110. WRITE(BEEPER,LOW);
  2111. }
  2112. counterBeep++;
  2113. #else
  2114. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2115. lcd_buzz(1000/6,100);
  2116. #else
  2117. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2118. #endif
  2119. #endif
  2120. }
  2121. }
  2122. WRITE(BEEPER,LOW);
  2123. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2124. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2125. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2127. lcd_change_fil_state = 0;
  2128. lcd_loading_filament();
  2129. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2130. lcd_change_fil_state = 0;
  2131. lcd_alright();
  2132. switch(lcd_change_fil_state){
  2133. case 2:
  2134. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2135. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2136. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2137. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2138. lcd_loading_filament();
  2139. break;
  2140. case 3:
  2141. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2143. lcd_loading_color();
  2144. break;
  2145. default:
  2146. lcd_change_success();
  2147. break;
  2148. }
  2149. }
  2150. target[E_AXIS]+= 5;
  2151. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2152. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2154. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2155. //plan_set_e_position(current_position[E_AXIS]);
  2156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2157. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2158. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2159. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2160. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2161. plan_set_e_position(lastpos[E_AXIS]);
  2162. feedmultiply=feedmultiplyBckp;
  2163. char cmd[9];
  2164. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2165. enquecommand(cmd);
  2166. }
  2167. #endif
  2168. get_coordinates(); // For X Y Z E F
  2169. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2170. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2171. }
  2172. #ifdef FWRETRACT
  2173. if(autoretract_enabled)
  2174. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2175. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2176. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2177. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2178. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2179. retract(!retracted);
  2180. return;
  2181. }
  2182. }
  2183. #endif //FWRETRACT
  2184. prepare_move();
  2185. //ClearToSend();
  2186. }
  2187. break;
  2188. case 2: // G2 - CW ARC
  2189. if(Stopped == false) {
  2190. get_arc_coordinates();
  2191. prepare_arc_move(true);
  2192. }
  2193. break;
  2194. case 3: // G3 - CCW ARC
  2195. if(Stopped == false) {
  2196. get_arc_coordinates();
  2197. prepare_arc_move(false);
  2198. }
  2199. break;
  2200. case 4: // G4 dwell
  2201. codenum = 0;
  2202. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2203. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2204. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2205. st_synchronize();
  2206. codenum += millis(); // keep track of when we started waiting
  2207. previous_millis_cmd = millis();
  2208. while(millis() < codenum) {
  2209. manage_heater();
  2210. manage_inactivity();
  2211. lcd_update();
  2212. }
  2213. break;
  2214. #ifdef FWRETRACT
  2215. case 10: // G10 retract
  2216. #if EXTRUDERS > 1
  2217. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2218. retract(true,retracted_swap[active_extruder]);
  2219. #else
  2220. retract(true);
  2221. #endif
  2222. break;
  2223. case 11: // G11 retract_recover
  2224. #if EXTRUDERS > 1
  2225. retract(false,retracted_swap[active_extruder]);
  2226. #else
  2227. retract(false);
  2228. #endif
  2229. break;
  2230. #endif //FWRETRACT
  2231. case 28: //G28 Home all Axis one at a time
  2232. {
  2233. st_synchronize();
  2234. #if 0
  2235. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2236. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2237. #endif
  2238. // Flag for the display update routine and to disable the print cancelation during homing.
  2239. homing_flag = true;
  2240. // Which axes should be homed?
  2241. bool home_x = code_seen(axis_codes[X_AXIS]);
  2242. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2243. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2244. // Either all X,Y,Z codes are present, or none of them.
  2245. bool home_all_axes = home_x == home_y && home_x == home_z;
  2246. if (home_all_axes)
  2247. // No X/Y/Z code provided means to home all axes.
  2248. home_x = home_y = home_z = true;
  2249. #ifdef ENABLE_AUTO_BED_LEVELING
  2250. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2251. #endif //ENABLE_AUTO_BED_LEVELING
  2252. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2253. // the planner will not perform any adjustments in the XY plane.
  2254. // Wait for the motors to stop and update the current position with the absolute values.
  2255. world2machine_revert_to_uncorrected();
  2256. // For mesh bed leveling deactivate the matrix temporarily.
  2257. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2258. // in a single axis only.
  2259. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2260. #ifdef MESH_BED_LEVELING
  2261. uint8_t mbl_was_active = mbl.active;
  2262. mbl.active = 0;
  2263. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2264. #endif
  2265. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2266. // consumed during the first movements following this statement.
  2267. if (home_z)
  2268. babystep_undo();
  2269. saved_feedrate = feedrate;
  2270. saved_feedmultiply = feedmultiply;
  2271. feedmultiply = 100;
  2272. previous_millis_cmd = millis();
  2273. enable_endstops(true);
  2274. memcpy(destination, current_position, sizeof(destination));
  2275. feedrate = 0.0;
  2276. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2277. if(home_z)
  2278. homeaxis(Z_AXIS);
  2279. #endif
  2280. #ifdef QUICK_HOME
  2281. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2282. if(home_x && home_y) //first diagonal move
  2283. {
  2284. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2285. int x_axis_home_dir = home_dir(X_AXIS);
  2286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2287. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2288. feedrate = homing_feedrate[X_AXIS];
  2289. if(homing_feedrate[Y_AXIS]<feedrate)
  2290. feedrate = homing_feedrate[Y_AXIS];
  2291. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2292. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2293. } else {
  2294. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2295. }
  2296. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2297. st_synchronize();
  2298. axis_is_at_home(X_AXIS);
  2299. axis_is_at_home(Y_AXIS);
  2300. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2301. destination[X_AXIS] = current_position[X_AXIS];
  2302. destination[Y_AXIS] = current_position[Y_AXIS];
  2303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2304. feedrate = 0.0;
  2305. st_synchronize();
  2306. endstops_hit_on_purpose();
  2307. current_position[X_AXIS] = destination[X_AXIS];
  2308. current_position[Y_AXIS] = destination[Y_AXIS];
  2309. current_position[Z_AXIS] = destination[Z_AXIS];
  2310. }
  2311. #endif /* QUICK_HOME */
  2312. if(home_x)
  2313. homeaxis(X_AXIS);
  2314. if(home_y)
  2315. homeaxis(Y_AXIS);
  2316. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2317. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2318. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2319. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2320. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2321. #ifndef Z_SAFE_HOMING
  2322. if(home_z) {
  2323. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2324. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2325. feedrate = max_feedrate[Z_AXIS];
  2326. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2327. st_synchronize();
  2328. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2329. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2330. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2331. {
  2332. homeaxis(X_AXIS);
  2333. homeaxis(Y_AXIS);
  2334. }
  2335. // 1st mesh bed leveling measurement point, corrected.
  2336. world2machine_initialize();
  2337. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2338. world2machine_reset();
  2339. if (destination[Y_AXIS] < Y_MIN_POS)
  2340. destination[Y_AXIS] = Y_MIN_POS;
  2341. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2342. feedrate = homing_feedrate[Z_AXIS]/10;
  2343. current_position[Z_AXIS] = 0;
  2344. enable_endstops(false);
  2345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2346. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2347. st_synchronize();
  2348. current_position[X_AXIS] = destination[X_AXIS];
  2349. current_position[Y_AXIS] = destination[Y_AXIS];
  2350. enable_endstops(true);
  2351. endstops_hit_on_purpose();
  2352. homeaxis(Z_AXIS);
  2353. #else // MESH_BED_LEVELING
  2354. homeaxis(Z_AXIS);
  2355. #endif // MESH_BED_LEVELING
  2356. }
  2357. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2358. if(home_all_axes) {
  2359. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2360. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2361. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2362. feedrate = XY_TRAVEL_SPEED/60;
  2363. current_position[Z_AXIS] = 0;
  2364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2365. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2366. st_synchronize();
  2367. current_position[X_AXIS] = destination[X_AXIS];
  2368. current_position[Y_AXIS] = destination[Y_AXIS];
  2369. homeaxis(Z_AXIS);
  2370. }
  2371. // Let's see if X and Y are homed and probe is inside bed area.
  2372. if(home_z) {
  2373. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2374. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2375. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2376. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2377. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2378. current_position[Z_AXIS] = 0;
  2379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2380. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2381. feedrate = max_feedrate[Z_AXIS];
  2382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2383. st_synchronize();
  2384. homeaxis(Z_AXIS);
  2385. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2386. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2387. SERIAL_ECHO_START;
  2388. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2389. } else {
  2390. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2391. SERIAL_ECHO_START;
  2392. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2393. }
  2394. }
  2395. #endif // Z_SAFE_HOMING
  2396. #endif // Z_HOME_DIR < 0
  2397. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2398. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2399. #ifdef ENABLE_AUTO_BED_LEVELING
  2400. if(home_z)
  2401. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2402. #endif
  2403. // Set the planner and stepper routine positions.
  2404. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2405. // contains the machine coordinates.
  2406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2407. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2408. enable_endstops(false);
  2409. #endif
  2410. feedrate = saved_feedrate;
  2411. feedmultiply = saved_feedmultiply;
  2412. previous_millis_cmd = millis();
  2413. endstops_hit_on_purpose();
  2414. #ifndef MESH_BED_LEVELING
  2415. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2416. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2417. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2418. lcd_adjust_z();
  2419. #endif
  2420. // Load the machine correction matrix
  2421. world2machine_initialize();
  2422. // and correct the current_position XY axes to match the transformed coordinate system.
  2423. world2machine_update_current();
  2424. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2425. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2426. {
  2427. if (! home_z && mbl_was_active) {
  2428. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2429. mbl.active = true;
  2430. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2431. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2432. }
  2433. }
  2434. else
  2435. {
  2436. st_synchronize();
  2437. homing_flag = false;
  2438. // Push the commands to the front of the message queue in the reverse order!
  2439. // There shall be always enough space reserved for these commands.
  2440. // enquecommand_front_P((PSTR("G80")));
  2441. goto case_G80;
  2442. }
  2443. #endif
  2444. if (farm_mode) { prusa_statistics(20); };
  2445. homing_flag = false;
  2446. #if 0
  2447. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2448. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2449. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2450. #endif
  2451. break;
  2452. }
  2453. #ifdef ENABLE_AUTO_BED_LEVELING
  2454. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2455. {
  2456. #if Z_MIN_PIN == -1
  2457. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2458. #endif
  2459. // Prevent user from running a G29 without first homing in X and Y
  2460. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2461. {
  2462. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2463. SERIAL_ECHO_START;
  2464. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2465. break; // abort G29, since we don't know where we are
  2466. }
  2467. st_synchronize();
  2468. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2469. //vector_3 corrected_position = plan_get_position_mm();
  2470. //corrected_position.debug("position before G29");
  2471. plan_bed_level_matrix.set_to_identity();
  2472. vector_3 uncorrected_position = plan_get_position();
  2473. //uncorrected_position.debug("position durring G29");
  2474. current_position[X_AXIS] = uncorrected_position.x;
  2475. current_position[Y_AXIS] = uncorrected_position.y;
  2476. current_position[Z_AXIS] = uncorrected_position.z;
  2477. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2478. setup_for_endstop_move();
  2479. feedrate = homing_feedrate[Z_AXIS];
  2480. #ifdef AUTO_BED_LEVELING_GRID
  2481. // probe at the points of a lattice grid
  2482. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2483. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2484. // solve the plane equation ax + by + d = z
  2485. // A is the matrix with rows [x y 1] for all the probed points
  2486. // B is the vector of the Z positions
  2487. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2488. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2489. // "A" matrix of the linear system of equations
  2490. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2491. // "B" vector of Z points
  2492. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2493. int probePointCounter = 0;
  2494. bool zig = true;
  2495. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2496. {
  2497. int xProbe, xInc;
  2498. if (zig)
  2499. {
  2500. xProbe = LEFT_PROBE_BED_POSITION;
  2501. //xEnd = RIGHT_PROBE_BED_POSITION;
  2502. xInc = xGridSpacing;
  2503. zig = false;
  2504. } else // zag
  2505. {
  2506. xProbe = RIGHT_PROBE_BED_POSITION;
  2507. //xEnd = LEFT_PROBE_BED_POSITION;
  2508. xInc = -xGridSpacing;
  2509. zig = true;
  2510. }
  2511. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2512. {
  2513. float z_before;
  2514. if (probePointCounter == 0)
  2515. {
  2516. // raise before probing
  2517. z_before = Z_RAISE_BEFORE_PROBING;
  2518. } else
  2519. {
  2520. // raise extruder
  2521. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2522. }
  2523. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2524. eqnBVector[probePointCounter] = measured_z;
  2525. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2526. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2527. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2528. probePointCounter++;
  2529. xProbe += xInc;
  2530. }
  2531. }
  2532. clean_up_after_endstop_move();
  2533. // solve lsq problem
  2534. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2535. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2536. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2537. SERIAL_PROTOCOLPGM(" b: ");
  2538. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2539. SERIAL_PROTOCOLPGM(" d: ");
  2540. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2541. set_bed_level_equation_lsq(plane_equation_coefficients);
  2542. free(plane_equation_coefficients);
  2543. #else // AUTO_BED_LEVELING_GRID not defined
  2544. // Probe at 3 arbitrary points
  2545. // probe 1
  2546. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2547. // probe 2
  2548. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2549. // probe 3
  2550. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2551. clean_up_after_endstop_move();
  2552. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2553. #endif // AUTO_BED_LEVELING_GRID
  2554. st_synchronize();
  2555. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2556. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2557. // When the bed is uneven, this height must be corrected.
  2558. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2559. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2560. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2561. z_tmp = current_position[Z_AXIS];
  2562. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2563. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2565. }
  2566. break;
  2567. #ifndef Z_PROBE_SLED
  2568. case 30: // G30 Single Z Probe
  2569. {
  2570. st_synchronize();
  2571. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2572. setup_for_endstop_move();
  2573. feedrate = homing_feedrate[Z_AXIS];
  2574. run_z_probe();
  2575. SERIAL_PROTOCOLPGM(MSG_BED);
  2576. SERIAL_PROTOCOLPGM(" X: ");
  2577. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2578. SERIAL_PROTOCOLPGM(" Y: ");
  2579. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2580. SERIAL_PROTOCOLPGM(" Z: ");
  2581. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2582. SERIAL_PROTOCOLPGM("\n");
  2583. clean_up_after_endstop_move();
  2584. }
  2585. break;
  2586. #else
  2587. case 31: // dock the sled
  2588. dock_sled(true);
  2589. break;
  2590. case 32: // undock the sled
  2591. dock_sled(false);
  2592. break;
  2593. #endif // Z_PROBE_SLED
  2594. #endif // ENABLE_AUTO_BED_LEVELING
  2595. #ifdef MESH_BED_LEVELING
  2596. case 30: // G30 Single Z Probe
  2597. {
  2598. st_synchronize();
  2599. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2600. setup_for_endstop_move();
  2601. feedrate = homing_feedrate[Z_AXIS];
  2602. find_bed_induction_sensor_point_z(-10.f, 3);
  2603. SERIAL_PROTOCOLRPGM(MSG_BED);
  2604. SERIAL_PROTOCOLPGM(" X: ");
  2605. MYSERIAL.print(current_position[X_AXIS], 5);
  2606. SERIAL_PROTOCOLPGM(" Y: ");
  2607. MYSERIAL.print(current_position[Y_AXIS], 5);
  2608. SERIAL_PROTOCOLPGM(" Z: ");
  2609. MYSERIAL.print(current_position[Z_AXIS], 5);
  2610. SERIAL_PROTOCOLPGM("\n");
  2611. clean_up_after_endstop_move();
  2612. }
  2613. break;
  2614. case 75:
  2615. {
  2616. for (int i = 40; i <= 110; i++) {
  2617. MYSERIAL.print(i);
  2618. MYSERIAL.print(" ");
  2619. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2620. }
  2621. }
  2622. break;
  2623. case 76: //PINDA probe temperature calibration
  2624. {
  2625. #ifdef PINDA_THERMISTOR
  2626. if (true)
  2627. {
  2628. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2629. // We don't know where we are! HOME!
  2630. // Push the commands to the front of the message queue in the reverse order!
  2631. // There shall be always enough space reserved for these commands.
  2632. repeatcommand_front(); // repeat G76 with all its parameters
  2633. enquecommand_front_P((PSTR("G28 W0")));
  2634. break;
  2635. }
  2636. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2637. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2638. float zero_z;
  2639. int z_shift = 0; //unit: steps
  2640. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2641. if (start_temp < 35) start_temp = 35;
  2642. if (start_temp < current_temperature_pinda) start_temp += 5;
  2643. SERIAL_ECHOPGM("start temperature: ");
  2644. MYSERIAL.println(start_temp);
  2645. // setTargetHotend(200, 0);
  2646. setTargetBed(70 + (start_temp - 30));
  2647. custom_message = true;
  2648. custom_message_type = 4;
  2649. custom_message_state = 1;
  2650. custom_message = MSG_TEMP_CALIBRATION;
  2651. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2652. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2653. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2655. st_synchronize();
  2656. while (current_temperature_pinda < start_temp)
  2657. {
  2658. delay_keep_alive(1000);
  2659. serialecho_temperatures();
  2660. }
  2661. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2662. current_position[Z_AXIS] = 5;
  2663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2664. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2665. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2667. st_synchronize();
  2668. find_bed_induction_sensor_point_z(-1.f);
  2669. zero_z = current_position[Z_AXIS];
  2670. //current_position[Z_AXIS]
  2671. SERIAL_ECHOLNPGM("");
  2672. SERIAL_ECHOPGM("ZERO: ");
  2673. MYSERIAL.print(current_position[Z_AXIS]);
  2674. SERIAL_ECHOLNPGM("");
  2675. int i = -1; for (; i < 5; i++)
  2676. {
  2677. float temp = (40 + i * 5);
  2678. SERIAL_ECHOPGM("Step: ");
  2679. MYSERIAL.print(i + 2);
  2680. SERIAL_ECHOLNPGM("/6 (skipped)");
  2681. SERIAL_ECHOPGM("PINDA temperature: ");
  2682. MYSERIAL.print((40 + i*5));
  2683. SERIAL_ECHOPGM(" Z shift (mm):");
  2684. MYSERIAL.print(0);
  2685. SERIAL_ECHOLNPGM("");
  2686. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2687. if (start_temp <= temp) break;
  2688. }
  2689. for (i++; i < 5; i++)
  2690. {
  2691. float temp = (40 + i * 5);
  2692. SERIAL_ECHOPGM("Step: ");
  2693. MYSERIAL.print(i + 2);
  2694. SERIAL_ECHOLNPGM("/6");
  2695. custom_message_state = i + 2;
  2696. setTargetBed(50 + 10 * (temp - 30) / 5);
  2697. // setTargetHotend(255, 0);
  2698. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2699. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2700. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2702. st_synchronize();
  2703. while (current_temperature_pinda < temp)
  2704. {
  2705. delay_keep_alive(1000);
  2706. serialecho_temperatures();
  2707. }
  2708. current_position[Z_AXIS] = 5;
  2709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2710. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2711. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2713. st_synchronize();
  2714. find_bed_induction_sensor_point_z(-1.f);
  2715. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2716. SERIAL_ECHOLNPGM("");
  2717. SERIAL_ECHOPGM("PINDA temperature: ");
  2718. MYSERIAL.print(current_temperature_pinda);
  2719. SERIAL_ECHOPGM(" Z shift (mm):");
  2720. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2721. SERIAL_ECHOLNPGM("");
  2722. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2723. }
  2724. custom_message_type = 0;
  2725. custom_message = false;
  2726. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2727. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2728. disable_x();
  2729. disable_y();
  2730. disable_z();
  2731. disable_e0();
  2732. disable_e1();
  2733. disable_e2();
  2734. setTargetBed(0); //set bed target temperature back to 0
  2735. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2736. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2737. lcd_update_enable(true);
  2738. lcd_update(2);
  2739. break;
  2740. }
  2741. #endif //PINDA_THERMISTOR
  2742. setTargetBed(PINDA_MIN_T);
  2743. float zero_z;
  2744. int z_shift = 0; //unit: steps
  2745. int t_c; // temperature
  2746. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2747. // We don't know where we are! HOME!
