mmu.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_CMD_TIMEOUT 300000ul //milliseconds (5min timeout)
  18. #define MMU_HWRESET
  19. #define MMU_RST_PIN 76
  20. #define MMU_REQUIRED_FW_BUILDNR 81
  21. bool mmu_enabled = false;
  22. bool mmu_ready = false;
  23. int8_t mmu_state = 0;
  24. uint8_t mmu_cmd = 0;
  25. uint8_t mmu_extruder = 0;
  26. uint8_t tmp_extruder = 0;
  27. int8_t mmu_finda = -1;
  28. int16_t mmu_version = -1;
  29. int16_t mmu_buildnr = -1;
  30. uint32_t mmu_last_request = 0;
  31. uint32_t mmu_last_response = 0;
  32. //clear rx buffer
  33. void mmu_clr_rx_buf(void)
  34. {
  35. while (fgetc(uart2io) >= 0);
  36. }
  37. //send command - puts
  38. int mmu_puts_P(const char* str)
  39. {
  40. mmu_clr_rx_buf(); //clear rx buffer
  41. int r = fputs_P(str, uart2io); //send command
  42. mmu_last_request = millis();
  43. return r;
  44. }
  45. //send command - printf
  46. int mmu_printf_P(const char* format, ...)
  47. {
  48. va_list args;
  49. va_start(args, format);
  50. mmu_clr_rx_buf(); //clear rx buffer
  51. int r = vfprintf_P(uart2io, format, args); //send command
  52. va_end(args);
  53. mmu_last_request = millis();
  54. return r;
  55. }
  56. //check 'ok' response
  57. int8_t mmu_rx_ok(void)
  58. {
  59. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  60. if (res == 1) mmu_last_response = millis();
  61. return res;
  62. }
  63. //check 'start' response
  64. int8_t mmu_rx_start(void)
  65. {
  66. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  67. if (res == 1) mmu_last_response = millis();
  68. return res;
  69. }
  70. //initialize mmu2 unit - first part - should be done at begining of startup process
  71. void mmu_init(void)
  72. {
  73. digitalWrite(MMU_RST_PIN, HIGH);
  74. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  75. uart2_init(); //init uart2
  76. _delay_ms(10); //wait 10ms for sure
  77. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  78. mmu_state = -1;
  79. }
  80. //mmu main loop - state machine processing
  81. void mmu_loop(void)
  82. {
  83. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  84. switch (mmu_state)
  85. {
  86. case 0:
  87. return;
  88. case -1:
  89. if (mmu_rx_start() > 0)
  90. {
  91. puts_P(PSTR("MMU => 'start'"));
  92. puts_P(PSTR("MMU <= 'S1'"));
  93. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  94. mmu_state = -2;
  95. }
  96. else if (millis() > 30000) //30sec after reset disable mmu
  97. {
  98. puts_P(PSTR("MMU not responding - DISABLED"));
  99. mmu_state = 0;
  100. }
  101. return;
  102. case -2:
  103. if (mmu_rx_ok() > 0)
  104. {
  105. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  106. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  107. puts_P(PSTR("MMU <= 'S2'"));
  108. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  109. mmu_state = -3;
  110. }
  111. return;
  112. case -3:
  113. if (mmu_rx_ok() > 0)
  114. {
  115. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  116. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  117. bool version_valid = mmu_check_version();
  118. if (!version_valid) mmu_show_warning();
  119. else puts_P(PSTR("MMU version valid"));
  120. puts_P(PSTR("MMU <= 'P0'"));
  121. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  122. mmu_state = -4;
  123. }
  124. return;
  125. case -4:
  126. if (mmu_rx_ok() > 0)
  127. {
  128. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  129. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  130. puts_P(PSTR("MMU - ENABLED"));
  131. mmu_enabled = true;
  132. mmu_state = 1;
  133. }
  134. return;
  135. case 1:
  136. if (mmu_cmd) //command request ?
