Marlin_main.cpp 180 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. union Data
  196. {
  197. byte b[2];
  198. int value;
  199. };
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  252. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  253. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  254. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed=0;
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled=false;
  262. bool retracted[EXTRUDERS]={false
  263. #if EXTRUDERS > 1
  264. , false
  265. #if EXTRUDERS > 2
  266. , false
  267. #endif
  268. #endif
  269. };
  270. bool retracted_swap[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. bool cancel_heatup = false ;
  294. #ifdef FILAMENT_SENSOR
  295. //Variables for Filament Sensor input
  296. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  297. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  298. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  299. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  300. int delay_index1=0; //index into ring buffer
  301. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  302. float delay_dist=0; //delay distance counter
  303. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  304. #endif
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. //===========================================================================
  308. //=============================Private Variables=============================
  309. //===========================================================================
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  312. static float delta[3] = {0.0, 0.0, 0.0};
  313. // For tracing an arc
  314. static float offset[3] = {0.0, 0.0, 0.0};
  315. static bool home_all_axis = true;
  316. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. // Determines Absolute or Relative Coordinates.
  319. // Also there is bool axis_relative_modes[] per axis flag.
  320. static bool relative_mode = false;
  321. // String circular buffer. Commands may be pushed to the buffer from both sides:
  322. // Chained commands will be pushed to the front, interactive (from LCD menu)
  323. // and printing commands (from serial line or from SD card) are pushed to the tail.
  324. // First character of each entry indicates the type of the entry:
  325. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  326. // Command in cmdbuffer was sent over USB.
  327. #define CMDBUFFER_CURRENT_TYPE_USB 1
  328. // Command in cmdbuffer was read from SDCARD.
  329. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  330. // Command in cmdbuffer was generated by the UI.
  331. #define CMDBUFFER_CURRENT_TYPE_UI 3
  332. // Command in cmdbuffer was generated by another G-code.
  333. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  334. // How much space to reserve for the chained commands
  335. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  336. // which are pushed to the front of the queue?
  337. // Maximum 5 commands of max length 20 + null terminator.
  338. #define CMDBUFFER_RESERVE_FRONT (5*21)
  339. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  340. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  341. // Head of the circular buffer, where to read.
  342. static int bufindr = 0;
  343. // Tail of the buffer, where to write.
  344. static int bufindw = 0;
  345. // Number of lines in cmdbuffer.
  346. static int buflen = 0;
  347. // Flag for processing the current command inside the main Arduino loop().
  348. // If a new command was pushed to the front of a command buffer while
  349. // processing another command, this replaces the command on the top.
  350. // Therefore don't remove the command from the queue in the loop() function.
  351. static bool cmdbuffer_front_already_processed = false;
  352. // Type of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  354. // String of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  356. // Enable debugging of the command buffer.
  357. // Debugging information will be sent to serial line.
  358. // #define CMDBUFFER_DEBUG
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  362. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool Stopped=false;
  374. #if NUM_SERVOS > 0
  375. Servo servos[NUM_SERVOS];
  376. #endif
  377. bool CooldownNoWait = true;
  378. bool target_direction;
  379. //Insert variables if CHDK is defined
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. // Pop the currently processed command from the queue.
  414. // It is expected, that there is at least one command in the queue.
  415. bool cmdqueue_pop_front()
  416. {
  417. if (buflen > 0) {
  418. #ifdef CMDBUFFER_DEBUG
  419. SERIAL_ECHOPGM("Dequeing ");
  420. SERIAL_ECHO(cmdbuffer+bufindr+1);
  421. SERIAL_ECHOLNPGM("");
  422. SERIAL_ECHOPGM("Old indices: buflen ");
  423. SERIAL_ECHO(buflen);
  424. SERIAL_ECHOPGM(", bufindr ");
  425. SERIAL_ECHO(bufindr);
  426. SERIAL_ECHOPGM(", bufindw ");
  427. SERIAL_ECHO(bufindw);
  428. SERIAL_ECHOPGM(", serial_count ");
  429. SERIAL_ECHO(serial_count);
  430. SERIAL_ECHOPGM(", bufsize ");
  431. SERIAL_ECHO(sizeof(cmdbuffer));
  432. SERIAL_ECHOLNPGM("");
  433. #endif /* CMDBUFFER_DEBUG */
  434. if (-- buflen == 0) {
  435. // Empty buffer.
  436. if (serial_count == 0)
  437. // No serial communication is pending. Reset both pointers to zero.
  438. bufindw = 0;
  439. bufindr = bufindw;
  440. } else {
  441. // There is at least one ready line in the buffer.
  442. // First skip the current command ID and iterate up to the end of the string.
  443. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  444. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  445. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  446. // If the end of the buffer was empty,
  447. if (bufindr == sizeof(cmdbuffer)) {
  448. // skip to the start and find the nonzero command.
  449. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. }
  451. #ifdef CMDBUFFER_DEBUG
  452. SERIAL_ECHOPGM("New indices: buflen ");
  453. SERIAL_ECHO(buflen);
  454. SERIAL_ECHOPGM(", bufindr ");
  455. SERIAL_ECHO(bufindr);
  456. SERIAL_ECHOPGM(", bufindw ");
  457. SERIAL_ECHO(bufindw);
  458. SERIAL_ECHOPGM(", serial_count ");
  459. SERIAL_ECHO(serial_count);
  460. SERIAL_ECHOPGM(" new command on the top: ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. #endif /* CMDBUFFER_DEBUG */
  464. }
  465. return true;
  466. }
  467. return false;
  468. }
  469. void cmdqueue_reset()
  470. {
  471. while (cmdqueue_pop_front()) ;
  472. }
  473. // How long a string could be pushed to the front of the command queue?
  474. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  475. // len_asked does not contain the zero terminator size.
  476. bool cmdqueue_could_enqueue_front(int len_asked)
  477. {
  478. // MAX_CMD_SIZE has to accommodate the zero terminator.
  479. if (len_asked >= MAX_CMD_SIZE)
  480. return false;
  481. // Remove the currently processed command from the queue.
  482. if (! cmdbuffer_front_already_processed) {
  483. cmdqueue_pop_front();
  484. cmdbuffer_front_already_processed = true;
  485. }
  486. if (bufindr == bufindw && buflen > 0)
  487. // Full buffer.
  488. return false;
  489. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  490. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  491. if (bufindw < bufindr) {
  492. int bufindr_new = bufindr - len_asked - 2;
  493. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  494. if (endw <= bufindr_new) {
  495. bufindr = bufindr_new;
  496. return true;
  497. }
  498. } else {
  499. // Otherwise the free space is split between the start and end.
  500. if (len_asked + 2 <= bufindr) {
  501. // Could fit at the start.
  502. bufindr -= len_asked + 2;
  503. return true;
  504. }
  505. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  506. if (endw <= bufindr_new) {
  507. memset(cmdbuffer, 0, bufindr);
  508. bufindr = bufindr_new;
  509. return true;
  510. }
  511. }
  512. return false;
  513. }
  514. // Could one enqueue a command of lenthg len_asked into the buffer,
  515. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  516. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  517. // len_asked does not contain the zero terminator size.
  518. bool cmdqueue_could_enqueue_back(int len_asked)
  519. {
  520. // MAX_CMD_SIZE has to accommodate the zero terminator.
  521. if (len_asked >= MAX_CMD_SIZE)
  522. return false;
  523. if (bufindr == bufindw && buflen > 0)
  524. // Full buffer.
  525. return false;
  526. if (serial_count > 0) {
  527. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  528. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  529. // serial data.
  530. // How much memory to reserve for the commands pushed to the front?
  531. // End of the queue, when pushing to the end.
  532. int endw = bufindw + len_asked + 2;
  533. if (bufindw < bufindr)
  534. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  535. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  536. // Otherwise the free space is split between the start and end.
  537. if (// Could one fit to the end, including the reserve?
  538. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  539. // Could one fit to the end, and the reserve to the start?
  540. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  541. return true;
  542. // Could one fit both to the start?
  543. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  544. // Mark the rest of the buffer as used.
  545. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  546. // and point to the start.
  547. bufindw = 0;
  548. return true;
  549. }
  550. } else {
  551. // How much memory to reserve for the commands pushed to the front?
  552. // End of the queue, when pushing to the end.
  553. int endw = bufindw + len_asked + 2;
  554. if (bufindw < bufindr)
  555. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  556. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  557. // Otherwise the free space is split between the start and end.
  558. if (// Could one fit to the end, including the reserve?
  559. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  560. // Could one fit to the end, and the reserve to the start?
  561. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  562. return true;
  563. // Could one fit both to the start?
  564. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  565. // Mark the rest of the buffer as used.
  566. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  567. // and point to the start.
  568. bufindw = 0;
  569. return true;
  570. }
  571. }
  572. return false;
  573. }
  574. #ifdef CMDBUFFER_DEBUG
  575. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  576. {
  577. SERIAL_ECHOPGM("Entry nr: ");
  578. SERIAL_ECHO(nr);
  579. SERIAL_ECHOPGM(", type: ");
  580. SERIAL_ECHO(int(*p));
  581. SERIAL_ECHOPGM(", cmd: ");
  582. SERIAL_ECHO(p+1);
  583. SERIAL_ECHOLNPGM("");
  584. }
  585. static void cmdqueue_dump_to_serial()
  586. {
  587. if (buflen == 0) {
  588. SERIAL_ECHOLNPGM("The command buffer is empty.");
  589. } else {
  590. SERIAL_ECHOPGM("Content of the buffer: entries ");
  591. SERIAL_ECHO(buflen);
  592. SERIAL_ECHOPGM(", indr ");
  593. SERIAL_ECHO(bufindr);
  594. SERIAL_ECHOPGM(", indw ");
  595. SERIAL_ECHO(bufindw);
  596. SERIAL_ECHOLNPGM("");
  597. int nr = 0;
  598. if (bufindr < bufindw) {
  599. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  600. cmdqueue_dump_to_serial_single_line(nr, p);
  601. // Skip the command.
  602. for (++p; *p != 0; ++ p);
  603. // Skip the gaps.
  604. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  605. }
  606. } else {
  607. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  608. cmdqueue_dump_to_serial_single_line(nr, p);
  609. // Skip the command.
  610. for (++p; *p != 0; ++ p);
  611. // Skip the gaps.
  612. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  613. }
  614. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  615. cmdqueue_dump_to_serial_single_line(nr, p);
  616. // Skip the command.
  617. for (++p; *p != 0; ++ p);
  618. // Skip the gaps.
  619. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  620. }
  621. }
  622. SERIAL_ECHOLNPGM("End of the buffer.");
  623. }
  624. }
  625. #endif /* CMDBUFFER_DEBUG */
  626. //adds an command to the main command buffer
  627. //thats really done in a non-safe way.
  628. //needs overworking someday
  629. // Currently the maximum length of a command piped through this function is around 20 characters
  630. void enquecommand(const char *cmd, bool from_progmem)
  631. {
  632. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  633. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  634. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  635. if (cmdqueue_could_enqueue_back(len)) {
  636. // This is dangerous if a mixing of serial and this happens
  637. // This may easily be tested: If serial_count > 0, we have a problem.
  638. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  639. if (from_progmem)
  640. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  641. else
  642. strcpy(cmdbuffer + bufindw + 1, cmd);
  643. SERIAL_ECHO_START;
  644. SERIAL_ECHORPGM(MSG_Enqueing);
  645. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  646. SERIAL_ECHOLNPGM("\"");
  647. bufindw += len + 2;
  648. if (bufindw == sizeof(cmdbuffer))
  649. bufindw = 0;
  650. ++ buflen;
  651. #ifdef CMDBUFFER_DEBUG
  652. cmdqueue_dump_to_serial();
  653. #endif /* CMDBUFFER_DEBUG */
  654. } else {
  655. SERIAL_ERROR_START;
  656. SERIAL_ECHORPGM(MSG_Enqueing);
  657. if (from_progmem)
  658. SERIAL_PROTOCOLRPGM(cmd);
  659. else
  660. SERIAL_ECHO(cmd);
  661. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  662. #ifdef CMDBUFFER_DEBUG
  663. cmdqueue_dump_to_serial();
  664. #endif /* CMDBUFFER_DEBUG */
  665. }
  666. }
  667. void enquecommand_front(const char *cmd, bool from_progmem)
  668. {
  669. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  670. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  671. if (cmdqueue_could_enqueue_front(len)) {
  672. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  673. if (from_progmem)
  674. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  675. else
  676. strcpy(cmdbuffer + bufindr + 1, cmd);
  677. ++ buflen;
  678. SERIAL_ECHO_START;
  679. SERIAL_ECHOPGM("Enqueing to the front: \"");
  680. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  681. SERIAL_ECHOLNPGM("\"");
  682. #ifdef CMDBUFFER_DEBUG
  683. cmdqueue_dump_to_serial();
  684. #endif /* CMDBUFFER_DEBUG */
  685. } else {
  686. SERIAL_ERROR_START;
  687. SERIAL_ECHOPGM("Enqueing to the front: \"");
  688. if (from_progmem)
  689. SERIAL_PROTOCOLRPGM(cmd);
  690. else
  691. SERIAL_ECHO(cmd);
  692. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  693. #ifdef CMDBUFFER_DEBUG
  694. cmdqueue_dump_to_serial();
  695. #endif /* CMDBUFFER_DEBUG */
  696. }
  697. }
  698. // Mark the command at the top of the command queue as new.
  699. // Therefore it will not be removed from the queue.
  700. void repeatcommand_front()
  701. {
  702. cmdbuffer_front_already_processed = true;
  703. }
  704. void setup_killpin()
  705. {
  706. #if defined(KILL_PIN) && KILL_PIN > -1
  707. SET_INPUT(KILL_PIN);
  708. WRITE(KILL_PIN,HIGH);
  709. #endif
  710. }
  711. // Set home pin
  712. void setup_homepin(void)
  713. {
  714. #if defined(HOME_PIN) && HOME_PIN > -1
  715. SET_INPUT(HOME_PIN);
  716. WRITE(HOME_PIN,HIGH);
  717. #endif
  718. }
  719. void setup_photpin()
  720. {
  721. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  722. SET_OUTPUT(PHOTOGRAPH_PIN);
  723. WRITE(PHOTOGRAPH_PIN, LOW);
  724. #endif
  725. }
  726. void setup_powerhold()
  727. {
  728. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  729. SET_OUTPUT(SUICIDE_PIN);
  730. WRITE(SUICIDE_PIN, HIGH);
  731. #endif
  732. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  733. SET_OUTPUT(PS_ON_PIN);
  734. #if defined(PS_DEFAULT_OFF)
  735. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  736. #else
  737. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  738. #endif
  739. #endif
  740. }
  741. void suicide()
  742. {
  743. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  744. SET_OUTPUT(SUICIDE_PIN);
  745. WRITE(SUICIDE_PIN, LOW);
  746. #endif
  747. }
  748. void servo_init()
  749. {
  750. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  751. servos[0].attach(SERVO0_PIN);
  752. #endif
  753. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  754. servos[1].attach(SERVO1_PIN);
  755. #endif
  756. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  757. servos[2].attach(SERVO2_PIN);
  758. #endif
  759. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  760. servos[3].attach(SERVO3_PIN);
  761. #endif
  762. #if (NUM_SERVOS >= 5)
  763. #error "TODO: enter initalisation code for more servos"
  764. #endif
  765. }
  766. static void lcd_language_menu();
  767. #ifdef MESH_BED_LEVELING
  768. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  769. #endif
  770. // "Setup" function is called by the Arduino framework on startup.
  771. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  772. // are initialized by the main() routine provided by the Arduino framework.
  773. void setup()
  774. {
  775. setup_killpin();
  776. setup_powerhold();
  777. MYSERIAL.begin(BAUDRATE);
  778. SERIAL_PROTOCOLLNPGM("start");
  779. SERIAL_ECHO_START;
  780. #if 0
  781. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  782. for (int i = 0; i < 4096; ++ i) {
  783. int b = eeprom_read_byte((unsigned char*)i);
  784. if (b != 255) {
  785. SERIAL_ECHO(i);
  786. SERIAL_ECHO(":");
  787. SERIAL_ECHO(b);
  788. SERIAL_ECHOLN("");
  789. }
  790. }
  791. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  792. #endif
  793. // Check startup - does nothing if bootloader sets MCUSR to 0
  794. byte mcu = MCUSR;
  795. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  796. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  797. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  798. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  799. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  800. MCUSR=0;
  801. //SERIAL_ECHORPGM(MSG_MARLIN);
  802. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  803. #ifdef STRING_VERSION_CONFIG_H
  804. #ifdef STRING_CONFIG_H_AUTHOR
  805. SERIAL_ECHO_START;
  806. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  807. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  808. SERIAL_ECHORPGM(MSG_AUTHOR);
  809. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  810. SERIAL_ECHOPGM("Compiled: ");
  811. SERIAL_ECHOLNPGM(__DATE__);
  812. #endif
  813. #endif
  814. SERIAL_ECHO_START;
  815. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  816. SERIAL_ECHO(freeMemory());
  817. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  818. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  819. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  820. Config_RetrieveSettings();
  821. tp_init(); // Initialize temperature loop
  822. plan_init(); // Initialize planner;
  823. watchdog_init();
  824. st_init(); // Initialize stepper, this enables interrupts!