  2748. // Push the commands to the front of the message queue in the reverse order!
  2749. // There shall be always enough space reserved for these commands.
  2750. repeatcommand_front(); // repeat G76 with all its parameters
  2751. enquecommand_front_P((PSTR("G28 W0")));
  2752. break;
  2753. }
  2754. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2755. custom_message = true;
  2756. custom_message_type = 4;
  2757. custom_message_state = 1;
  2758. custom_message = MSG_TEMP_CALIBRATION;
  2759. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2760. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2761. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2763. st_synchronize();
  2764. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2765. delay_keep_alive(1000);
  2766. serialecho_temperatures();
  2767. }
  2768. //enquecommand_P(PSTR("M190 S50"));
  2769. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2770. delay_keep_alive(1000);
  2771. serialecho_temperatures();
  2772. }
  2773. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2774. current_position[Z_AXIS] = 5;
  2775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2776. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2777. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2779. st_synchronize();
  2780. find_bed_induction_sensor_point_z(-1.f);
  2781. zero_z = current_position[Z_AXIS];
  2782. //current_position[Z_AXIS]
  2783. SERIAL_ECHOLNPGM("");
  2784. SERIAL_ECHOPGM("ZERO: ");
  2785. MYSERIAL.print(current_position[Z_AXIS]);
  2786. SERIAL_ECHOLNPGM("");
  2787. for (int i = 0; i<5; i++) {
  2788. SERIAL_ECHOPGM("Step: ");
  2789. MYSERIAL.print(i+2);
  2790. SERIAL_ECHOLNPGM("/6");
  2791. custom_message_state = i + 2;
  2792. t_c = 60 + i * 10;
  2793. setTargetBed(t_c);
  2794. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2795. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2796. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2798. st_synchronize();
  2799. while (degBed() < t_c) {
  2800. delay_keep_alive(1000);
  2801. serialecho_temperatures();
  2802. }
  2803. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2804. delay_keep_alive(1000);
  2805. serialecho_temperatures();
  2806. }
  2807. current_position[Z_AXIS] = 5;
  2808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2809. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2810. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2812. st_synchronize();
  2813. find_bed_induction_sensor_point_z(-1.f);
  2814. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2815. SERIAL_ECHOLNPGM("");
  2816. SERIAL_ECHOPGM("Temperature: ");
  2817. MYSERIAL.print(t_c);
  2818. SERIAL_ECHOPGM(" Z shift (mm):");
  2819. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2820. SERIAL_ECHOLNPGM("");
  2821. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2822. }
  2823. custom_message_type = 0;
  2824. custom_message = false;
  2825. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2826. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2827. disable_x();
  2828. disable_y();
  2829. disable_z();
  2830. disable_e0();
  2831. disable_e1();
  2832. disable_e2();
  2833. setTargetBed(0); //set bed target temperature back to 0
  2834. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2835. lcd_update_enable(true);
  2836. lcd_update(2);
  2837. }
  2838. break;
  2839. #ifdef DIS
  2840. case 77:
  2841. {
  2842. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2843. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2844. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2845. float dimension_x = 40;
  2846. float dimension_y = 40;
  2847. int points_x = 40;
  2848. int points_y = 40;
  2849. float offset_x = 74;
  2850. float offset_y = 33;
  2851. if (code_seen('X')) dimension_x = code_value();
  2852. if (code_seen('Y')) dimension_y = code_value();
  2853. if (code_seen('XP')) points_x = code_value();
  2854. if (code_seen('YP')) points_y = code_value();
  2855. if (code_seen('XO')) offset_x = code_value();
  2856. if (code_seen('YO')) offset_y = code_value();
  2857. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2858. } break;
  2859. #endif
  2860. case 79: {
  2861. for (int i = 255; i > 0; i = i - 5) {
  2862. fanSpeed = i;
  2863. //delay_keep_alive(2000);
  2864. for (int j = 0; j < 100; j++) {
  2865. delay_keep_alive(100);
  2866. }
  2867. fan_speed[1];
  2868. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2869. }
  2870. }break;
  2871. /**
  2872. * G80: Mesh-based Z probe, probes a grid and produces a
  2873. * mesh to compensate for variable bed height
  2874. *
  2875. * The S0 report the points as below
  2876. *
  2877. * +----> X-axis
  2878. * |
  2879. * |
  2880. * v Y-axis
  2881. *
  2882. */
  2883. case 80:
  2884. #ifdef MK1BP
  2885. break;
  2886. #endif //MK1BP
  2887. case_G80:
  2888. {
  2889. mesh_bed_leveling_flag = true;
  2890. int8_t verbosity_level = 0;
  2891. static bool run = false;
  2892. if (code_seen('V')) {
  2893. // Just 'V' without a number counts as V1.
  2894. char c = strchr_pointer[1];
  2895. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2896. }
  2897. // Firstly check if we know where we are
  2898. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2899. // We don't know where we are! HOME!
  2900. // Push the commands to the front of the message queue in the reverse order!
  2901. // There shall be always enough space reserved for these commands.
  2902. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2903. repeatcommand_front(); // repeat G80 with all its parameters
  2904. enquecommand_front_P((PSTR("G28 W0")));
  2905. }
  2906. else {
  2907. mesh_bed_leveling_flag = false;
  2908. }
  2909. break;
  2910. }
  2911. bool temp_comp_start = true;
  2912. #ifdef PINDA_THERMISTOR
  2913. temp_comp_start = false;
  2914. #endif //PINDA_THERMISTOR
  2915. if (temp_comp_start)
  2916. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2917. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2918. temp_compensation_start();
  2919. run = true;
  2920. repeatcommand_front(); // repeat G80 with all its parameters
  2921. enquecommand_front_P((PSTR("G28 W0")));
  2922. }
  2923. else {
  2924. mesh_bed_leveling_flag = false;
  2925. }
  2926. break;
  2927. }
  2928. run = false;
  2929. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2930. mesh_bed_leveling_flag = false;
  2931. break;
  2932. }
  2933. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2934. bool custom_message_old = custom_message;
  2935. unsigned int custom_message_type_old = custom_message_type;
  2936. unsigned int custom_message_state_old = custom_message_state;
  2937. custom_message = true;
  2938. custom_message_type = 1;
  2939. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2940. lcd_update(1);
  2941. mbl.reset(); //reset mesh bed leveling
  2942. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2943. // consumed during the first movements following this statement.
  2944. babystep_undo();
  2945. // Cycle through all points and probe them
  2946. // First move up. During this first movement, the babystepping will be reverted.
  2947. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2949. // The move to the first calibration point.
  2950. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2951. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2952. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2953. #ifdef SUPPORT_VERBOSITY
  2954. if (verbosity_level >= 1) {
  2955. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2956. }
  2957. #endif //SUPPORT_VERBOSITY
  2958. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2960. // Wait until the move is finished.
  2961. st_synchronize();
  2962. int mesh_point = 0; //index number of calibration point
  2963. int ix = 0;
  2964. int iy = 0;
  2965. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2966. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2967. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2968. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2969. #ifdef SUPPORT_VERBOSITY
  2970. if (verbosity_level >= 1) {
  2971. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2972. }
  2973. #endif // SUPPORT_VERBOSITY
  2974. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2975. const char *kill_message = NULL;
  2976. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2977. // Get coords of a measuring point.
  2978. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2979. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2980. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2981. float z0 = 0.f;
  2982. if (has_z && mesh_point > 0) {
  2983. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2984. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2985. //#if 0
  2986. #ifdef SUPPORT_VERBOSITY
  2987. if (verbosity_level >= 1) {
  2988. SERIAL_ECHOLNPGM("");
  2989. SERIAL_ECHOPGM("Bed leveling, point: ");
  2990. MYSERIAL.print(mesh_point);
  2991. SERIAL_ECHOPGM(", calibration z: ");
  2992. MYSERIAL.print(z0, 5);
  2993. SERIAL_ECHOLNPGM("");
  2994. }
  2995. #endif // SUPPORT_VERBOSITY
  2996. //#endif
  2997. }
  2998. // Move Z up to MESH_HOME_Z_SEARCH.
  2999. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3001. st_synchronize();
  3002. // Move to XY position of the sensor point.
  3003. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3004. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3005. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3006. #ifdef SUPPORT_VERBOSITY
  3007. if (verbosity_level >= 1) {
  3008. SERIAL_PROTOCOL(mesh_point);
  3009. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3010. }
  3011. #endif // SUPPORT_VERBOSITY
  3012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3013. st_synchronize();
  3014. // Go down until endstop is hit
  3015. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3016. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3017. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3018. break;
  3019. }
  3020. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3021. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3022. break;
  3023. }
  3024. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3025. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3026. break;
  3027. }
  3028. #ifdef SUPPORT_VERBOSITY
  3029. if (verbosity_level >= 10) {
  3030. SERIAL_ECHOPGM("X: ");
  3031. MYSERIAL.print(current_position[X_AXIS], 5);
  3032. SERIAL_ECHOLNPGM("");
  3033. SERIAL_ECHOPGM("Y: ");
  3034. MYSERIAL.print(current_position[Y_AXIS], 5);
  3035. SERIAL_PROTOCOLPGM("\n");
  3036. }
  3037. #endif // SUPPORT_VERBOSITY
  3038. float offset_z = 0;
  3039. #ifdef PINDA_THERMISTOR
  3040. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3041. #endif //PINDA_THERMISTOR
  3042. // #ifdef SUPPORT_VERBOSITY
  3043. /* if (verbosity_level >= 1)
  3044. {
  3045. SERIAL_ECHOPGM("mesh bed leveling: ");
  3046. MYSERIAL.print(current_position[Z_AXIS], 5);
  3047. SERIAL_ECHOPGM(" offset: ");
  3048. MYSERIAL.print(offset_z, 5);
  3049. SERIAL_ECHOLNPGM("");
  3050. }*/
  3051. // #endif // SUPPORT_VERBOSITY
  3052. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3053. custom_message_state--;
  3054. mesh_point++;
  3055. lcd_update(1);
  3056. }
  3057. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3058. #ifdef SUPPORT_VERBOSITY
  3059. if (verbosity_level >= 20) {
  3060. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3061. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3062. MYSERIAL.print(current_position[Z_AXIS], 5);
  3063. }
  3064. #endif // SUPPORT_VERBOSITY
  3065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3066. st_synchronize();
  3067. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3068. kill(kill_message);
  3069. SERIAL_ECHOLNPGM("killed");
  3070. }
  3071. clean_up_after_endstop_move();
  3072. // SERIAL_ECHOLNPGM("clean up finished ");
  3073. bool apply_temp_comp = true;
  3074. #ifdef PINDA_THERMISTOR
  3075. apply_temp_comp = false;
  3076. #endif
  3077. if (apply_temp_comp)
  3078. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3079. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3080. // SERIAL_ECHOLNPGM("babystep applied");
  3081. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3082. #ifdef SUPPORT_VERBOSITY
  3083. if (verbosity_level >= 1) {
  3084. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3085. }
  3086. #endif // SUPPORT_VERBOSITY
  3087. for (uint8_t i = 0; i < 4; ++i) {
  3088. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3089. long correction = 0;
  3090. if (code_seen(codes[i]))
  3091. correction = code_value_long();
  3092. else if (eeprom_bed_correction_valid) {
  3093. unsigned char *addr = (i < 2) ?
  3094. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3095. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3096. correction = eeprom_read_int8(addr);
  3097. }
  3098. if (correction == 0)
  3099. continue;
  3100. float offset = float(correction) * 0.001f;
  3101. if (fabs(offset) > 0.101f) {
  3102. SERIAL_ERROR_START;
  3103. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3104. SERIAL_ECHO(offset);
  3105. SERIAL_ECHOLNPGM(" microns");
  3106. }
  3107. else {
  3108. switch (i) {
  3109. case 0:
  3110. for (uint8_t row = 0; row < 3; ++row) {
  3111. mbl.z_values[row][1] += 0.5f * offset;
  3112. mbl.z_values[row][0] += offset;
  3113. }
  3114. break;
  3115. case 1:
  3116. for (uint8_t row = 0; row < 3; ++row) {
  3117. mbl.z_values[row][1] += 0.5f * offset;
  3118. mbl.z_values[row][2] += offset;
  3119. }
  3120. break;
  3121. case 2:
  3122. for (uint8_t col = 0; col < 3; ++col) {
  3123. mbl.z_values[1][col] += 0.5f * offset;
  3124. mbl.z_values[0][col] += offset;
  3125. }
  3126. break;
  3127. case 3:
  3128. for (uint8_t col = 0; col < 3; ++col) {
  3129. mbl.z_values[1][col] += 0.5f * offset;
  3130. mbl.z_values[2][col] += offset;
  3131. }
  3132. break;
  3133. }
  3134. }
  3135. }
  3136. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3137. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3138. // SERIAL_ECHOLNPGM("Upsample finished");
  3139. mbl.active = 1; //activate mesh bed leveling
  3140. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3141. go_home_with_z_lift();
  3142. // SERIAL_ECHOLNPGM("Go home finished");
  3143. //unretract (after PINDA preheat retraction)
  3144. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3145. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3147. }
  3148. KEEPALIVE_STATE(NOT_BUSY);
  3149. // Restore custom message state
  3150. custom_message = custom_message_old;
  3151. custom_message_type = custom_message_type_old;
  3152. custom_message_state = custom_message_state_old;
  3153. mesh_bed_leveling_flag = false;
  3154. mesh_bed_run_from_menu = false;
  3155. lcd_update(2);
  3156. }
  3157. break;
  3158. /**
  3159. * G81: Print mesh bed leveling status and bed profile if activated
  3160. */
  3161. case 81:
  3162. if (mbl.active) {
  3163. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3164. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3165. SERIAL_PROTOCOLPGM(",");
  3166. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3167. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3168. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3169. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3170. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3171. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3172. SERIAL_PROTOCOLPGM(" ");
  3173. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3174. }
  3175. SERIAL_PROTOCOLPGM("\n");
  3176. }
  3177. }
  3178. else
  3179. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3180. break;
  3181. #if 0
  3182. /**
  3183. * G82: Single Z probe at current location
  3184. *
  3185. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3186. *
  3187. */
  3188. case 82:
  3189. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3190. setup_for_endstop_move();
  3191. find_bed_induction_sensor_point_z();
  3192. clean_up_after_endstop_move();
  3193. SERIAL_PROTOCOLPGM("Bed found at: ");
  3194. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3195. SERIAL_PROTOCOLPGM("\n");
  3196. break;
  3197. /**
  3198. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3199. */
  3200. case 83:
  3201. {
  3202. int babystepz = code_seen('S') ? code_value() : 0;
  3203. int BabyPosition = code_seen('P') ? code_value() : 0;
  3204. if (babystepz != 0) {
  3205. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3206. // Is the axis indexed starting with zero or one?
  3207. if (BabyPosition > 4) {
  3208. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3209. }else{
  3210. // Save it to the eeprom
  3211. babystepLoadZ = babystepz;
  3212. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3213. // adjust the Z
  3214. babystepsTodoZadd(babystepLoadZ);
  3215. }
  3216. }
  3217. }
  3218. break;
  3219. /**
  3220. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3221. */
  3222. case 84:
  3223. babystepsTodoZsubtract(babystepLoadZ);
  3224. // babystepLoadZ = 0;
  3225. break;
  3226. /**
  3227. * G85: Prusa3D specific: Pick best babystep
  3228. */
  3229. case 85:
  3230. lcd_pick_babystep();
  3231. break;
  3232. #endif
  3233. /**
  3234. * G86: Prusa3D specific: Disable babystep correction after home.
  3235. * This G-code will be performed at the start of a calibration script.
  3236. */
  3237. case 86:
  3238. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3239. break;
  3240. /**
  3241. * G87: Prusa3D specific: Enable babystep correction after home
  3242. * This G-code will be performed at the end of a calibration script.