  137. {
  138. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  139. {
  140. int extruder = mmu_cmd - MMU_CMD_T0;
  141. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  142. mmu_printf_P(PSTR("T%d\n"), extruder);
  143. mmu_state = 3; // wait for response
  144. }
  145. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  146. {
  147. int filament = mmu_cmd - MMU_CMD_L0;
  148. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  149. mmu_printf_P(PSTR("L%d\n"), filament);
  150. mmu_state = 3; // wait for response
  151. }
  152. else if (mmu_cmd == MMU_CMD_C0)
  153. {
  154. printf_P(PSTR("MMU <= 'C0'\n"));
  155. mmu_puts_P(PSTR("C0\n")); //send continue loading
  156. mmu_state = 3;
  157. }
  158. mmu_cmd = 0;
  159. }
  160. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  161. {
  162. puts_P(PSTR("MMU <= 'P0'"));
  163. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  164. mmu_state = 2;
  165. }
  166. return;
  167. case 2: //response to command P0
  168. if (mmu_rx_ok() > 0)
  169. {
  170. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  171. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  172. mmu_state = 1;
  173. if (mmu_cmd == 0)
  174. mmu_ready = true;
  175. }
  176. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  177. { //resend request after timeout (30s)
  178. mmu_state = 1;
  179. }
  180. return;
  181. case 3: //response to commands T0-T4
  182. if (mmu_rx_ok() > 0)
  183. {
  184. printf_P(PSTR("MMU => 'ok'\n"));
  185. mmu_ready = true;
  186. mmu_state = 1;
  187. }
  188. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  189. { //resend request after timeout (30s)
  190. mmu_state = 1;
  191. }
  192. return;
  193. }
  194. }
  195. void mmu_reset(void)
  196. {
  197. #ifdef MMU_HWRESET //HW - pulse reset pin
  198. digitalWrite(MMU_RST_PIN, LOW);
  199. _delay_us(100);
  200. digitalWrite(MMU_RST_PIN, HIGH);
  201. #else //SW - send X0 command
  202. mmu_puts_P(PSTR("X0\n"));
  203. #endif
  204. }
  205. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  206. {
  207. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  208. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  209. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  210. while ((mmu_rx_ok() <= 0) && (--timeout))
  211. delay_keep_alive(MMU_TODELAY);
  212. return timeout?1:0;
  213. }
  214. void mmu_command(uint8_t cmd)
  215. {
  216. mmu_cmd = cmd;
  217. mmu_ready = false;
  218. }
  219. bool mmu_get_response(void)
  220. {
  221. // printf_P(PSTR("mmu_get_response - begin\n"));
  222. KEEPALIVE_STATE(IN_PROCESS);
  223. while (mmu_cmd != 0)
  224. {
  225. // mmu_loop();
  226. delay_keep_alive(100);
  227. }
  228. while (!mmu_ready)
  229. {
  230. // mmu_loop();
  231. if (mmu_state != 3)
  232. break;
  233. delay_keep_alive(100);
  234. }
  235. bool ret = mmu_ready;
  236. mmu_ready = false;
  237. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  238. return ret;
  239. /* //waits for "ok" from mmu
  240. //function returns true if "ok" was received
  241. //if timeout is set to true function return false if there is no "ok" received before timeout
  242. bool response = true;
  243. LongTimer mmu_get_reponse_timeout;
  244. KEEPALIVE_STATE(IN_PROCESS);
  245. mmu_get_reponse_timeout.start();
  246. while (mmu_rx_ok() <= 0)
  247. {
  248. delay_keep_alive(100);
  249. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  250. { //5 minutes timeout
  251. response = false;
  252. break;
  253. }
  254. }
  255. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  256. return response;*/
  257. }
  258. void manage_response(bool move_axes, bool turn_off_nozzle)
  259. {
  260. bool response = false;
  261. mmu_print_saved = false;
  262. bool lcd_update_was_enabled = false;
  263. float hotend_temp_bckp = degTargetHotend(active_extruder);
  264. float z_position_bckp = current_position[Z_AXIS];
  265. float x_position_bckp = current_position[X_AXIS];
  266. float y_position_bckp = current_position[Y_AXIS];
  267. while(!response)
  268. {
  269. response = mmu_get_response(); //wait for "ok" from mmu
  270. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  271. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  272. if (lcd_update_enabled) {
  273. lcd_update_was_enabled = true;
  274. lcd_update_enable(false);
  275. }
  276. st_synchronize();
  277. mmu_print_saved = true;
  278. hotend_temp_bckp = degTargetHotend(active_extruder);
  279. if (move_axes) {
  280. z_position_bckp = current_position[Z_AXIS];
  281. x_position_bckp = current_position[X_AXIS];
  282. y_position_bckp = current_position[Y_AXIS];
