Marlin_main.cpp 277 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. unsigned long NcTime;
  216. union Data
  217. {
  218. byte b[2];
  219. int value;
  220. };
  221. float homing_feedrate[] = HOMING_FEEDRATE;
  222. // Currently only the extruder axis may be switched to a relative mode.
  223. // Other axes are always absolute or relative based on the common relative_mode flag.
  224. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  225. int feedmultiply=100; //100->1 200->2
  226. int saved_feedmultiply;
  227. int extrudemultiply=100; //100->1 200->2
  228. int extruder_multiply[EXTRUDERS] = {100
  229. #if EXTRUDERS > 1
  230. , 100
  231. #if EXTRUDERS > 2
  232. , 100
  233. #endif
  234. #endif
  235. };
  236. int bowden_length[4] = {385, 385, 385, 385};
  237. bool is_usb_printing = false;
  238. bool homing_flag = false;
  239. bool temp_cal_active = false;
  240. unsigned long kicktime = millis()+100000;
  241. unsigned int usb_printing_counter;
  242. int lcd_change_fil_state = 0;
  243. int feedmultiplyBckp = 100;
  244. float HotendTempBckp = 0;
  245. int fanSpeedBckp = 0;
  246. float pause_lastpos[4];
  247. unsigned long pause_time = 0;
  248. unsigned long start_pause_print = millis();
  249. unsigned long t_fan_rising_edge = millis();
  250. //unsigned long load_filament_time;
  251. bool mesh_bed_leveling_flag = false;
  252. bool mesh_bed_run_from_menu = false;
  253. unsigned char lang_selected = 0;
  254. int8_t FarmMode = 0;
  255. bool prusa_sd_card_upload = false;
  256. unsigned int status_number = 0;
  257. unsigned long total_filament_used;
  258. unsigned int heating_status;
  259. unsigned int heating_status_counter;
  260. bool custom_message;
  261. bool loading_flag = false;
  262. unsigned int custom_message_type;
  263. unsigned int custom_message_state;
  264. char snmm_filaments_used = 0;
  265. float distance_from_min[2];
  266. bool fan_state[2];
  267. int fan_edge_counter[2];
  268. int fan_speed[2];
  269. char dir_names[3][9];
  270. bool sortAlpha = false;
  271. bool volumetric_enabled = false;
  272. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 1
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #if EXTRUDERS > 2
  276. , DEFAULT_NOMINAL_FILAMENT_DIA
  277. #endif
  278. #endif
  279. };
  280. float extruder_multiplier[EXTRUDERS] = {1.0
  281. #if EXTRUDERS > 1
  282. , 1.0
  283. #if EXTRUDERS > 2
  284. , 1.0
  285. #endif
  286. #endif
  287. };
  288. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  289. float add_homing[3]={0,0,0};
  290. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  291. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  292. bool axis_known_position[3] = {false, false, false};
  293. float zprobe_zoffset;
  294. // Extruder offset
  295. #if EXTRUDERS > 1
  296. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  297. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  298. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  299. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  300. #endif
  301. };
  302. #endif
  303. uint8_t active_extruder = 0;
  304. int fanSpeed=0;
  305. #ifdef FWRETRACT
  306. bool autoretract_enabled=false;
  307. bool retracted[EXTRUDERS]={false
  308. #if EXTRUDERS > 1
  309. , false
  310. #if EXTRUDERS > 2
  311. , false
  312. #endif
  313. #endif
  314. };
  315. bool retracted_swap[EXTRUDERS]={false
  316. #if EXTRUDERS > 1
  317. , false
  318. #if EXTRUDERS > 2
  319. , false
  320. #endif
  321. #endif
  322. };
  323. float retract_length = RETRACT_LENGTH;
  324. float retract_length_swap = RETRACT_LENGTH_SWAP;
  325. float retract_feedrate = RETRACT_FEEDRATE;
  326. float retract_zlift = RETRACT_ZLIFT;
  327. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  328. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  329. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  330. #endif
  331. #ifdef ULTIPANEL
  332. #ifdef PS_DEFAULT_OFF
  333. bool powersupply = false;
  334. #else
  335. bool powersupply = true;
  336. #endif
  337. #endif
  338. bool cancel_heatup = false ;
  339. #ifdef HOST_KEEPALIVE_FEATURE
  340. int busy_state = NOT_BUSY;
  341. static long prev_busy_signal_ms = -1;
  342. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  343. #else
  344. #define host_keepalive();
  345. #define KEEPALIVE_STATE(n);
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. bool no_response = false;
  350. uint8_t important_status;
  351. uint8_t saved_filament_type;
  352. //===========================================================================
  353. //=============================Private Variables=============================
  354. //===========================================================================
  355. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  356. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  357. static float delta[3] = {0.0, 0.0, 0.0};
  358. // For tracing an arc
  359. static float offset[3] = {0.0, 0.0, 0.0};
  360. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  361. // Determines Absolute or Relative Coordinates.
  362. // Also there is bool axis_relative_modes[] per axis flag.