  3243. */
  3244. case 87:
  3245. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3246. break;
  3247. /**
  3248. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3249. */
  3250. case 88:
  3251. break;
  3252. #endif // ENABLE_MESH_BED_LEVELING
  3253. case 90: // G90
  3254. relative_mode = false;
  3255. break;
  3256. case 91: // G91
  3257. relative_mode = true;
  3258. break;
  3259. case 92: // G92
  3260. if(!code_seen(axis_codes[E_AXIS]))
  3261. st_synchronize();
  3262. for(int8_t i=0; i < NUM_AXIS; i++) {
  3263. if(code_seen(axis_codes[i])) {
  3264. if(i == E_AXIS) {
  3265. current_position[i] = code_value();
  3266. plan_set_e_position(current_position[E_AXIS]);
  3267. }
  3268. else {
  3269. current_position[i] = code_value()+add_homing[i];
  3270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3271. }
  3272. }
  3273. }
  3274. break;
  3275. case 98: //activate farm mode
  3276. farm_mode = 1;
  3277. PingTime = millis();
  3278. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3279. break;
  3280. case 99: //deactivate farm mode
  3281. farm_mode = 0;
  3282. lcd_printer_connected();
  3283. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3284. lcd_update(2);
  3285. break;
  3286. default:
  3287. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3288. }
  3289. } // end if(code_seen('G'))
  3290. else if(code_seen('M'))
  3291. {
  3292. int index;
  3293. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3294. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3295. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3296. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3297. } else
  3298. switch((int)code_value())
  3299. {
  3300. #ifdef ULTIPANEL
  3301. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3302. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3303. {
  3304. char *src = strchr_pointer + 2;
  3305. codenum = 0;
  3306. bool hasP = false, hasS = false;
  3307. if (code_seen('P')) {
  3308. codenum = code_value(); // milliseconds to wait
  3309. hasP = codenum > 0;
  3310. }
  3311. if (code_seen('S')) {
  3312. codenum = code_value() * 1000; // seconds to wait
  3313. hasS = codenum > 0;
  3314. }
  3315. starpos = strchr(src, '*');
  3316. if (starpos != NULL) *(starpos) = '\0';
  3317. while (*src == ' ') ++src;
  3318. if (!hasP && !hasS && *src != '\0') {
  3319. lcd_setstatus(src);
  3320. } else {
  3321. LCD_MESSAGERPGM(MSG_USERWAIT);
  3322. }
  3323. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3324. st_synchronize();
  3325. previous_millis_cmd = millis();
  3326. if (codenum > 0){
  3327. codenum += millis(); // keep track of when we started waiting
  3328. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3329. while(millis() < codenum && !lcd_clicked()){
  3330. manage_heater();
  3331. manage_inactivity(true);
  3332. lcd_update();
  3333. }
  3334. KEEPALIVE_STATE(IN_HANDLER);
  3335. lcd_ignore_click(false);
  3336. }else{
  3337. if (!lcd_detected())
  3338. break;
  3339. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3340. while(!lcd_clicked()){
  3341. manage_heater();
  3342. manage_inactivity(true);
  3343. lcd_update();
  3344. }
  3345. KEEPALIVE_STATE(IN_HANDLER);
  3346. }
  3347. if (IS_SD_PRINTING)
  3348. LCD_MESSAGERPGM(MSG_RESUMING);
  3349. else
  3350. LCD_MESSAGERPGM(WELCOME_MSG);
  3351. }
  3352. break;
  3353. #endif
  3354. case 17:
  3355. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3356. enable_x();
  3357. enable_y();
  3358. enable_z();
  3359. enable_e0();
  3360. enable_e1();
  3361. enable_e2();
  3362. break;
  3363. #ifdef SDSUPPORT
  3364. case 20: // M20 - list SD card
  3365. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3366. card.ls();
  3367. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3368. break;
  3369. case 21: // M21 - init SD card
  3370. card.initsd();
  3371. break;
  3372. case 22: //M22 - release SD card
  3373. card.release();
  3374. break;
  3375. case 23: //M23 - Select file
  3376. starpos = (strchr(strchr_pointer + 4,'*'));
  3377. if(starpos!=NULL)
  3378. *(starpos)='\0';
  3379. card.openFile(strchr_pointer + 4,true);
  3380. break;
  3381. case 24: //M24 - Start SD print
  3382. card.startFileprint();
  3383. starttime=millis();
  3384. break;
  3385. case 25: //M25 - Pause SD print
  3386. card.pauseSDPrint();
  3387. break;
  3388. case 26: //M26 - Set SD index
  3389. if(card.cardOK && code_seen('S')) {
  3390. card.setIndex(code_value_long());
  3391. }
  3392. break;
  3393. case 27: //M27 - Get SD status
  3394. card.getStatus();
  3395. break;
  3396. case 28: //M28 - Start SD write
  3397. starpos = (strchr(strchr_pointer + 4,'*'));
  3398. if(starpos != NULL){
  3399. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3400. strchr_pointer = strchr(npos,' ') + 1;
  3401. *(starpos) = '\0';
  3402. }
  3403. card.openFile(strchr_pointer+4,false);
  3404. break;
  3405. case 29: //M29 - Stop SD write
  3406. //processed in write to file routine above
  3407. //card,saving = false;
  3408. break;
  3409. case 30: //M30 <filename> Delete File
  3410. if (card.cardOK){
  3411. card.closefile();
  3412. starpos = (strchr(strchr_pointer + 4,'*'));
  3413. if(starpos != NULL){
  3414. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3415. strchr_pointer = strchr(npos,' ') + 1;
  3416. *(starpos) = '\0';
  3417. }
  3418. card.removeFile(strchr_pointer + 4);
  3419. }
  3420. break;
  3421. case 32: //M32 - Select file and start SD print
  3422. {
  3423. if(card.sdprinting) {
  3424. st_synchronize();
  3425. }
  3426. starpos = (strchr(strchr_pointer + 4,'*'));
  3427. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3428. if(namestartpos==NULL)
  3429. {
  3430. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3431. }
  3432. else
  3433. namestartpos++; //to skip the '!'
  3434. if(starpos!=NULL)
  3435. *(starpos)='\0';
  3436. bool call_procedure=(code_seen('P'));
  3437. if(strchr_pointer>namestartpos)
  3438. call_procedure=false; //false alert, 'P' found within filename
  3439. if( card.cardOK )
  3440. {
  3441. card.openFile(namestartpos,true,!call_procedure);
  3442. if(code_seen('S'))
  3443. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3444. card.setIndex(code_value_long());
  3445. card.startFileprint();
  3446. if(!call_procedure)
  3447. starttime=millis(); //procedure calls count as normal print time.
  3448. }
  3449. } break;
  3450. case 928: //M928 - Start SD write
  3451. starpos = (strchr(strchr_pointer + 5,'*'));
  3452. if(starpos != NULL){
  3453. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3454. strchr_pointer = strchr(npos,' ') + 1;
  3455. *(starpos) = '\0';
  3456. }
  3457. card.openLogFile(strchr_pointer+5);
  3458. break;
  3459. #endif //SDSUPPORT
  3460. case 31: //M31 take time since the start of the SD print or an M109 command
  3461. {
  3462. stoptime=millis();
  3463. char time[30];
  3464. unsigned long t=(stoptime-starttime)/1000;
  3465. int sec,min;
  3466. min=t/60;
  3467. sec=t%60;
  3468. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3469. SERIAL_ECHO_START;
  3470. SERIAL_ECHOLN(time);
  3471. lcd_setstatus(time);
  3472. autotempShutdown();
  3473. }
  3474. break;
  3475. #ifndef _DISABLE_M42_M226
  3476. case 42: //M42 -Change pin status via gcode
  3477. if (code_seen('S'))
  3478. {
  3479. int pin_status = code_value();
  3480. int pin_number = LED_PIN;
  3481. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3482. pin_number = code_value();
  3483. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3484. {
  3485. if (sensitive_pins[i] == pin_number)
  3486. {
  3487. pin_number = -1;
  3488. break;
  3489. }
  3490. }
  3491. #if defined(FAN_PIN) && FAN_PIN > -1
  3492. if (pin_number == FAN_PIN)
  3493. fanSpeed = pin_status;
  3494. #endif
  3495. if (pin_number > -1)
  3496. {
  3497. pinMode(pin_number, OUTPUT);
  3498. digitalWrite(pin_number, pin_status);
  3499. analogWrite(pin_number, pin_status);
  3500. }
  3501. }
  3502. break;
  3503. #endif //_DISABLE_M42_M226
  3504. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3505. // Reset the baby step value and the baby step applied flag.
  3506. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3507. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3508. // Reset the skew and offset in both RAM and EEPROM.
  3509. reset_bed_offset_and_skew();
  3510. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3511. // the planner will not perform any adjustments in the XY plane.
  3512. // Wait for the motors to stop and update the current position with the absolute values.
  3513. world2machine_revert_to_uncorrected();
  3514. break;
  3515. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3516. {
  3517. bool only_Z = code_seen('Z');
  3518. gcode_M45(only_Z);
  3519. }
  3520. break;
  3521. /*
  3522. case 46:
  3523. {
  3524. // M46: Prusa3D: Show the assigned IP address.
  3525. uint8_t ip[4];
  3526. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3527. if (hasIP) {
  3528. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3529. SERIAL_ECHO(int(ip[0]));
  3530. SERIAL_ECHOPGM(".");
  3531. SERIAL_ECHO(int(ip[1]));
  3532. SERIAL_ECHOPGM(".");
  3533. SERIAL_ECHO(int(ip[2]));
  3534. SERIAL_ECHOPGM(".");
  3535. SERIAL_ECHO(int(ip[3]));
  3536. SERIAL_ECHOLNPGM("");
  3537. } else {
  3538. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3539. }
  3540. break;
  3541. }
  3542. */
  3543. case 47:
  3544. // M47: Prusa3D: Show end stops dialog on the display.
  3545. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3546. lcd_diag_show_end_stops();
  3547. KEEPALIVE_STATE(IN_HANDLER);
  3548. break;
  3549. #if 0
  3550. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3551. {
  3552. // Disable the default update procedure of the display. We will do a modal dialog.
  3553. lcd_update_enable(false);
  3554. // Let the planner use the uncorrected coordinates.
  3555. mbl.reset();
  3556. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3557. // the planner will not perform any adjustments in the XY plane.
  3558. // Wait for the motors to stop and update the current position with the absolute values.
  3559. world2machine_revert_to_uncorrected();
  3560. // Move the print head close to the bed.
  3561. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3563. st_synchronize();
  3564. // Home in the XY plane.
  3565. set_destination_to_current();
  3566. setup_for_endstop_move();
  3567. home_xy();
  3568. int8_t verbosity_level = 0;
  3569. if (code_seen('V')) {
  3570. // Just 'V' without a number counts as V1.
  3571. char c = strchr_pointer[1];
  3572. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3573. }
  3574. bool success = scan_bed_induction_points(verbosity_level);
  3575. clean_up_after_endstop_move();
  3576. // Print head up.
  3577. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3579. st_synchronize();
  3580. lcd_update_enable(true);
  3581. break;
  3582. }
  3583. #endif
  3584. // M48 Z-Probe repeatability measurement function.
  3585. //
  3586. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3587. //
  3588. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3589. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3590. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3591. // regenerated.
  3592. //
  3593. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3594. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3595. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3596. //
  3597. #ifdef ENABLE_AUTO_BED_LEVELING
  3598. #ifdef Z_PROBE_REPEATABILITY_TEST
  3599. case 48: // M48 Z-Probe repeatability
  3600. {
  3601. #if Z_MIN_PIN == -1
  3602. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3603. #endif
  3604. double sum=0.0;
  3605. double mean=0.0;
  3606. double sigma=0.0;
  3607. double sample_set[50];
  3608. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3609. double X_current, Y_current, Z_current;
  3610. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3611. if (code_seen('V') || code_seen('v')) {
  3612. verbose_level = code_value();
  3613. if (verbose_level<0 || verbose_level>4 ) {
  3614. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3615. goto Sigma_Exit;
  3616. }
  3617. }
  3618. if (verbose_level > 0) {
  3619. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3620. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3621. }
  3622. if (code_seen('n')) {
  3623. n_samples = code_value();
  3624. if (n_samples<4 || n_samples>50 ) {
  3625. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3626. goto Sigma_Exit;
  3627. }
  3628. }
  3629. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3630. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3631. Z_current = st_get_position_mm(Z_AXIS);
  3632. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3633. ext_position = st_get_position_mm(E_AXIS);
  3634. if (code_seen('X') || code_seen('x') ) {
  3635. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3636. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3637. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3638. goto Sigma_Exit;
  3639. }
  3640. }
  3641. if (code_seen('Y') || code_seen('y') ) {
  3642. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3643. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3644. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3645. goto Sigma_Exit;
  3646. }
  3647. }
  3648. if (code_seen('L') || code_seen('l') ) {
  3649. n_legs = code_value();
  3650. if ( n_legs==1 )
  3651. n_legs = 2;
  3652. if ( n_legs<0 || n_legs>15 ) {
  3653. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3654. goto Sigma_Exit;
  3655. }
  3656. }
  3657. //
  3658. // Do all the preliminary setup work. First raise the probe.
  3659. //
  3660. st_synchronize();
  3661. plan_bed_level_matrix.set_to_identity();
  3662. plan_buffer_line( X_current, Y_current, Z_start_location,
  3663. ext_position,
  3664. homing_feedrate[Z_AXIS]/60,
  3665. active_extruder);
  3666. st_synchronize();
  3667. //
  3668. // Now get everything to the specified probe point So we can safely do a probe to
  3669. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3670. // use that as a starting point for each probe.
  3671. //
  3672. if (verbose_level > 2)
  3673. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3674. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3675. ext_position,
  3676. homing_feedrate[X_AXIS]/60,
  3677. active_extruder);
  3678. st_synchronize();
  3679. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3680. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3681. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3682. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3683. //
  3684. // OK, do the inital probe to get us close to the bed.
  3685. // Then retrace the right amount and use that in subsequent probes
  3686. //
  3687. setup_for_endstop_move();
  3688. run_z_probe();
  3689. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3690. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3691. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3692. ext_position,
  3693. homing_feedrate[X_AXIS]/60,
  3694. active_extruder);
  3695. st_synchronize();
  3696. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3697. for( n=0; n<n_samples; n++) {
  3698. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3699. if ( n_legs) {
  3700. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3701. int rotational_direction, l;
  3702. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3703. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3704. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3705. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3706. //SERIAL_ECHOPAIR(" theta: ",theta);
  3707. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3708. //SERIAL_PROTOCOLLNPGM("");
  3709. for( l=0; l<n_legs-1; l++) {
  3710. if (rotational_direction==1)
  3711. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3712. else
  3713. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3714. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3715. if ( radius<0.0 )
  3716. radius = -radius;
  3717. X_current = X_probe_location + cos(theta) * radius;
  3718. Y_current = Y_probe_location + sin(theta) * radius;
  3719. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3720. X_current = X_MIN_POS;
  3721. if ( X_current>X_MAX_POS)
  3722. X_current = X_MAX_POS;
  3723. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3724. Y_current = Y_MIN_POS;
  3725. if ( Y_current>Y_MAX_POS)
  3726. Y_current = Y_MAX_POS;
  3727. if (verbose_level>3 ) {
  3728. SERIAL_ECHOPAIR("x: ", X_current);
  3729. SERIAL_ECHOPAIR("y: ", Y_current);
  3730. SERIAL_PROTOCOLLNPGM("");
  3731. }
  3732. do_blocking_move_to( X_current, Y_current, Z_current );
  3733. }
  3734. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3735. }
  3736. setup_for_endstop_move();
  3737. run_z_probe();
  3738. sample_set[n] = current_position[Z_AXIS];
  3739. //
  3740. // Get the current mean for the data points we have so far
  3741. //
  3742. sum=0.0;
  3743. for( j=0; j<=n; j++) {
  3744. sum = sum + sample_set[j];
  3745. }
  3746. mean = sum / (double (n+1));
  3747. //
  3748. // Now, use that mean to calculate the standard deviation for the
  3749. // data points we have so far
  3750. //
  3751. sum=0.0;
  3752. for( j=0; j<=n; j++) {
  3753. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3754. }
  3755. sigma = sqrt( sum / (double (n+1)) );
  3756. if (verbose_level > 1) {
  3757. SERIAL_PROTOCOL(n+1);
  3758. SERIAL_PROTOCOL(" of ");
  3759. SERIAL_PROTOCOL(n_samples);
  3760. SERIAL_PROTOCOLPGM(" z: ");
  3761. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3762. }
  3763. if (verbose_level > 2) {
  3764. SERIAL_PROTOCOL(" mean: ");
  3765. SERIAL_PROTOCOL_F(mean,6);
  3766. SERIAL_PROTOCOL(" sigma: ");
  3767. SERIAL_PROTOCOL_F(sigma,6);
  3768. }
  3769. if (verbose_level > 0)
  3770. SERIAL_PROTOCOLPGM("\n");
  3771. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3772. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3773. st_synchronize();
  3774. }
  3775. delay(1000);
  3776. clean_up_after_endstop_move();
  3777. // enable_endstops(true);
  3778. if (verbose_level > 0) {
  3779. SERIAL_PROTOCOLPGM("Mean: ");
  3780. SERIAL_PROTOCOL_F(mean, 6);
  3781. SERIAL_PROTOCOLPGM("\n");
  3782. }
  3783. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3784. SERIAL_PROTOCOL_F(sigma, 6);
  3785. SERIAL_PROTOCOLPGM("\n\n");
  3786. Sigma_Exit:
  3787. break;
  3788. }
  3789. #endif // Z_PROBE_REPEATABILITY_TEST
  3790. #endif // ENABLE_AUTO_BED_LEVELING
  3791. case 104: // M104
  3792. if(setTargetedHotend(104)){
  3793. break;
  3794. }
  3795. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3796. setWatch();
  3797. break;
  3798. case 112: // M112 -Emergency Stop
  3799. kill("", 3);
  3800. break;
  3801. case 140: // M140 set bed temp
  3802. if (code_seen('S')) setTargetBed(code_value());
  3803. break;
  3804. case 105 : // M105
  3805. if(setTargetedHotend(105)){
  3806. break;
  3807. }
  3808. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3809. SERIAL_PROTOCOLPGM("ok T:");
  3810. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3811. SERIAL_PROTOCOLPGM(" /");
  3812. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3813. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3814. SERIAL_PROTOCOLPGM(" B:");
  3815. SERIAL_PROTOCOL_F(degBed(),1);
  3816. SERIAL_PROTOCOLPGM(" /");
  3817. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3818. #endif //TEMP_BED_PIN
  3819. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3820. SERIAL_PROTOCOLPGM(" T");
  3821. SERIAL_PROTOCOL(cur_extruder);
  3822. SERIAL_PROTOCOLPGM(":");
  3823. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3824. SERIAL_PROTOCOLPGM(" /");
  3825. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3826. }
  3827. #else
  3828. SERIAL_ERROR_START;
  3829. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3830. #endif
  3831. SERIAL_PROTOCOLPGM(" @:");
  3832. #ifdef EXTRUDER_WATTS
  3833. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3834. SERIAL_PROTOCOLPGM("W");
  3835. #else
  3836. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3837. #endif
  3838. SERIAL_PROTOCOLPGM(" B@:");
  3839. #ifdef BED_WATTS
  3840. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3841. SERIAL_PROTOCOLPGM("W");
  3842. #else
  3843. SERIAL_PROTOCOL(getHeaterPower(-1));
  3844. #endif
  3845. #ifdef PINDA_THERMISTOR
  3846. SERIAL_PROTOCOLPGM(" P:");
  3847. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3848. #endif //PINDA_THERMISTOR
  3849. #ifdef AMBIENT_THERMISTOR
  3850. SERIAL_PROTOCOLPGM(" A:");
  3851. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3852. #endif //AMBIENT_THERMISTOR
  3853. #ifdef SHOW_TEMP_ADC_VALUES
  3854. {float raw = 0.0;
  3855. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3856. SERIAL_PROTOCOLPGM(" ADC B:");
  3857. SERIAL_PROTOCOL_F(degBed(),1);
  3858. SERIAL_PROTOCOLPGM("C->");
  3859. raw = rawBedTemp();
  3860. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3861. SERIAL_PROTOCOLPGM(" Rb->");
  3862. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3863. SERIAL_PROTOCOLPGM(" Rxb->");
  3864. SERIAL_PROTOCOL_F(raw, 5);
  3865. #endif
  3866. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3867. SERIAL_PROTOCOLPGM(" T");
  3868. SERIAL_PROTOCOL(cur_extruder);
  3869. SERIAL_PROTOCOLPGM(":");
  3870. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3871. SERIAL_PROTOCOLPGM("C->");
  3872. raw = rawHotendTemp(cur_extruder);
  3873. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3874. SERIAL_PROTOCOLPGM(" Rt");
  3875. SERIAL_PROTOCOL(cur_extruder);
  3876. SERIAL_PROTOCOLPGM("->");
  3877. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3878. SERIAL_PROTOCOLPGM(" Rx");
  3879. SERIAL_PROTOCOL(cur_extruder);
  3880. SERIAL_PROTOCOLPGM("->");
  3881. SERIAL_PROTOCOL_F(raw, 5);
  3882. }}
  3883. #endif
  3884. SERIAL_PROTOCOLLN("");
  3885. KEEPALIVE_STATE(NOT_BUSY);
  3886. return;
  3887. break;
  3888. case 109:
  3889. {// M109 - Wait for extruder heater to reach target.