  283. //lift z
  284. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  285. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  287. st_synchronize();
  288. //Move XY to side
  289. current_position[X_AXIS] = X_PAUSE_POS;
  290. current_position[Y_AXIS] = Y_PAUSE_POS;
  291. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  292. st_synchronize();
  293. }
  294. if (turn_off_nozzle) {
  295. //set nozzle target temperature to 0
  296. setAllTargetHotends(0);
  297. printf_P(PSTR("MMU not responding\n"));
  298. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  299. setTargetHotend(hotend_temp_bckp, active_extruder);
  300. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  301. delay_keep_alive(1000);
  302. lcd_wait_for_heater();
  303. }
  304. }
  305. }
  306. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  307. delay_keep_alive(1000);
  308. }
  309. else if (mmu_print_saved) {
  310. printf_P(PSTR("MMU start responding\n"));
  311. lcd_clear();
  312. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  313. if (move_axes) {
  314. current_position[X_AXIS] = x_position_bckp;
  315. current_position[Y_AXIS] = y_position_bckp;
  316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  317. st_synchronize();
  318. current_position[Z_AXIS] = z_position_bckp;
  319. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  320. st_synchronize();
  321. }
  322. else {
  323. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  324. }
  325. }
  326. }
  327. if (lcd_update_was_enabled) lcd_update_enable(true);
  328. }
  329. void mmu_load_to_nozzle()
  330. {
  331. st_synchronize();
  332. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  333. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  334. current_position[E_AXIS] += 7.2f;
  335. float feedrate = 562;
  336. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  337. st_synchronize();
  338. current_position[E_AXIS] += 14.4f;
  339. feedrate = 871;
  340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  341. st_synchronize();
  342. current_position[E_AXIS] += 36.0f;
  343. feedrate = 1393;
  344. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  345. st_synchronize();
  346. current_position[E_AXIS] += 14.4f;
  347. feedrate = 871;
  348. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  349. st_synchronize();
  350. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  351. }
  352. void mmu_M600_load_filament(bool automatic)
  353. {
  354. //load filament for mmu v2
  355. bool response = false;
  356. bool yes = false;
  357. if (!automatic) {
  358. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  359. if(yes) tmp_extruder = choose_extruder_menu();
  360. else tmp_extruder = mmu_extruder;
  361. }
  362. else {
  363. tmp_extruder = (tmp_extruder+1)%5;
  364. }
  365. lcd_update_enable(false);
  366. lcd_clear();
  367. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  368. lcd_print(" ");
  369. lcd_print(tmp_extruder + 1);
  370. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  371. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  372. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  373. mmu_command(MMU_CMD_T0 + tmp_extruder);
  374. manage_response(false, true);
  375. mmu_command(MMU_CMD_C0);
  376. mmu_extruder = tmp_extruder; //filament change is finished
  377. mmu_load_to_nozzle();
  378. st_synchronize();
  379. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  381. }
  382. void extr_mov(float shift, float feed_rate)
  383. { //move extruder no matter what the current heater temperature is
  384. set_extrude_min_temp(.0);
  385. current_position[E_AXIS] += shift;
  386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  387. set_extrude_min_temp(EXTRUDE_MINTEMP);
  388. }
  389. void change_extr(int extr) { //switches multiplexer for extruders
  390. #ifdef SNMM
  391. st_synchronize();
  392. delay(100);
  393. disable_e0();
  394. disable_e1();
  395. disable_e2();
  396. mmu_extruder = extr;
  397. pinMode(E_MUX0_PIN, OUTPUT);
  398. pinMode(E_MUX1_PIN, OUTPUT);
  399. switch (extr) {
  400. case 1:
  401. WRITE(E_MUX0_PIN, HIGH);
  402. WRITE(E_MUX1_PIN, LOW);
  403. break;
  404. case 2:
  405. WRITE(E_MUX0_PIN, LOW);
  406. WRITE(E_MUX1_PIN, HIGH);
  407. break;
  408. case 3:
  409. WRITE(E_MUX0_PIN, HIGH);
  410. WRITE(E_MUX1_PIN, HIGH);
  411. break;
  412. default:
  413. WRITE(E_MUX0_PIN, LOW);
  414. WRITE(E_MUX1_PIN, LOW);
  415. break;
  416. }
  417. delay(100);
  418. #endif
  419. }
  420. int get_ext_nr()
  421. { //reads multiplexer input pins and return current extruder number (counted from 0)