  363. static bool relative_mode = false;
  364. #ifndef _DISABLE_M42_M226
  365. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  366. #endif //_DISABLE_M42_M226
  367. //static float tt = 0;
  368. //static float bt = 0;
  369. //Inactivity shutdown variables
  370. static unsigned long previous_millis_cmd = 0;
  371. unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime=0;
  374. unsigned long stoptime=0;
  375. unsigned long _usb_timer = 0;
  376. static uint8_t tmp_extruder;
  377. bool extruder_under_pressure = true;
  378. bool Stopped=false;
  379. #if NUM_SERVOS > 0
  380. Servo servos[NUM_SERVOS];
  381. #endif
  382. bool CooldownNoWait = true;
  383. bool target_direction;
  384. //Insert variables if CHDK is defined
  385. #ifdef CHDK
  386. unsigned long chdkHigh = 0;
  387. boolean chdkActive = false;
  388. #endif
  389. //===========================================================================
  390. //=============================Routines======================================
  391. //===========================================================================
  392. void get_arc_coordinates();
  393. bool setTargetedHotend(int code);
  394. void serial_echopair_P(const char *s_P, float v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. void serial_echopair_P(const char *s_P, double v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. void serial_echopair_P(const char *s_P, unsigned long v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. #ifdef SDSUPPORT
  401. #include "SdFatUtil.h"
  402. int freeMemory() { return SdFatUtil::FreeRam(); }
  403. #else
  404. extern "C" {
  405. extern unsigned int __bss_end;
  406. extern unsigned int __heap_start;
  407. extern void *__brkval;
  408. int freeMemory() {
  409. int free_memory;
  410. if ((int)__brkval == 0)
  411. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  412. else
  413. free_memory = ((int)&free_memory) - ((int)__brkval);
  414. return free_memory;
  415. }
  416. }
  417. #endif //!SDSUPPORT
  418. void setup_killpin()
  419. {
  420. #if defined(KILL_PIN) && KILL_PIN > -1
  421. SET_INPUT(KILL_PIN);
  422. WRITE(KILL_PIN,HIGH);
  423. #endif
  424. }
  425. // Set home pin
  426. void setup_homepin(void)
  427. {
  428. #if defined(HOME_PIN) && HOME_PIN > -1
  429. SET_INPUT(HOME_PIN);
  430. WRITE(HOME_PIN,HIGH);
  431. #endif
  432. }
  433. void setup_photpin()
  434. {
  435. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  436. SET_OUTPUT(PHOTOGRAPH_PIN);
  437. WRITE(PHOTOGRAPH_PIN, LOW);
  438. #endif
  439. }
  440. void setup_powerhold()
  441. {
  442. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  443. SET_OUTPUT(SUICIDE_PIN);
  444. WRITE(SUICIDE_PIN, HIGH);
  445. #endif
  446. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  447. SET_OUTPUT(PS_ON_PIN);
  448. #if defined(PS_DEFAULT_OFF)
  449. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  450. #else
  451. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  452. #endif
  453. #endif
  454. }
  455. void suicide()
  456. {
  457. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  458. SET_OUTPUT(SUICIDE_PIN);
  459. WRITE(SUICIDE_PIN, LOW);
  460. #endif
  461. }
  462. void servo_init()
  463. {
  464. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  465. servos[0].attach(SERVO0_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  468. servos[1].attach(SERVO1_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  471. servos[2].attach(SERVO2_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  474. servos[3].attach(SERVO3_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 5)
  477. #error "TODO: enter initalisation code for more servos"
  478. #endif
  479. }
  480. static void lcd_language_menu();
  481. void stop_and_save_print_to_ram(float z_move, float e_move);
  482. void restore_print_from_ram_and_continue(float e_move);
  483. bool fans_check_enabled = true;
  484. bool filament_autoload_enabled = true;
  485. extern int8_t CrashDetectMenu;
  486. void crashdet_enable()
  487. {
  488. // MYSERIAL.println("crashdet_enable");
  489. tmc2130_sg_stop_on_crash = true;
  490. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  491. CrashDetectMenu = 1;
  492. }
  493. void crashdet_disable()
  494. {
  495. // MYSERIAL.println("crashdet_disable");
  496. tmc2130_sg_stop_on_crash = false;
  497. tmc2130_sg_crash = 0;
  498. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  499. CrashDetectMenu = 0;
  500. }
  501. void crashdet_stop_and_save_print()
  502. {
  503. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  504. }
  505. void crashdet_restore_print_and_continue()
  506. {
  507. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  508. // babystep_apply();
  509. }
  510. void crashdet_stop_and_save_print2()
  511. {
  512. cli();
  513. planner_abort_hard(); //abort printing
  514. cmdqueue_reset(); //empty cmdqueue
  515. card.sdprinting = false;
  516. card.closefile();
  517. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  518. st_reset_timer();
  519. sei();
  520. }
  521. void crashdet_detected(uint8_t mask)
  522. {
  523. // printf("CRASH_DETECTED");
  524. /* while (!is_buffer_empty())
  525. {
  526. process_commands();
  527. cmdqueue_pop_front();
  528. }*/
  529. st_synchronize();
  530. lcd_update_enable(true);
  531. lcd_implementation_clear();
  532. lcd_update(2);
  533. if (mask & X_AXIS_MASK)
  534. {
  535. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  536. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  537. }
  538. if (mask & Y_AXIS_MASK)
  539. {
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  541. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  542. }
  543. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  544. bool yesno = true;
  545. #else
  546. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  547. #endif
  548. lcd_update_enable(true);
  549. lcd_update(2);
  550. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  551. if (yesno)
  552. {
  553. enquecommand_P(PSTR("G28 X Y"));
  554. enquecommand_P(PSTR("CRASH_RECOVER"));
  555. }
  556. else
  557. {
  558. enquecommand_P(PSTR("CRASH_CANCEL"));
  559. }
  560. }
  561. void crashdet_recover()
  562. {
  563. crashdet_restore_print_and_continue();
  564. tmc2130_sg_stop_on_crash = true;
  565. }
  566. void crashdet_cancel()
  567. {
  568. card.sdprinting = false;
  569. card.closefile();
  570. tmc2130_sg_stop_on_crash = true;
  571. }
  572. void failstats_reset_print()
  573. {
  574. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  578. }
  579. #ifdef MESH_BED_LEVELING
  580. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  581. #endif
  582. // Factory reset function
  583. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  584. // Level input parameter sets depth of reset
  585. // Quiet parameter masks all waitings for user interact.