  825. setup_photpin();
  826. servo_init();
  827. // Reset the machine correction matrix.
  828. // It does not make sense to load the correction matrix until the machine is homed.
  829. world2machine_reset();
  830. lcd_init();
  831. if (!READ(BTN_ENC))
  832. {
  833. _delay_ms(1000);
  834. if (!READ(BTN_ENC))
  835. {
  836. SET_OUTPUT(BEEPER);
  837. WRITE(BEEPER, HIGH);
  838. // Force language selection at the next boot up.
  839. lcd_force_language_selection();
  840. // Force the "Follow calibration flow" message at the next boot up.
  841. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  842. farm_no = 0;
  843. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  844. farm_mode = false;
  845. while (!READ(BTN_ENC));
  846. WRITE(BEEPER, LOW);
  847. #ifdef MESH_BED_LEVELING
  848. _delay_ms(2000);
  849. if (!READ(BTN_ENC))
  850. {
  851. WRITE(BEEPER, HIGH);
  852. _delay_ms(100);
  853. WRITE(BEEPER, LOW);
  854. _delay_ms(200);
  855. WRITE(BEEPER, HIGH);
  856. _delay_ms(100);
  857. WRITE(BEEPER, LOW);
  858. int _z = 0;
  859. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  860. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  861. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  862. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  863. }
  864. else
  865. {
  866. WRITE(BEEPER, HIGH);
  867. _delay_ms(100);
  868. WRITE(BEEPER, LOW);
  869. }
  870. #endif // mesh
  871. }
  872. }
  873. else
  874. {
  875. _delay_ms(1000); // wait 1sec to display the splash screen
  876. }
  877. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  878. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  879. #endif
  880. #ifdef DIGIPOT_I2C
  881. digipot_i2c_init();
  882. #endif
  883. setup_homepin();
  884. #if defined(Z_AXIS_ALWAYS_ON)
  885. enable_z();
  886. #endif
  887. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  888. if (farm_no > 0)
  889. {
  890. farm_mode = true;
  891. farm_no = farm_no;
  892. prusa_statistics(8);
  893. }
  894. else
  895. {
  896. farm_mode = false;
  897. farm_no = 0;
  898. }
  899. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  900. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  901. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  902. // but this times out if a blocking dialog is shown in setup().
  903. card.initsd();
  904. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  905. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  906. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  907. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  908. // where all the EEPROM entries are set to 0x0ff.
  909. // Once a firmware boots up, it forces at least a language selection, which changes
  910. // EEPROM_LANG to number lower than 0x0ff.
  911. // 1) Set a high power mode.
  912. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  913. }
  914. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  915. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  916. // is being written into the EEPROM, so the update procedure will be triggered only once.
  917. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  918. if (lang_selected >= LANG_NUM){
  919. lcd_mylang();
  920. }
  921. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  922. calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION ||
  923. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  924. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  925. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  926. // Show the message.
  927. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  928. lcd_update_enable(true);
  929. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  930. // Show the message.
  931. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  932. lcd_update_enable(true);
  933. }
  934. // Store the currently running firmware into an eeprom,
  935. // so the next time the firmware gets updated, it will know from which version it has been updated.
  936. update_current_firmware_version_to_eeprom();
  937. }
  938. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  939. // Before loop(), the setup() function is called by the main() routine.
  940. void loop()
  941. {
  942. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  943. {
  944. is_usb_printing = true;
  945. usb_printing_counter--;
  946. _usb_timer = millis();
  947. }
  948. if (usb_printing_counter == 0)
  949. {
  950. is_usb_printing = false;
  951. }
  952. get_command();
  953. #ifdef SDSUPPORT
  954. card.checkautostart(false);
  955. #endif
  956. if(buflen)
  957. {
  958. #ifdef SDSUPPORT
  959. if(card.saving)
  960. {
  961. // Saving a G-code file onto an SD-card is in progress.
  962. // Saving starts with M28, saving until M29 is seen.
  963. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  964. card.write_command(CMDBUFFER_CURRENT_STRING);
  965. if(card.logging)
  966. process_commands();
  967. else
  968. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  969. } else {
  970. card.closefile();
  971. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  972. }
  973. } else {
  974. process_commands();
  975. }
  976. #else
  977. process_commands();
  978. #endif //SDSUPPORT
  979. if (! cmdbuffer_front_already_processed)
  980. cmdqueue_pop_front();
  981. cmdbuffer_front_already_processed = false;
  982. }
  983. //check heater every n milliseconds
  984. manage_heater();
  985. manage_inactivity();
  986. checkHitEndstops();
  987. lcd_update();
  988. }
  989. void get_command()
  990. {
  991. // Test and reserve space for the new command string.
  992. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  993. return;
  994. while (MYSERIAL.available() > 0) {
  995. char serial_char = MYSERIAL.read();
  996. TimeSent = millis();
  997. TimeNow = millis();
  998. if (serial_char < 0)
  999. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1000. // and Marlin does not support such file names anyway.
  1001. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1002. // to a hang-up of the print process from an SD card.
  1003. continue;
  1004. if(serial_char == '\n' ||
  1005. serial_char == '\r' ||
  1006. (serial_char == ':' && comment_mode == false) ||
  1007. serial_count >= (MAX_CMD_SIZE - 1) )
  1008. {
  1009. if(!serial_count) { //if empty line
  1010. comment_mode = false; //for new command
  1011. return;
  1012. }
  1013. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1014. if(!comment_mode){
  1015. comment_mode = false; //for new command
  1016. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1017. {
  1018. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1019. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1020. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1021. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1022. // M110 - set current line number.
  1023. // Line numbers not sent in succession.
  1024. SERIAL_ERROR_START;
  1025. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1026. SERIAL_ERRORLN(gcode_LastN);
  1027. //Serial.println(gcode_N);
  1028. FlushSerialRequestResend();
  1029. serial_count = 0;
  1030. return;
  1031. }
  1032. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1033. {
  1034. byte checksum = 0;
  1035. char *p = cmdbuffer+bufindw+1;
  1036. while (p != strchr_pointer)
  1037. checksum = checksum^(*p++);
  1038. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1039. SERIAL_ERROR_START;
  1040. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1041. SERIAL_ERRORLN(gcode_LastN);
  1042. FlushSerialRequestResend();
  1043. serial_count = 0;
  1044. return;
  1045. }
  1046. // If no errors, remove the checksum and continue parsing.
  1047. *strchr_pointer = 0;
  1048. }
  1049. else
  1050. {
  1051. SERIAL_ERROR_START;
  1052. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1053. SERIAL_ERRORLN(gcode_LastN);
  1054. FlushSerialRequestResend();
  1055. serial_count = 0;
  1056. return;
  1057. }
  1058. gcode_LastN = gcode_N;
  1059. //if no errors, continue parsing
  1060. } // end of 'N' command
  1061. else // if we don't receive 'N' but still see '*'
  1062. {
  1063. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1064. {
  1065. SERIAL_ERROR_START;
  1066. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1067. SERIAL_ERRORLN(gcode_LastN);
  1068. serial_count = 0;
  1069. return;
  1070. }
  1071. } // end of '*' command
  1072. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1073. if (! IS_SD_PRINTING) {
  1074. usb_printing_counter = 10;
  1075. is_usb_printing = true;
  1076. }
  1077. if (Stopped == true) {
  1078. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1079. if (gcode >= 0 && gcode <= 3) {
  1080. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1081. LCD_MESSAGERPGM(MSG_STOPPED);
  1082. }
  1083. }
  1084. } // end of 'G' command
  1085. //If command was e-stop process now
  1086. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1087. kill();
  1088. // Store the current line into buffer, move to the next line.
  1089. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1090. #ifdef CMDBUFFER_DEBUG
  1091. SERIAL_ECHO_START;
  1092. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1093. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1094. SERIAL_ECHOLNPGM("");
  1095. #endif /* CMDBUFFER_DEBUG */
  1096. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1097. if (bufindw == sizeof(cmdbuffer))
  1098. bufindw = 0;
  1099. ++ buflen;
  1100. #ifdef CMDBUFFER_DEBUG
  1101. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1102. SERIAL_ECHO(buflen);
  1103. SERIAL_ECHOLNPGM("");
  1104. #endif /* CMDBUFFER_DEBUG */
  1105. } // end of 'not comment mode'
  1106. serial_count = 0; //clear buffer
  1107. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1108. // in the queue, as this function will reserve the memory.
  1109. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1110. return;
  1111. } // end of "end of line" processing
  1112. else {
  1113. // Not an "end of line" symbol. Store the new character into a buffer.
  1114. if(serial_char == ';') comment_mode = true;
  1115. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1116. }
  1117. } // end of serial line processing loop
  1118. if(farm_mode){
  1119. TimeNow = millis();
  1120. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1121. cmdbuffer[bufindw+serial_count+1] = 0;
  1122. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1123. if (bufindw == sizeof(cmdbuffer))
  1124. bufindw = 0;
  1125. ++ buflen;
  1126. serial_count = 0;
  1127. SERIAL_ECHOPGM("TIMEOUT:");
  1128. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1129. return;
  1130. }
  1131. }
  1132. #ifdef SDSUPPORT
  1133. if(!card.sdprinting || serial_count!=0){
  1134. // If there is a half filled buffer from serial line, wait until return before
  1135. // continuing with the serial line.
  1136. return;
  1137. }
  1138. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1139. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1140. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1141. static bool stop_buffering=false;
  1142. if(buflen==0) stop_buffering=false;
  1143. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1144. while( !card.eof() && !stop_buffering) {
  1145. int16_t n=card.get();
  1146. char serial_char = (char)n;
  1147. if(serial_char == '\n' ||
  1148. serial_char == '\r' ||
  1149. (serial_char == '#' && comment_mode == false) ||
  1150. (serial_char == ':' && comment_mode == false) ||
  1151. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1152. {
  1153. if(card.eof()){
  1154. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1155. stoptime=millis();
  1156. char time[30];
  1157. unsigned long t=(stoptime-starttime)/1000;
  1158. int hours, minutes;
  1159. minutes=(t/60)%60;
  1160. hours=t/60/60;
  1161. save_statistics(total_filament_used, t);
  1162. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1163. SERIAL_ECHO_START;
  1164. SERIAL_ECHOLN(time);
  1165. lcd_setstatus(time);
  1166. card.printingHasFinished();
  1167. card.checkautostart(true);
  1168. if (farm_mode)
  1169. {
  1170. prusa_statistics(6);
  1171. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1172. }
  1173. }
  1174. if(serial_char=='#')
  1175. stop_buffering=true;
  1176. if(!serial_count)
  1177. {
  1178. comment_mode = false; //for new command
  1179. return; //if empty line
  1180. }
  1181. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1182. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1183. ++ buflen;
  1184. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1185. if (bufindw == sizeof(cmdbuffer))
  1186. bufindw = 0;
  1187. comment_mode = false; //for new command
  1188. serial_count = 0; //clear buffer
  1189. // The following line will reserve buffer space if available.
  1190. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1191. return;
  1192. }
  1193. else
  1194. {
  1195. if(serial_char == ';') comment_mode = true;
  1196. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1197. }
  1198. }
  1199. #endif //SDSUPPORT
  1200. }
  1201. // Return True if a character was found
  1202. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1203. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1204. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1205. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1206. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1207. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1208. #define DEFINE_PGM_READ_ANY(type, reader) \
  1209. static inline type pgm_read_any(const type *p) \
  1210. { return pgm_read_##reader##_near(p); }
  1211. DEFINE_PGM_READ_ANY(float, float);
  1212. DEFINE_PGM_READ_ANY(signed char, byte);
  1213. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1214. static const PROGMEM type array##_P[3] = \
  1215. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1216. static inline type array(int axis) \
  1217. { return pgm_read_any(&array##_P[axis]); } \
  1218. type array##_ext(int axis) \
  1219. { return pgm_read_any(&array##_P[axis]); }
  1220. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1221. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1222. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1223. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1224. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1225. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1226. static void axis_is_at_home(int axis) {
  1227. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1228. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1229. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1230. }
  1231. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1232. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1233. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1234. saved_feedrate = feedrate;
  1235. saved_feedmultiply = feedmultiply;
  1236. feedmultiply = 100;
  1237. previous_millis_cmd = millis();
  1238. enable_endstops(enable_endstops_now);
  1239. }
  1240. static void clean_up_after_endstop_move() {
  1241. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1242. enable_endstops(false);
  1243. #endif
  1244. feedrate = saved_feedrate;
  1245. feedmultiply = saved_feedmultiply;
  1246. previous_millis_cmd = millis();
  1247. }
  1248. #ifdef ENABLE_AUTO_BED_LEVELING
  1249. #ifdef AUTO_BED_LEVELING_GRID
  1250. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1251. {
  1252. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1253. planeNormal.debug("planeNormal");
  1254. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1255. //bedLevel.debug("bedLevel");
  1256. //plan_bed_level_matrix.debug("bed level before");
  1257. //vector_3 uncorrected_position = plan_get_position_mm();
  1258. //uncorrected_position.debug("position before");
  1259. vector_3 corrected_position = plan_get_position();
  1260. // corrected_position.debug("position after");
  1261. current_position[X_AXIS] = corrected_position.x;
  1262. current_position[Y_AXIS] = corrected_position.y;
  1263. current_position[Z_AXIS] = corrected_position.z;
  1264. // put the bed at 0 so we don't go below it.
  1265. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1267. }
  1268. #else // not AUTO_BED_LEVELING_GRID
  1269. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1270. plan_bed_level_matrix.set_to_identity();
  1271. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1272. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1273. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1274. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1275. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1276. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1277. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1278. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1279. vector_3 corrected_position = plan_get_position();
  1280. current_position[X_AXIS] = corrected_position.x;
  1281. current_position[Y_AXIS] = corrected_position.y;
  1282. current_position[Z_AXIS] = corrected_position.z;
  1283. // put the bed at 0 so we don't go below it.
  1284. current_position[Z_AXIS] = zprobe_zoffset;
  1285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1286. }
  1287. #endif // AUTO_BED_LEVELING_GRID
  1288. static void run_z_probe() {
  1289. plan_bed_level_matrix.set_to_identity();
  1290. feedrate = homing_feedrate[Z_AXIS];
  1291. // move down until you find the bed
  1292. float zPosition = -10;
  1293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1294. st_synchronize();
  1295. // we have to let the planner know where we are right now as it is not where we said to go.