  3890. if(setTargetedHotend(109)){
  3891. break;
  3892. }
  3893. LCD_MESSAGERPGM(MSG_HEATING);
  3894. heating_status = 1;
  3895. if (farm_mode) { prusa_statistics(1); };
  3896. #ifdef AUTOTEMP
  3897. autotemp_enabled=false;
  3898. #endif
  3899. if (code_seen('S')) {
  3900. setTargetHotend(code_value(), tmp_extruder);
  3901. CooldownNoWait = true;
  3902. } else if (code_seen('R')) {
  3903. setTargetHotend(code_value(), tmp_extruder);
  3904. CooldownNoWait = false;
  3905. }
  3906. #ifdef AUTOTEMP
  3907. if (code_seen('S')) autotemp_min=code_value();
  3908. if (code_seen('B')) autotemp_max=code_value();
  3909. if (code_seen('F'))
  3910. {
  3911. autotemp_factor=code_value();
  3912. autotemp_enabled=true;
  3913. }
  3914. #endif
  3915. setWatch();
  3916. codenum = millis();
  3917. /* See if we are heating up or cooling down */
  3918. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3919. KEEPALIVE_STATE(NOT_BUSY);
  3920. cancel_heatup = false;
  3921. wait_for_heater(codenum); //loops until target temperature is reached
  3922. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3923. KEEPALIVE_STATE(IN_HANDLER);
  3924. heating_status = 2;
  3925. if (farm_mode) { prusa_statistics(2); };
  3926. //starttime=millis();
  3927. previous_millis_cmd = millis();
  3928. }
  3929. break;
  3930. case 190: // M190 - Wait for bed heater to reach target.
  3931. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3932. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3933. heating_status = 3;
  3934. if (farm_mode) { prusa_statistics(1); };
  3935. if (code_seen('S'))
  3936. {
  3937. setTargetBed(code_value());
  3938. CooldownNoWait = true;
  3939. }
  3940. else if (code_seen('R'))
  3941. {
  3942. setTargetBed(code_value());
  3943. CooldownNoWait = false;
  3944. }
  3945. codenum = millis();
  3946. cancel_heatup = false;
  3947. target_direction = isHeatingBed(); // true if heating, false if cooling
  3948. KEEPALIVE_STATE(NOT_BUSY);
  3949. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3950. {
  3951. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3952. {
  3953. if (!farm_mode) {
  3954. float tt = degHotend(active_extruder);
  3955. SERIAL_PROTOCOLPGM("T:");
  3956. SERIAL_PROTOCOL(tt);
  3957. SERIAL_PROTOCOLPGM(" E:");
  3958. SERIAL_PROTOCOL((int)active_extruder);
  3959. SERIAL_PROTOCOLPGM(" B:");
  3960. SERIAL_PROTOCOL_F(degBed(), 1);
  3961. SERIAL_PROTOCOLLN("");
  3962. }
  3963. codenum = millis();
  3964. }
  3965. manage_heater();
  3966. manage_inactivity();
  3967. lcd_update();
  3968. }
  3969. LCD_MESSAGERPGM(MSG_BED_DONE);
  3970. KEEPALIVE_STATE(IN_HANDLER);
  3971. heating_status = 4;
  3972. previous_millis_cmd = millis();
  3973. #endif
  3974. break;
  3975. #if defined(FAN_PIN) && FAN_PIN > -1
  3976. case 106: //M106 Fan On
  3977. if (code_seen('S')){
  3978. fanSpeed=constrain(code_value(),0,255);
  3979. }
  3980. else {
  3981. fanSpeed=255;
  3982. }
  3983. break;
  3984. case 107: //M107 Fan Off
  3985. fanSpeed = 0;
  3986. break;
  3987. #endif //FAN_PIN
  3988. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3989. case 80: // M80 - Turn on Power Supply
  3990. SET_OUTPUT(PS_ON_PIN); //GND
  3991. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3992. // If you have a switch on suicide pin, this is useful
  3993. // if you want to start another print with suicide feature after
  3994. // a print without suicide...
  3995. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3996. SET_OUTPUT(SUICIDE_PIN);
  3997. WRITE(SUICIDE_PIN, HIGH);
  3998. #endif
  3999. #ifdef ULTIPANEL
  4000. powersupply = true;
  4001. LCD_MESSAGERPGM(WELCOME_MSG);
  4002. lcd_update();
  4003. #endif
  4004. break;
  4005. #endif
  4006. case 81: // M81 - Turn off Power Supply
  4007. disable_heater();
  4008. st_synchronize();
  4009. disable_e0();
  4010. disable_e1();
  4011. disable_e2();
  4012. finishAndDisableSteppers();
  4013. fanSpeed = 0;
  4014. delay(1000); // Wait a little before to switch off
  4015. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4016. st_synchronize();
  4017. suicide();
  4018. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4019. SET_OUTPUT(PS_ON_PIN);
  4020. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4021. #endif
  4022. #ifdef ULTIPANEL
  4023. powersupply = false;
  4024. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4025. /*
  4026. MACHNAME = "Prusa i3"
  4027. MSGOFF = "Vypnuto"
  4028. "Prusai3"" ""vypnuto""."
  4029. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4030. */
  4031. lcd_update();
  4032. #endif
  4033. break;
  4034. case 82:
  4035. axis_relative_modes[3] = false;
  4036. break;
  4037. case 83:
  4038. axis_relative_modes[3] = true;
  4039. break;
  4040. case 18: //compatibility
  4041. case 84: // M84
  4042. if(code_seen('S')){
  4043. stepper_inactive_time = code_value() * 1000;
  4044. }
  4045. else
  4046. {
  4047. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4048. if(all_axis)
  4049. {
  4050. st_synchronize();
  4051. disable_e0();
  4052. disable_e1();
  4053. disable_e2();
  4054. finishAndDisableSteppers();
  4055. }
  4056. else
  4057. {
  4058. st_synchronize();
  4059. if (code_seen('X')) disable_x();
  4060. if (code_seen('Y')) disable_y();
  4061. if (code_seen('Z')) disable_z();
  4062. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4063. if (code_seen('E')) {
  4064. disable_e0();
  4065. disable_e1();
  4066. disable_e2();
  4067. }
  4068. #endif
  4069. }
  4070. }
  4071. snmm_filaments_used = 0;
  4072. break;
  4073. case 85: // M85
  4074. if(code_seen('S')) {
  4075. max_inactive_time = code_value() * 1000;
  4076. }
  4077. break;
  4078. case 92: // M92
  4079. for(int8_t i=0; i < NUM_AXIS; i++)
  4080. {
  4081. if(code_seen(axis_codes[i]))
  4082. {
  4083. if(i == 3) { // E
  4084. float value = code_value();
  4085. if(value < 20.0) {
  4086. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4087. max_jerk[E_AXIS] *= factor;
  4088. max_feedrate[i] *= factor;
  4089. axis_steps_per_sqr_second[i] *= factor;
  4090. }
  4091. axis_steps_per_unit[i] = value;
  4092. }
  4093. else {
  4094. axis_steps_per_unit[i] = code_value();
  4095. }
  4096. }
  4097. }
  4098. break;
  4099. case 110: // M110 - reset line pos
  4100. if (code_seen('N'))
  4101. gcode_LastN = code_value_long();
  4102. break;
  4103. #ifdef HOST_KEEPALIVE_FEATURE
  4104. case 113: // M113 - Get or set Host Keepalive interval
  4105. if (code_seen('S')) {
  4106. host_keepalive_interval = (uint8_t)code_value_short();
  4107. // NOMORE(host_keepalive_interval, 60);
  4108. }
  4109. else {
  4110. SERIAL_ECHO_START;
  4111. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4112. SERIAL_PROTOCOLLN("");
  4113. }
  4114. break;
  4115. #endif
  4116. case 115: // M115
  4117. if (code_seen('V')) {
  4118. // Report the Prusa version number.
  4119. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4120. } else if (code_seen('U')) {
  4121. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4122. // pause the print and ask the user to upgrade the firmware.
  4123. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4124. } else {
  4125. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4126. }
  4127. break;
  4128. /* case 117: // M117 display message
  4129. starpos = (strchr(strchr_pointer + 5,'*'));
  4130. if(starpos!=NULL)
  4131. *(starpos)='\0';
  4132. lcd_setstatus(strchr_pointer + 5);
  4133. break;*/
  4134. case 114: // M114
  4135. SERIAL_PROTOCOLPGM("X:");
  4136. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4137. SERIAL_PROTOCOLPGM(" Y:");
  4138. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4139. SERIAL_PROTOCOLPGM(" Z:");
  4140. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4141. SERIAL_PROTOCOLPGM(" E:");
  4142. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4143. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4144. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4145. SERIAL_PROTOCOLPGM(" Y:");
  4146. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4147. SERIAL_PROTOCOLPGM(" Z:");
  4148. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4149. SERIAL_PROTOCOLPGM(" E:");
  4150. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4151. SERIAL_PROTOCOLLN("");
  4152. break;
  4153. case 120: // M120
  4154. enable_endstops(false) ;
  4155. break;
  4156. case 121: // M121
  4157. enable_endstops(true) ;
  4158. break;
  4159. case 119: // M119
  4160. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4161. SERIAL_PROTOCOLLN("");
  4162. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4163. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4164. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4165. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4166. }else{
  4167. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4168. }
  4169. SERIAL_PROTOCOLLN("");
  4170. #endif
  4171. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4172. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4173. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4174. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4175. }else{
  4176. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4177. }
  4178. SERIAL_PROTOCOLLN("");
  4179. #endif
  4180. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4181. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4182. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4183. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4184. }else{
  4185. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4186. }
  4187. SERIAL_PROTOCOLLN("");
  4188. #endif
  4189. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4190. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4191. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4192. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4193. }else{
  4194. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4195. }
  4196. SERIAL_PROTOCOLLN("");
  4197. #endif
  4198. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4199. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4200. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4201. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4202. }else{
  4203. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4204. }
  4205. SERIAL_PROTOCOLLN("");
  4206. #endif
  4207. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4208. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4209. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4210. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4211. }else{
  4212. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4213. }
  4214. SERIAL_PROTOCOLLN("");
  4215. #endif
  4216. break;
  4217. //TODO: update for all axis, use for loop
  4218. #ifdef BLINKM
  4219. case 150: // M150
  4220. {
  4221. byte red;
  4222. byte grn;
  4223. byte blu;
  4224. if(code_seen('R')) red = code_value();
  4225. if(code_seen('U')) grn = code_value();
  4226. if(code_seen('B')) blu = code_value();
  4227. SendColors(red,grn,blu);
  4228. }
  4229. break;
  4230. #endif //BLINKM
  4231. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4232. {
  4233. tmp_extruder = active_extruder;
  4234. if(code_seen('T')) {
  4235. tmp_extruder = code_value();
  4236. if(tmp_extruder >= EXTRUDERS) {
  4237. SERIAL_ECHO_START;
  4238. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4239. break;
  4240. }
  4241. }
  4242. float area = .0;
  4243. if(code_seen('D')) {
  4244. float diameter = (float)code_value();
  4245. if (diameter == 0.0) {
  4246. // setting any extruder filament size disables volumetric on the assumption that
  4247. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4248. // for all extruders
  4249. volumetric_enabled = false;
  4250. } else {
  4251. filament_size[tmp_extruder] = (float)code_value();
  4252. // make sure all extruders have some sane value for the filament size
  4253. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4254. #if EXTRUDERS > 1
  4255. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4256. #if EXTRUDERS > 2
  4257. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4258. #endif
  4259. #endif
  4260. volumetric_enabled = true;
  4261. }
  4262. } else {
  4263. //reserved for setting filament diameter via UFID or filament measuring device
  4264. break;
  4265. }
  4266. calculate_volumetric_multipliers();
  4267. }
  4268. break;
  4269. case 201: // M201
  4270. for(int8_t i=0; i < NUM_AXIS; i++)
  4271. {
  4272. if(code_seen(axis_codes[i]))
  4273. {
  4274. max_acceleration_units_per_sq_second[i] = code_value();
  4275. }
  4276. }
  4277. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4278. reset_acceleration_rates();
  4279. break;
  4280. #if 0 // Not used for Sprinter/grbl gen6
  4281. case 202: // M202
  4282. for(int8_t i=0; i < NUM_AXIS; i++) {
  4283. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4284. }
  4285. break;
  4286. #endif
  4287. case 203: // M203 max feedrate mm/sec
  4288. for(int8_t i=0; i < NUM_AXIS; i++) {
  4289. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4290. }
  4291. break;
  4292. case 204: // M204 acclereration S normal moves T filmanent only moves
  4293. {
  4294. if(code_seen('S')) acceleration = code_value() ;
  4295. if(code_seen('T')) retract_acceleration = code_value() ;
  4296. }
  4297. break;
  4298. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4299. {
  4300. if(code_seen('S')) minimumfeedrate = code_value();
  4301. if(code_seen('T')) mintravelfeedrate = code_value();
  4302. if(code_seen('B')) minsegmenttime = code_value() ;
  4303. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4304. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4305. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4306. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4307. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4308. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4309. }
  4310. break;
  4311. case 206: // M206 additional homing offset
  4312. for(int8_t i=0; i < 3; i++)
  4313. {
  4314. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4315. }
  4316. break;
  4317. #ifdef FWRETRACT
  4318. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4319. {
  4320. if(code_seen('S'))
  4321. {
  4322. retract_length = code_value() ;
  4323. }
  4324. if(code_seen('F'))
  4325. {
  4326. retract_feedrate = code_value()/60 ;
  4327. }
  4328. if(code_seen('Z'))
  4329. {
  4330. retract_zlift = code_value() ;
  4331. }
  4332. }break;
  4333. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4334. {
  4335. if(code_seen('S'))
  4336. {
  4337. retract_recover_length = code_value() ;
  4338. }
  4339. if(code_seen('F'))
  4340. {
  4341. retract_recover_feedrate = code_value()/60 ;
  4342. }
  4343. }break;
  4344. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4345. {
  4346. if(code_seen('S'))
  4347. {
  4348. int t= code_value() ;
  4349. switch(t)
  4350. {
  4351. case 0:
  4352. {
  4353. autoretract_enabled=false;
  4354. retracted[0]=false;
  4355. #if EXTRUDERS > 1
  4356. retracted[1]=false;
  4357. #endif
  4358. #if EXTRUDERS > 2
  4359. retracted[2]=false;
  4360. #endif
  4361. }break;
  4362. case 1:
  4363. {
  4364. autoretract_enabled=true;
  4365. retracted[0]=false;
  4366. #if EXTRUDERS > 1
  4367. retracted[1]=false;
  4368. #endif
  4369. #if EXTRUDERS > 2
  4370. retracted[2]=false;
  4371. #endif
  4372. }break;
  4373. default:
  4374. SERIAL_ECHO_START;
  4375. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4376. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4377. SERIAL_ECHOLNPGM("\"(1)");
  4378. }
  4379. }
  4380. }break;
  4381. #endif // FWRETRACT
  4382. #if EXTRUDERS > 1
  4383. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4384. {
  4385. if(setTargetedHotend(218)){
  4386. break;
  4387. }
  4388. if(code_seen('X'))
  4389. {
  4390. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4391. }
  4392. if(code_seen('Y'))
  4393. {
  4394. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4395. }
  4396. SERIAL_ECHO_START;
  4397. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4398. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4399. {
  4400. SERIAL_ECHO(" ");
  4401. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4402. SERIAL_ECHO(",");
  4403. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4404. }
  4405. SERIAL_ECHOLN("");
  4406. }break;
  4407. #endif
  4408. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4409. {
  4410. if(code_seen('S'))
  4411. {
  4412. feedmultiply = code_value() ;
  4413. }
  4414. }
  4415. break;
  4416. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4417. {
  4418. if(code_seen('S'))
  4419. {
  4420. int tmp_code = code_value();
  4421. if (code_seen('T'))
  4422. {
  4423. if(setTargetedHotend(221)){
  4424. break;
  4425. }
  4426. extruder_multiply[tmp_extruder] = tmp_code;
  4427. }
  4428. else
  4429. {
  4430. extrudemultiply = tmp_code ;
  4431. }
  4432. }
  4433. }
  4434. break;
  4435. #ifndef _DISABLE_M42_M226
  4436. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4437. {
  4438. if(code_seen('P')){
  4439. int pin_number = code_value(); // pin number
  4440. int pin_state = -1; // required pin state - default is inverted
  4441. if(code_seen('S')) pin_state = code_value(); // required pin state
  4442. if(pin_state >= -1 && pin_state <= 1){
  4443. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4444. {
  4445. if (sensitive_pins[i] == pin_number)
  4446. {
  4447. pin_number = -1;
  4448. break;
  4449. }
  4450. }
  4451. if (pin_number > -1)
  4452. {
  4453. int target = LOW;
  4454. st_synchronize();
  4455. pinMode(pin_number, INPUT);
  4456. switch(pin_state){
  4457. case 1:
  4458. target = HIGH;
  4459. break;
  4460. case 0:
  4461. target = LOW;
  4462. break;
  4463. case -1:
  4464. target = !digitalRead(pin_number);
  4465. break;
  4466. }
  4467. while(digitalRead(pin_number) != target){
  4468. manage_heater();
  4469. manage_inactivity();
  4470. lcd_update();
  4471. }
  4472. }
  4473. }
  4474. }
  4475. }
  4476. break;
  4477. #endif //_DISABLE_M42_M226
  4478. #if NUM_SERVOS > 0
  4479. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4480. {
  4481. int servo_index = -1;
  4482. int servo_position = 0;
  4483. if (code_seen('P'))
  4484. servo_index = code_value();
  4485. if (code_seen('S')) {
  4486. servo_position = code_value();
  4487. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4488. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4489. servos[servo_index].attach(0);
  4490. #endif
  4491. servos[servo_index].write(servo_position);
  4492. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4493. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4494. servos[servo_index].detach();
  4495. #endif
  4496. }
  4497. else {
  4498. SERIAL_ECHO_START;
  4499. SERIAL_ECHO("Servo ");
  4500. SERIAL_ECHO(servo_index);
  4501. SERIAL_ECHOLN(" out of range");
  4502. }
  4503. }
  4504. else if (servo_index >= 0) {
  4505. SERIAL_PROTOCOL(MSG_OK);
  4506. SERIAL_PROTOCOL(" Servo ");
  4507. SERIAL_PROTOCOL(servo_index);
  4508. SERIAL_PROTOCOL(": ");
  4509. SERIAL_PROTOCOL(servos[servo_index].read());
  4510. SERIAL_PROTOCOLLN("");
  4511. }
  4512. }
  4513. break;
  4514. #endif // NUM_SERVOS > 0
  4515. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4516. case 300: // M300
  4517. {
  4518. int beepS = code_seen('S') ? code_value() : 110;
  4519. int beepP = code_seen('P') ? code_value() : 1000;
  4520. if (beepS > 0)
  4521. {
  4522. #if BEEPER > 0
  4523. tone(BEEPER, beepS);
  4524. delay(beepP);
  4525. noTone(BEEPER);
  4526. #elif defined(ULTRALCD)
  4527. lcd_buzz(beepS, beepP);
  4528. #elif defined(LCD_USE_I2C_BUZZER)
  4529. lcd_buzz(beepP, beepS);
  4530. #endif
  4531. }
  4532. else
  4533. {
  4534. delay(beepP);
  4535. }
  4536. }
  4537. break;
  4538. #endif // M300
  4539. #ifdef PIDTEMP
  4540. case 301: // M301
  4541. {
  4542. if(code_seen('P')) Kp = code_value();
  4543. if(code_seen('I')) Ki = scalePID_i(code_value());
  4544. if(code_seen('D')) Kd = scalePID_d(code_value());
  4545. #ifdef PID_ADD_EXTRUSION_RATE
  4546. if(code_seen('C')) Kc = code_value();
  4547. #endif
  4548. updatePID();
  4549. SERIAL_PROTOCOLRPGM(MSG_OK);