  422. #ifndef SNMM
  423. return(mmu_extruder); //update needed
  424. #else
  425. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  426. #endif
  427. }
  428. void display_loading()
  429. {
  430. switch (mmu_extruder)
  431. {
  432. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  433. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  434. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  435. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  436. }
  437. }
  438. void extr_adj(int extruder) //loading filament for SNMM
  439. {
  440. #ifndef SNMM
  441. uint8_t cmd = MMU_CMD_L0 + extruder;
  442. if (cmd > MMU_CMD_L4)
  443. {
  444. printf_P(PSTR("Filament out of range %d \n"),extruder);
  445. return;
  446. }
  447. mmu_command(cmd);
  448. //show which filament is currently loaded
  449. lcd_update_enable(false);
  450. lcd_clear();
  451. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  452. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  453. //else lcd.print(" ");
  454. lcd_print(" ");
  455. lcd_print(extruder + 1);
  456. // get response
  457. manage_response(false, false);
  458. lcd_update_enable(true);
  459. //lcd_return_to_status();
  460. #else
  461. bool correct;
  462. max_feedrate[E_AXIS] =80;
  463. //max_feedrate[E_AXIS] = 50;
  464. START:
  465. lcd_clear();
  466. lcd_set_cursor(0, 0);
  467. switch (extruder) {
  468. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  469. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  470. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  471. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  472. }
  473. KEEPALIVE_STATE(PAUSED_FOR_USER);
  474. do{
  475. extr_mov(0.001,1000);
  476. delay_keep_alive(2);
  477. } while (!lcd_clicked());
  478. //delay_keep_alive(500);
  479. KEEPALIVE_STATE(IN_HANDLER);
  480. st_synchronize();
  481. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  482. //if (!correct) goto START;
  483. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  484. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  485. extr_mov(bowden_length[extruder], 500);
  486. lcd_clear();
  487. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  488. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  489. else lcd_print(" ");
  490. lcd_print(mmu_extruder + 1);
  491. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  492. st_synchronize();
  493. max_feedrate[E_AXIS] = 50;
  494. lcd_update_enable(true);
  495. lcd_return_to_status();
  496. lcdDrawUpdate = 2;
  497. #endif
  498. }
  499. void extr_unload()
  500. { //unload just current filament for multimaterial printers
  501. #ifdef SNMM
  502. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  503. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  504. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  505. #endif
  506. if (degHotend0() > EXTRUDE_MINTEMP)
  507. {
  508. #ifndef SNMM
  509. st_synchronize();
  510. //show which filament is currently unloaded
  511. lcd_update_enable(false);
  512. lcd_clear();
  513. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  514. lcd_print(" ");
  515. lcd_print(mmu_extruder + 1);
  516. current_position[E_AXIS] -= 80;
  517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  518. st_synchronize();
  519. printf_P(PSTR("U0\n"));
  520. fprintf_P(uart2io, PSTR("U0\n"));
  521. // get response
  522. manage_response(false, true);
  523. lcd_update_enable(true);
  524. #else //SNMM
  525. lcd_clear();
  526. lcd_display_message_fullscreen_P(PSTR(""));
  527. max_feedrate[E_AXIS] = 50;
  528. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  529. lcd_print(" ");
  530. lcd_print(mmu_extruder + 1);
  531. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  532. if (current_position[Z_AXIS] < 15) {
  533. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  535. }
  536. current_position[E_AXIS] += 10; //extrusion
  537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  538. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  539. if (current_temperature[0] < 230) { //PLA & all other filaments
  540. current_position[E_AXIS] += 5.4;
  541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  542. current_position[E_AXIS] += 3.2;
  543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  544. current_position[E_AXIS] += 3;
  545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  546. }
  547. else { //ABS
  548. current_position[E_AXIS] += 3.1;
  549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  550. current_position[E_AXIS] += 3.1;
  551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  552. current_position[E_AXIS] += 4;