  1296. zPosition = st_get_position_mm(Z_AXIS);
  1297. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1298. // move up the retract distance
  1299. zPosition += home_retract_mm(Z_AXIS);
  1300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1301. st_synchronize();
  1302. // move back down slowly to find bed
  1303. feedrate = homing_feedrate[Z_AXIS]/4;
  1304. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1306. st_synchronize();
  1307. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1308. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1310. }
  1311. static void do_blocking_move_to(float x, float y, float z) {
  1312. float oldFeedRate = feedrate;
  1313. feedrate = homing_feedrate[Z_AXIS];
  1314. current_position[Z_AXIS] = z;
  1315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1316. st_synchronize();
  1317. feedrate = XY_TRAVEL_SPEED;
  1318. current_position[X_AXIS] = x;
  1319. current_position[Y_AXIS] = y;
  1320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1321. st_synchronize();
  1322. feedrate = oldFeedRate;
  1323. }
  1324. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1325. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1326. }
  1327. /// Probe bed height at position (x,y), returns the measured z value
  1328. static float probe_pt(float x, float y, float z_before) {
  1329. // move to right place
  1330. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1331. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1332. run_z_probe();
  1333. float measured_z = current_position[Z_AXIS];
  1334. SERIAL_PROTOCOLRPGM(MSG_BED);
  1335. SERIAL_PROTOCOLPGM(" x: ");
  1336. SERIAL_PROTOCOL(x);
  1337. SERIAL_PROTOCOLPGM(" y: ");
  1338. SERIAL_PROTOCOL(y);
  1339. SERIAL_PROTOCOLPGM(" z: ");
  1340. SERIAL_PROTOCOL(measured_z);
  1341. SERIAL_PROTOCOLPGM("\n");
  1342. return measured_z;
  1343. }
  1344. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1345. void homeaxis(int axis) {
  1346. #define HOMEAXIS_DO(LETTER) \
  1347. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1348. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1349. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1350. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1351. 0) {
  1352. int axis_home_dir = home_dir(axis);
  1353. current_position[axis] = 0;
  1354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1355. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1356. feedrate = homing_feedrate[axis];
  1357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1358. st_synchronize();
  1359. current_position[axis] = 0;
  1360. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1361. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1362. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1363. st_synchronize();
  1364. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1365. feedrate = homing_feedrate[axis]/2 ;
  1366. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1367. st_synchronize();
  1368. axis_is_at_home(axis);
  1369. destination[axis] = current_position[axis];
  1370. feedrate = 0.0;
  1371. endstops_hit_on_purpose();
  1372. axis_known_position[axis] = true;
  1373. }
  1374. }
  1375. void home_xy()
  1376. {
  1377. set_destination_to_current();
  1378. homeaxis(X_AXIS);
  1379. homeaxis(Y_AXIS);
  1380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1381. endstops_hit_on_purpose();
  1382. }
  1383. void refresh_cmd_timeout(void)
  1384. {
  1385. previous_millis_cmd = millis();
  1386. }
  1387. #ifdef FWRETRACT
  1388. void retract(bool retracting, bool swapretract = false) {
  1389. if(retracting && !retracted[active_extruder]) {
  1390. destination[X_AXIS]=current_position[X_AXIS];
  1391. destination[Y_AXIS]=current_position[Y_AXIS];
  1392. destination[Z_AXIS]=current_position[Z_AXIS];
  1393. destination[E_AXIS]=current_position[E_AXIS];
  1394. if (swapretract) {
  1395. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1396. } else {
  1397. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1398. }
  1399. plan_set_e_position(current_position[E_AXIS]);
  1400. float oldFeedrate = feedrate;
  1401. feedrate=retract_feedrate*60;
  1402. retracted[active_extruder]=true;
  1403. prepare_move();
  1404. current_position[Z_AXIS]-=retract_zlift;
  1405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1406. prepare_move();
  1407. feedrate = oldFeedrate;
  1408. } else if(!retracting && retracted[active_extruder]) {
  1409. destination[X_AXIS]=current_position[X_AXIS];
  1410. destination[Y_AXIS]=current_position[Y_AXIS];
  1411. destination[Z_AXIS]=current_position[Z_AXIS];
  1412. destination[E_AXIS]=current_position[E_AXIS];
  1413. current_position[Z_AXIS]+=retract_zlift;
  1414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1415. //prepare_move();
  1416. if (swapretract) {
  1417. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1418. } else {
  1419. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1420. }
  1421. plan_set_e_position(current_position[E_AXIS]);
  1422. float oldFeedrate = feedrate;
  1423. feedrate=retract_recover_feedrate*60;
  1424. retracted[active_extruder]=false;
  1425. prepare_move();
  1426. feedrate = oldFeedrate;
  1427. }
  1428. } //retract
  1429. #endif //FWRETRACT
  1430. void process_commands()
  1431. {
  1432. #ifdef FILAMENT_RUNOUT_SUPPORT
  1433. SET_INPUT(FR_SENS);
  1434. #endif
  1435. #ifdef CMDBUFFER_DEBUG
  1436. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1437. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1438. SERIAL_ECHOLNPGM("");
  1439. SERIAL_ECHOPGM("In cmdqueue: ");
  1440. SERIAL_ECHO(buflen);
  1441. SERIAL_ECHOLNPGM("");
  1442. #endif /* CMDBUFFER_DEBUG */
  1443. unsigned long codenum; //throw away variable
  1444. char *starpos = NULL;
  1445. #ifdef ENABLE_AUTO_BED_LEVELING
  1446. float x_tmp, y_tmp, z_tmp, real_z;
  1447. #endif
  1448. // PRUSA GCODES
  1449. if(code_seen("PRUSA")){
  1450. if(code_seen("Fir")){
  1451. SERIAL_PROTOCOLLN(FW_version);
  1452. } else if(code_seen("Rev")){
  1453. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1454. } else if(code_seen("Lang")) {
  1455. lcd_force_language_selection();
  1456. } else if(code_seen("Lz")) {
  1457. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1458. }
  1459. //else if (code_seen('Cal')) {
  1460. // lcd_calibration();
  1461. // }
  1462. }
  1463. else
  1464. if(code_seen('G'))
  1465. {
  1466. switch((int)code_value())
  1467. {
  1468. case 0: // G0 -> G1
  1469. case 1: // G1
  1470. if(Stopped == false) {
  1471. #ifdef FILAMENT_RUNOUT_SUPPORT
  1472. if(READ(FR_SENS)){
  1473. feedmultiplyBckp=feedmultiply;
  1474. float target[4];
  1475. float lastpos[4];
  1476. target[X_AXIS]=current_position[X_AXIS];
  1477. target[Y_AXIS]=current_position[Y_AXIS];
  1478. target[Z_AXIS]=current_position[Z_AXIS];
  1479. target[E_AXIS]=current_position[E_AXIS];
  1480. lastpos[X_AXIS]=current_position[X_AXIS];
  1481. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1482. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1483. lastpos[E_AXIS]=current_position[E_AXIS];
  1484. //retract by E
  1485. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1487. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1488. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1489. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1490. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1492. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1493. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1494. //finish moves
  1495. st_synchronize();
  1496. //disable extruder steppers so filament can be removed
  1497. disable_e0();
  1498. disable_e1();
  1499. disable_e2();
  1500. delay(100);
  1501. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1502. uint8_t cnt=0;
  1503. int counterBeep = 0;
  1504. lcd_wait_interact();
  1505. while(!lcd_clicked()){
  1506. cnt++;
  1507. manage_heater();
  1508. manage_inactivity(true);
  1509. //lcd_update();
  1510. if(cnt==0)
  1511. {
  1512. #if BEEPER > 0
  1513. if (counterBeep== 500){
  1514. counterBeep = 0;
  1515. }
  1516. SET_OUTPUT(BEEPER);
  1517. if (counterBeep== 0){
  1518. WRITE(BEEPER,HIGH);
  1519. }
  1520. if (counterBeep== 20){
  1521. WRITE(BEEPER,LOW);
  1522. }
  1523. counterBeep++;
  1524. #else
  1525. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1526. lcd_buzz(1000/6,100);
  1527. #else
  1528. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1529. #endif
  1530. #endif
  1531. }
  1532. }
  1533. WRITE(BEEPER,LOW);
  1534. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1536. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1538. lcd_change_fil_state = 0;
  1539. lcd_loading_filament();
  1540. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1541. lcd_change_fil_state = 0;
  1542. lcd_alright();
  1543. switch(lcd_change_fil_state){
  1544. case 2:
  1545. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1547. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1549. lcd_loading_filament();
  1550. break;
  1551. case 3:
  1552. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1553. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1554. lcd_loading_color();
  1555. break;
  1556. default:
  1557. lcd_change_success();
  1558. break;
  1559. }
  1560. }
  1561. target[E_AXIS]+= 5;
  1562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1563. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1564. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1565. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1566. //plan_set_e_position(current_position[E_AXIS]);
  1567. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1568. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1569. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1570. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1571. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1572. plan_set_e_position(lastpos[E_AXIS]);
  1573. feedmultiply=feedmultiplyBckp;
  1574. char cmd[9];
  1575. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1576. enquecommand(cmd);
  1577. }
  1578. #endif
  1579. get_coordinates(); // For X Y Z E F
  1580. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1581. #ifdef FWRETRACT
  1582. if(autoretract_enabled)
  1583. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1584. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1585. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1586. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1587. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1588. retract(!retracted);
  1589. return;
  1590. }
  1591. }
  1592. #endif //FWRETRACT
  1593. prepare_move();
  1594. //ClearToSend();
  1595. }
  1596. break;
  1597. case 2: // G2 - CW ARC
  1598. if(Stopped == false) {
  1599. get_arc_coordinates();
  1600. prepare_arc_move(true);
  1601. }
  1602. break;
  1603. case 3: // G3 - CCW ARC
  1604. if(Stopped == false) {
  1605. get_arc_coordinates();
  1606. prepare_arc_move(false);
  1607. }
  1608. break;
  1609. case 4: // G4 dwell
  1610. LCD_MESSAGERPGM(MSG_DWELL);
  1611. codenum = 0;
  1612. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1613. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1614. st_synchronize();
  1615. codenum += millis(); // keep track of when we started waiting
  1616. previous_millis_cmd = millis();
  1617. while(millis() < codenum) {
  1618. manage_heater();
  1619. manage_inactivity();
  1620. lcd_update();
  1621. }
  1622. break;
  1623. #ifdef FWRETRACT
  1624. case 10: // G10 retract
  1625. #if EXTRUDERS > 1
  1626. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1627. retract(true,retracted_swap[active_extruder]);
  1628. #else
  1629. retract(true);
  1630. #endif
  1631. break;
  1632. case 11: // G11 retract_recover
  1633. #if EXTRUDERS > 1
  1634. retract(false,retracted_swap[active_extruder]);
  1635. #else
  1636. retract(false);
  1637. #endif
  1638. break;
  1639. #endif //FWRETRACT
  1640. case 28: //G28 Home all Axis one at a time
  1641. #ifdef ENABLE_AUTO_BED_LEVELING
  1642. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1643. #endif //ENABLE_AUTO_BED_LEVELING
  1644. // For mesh bed leveling deactivate the matrix temporarily
  1645. #ifdef MESH_BED_LEVELING
  1646. mbl.active = 0;
  1647. #endif
  1648. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1649. // the planner will not perform any adjustments in the XY plane.
  1650. // Wait for the motors to stop and update the current position with the absolute values.
  1651. world2machine_revert_to_uncorrected();
  1652. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1653. // consumed during the first movements following this statement.
  1654. babystep_undo();
  1655. saved_feedrate = feedrate;
  1656. saved_feedmultiply = feedmultiply;
  1657. feedmultiply = 100;
  1658. previous_millis_cmd = millis();
  1659. enable_endstops(true);
  1660. for(int8_t i=0; i < NUM_AXIS; i++)
  1661. destination[i] = current_position[i];
  1662. feedrate = 0.0;
  1663. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1664. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1665. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1666. homeaxis(Z_AXIS);
  1667. }
  1668. #endif
  1669. #ifdef QUICK_HOME
  1670. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1671. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1672. {
  1673. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1674. int x_axis_home_dir = home_dir(X_AXIS);
  1675. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1676. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1677. feedrate = homing_feedrate[X_AXIS];
  1678. if(homing_feedrate[Y_AXIS]<feedrate)
  1679. feedrate = homing_feedrate[Y_AXIS];
  1680. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1681. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1682. } else {
  1683. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1684. }
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. axis_is_at_home(X_AXIS);
  1688. axis_is_at_home(Y_AXIS);
  1689. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1690. destination[X_AXIS] = current_position[X_AXIS];
  1691. destination[Y_AXIS] = current_position[Y_AXIS];
  1692. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1693. feedrate = 0.0;
  1694. st_synchronize();
  1695. endstops_hit_on_purpose();
  1696. current_position[X_AXIS] = destination[X_AXIS];
  1697. current_position[Y_AXIS] = destination[Y_AXIS];
  1698. current_position[Z_AXIS] = destination[Z_AXIS];
  1699. }
  1700. #endif /* QUICK_HOME */
  1701. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1702. homeaxis(X_AXIS);
  1703. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1704. homeaxis(Y_AXIS);
  1705. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1706. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1707. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1708. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1709. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1710. #ifndef Z_SAFE_HOMING
  1711. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1712. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1713. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1714. feedrate = max_feedrate[Z_AXIS];
  1715. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1716. st_synchronize();
  1717. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1718. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1719. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1720. {
  1721. homeaxis(X_AXIS);
  1722. homeaxis(Y_AXIS);
  1723. }
  1724. // 1st mesh bed leveling measurement point, corrected.
  1725. world2machine_initialize();
  1726. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1727. world2machine_reset();
  1728. if (destination[Y_AXIS] < Y_MIN_POS)
  1729. destination[Y_AXIS] = Y_MIN_POS;
  1730. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1731. feedrate = homing_feedrate[Z_AXIS]/10;
  1732. current_position[Z_AXIS] = 0;
  1733. enable_endstops(false);
  1734. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1735. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1736. st_synchronize();
  1737. current_position[X_AXIS] = destination[X_AXIS];
  1738. current_position[Y_AXIS] = destination[Y_AXIS];
  1739. enable_endstops(true);
  1740. endstops_hit_on_purpose();
  1741. homeaxis(Z_AXIS);
  1742. #else // MESH_BED_LEVELING
  1743. homeaxis(Z_AXIS);
  1744. #endif // MESH_BED_LEVELING
  1745. }
  1746. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1747. if(home_all_axis) {
  1748. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1749. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1750. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1751. feedrate = XY_TRAVEL_SPEED/60;
  1752. current_position[Z_AXIS] = 0;
  1753. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1754. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1755. st_synchronize();
  1756. current_position[X_AXIS] = destination[X_AXIS];
  1757. current_position[Y_AXIS] = destination[Y_AXIS];
  1758. homeaxis(Z_AXIS);
  1759. }
  1760. // Let's see if X and Y are homed and probe is inside bed area.
  1761. if(code_seen(axis_codes[Z_AXIS])) {
  1762. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1763. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1764. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1765. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1766. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1767. current_position[Z_AXIS] = 0;
  1768. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1769. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1770. feedrate = max_feedrate[Z_AXIS];
  1771. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1772. st_synchronize();
  1773. homeaxis(Z_AXIS);
  1774. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1775. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1776. SERIAL_ECHO_START;
  1777. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1778. } else {
  1779. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1780. SERIAL_ECHO_START;
  1781. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1782. }
  1783. }
  1784. #endif // Z_SAFE_HOMING
  1785. #endif // Z_HOME_DIR < 0
  1786. if(code_seen(axis_codes[Z_AXIS])) {
  1787. if(code_value_long() != 0) {
  1788. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1789. }
  1790. }
  1791. #ifdef ENABLE_AUTO_BED_LEVELING
  1792. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1793. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1794. }
  1795. #endif
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1798. enable_endstops(false);
  1799. #endif
  1800. feedrate = saved_feedrate;
  1801. feedmultiply = saved_feedmultiply;
  1802. previous_millis_cmd = millis();
  1803. endstops_hit_on_purpose();
  1804. #ifndef MESH_BED_LEVELING
  1805. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1806. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1807. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1808. lcd_adjust_z();
  1809. #endif
  1810. // Load the machine correction matrix
  1811. world2machine_initialize();
  1812. // and correct the current_position to match the transformed coordinate system.
  1813. world2machine_update_current();
  1814. #ifdef MESH_BED_LEVELING
  1815. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1816. {
  1817. }
  1818. else
  1819. {
  1820. st_synchronize();
  1821. // Push the commands to the front of the message queue in the reverse order!
  1822. // There shall be always enough space reserved for these commands.