  4550. SERIAL_PROTOCOL(" p:");
  4551. SERIAL_PROTOCOL(Kp);
  4552. SERIAL_PROTOCOL(" i:");
  4553. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4554. SERIAL_PROTOCOL(" d:");
  4555. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4556. #ifdef PID_ADD_EXTRUSION_RATE
  4557. SERIAL_PROTOCOL(" c:");
  4558. //Kc does not have scaling applied above, or in resetting defaults
  4559. SERIAL_PROTOCOL(Kc);
  4560. #endif
  4561. SERIAL_PROTOCOLLN("");
  4562. }
  4563. break;
  4564. #endif //PIDTEMP
  4565. #ifdef PIDTEMPBED
  4566. case 304: // M304
  4567. {
  4568. if(code_seen('P')) bedKp = code_value();
  4569. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4570. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4571. updatePID();
  4572. SERIAL_PROTOCOLRPGM(MSG_OK);
  4573. SERIAL_PROTOCOL(" p:");
  4574. SERIAL_PROTOCOL(bedKp);
  4575. SERIAL_PROTOCOL(" i:");
  4576. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4577. SERIAL_PROTOCOL(" d:");
  4578. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4579. SERIAL_PROTOCOLLN("");
  4580. }
  4581. break;
  4582. #endif //PIDTEMP
  4583. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4584. {
  4585. #ifdef CHDK
  4586. SET_OUTPUT(CHDK);
  4587. WRITE(CHDK, HIGH);
  4588. chdkHigh = millis();
  4589. chdkActive = true;
  4590. #else
  4591. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4592. const uint8_t NUM_PULSES=16;
  4593. const float PULSE_LENGTH=0.01524;
  4594. for(int i=0; i < NUM_PULSES; i++) {
  4595. WRITE(PHOTOGRAPH_PIN, HIGH);
  4596. _delay_ms(PULSE_LENGTH);
  4597. WRITE(PHOTOGRAPH_PIN, LOW);
  4598. _delay_ms(PULSE_LENGTH);
  4599. }
  4600. delay(7.33);
  4601. for(int i=0; i < NUM_PULSES; i++) {
  4602. WRITE(PHOTOGRAPH_PIN, HIGH);
  4603. _delay_ms(PULSE_LENGTH);
  4604. WRITE(PHOTOGRAPH_PIN, LOW);
  4605. _delay_ms(PULSE_LENGTH);
  4606. }
  4607. #endif
  4608. #endif //chdk end if
  4609. }
  4610. break;
  4611. #ifdef DOGLCD
  4612. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4613. {
  4614. if (code_seen('C')) {
  4615. lcd_setcontrast( ((int)code_value())&63 );
  4616. }
  4617. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4618. SERIAL_PROTOCOL(lcd_contrast);
  4619. SERIAL_PROTOCOLLN("");
  4620. }
  4621. break;
  4622. #endif
  4623. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4624. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4625. {
  4626. float temp = .0;
  4627. if (code_seen('S')) temp=code_value();
  4628. set_extrude_min_temp(temp);
  4629. }
  4630. break;
  4631. #endif
  4632. case 303: // M303 PID autotune
  4633. {
  4634. float temp = 150.0;
  4635. int e=0;
  4636. int c=5;
  4637. if (code_seen('E')) e=code_value();
  4638. if (e<0)
  4639. temp=70;
  4640. if (code_seen('S')) temp=code_value();
  4641. if (code_seen('C')) c=code_value();
  4642. PID_autotune(temp, e, c);
  4643. }
  4644. break;
  4645. case 400: // M400 finish all moves
  4646. {
  4647. st_synchronize();
  4648. }
  4649. break;
  4650. #ifdef FILAMENT_SENSOR
  4651. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4652. {
  4653. #if (FILWIDTH_PIN > -1)
  4654. if(code_seen('N')) filament_width_nominal=code_value();
  4655. else{
  4656. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4657. SERIAL_PROTOCOLLN(filament_width_nominal);
  4658. }
  4659. #endif
  4660. }
  4661. break;
  4662. case 405: //M405 Turn on filament sensor for control
  4663. {
  4664. if(code_seen('D')) meas_delay_cm=code_value();
  4665. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4666. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4667. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4668. {
  4669. int temp_ratio = widthFil_to_size_ratio();
  4670. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4671. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4672. }
  4673. delay_index1=0;
  4674. delay_index2=0;
  4675. }
  4676. filament_sensor = true ;
  4677. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4678. //SERIAL_PROTOCOL(filament_width_meas);
  4679. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4680. //SERIAL_PROTOCOL(extrudemultiply);
  4681. }
  4682. break;
  4683. case 406: //M406 Turn off filament sensor for control
  4684. {
  4685. filament_sensor = false ;
  4686. }
  4687. break;
  4688. case 407: //M407 Display measured filament diameter
  4689. {
  4690. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4691. SERIAL_PROTOCOLLN(filament_width_meas);
  4692. }
  4693. break;
  4694. #endif
  4695. case 500: // M500 Store settings in EEPROM
  4696. {
  4697. Config_StoreSettings(EEPROM_OFFSET);
  4698. }
  4699. break;
  4700. case 501: // M501 Read settings from EEPROM
  4701. {
  4702. Config_RetrieveSettings(EEPROM_OFFSET);
  4703. }
  4704. break;
  4705. case 502: // M502 Revert to default settings
  4706. {
  4707. Config_ResetDefault();
  4708. }
  4709. break;
  4710. case 503: // M503 print settings currently in memory
  4711. {
  4712. Config_PrintSettings();
  4713. }
  4714. break;
  4715. case 509: //M509 Force language selection
  4716. {
  4717. lcd_force_language_selection();
  4718. SERIAL_ECHO_START;
  4719. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4720. }
  4721. break;
  4722. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4723. case 540:
  4724. {
  4725. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4726. }
  4727. break;
  4728. #endif
  4729. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4730. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4731. {
  4732. float value;
  4733. if (code_seen('Z'))
  4734. {
  4735. value = code_value();
  4736. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4737. {
  4738. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4739. SERIAL_ECHO_START;
  4740. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4741. SERIAL_PROTOCOLLN("");
  4742. }
  4743. else
  4744. {
  4745. SERIAL_ECHO_START;
  4746. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4747. SERIAL_ECHORPGM(MSG_Z_MIN);
  4748. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4749. SERIAL_ECHORPGM(MSG_Z_MAX);
  4750. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4751. SERIAL_PROTOCOLLN("");
  4752. }
  4753. }
  4754. else
  4755. {
  4756. SERIAL_ECHO_START;
  4757. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4758. SERIAL_ECHO(-zprobe_zoffset);
  4759. SERIAL_PROTOCOLLN("");
  4760. }
  4761. break;
  4762. }
  4763. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4764. #ifdef FILAMENTCHANGEENABLE
  4765. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4766. {
  4767. bool old_fsensor_enabled = fsensor_enabled;
  4768. fsensor_enabled = false; //temporary solution for unexpected restarting
  4769. st_synchronize();
  4770. float target[4];
  4771. float lastpos[4];
  4772. if (farm_mode)
  4773. {
  4774. prusa_statistics(22);
  4775. }
  4776. feedmultiplyBckp=feedmultiply;
  4777. int8_t TooLowZ = 0;
  4778. float HotendTempBckp = degTargetHotend(active_extruder);
  4779. int fanSpeedBckp = fanSpeed;
  4780. target[X_AXIS]=current_position[X_AXIS];
  4781. target[Y_AXIS]=current_position[Y_AXIS];
  4782. target[Z_AXIS]=current_position[Z_AXIS];
  4783. target[E_AXIS]=current_position[E_AXIS];
  4784. lastpos[X_AXIS]=current_position[X_AXIS];
  4785. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4786. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4787. lastpos[E_AXIS]=current_position[E_AXIS];
  4788. //Restract extruder
  4789. if(code_seen('E'))
  4790. {
  4791. target[E_AXIS]+= code_value();
  4792. }
  4793. else
  4794. {
  4795. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4796. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4797. #endif
  4798. }
  4799. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4800. //Lift Z
  4801. if(code_seen('Z'))
  4802. {
  4803. target[Z_AXIS]+= code_value();
  4804. }
  4805. else
  4806. {
  4807. #ifdef FILAMENTCHANGE_ZADD
  4808. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4809. if(target[Z_AXIS] < 10){
  4810. target[Z_AXIS]+= 10 ;
  4811. TooLowZ = 1;
  4812. }else{
  4813. TooLowZ = 0;
  4814. }
  4815. #endif
  4816. }
  4817. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4818. //Move XY to side
  4819. if(code_seen('X'))
  4820. {
  4821. target[X_AXIS]+= code_value();
  4822. }
  4823. else
  4824. {
  4825. #ifdef FILAMENTCHANGE_XPOS
  4826. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4827. #endif
  4828. }
  4829. if(code_seen('Y'))
  4830. {
  4831. target[Y_AXIS]= code_value();
  4832. }
  4833. else
  4834. {
  4835. #ifdef FILAMENTCHANGE_YPOS
  4836. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4837. #endif
  4838. }
  4839. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4840. st_synchronize();
  4841. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4842. uint8_t cnt = 0;
  4843. int counterBeep = 0;
  4844. fanSpeed = 0;
  4845. unsigned long waiting_start_time = millis();
  4846. uint8_t wait_for_user_state = 0;
  4847. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4848. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4849. //cnt++;
  4850. manage_heater();
  4851. manage_inactivity(true);
  4852. /*#ifdef SNMM
  4853. target[E_AXIS] += 0.002;
  4854. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4855. #endif // SNMM*/
  4856. //if (cnt == 0)
  4857. {
  4858. #if BEEPER > 0
  4859. if (counterBeep == 500) {
  4860. counterBeep = 0;
  4861. }
  4862. SET_OUTPUT(BEEPER);
  4863. if (counterBeep == 0) {
  4864. WRITE(BEEPER, HIGH);
  4865. }
  4866. if (counterBeep == 20) {
  4867. WRITE(BEEPER, LOW);
  4868. }
  4869. counterBeep++;
  4870. #else
  4871. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4872. lcd_buzz(1000 / 6, 100);
  4873. #else
  4874. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4875. #endif
  4876. #endif
  4877. }
  4878. switch (wait_for_user_state) {
  4879. case 0:
  4880. delay_keep_alive(4);
  4881. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4882. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4883. wait_for_user_state = 1;
  4884. setTargetHotend(0, 0);
  4885. setTargetHotend(0, 1);
  4886. setTargetHotend(0, 2);
  4887. st_synchronize();
  4888. disable_e0();
  4889. disable_e1();
  4890. disable_e2();
  4891. }
  4892. break;
  4893. case 1:
  4894. delay_keep_alive(4);
  4895. if (lcd_clicked()) {
  4896. setTargetHotend(HotendTempBckp, active_extruder);
  4897. lcd_wait_for_heater();
  4898. wait_for_user_state = 2;
  4899. }
  4900. break;
  4901. case 2:
  4902. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4903. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4904. waiting_start_time = millis();
  4905. wait_for_user_state = 0;
  4906. }
  4907. else {
  4908. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4909. lcd.setCursor(1, 4);
  4910. lcd.print(ftostr3(degHotend(active_extruder)));
  4911. }
  4912. break;
  4913. }
  4914. }
  4915. WRITE(BEEPER, LOW);
  4916. lcd_change_fil_state = 0;
  4917. // Unload filament
  4918. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4919. KEEPALIVE_STATE(IN_HANDLER);
  4920. custom_message = true;
  4921. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4922. if (code_seen('L'))
  4923. {
  4924. target[E_AXIS] += code_value();
  4925. }
  4926. else
  4927. {
  4928. #ifdef SNMM
  4929. #else
  4930. #ifdef FILAMENTCHANGE_FINALRETRACT
  4931. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4932. #endif
  4933. #endif // SNMM
  4934. }
  4935. #ifdef SNMM
  4936. target[E_AXIS] += 12;
  4937. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4938. target[E_AXIS] += 6;
  4939. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4940. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4941. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4942. st_synchronize();
  4943. target[E_AXIS] += (FIL_COOLING);
  4944. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4945. target[E_AXIS] += (FIL_COOLING*-1);
  4946. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4947. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4948. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4949. st_synchronize();
  4950. #else
  4951. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4952. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4953. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4954. target[E_AXIS] -= 45;
  4955. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4956. st_synchronize();
  4957. target[E_AXIS] -= 15;
  4958. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4959. st_synchronize();
  4960. target[E_AXIS] -= 20;
  4961. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4962. st_synchronize();
  4963. #endif // SNMM
  4964. //finish moves
  4965. st_synchronize();
  4966. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  4967. //disable extruder steppers so filament can be removed
  4968. disable_e0();
  4969. disable_e1();
  4970. disable_e2();
  4971. delay(100);
  4972. WRITE(BEEPER, HIGH);
  4973. counterBeep = 0;
  4974. while(!lcd_clicked() && (counterBeep < 50)) {
  4975. if(counterBeep > 5) WRITE(BEEPER, LOW);
  4976. delay_keep_alive(100);
  4977. counterBeep++;
  4978. }
  4979. WRITE(BEEPER, LOW);
  4980. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4981. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  4982. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  4983. //lcd_return_to_status();
  4984. lcd_update_enable(true);
  4985. //Wait for user to insert filament
  4986. lcd_wait_interact();
  4987. //load_filament_time = millis();
  4988. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4989. #ifdef PAT9125
  4990. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  4991. #endif //PAT9125
  4992. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  4993. while(!lcd_clicked())
  4994. {
  4995. manage_heater();
  4996. manage_inactivity(true);
  4997. #ifdef PAT9125
  4998. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  4999. {
  5000. tone(BEEPER, 1000);
  5001. delay_keep_alive(50);
  5002. noTone(BEEPER);
  5003. break;
  5004. }
  5005. #endif //PAT9125
  5006. /*#ifdef SNMM
  5007. target[E_AXIS] += 0.002;
  5008. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5009. #endif // SNMM*/
  5010. }
  5011. #ifdef PAT9125
  5012. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5013. #endif //PAT9125
  5014. //WRITE(BEEPER, LOW);
  5015. KEEPALIVE_STATE(IN_HANDLER);
  5016. #ifdef SNMM
  5017. display_loading();
  5018. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5019. do {
  5020. target[E_AXIS] += 0.002;
  5021. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5022. delay_keep_alive(2);
  5023. } while (!lcd_clicked());
  5024. KEEPALIVE_STATE(IN_HANDLER);
  5025. /*if (millis() - load_filament_time > 2) {
  5026. load_filament_time = millis();
  5027. target[E_AXIS] += 0.001;
  5028. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5029. }*/
  5030. //Filament inserted
  5031. //Feed the filament to the end of nozzle quickly
  5032. st_synchronize();
  5033. target[E_AXIS] += bowden_length[snmm_extruder];
  5034. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5035. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5036. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5037. target[E_AXIS] += 40;
  5038. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5039. target[E_AXIS] += 10;
  5040. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5041. #else
  5042. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5043. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5044. #endif // SNMM
  5045. //Extrude some filament
  5046. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5048. //Wait for user to check the state
  5049. lcd_change_fil_state = 0;
  5050. lcd_loading_filament();
  5051. tone(BEEPER, 500);
  5052. delay_keep_alive(50);
  5053. noTone(BEEPER);
  5054. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5055. lcd_change_fil_state = 0;
  5056. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5057. lcd_alright();
  5058. KEEPALIVE_STATE(IN_HANDLER);
  5059. switch(lcd_change_fil_state){
  5060. // Filament failed to load so load it again
  5061. case 2:
  5062. #ifdef SNMM
  5063. display_loading();
  5064. do {
  5065. target[E_AXIS] += 0.002;
  5066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5067. delay_keep_alive(2);
  5068. } while (!lcd_clicked());
  5069. st_synchronize();
  5070. target[E_AXIS] += bowden_length[snmm_extruder];
  5071. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5072. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5074. target[E_AXIS] += 40;
  5075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5076. target[E_AXIS] += 10;
  5077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5078. #else
  5079. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5081. #endif
  5082. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5083. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5084. lcd_loading_filament();
  5085. break;
  5086. // Filament loaded properly but color is not clear
  5087. case 3:
  5088. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5089. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5090. lcd_loading_color();
  5091. break;
  5092. // Everything good
  5093. default:
  5094. lcd_change_success();
  5095. lcd_update_enable(true);
  5096. break;
  5097. }
  5098. }
  5099. //Not let's go back to print
  5100. fanSpeed = fanSpeedBckp;
  5101. //Feed a little of filament to stabilize pressure
  5102. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5103. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5104. //Retract
  5105. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5107. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5108. //Move XY back
  5109. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5110. //Move Z back
  5111. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5112. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5113. //Unretract
  5114. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5115. //Set E position to original
  5116. plan_set_e_position(lastpos[E_AXIS]);
  5117. //Recover feed rate
  5118. feedmultiply=feedmultiplyBckp;
  5119. char cmd[9];
  5120. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5121. enquecommand(cmd);
  5122. lcd_setstatuspgm(WELCOME_MSG);
  5123. custom_message = false;
  5124. custom_message_type = 0;
  5125. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5126. #ifdef PAT9125
  5127. if (fsensor_M600)
  5128. {
  5129. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5130. st_synchronize();
  5131. while (!is_buffer_empty())
  5132. {
  5133. process_commands();
  5134. cmdqueue_pop_front();
  5135. }
  5136. fsensor_enable();
  5137. fsensor_restore_print_and_continue();
  5138. }
  5139. #endif //PAT9125
  5140. }
  5141. break;
  5142. #endif //FILAMENTCHANGEENABLE
  5143. case 601: {
  5144. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5145. }
  5146. break;
  5147. case 602: {
  5148. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5149. }
  5150. break;
  5151. #ifdef LIN_ADVANCE
  5152. case 900: // M900: Set LIN_ADVANCE options.
  5153. gcode_M900();
  5154. break;
  5155. #endif
  5156. case 907: // M907 Set digital trimpot motor current using axis codes.
  5157. {
  5158. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5159. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5160. if(code_seen('B')) digipot_current(4,code_value());
  5161. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5162. #endif
  5163. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5164. if(code_seen('X')) digipot_current(0, code_value());
  5165. #endif
  5166. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5167. if(code_seen('Z')) digipot_current(1, code_value());
  5168. #endif
  5169. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5170. if(code_seen('E')) digipot_current(2, code_value());
  5171. #endif
  5172. #ifdef DIGIPOT_I2C
  5173. // this one uses actual amps in floating point
  5174. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5175. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5176. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5177. #endif
  5178. }
  5179. break;
  5180. case 908: // M908 Control digital trimpot directly.