  586. int er_progress = 0;
  587. void factory_reset(char level, bool quiet)
  588. {
  589. lcd_implementation_clear();
  590. int cursor_pos = 0;
  591. switch (level) {
  592. // Level 0: Language reset
  593. case 0:
  594. WRITE(BEEPER, HIGH);
  595. _delay_ms(100);
  596. WRITE(BEEPER, LOW);
  597. lcd_force_language_selection();
  598. break;
  599. //Level 1: Reset statistics
  600. case 1:
  601. WRITE(BEEPER, HIGH);
  602. _delay_ms(100);
  603. WRITE(BEEPER, LOW);
  604. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  605. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  606. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  607. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  608. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  609. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  610. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  611. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  612. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  613. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  614. lcd_menu_statistics();
  615. break;
  616. // Level 2: Prepare for shipping
  617. case 2:
  618. //lcd_printPGM(PSTR("Factory RESET"));
  619. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  620. // Force language selection at the next boot up.
  621. lcd_force_language_selection();
  622. // Force the "Follow calibration flow" message at the next boot up.
  623. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  624. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  625. farm_no = 0;
  626. farm_mode == false;
  627. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  628. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  629. WRITE(BEEPER, HIGH);
  630. _delay_ms(100);
  631. WRITE(BEEPER, LOW);
  632. //_delay_ms(2000);
  633. break;
  634. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  635. case 3:
  636. lcd_printPGM(PSTR("Factory RESET"));
  637. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  638. WRITE(BEEPER, HIGH);
  639. _delay_ms(100);
  640. WRITE(BEEPER, LOW);
  641. er_progress = 0;
  642. lcd_print_at_PGM(3, 3, PSTR(" "));
  643. lcd_implementation_print_at(3, 3, er_progress);
  644. // Erase EEPROM
  645. for (int i = 0; i < 4096; i++) {
  646. eeprom_write_byte((uint8_t*)i, 0xFF);
  647. if (i % 41 == 0) {
  648. er_progress++;
  649. lcd_print_at_PGM(3, 3, PSTR(" "));
  650. lcd_implementation_print_at(3, 3, er_progress);
  651. lcd_printPGM(PSTR("%"));
  652. }
  653. }
  654. break;
  655. case 4:
  656. bowden_menu();
  657. break;
  658. default:
  659. break;
  660. }
  661. }
  662. #include "LiquidCrystal.h"
  663. extern LiquidCrystal lcd;
  664. FILE _lcdout = {0};
  665. int lcd_putchar(char c, FILE *stream)
  666. {
  667. lcd.write(c);
  668. return 0;
  669. }
  670. FILE _uartout = {0};
  671. int uart_putchar(char c, FILE *stream)
  672. {
  673. MYSERIAL.write(c);
  674. return 0;
  675. }
  676. void lcd_splash()
  677. {
  678. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  679. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  680. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  681. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  682. }
  683. void factory_reset()
  684. {
  685. KEEPALIVE_STATE(PAUSED_FOR_USER);
  686. if (!READ(BTN_ENC))
  687. {
  688. _delay_ms(1000);
  689. if (!READ(BTN_ENC))
  690. {
  691. lcd_implementation_clear();
  692. lcd_printPGM(PSTR("Factory RESET"));
  693. SET_OUTPUT(BEEPER);
  694. WRITE(BEEPER, HIGH);
  695. while (!READ(BTN_ENC));
  696. WRITE(BEEPER, LOW);
  697. _delay_ms(2000);
  698. char level = reset_menu();
  699. factory_reset(level, false);
  700. switch (level) {
  701. case 0: _delay_ms(0); break;
  702. case 1: _delay_ms(0); break;
  703. case 2: _delay_ms(0); break;
  704. case 3: _delay_ms(0); break;
  705. }
  706. // _delay_ms(100);
  707. /*
  708. #ifdef MESH_BED_LEVELING
  709. _delay_ms(2000);
  710. if (!READ(BTN_ENC))
  711. {
  712. WRITE(BEEPER, HIGH);
  713. _delay_ms(100);
  714. WRITE(BEEPER, LOW);
  715. _delay_ms(200);
  716. WRITE(BEEPER, HIGH);
  717. _delay_ms(100);
  718. WRITE(BEEPER, LOW);
  719. int _z = 0;
  720. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  721. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  722. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  723. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  724. }
  725. else
  726. {
  727. WRITE(BEEPER, HIGH);
  728. _delay_ms(100);
  729. WRITE(BEEPER, LOW);
  730. }
  731. #endif // mesh */
  732. }
  733. }
  734. else
  735. {
  736. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  737. }
  738. KEEPALIVE_STATE(IN_HANDLER);
  739. }
  740. void show_fw_version_warnings() {
  741. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  742. switch (FW_DEV_VERSION) {
  743. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  744. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  745. case(FW_VERSION_DEVEL):
  746. case(FW_VERSION_DEBUG):
  747. lcd_update_enable(false);
  748. lcd_implementation_clear();
  749. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  750. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  751. #else
  752. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  753. #endif
  754. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  755. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  756. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  757. lcd_wait_for_click();
  758. break;
  759. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  760. }
  761. lcd_update_enable(true);
  762. }
  763. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  764. {
  765. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  766. }
  767. // "Setup" function is called by the Arduino framework on startup.