  1823. // enquecommand_front_P((PSTR("G80")));
  1824. goto case_G80;
  1825. }
  1826. #endif
  1827. if (farm_mode) { prusa_statistics(20); };
  1828. break;
  1829. #ifdef ENABLE_AUTO_BED_LEVELING
  1830. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1831. {
  1832. #if Z_MIN_PIN == -1
  1833. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1834. #endif
  1835. // Prevent user from running a G29 without first homing in X and Y
  1836. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1837. {
  1838. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1839. SERIAL_ECHO_START;
  1840. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1841. break; // abort G29, since we don't know where we are
  1842. }
  1843. st_synchronize();
  1844. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1845. //vector_3 corrected_position = plan_get_position_mm();
  1846. //corrected_position.debug("position before G29");
  1847. plan_bed_level_matrix.set_to_identity();
  1848. vector_3 uncorrected_position = plan_get_position();
  1849. //uncorrected_position.debug("position durring G29");
  1850. current_position[X_AXIS] = uncorrected_position.x;
  1851. current_position[Y_AXIS] = uncorrected_position.y;
  1852. current_position[Z_AXIS] = uncorrected_position.z;
  1853. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1854. setup_for_endstop_move();
  1855. feedrate = homing_feedrate[Z_AXIS];
  1856. #ifdef AUTO_BED_LEVELING_GRID
  1857. // probe at the points of a lattice grid
  1858. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1859. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1860. // solve the plane equation ax + by + d = z
  1861. // A is the matrix with rows [x y 1] for all the probed points
  1862. // B is the vector of the Z positions
  1863. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1864. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1865. // "A" matrix of the linear system of equations
  1866. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1867. // "B" vector of Z points
  1868. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1869. int probePointCounter = 0;
  1870. bool zig = true;
  1871. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1872. {
  1873. int xProbe, xInc;
  1874. if (zig)
  1875. {
  1876. xProbe = LEFT_PROBE_BED_POSITION;
  1877. //xEnd = RIGHT_PROBE_BED_POSITION;
  1878. xInc = xGridSpacing;
  1879. zig = false;
  1880. } else // zag
  1881. {
  1882. xProbe = RIGHT_PROBE_BED_POSITION;
  1883. //xEnd = LEFT_PROBE_BED_POSITION;
  1884. xInc = -xGridSpacing;
  1885. zig = true;
  1886. }
  1887. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1888. {
  1889. float z_before;
  1890. if (probePointCounter == 0)
  1891. {
  1892. // raise before probing
  1893. z_before = Z_RAISE_BEFORE_PROBING;
  1894. } else
  1895. {
  1896. // raise extruder
  1897. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1898. }
  1899. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1900. eqnBVector[probePointCounter] = measured_z;
  1901. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1902. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1903. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1904. probePointCounter++;
  1905. xProbe += xInc;
  1906. }
  1907. }
  1908. clean_up_after_endstop_move();
  1909. // solve lsq problem
  1910. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1911. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1912. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1913. SERIAL_PROTOCOLPGM(" b: ");
  1914. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1915. SERIAL_PROTOCOLPGM(" d: ");
  1916. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1917. set_bed_level_equation_lsq(plane_equation_coefficients);
  1918. free(plane_equation_coefficients);
  1919. #else // AUTO_BED_LEVELING_GRID not defined
  1920. // Probe at 3 arbitrary points
  1921. // probe 1
  1922. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1923. // probe 2
  1924. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1925. // probe 3
  1926. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1927. clean_up_after_endstop_move();
  1928. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1929. #endif // AUTO_BED_LEVELING_GRID
  1930. st_synchronize();
  1931. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1932. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1933. // When the bed is uneven, this height must be corrected.
  1934. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1935. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1936. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1937. z_tmp = current_position[Z_AXIS];
  1938. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1939. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1940. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1941. }
  1942. break;
  1943. #ifndef Z_PROBE_SLED
  1944. case 30: // G30 Single Z Probe
  1945. {
  1946. st_synchronize();
  1947. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1948. setup_for_endstop_move();
  1949. feedrate = homing_feedrate[Z_AXIS];
  1950. run_z_probe();
  1951. SERIAL_PROTOCOLPGM(MSG_BED);
  1952. SERIAL_PROTOCOLPGM(" X: ");
  1953. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1954. SERIAL_PROTOCOLPGM(" Y: ");
  1955. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1956. SERIAL_PROTOCOLPGM(" Z: ");
  1957. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1958. SERIAL_PROTOCOLPGM("\n");
  1959. clean_up_after_endstop_move();
  1960. }
  1961. break;
  1962. #else
  1963. case 31: // dock the sled
  1964. dock_sled(true);
  1965. break;
  1966. case 32: // undock the sled
  1967. dock_sled(false);
  1968. break;
  1969. #endif // Z_PROBE_SLED
  1970. #endif // ENABLE_AUTO_BED_LEVELING
  1971. #ifdef MESH_BED_LEVELING
  1972. case 30: // G30 Single Z Probe
  1973. {
  1974. st_synchronize();
  1975. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1976. setup_for_endstop_move();
  1977. feedrate = homing_feedrate[Z_AXIS];
  1978. find_bed_induction_sensor_point_z(-10.f, 3);
  1979. SERIAL_PROTOCOLRPGM(MSG_BED);
  1980. SERIAL_PROTOCOLPGM(" X: ");
  1981. MYSERIAL.print(current_position[X_AXIS], 5);
  1982. SERIAL_PROTOCOLPGM(" Y: ");
  1983. MYSERIAL.print(current_position[Y_AXIS], 5);
  1984. SERIAL_PROTOCOLPGM(" Z: ");
  1985. MYSERIAL.print(current_position[Z_AXIS], 5);
  1986. SERIAL_PROTOCOLPGM("\n");
  1987. clean_up_after_endstop_move();
  1988. }
  1989. break;
  1990. /**
  1991. * G80: Mesh-based Z probe, probes a grid and produces a
  1992. * mesh to compensate for variable bed height
  1993. *
  1994. * The S0 report the points as below
  1995. *
  1996. * +----> X-axis
  1997. * |
  1998. * |
  1999. * v Y-axis
  2000. *
  2001. */
  2002. case 80:
  2003. case_G80:
  2004. {
  2005. // Firstly check if we know where we are
  2006. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2007. // We don't know where we are! HOME!
  2008. // Push the commands to the front of the message queue in the reverse order!
  2009. // There shall be always enough space reserved for these commands.
  2010. repeatcommand_front(); // repeat G80 with all its parameters
  2011. enquecommand_front_P((PSTR("G28 W0")));
  2012. break;
  2013. }
  2014. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2015. bool custom_message_old = custom_message;
  2016. unsigned int custom_message_type_old = custom_message_type;
  2017. unsigned int custom_message_state_old = custom_message_state;
  2018. custom_message = true;
  2019. custom_message_type = 1;
  2020. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2021. lcd_update(1);
  2022. mbl.reset();
  2023. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2024. // consumed during the first movements following this statement.
  2025. babystep_undo();
  2026. // Cycle through all points and probe them
  2027. // First move up. During this first movement, the babystepping will be reverted.
  2028. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2030. // The move to the first calibration point.
  2031. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2032. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2033. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2034. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2036. // Wait until the move is finished.
  2037. st_synchronize();
  2038. int mesh_point = 0;
  2039. int ix = 0;
  2040. int iy = 0;
  2041. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2042. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2043. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2044. bool has_z = is_bed_z_jitter_data_valid();
  2045. setup_for_endstop_move(false);
  2046. const char *kill_message = NULL;
  2047. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2048. // Get coords of a measuring point.
  2049. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2050. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2051. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2052. float z0 = 0.f;
  2053. if (has_z && mesh_point > 0) {
  2054. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2055. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2056. #if 0
  2057. SERIAL_ECHOPGM("Bed leveling, point: ");
  2058. MYSERIAL.print(mesh_point);
  2059. SERIAL_ECHOPGM(", calibration z: ");
  2060. MYSERIAL.print(z0, 5);
  2061. SERIAL_ECHOLNPGM("");
  2062. #endif
  2063. }
  2064. // Move Z up to MESH_HOME_Z_SEARCH.
  2065. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2067. st_synchronize();
  2068. // Move to XY position of the sensor point.
  2069. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2070. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2071. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2073. st_synchronize();
  2074. // Go down until endstop is hit
  2075. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2076. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2077. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2078. break;
  2079. }
  2080. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2081. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2082. break;
  2083. }
  2084. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2085. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2086. break;
  2087. }
  2088. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2089. custom_message_state--;
  2090. mesh_point++;
  2091. lcd_update(1);
  2092. }
  2093. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2095. st_synchronize();
  2096. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2097. kill(kill_message);
  2098. }
  2099. clean_up_after_endstop_move();
  2100. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2101. babystep_apply();
  2102. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2103. for (uint8_t i = 0; i < 4; ++ i) {
  2104. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2105. long correction = 0;
  2106. if (code_seen(codes[i]))
  2107. correction = code_value_long();
  2108. else if (eeprom_bed_correction_valid) {
  2109. unsigned char *addr = (i < 2) ?
  2110. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2111. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2112. correction = eeprom_read_int8(addr);
  2113. }
  2114. if (correction == 0)
  2115. continue;
  2116. float offset = float(correction) * 0.001f;
  2117. if (fabs(offset) > 0.101f) {
  2118. SERIAL_ERROR_START;
  2119. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2120. SERIAL_ECHO(offset);
  2121. SERIAL_ECHOLNPGM(" microns");
  2122. } else {
  2123. switch (i) {
  2124. case 0:
  2125. for (uint8_t row = 0; row < 3; ++ row) {
  2126. mbl.z_values[row][1] += 0.5f * offset;
  2127. mbl.z_values[row][0] += offset;
  2128. }
  2129. break;
  2130. case 1:
  2131. for (uint8_t row = 0; row < 3; ++ row) {
  2132. mbl.z_values[row][1] += 0.5f * offset;
  2133. mbl.z_values[row][2] += offset;
  2134. }
  2135. break;
  2136. case 2:
  2137. for (uint8_t col = 0; col < 3; ++ col) {
  2138. mbl.z_values[1][col] += 0.5f * offset;
  2139. mbl.z_values[0][col] += offset;
  2140. }
  2141. break;
  2142. case 3:
  2143. for (uint8_t col = 0; col < 3; ++ col) {
  2144. mbl.z_values[1][col] += 0.5f * offset;
  2145. mbl.z_values[2][col] += offset;
  2146. }
  2147. break;
  2148. }
  2149. }
  2150. }
  2151. mbl.upsample_3x3();
  2152. mbl.active = 1;
  2153. go_home_with_z_lift();
  2154. // Restore custom message state
  2155. custom_message = custom_message_old;
  2156. custom_message_type = custom_message_type_old;
  2157. custom_message_state = custom_message_state_old;
  2158. lcd_update(1);
  2159. }
  2160. break;
  2161. /**
  2162. * G81: Print mesh bed leveling status and bed profile if activated
  2163. */
  2164. case 81:
  2165. if (mbl.active) {
  2166. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2167. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2168. SERIAL_PROTOCOLPGM(",");
  2169. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2170. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2171. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2172. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2173. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2174. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2175. SERIAL_PROTOCOLPGM(" ");
  2176. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2177. }
  2178. SERIAL_PROTOCOLPGM("\n");
  2179. }
  2180. }
  2181. else
  2182. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2183. break;
  2184. #if 0
  2185. /**
  2186. * G82: Single Z probe at current location
  2187. *
  2188. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2189. *
  2190. */
  2191. case 82:
  2192. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2193. setup_for_endstop_move();
  2194. find_bed_induction_sensor_point_z();
  2195. clean_up_after_endstop_move();
  2196. SERIAL_PROTOCOLPGM("Bed found at: ");
  2197. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2198. SERIAL_PROTOCOLPGM("\n");
  2199. break;
  2200. /**
  2201. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2202. */
  2203. case 83:
  2204. {
  2205. int babystepz = code_seen('S') ? code_value() : 0;
  2206. int BabyPosition = code_seen('P') ? code_value() : 0;
  2207. if (babystepz != 0) {
  2208. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2209. // Is the axis indexed starting with zero or one?
  2210. if (BabyPosition > 4) {
  2211. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2212. }else{
  2213. // Save it to the eeprom
  2214. babystepLoadZ = babystepz;
  2215. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2216. // adjust the Z
  2217. babystepsTodoZadd(babystepLoadZ);
  2218. }
  2219. }
  2220. }
  2221. break;
  2222. /**
  2223. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2224. */
  2225. case 84:
  2226. babystepsTodoZsubtract(babystepLoadZ);
  2227. // babystepLoadZ = 0;
  2228. break;
  2229. /**
  2230. * G85: Prusa3D specific: Pick best babystep
  2231. */
  2232. case 85:
  2233. lcd_pick_babystep();
  2234. break;
  2235. #endif
  2236. /**
  2237. * G86: Prusa3D specific: Disable babystep correction after home.
  2238. * This G-code will be performed at the start of a calibration script.
  2239. */
  2240. case 86:
  2241. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2242. break;
  2243. /**
  2244. * G87: Prusa3D specific: Enable babystep correction after home
  2245. * This G-code will be performed at the end of a calibration script.
  2246. */
  2247. case 87:
  2248. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2249. break;
  2250. /**
  2251. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2252. */
  2253. case 88:
  2254. break;
  2255. #endif // ENABLE_MESH_BED_LEVELING
  2256. case 90: // G90
  2257. relative_mode = false;
  2258. break;
  2259. case 91: // G91
  2260. relative_mode = true;
  2261. break;
  2262. case 92: // G92
  2263. if(!code_seen(axis_codes[E_AXIS]))
  2264. st_synchronize();
  2265. for(int8_t i=0; i < NUM_AXIS; i++) {
  2266. if(code_seen(axis_codes[i])) {
  2267. if(i == E_AXIS) {
  2268. current_position[i] = code_value();
  2269. plan_set_e_position(current_position[E_AXIS]);
  2270. }
  2271. else {
  2272. current_position[i] = code_value()+add_homing[i];
  2273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2274. }
  2275. }
  2276. }
  2277. break;
  2278. case 98:
  2279. farm_no = 21;
  2280. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2281. farm_mode = true;
  2282. break;
  2283. case 99:
  2284. farm_no = 0;
  2285. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2286. farm_mode = false;
  2287. break;
  2288. }
  2289. } // end if(code_seen('G'))
  2290. else if(code_seen('M'))
  2291. {
  2292. switch( (int)code_value() )
  2293. {
  2294. #ifdef ULTIPANEL
  2295. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2296. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2297. {
  2298. char *src = strchr_pointer + 2;
  2299. codenum = 0;
  2300. bool hasP = false, hasS = false;
  2301. if (code_seen('P')) {
  2302. codenum = code_value(); // milliseconds to wait
  2303. hasP = codenum > 0;
  2304. }
  2305. if (code_seen('S')) {
  2306. codenum = code_value() * 1000; // seconds to wait
  2307. hasS = codenum > 0;
  2308. }
  2309. starpos = strchr(src, '*');
  2310. if (starpos != NULL) *(starpos) = '\0';
  2311. while (*src == ' ') ++src;
  2312. if (!hasP && !hasS && *src != '\0') {
  2313. lcd_setstatus(src);
  2314. } else {
  2315. LCD_MESSAGERPGM(MSG_USERWAIT);
  2316. }
  2317. lcd_ignore_click();
  2318. st_synchronize();
  2319. previous_millis_cmd = millis();
  2320. if (codenum > 0){
  2321. codenum += millis(); // keep track of when we started waiting
  2322. while(millis() < codenum && !lcd_clicked()){
  2323. manage_heater();
  2324. manage_inactivity();
  2325. lcd_update();
  2326. }
  2327. lcd_ignore_click(false);
  2328. }else{
  2329. if (!lcd_detected())
  2330. break;
  2331. while(!lcd_clicked()){
  2332. manage_heater();
  2333. manage_inactivity();
  2334. lcd_update();
  2335. }
  2336. }
  2337. if (IS_SD_PRINTING)
  2338. LCD_MESSAGERPGM(MSG_RESUMING);
  2339. else
  2340. LCD_MESSAGERPGM(WELCOME_MSG);
  2341. }
  2342. break;
  2343. #endif
  2344. case 17:
  2345. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2346. enable_x();
  2347. enable_y();
  2348. enable_z();
  2349. enable_e0();
  2350. enable_e1();
  2351. enable_e2();
  2352. break;
  2353. #ifdef SDSUPPORT
  2354. case 20: // M20 - list SD card
  2355. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2356. card.ls();
  2357. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2358. break;
  2359. case 21: // M21 - init SD card
  2360. card.initsd();
  2361. break;
  2362. case 22: //M22 - release SD card
  2363. card.release();
  2364. break;
  2365. case 23: //M23 - Select file
  2366. starpos = (strchr(strchr_pointer + 4,'*'));
  2367. if(starpos!=NULL)
  2368. *(starpos)='\0';
  2369. card.openFile(strchr_pointer + 4,true);
  2370. break;
  2371. case 24: //M24 - Start SD print
  2372. card.startFileprint();
  2373. starttime=millis();
  2374. break;
  2375. case 25: //M25 - Pause SD print
  2376. card.pauseSDPrint();
  2377. break;
  2378. case 26: //M26 - Set SD index
  2379. if(card.cardOK && code_seen('S')) {
  2380. card.setIndex(code_value_long());
  2381. }
  2382. break;
  2383. case 27: //M27 - Get SD status
  2384. card.getStatus();
  2385. break;
  2386. case 28: //M28 - Start SD write
  2387. starpos = (strchr(strchr_pointer + 4,'*'));
  2388. if(starpos != NULL){
  2389. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2390. strchr_pointer = strchr(npos,' ') + 1;
  2391. *(starpos) = '\0';
  2392. }
  2393. card.openFile(strchr_pointer+4,false);
  2394. break;
  2395. case 29: //M29 - Stop SD write
  2396. //processed in write to file routine above
  2397. //card,saving = false;
  2398. break;
  2399. case 30: //M30 <filename> Delete File
  2400. if (card.cardOK){
  2401. card.closefile();
  2402. starpos = (strchr(strchr_pointer + 4,'*'));
  2403. if(starpos != NULL){
  2404. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2405. strchr_pointer = strchr(npos,' ') + 1;
  2406. *(starpos) = '\0';
  2407. }
  2408. card.removeFile(strchr_pointer + 4);
  2409. }
  2410. break;
  2411. case 32: //M32 - Select file and start SD print
  2412. {
  2413. if(card.sdprinting) {
  2414. st_synchronize();
  2415. }
  2416. starpos = (strchr(strchr_pointer + 4,'*'));
  2417. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2418. if(namestartpos==NULL)
  2419. {
  2420. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2421. }
  2422. else
  2423. namestartpos++; //to skip the '!'