  5181. {
  5182. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5183. uint8_t channel,current;
  5184. if(code_seen('P')) channel=code_value();
  5185. if(code_seen('S')) current=code_value();
  5186. digitalPotWrite(channel, current);
  5187. #endif
  5188. }
  5189. break;
  5190. case 910: // M910 TMC2130 init
  5191. {
  5192. tmc2130_init();
  5193. }
  5194. break;
  5195. case 911: // M911 Set TMC2130 holding currents
  5196. {
  5197. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5198. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5199. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5200. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5201. }
  5202. break;
  5203. case 912: // M912 Set TMC2130 running currents
  5204. {
  5205. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5206. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5207. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5208. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5209. }
  5210. break;
  5211. case 913: // M913 Print TMC2130 currents
  5212. {
  5213. tmc2130_print_currents();
  5214. }
  5215. break;
  5216. case 914: // M914 Set normal mode
  5217. {
  5218. tmc2130_mode = TMC2130_MODE_NORMAL;
  5219. tmc2130_init();
  5220. }
  5221. break;
  5222. case 915: // M915 Set silent mode
  5223. {
  5224. tmc2130_mode = TMC2130_MODE_SILENT;
  5225. tmc2130_init();
  5226. }
  5227. break;
  5228. case 916: // M916 Set sg_thrs
  5229. {
  5230. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5231. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5232. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5233. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5234. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5235. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5236. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5237. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5238. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5239. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5240. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5241. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5242. }
  5243. break;
  5244. case 917: // M917 Set TMC2130 pwm_ampl
  5245. {
  5246. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5247. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5248. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5249. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5250. }
  5251. break;
  5252. case 918: // M918 Set TMC2130 pwm_grad
  5253. {
  5254. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5255. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5256. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5257. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5258. }
  5259. break;
  5260. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5261. {
  5262. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5263. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5264. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5265. if(code_seen('B')) microstep_mode(4,code_value());
  5266. microstep_readings();
  5267. #endif
  5268. }
  5269. break;
  5270. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5271. {
  5272. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5273. if(code_seen('S')) switch((int)code_value())
  5274. {
  5275. case 1:
  5276. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5277. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5278. break;
  5279. case 2:
  5280. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5281. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5282. break;
  5283. }
  5284. microstep_readings();
  5285. #endif
  5286. }
  5287. break;
  5288. case 701: //M701: load filament
  5289. {
  5290. gcode_M701();
  5291. }
  5292. break;
  5293. case 702:
  5294. {
  5295. #ifdef SNMM
  5296. if (code_seen('U')) {
  5297. extr_unload_used(); //unload all filaments which were used in current print
  5298. }
  5299. else if (code_seen('C')) {
  5300. extr_unload(); //unload just current filament
  5301. }
  5302. else {
  5303. extr_unload_all(); //unload all filaments
  5304. }
  5305. #else
  5306. bool old_fsensor_enabled = fsensor_enabled;
  5307. fsensor_enabled = false;
  5308. custom_message = true;
  5309. custom_message_type = 2;
  5310. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5311. // extr_unload2();
  5312. current_position[E_AXIS] -= 45;
  5313. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5314. st_synchronize();
  5315. current_position[E_AXIS] -= 15;
  5316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5317. st_synchronize();
  5318. current_position[E_AXIS] -= 20;
  5319. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5320. st_synchronize();
  5321. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5322. //disable extruder steppers so filament can be removed
  5323. disable_e0();
  5324. disable_e1();
  5325. disable_e2();
  5326. delay(100);
  5327. WRITE(BEEPER, HIGH);
  5328. uint8_t counterBeep = 0;
  5329. while (!lcd_clicked() && (counterBeep < 50)) {
  5330. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5331. delay_keep_alive(100);
  5332. counterBeep++;
  5333. }
  5334. WRITE(BEEPER, LOW);
  5335. st_synchronize();
  5336. while (lcd_clicked()) delay_keep_alive(100);
  5337. lcd_update_enable(true);
  5338. lcd_setstatuspgm(WELCOME_MSG);
  5339. custom_message = false;
  5340. custom_message_type = 0;
  5341. fsensor_enabled = old_fsensor_enabled;
  5342. #endif
  5343. }
  5344. break;
  5345. case 999: // M999: Restart after being stopped
  5346. Stopped = false;
  5347. lcd_reset_alert_level();
  5348. gcode_LastN = Stopped_gcode_LastN;
  5349. FlushSerialRequestResend();
  5350. break;
  5351. default:
  5352. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5353. }
  5354. } // end if(code_seen('M')) (end of M codes)
  5355. else if(code_seen('T'))
  5356. {
  5357. int index;
  5358. st_synchronize();
  5359. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5360. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5361. SERIAL_ECHOLNPGM("Invalid T code.");
  5362. }
  5363. else {
  5364. if (*(strchr_pointer + index) == '?') {
  5365. tmp_extruder = choose_extruder_menu();
  5366. }
  5367. else {
  5368. tmp_extruder = code_value();
  5369. }
  5370. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5371. #ifdef SNMM
  5372. #ifdef LIN_ADVANCE
  5373. if (snmm_extruder != tmp_extruder)
  5374. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5375. #endif
  5376. snmm_extruder = tmp_extruder;
  5377. delay(100);
  5378. disable_e0();
  5379. disable_e1();
  5380. disable_e2();
  5381. pinMode(E_MUX0_PIN, OUTPUT);
  5382. pinMode(E_MUX1_PIN, OUTPUT);
  5383. pinMode(E_MUX2_PIN, OUTPUT);
  5384. delay(100);
  5385. SERIAL_ECHO_START;
  5386. SERIAL_ECHO("T:");
  5387. SERIAL_ECHOLN((int)tmp_extruder);
  5388. switch (tmp_extruder) {
  5389. case 1:
  5390. WRITE(E_MUX0_PIN, HIGH);
  5391. WRITE(E_MUX1_PIN, LOW);
  5392. WRITE(E_MUX2_PIN, LOW);
  5393. break;
  5394. case 2:
  5395. WRITE(E_MUX0_PIN, LOW);
  5396. WRITE(E_MUX1_PIN, HIGH);
  5397. WRITE(E_MUX2_PIN, LOW);
  5398. break;
  5399. case 3:
  5400. WRITE(E_MUX0_PIN, HIGH);
  5401. WRITE(E_MUX1_PIN, HIGH);
  5402. WRITE(E_MUX2_PIN, LOW);
  5403. break;
  5404. default:
  5405. WRITE(E_MUX0_PIN, LOW);
  5406. WRITE(E_MUX1_PIN, LOW);
  5407. WRITE(E_MUX2_PIN, LOW);
  5408. break;
  5409. }
  5410. delay(100);
  5411. #else
  5412. if (tmp_extruder >= EXTRUDERS) {
  5413. SERIAL_ECHO_START;
  5414. SERIAL_ECHOPGM("T");
  5415. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5416. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5417. }
  5418. else {
  5419. boolean make_move = false;
  5420. if (code_seen('F')) {
  5421. make_move = true;
  5422. next_feedrate = code_value();
  5423. if (next_feedrate > 0.0) {
  5424. feedrate = next_feedrate;
  5425. }
  5426. }
  5427. #if EXTRUDERS > 1
  5428. if (tmp_extruder != active_extruder) {
  5429. // Save current position to return to after applying extruder offset
  5430. memcpy(destination, current_position, sizeof(destination));
  5431. // Offset extruder (only by XY)
  5432. int i;
  5433. for (i = 0; i < 2; i++) {
  5434. current_position[i] = current_position[i] -
  5435. extruder_offset[i][active_extruder] +
  5436. extruder_offset[i][tmp_extruder];
  5437. }
  5438. // Set the new active extruder and position
  5439. active_extruder = tmp_extruder;
  5440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5441. // Move to the old position if 'F' was in the parameters
  5442. if (make_move && Stopped == false) {
  5443. prepare_move();
  5444. }
  5445. }
  5446. #endif
  5447. SERIAL_ECHO_START;
  5448. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5449. SERIAL_PROTOCOLLN((int)active_extruder);
  5450. }
  5451. #endif
  5452. }
  5453. } // end if(code_seen('T')) (end of T codes)
  5454. #ifdef DEBUG_DCODES
  5455. else if (code_seen('D')) // D codes (debug)
  5456. {
  5457. switch((int)code_value())
  5458. {
  5459. case -1: // D-1 - Endless loop
  5460. dcode__1(); break;
  5461. case 0: // D0 - Reset
  5462. dcode_0(); break;
  5463. case 1: // D1 - Clear EEPROM
  5464. dcode_1(); break;
  5465. case 2: // D2 - Read/Write RAM
  5466. dcode_2(); break;
  5467. case 3: // D3 - Read/Write EEPROM
  5468. dcode_3(); break;
  5469. case 4: // D4 - Read/Write PIN
  5470. dcode_4(); break;
  5471. case 5: // D5 - Read/Write FLASH
  5472. // dcode_5(); break;
  5473. break;
  5474. case 6: // D6 - Read/Write external FLASH
  5475. dcode_6(); break;
  5476. case 7: // D7 - Read/Write Bootloader
  5477. dcode_7(); break;
  5478. case 8: // D8 - Read/Write PINDA
  5479. dcode_8(); break;
  5480. case 9: // D9 - Read/Write ADC
  5481. dcode_9(); break;
  5482. case 10: // D10 - XYZ calibration = OK
  5483. dcode_10(); break;
  5484. case 12: //D12 - Reset failstat counters
  5485. dcode_12(); break;
  5486. case 2130: // D9125 - TMC2130
  5487. dcode_2130(); break;
  5488. case 9125: // D9125 - PAT9125
  5489. dcode_9125(); break;
  5490. }
  5491. }
  5492. #endif //DEBUG_DCODES
  5493. else
  5494. {
  5495. SERIAL_ECHO_START;
  5496. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5497. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5498. SERIAL_ECHOLNPGM("\"(2)");
  5499. }
  5500. KEEPALIVE_STATE(NOT_BUSY);
  5501. ClearToSend();
  5502. }
  5503. void FlushSerialRequestResend()
  5504. {
  5505. //char cmdbuffer[bufindr][100]="Resend:";
  5506. MYSERIAL.flush();
  5507. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5508. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5509. previous_millis_cmd = millis();
  5510. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5511. }
  5512. // Confirm the execution of a command, if sent from a serial line.
  5513. // Execution of a command from a SD card will not be confirmed.
  5514. void ClearToSend()
  5515. {
  5516. previous_millis_cmd = millis();
  5517. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5518. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5519. }
  5520. void get_coordinates()
  5521. {
  5522. bool seen[4]={false,false,false,false};
  5523. for(int8_t i=0; i < NUM_AXIS; i++) {
  5524. if(code_seen(axis_codes[i]))
  5525. {
  5526. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5527. seen[i]=true;
  5528. }
  5529. else destination[i] = current_position[i]; //Are these else lines really needed?
  5530. }
  5531. if(code_seen('F')) {
  5532. next_feedrate = code_value();
  5533. #ifdef MAX_SILENT_FEEDRATE
  5534. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5535. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5536. #endif //MAX_SILENT_FEEDRATE
  5537. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5538. }
  5539. }
  5540. void get_arc_coordinates()
  5541. {
  5542. #ifdef SF_ARC_FIX
  5543. bool relative_mode_backup = relative_mode;
  5544. relative_mode = true;
  5545. #endif
  5546. get_coordinates();
  5547. #ifdef SF_ARC_FIX
  5548. relative_mode=relative_mode_backup;
  5549. #endif
  5550. if(code_seen('I')) {
  5551. offset[0] = code_value();
  5552. }
  5553. else {
  5554. offset[0] = 0.0;
  5555. }
  5556. if(code_seen('J')) {
  5557. offset[1] = code_value();
  5558. }
  5559. else {
  5560. offset[1] = 0.0;
  5561. }
  5562. }
  5563. void clamp_to_software_endstops(float target[3])
  5564. {
  5565. #ifdef DEBUG_DISABLE_SWLIMITS
  5566. return;
  5567. #endif //DEBUG_DISABLE_SWLIMITS
  5568. world2machine_clamp(target[0], target[1]);
  5569. // Clamp the Z coordinate.
  5570. if (min_software_endstops) {
  5571. float negative_z_offset = 0;
  5572. #ifdef ENABLE_AUTO_BED_LEVELING
  5573. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5574. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5575. #endif
  5576. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5577. }
  5578. if (max_software_endstops) {
  5579. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5580. }
  5581. }
  5582. #ifdef MESH_BED_LEVELING
  5583. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5584. float dx = x - current_position[X_AXIS];
  5585. float dy = y - current_position[Y_AXIS];
  5586. float dz = z - current_position[Z_AXIS];
  5587. int n_segments = 0;
  5588. if (mbl.active) {
  5589. float len = abs(dx) + abs(dy);
  5590. if (len > 0)
  5591. // Split to 3cm segments or shorter.
  5592. n_segments = int(ceil(len / 30.f));
  5593. }
  5594. if (n_segments > 1) {
  5595. float de = e - current_position[E_AXIS];
  5596. for (int i = 1; i < n_segments; ++ i) {
  5597. float t = float(i) / float(n_segments);
  5598. plan_buffer_line(
  5599. current_position[X_AXIS] + t * dx,
  5600. current_position[Y_AXIS] + t * dy,
  5601. current_position[Z_AXIS] + t * dz,
  5602. current_position[E_AXIS] + t * de,
  5603. feed_rate, extruder);
  5604. }
  5605. }
  5606. // The rest of the path.
  5607. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5608. current_position[X_AXIS] = x;
  5609. current_position[Y_AXIS] = y;
  5610. current_position[Z_AXIS] = z;
  5611. current_position[E_AXIS] = e;
  5612. }
  5613. #endif // MESH_BED_LEVELING
  5614. void prepare_move()
  5615. {
  5616. clamp_to_software_endstops(destination);
  5617. previous_millis_cmd = millis();
  5618. // Do not use feedmultiply for E or Z only moves
  5619. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5621. }
  5622. else {
  5623. #ifdef MESH_BED_LEVELING
  5624. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5625. #else
  5626. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5627. #endif
  5628. }
  5629. for(int8_t i=0; i < NUM_AXIS; i++) {
  5630. current_position[i] = destination[i];
  5631. }
  5632. }
  5633. void prepare_arc_move(char isclockwise) {
  5634. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5635. // Trace the arc
  5636. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5637. // As far as the parser is concerned, the position is now == target. In reality the
  5638. // motion control system might still be processing the action and the real tool position
  5639. // in any intermediate location.