  768. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  769. // are initialized by the main() routine provided by the Arduino framework.
  770. void setup()
  771. {
  772. lcd_init();
  773. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  774. lcd_splash();
  775. setup_killpin();
  776. setup_powerhold();
  777. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  778. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  779. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  780. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  781. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  782. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  783. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  784. if (farm_mode)
  785. {
  786. no_response = true; //we need confirmation by recieving PRUSA thx
  787. important_status = 8;
  788. prusa_statistics(8);
  789. //selectedSerialPort = 1;
  790. }
  791. MYSERIAL.begin(BAUDRATE);
  792. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  793. stdout = uartout;
  794. SERIAL_PROTOCOLLNPGM("start");
  795. SERIAL_ECHO_START;
  796. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  797. #if 0
  798. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  799. for (int i = 0; i < 4096; ++i) {
  800. int b = eeprom_read_byte((unsigned char*)i);
  801. if (b != 255) {
  802. SERIAL_ECHO(i);
  803. SERIAL_ECHO(":");
  804. SERIAL_ECHO(b);
  805. SERIAL_ECHOLN("");
  806. }
  807. }
  808. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  809. #endif
  810. // Check startup - does nothing if bootloader sets MCUSR to 0
  811. byte mcu = MCUSR;
  812. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  813. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  814. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  815. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  816. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  817. if (mcu & 1) puts_P(MSG_POWERUP);
  818. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  819. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  820. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  821. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  822. MCUSR = 0;
  823. //SERIAL_ECHORPGM(MSG_MARLIN);
  824. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  825. #ifdef STRING_VERSION_CONFIG_H
  826. #ifdef STRING_CONFIG_H_AUTHOR
  827. SERIAL_ECHO_START;
  828. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  829. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  830. SERIAL_ECHORPGM(MSG_AUTHOR);
  831. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  832. SERIAL_ECHOPGM("Compiled: ");
  833. SERIAL_ECHOLNPGM(__DATE__);
  834. #endif
  835. #endif
  836. SERIAL_ECHO_START;
  837. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  838. SERIAL_ECHO(freeMemory());
  839. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  840. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  841. //lcd_update_enable(false); // why do we need this?? - andre
  842. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  843. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  844. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  845. tp_init(); // Initialize temperature loop
  846. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  847. plan_init(); // Initialize planner;
  848. watchdog_init();
  849. factory_reset();
  850. #ifdef TMC2130
  851. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  852. if (silentMode == 0xff) silentMode = 0;
  853. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  854. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  855. if (crashdet)
  856. {
  857. crashdet_enable();
  858. MYSERIAL.println("CrashDetect ENABLED!");
  859. }
  860. else
  861. {
  862. crashdet_disable();
  863. MYSERIAL.println("CrashDetect DISABLED");
  864. }
  865. #ifdef TMC2130_LINEARITY_CORRECTION
  866. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  867. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  868. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  869. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  870. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  871. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  872. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  873. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  874. #endif //TMC2130_LINEARITY_CORRECTION
  875. #ifdef TMC2130_VARIABLE_RESOLUTION
  876. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  877. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  878. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  879. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  880. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  881. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  882. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  883. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  884. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  885. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  886. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  887. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  888. #else //TMC2130_VARIABLE_RESOLUTION
  889. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  890. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  891. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  892. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  893. #endif //TMC2130_VARIABLE_RESOLUTION
  894. #endif //TMC2130
  895. st_init(); // Initialize stepper, this enables interrupts!
  896. setup_photpin();
  897. servo_init();
  898. // Reset the machine correction matrix.
  899. // It does not make sense to load the correction matrix until the machine is homed.
  900. world2machine_reset();
  901. #ifdef PAT9125
  902. fsensor_init();
  903. #endif //PAT9125
  904. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  905. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  906. #endif
  907. #ifdef DIGIPOT_I2C
  908. digipot_i2c_init();
  909. #endif
  910. setup_homepin();
  911. if (1) {
  912. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  913. // try to run to zero phase before powering the Z motor.
  914. // Move in negative direction
  915. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  916. // Round the current micro-micro steps to micro steps.
  917. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  918. // Until the phase counter is reset to zero.
  919. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  920. delay(2);
  921. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  922. delay(2);
  923. }
  924. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  925. }
  926. #if defined(Z_AXIS_ALWAYS_ON)
  927. enable_z();
  928. #endif
  929. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  930. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  931. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  932. if (farm_no == 0xFFFF) farm_no = 0;
  933. if (farm_mode)
  934. {
  935. prusa_statistics(8);
  936. }
  937. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  938. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  939. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  940. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  941. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  942. // where all the EEPROM entries are set to 0x0ff.
  943. // Once a firmware boots up, it forces at least a language selection, which changes
  944. // EEPROM_LANG to number lower than 0x0ff.
  945. // 1) Set a high power mode.