  553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  554. /*current_position[X_AXIS] += 23; //delay
  555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  556. current_position[X_AXIS] -= 23; //delay
  557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  558. delay_keep_alive(4700);
  559. }
  560. max_feedrate[E_AXIS] = 80;
  561. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  563. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  565. st_synchronize();
  566. //st_current_init();
  567. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  568. else st_current_set(2, tmp_motor_loud[2]);
  569. lcd_update_enable(true);
  570. lcd_return_to_status();
  571. max_feedrate[E_AXIS] = 50;
  572. #endif //SNMM
  573. }
  574. else
  575. {
  576. lcd_clear();
  577. lcd_set_cursor(0, 0);
  578. lcd_puts_P(_T(MSG_ERROR));
  579. lcd_set_cursor(0, 2);
  580. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  581. delay(2000);
  582. lcd_clear();
  583. }
  584. //lcd_return_to_status();
  585. }
  586. //wrapper functions for loading filament
  587. void extr_adj_0()
  588. {
  589. #ifndef SNMM
  590. enquecommand_P(PSTR("M701 E0"));
  591. #else
  592. change_extr(0);
  593. extr_adj(0);
  594. #endif
  595. }
  596. void extr_adj_1()
  597. {
  598. #ifndef SNMM
  599. enquecommand_P(PSTR("M701 E1"));
  600. #else
  601. change_extr(1);
  602. extr_adj(1);
  603. #endif
  604. }
  605. void extr_adj_2()
  606. {
  607. #ifndef SNMM
  608. enquecommand_P(PSTR("M701 E2"));
  609. #else
  610. change_extr(2);
  611. extr_adj(2);
  612. #endif
  613. }
  614. void extr_adj_3()
  615. {
  616. #ifndef SNMM
  617. enquecommand_P(PSTR("M701 E3"));
  618. #else
  619. change_extr(3);
  620. extr_adj(3);
  621. #endif
  622. }
  623. void extr_adj_4()
  624. {
  625. #ifndef SNMM
  626. enquecommand_P(PSTR("M701 E4"));
  627. #else
  628. change_extr(4);
  629. extr_adj(4);
  630. #endif
  631. }
  632. void load_all()
  633. {
  634. #ifndef SNMM
  635. enquecommand_P(PSTR("M701 E0"));
  636. enquecommand_P(PSTR("M701 E1"));
  637. enquecommand_P(PSTR("M701 E2"));
  638. enquecommand_P(PSTR("M701 E3"));
  639. enquecommand_P(PSTR("M701 E4"));
  640. #else
  641. for (int i = 0; i < 4; i++)
  642. {
  643. change_extr(i);
  644. extr_adj(i);
  645. }
  646. #endif
  647. }
  648. //wrapper functions for changing extruders
  649. void extr_change_0()
  650. {
  651. change_extr(0);
  652. lcd_return_to_status();
  653. }
  654. void extr_change_1()
  655. {
  656. change_extr(1);
  657. lcd_return_to_status();
  658. }
  659. void extr_change_2()
  660. {
  661. change_extr(2);
  662. lcd_return_to_status();
  663. }
  664. void extr_change_3()
  665. {
  666. change_extr(3);
  667. lcd_return_to_status();
  668. }
  669. //wrapper functions for unloading filament
  670. void extr_unload_all()
  671. {
  672. if (degHotend0() > EXTRUDE_MINTEMP)
  673. {
  674. for (int i = 0; i < 4; i++)
  675. {
  676. change_extr(i);
  677. extr_unload();
  678. }
  679. }
  680. else
  681. {
  682. lcd_clear();
  683. lcd_set_cursor(0, 0);
  684. lcd_puts_P(_T(MSG_ERROR));
  685. lcd_set_cursor(0, 2);
  686. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  687. delay(2000);
  688. lcd_clear();
  689. lcd_return_to_status();
  690. }
  691. }
  692. //unloading just used filament (for snmm)
  693. void extr_unload_used()
  694. {
  695. if (degHotend0() > EXTRUDE_MINTEMP) {
  696. for (int i = 0; i < 4; i++) {
  697. if (snmm_filaments_used & (1 << i)) {
  698. change_extr(i);
  699. extr_unload();
  700. }
  701. }
  702. snmm_filaments_used = 0;
  703. }
  704. else {
  705. lcd_clear();
  706. lcd_set_cursor(0, 0);
  707. lcd_puts_P(_T(MSG_ERROR));
  708. lcd_set_cursor(0, 2);
  709. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  710. delay(2000);
  711. lcd_clear();
  712. lcd_return_to_status();
  713. }
  714. }
  715. void extr_unload_0()
  716. {
  717. change_extr(0);
  718. extr_unload();
  719. }
  720. void extr_unload_1()
  721. {
  722. change_extr(1);
  723. extr_unload();
  724. }
  725. void extr_unload_2()
  726. {
  727. change_extr(2);
  728. extr_unload();
  729. }
  730. void extr_unload_3()
  731. {
  732. change_extr(3);
  733. extr_unload();
  734. }
  735. void extr_unload_4()
  736. {
  737. change_extr(4);
  738. extr_unload();
  739. }
  740. bool mmu_check_version()
  741. {
  742. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  743. }
  744. void mmu_show_warning()
  745. {
  746. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  747. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  748. }