  5640. for(int8_t i=0; i < NUM_AXIS; i++) {
  5641. current_position[i] = destination[i];
  5642. }
  5643. previous_millis_cmd = millis();
  5644. }
  5645. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5646. #if defined(FAN_PIN)
  5647. #if CONTROLLERFAN_PIN == FAN_PIN
  5648. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5649. #endif
  5650. #endif
  5651. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5652. unsigned long lastMotorCheck = 0;
  5653. void controllerFan()
  5654. {
  5655. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5656. {
  5657. lastMotorCheck = millis();
  5658. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5659. #if EXTRUDERS > 2
  5660. || !READ(E2_ENABLE_PIN)
  5661. #endif
  5662. #if EXTRUDER > 1
  5663. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5664. || !READ(X2_ENABLE_PIN)
  5665. #endif
  5666. || !READ(E1_ENABLE_PIN)
  5667. #endif
  5668. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5669. {
  5670. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5671. }
  5672. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5673. {
  5674. digitalWrite(CONTROLLERFAN_PIN, 0);
  5675. analogWrite(CONTROLLERFAN_PIN, 0);
  5676. }
  5677. else
  5678. {
  5679. // allows digital or PWM fan output to be used (see M42 handling)
  5680. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5681. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5682. }
  5683. }
  5684. }
  5685. #endif
  5686. #ifdef TEMP_STAT_LEDS
  5687. static bool blue_led = false;
  5688. static bool red_led = false;
  5689. static uint32_t stat_update = 0;
  5690. void handle_status_leds(void) {
  5691. float max_temp = 0.0;
  5692. if(millis() > stat_update) {
  5693. stat_update += 500; // Update every 0.5s
  5694. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5695. max_temp = max(max_temp, degHotend(cur_extruder));
  5696. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5697. }
  5698. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5699. max_temp = max(max_temp, degTargetBed());
  5700. max_temp = max(max_temp, degBed());
  5701. #endif
  5702. if((max_temp > 55.0) && (red_led == false)) {
  5703. digitalWrite(STAT_LED_RED, 1);
  5704. digitalWrite(STAT_LED_BLUE, 0);
  5705. red_led = true;
  5706. blue_led = false;
  5707. }
  5708. if((max_temp < 54.0) && (blue_led == false)) {
  5709. digitalWrite(STAT_LED_RED, 0);
  5710. digitalWrite(STAT_LED_BLUE, 1);
  5711. red_led = false;
  5712. blue_led = true;
  5713. }
  5714. }
  5715. }
  5716. #endif
  5717. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5718. {
  5719. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5720. {
  5721. if (fsensor_autoload_enabled)
  5722. {
  5723. if (fsensor_check_autoload())
  5724. {
  5725. if (degHotend0() > EXTRUDE_MINTEMP)
  5726. {
  5727. fsensor_autoload_check_stop();
  5728. tone(BEEPER, 1000);
  5729. delay_keep_alive(50);
  5730. noTone(BEEPER);
  5731. loading_flag = true;
  5732. enquecommand_front_P((PSTR("M701")));
  5733. }
  5734. else
  5735. {
  5736. lcd_update_enable(false);
  5737. lcd_implementation_clear();
  5738. lcd.setCursor(0, 0);
  5739. lcd_printPGM(MSG_ERROR);
  5740. lcd.setCursor(0, 2);
  5741. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5742. delay(2000);
  5743. lcd_implementation_clear();
  5744. lcd_update_enable(true);
  5745. }
  5746. }
  5747. }
  5748. else
  5749. fsensor_autoload_check_start();
  5750. }
  5751. else
  5752. if (fsensor_autoload_enabled)
  5753. fsensor_autoload_check_stop();
  5754. #if defined(KILL_PIN) && KILL_PIN > -1
  5755. static int killCount = 0; // make the inactivity button a bit less responsive
  5756. const int KILL_DELAY = 10000;
  5757. #endif
  5758. if(buflen < (BUFSIZE-1)){
  5759. get_command();
  5760. }
  5761. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5762. if(max_inactive_time)
  5763. kill("", 4);
  5764. if(stepper_inactive_time) {
  5765. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5766. {
  5767. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5768. disable_x();
  5769. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5770. disable_y();
  5771. disable_z();
  5772. disable_e0();
  5773. disable_e1();
  5774. disable_e2();
  5775. }
  5776. }
  5777. }
  5778. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5779. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5780. {
  5781. chdkActive = false;
  5782. WRITE(CHDK, LOW);
  5783. }
  5784. #endif
  5785. #if defined(KILL_PIN) && KILL_PIN > -1
  5786. // Check if the kill button was pressed and wait just in case it was an accidental
  5787. // key kill key press
  5788. // -------------------------------------------------------------------------------
  5789. if( 0 == READ(KILL_PIN) )
  5790. {
  5791. killCount++;
  5792. }
  5793. else if (killCount > 0)
  5794. {
  5795. killCount--;
  5796. }
  5797. // Exceeded threshold and we can confirm that it was not accidental
  5798. // KILL the machine
  5799. // ----------------------------------------------------------------
  5800. if ( killCount >= KILL_DELAY)
  5801. {
  5802. kill("", 5);
  5803. }
  5804. #endif
  5805. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5806. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5807. #endif
  5808. #ifdef EXTRUDER_RUNOUT_PREVENT
  5809. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5810. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5811. {
  5812. bool oldstatus=READ(E0_ENABLE_PIN);
  5813. enable_e0();
  5814. float oldepos=current_position[E_AXIS];
  5815. float oldedes=destination[E_AXIS];
  5816. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5817. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5818. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5819. current_position[E_AXIS]=oldepos;
  5820. destination[E_AXIS]=oldedes;
  5821. plan_set_e_position(oldepos);
  5822. previous_millis_cmd=millis();
  5823. st_synchronize();
  5824. WRITE(E0_ENABLE_PIN,oldstatus);
  5825. }
  5826. #endif
  5827. #ifdef TEMP_STAT_LEDS
  5828. handle_status_leds();
  5829. #endif
  5830. check_axes_activity();
  5831. }
  5832. void kill(const char *full_screen_message, unsigned char id)
  5833. {
  5834. SERIAL_ECHOPGM("KILL: ");
  5835. MYSERIAL.println(int(id));
  5836. //return;
  5837. cli(); // Stop interrupts
  5838. disable_heater();
  5839. disable_x();
  5840. // SERIAL_ECHOLNPGM("kill - disable Y");
  5841. disable_y();
  5842. disable_z();
  5843. disable_e0();
  5844. disable_e1();
  5845. disable_e2();
  5846. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5847. pinMode(PS_ON_PIN,INPUT);
  5848. #endif
  5849. SERIAL_ERROR_START;
  5850. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5851. if (full_screen_message != NULL) {
  5852. SERIAL_ERRORLNRPGM(full_screen_message);
  5853. lcd_display_message_fullscreen_P(full_screen_message);
  5854. } else {
  5855. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5856. }
  5857. // FMC small patch to update the LCD before ending
  5858. sei(); // enable interrupts
  5859. for ( int i=5; i--; lcd_update())
  5860. {
  5861. delay(200);
  5862. }
  5863. cli(); // disable interrupts
  5864. suicide();
  5865. while(1)
  5866. {
  5867. wdt_reset();
  5868. /* Intentionally left empty */
  5869. } // Wait for reset
  5870. }
  5871. void Stop()
  5872. {
  5873. disable_heater();
  5874. if(Stopped == false) {
  5875. Stopped = true;
  5876. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5877. SERIAL_ERROR_START;
  5878. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5879. LCD_MESSAGERPGM(MSG_STOPPED);
  5880. }
  5881. }
  5882. bool IsStopped() { return Stopped; };
  5883. #ifdef FAST_PWM_FAN
  5884. void setPwmFrequency(uint8_t pin, int val)
  5885. {
  5886. val &= 0x07;
  5887. switch(digitalPinToTimer(pin))
  5888. {
  5889. #if defined(TCCR0A)
  5890. case TIMER0A:
  5891. case TIMER0B:
  5892. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5893. // TCCR0B |= val;
  5894. break;
  5895. #endif
  5896. #if defined(TCCR1A)
  5897. case TIMER1A:
  5898. case TIMER1B:
  5899. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5900. // TCCR1B |= val;
  5901. break;
  5902. #endif
  5903. #if defined(TCCR2)
  5904. case TIMER2:
  5905. case TIMER2:
  5906. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5907. TCCR2 |= val;
  5908. break;
  5909. #endif
  5910. #if defined(TCCR2A)
  5911. case TIMER2A:
  5912. case TIMER2B:
  5913. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5914. TCCR2B |= val;
  5915. break;
  5916. #endif
  5917. #if defined(TCCR3A)
  5918. case TIMER3A:
  5919. case TIMER3B:
  5920. case TIMER3C:
  5921. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5922. TCCR3B |= val;
  5923. break;
  5924. #endif
  5925. #if defined(TCCR4A)
  5926. case TIMER4A:
  5927. case TIMER4B:
  5928. case TIMER4C:
  5929. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5930. TCCR4B |= val;
  5931. break;
  5932. #endif
  5933. #if defined(TCCR5A)
  5934. case TIMER5A:
  5935. case TIMER5B:
  5936. case TIMER5C:
  5937. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5938. TCCR5B |= val;
  5939. break;
  5940. #endif
  5941. }
  5942. }
  5943. #endif //FAST_PWM_FAN
  5944. bool setTargetedHotend(int code){
  5945. tmp_extruder = active_extruder;
  5946. if(code_seen('T')) {
  5947. tmp_extruder = code_value();
  5948. if(tmp_extruder >= EXTRUDERS) {
  5949. SERIAL_ECHO_START;
  5950. switch(code){
  5951. case 104:
  5952. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5953. break;
  5954. case 105:
  5955. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5956. break;
  5957. case 109:
  5958. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5959. break;
  5960. case 218:
  5961. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5962. break;
  5963. case 221:
  5964. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5965. break;
  5966. }
  5967. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5968. return true;
  5969. }
  5970. }
  5971. return false;
  5972. }
  5973. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5974. {
  5975. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5976. {
  5977. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5978. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5979. }
  5980. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5981. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5982. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5983. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5984. total_filament_used = 0;
  5985. }
  5986. float calculate_volumetric_multiplier(float diameter) {
  5987. float area = .0;
  5988. float radius = .0;
  5989. radius = diameter * .5;
  5990. if (! volumetric_enabled || radius == 0) {
  5991. area = 1;
  5992. }
  5993. else {
  5994. area = M_PI * pow(radius, 2);
  5995. }
  5996. return 1.0 / area;
  5997. }
  5998. void calculate_volumetric_multipliers() {
  5999. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  6000. #if EXTRUDERS > 1
  6001. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6002. #if EXTRUDERS > 2
  6003. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6004. #endif
  6005. #endif
  6006. }
  6007. void delay_keep_alive(unsigned int ms)
  6008. {
  6009. for (;;) {
  6010. manage_heater();
  6011. // Manage inactivity, but don't disable steppers on timeout.
  6012. manage_inactivity(true);
  6013. lcd_update();
  6014. if (ms == 0)
  6015. break;
  6016. else if (ms >= 50) {
  6017. delay(50);
  6018. ms -= 50;
  6019. } else {
  6020. delay(ms);
  6021. ms = 0;
  6022. }
  6023. }
  6024. }
  6025. void wait_for_heater(long codenum) {
  6026. #ifdef TEMP_RESIDENCY_TIME
  6027. long residencyStart;
  6028. residencyStart = -1;
  6029. /* continue to loop until we have reached the target temp
  6030. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6031. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6032. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6033. #else
  6034. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6035. #endif //TEMP_RESIDENCY_TIME
  6036. if ((millis() - codenum) > 1000UL)
  6037. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6038. if (!farm_mode) {
  6039. SERIAL_PROTOCOLPGM("T:");
  6040. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6041. SERIAL_PROTOCOLPGM(" E:");
  6042. SERIAL_PROTOCOL((int)tmp_extruder);
  6043. #ifdef TEMP_RESIDENCY_TIME
  6044. SERIAL_PROTOCOLPGM(" W:");
  6045. if (residencyStart > -1)
  6046. {
  6047. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6048. SERIAL_PROTOCOLLN(codenum);
  6049. }
  6050. else
  6051. {
  6052. SERIAL_PROTOCOLLN("?");
  6053. }
  6054. }
  6055. #else
  6056. SERIAL_PROTOCOLLN("");
  6057. #endif
  6058. codenum = millis();
  6059. }
  6060. manage_heater();
  6061. manage_inactivity();
  6062. lcd_update();
  6063. #ifdef TEMP_RESIDENCY_TIME
  6064. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6065. or when current temp falls outside the hysteresis after target temp was reached */
  6066. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6067. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6068. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6069. {
  6070. residencyStart = millis();
  6071. }
  6072. #endif //TEMP_RESIDENCY_TIME
  6073. }
  6074. }
  6075. void check_babystep() {
  6076. int babystep_z;
  6077. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6078. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6079. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6080. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6081. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6082. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6083. lcd_update_enable(true);
  6084. }
  6085. }
  6086. #ifdef DIS
  6087. void d_setup()
  6088. {
  6089. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6090. pinMode(D_DATA, INPUT_PULLUP);
  6091. pinMode(D_REQUIRE, OUTPUT);
  6092. digitalWrite(D_REQUIRE, HIGH);
  6093. }
  6094. float d_ReadData()
  6095. {
  6096. int digit[13];
  6097. String mergeOutput;
  6098. float output;
  6099. digitalWrite(D_REQUIRE, HIGH);
  6100. for (int i = 0; i<13; i++)
  6101. {
  6102. for (int j = 0; j < 4; j++)
  6103. {
  6104. while (digitalRead(D_DATACLOCK) == LOW) {}
  6105. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6106. bitWrite(digit[i], j, digitalRead(D_DATA));
  6107. }
  6108. }
  6109. digitalWrite(D_REQUIRE, LOW);
  6110. mergeOutput = "";
  6111. output = 0;
  6112. for (int r = 5; r <= 10; r++) //Merge digits
  6113. {
  6114. mergeOutput += digit[r];
  6115. }
  6116. output = mergeOutput.toFloat();
  6117. if (digit[4] == 8) //Handle sign
  6118. {
  6119. output *= -1;
  6120. }
  6121. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6122. {
  6123. output /= 10;
  6124. }
  6125. return output;
  6126. }
  6127. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6128. int t1 = 0;
  6129. int t_delay = 0;
  6130. int digit[13];
  6131. int m;
  6132. char str[3];
  6133. //String mergeOutput;
  6134. char mergeOutput[15];
  6135. float output;
  6136. int mesh_point = 0; //index number of calibration point
  6137. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6138. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6139. float mesh_home_z_search = 4;
  6140. float row[x_points_num];
  6141. int ix = 0;
  6142. int iy = 0;
  6143. char* filename_wldsd = "wldsd.txt";
  6144. char data_wldsd[70];
  6145. char numb_wldsd[10];
  6146. d_setup();
  6147. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6148. // We don't know where we are! HOME!
  6149. // Push the commands to the front of the message queue in the reverse order!
  6150. // There shall be always enough space reserved for these commands.
  6151. repeatcommand_front(); // repeat G80 with all its parameters
  6152. enquecommand_front_P((PSTR("G28 W0")));
  6153. enquecommand_front_P((PSTR("G1 Z5")));
  6154. return;
  6155. }
  6156. bool custom_message_old = custom_message;
  6157. unsigned int custom_message_type_old = custom_message_type;
  6158. unsigned int custom_message_state_old = custom_message_state;
  6159. custom_message = true;
  6160. custom_message_type = 1;
  6161. custom_message_state = (x_points_num * y_points_num) + 10;
  6162. lcd_update(1);
  6163. mbl.reset();
  6164. babystep_undo();
  6165. card.openFile(filename_wldsd, false);
  6166. current_position[Z_AXIS] = mesh_home_z_search;
  6167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6168. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6169. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6170. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6171. setup_for_endstop_move(false);
  6172. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6173. SERIAL_PROTOCOL(x_points_num);
  6174. SERIAL_PROTOCOLPGM(",");
  6175. SERIAL_PROTOCOL(y_points_num);
  6176. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6177. SERIAL_PROTOCOL(mesh_home_z_search);
  6178. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6179. SERIAL_PROTOCOL(x_dimension);
  6180. SERIAL_PROTOCOLPGM(",");
  6181. SERIAL_PROTOCOL(y_dimension);
  6182. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6183. while (mesh_point != x_points_num * y_points_num) {
  6184. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6185. iy = mesh_point / x_points_num;
  6186. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6187. float z0 = 0.f;
  6188. current_position[Z_AXIS] = mesh_home_z_search;
  6189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6190. st_synchronize();
  6191. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6192. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6194. st_synchronize();
  6195. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6196. break;
  6197. card.closefile();
  6198. }
  6199. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6200. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6201. //strcat(data_wldsd, numb_wldsd);
  6202. //MYSERIAL.println(data_wldsd);
  6203. //delay(1000);
  6204. //delay(3000);
  6205. //t1 = millis();
  6206. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6207. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6208. memset(digit, 0, sizeof(digit));
  6209. //cli();
  6210. digitalWrite(D_REQUIRE, LOW);
  6211. for (int i = 0; i<13; i++)
  6212. {
  6213. //t1 = millis();
  6214. for (int j = 0; j < 4; j++)
  6215. {
  6216. while (digitalRead(D_DATACLOCK) == LOW) {}
  6217. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6218. bitWrite(digit[i], j, digitalRead(D_DATA));
  6219. }
  6220. //t_delay = (millis() - t1);
  6221. //SERIAL_PROTOCOLPGM(" ");
  6222. //SERIAL_PROTOCOL_F(t_delay, 5);
  6223. //SERIAL_PROTOCOLPGM(" ");
  6224. }
  6225. //sei();
  6226. digitalWrite(D_REQUIRE, HIGH);
  6227. mergeOutput[0] = '\0';
  6228. output = 0;
  6229. for (int r = 5; r <= 10; r++) //Merge digits
  6230. {
  6231. sprintf(str, "%d", digit[r]);
  6232. strcat(mergeOutput, str);
  6233. }
  6234. output = atof(mergeOutput);
  6235. if (digit[4] == 8) //Handle sign
  6236. {
  6237. output *= -1;
  6238. }
  6239. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6240. {
  6241. output *= 0.1;
  6242. }
  6243. //output = d_ReadData();
  6244. //row[ix] = current_position[Z_AXIS];
  6245. memset(data_wldsd, 0, sizeof(data_wldsd));
  6246. for (int i = 0; i <3; i++) {
  6247. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6248. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6249. strcat(data_wldsd, numb_wldsd);
  6250. strcat(data_wldsd, ";");
  6251. }
  6252. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6253. dtostrf(output, 8, 5, numb_wldsd);
  6254. strcat(data_wldsd, numb_wldsd);
  6255. //strcat(data_wldsd, ";");
  6256. card.write_command(data_wldsd);
  6257. //row[ix] = d_ReadData();
  6258. row[ix] = output; // current_position[Z_AXIS];
  6259. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6260. for (int i = 0; i < x_points_num; i++) {
  6261. SERIAL_PROTOCOLPGM(" ");
  6262. SERIAL_PROTOCOL_F(row[i], 5);
  6263. }
  6264. SERIAL_PROTOCOLPGM("\n");
  6265. }
  6266. custom_message_state--;
  6267. mesh_point++;
  6268. lcd_update(1);
  6269. }
  6270. card.closefile();
  6271. }
  6272. #endif
  6273. void temp_compensation_start() {
  6274. custom_message = true;
  6275. custom_message_type = 5;
  6276. custom_message_state = PINDA_HEAT_T + 1;
  6277. lcd_update(2);
  6278. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6279. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6280. }
  6281. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6282. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6283. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6284. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6286. st_synchronize();
  6287. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6288. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6289. delay_keep_alive(1000);
  6290. custom_message_state = PINDA_HEAT_T - i;
  6291. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6292. else lcd_update(1);
  6293. }
  6294. custom_message_type = 0;
  6295. custom_message_state = 0;
  6296. custom_message = false;
  6297. }
  6298. void temp_compensation_apply() {
  6299. int i_add;
  6300. int compensation_value;
  6301. int z_shift = 0;
  6302. float z_shift_mm;
  6303. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6304. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6305. i_add = (target_temperature_bed - 60) / 10;
  6306. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6307. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6308. }else {
  6309. //interpolation
  6310. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6311. }
  6312. SERIAL_PROTOCOLPGM("\n");
  6313. SERIAL_PROTOCOLPGM("Z shift applied:");
  6314. MYSERIAL.print(z_shift_mm);
  6315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6316. st_synchronize();
  6317. plan_set_z_position(current_position[Z_AXIS]);
  6318. }
  6319. else {
  6320. //we have no temp compensation data
  6321. }
  6322. }
  6323. float temp_comp_interpolation(float inp_temperature) {
  6324. //cubic spline interpolation
  6325. int n, i, j, k;
  6326. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6327. int shift[10];
  6328. int temp_C[10];
  6329. n = 6; //number of measured points
  6330. shift[0] = 0;
  6331. for (i = 0; i < n; i++) {
  6332. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6333. temp_C[i] = 50 + i * 10; //temperature in C
  6334. #ifdef PINDA_THERMISTOR
  6335. temp_C[i] = 35 + i * 5; //temperature in C
  6336. #else
  6337. temp_C[i] = 50 + i * 10; //temperature in C
  6338. #endif
  6339. x[i] = (float)temp_C[i];
  6340. f[i] = (float)shift[i];
  6341. }
  6342. if (inp_temperature < x[0]) return 0;
  6343. for (i = n - 1; i>0; i--) {
  6344. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6345. h[i - 1] = x[i] - x[i - 1];
  6346. }
  6347. //*********** formation of h, s , f matrix **************
  6348. for (i = 1; i<n - 1; i++) {
  6349. m[i][i] = 2 * (h[i - 1] + h[i]);
  6350. if (i != 1) {
  6351. m[i][i - 1] = h[i - 1];
  6352. m[i - 1][i] = h[i - 1];
  6353. }
  6354. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6355. }
  6356. //*********** forward elimination **************
  6357. for (i = 1; i<n - 2; i++) {
  6358. temp = (m[i + 1][i] / m[i][i]);
  6359. for (j = 1; j <= n - 1; j++)
  6360. m[i + 1][j] -= temp*m[i][j];
  6361. }
  6362. //*********** backward substitution *********
  6363. for (i = n - 2; i>0; i--) {
  6364. sum = 0;
  6365. for (j = i; j <= n - 2; j++)
  6366. sum += m[i][j] * s[j];
  6367. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6368. }
  6369. for (i = 0; i<n - 1; i++)
  6370. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6371. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6372. b = s[i] / 2;
  6373. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6374. d = f[i];
  6375. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6376. }
  6377. return sum;
  6378. }
  6379. #ifdef PINDA_THERMISTOR
  6380. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6381. {
  6382. if (!temp_cal_active) return 0;
  6383. if (!calibration_status_pinda()) return 0;
  6384. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6385. }
  6386. #endif //PINDA_THERMISTOR
  6387. void long_pause() //long pause print
  6388. {
  6389. st_synchronize();
  6390. //save currently set parameters to global variables
  6391. saved_feedmultiply = feedmultiply;
  6392. HotendTempBckp = degTargetHotend(active_extruder);
  6393. fanSpeedBckp = fanSpeed;
  6394. start_pause_print = millis();
  6395. //save position
  6396. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6397. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6398. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6399. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6400. //retract
  6401. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6403. //lift z
  6404. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6405. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6407. //set nozzle target temperature to 0
  6408. setTargetHotend(0, 0);
  6409. setTargetHotend(0, 1);
  6410. setTargetHotend(0, 2);
  6411. //Move XY to side
  6412. current_position[X_AXIS] = X_PAUSE_POS;
  6413. current_position[Y_AXIS] = Y_PAUSE_POS;
  6414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6415. // Turn off the print fan
  6416. fanSpeed = 0;
  6417. st_synchronize();
  6418. }
  6419. void serialecho_temperatures() {
  6420. float tt = degHotend(active_extruder);
  6421. SERIAL_PROTOCOLPGM("T:");
  6422. SERIAL_PROTOCOL(tt);
  6423. SERIAL_PROTOCOLPGM(" E:");
  6424. SERIAL_PROTOCOL((int)active_extruder);
  6425. SERIAL_PROTOCOLPGM(" B:");
  6426. SERIAL_PROTOCOL_F(degBed(), 1);
  6427. SERIAL_PROTOCOLLN("");
  6428. }
  6429. extern uint32_t sdpos_atomic;
  6430. void uvlo_()
  6431. {
  6432. unsigned long time_start = millis();
  6433. bool sd_print = card.sdprinting;
  6434. // Conserve power as soon as possible.