  946. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  947. tmc2130_mode = TMC2130_MODE_NORMAL;
  948. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  949. }
  950. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  951. // but this times out if a blocking dialog is shown in setup().
  952. card.initsd();
  953. #ifdef DEBUG_SD_SPEED_TEST
  954. if (card.cardOK)
  955. {
  956. uint8_t* buff = (uint8_t*)block_buffer;
  957. uint32_t block = 0;
  958. uint32_t sumr = 0;
  959. uint32_t sumw = 0;
  960. for (int i = 0; i < 1024; i++)
  961. {
  962. uint32_t u = micros();
  963. bool res = card.card.readBlock(i, buff);
  964. u = micros() - u;
  965. if (res)
  966. {
  967. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  968. sumr += u;
  969. u = micros();
  970. res = card.card.writeBlock(i, buff);
  971. u = micros() - u;
  972. if (res)
  973. {
  974. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  975. sumw += u;
  976. }
  977. else
  978. {
  979. printf_P(PSTR("writeBlock %4d error\n"), i);
  980. break;
  981. }
  982. }
  983. else
  984. {
  985. printf_P(PSTR("readBlock %4d error\n"), i);
  986. break;
  987. }
  988. }
  989. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  990. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  991. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  992. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  993. }
  994. else
  995. printf_P(PSTR("Card NG!\n"));
  996. #endif DEBUG_SD_SPEED_TEST
  997. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  998. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  999. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1000. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1001. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1002. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1003. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1004. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1005. #ifdef SNMM
  1006. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1007. int _z = BOWDEN_LENGTH;
  1008. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1009. }
  1010. #endif
  1011. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1012. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1013. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1014. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1015. if (lang_selected >= LANG_NUM){
  1016. lcd_mylang();
  1017. }
  1018. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1019. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1020. temp_cal_active = false;
  1021. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1022. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1023. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1024. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1025. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  1026. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  1027. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  1028. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  1029. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  1030. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  1031. temp_cal_active = true;
  1032. }
  1033. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1034. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1035. }
  1036. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1037. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1038. }
  1039. check_babystep(); //checking if Z babystep is in allowed range
  1040. setup_uvlo_interrupt();
  1041. #ifndef DEBUG_DISABLE_FANCHECK
  1042. setup_fan_interrupt();
  1043. #endif //DEBUG_DISABLE_FANCHECK
  1044. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1045. fsensor_setup_interrupt();
  1046. #endif //DEBUG_DISABLE_FSENSORCHECK
  1047. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1048. #ifndef DEBUG_DISABLE_STARTMSGS
  1049. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1050. show_fw_version_warnings();
  1051. if (!previous_settings_retrieved) {
  1052. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  1053. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1054. }
  1055. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1056. lcd_wizard(0);
  1057. }
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1059. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1060. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1061. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1062. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1063. // Show the message.
  1064. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1065. }
  1066. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1067. // Show the message.
  1068. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1069. lcd_update_enable(true);
  1070. }
  1071. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1072. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1073. lcd_update_enable(true);
  1074. }
  1075. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1076. // Show the message.
  1077. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1078. }
  1079. }
  1080. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1081. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1082. update_current_firmware_version_to_eeprom();
  1083. lcd_selftest();
  1084. }
  1085. KEEPALIVE_STATE(IN_PROCESS);
  1086. #endif //DEBUG_DISABLE_STARTMSGS
  1087. lcd_update_enable(true);
  1088. lcd_implementation_clear();
  1089. lcd_update(2);
  1090. // Store the currently running firmware into an eeprom,
  1091. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1092. update_current_firmware_version_to_eeprom();
  1093. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1094. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1095. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1096. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1097. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1098. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1099. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1100. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1101. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1102. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1103. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1104. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1105. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1106. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1107. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1108. /*
  1109. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1110. else {
  1111. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1112. lcd_update_enable(true);
  1113. lcd_update(2);
  1114. lcd_setstatuspgm(WELCOME_MSG);
  1115. }
  1116. */
  1117. manage_heater(); // Update temperatures