  2424. if(starpos!=NULL)
  2425. *(starpos)='\0';
  2426. bool call_procedure=(code_seen('P'));
  2427. if(strchr_pointer>namestartpos)
  2428. call_procedure=false; //false alert, 'P' found within filename
  2429. if( card.cardOK )
  2430. {
  2431. card.openFile(namestartpos,true,!call_procedure);
  2432. if(code_seen('S'))
  2433. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2434. card.setIndex(code_value_long());
  2435. card.startFileprint();
  2436. if(!call_procedure)
  2437. starttime=millis(); //procedure calls count as normal print time.
  2438. }
  2439. } break;
  2440. case 928: //M928 - Start SD write
  2441. starpos = (strchr(strchr_pointer + 5,'*'));
  2442. if(starpos != NULL){
  2443. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2444. strchr_pointer = strchr(npos,' ') + 1;
  2445. *(starpos) = '\0';
  2446. }
  2447. card.openLogFile(strchr_pointer+5);
  2448. break;
  2449. #endif //SDSUPPORT
  2450. case 31: //M31 take time since the start of the SD print or an M109 command
  2451. {
  2452. stoptime=millis();
  2453. char time[30];
  2454. unsigned long t=(stoptime-starttime)/1000;
  2455. int sec,min;
  2456. min=t/60;
  2457. sec=t%60;
  2458. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2459. SERIAL_ECHO_START;
  2460. SERIAL_ECHOLN(time);
  2461. lcd_setstatus(time);
  2462. autotempShutdown();
  2463. }
  2464. break;
  2465. case 42: //M42 -Change pin status via gcode
  2466. if (code_seen('S'))
  2467. {
  2468. int pin_status = code_value();
  2469. int pin_number = LED_PIN;
  2470. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2471. pin_number = code_value();
  2472. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2473. {
  2474. if (sensitive_pins[i] == pin_number)
  2475. {
  2476. pin_number = -1;
  2477. break;
  2478. }
  2479. }
  2480. #if defined(FAN_PIN) && FAN_PIN > -1
  2481. if (pin_number == FAN_PIN)
  2482. fanSpeed = pin_status;
  2483. #endif
  2484. if (pin_number > -1)
  2485. {
  2486. pinMode(pin_number, OUTPUT);
  2487. digitalWrite(pin_number, pin_status);
  2488. analogWrite(pin_number, pin_status);
  2489. }
  2490. }
  2491. break;
  2492. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2493. // Reset the skew and offset in both RAM and EEPROM.
  2494. reset_bed_offset_and_skew();
  2495. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2496. // the planner will not perform any adjustments in the XY plane.
  2497. // Wait for the motors to stop and update the current position with the absolute values.
  2498. world2machine_revert_to_uncorrected();
  2499. break;
  2500. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2501. {
  2502. // Disable the default update procedure of the display. We will do a modal dialog.
  2503. lcd_update_enable(false);
  2504. // Let the planner use the uncorrected coordinates.
  2505. mbl.reset();
  2506. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2507. // the planner will not perform any adjustments in the XY plane.
  2508. // Wait for the motors to stop and update the current position with the absolute values.
  2509. world2machine_revert_to_uncorrected();
  2510. // Reset the baby step value applied without moving the axes.
  2511. babystep_reset();
  2512. // Mark all axes as in a need for homing.
  2513. memset(axis_known_position, 0, sizeof(axis_known_position));
  2514. // Only Z calibration?
  2515. bool onlyZ = code_seen('Z');
  2516. // Let the user move the Z axes up to the end stoppers.
  2517. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2518. refresh_cmd_timeout();
  2519. // Move the print head close to the bed.
  2520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2522. st_synchronize();
  2523. // Home in the XY plane.
  2524. set_destination_to_current();
  2525. setup_for_endstop_move();
  2526. home_xy();
  2527. int8_t verbosity_level = 0;
  2528. if (code_seen('V')) {
  2529. // Just 'V' without a number counts as V1.
  2530. char c = strchr_pointer[1];
  2531. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2532. }
  2533. if (onlyZ) {
  2534. clean_up_after_endstop_move();
  2535. // Z only calibration.
  2536. // Load the machine correction matrix
  2537. world2machine_initialize();
  2538. // and correct the current_position to match the transformed coordinate system.
  2539. world2machine_update_current();
  2540. //FIXME
  2541. bool result = sample_mesh_and_store_reference();
  2542. if (result) {
  2543. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2544. // Shipped, the nozzle height has been set already. The user can start printing now.
  2545. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2546. // babystep_apply();
  2547. }
  2548. } else {
  2549. // Reset the baby step value and the baby step applied flag.
  2550. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2551. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2552. // Complete XYZ calibration.
  2553. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2554. uint8_t point_too_far_mask = 0;
  2555. clean_up_after_endstop_move();
  2556. // Print head up.
  2557. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2559. st_synchronize();
  2560. if (result >= 0) {
  2561. // Second half: The fine adjustment.
  2562. // Let the planner use the uncorrected coordinates.
  2563. mbl.reset();
  2564. world2machine_reset();
  2565. // Home in the XY plane.
  2566. setup_for_endstop_move();
  2567. home_xy();
  2568. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2569. clean_up_after_endstop_move();
  2570. // Print head up.
  2571. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2572. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2573. st_synchronize();
  2574. // if (result >= 0) babystep_apply();
  2575. }
  2576. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2577. if (result >= 0) {
  2578. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2579. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2580. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2581. }
  2582. }
  2583. } else {
  2584. // Timeouted.
  2585. }
  2586. lcd_update_enable(true);
  2587. break;
  2588. }
  2589. /*
  2590. case 46:
  2591. {
  2592. // M46: Prusa3D: Show the assigned IP address.
  2593. uint8_t ip[4];
  2594. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2595. if (hasIP) {
  2596. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2597. SERIAL_ECHO(int(ip[0]));
  2598. SERIAL_ECHOPGM(".");
  2599. SERIAL_ECHO(int(ip[1]));
  2600. SERIAL_ECHOPGM(".");
  2601. SERIAL_ECHO(int(ip[2]));
  2602. SERIAL_ECHOPGM(".");
  2603. SERIAL_ECHO(int(ip[3]));
  2604. SERIAL_ECHOLNPGM("");
  2605. } else {
  2606. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2607. }
  2608. break;
  2609. }
  2610. */
  2611. case 47:
  2612. // M47: Prusa3D: Show end stops dialog on the display.
  2613. lcd_diag_show_end_stops();
  2614. break;
  2615. #if 0
  2616. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2617. {
  2618. // Disable the default update procedure of the display. We will do a modal dialog.
  2619. lcd_update_enable(false);
  2620. // Let the planner use the uncorrected coordinates.
  2621. mbl.reset();
  2622. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2623. // the planner will not perform any adjustments in the XY plane.
  2624. // Wait for the motors to stop and update the current position with the absolute values.
  2625. world2machine_revert_to_uncorrected();
  2626. // Move the print head close to the bed.
  2627. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2629. st_synchronize();
  2630. // Home in the XY plane.
  2631. set_destination_to_current();
  2632. setup_for_endstop_move();
  2633. home_xy();
  2634. int8_t verbosity_level = 0;
  2635. if (code_seen('V')) {
  2636. // Just 'V' without a number counts as V1.
  2637. char c = strchr_pointer[1];
  2638. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2639. }
  2640. bool success = scan_bed_induction_points(verbosity_level);
  2641. clean_up_after_endstop_move();
  2642. // Print head up.
  2643. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2645. st_synchronize();
  2646. lcd_update_enable(true);
  2647. break;
  2648. }
  2649. #endif
  2650. // M48 Z-Probe repeatability measurement function.
  2651. //
  2652. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2653. //
  2654. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2655. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2656. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2657. // regenerated.
  2658. //
  2659. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2660. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2661. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2662. //
  2663. #ifdef ENABLE_AUTO_BED_LEVELING
  2664. #ifdef Z_PROBE_REPEATABILITY_TEST
  2665. case 48: // M48 Z-Probe repeatability
  2666. {
  2667. #if Z_MIN_PIN == -1
  2668. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2669. #endif
  2670. double sum=0.0;
  2671. double mean=0.0;
  2672. double sigma=0.0;
  2673. double sample_set[50];
  2674. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2675. double X_current, Y_current, Z_current;
  2676. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2677. if (code_seen('V') || code_seen('v')) {
  2678. verbose_level = code_value();
  2679. if (verbose_level<0 || verbose_level>4 ) {
  2680. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2681. goto Sigma_Exit;
  2682. }
  2683. }
  2684. if (verbose_level > 0) {
  2685. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2686. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2687. }
  2688. if (code_seen('n')) {
  2689. n_samples = code_value();
  2690. if (n_samples<4 || n_samples>50 ) {
  2691. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2692. goto Sigma_Exit;
  2693. }
  2694. }
  2695. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2696. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2697. Z_current = st_get_position_mm(Z_AXIS);
  2698. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2699. ext_position = st_get_position_mm(E_AXIS);
  2700. if (code_seen('X') || code_seen('x') ) {
  2701. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2702. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2703. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2704. goto Sigma_Exit;
  2705. }
  2706. }
  2707. if (code_seen('Y') || code_seen('y') ) {
  2708. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2709. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2710. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2711. goto Sigma_Exit;
  2712. }
  2713. }
  2714. if (code_seen('L') || code_seen('l') ) {
  2715. n_legs = code_value();
  2716. if ( n_legs==1 )
  2717. n_legs = 2;
  2718. if ( n_legs<0 || n_legs>15 ) {
  2719. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2720. goto Sigma_Exit;
  2721. }
  2722. }
  2723. //
  2724. // Do all the preliminary setup work. First raise the probe.
  2725. //
  2726. st_synchronize();
  2727. plan_bed_level_matrix.set_to_identity();
  2728. plan_buffer_line( X_current, Y_current, Z_start_location,
  2729. ext_position,
  2730. homing_feedrate[Z_AXIS]/60,
  2731. active_extruder);
  2732. st_synchronize();
  2733. //
  2734. // Now get everything to the specified probe point So we can safely do a probe to
  2735. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2736. // use that as a starting point for each probe.
  2737. //
  2738. if (verbose_level > 2)
  2739. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2740. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2741. ext_position,
  2742. homing_feedrate[X_AXIS]/60,
  2743. active_extruder);
  2744. st_synchronize();
  2745. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2746. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2747. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2748. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2749. //
  2750. // OK, do the inital probe to get us close to the bed.
  2751. // Then retrace the right amount and use that in subsequent probes
  2752. //
  2753. setup_for_endstop_move();
  2754. run_z_probe();
  2755. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2756. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2757. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2758. ext_position,
  2759. homing_feedrate[X_AXIS]/60,
  2760. active_extruder);
  2761. st_synchronize();
  2762. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2763. for( n=0; n<n_samples; n++) {
  2764. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2765. if ( n_legs) {
  2766. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2767. int rotational_direction, l;
  2768. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2769. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2770. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2771. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2772. //SERIAL_ECHOPAIR(" theta: ",theta);
  2773. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2774. //SERIAL_PROTOCOLLNPGM("");
  2775. for( l=0; l<n_legs-1; l++) {
  2776. if (rotational_direction==1)
  2777. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2778. else
  2779. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2780. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2781. if ( radius<0.0 )
  2782. radius = -radius;
  2783. X_current = X_probe_location + cos(theta) * radius;
  2784. Y_current = Y_probe_location + sin(theta) * radius;
  2785. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2786. X_current = X_MIN_POS;
  2787. if ( X_current>X_MAX_POS)
  2788. X_current = X_MAX_POS;
  2789. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2790. Y_current = Y_MIN_POS;
  2791. if ( Y_current>Y_MAX_POS)
  2792. Y_current = Y_MAX_POS;
  2793. if (verbose_level>3 ) {
  2794. SERIAL_ECHOPAIR("x: ", X_current);
  2795. SERIAL_ECHOPAIR("y: ", Y_current);
  2796. SERIAL_PROTOCOLLNPGM("");
  2797. }
  2798. do_blocking_move_to( X_current, Y_current, Z_current );
  2799. }
  2800. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2801. }
  2802. setup_for_endstop_move();
  2803. run_z_probe();
  2804. sample_set[n] = current_position[Z_AXIS];
  2805. //
  2806. // Get the current mean for the data points we have so far
  2807. //
  2808. sum=0.0;
  2809. for( j=0; j<=n; j++) {
  2810. sum = sum + sample_set[j];
  2811. }
  2812. mean = sum / (double (n+1));
  2813. //
  2814. // Now, use that mean to calculate the standard deviation for the
  2815. // data points we have so far
  2816. //
  2817. sum=0.0;
  2818. for( j=0; j<=n; j++) {
  2819. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2820. }
  2821. sigma = sqrt( sum / (double (n+1)) );
  2822. if (verbose_level > 1) {
  2823. SERIAL_PROTOCOL(n+1);
  2824. SERIAL_PROTOCOL(" of ");
  2825. SERIAL_PROTOCOL(n_samples);
  2826. SERIAL_PROTOCOLPGM(" z: ");
  2827. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2828. }
  2829. if (verbose_level > 2) {
  2830. SERIAL_PROTOCOL(" mean: ");
  2831. SERIAL_PROTOCOL_F(mean,6);
  2832. SERIAL_PROTOCOL(" sigma: ");
  2833. SERIAL_PROTOCOL_F(sigma,6);
  2834. }
  2835. if (verbose_level > 0)
  2836. SERIAL_PROTOCOLPGM("\n");
  2837. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2838. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2839. st_synchronize();
  2840. }
  2841. delay(1000);
  2842. clean_up_after_endstop_move();
  2843. // enable_endstops(true);
  2844. if (verbose_level > 0) {
  2845. SERIAL_PROTOCOLPGM("Mean: ");
  2846. SERIAL_PROTOCOL_F(mean, 6);
  2847. SERIAL_PROTOCOLPGM("\n");
  2848. }
  2849. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2850. SERIAL_PROTOCOL_F(sigma, 6);
  2851. SERIAL_PROTOCOLPGM("\n\n");
  2852. Sigma_Exit:
  2853. break;
  2854. }
  2855. #endif // Z_PROBE_REPEATABILITY_TEST
  2856. #endif // ENABLE_AUTO_BED_LEVELING
  2857. case 104: // M104
  2858. if(setTargetedHotend(104)){
  2859. break;
  2860. }
  2861. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2862. setWatch();
  2863. break;
  2864. case 112: // M112 -Emergency Stop
  2865. kill();
  2866. break;
  2867. case 140: // M140 set bed temp
  2868. if (code_seen('S')) setTargetBed(code_value());
  2869. break;
  2870. case 105 : // M105
  2871. if(setTargetedHotend(105)){
  2872. break;
  2873. }
  2874. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2875. SERIAL_PROTOCOLPGM("ok T:");
  2876. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2877. SERIAL_PROTOCOLPGM(" /");
  2878. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2879. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2880. SERIAL_PROTOCOLPGM(" B:");
  2881. SERIAL_PROTOCOL_F(degBed(),1);
  2882. SERIAL_PROTOCOLPGM(" /");
  2883. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2884. #endif //TEMP_BED_PIN
  2885. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2886. SERIAL_PROTOCOLPGM(" T");
  2887. SERIAL_PROTOCOL(cur_extruder);
  2888. SERIAL_PROTOCOLPGM(":");
  2889. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2890. SERIAL_PROTOCOLPGM(" /");
  2891. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2892. }
  2893. #else
  2894. SERIAL_ERROR_START;
  2895. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2896. #endif
  2897. SERIAL_PROTOCOLPGM(" @:");
  2898. #ifdef EXTRUDER_WATTS
  2899. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2900. SERIAL_PROTOCOLPGM("W");
  2901. #else
  2902. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2903. #endif
  2904. SERIAL_PROTOCOLPGM(" B@:");
  2905. #ifdef BED_WATTS
  2906. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2907. SERIAL_PROTOCOLPGM("W");
  2908. #else
  2909. SERIAL_PROTOCOL(getHeaterPower(-1));
  2910. #endif
  2911. #ifdef SHOW_TEMP_ADC_VALUES
  2912. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2913. SERIAL_PROTOCOLPGM(" ADC B:");
  2914. SERIAL_PROTOCOL_F(degBed(),1);
  2915. SERIAL_PROTOCOLPGM("C->");
  2916. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2917. #endif
  2918. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2919. SERIAL_PROTOCOLPGM(" T");
  2920. SERIAL_PROTOCOL(cur_extruder);
  2921. SERIAL_PROTOCOLPGM(":");
  2922. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2923. SERIAL_PROTOCOLPGM("C->");
  2924. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2925. }
  2926. #endif
  2927. SERIAL_PROTOCOLLN("");
  2928. return;
  2929. break;
  2930. case 109:
  2931. {// M109 - Wait for extruder heater to reach target.