  6435. disable_x();
  6436. disable_y();
  6437. disable_e0();
  6438. tmc2130_set_current_h(Z_AXIS, 20);
  6439. tmc2130_set_current_r(Z_AXIS, 20);
  6440. tmc2130_set_current_h(E_AXIS, 20);
  6441. tmc2130_set_current_r(E_AXIS, 20);
  6442. // Indicate that the interrupt has been triggered.
  6443. // SERIAL_ECHOLNPGM("UVLO");
  6444. // Read out the current Z motor microstep counter. This will be later used
  6445. // for reaching the zero full step before powering off.
  6446. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6447. // Calculate the file position, from which to resume this print.
  6448. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6449. {
  6450. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6451. sd_position -= sdlen_planner;
  6452. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6453. sd_position -= sdlen_cmdqueue;
  6454. if (sd_position < 0) sd_position = 0;
  6455. }
  6456. // Backup the feedrate in mm/min.
  6457. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6458. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6459. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6460. // are in action.
  6461. planner_abort_hard();
  6462. // Store the current extruder position.
  6463. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6464. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6465. // Clean the input command queue.
  6466. cmdqueue_reset();
  6467. card.sdprinting = false;
  6468. // card.closefile();
  6469. // Enable stepper driver interrupt to move Z axis.
  6470. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6471. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6472. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6473. sei();
  6474. plan_buffer_line(
  6475. current_position[X_AXIS],
  6476. current_position[Y_AXIS],
  6477. current_position[Z_AXIS],
  6478. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6479. 95, active_extruder);
  6480. st_synchronize();
  6481. disable_e0();
  6482. plan_buffer_line(
  6483. current_position[X_AXIS],
  6484. current_position[Y_AXIS],
  6485. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6486. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6487. 40, active_extruder);
  6488. st_synchronize();
  6489. disable_e0();
  6490. plan_buffer_line(
  6491. current_position[X_AXIS],
  6492. current_position[Y_AXIS],
  6493. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6494. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6495. 40, active_extruder);
  6496. st_synchronize();
  6497. disable_e0();
  6498. disable_z();
  6499. // Move Z up to the next 0th full step.
  6500. // Write the file position.
  6501. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6502. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6503. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6504. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6505. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6506. // Scale the z value to 1u resolution.
  6507. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6508. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6509. }
  6510. // Read out the current Z motor microstep counter. This will be later used
  6511. // for reaching the zero full step before powering off.
  6512. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6513. // Store the current position.
  6514. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6515. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6516. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6517. // Store the current feed rate, temperatures and fan speed.
  6518. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6519. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6520. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6521. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6522. // Finaly store the "power outage" flag.
  6523. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6524. st_synchronize();
  6525. SERIAL_ECHOPGM("stps");
  6526. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6527. disable_z();
  6528. // Increment power failure counter
  6529. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6530. power_count++;
  6531. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6532. SERIAL_ECHOLNPGM("UVLO - end");
  6533. MYSERIAL.println(millis() - time_start);
  6534. #if 0
  6535. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6536. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6538. st_synchronize();
  6539. #endif
  6540. cli();
  6541. volatile unsigned int ppcount = 0;
  6542. SET_OUTPUT(BEEPER);
  6543. WRITE(BEEPER, HIGH);
  6544. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6545. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6546. }
  6547. WRITE(BEEPER, LOW);
  6548. while(1){
  6549. #if 1
  6550. WRITE(BEEPER, LOW);
  6551. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6552. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6553. }
  6554. #endif
  6555. };
  6556. }
  6557. void setup_fan_interrupt() {
  6558. //INT7
  6559. DDRE &= ~(1 << 7); //input pin
  6560. PORTE &= ~(1 << 7); //no internal pull-up
  6561. //start with sensing rising edge
  6562. EICRB &= ~(1 << 6);
  6563. EICRB |= (1 << 7);
  6564. //enable INT7 interrupt
  6565. EIMSK |= (1 << 7);
  6566. }
  6567. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6568. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6569. ISR(INT7_vect) {
  6570. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6571. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6572. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6573. t_fan_rising_edge = millis_nc();
  6574. }
  6575. else { //interrupt was triggered by falling edge
  6576. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6577. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6578. }
  6579. }
  6580. EICRB ^= (1 << 6); //change edge
  6581. }
  6582. void setup_uvlo_interrupt() {
  6583. DDRE &= ~(1 << 4); //input pin
  6584. PORTE &= ~(1 << 4); //no internal pull-up
  6585. //sensing falling edge
  6586. EICRB |= (1 << 0);
  6587. EICRB &= ~(1 << 1);
  6588. //enable INT4 interrupt
  6589. EIMSK |= (1 << 4);
  6590. }
  6591. ISR(INT4_vect) {
  6592. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6593. SERIAL_ECHOLNPGM("INT4");
  6594. if (IS_SD_PRINTING) uvlo_();
  6595. }
  6596. void recover_print(uint8_t automatic) {
  6597. char cmd[30];
  6598. lcd_update_enable(true);
  6599. lcd_update(2);
  6600. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6601. recover_machine_state_after_power_panic();
  6602. // Set the target bed and nozzle temperatures.
  6603. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6604. enquecommand(cmd);
  6605. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6606. enquecommand(cmd);
  6607. // Lift the print head, so one may remove the excess priming material.
  6608. if (current_position[Z_AXIS] < 25)
  6609. enquecommand_P(PSTR("G1 Z25 F800"));
  6610. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6611. enquecommand_P(PSTR("G28 X Y"));
  6612. // Set the target bed and nozzle temperatures and wait.
  6613. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6614. enquecommand(cmd);
  6615. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6616. enquecommand(cmd);
  6617. enquecommand_P(PSTR("M83")); //E axis relative mode
  6618. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6619. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6620. if(automatic == 0){
  6621. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6622. }
  6623. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6624. // Mark the power panic status as inactive.
  6625. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6626. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6627. delay_keep_alive(1000);
  6628. }*/
  6629. SERIAL_ECHOPGM("After waiting for temp:");
  6630. SERIAL_ECHOPGM("Current position X_AXIS:");
  6631. MYSERIAL.println(current_position[X_AXIS]);
  6632. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6633. MYSERIAL.println(current_position[Y_AXIS]);
  6634. // Restart the print.
  6635. restore_print_from_eeprom();
  6636. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6637. MYSERIAL.print(current_position[Z_AXIS]);
  6638. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6639. MYSERIAL.print(current_position[E_AXIS]);
  6640. }
  6641. void recover_machine_state_after_power_panic()
  6642. {
  6643. char cmd[30];
  6644. // 1) Recover the logical cordinates at the time of the power panic.
  6645. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6646. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6647. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6648. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6649. // The current position after power panic is moved to the next closest 0th full step.
  6650. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6651. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6652. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6653. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6654. sprintf_P(cmd, PSTR("G92 E"));
  6655. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6656. enquecommand(cmd);
  6657. }
  6658. memcpy(destination, current_position, sizeof(destination));
  6659. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6660. print_world_coordinates();
  6661. // 2) Initialize the logical to physical coordinate system transformation.
  6662. world2machine_initialize();
  6663. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6664. mbl.active = false;
  6665. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6666. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6667. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6668. // Scale the z value to 10u resolution.
  6669. int16_t v;
  6670. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6671. if (v != 0)
  6672. mbl.active = true;
  6673. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6674. }
  6675. if (mbl.active)
  6676. mbl.upsample_3x3();
  6677. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6678. // print_mesh_bed_leveling_table();
  6679. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6680. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6681. babystep_load();
  6682. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6684. // 6) Power up the motors, mark their positions as known.
  6685. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6686. axis_known_position[X_AXIS] = true; enable_x();
  6687. axis_known_position[Y_AXIS] = true; enable_y();
  6688. axis_known_position[Z_AXIS] = true; enable_z();
  6689. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6690. print_physical_coordinates();
  6691. // 7) Recover the target temperatures.
  6692. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6693. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6694. }
  6695. void restore_print_from_eeprom() {
  6696. float x_rec, y_rec, z_pos;
  6697. int feedrate_rec;
  6698. uint8_t fan_speed_rec;
  6699. char cmd[30];
  6700. char* c;
  6701. char filename[13];
  6702. uint8_t depth = 0;
  6703. char dir_name[9];
  6704. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6705. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6706. SERIAL_ECHOPGM("Feedrate:");
  6707. MYSERIAL.println(feedrate_rec);
  6708. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6709. MYSERIAL.println(int(depth));
  6710. for (int i = 0; i < depth; i++) {
  6711. for (int j = 0; j < 8; j++) {
  6712. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6713. }
  6714. dir_name[8] = '\0';
  6715. MYSERIAL.println(dir_name);
  6716. card.chdir(dir_name);
  6717. }
  6718. for (int i = 0; i < 8; i++) {
  6719. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6720. }
  6721. filename[8] = '\0';
  6722. MYSERIAL.print(filename);
  6723. strcat_P(filename, PSTR(".gco"));
  6724. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6725. for (c = &cmd[4]; *c; c++)
  6726. *c = tolower(*c);
  6727. enquecommand(cmd);
  6728. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6729. SERIAL_ECHOPGM("Position read from eeprom:");
  6730. MYSERIAL.println(position);
  6731. // E axis relative mode.
  6732. enquecommand_P(PSTR("M83"));
  6733. // Move to the XY print position in logical coordinates, where the print has been killed.
  6734. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6735. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6736. strcat_P(cmd, PSTR(" F2000"));
  6737. enquecommand(cmd);
  6738. // Move the Z axis down to the print, in logical coordinates.
  6739. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6740. enquecommand(cmd);
  6741. // Unretract.
  6742. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6743. // Set the feedrate saved at the power panic.
  6744. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6745. enquecommand(cmd);
  6746. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6747. {
  6748. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6749. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6750. }
  6751. // Set the fan speed saved at the power panic.
  6752. strcpy_P(cmd, PSTR("M106 S"));
  6753. strcat(cmd, itostr3(int(fan_speed_rec)));
  6754. enquecommand(cmd);
  6755. // Set a position in the file.
  6756. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6757. enquecommand(cmd);
  6758. // Start SD print.
  6759. enquecommand_P(PSTR("M24"));
  6760. }
  6761. ////////////////////////////////////////////////////////////////////////////////
  6762. // new save/restore printing
  6763. //extern uint32_t sdpos_atomic;
  6764. bool saved_printing = false;
  6765. uint32_t saved_sdpos = 0;
  6766. float saved_pos[4] = {0, 0, 0, 0};
  6767. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6768. float saved_feedrate2 = 0;
  6769. uint8_t saved_active_extruder = 0;
  6770. bool saved_extruder_under_pressure = false;
  6771. void stop_and_save_print_to_ram(float z_move, float e_move)
  6772. {
  6773. if (saved_printing) return;
  6774. cli();
  6775. unsigned char nplanner_blocks = number_of_blocks();
  6776. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6777. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6778. saved_sdpos -= sdlen_planner;
  6779. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6780. saved_sdpos -= sdlen_cmdqueue;
  6781. #if 0
  6782. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6783. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6784. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6785. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6786. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6787. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6788. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6789. {
  6790. card.setIndex(saved_sdpos);
  6791. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6792. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6793. MYSERIAL.print(char(card.get()));
  6794. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6795. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6796. MYSERIAL.print(char(card.get()));
  6797. SERIAL_ECHOLNPGM("End of command buffer");
  6798. }
  6799. {
  6800. // Print the content of the planner buffer, line by line:
  6801. card.setIndex(saved_sdpos);
  6802. int8_t iline = 0;
  6803. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6804. SERIAL_ECHOPGM("Planner line (from file): ");
  6805. MYSERIAL.print(int(iline), DEC);
  6806. SERIAL_ECHOPGM(", length: ");
  6807. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6808. SERIAL_ECHOPGM(", steps: (");
  6809. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6810. SERIAL_ECHOPGM(",");
  6811. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6812. SERIAL_ECHOPGM(",");
  6813. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6814. SERIAL_ECHOPGM(",");
  6815. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6816. SERIAL_ECHOPGM("), events: ");
  6817. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6818. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6819. MYSERIAL.print(char(card.get()));
  6820. }
  6821. }
  6822. {
  6823. // Print the content of the command buffer, line by line:
  6824. int8_t iline = 0;
  6825. union {
  6826. struct {
  6827. char lo;
  6828. char hi;
  6829. } lohi;
  6830. uint16_t value;
  6831. } sdlen_single;
  6832. int _bufindr = bufindr;
  6833. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6834. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6835. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6836. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6837. }
  6838. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6839. MYSERIAL.print(int(iline), DEC);
  6840. SERIAL_ECHOPGM(", type: ");
  6841. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6842. SERIAL_ECHOPGM(", len: ");
  6843. MYSERIAL.println(sdlen_single.value, DEC);
  6844. // Print the content of the buffer line.
  6845. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6846. SERIAL_ECHOPGM("Buffer line (from file): ");
  6847. MYSERIAL.print(int(iline), DEC);
  6848. MYSERIAL.println(int(iline), DEC);
  6849. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6850. MYSERIAL.print(char(card.get()));
  6851. if (-- _buflen == 0)
  6852. break;
  6853. // First skip the current command ID and iterate up to the end of the string.
  6854. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6855. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6856. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6857. // If the end of the buffer was empty,
  6858. if (_bufindr == sizeof(cmdbuffer)) {
  6859. // skip to the start and find the nonzero command.
  6860. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6861. }
  6862. }
  6863. }
  6864. #endif
  6865. #if 0
  6866. saved_feedrate2 = feedrate; //save feedrate
  6867. #else
  6868. // Try to deduce the feedrate from the first block of the planner.
  6869. // Speed is in mm/min.
  6870. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6871. #endif
  6872. planner_abort_hard(); //abort printing
  6873. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6874. saved_active_extruder = active_extruder; //save active_extruder
  6875. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6876. cmdqueue_reset(); //empty cmdqueue
  6877. card.sdprinting = false;
  6878. // card.closefile();
  6879. saved_printing = true;
  6880. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  6881. st_reset_timer();
  6882. sei();
  6883. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6884. #if 1
  6885. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6886. char buf[48];
  6887. strcpy_P(buf, PSTR("G1 Z"));
  6888. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6889. strcat_P(buf, PSTR(" E"));
  6890. // Relative extrusion
  6891. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6892. strcat_P(buf, PSTR(" F"));
  6893. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6894. // At this point the command queue is empty.
  6895. enquecommand(buf, false);
  6896. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6897. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6898. repeatcommand_front();
  6899. #else
  6900. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6901. st_synchronize(); //wait moving
  6902. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6903. memcpy(destination, current_position, sizeof(destination));
  6904. #endif
  6905. }
  6906. }
  6907. void restore_print_from_ram_and_continue(float e_move)
  6908. {
  6909. if (!saved_printing) return;
  6910. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6911. // current_position[axis] = st_get_position_mm(axis);
  6912. active_extruder = saved_active_extruder; //restore active_extruder
  6913. feedrate = saved_feedrate2; //restore feedrate
  6914. float e = saved_pos[E_AXIS] - e_move;
  6915. plan_set_e_position(e);
  6916. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6917. st_synchronize();
  6918. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6919. memcpy(destination, current_position, sizeof(destination));
  6920. card.setIndex(saved_sdpos);
  6921. sdpos_atomic = saved_sdpos;
  6922. card.sdprinting = true;
  6923. saved_printing = false;
  6924. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6925. }
  6926. void print_world_coordinates()
  6927. {
  6928. SERIAL_ECHOPGM("world coordinates: (");
  6929. MYSERIAL.print(current_position[X_AXIS], 3);
  6930. SERIAL_ECHOPGM(", ");
  6931. MYSERIAL.print(current_position[Y_AXIS], 3);
  6932. SERIAL_ECHOPGM(", ");
  6933. MYSERIAL.print(current_position[Z_AXIS], 3);
  6934. SERIAL_ECHOLNPGM(")");
  6935. }
  6936. void print_physical_coordinates()
  6937. {
  6938. SERIAL_ECHOPGM("physical coordinates: (");
  6939. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6940. SERIAL_ECHOPGM(", ");
  6941. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6942. SERIAL_ECHOPGM(", ");
  6943. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6944. SERIAL_ECHOLNPGM(")");
  6945. }
  6946. void print_mesh_bed_leveling_table()
  6947. {
  6948. SERIAL_ECHOPGM("mesh bed leveling: ");
  6949. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6950. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6951. MYSERIAL.print(mbl.z_values[y][x], 3);
  6952. SERIAL_ECHOPGM(" ");
  6953. }
  6954. SERIAL_ECHOLNPGM("");
  6955. }
  6956. #define FIL_LOAD_LENGTH 60
  6957. void extr_unload2() { //unloads filament
  6958. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6959. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6960. // int8_t SilentMode;
  6961. uint8_t snmm_extruder = 0;
  6962. if (degHotend0() > EXTRUDE_MINTEMP) {
  6963. lcd_implementation_clear();
  6964. lcd_display_message_fullscreen_P(PSTR(""));
  6965. max_feedrate[E_AXIS] = 50;
  6966. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6967. // lcd.print(" ");
  6968. // lcd.print(snmm_extruder + 1);
  6969. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6970. if (current_position[Z_AXIS] < 15) {
  6971. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6973. }
  6974. current_position[E_AXIS] += 10; //extrusion
  6975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6976. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6977. if (current_temperature[0] < 230) { //PLA & all other filaments
  6978. current_position[E_AXIS] += 5.4;
  6979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6980. current_position[E_AXIS] += 3.2;
  6981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6982. current_position[E_AXIS] += 3;
  6983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6984. }
  6985. else { //ABS
  6986. current_position[E_AXIS] += 3.1;
  6987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6988. current_position[E_AXIS] += 3.1;
  6989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6990. current_position[E_AXIS] += 4;
  6991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6992. /*current_position[X_AXIS] += 23; //delay
  6993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6994. current_position[X_AXIS] -= 23; //delay
  6995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6996. delay_keep_alive(4700);
  6997. }
  6998. max_feedrate[E_AXIS] = 80;
  6999. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7001. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7003. st_synchronize();
  7004. //digipot_init();
  7005. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7006. // else digipot_current(2, tmp_motor_loud[2]);
  7007. lcd_update_enable(true);
  7008. // lcd_return_to_status();
  7009. max_feedrate[E_AXIS] = 50;
  7010. }
  7011. else {
  7012. lcd_implementation_clear();
  7013. lcd.setCursor(0, 0);
  7014. lcd_printPGM(MSG_ERROR);
  7015. lcd.setCursor(0, 2);
  7016. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7017. delay(2000);
  7018. lcd_implementation_clear();
  7019. }
  7020. // lcd_return_to_status();
  7021. }