  1118. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1119. MYSERIAL.println("Power panic detected!");
  1120. MYSERIAL.print("Current bed temp:");
  1121. MYSERIAL.println(degBed());
  1122. MYSERIAL.print("Saved bed temp:");
  1123. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1124. #endif
  1125. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1126. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1127. MYSERIAL.println("Automatic recovery!");
  1128. #endif
  1129. recover_print(1);
  1130. }
  1131. else{
  1132. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1133. MYSERIAL.println("Normal recovery!");
  1134. #endif
  1135. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1136. else {
  1137. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1138. lcd_update_enable(true);
  1139. lcd_update(2);
  1140. lcd_setstatuspgm(WELCOME_MSG);
  1141. }
  1142. }
  1143. }
  1144. KEEPALIVE_STATE(NOT_BUSY);
  1145. wdt_enable(WDTO_4S);
  1146. }
  1147. #ifdef PAT9125
  1148. void fsensor_init() {
  1149. int pat9125 = pat9125_init();
  1150. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1151. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1152. if (!pat9125)
  1153. {
  1154. fsensor = 0; //disable sensor
  1155. fsensor_not_responding = true;
  1156. }
  1157. else {
  1158. fsensor_not_responding = false;
  1159. }
  1160. puts_P(PSTR("FSensor "));
  1161. if (fsensor)
  1162. {
  1163. puts_P(PSTR("ENABLED\n"));
  1164. fsensor_enable();
  1165. }
  1166. else
  1167. {
  1168. puts_P(PSTR("DISABLED\n"));
  1169. fsensor_disable();
  1170. }
  1171. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1172. filament_autoload_enabled = false;
  1173. fsensor_disable();
  1174. #endif //DEBUG_DISABLE_FSENSORCHECK
  1175. }
  1176. #endif //PAT9125
  1177. void trace();
  1178. #define CHUNK_SIZE 64 // bytes
  1179. #define SAFETY_MARGIN 1
  1180. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1181. int chunkHead = 0;
  1182. int serial_read_stream() {
  1183. setTargetHotend(0, 0);
  1184. setTargetBed(0);
  1185. lcd_implementation_clear();
  1186. lcd_printPGM(PSTR(" Upload in progress"));
  1187. // first wait for how many bytes we will receive
  1188. uint32_t bytesToReceive;
  1189. // receive the four bytes
  1190. char bytesToReceiveBuffer[4];
  1191. for (int i=0; i<4; i++) {
  1192. int data;
  1193. while ((data = MYSERIAL.read()) == -1) {};
  1194. bytesToReceiveBuffer[i] = data;
  1195. }
  1196. // make it a uint32
  1197. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1198. // we're ready, notify the sender
  1199. MYSERIAL.write('+');
  1200. // lock in the routine
  1201. uint32_t receivedBytes = 0;
  1202. while (prusa_sd_card_upload) {
  1203. int i;
  1204. for (i=0; i<CHUNK_SIZE; i++) {
  1205. int data;
  1206. // check if we're not done
  1207. if (receivedBytes == bytesToReceive) {
  1208. break;
  1209. }
  1210. // read the next byte
  1211. while ((data = MYSERIAL.read()) == -1) {};
  1212. receivedBytes++;
  1213. // save it to the chunk
  1214. chunk[i] = data;
  1215. }
  1216. // write the chunk to SD
  1217. card.write_command_no_newline(&chunk[0]);
  1218. // notify the sender we're ready for more data
  1219. MYSERIAL.write('+');
  1220. // for safety
  1221. manage_heater();
  1222. // check if we're done
  1223. if(receivedBytes == bytesToReceive) {
  1224. trace(); // beep
  1225. card.closefile();
  1226. prusa_sd_card_upload = false;
  1227. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1228. return 0;
  1229. }
  1230. }
  1231. }
  1232. #ifdef HOST_KEEPALIVE_FEATURE
  1233. /**
  1234. * Output a "busy" message at regular intervals
  1235. * while the machine is not accepting commands.
  1236. */
  1237. void host_keepalive() {
  1238. if (farm_mode) return;
  1239. long ms = millis();
  1240. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1241. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1242. switch (busy_state) {
  1243. case IN_HANDLER:
  1244. case IN_PROCESS:
  1245. SERIAL_ECHO_START;
  1246. SERIAL_ECHOLNPGM("busy: processing");
  1247. break;
  1248. case PAUSED_FOR_USER:
  1249. SERIAL_ECHO_START;
  1250. SERIAL_ECHOLNPGM("busy: paused for user");
  1251. break;
  1252. case PAUSED_FOR_INPUT:
  1253. SERIAL_ECHO_START;
  1254. SERIAL_ECHOLNPGM("busy: paused for input");
  1255. break;
  1256. default:
  1257. break;
  1258. }
  1259. }
  1260. prev_busy_signal_ms = ms;
  1261. }
  1262. #endif
  1263. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1264. // Before loop(), the setup() function is called by the main() routine.
  1265. void loop()
  1266. {
  1267. KEEPALIVE_STATE(NOT_BUSY);
  1268. bool stack_integrity = true;
  1269. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1270. {
  1271. is_usb_printing = true;
  1272. usb_printing_counter--;
  1273. _usb_timer = millis();
  1274. }
  1275. if (usb_printing_counter == 0)
  1276. {
  1277. is_usb_printing = false;
  1278. }
  1279. if (prusa_sd_card_upload)
  1280. {
  1281. //we read byte-by byte
  1282. serial_read_stream();
  1283. } else
  1284. {
  1285. get_command();
  1286. #ifdef SDSUPPORT
  1287. card.checkautostart(false);
  1288. #endif
  1289. if(buflen)
  1290. {
  1291. cmdbuffer_front_already_processed = false;
  1292. #ifdef SDSUPPORT
  1293. if(card.saving)
  1294. {
  1295. // Saving a G-code file onto an SD-card is in progress.
  1296. // Saving starts with M28, saving until M29 is seen.
  1297. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1298. card.write_command(CMDBUFFER_CURRENT_STRING);
  1299. if(card.logging)
  1300. process_commands();
  1301. else
  1302. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1303. } else {
  1304. card.closefile();
  1305. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1306. }
  1307. } else {
  1308. process_commands();
  1309. }
  1310. #else
  1311. process_commands();
  1312. #endif //SDSUPPORT
  1313. if (! cmdbuffer_front_already_processed && buflen)
  1314. {
  1315. // ptr points to the start of the block currently being processed.
  1316. // The first character in the block is the block type.
  1317. char *ptr = cmdbuffer + bufindr;
  1318. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1319. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1320. union {
  1321. struct {
  1322. char lo;
  1323. char hi;
  1324. } lohi;
  1325. uint16_t value;
  1326. } sdlen;
  1327. sdlen.value = 0;
  1328. {
  1329. // This block locks the interrupts globally for 3.25 us,
  1330. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1331. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1332. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1333. cli();
  1334. // Reset the command to something, which will be ignored by the power panic routine,
  1335. // so this buffer length will not be counted twice.