  2932. if(setTargetedHotend(109)){
  2933. break;
  2934. }
  2935. LCD_MESSAGERPGM(MSG_HEATING);
  2936. heating_status = 1;
  2937. if (farm_mode) { prusa_statistics(1); };
  2938. #ifdef AUTOTEMP
  2939. autotemp_enabled=false;
  2940. #endif
  2941. if (code_seen('S')) {
  2942. setTargetHotend(code_value(), tmp_extruder);
  2943. CooldownNoWait = true;
  2944. } else if (code_seen('R')) {
  2945. setTargetHotend(code_value(), tmp_extruder);
  2946. CooldownNoWait = false;
  2947. }
  2948. #ifdef AUTOTEMP
  2949. if (code_seen('S')) autotemp_min=code_value();
  2950. if (code_seen('B')) autotemp_max=code_value();
  2951. if (code_seen('F'))
  2952. {
  2953. autotemp_factor=code_value();
  2954. autotemp_enabled=true;
  2955. }
  2956. #endif
  2957. setWatch();
  2958. codenum = millis();
  2959. /* See if we are heating up or cooling down */
  2960. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2961. cancel_heatup = false;
  2962. #ifdef TEMP_RESIDENCY_TIME
  2963. long residencyStart;
  2964. residencyStart = -1;
  2965. /* continue to loop until we have reached the target temp
  2966. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2967. while((!cancel_heatup)&&((residencyStart == -1) ||
  2968. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2969. #else
  2970. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2971. #endif //TEMP_RESIDENCY_TIME
  2972. if( (millis() - codenum) > 1000UL )
  2973. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2974. SERIAL_PROTOCOLPGM("T:");
  2975. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2976. SERIAL_PROTOCOLPGM(" E:");
  2977. SERIAL_PROTOCOL((int)tmp_extruder);
  2978. #ifdef TEMP_RESIDENCY_TIME
  2979. SERIAL_PROTOCOLPGM(" W:");
  2980. if(residencyStart > -1)
  2981. {
  2982. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2983. SERIAL_PROTOCOLLN( codenum );
  2984. }
  2985. else
  2986. {
  2987. SERIAL_PROTOCOLLN( "?" );
  2988. }
  2989. #else
  2990. SERIAL_PROTOCOLLN("");
  2991. #endif
  2992. codenum = millis();
  2993. }
  2994. manage_heater();
  2995. manage_inactivity();
  2996. lcd_update();
  2997. #ifdef TEMP_RESIDENCY_TIME
  2998. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2999. or when current temp falls outside the hysteresis after target temp was reached */
  3000. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3001. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3002. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3003. {
  3004. residencyStart = millis();
  3005. }
  3006. #endif //TEMP_RESIDENCY_TIME
  3007. }
  3008. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3009. heating_status = 2;
  3010. if (farm_mode) { prusa_statistics(2); };
  3011. starttime=millis();
  3012. previous_millis_cmd = millis();
  3013. }
  3014. break;
  3015. case 190: // M190 - Wait for bed heater to reach target.
  3016. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3017. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3018. heating_status = 3;
  3019. if (farm_mode) { prusa_statistics(1); };
  3020. if (code_seen('S'))
  3021. {
  3022. setTargetBed(code_value());
  3023. CooldownNoWait = true;
  3024. }
  3025. else if (code_seen('R'))
  3026. {
  3027. setTargetBed(code_value());
  3028. CooldownNoWait = false;
  3029. }
  3030. codenum = millis();
  3031. cancel_heatup = false;
  3032. target_direction = isHeatingBed(); // true if heating, false if cooling
  3033. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3034. {
  3035. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3036. {
  3037. float tt=degHotend(active_extruder);
  3038. SERIAL_PROTOCOLPGM("T:");
  3039. SERIAL_PROTOCOL(tt);
  3040. SERIAL_PROTOCOLPGM(" E:");
  3041. SERIAL_PROTOCOL((int)active_extruder);
  3042. SERIAL_PROTOCOLPGM(" B:");
  3043. SERIAL_PROTOCOL_F(degBed(),1);
  3044. SERIAL_PROTOCOLLN("");
  3045. codenum = millis();
  3046. }
  3047. manage_heater();
  3048. manage_inactivity();
  3049. lcd_update();
  3050. }
  3051. LCD_MESSAGERPGM(MSG_BED_DONE);
  3052. heating_status = 4;
  3053. previous_millis_cmd = millis();
  3054. #endif
  3055. break;
  3056. #if defined(FAN_PIN) && FAN_PIN > -1
  3057. case 106: //M106 Fan On
  3058. if (code_seen('S')){
  3059. fanSpeed=constrain(code_value(),0,255);
  3060. }
  3061. else {
  3062. fanSpeed=255;
  3063. }
  3064. break;
  3065. case 107: //M107 Fan Off
  3066. fanSpeed = 0;
  3067. break;
  3068. #endif //FAN_PIN
  3069. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3070. case 80: // M80 - Turn on Power Supply
  3071. SET_OUTPUT(PS_ON_PIN); //GND
  3072. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3073. // If you have a switch on suicide pin, this is useful
  3074. // if you want to start another print with suicide feature after
  3075. // a print without suicide...
  3076. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3077. SET_OUTPUT(SUICIDE_PIN);
  3078. WRITE(SUICIDE_PIN, HIGH);
  3079. #endif
  3080. #ifdef ULTIPANEL
  3081. powersupply = true;
  3082. LCD_MESSAGERPGM(WELCOME_MSG);
  3083. lcd_update();
  3084. #endif
  3085. break;
  3086. #endif
  3087. case 81: // M81 - Turn off Power Supply
  3088. disable_heater();
  3089. st_synchronize();
  3090. disable_e0();
  3091. disable_e1();
  3092. disable_e2();
  3093. finishAndDisableSteppers();
  3094. fanSpeed = 0;
  3095. delay(1000); // Wait a little before to switch off
  3096. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3097. st_synchronize();
  3098. suicide();
  3099. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3100. SET_OUTPUT(PS_ON_PIN);
  3101. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3102. #endif
  3103. #ifdef ULTIPANEL
  3104. powersupply = false;
  3105. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3106. /*
  3107. MACHNAME = "Prusa i3"
  3108. MSGOFF = "Vypnuto"
  3109. "Prusai3"" ""vypnuto""."
  3110. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3111. */
  3112. lcd_update();
  3113. #endif
  3114. break;
  3115. case 82:
  3116. axis_relative_modes[3] = false;
  3117. break;
  3118. case 83:
  3119. axis_relative_modes[3] = true;
  3120. break;
  3121. case 18: //compatibility
  3122. case 84: // M84
  3123. if(code_seen('S')){
  3124. stepper_inactive_time = code_value() * 1000;
  3125. }
  3126. else
  3127. {
  3128. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3129. if(all_axis)
  3130. {
  3131. st_synchronize();
  3132. disable_e0();
  3133. disable_e1();
  3134. disable_e2();
  3135. finishAndDisableSteppers();
  3136. }
  3137. else
  3138. {
  3139. st_synchronize();
  3140. if(code_seen('X')) disable_x();
  3141. if(code_seen('Y')) disable_y();
  3142. if(code_seen('Z')) disable_z();
  3143. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3144. if(code_seen('E')) {
  3145. disable_e0();
  3146. disable_e1();
  3147. disable_e2();
  3148. }
  3149. #endif
  3150. }
  3151. }
  3152. break;
  3153. case 85: // M85
  3154. if(code_seen('S')) {
  3155. max_inactive_time = code_value() * 1000;
  3156. }
  3157. break;
  3158. case 92: // M92
  3159. for(int8_t i=0; i < NUM_AXIS; i++)
  3160. {
  3161. if(code_seen(axis_codes[i]))
  3162. {
  3163. if(i == 3) { // E
  3164. float value = code_value();
  3165. if(value < 20.0) {
  3166. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3167. max_jerk[E_AXIS] *= factor;
  3168. max_feedrate[i] *= factor;
  3169. axis_steps_per_sqr_second[i] *= factor;
  3170. }
  3171. axis_steps_per_unit[i] = value;
  3172. }
  3173. else {
  3174. axis_steps_per_unit[i] = code_value();
  3175. }
  3176. }
  3177. }
  3178. break;
  3179. case 115: // M115
  3180. if (code_seen('V')) {
  3181. // Report the Prusa version number.
  3182. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3183. } else if (code_seen('U')) {
  3184. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3185. // pause the print and ask the user to upgrade the firmware.
  3186. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3187. } else {
  3188. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3189. }
  3190. break;
  3191. case 117: // M117 display message
  3192. starpos = (strchr(strchr_pointer + 5,'*'));
  3193. if(starpos!=NULL)
  3194. *(starpos)='\0';
  3195. lcd_setstatus(strchr_pointer + 5);
  3196. break;
  3197. case 114: // M114
  3198. SERIAL_PROTOCOLPGM("X:");
  3199. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3200. SERIAL_PROTOCOLPGM(" Y:");
  3201. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3202. SERIAL_PROTOCOLPGM(" Z:");
  3203. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3204. SERIAL_PROTOCOLPGM(" E:");
  3205. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3206. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3207. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3208. SERIAL_PROTOCOLPGM(" Y:");
  3209. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3210. SERIAL_PROTOCOLPGM(" Z:");
  3211. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3212. SERIAL_PROTOCOLLN("");
  3213. break;
  3214. case 120: // M120
  3215. enable_endstops(false) ;
  3216. break;
  3217. case 121: // M121
  3218. enable_endstops(true) ;
  3219. break;
  3220. case 119: // M119
  3221. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3222. SERIAL_PROTOCOLLN("");
  3223. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3224. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3225. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3226. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3227. }else{
  3228. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3229. }
  3230. SERIAL_PROTOCOLLN("");
  3231. #endif
  3232. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3233. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3234. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3235. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3236. }else{
  3237. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3238. }
  3239. SERIAL_PROTOCOLLN("");
  3240. #endif
  3241. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3242. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3243. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3244. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3245. }else{
  3246. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3247. }
  3248. SERIAL_PROTOCOLLN("");
  3249. #endif
  3250. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3251. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3252. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3253. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3254. }else{
  3255. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3256. }
  3257. SERIAL_PROTOCOLLN("");
  3258. #endif
  3259. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3260. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3261. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3262. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3263. }else{
  3264. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3265. }
  3266. SERIAL_PROTOCOLLN("");
  3267. #endif
  3268. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3269. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3270. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3271. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3272. }else{
  3273. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3274. }
  3275. SERIAL_PROTOCOLLN("");
  3276. #endif
  3277. break;
  3278. //TODO: update for all axis, use for loop
  3279. #ifdef BLINKM
  3280. case 150: // M150
  3281. {
  3282. byte red;
  3283. byte grn;
  3284. byte blu;
  3285. if(code_seen('R')) red = code_value();
  3286. if(code_seen('U')) grn = code_value();
  3287. if(code_seen('B')) blu = code_value();
  3288. SendColors(red,grn,blu);
  3289. }
  3290. break;
  3291. #endif //BLINKM
  3292. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3293. {
  3294. tmp_extruder = active_extruder;
  3295. if(code_seen('T')) {
  3296. tmp_extruder = code_value();
  3297. if(tmp_extruder >= EXTRUDERS) {
  3298. SERIAL_ECHO_START;
  3299. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3300. break;
  3301. }
  3302. }
  3303. float area = .0;
  3304. if(code_seen('D')) {
  3305. float diameter = (float)code_value();
  3306. if (diameter == 0.0) {
  3307. // setting any extruder filament size disables volumetric on the assumption that
  3308. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3309. // for all extruders
  3310. volumetric_enabled = false;
  3311. } else {
  3312. filament_size[tmp_extruder] = (float)code_value();
  3313. // make sure all extruders have some sane value for the filament size
  3314. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3315. #if EXTRUDERS > 1
  3316. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3317. #if EXTRUDERS > 2
  3318. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3319. #endif
  3320. #endif
  3321. volumetric_enabled = true;
  3322. }
  3323. } else {
  3324. //reserved for setting filament diameter via UFID or filament measuring device
  3325. break;
  3326. }
  3327. calculate_volumetric_multipliers();
  3328. }
  3329. break;
  3330. case 201: // M201
  3331. for(int8_t i=0; i < NUM_AXIS; i++)
  3332. {
  3333. if(code_seen(axis_codes[i]))
  3334. {
  3335. max_acceleration_units_per_sq_second[i] = code_value();
  3336. }
  3337. }
  3338. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3339. reset_acceleration_rates();
  3340. break;
  3341. #if 0 // Not used for Sprinter/grbl gen6
  3342. case 202: // M202
  3343. for(int8_t i=0; i < NUM_AXIS; i++) {
  3344. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3345. }
  3346. break;
  3347. #endif
  3348. case 203: // M203 max feedrate mm/sec
  3349. for(int8_t i=0; i < NUM_AXIS; i++) {
  3350. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3351. }
  3352. break;
  3353. case 204: // M204 acclereration S normal moves T filmanent only moves
  3354. {
  3355. if(code_seen('S')) acceleration = code_value() ;
  3356. if(code_seen('T')) retract_acceleration = code_value() ;
  3357. }
  3358. break;
  3359. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3360. {
  3361. if(code_seen('S')) minimumfeedrate = code_value();
  3362. if(code_seen('T')) mintravelfeedrate = code_value();
  3363. if(code_seen('B')) minsegmenttime = code_value() ;
  3364. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3365. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3366. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3367. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3368. }
  3369. break;
  3370. case 206: // M206 additional homing offset
  3371. for(int8_t i=0; i < 3; i++)
  3372. {
  3373. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3374. }
  3375. break;
  3376. #ifdef FWRETRACT
  3377. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3378. {
  3379. if(code_seen('S'))
  3380. {
  3381. retract_length = code_value() ;
  3382. }
  3383. if(code_seen('F'))
  3384. {
  3385. retract_feedrate = code_value()/60 ;
  3386. }
  3387. if(code_seen('Z'))
  3388. {
  3389. retract_zlift = code_value() ;
  3390. }
  3391. }break;
  3392. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3393. {
  3394. if(code_seen('S'))
  3395. {
  3396. retract_recover_length = code_value() ;
  3397. }
  3398. if(code_seen('F'))
  3399. {
  3400. retract_recover_feedrate = code_value()/60 ;
  3401. }
  3402. }break;
  3403. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3404. {
  3405. if(code_seen('S'))
  3406. {
  3407. int t= code_value() ;
  3408. switch(t)
  3409. {
  3410. case 0:
  3411. {
  3412. autoretract_enabled=false;
  3413. retracted[0]=false;
  3414. #if EXTRUDERS > 1
  3415. retracted[1]=false;
  3416. #endif
  3417. #if EXTRUDERS > 2
  3418. retracted[2]=false;
  3419. #endif
  3420. }break;
  3421. case 1:
  3422. {
  3423. autoretract_enabled=true;
  3424. retracted[0]=false;
  3425. #if EXTRUDERS > 1
  3426. retracted[1]=false;
  3427. #endif
  3428. #if EXTRUDERS > 2
  3429. retracted[2]=false;
  3430. #endif
  3431. }break;
  3432. default:
  3433. SERIAL_ECHO_START;
  3434. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3435. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3436. SERIAL_ECHOLNPGM("\"");
  3437. }
  3438. }
  3439. }break;
  3440. #endif // FWRETRACT
  3441. #if EXTRUDERS > 1
  3442. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3443. {
  3444. if(setTargetedHotend(218)){
  3445. break;
  3446. }
  3447. if(code_seen('X'))
  3448. {
  3449. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3450. }
  3451. if(code_seen('Y'))
  3452. {
  3453. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3454. }
  3455. SERIAL_ECHO_START;
  3456. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3457. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3458. {
  3459. SERIAL_ECHO(" ");
  3460. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3461. SERIAL_ECHO(",");
  3462. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3463. }
  3464. SERIAL_ECHOLN("");