  1336. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1337. // Extract the current buffer length.
  1338. sdlen.lohi.lo = *ptr ++;
  1339. sdlen.lohi.hi = *ptr;
  1340. // and pass it to the planner queue.
  1341. planner_add_sd_length(sdlen.value);
  1342. sei();
  1343. }
  1344. }
  1345. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1346. // this block's SD card length will not be counted twice as its command type has been replaced
  1347. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1348. cmdqueue_pop_front();
  1349. }
  1350. host_keepalive();
  1351. }
  1352. }
  1353. //check heater every n milliseconds
  1354. manage_heater();
  1355. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1356. checkHitEndstops();
  1357. lcd_update();
  1358. #ifdef PAT9125
  1359. fsensor_update();
  1360. #endif //PAT9125
  1361. #ifdef TMC2130
  1362. tmc2130_check_overtemp();
  1363. if (tmc2130_sg_crash)
  1364. {
  1365. uint8_t crash = tmc2130_sg_crash;
  1366. tmc2130_sg_crash = 0;
  1367. // crashdet_stop_and_save_print();
  1368. switch (crash)
  1369. {
  1370. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1371. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1372. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1373. }
  1374. }
  1375. #endif //TMC2130
  1376. }
  1377. #define DEFINE_PGM_READ_ANY(type, reader) \
  1378. static inline type pgm_read_any(const type *p) \
  1379. { return pgm_read_##reader##_near(p); }
  1380. DEFINE_PGM_READ_ANY(float, float);
  1381. DEFINE_PGM_READ_ANY(signed char, byte);
  1382. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1383. static const PROGMEM type array##_P[3] = \
  1384. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1385. static inline type array(int axis) \
  1386. { return pgm_read_any(&array##_P[axis]); } \
  1387. type array##_ext(int axis) \
  1388. { return pgm_read_any(&array##_P[axis]); }
  1389. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1390. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1391. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1392. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1393. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1394. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1395. static void axis_is_at_home(int axis) {
  1396. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1397. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1398. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1399. }
  1400. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1401. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1402. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1403. saved_feedrate = feedrate;
  1404. saved_feedmultiply = feedmultiply;
  1405. feedmultiply = 100;
  1406. previous_millis_cmd = millis();
  1407. enable_endstops(enable_endstops_now);
  1408. }
  1409. static void clean_up_after_endstop_move() {
  1410. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1411. enable_endstops(false);
  1412. #endif
  1413. feedrate = saved_feedrate;
  1414. feedmultiply = saved_feedmultiply;
  1415. previous_millis_cmd = millis();
  1416. }
  1417. #ifdef ENABLE_AUTO_BED_LEVELING
  1418. #ifdef AUTO_BED_LEVELING_GRID
  1419. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1420. {
  1421. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1422. planeNormal.debug("planeNormal");
  1423. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1424. //bedLevel.debug("bedLevel");
  1425. //plan_bed_level_matrix.debug("bed level before");
  1426. //vector_3 uncorrected_position = plan_get_position_mm();
  1427. //uncorrected_position.debug("position before");
  1428. vector_3 corrected_position = plan_get_position();
  1429. // corrected_position.debug("position after");
  1430. current_position[X_AXIS] = corrected_position.x;
  1431. current_position[Y_AXIS] = corrected_position.y;
  1432. current_position[Z_AXIS] = corrected_position.z;
  1433. // put the bed at 0 so we don't go below it.
  1434. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1435. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1436. }
  1437. #else // not AUTO_BED_LEVELING_GRID
  1438. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1439. plan_bed_level_matrix.set_to_identity();
  1440. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1441. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1442. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1443. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1444. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1445. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1446. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1447. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1448. vector_3 corrected_position = plan_get_position();
  1449. current_position[X_AXIS] = corrected_position.x;
  1450. current_position[Y_AXIS] = corrected_position.y;
  1451. current_position[Z_AXIS] = corrected_position.z;
  1452. // put the bed at 0 so we don't go below it.
  1453. current_position[Z_AXIS] = zprobe_zoffset;
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. }
  1456. #endif // AUTO_BED_LEVELING_GRID
  1457. static void run_z_probe() {
  1458. plan_bed_level_matrix.set_to_identity();
  1459. feedrate = homing_feedrate[Z_AXIS];
  1460. // move down until you find the bed
  1461. float zPosition = -10;
  1462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. // we have to let the planner know where we are right now as it is not where we said to go.