  3465. }break;
  3466. #endif
  3467. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3468. {
  3469. if(code_seen('S'))
  3470. {
  3471. feedmultiply = code_value() ;
  3472. }
  3473. }
  3474. break;
  3475. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3476. {
  3477. if(code_seen('S'))
  3478. {
  3479. int tmp_code = code_value();
  3480. if (code_seen('T'))
  3481. {
  3482. if(setTargetedHotend(221)){
  3483. break;
  3484. }
  3485. extruder_multiply[tmp_extruder] = tmp_code;
  3486. }
  3487. else
  3488. {
  3489. extrudemultiply = tmp_code ;
  3490. }
  3491. }
  3492. }
  3493. break;
  3494. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3495. {
  3496. if(code_seen('P')){
  3497. int pin_number = code_value(); // pin number
  3498. int pin_state = -1; // required pin state - default is inverted
  3499. if(code_seen('S')) pin_state = code_value(); // required pin state
  3500. if(pin_state >= -1 && pin_state <= 1){
  3501. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3502. {
  3503. if (sensitive_pins[i] == pin_number)
  3504. {
  3505. pin_number = -1;
  3506. break;
  3507. }
  3508. }
  3509. if (pin_number > -1)
  3510. {
  3511. int target = LOW;
  3512. st_synchronize();
  3513. pinMode(pin_number, INPUT);
  3514. switch(pin_state){
  3515. case 1:
  3516. target = HIGH;
  3517. break;
  3518. case 0:
  3519. target = LOW;
  3520. break;
  3521. case -1:
  3522. target = !digitalRead(pin_number);
  3523. break;
  3524. }
  3525. while(digitalRead(pin_number) != target){
  3526. manage_heater();
  3527. manage_inactivity();
  3528. lcd_update();
  3529. }
  3530. }
  3531. }
  3532. }
  3533. }
  3534. break;
  3535. #if NUM_SERVOS > 0
  3536. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3537. {
  3538. int servo_index = -1;
  3539. int servo_position = 0;
  3540. if (code_seen('P'))
  3541. servo_index = code_value();
  3542. if (code_seen('S')) {
  3543. servo_position = code_value();
  3544. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3545. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3546. servos[servo_index].attach(0);
  3547. #endif
  3548. servos[servo_index].write(servo_position);
  3549. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3550. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3551. servos[servo_index].detach();
  3552. #endif
  3553. }
  3554. else {
  3555. SERIAL_ECHO_START;
  3556. SERIAL_ECHO("Servo ");
  3557. SERIAL_ECHO(servo_index);
  3558. SERIAL_ECHOLN(" out of range");
  3559. }
  3560. }
  3561. else if (servo_index >= 0) {
  3562. SERIAL_PROTOCOL(MSG_OK);
  3563. SERIAL_PROTOCOL(" Servo ");
  3564. SERIAL_PROTOCOL(servo_index);
  3565. SERIAL_PROTOCOL(": ");
  3566. SERIAL_PROTOCOL(servos[servo_index].read());
  3567. SERIAL_PROTOCOLLN("");
  3568. }
  3569. }
  3570. break;
  3571. #endif // NUM_SERVOS > 0
  3572. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3573. case 300: // M300
  3574. {
  3575. int beepS = code_seen('S') ? code_value() : 110;
  3576. int beepP = code_seen('P') ? code_value() : 1000;
  3577. if (beepS > 0)
  3578. {
  3579. #if BEEPER > 0
  3580. tone(BEEPER, beepS);
  3581. delay(beepP);
  3582. noTone(BEEPER);
  3583. #elif defined(ULTRALCD)
  3584. lcd_buzz(beepS, beepP);
  3585. #elif defined(LCD_USE_I2C_BUZZER)
  3586. lcd_buzz(beepP, beepS);
  3587. #endif
  3588. }
  3589. else
  3590. {
  3591. delay(beepP);
  3592. }
  3593. }
  3594. break;
  3595. #endif // M300
  3596. #ifdef PIDTEMP
  3597. case 301: // M301
  3598. {
  3599. if(code_seen('P')) Kp = code_value();
  3600. if(code_seen('I')) Ki = scalePID_i(code_value());
  3601. if(code_seen('D')) Kd = scalePID_d(code_value());
  3602. #ifdef PID_ADD_EXTRUSION_RATE
  3603. if(code_seen('C')) Kc = code_value();
  3604. #endif
  3605. updatePID();
  3606. SERIAL_PROTOCOL(MSG_OK);
  3607. SERIAL_PROTOCOL(" p:");
  3608. SERIAL_PROTOCOL(Kp);
  3609. SERIAL_PROTOCOL(" i:");
  3610. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3611. SERIAL_PROTOCOL(" d:");
  3612. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3613. #ifdef PID_ADD_EXTRUSION_RATE
  3614. SERIAL_PROTOCOL(" c:");
  3615. //Kc does not have scaling applied above, or in resetting defaults
  3616. SERIAL_PROTOCOL(Kc);
  3617. #endif
  3618. SERIAL_PROTOCOLLN("");
  3619. }
  3620. break;
  3621. #endif //PIDTEMP
  3622. #ifdef PIDTEMPBED
  3623. case 304: // M304
  3624. {
  3625. if(code_seen('P')) bedKp = code_value();
  3626. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3627. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3628. updatePID();
  3629. SERIAL_PROTOCOL(MSG_OK);
  3630. SERIAL_PROTOCOL(" p:");
  3631. SERIAL_PROTOCOL(bedKp);
  3632. SERIAL_PROTOCOL(" i:");
  3633. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3634. SERIAL_PROTOCOL(" d:");
  3635. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3636. SERIAL_PROTOCOLLN("");
  3637. }
  3638. break;
  3639. #endif //PIDTEMP
  3640. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3641. {
  3642. #ifdef CHDK
  3643. SET_OUTPUT(CHDK);
  3644. WRITE(CHDK, HIGH);
  3645. chdkHigh = millis();
  3646. chdkActive = true;
  3647. #else
  3648. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3649. const uint8_t NUM_PULSES=16;
  3650. const float PULSE_LENGTH=0.01524;
  3651. for(int i=0; i < NUM_PULSES; i++) {
  3652. WRITE(PHOTOGRAPH_PIN, HIGH);
  3653. _delay_ms(PULSE_LENGTH);
  3654. WRITE(PHOTOGRAPH_PIN, LOW);
  3655. _delay_ms(PULSE_LENGTH);
  3656. }
  3657. delay(7.33);
  3658. for(int i=0; i < NUM_PULSES; i++) {
  3659. WRITE(PHOTOGRAPH_PIN, HIGH);
  3660. _delay_ms(PULSE_LENGTH);
  3661. WRITE(PHOTOGRAPH_PIN, LOW);
  3662. _delay_ms(PULSE_LENGTH);
  3663. }
  3664. #endif
  3665. #endif //chdk end if
  3666. }
  3667. break;
  3668. #ifdef DOGLCD
  3669. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3670. {
  3671. if (code_seen('C')) {
  3672. lcd_setcontrast( ((int)code_value())&63 );
  3673. }
  3674. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3675. SERIAL_PROTOCOL(lcd_contrast);
  3676. SERIAL_PROTOCOLLN("");
  3677. }
  3678. break;
  3679. #endif
  3680. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3681. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3682. {
  3683. float temp = .0;
  3684. if (code_seen('S')) temp=code_value();
  3685. set_extrude_min_temp(temp);
  3686. }
  3687. break;
  3688. #endif
  3689. case 303: // M303 PID autotune
  3690. {
  3691. float temp = 150.0;
  3692. int e=0;
  3693. int c=5;
  3694. if (code_seen('E')) e=code_value();
  3695. if (e<0)
  3696. temp=70;
  3697. if (code_seen('S')) temp=code_value();
  3698. if (code_seen('C')) c=code_value();
  3699. PID_autotune(temp, e, c);
  3700. }
  3701. break;
  3702. case 400: // M400 finish all moves
  3703. {
  3704. st_synchronize();
  3705. }
  3706. break;
  3707. #ifdef FILAMENT_SENSOR
  3708. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3709. {
  3710. #if (FILWIDTH_PIN > -1)
  3711. if(code_seen('N')) filament_width_nominal=code_value();
  3712. else{
  3713. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3714. SERIAL_PROTOCOLLN(filament_width_nominal);
  3715. }
  3716. #endif
  3717. }
  3718. break;
  3719. case 405: //M405 Turn on filament sensor for control
  3720. {
  3721. if(code_seen('D')) meas_delay_cm=code_value();
  3722. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3723. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3724. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3725. {
  3726. int temp_ratio = widthFil_to_size_ratio();
  3727. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3728. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3729. }
  3730. delay_index1=0;
  3731. delay_index2=0;
  3732. }
  3733. filament_sensor = true ;
  3734. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3735. //SERIAL_PROTOCOL(filament_width_meas);
  3736. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3737. //SERIAL_PROTOCOL(extrudemultiply);
  3738. }
  3739. break;
  3740. case 406: //M406 Turn off filament sensor for control
  3741. {
  3742. filament_sensor = false ;
  3743. }
  3744. break;
  3745. case 407: //M407 Display measured filament diameter
  3746. {
  3747. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3748. SERIAL_PROTOCOLLN(filament_width_meas);
  3749. }
  3750. break;
  3751. #endif
  3752. case 500: // M500 Store settings in EEPROM
  3753. {
  3754. Config_StoreSettings();
  3755. }
  3756. break;
  3757. case 501: // M501 Read settings from EEPROM
  3758. {
  3759. Config_RetrieveSettings();
  3760. }
  3761. break;
  3762. case 502: // M502 Revert to default settings
  3763. {
  3764. Config_ResetDefault();
  3765. }
  3766. break;
  3767. case 503: // M503 print settings currently in memory
  3768. {
  3769. Config_PrintSettings();
  3770. }
  3771. break;
  3772. case 509: //M509 Force language selection
  3773. {
  3774. lcd_force_language_selection();
  3775. SERIAL_ECHO_START;
  3776. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3777. }
  3778. break;
  3779. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3780. case 540:
  3781. {
  3782. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3783. }
  3784. break;
  3785. #endif
  3786. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3787. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3788. {
  3789. float value;
  3790. if (code_seen('Z'))
  3791. {
  3792. value = code_value();
  3793. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3794. {
  3795. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3796. SERIAL_ECHO_START;
  3797. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3798. SERIAL_PROTOCOLLN("");
  3799. }
  3800. else
  3801. {
  3802. SERIAL_ECHO_START;
  3803. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3804. SERIAL_ECHORPGM(MSG_Z_MIN);
  3805. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3806. SERIAL_ECHORPGM(MSG_Z_MAX);
  3807. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3808. SERIAL_PROTOCOLLN("");
  3809. }
  3810. }
  3811. else
  3812. {
  3813. SERIAL_ECHO_START;
  3814. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3815. SERIAL_ECHO(-zprobe_zoffset);
  3816. SERIAL_PROTOCOLLN("");
  3817. }
  3818. break;
  3819. }
  3820. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3821. #ifdef FILAMENTCHANGEENABLE
  3822. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3823. {
  3824. st_synchronize();
  3825. if (farm_mode)
  3826. {
  3827. prusa_statistics(22);
  3828. }
  3829. feedmultiplyBckp=feedmultiply;
  3830. int8_t TooLowZ = 0;
  3831. float target[4];
  3832. float lastpos[4];
  3833. target[X_AXIS]=current_position[X_AXIS];
  3834. target[Y_AXIS]=current_position[Y_AXIS];
  3835. target[Z_AXIS]=current_position[Z_AXIS];
  3836. target[E_AXIS]=current_position[E_AXIS];
  3837. lastpos[X_AXIS]=current_position[X_AXIS];
  3838. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3839. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3840. lastpos[E_AXIS]=current_position[E_AXIS];
  3841. //Restract extruder
  3842. if(code_seen('E'))
  3843. {
  3844. target[E_AXIS]+= code_value();
  3845. }
  3846. else
  3847. {
  3848. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3849. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3850. #endif
  3851. }
  3852. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3853. //Lift Z
  3854. if(code_seen('Z'))
  3855. {
  3856. target[Z_AXIS]+= code_value();
  3857. }
  3858. else
  3859. {
  3860. #ifdef FILAMENTCHANGE_ZADD
  3861. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3862. if(target[Z_AXIS] < 10){
  3863. target[Z_AXIS]+= 10 ;
  3864. TooLowZ = 1;
  3865. }else{
  3866. TooLowZ = 0;
  3867. }
  3868. #endif
  3869. }
  3870. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3871. //Move XY to side
  3872. if(code_seen('X'))
  3873. {
  3874. target[X_AXIS]+= code_value();
  3875. }
  3876. else
  3877. {
  3878. #ifdef FILAMENTCHANGE_XPOS
  3879. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3880. #endif
  3881. }
  3882. if(code_seen('Y'))
  3883. {
  3884. target[Y_AXIS]= code_value();
  3885. }
  3886. else
  3887. {
  3888. #ifdef FILAMENTCHANGE_YPOS
  3889. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3890. #endif
  3891. }
  3892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3893. // Unload filament
  3894. if(code_seen('L'))
  3895. {
  3896. target[E_AXIS]+= code_value();
  3897. }
  3898. else
  3899. {
  3900. #ifdef FILAMENTCHANGE_FINALRETRACT
  3901. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3902. #endif
  3903. }
  3904. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3905. //finish moves
  3906. st_synchronize();
  3907. //disable extruder steppers so filament can be removed
  3908. disable_e0();
  3909. disable_e1();
  3910. disable_e2();
  3911. delay(100);
  3912. //Wait for user to insert filament
  3913. uint8_t cnt=0;
  3914. int counterBeep = 0;
  3915. lcd_wait_interact();
  3916. while(!lcd_clicked()){
  3917. cnt++;
  3918. manage_heater();
  3919. manage_inactivity(true);
  3920. if(cnt==0)
  3921. {
  3922. #if BEEPER > 0
  3923. if (counterBeep== 500){
  3924. counterBeep = 0;
  3925. }
  3926. SET_OUTPUT(BEEPER);
  3927. if (counterBeep== 0){
  3928. WRITE(BEEPER,HIGH);
  3929. }
  3930. if (counterBeep== 20){
  3931. WRITE(BEEPER,LOW);
  3932. }
  3933. counterBeep++;
  3934. #else
  3935. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3936. lcd_buzz(1000/6,100);
  3937. #else
  3938. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3939. #endif
  3940. #endif
  3941. }
  3942. }
  3943. //Filament inserted
  3944. WRITE(BEEPER,LOW);
  3945. //Feed the filament to the end of nozzle quickly
  3946. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3947. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3948. //Extrude some filament
  3949. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3950. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3951. //Wait for user to check the state
  3952. lcd_change_fil_state = 0;
  3953. lcd_loading_filament();
  3954. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3955. lcd_change_fil_state = 0;
  3956. lcd_alright();
  3957. switch(lcd_change_fil_state){
  3958. // Filament failed to load so load it again
  3959. case 2:
  3960. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3961. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3962. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3963. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3964. lcd_loading_filament();
  3965. break;
  3966. // Filament loaded properly but color is not clear
  3967. case 3:
  3968. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3969. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3970. lcd_loading_color();
  3971. break;
  3972. // Everything good
  3973. default:
  3974. lcd_change_success();
  3975. break;
  3976. }
  3977. }
  3978. //Not let's go back to print
  3979. //Feed a little of filament to stabilize pressure
  3980. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3981. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3982. //Retract
  3983. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3984. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3985. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3986. //Move XY back
  3987. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3988. //Move Z back
  3989. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3990. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3991. //Unretract
  3992. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3993. //Set E position to original
  3994. plan_set_e_position(lastpos[E_AXIS]);
  3995. //Recover feed rate
  3996. feedmultiply=feedmultiplyBckp;
  3997. char cmd[9];
  3998. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3999. enquecommand(cmd);
  4000. }
  4001. break;
  4002. #endif //FILAMENTCHANGEENABLE
  4003. case 907: // M907 Set digital trimpot motor current using axis codes.
  4004. {
  4005. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4006. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4007. if(code_seen('B')) digipot_current(4,code_value());
  4008. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4009. #endif
  4010. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4011. if(code_seen('X')) digipot_current(0, code_value());
  4012. #endif
  4013. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4014. if(code_seen('Z')) digipot_current(1, code_value());
  4015. #endif
  4016. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4017. if(code_seen('E')) digipot_current(2, code_value());
  4018. #endif
  4019. #ifdef DIGIPOT_I2C
  4020. // this one uses actual amps in floating point
  4021. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4022. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4023. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4024. #endif
  4025. }
  4026. break;
  4027. case 908: // M908 Control digital trimpot directly.
  4028. {
  4029. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4030. uint8_t channel,current;
  4031. if(code_seen('P')) channel=code_value();
  4032. if(code_seen('S')) current=code_value();
  4033. digitalPotWrite(channel, current);
  4034. #endif
  4035. }
  4036. break;
  4037. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4038. {
  4039. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4040. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4041. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4042. if(code_seen('B')) microstep_mode(4,code_value());
  4043. microstep_readings();
  4044. #endif
  4045. }
  4046. break;
  4047. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4048. {
  4049. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4050. if(code_seen('S')) switch((int)code_value())
  4051. {
  4052. case 1:
  4053. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4054. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4055. break;
  4056. case 2:
  4057. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4058. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4059. break;
  4060. }
  4061. microstep_readings();
  4062. #endif
  4063. }
  4064. break;
  4065. case 999: // M999: Restart after being stopped
  4066. Stopped = false;
  4067. lcd_reset_alert_level();
  4068. gcode_LastN = Stopped_gcode_LastN;
  4069. FlushSerialRequestResend();
  4070. break;
  4071. }
  4072. } // end if(code_seen('M')) (end of M codes)
  4073. else if(code_seen('T'))
  4074. {
  4075. tmp_extruder = code_value();
  4076. if(tmp_extruder >= EXTRUDERS) {
  4077. SERIAL_ECHO_START;
  4078. SERIAL_ECHO("T");
  4079. SERIAL_ECHO(tmp_extruder);
  4080. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4081. }
  4082. else {
  4083. boolean make_move = false;
  4084. if(code_seen('F')) {
  4085. make_move = true;
  4086. next_feedrate = code_value();
  4087. if(next_feedrate > 0.0) {
  4088. feedrate = next_feedrate;
  4089. }
  4090. }
  4091. #if EXTRUDERS > 1
  4092. if(tmp_extruder != active_extruder) {
  4093. // Save current position to return to after applying extruder offset
  4094. memcpy(destination, current_position, sizeof(destination));
  4095. // Offset extruder (only by XY)
  4096. int i;
  4097. for(i = 0; i < 2; i++) {
  4098. current_position[i] = current_position[i] -
  4099. extruder_offset[i][active_extruder] +
  4100. extruder_offset[i][tmp_extruder];
  4101. }
  4102. // Set the new active extruder and position
  4103. active_extruder = tmp_extruder;
  4104. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4105. // Move to the old position if 'F' was in the parameters
  4106. if(make_move && Stopped == false) {
  4107. prepare_move();
  4108. }
  4109. }
  4110. #endif
  4111. SERIAL_ECHO_START;
  4112. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4113. SERIAL_PROTOCOLLN((int)active_extruder);
  4114. }
  4115. } // end if(code_seen('T')) (end of T codes)
  4116. else
  4117. {
  4118. SERIAL_ECHO_START;
  4119. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4120. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4121. SERIAL_ECHOLNPGM("\"");
  4122. }
  4123. ClearToSend();
  4124. }
  4125. void FlushSerialRequestResend()
  4126. {
  4127. //char cmdbuffer[bufindr][100]="Resend:";
  4128. MYSERIAL.flush();
  4129. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4130. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4131. ClearToSend();
  4132. }
  4133. // Confirm the execution of a command, if sent from a serial line.
  4134. // Execution of a command from a SD card will not be confirmed.
  4135. void ClearToSend()
  4136. {
  4137. previous_millis_cmd = millis();
  4138. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4139. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4140. }
  4141. void get_coordinates()
  4142. {
  4143. bool seen[4]={false,false,false,false};
  4144. for(int8_t i=0; i < NUM_AXIS; i++) {
  4145. if(code_seen(axis_codes[i]))
  4146. {
  4147. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4148. seen[i]=true;
  4149. }
  4150. else destination[i] = current_position[i]; //Are these else lines really needed?
  4151. }
  4152. if(code_seen('F')) {
  4153. next_feedrate = code_value();
  4154. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4155. }
  4156. }
  4157. void get_arc_coordinates()
  4158. {
  4159. #ifdef SF_ARC_FIX
  4160. bool relative_mode_backup = relative_mode;
  4161. relative_mode = true;
  4162. #endif
  4163. get_coordinates();
  4164. #ifdef SF_ARC_FIX
  4165. relative_mode=relative_mode_backup;
  4166. #endif
  4167. if(code_seen('I')) {
  4168. offset[0] = code_value();
  4169. }
  4170. else {
  4171. offset[0] = 0.0;
  4172. }
  4173. if(code_seen('J')) {
  4174. offset[1] = code_value();
  4175. }
  4176. else {
  4177. offset[1] = 0.0;
  4178. }
  4179. }
  4180. void clamp_to_software_endstops(float target[3])
  4181. {
  4182. world2machine_clamp(target[0], target[1]);
  4183. // Clamp the Z coordinate.
  4184. if (min_software_endstops) {
  4185. float negative_z_offset = 0;
  4186. #ifdef ENABLE_AUTO_BED_LEVELING
  4187. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4188. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4189. #endif
  4190. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4191. }
  4192. if (max_software_endstops) {
  4193. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4194. }
  4195. }
  4196. #ifdef MESH_BED_LEVELING
  4197. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4198. float dx = x - current_position[X_AXIS];
  4199. float dy = y - current_position[Y_AXIS];
  4200. float dz = z - current_position[Z_AXIS];
  4201. int n_segments = 0;
  4202. if (mbl.active) {
  4203. float len = abs(dx) + abs(dy);
  4204. if (len > 0)
  4205. // Split to 3cm segments or shorter.
  4206. n_segments = int(ceil(len / 30.f));
  4207. }
  4208. if (n_segments > 1) {
  4209. float de = e - current_position[E_AXIS];
  4210. for (int i = 1; i < n_segments; ++ i) {
  4211. float t = float(i) / float(n_segments);
  4212. plan_buffer_line(
  4213. current_position[X_AXIS] + t * dx,
  4214. current_position[Y_AXIS] + t * dy,
  4215. current_position[Z_AXIS] + t * dz,
  4216. current_position[E_AXIS] + t * de,
  4217. feed_rate, extruder);
  4218. }
  4219. }
  4220. // The rest of the path.
  4221. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4222. current_position[X_AXIS] = x;
  4223. current_position[Y_AXIS] = y;
  4224. current_position[Z_AXIS] = z;
  4225. current_position[E_AXIS] = e;
  4226. }
  4227. #endif // MESH_BED_LEVELING
  4228. void prepare_move()
  4229. {
  4230. clamp_to_software_endstops(destination);
  4231. previous_millis_cmd = millis();
  4232. // Do not use feedmultiply for E or Z only moves
  4233. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4234. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4235. }
  4236. else {
  4237. #ifdef MESH_BED_LEVELING
  4238. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4239. #else
  4240. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4241. #endif
  4242. }
  4243. for(int8_t i=0; i < NUM_AXIS; i++) {
  4244. current_position[i] = destination[i];
  4245. }
  4246. }
  4247. void prepare_arc_move(char isclockwise) {
  4248. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4249. // Trace the arc
  4250. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4251. // As far as the parser is concerned, the position is now == target. In reality the
  4252. // motion control system might still be processing the action and the real tool position
  4253. // in any intermediate location.
  4254. for(int8_t i=0; i < NUM_AXIS; i++) {
  4255. current_position[i] = destination[i];
  4256. }
  4257. previous_millis_cmd = millis();
  4258. }
  4259. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4260. #if defined(FAN_PIN)
  4261. #if CONTROLLERFAN_PIN == FAN_PIN
  4262. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4263. #endif
  4264. #endif
  4265. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4266. unsigned long lastMotorCheck = 0;
  4267. void controllerFan()
  4268. {
  4269. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4270. {
  4271. lastMotorCheck = millis();
  4272. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4273. #if EXTRUDERS > 2
  4274. || !READ(E2_ENABLE_PIN)
  4275. #endif
  4276. #if EXTRUDER > 1
  4277. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4278. || !READ(X2_ENABLE_PIN)
  4279. #endif
  4280. || !READ(E1_ENABLE_PIN)
  4281. #endif
  4282. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4283. {
  4284. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4285. }
  4286. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4287. {
  4288. digitalWrite(CONTROLLERFAN_PIN, 0);
  4289. analogWrite(CONTROLLERFAN_PIN, 0);
  4290. }
  4291. else
  4292. {
  4293. // allows digital or PWM fan output to be used (see M42 handling)
  4294. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4295. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4296. }
  4297. }
  4298. }
  4299. #endif
  4300. #ifdef TEMP_STAT_LEDS
  4301. static bool blue_led = false;
  4302. static bool red_led = false;
  4303. static uint32_t stat_update = 0;
  4304. void handle_status_leds(void) {
  4305. float max_temp = 0.0;
  4306. if(millis() > stat_update) {
  4307. stat_update += 500; // Update every 0.5s
  4308. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4309. max_temp = max(max_temp, degHotend(cur_extruder));
  4310. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4311. }
  4312. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4313. max_temp = max(max_temp, degTargetBed());
  4314. max_temp = max(max_temp, degBed());
  4315. #endif
  4316. if((max_temp > 55.0) && (red_led == false)) {
  4317. digitalWrite(STAT_LED_RED, 1);
  4318. digitalWrite(STAT_LED_BLUE, 0);
  4319. red_led = true;
  4320. blue_led = false;
  4321. }
  4322. if((max_temp < 54.0) && (blue_led == false)) {
  4323. digitalWrite(STAT_LED_RED, 0);
  4324. digitalWrite(STAT_LED_BLUE, 1);
  4325. red_led = false;
  4326. blue_led = true;
  4327. }
  4328. }
  4329. }
  4330. #endif
  4331. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4332. {
  4333. #if defined(KILL_PIN) && KILL_PIN > -1
  4334. static int killCount = 0; // make the inactivity button a bit less responsive
  4335. const int KILL_DELAY = 10000;
  4336. #endif
  4337. if(buflen < (BUFSIZE-1)){
  4338. get_command();
  4339. }
  4340. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4341. if(max_inactive_time)
  4342. kill();
  4343. if(stepper_inactive_time) {
  4344. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4345. {
  4346. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4347. disable_x();
  4348. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4349. disable_y();
  4350. disable_z();
  4351. disable_e0();
  4352. disable_e1();
  4353. disable_e2();
  4354. }
  4355. }
  4356. }
  4357. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4358. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4359. {
  4360. chdkActive = false;
  4361. WRITE(CHDK, LOW);
  4362. }
  4363. #endif
  4364. #if defined(KILL_PIN) && KILL_PIN > -1
  4365. // Check if the kill button was pressed and wait just in case it was an accidental
  4366. // key kill key press
  4367. // -------------------------------------------------------------------------------
  4368. if( 0 == READ(KILL_PIN) )
  4369. {
  4370. killCount++;
  4371. }
  4372. else if (killCount > 0)
  4373. {
  4374. killCount--;
  4375. }
  4376. // Exceeded threshold and we can confirm that it was not accidental
  4377. // KILL the machine
  4378. // ----------------------------------------------------------------
  4379. if ( killCount >= KILL_DELAY)
  4380. {
  4381. kill();
  4382. }
  4383. #endif
  4384. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4385. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4386. #endif
  4387. #ifdef EXTRUDER_RUNOUT_PREVENT
  4388. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4389. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4390. {
  4391. bool oldstatus=READ(E0_ENABLE_PIN);
  4392. enable_e0();
  4393. float oldepos=current_position[E_AXIS];
  4394. float oldedes=destination[E_AXIS];
  4395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4396. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4397. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4398. current_position[E_AXIS]=oldepos;
  4399. destination[E_AXIS]=oldedes;
  4400. plan_set_e_position(oldepos);
  4401. previous_millis_cmd=millis();
  4402. st_synchronize();
  4403. WRITE(E0_ENABLE_PIN,oldstatus);
  4404. }
  4405. #endif
  4406. #ifdef TEMP_STAT_LEDS
  4407. handle_status_leds();
  4408. #endif
  4409. check_axes_activity();
  4410. }
  4411. void kill(const char *full_screen_message)
  4412. {
  4413. cli(); // Stop interrupts
  4414. disable_heater();
  4415. disable_x();
  4416. // SERIAL_ECHOLNPGM("kill - disable Y");
  4417. disable_y();
  4418. disable_z();
  4419. disable_e0();
  4420. disable_e1();
  4421. disable_e2();
  4422. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4423. pinMode(PS_ON_PIN,INPUT);
  4424. #endif
  4425. SERIAL_ERROR_START;
  4426. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4427. if (full_screen_message != NULL) {
  4428. SERIAL_ERRORLNRPGM(full_screen_message);
  4429. lcd_display_message_fullscreen_P(full_screen_message);
  4430. } else {
  4431. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4432. }
  4433. // FMC small patch to update the LCD before ending
  4434. sei(); // enable interrupts
  4435. for ( int i=5; i--; lcd_update())
  4436. {
  4437. delay(200);
  4438. }
  4439. cli(); // disable interrupts
  4440. suicide();
  4441. while(1) { /* Intentionally left empty */ } // Wait for reset
  4442. }
  4443. void Stop()
  4444. {
  4445. disable_heater();
  4446. if(Stopped == false) {
  4447. Stopped = true;
  4448. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4449. SERIAL_ERROR_START;
  4450. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4451. LCD_MESSAGERPGM(MSG_STOPPED);
  4452. }
  4453. }
  4454. bool IsStopped() { return Stopped; };
  4455. #ifdef FAST_PWM_FAN
  4456. void setPwmFrequency(uint8_t pin, int val)
  4457. {
  4458. val &= 0x07;
  4459. switch(digitalPinToTimer(pin))
  4460. {
  4461. #if defined(TCCR0A)
  4462. case TIMER0A:
  4463. case TIMER0B:
  4464. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4465. // TCCR0B |= val;
  4466. break;
  4467. #endif
  4468. #if defined(TCCR1A)
  4469. case TIMER1A:
  4470. case TIMER1B:
  4471. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4472. // TCCR1B |= val;
  4473. break;
  4474. #endif
  4475. #if defined(TCCR2)
  4476. case TIMER2:
  4477. case TIMER2:
  4478. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4479. TCCR2 |= val;
  4480. break;
  4481. #endif
  4482. #if defined(TCCR2A)
  4483. case TIMER2A:
  4484. case TIMER2B:
  4485. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4486. TCCR2B |= val;
  4487. break;
  4488. #endif
  4489. #if defined(TCCR3A)
  4490. case TIMER3A:
  4491. case TIMER3B:
  4492. case TIMER3C:
  4493. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4494. TCCR3B |= val;
  4495. break;
  4496. #endif
  4497. #if defined(TCCR4A)
  4498. case TIMER4A:
  4499. case TIMER4B:
  4500. case TIMER4C:
  4501. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4502. TCCR4B |= val;
  4503. break;
  4504. #endif
  4505. #if defined(TCCR5A)
  4506. case TIMER5A:
  4507. case TIMER5B:
  4508. case TIMER5C:
  4509. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4510. TCCR5B |= val;
  4511. break;
  4512. #endif
  4513. }
  4514. }
  4515. #endif //FAST_PWM_FAN
  4516. bool setTargetedHotend(int code){
  4517. tmp_extruder = active_extruder;
  4518. if(code_seen('T')) {
  4519. tmp_extruder = code_value();
  4520. if(tmp_extruder >= EXTRUDERS) {
  4521. SERIAL_ECHO_START;
  4522. switch(code){
  4523. case 104:
  4524. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4525. break;
  4526. case 105:
  4527. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4528. break;
  4529. case 109:
  4530. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4531. break;
  4532. case 218:
  4533. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4534. break;
  4535. case 221:
  4536. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4537. break;
  4538. }
  4539. SERIAL_ECHOLN(tmp_extruder);
  4540. return true;
  4541. }
  4542. }
  4543. return false;
  4544. }
  4545. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4546. {
  4547. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4548. {
  4549. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4550. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4551. }
  4552. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4553. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4554. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4555. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4556. total_filament_used = 0;
  4557. }
  4558. float calculate_volumetric_multiplier(float diameter) {
  4559. float area = .0;
  4560. float radius = .0;
  4561. radius = diameter * .5;
  4562. if (! volumetric_enabled || radius == 0) {
  4563. area = 1;
  4564. }
  4565. else {
  4566. area = M_PI * pow(radius, 2);
  4567. }
  4568. return 1.0 / area;
  4569. }
  4570. void calculate_volumetric_multipliers() {
  4571. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4572. #if EXTRUDERS > 1
  4573. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4574. #if EXTRUDERS > 2
  4575. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4576. #endif
  4577. #endif
  4578. }
  4579. void delay_keep_alive(int ms)
  4580. {
  4581. for (;;) {
  4582. manage_heater();
  4583. // Manage inactivity, but don't disable steppers on timeout.
  4584. manage_inactivity(true);
  4585. lcd_update();
  4586. if (ms == 0)
  4587. break;
  4588. else if (ms >= 50) {
  4589. delay(50);
  4590. ms -= 50;
  4591. } else {
  4592. delay(ms);
  4593. ms = 0;
  4594. }
  4595. }
  4596. }