  1465. zPosition = st_get_position_mm(Z_AXIS);
  1466. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1467. // move up the retract distance
  1468. zPosition += home_retract_mm(Z_AXIS);
  1469. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1470. st_synchronize();
  1471. // move back down slowly to find bed
  1472. feedrate = homing_feedrate[Z_AXIS]/4;
  1473. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1475. st_synchronize();
  1476. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1477. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1478. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1479. }
  1480. static void do_blocking_move_to(float x, float y, float z) {
  1481. float oldFeedRate = feedrate;
  1482. feedrate = homing_feedrate[Z_AXIS];
  1483. current_position[Z_AXIS] = z;
  1484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1485. st_synchronize();
  1486. feedrate = XY_TRAVEL_SPEED;
  1487. current_position[X_AXIS] = x;
  1488. current_position[Y_AXIS] = y;
  1489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1490. st_synchronize();
  1491. feedrate = oldFeedRate;
  1492. }
  1493. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1494. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1495. }
  1496. /// Probe bed height at position (x,y), returns the measured z value
  1497. static float probe_pt(float x, float y, float z_before) {
  1498. // move to right place
  1499. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1500. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1501. run_z_probe();
  1502. float measured_z = current_position[Z_AXIS];
  1503. SERIAL_PROTOCOLRPGM(MSG_BED);
  1504. SERIAL_PROTOCOLPGM(" x: ");
  1505. SERIAL_PROTOCOL(x);
  1506. SERIAL_PROTOCOLPGM(" y: ");
  1507. SERIAL_PROTOCOL(y);
  1508. SERIAL_PROTOCOLPGM(" z: ");
  1509. SERIAL_PROTOCOL(measured_z);
  1510. SERIAL_PROTOCOLPGM("\n");
  1511. return measured_z;
  1512. }
  1513. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1514. #ifdef LIN_ADVANCE
  1515. /**
  1516. * M900: Set and/or Get advance K factor and WH/D ratio
  1517. *
  1518. * K<factor> Set advance K factor
  1519. * R<ratio> Set ratio directly (overrides WH/D)
  1520. * W<width> H<height> D<diam> Set ratio from WH/D
  1521. */
  1522. inline void gcode_M900() {
  1523. st_synchronize();
  1524. const float newK = code_seen('K') ? code_value_float() : -1;
  1525. if (newK >= 0) extruder_advance_k = newK;
  1526. float newR = code_seen('R') ? code_value_float() : -1;
  1527. if (newR < 0) {
  1528. const float newD = code_seen('D') ? code_value_float() : -1,
  1529. newW = code_seen('W') ? code_value_float() : -1,
  1530. newH = code_seen('H') ? code_value_float() : -1;
  1531. if (newD >= 0 && newW >= 0 && newH >= 0)
  1532. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1533. }
  1534. if (newR >= 0) advance_ed_ratio = newR;
  1535. SERIAL_ECHO_START;
  1536. SERIAL_ECHOPGM("Advance K=");
  1537. SERIAL_ECHOLN(extruder_advance_k);
  1538. SERIAL_ECHOPGM(" E/D=");
  1539. const float ratio = advance_ed_ratio;
  1540. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1541. }
  1542. #endif // LIN_ADVANCE
  1543. bool check_commands() {
  1544. bool end_command_found = false;
  1545. while (buflen)
  1546. {
  1547. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1548. if (!cmdbuffer_front_already_processed)
  1549. cmdqueue_pop_front();
  1550. cmdbuffer_front_already_processed = false;
  1551. }
  1552. return end_command_found;
  1553. }
  1554. #ifdef TMC2130
  1555. bool calibrate_z_auto()
  1556. {
  1557. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1558. lcd_implementation_clear();
  1559. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1560. bool endstops_enabled = enable_endstops(true);
  1561. int axis_up_dir = -home_dir(Z_AXIS);
  1562. tmc2130_home_enter(Z_AXIS_MASK);
  1563. current_position[Z_AXIS] = 0;
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. set_destination_to_current();
  1566. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1567. feedrate = homing_feedrate[Z_AXIS];
  1568. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1569. st_synchronize();
  1570. // current_position[axis] = 0;
  1571. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1572. tmc2130_home_exit();
  1573. enable_endstops(false);
  1574. current_position[Z_AXIS] = 0;
  1575. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1576. set_destination_to_current();
  1577. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1578. feedrate = homing_feedrate[Z_AXIS] / 2;
  1579. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1580. st_synchronize();
  1581. enable_endstops(endstops_enabled);
  1582. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1583. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1584. return true;
  1585. }
  1586. #endif //TMC2130
  1587. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1588. {
  1589. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1590. #define HOMEAXIS_DO(LETTER) \
  1591. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1592. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1593. {
  1594. int axis_home_dir = home_dir(axis);
  1595. feedrate = homing_feedrate[axis];
  1596. #ifdef TMC2130
  1597. tmc2130_home_enter(X_AXIS_MASK << axis);
  1598. #endif //TMC2130
  1599. // Move right a bit, so that the print head does not touch the left end position,
  1600. // and the following left movement has a chance to achieve the required velocity
  1601. // for the stall guard to work.
  1602. current_position[axis] = 0;
  1603. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1604. set_destination_to_current();
  1605. // destination[axis] = 11.f;
  1606. destination[axis] = 3.f;
  1607. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1608. st_synchronize();
  1609. // Move left away from the possible collision with the collision detection disabled.
  1610. endstops_hit_on_purpose();
  1611. enable_endstops(false);
  1612. current_position[axis] = 0;
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. destination[axis] = - 1.;
  1615. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1616. st_synchronize();
  1617. // Now continue to move up to the left end stop with the collision detection enabled.
  1618. enable_endstops(true);
  1619. destination[axis] = - 1.1 * max_length(axis);
  1620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1621. st_synchronize();
  1622. for (uint8_t i = 0; i < cnt; i++)
  1623. {
  1624. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1625. endstops_hit_on_purpose();
  1626. enable_endstops(false);
  1627. current_position[axis] = 0;
  1628. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1629. destination[axis] = 10.f;
  1630. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1631. st_synchronize();
  1632. endstops_hit_on_purpose();
  1633. // Now move left up to the collision, this time with a repeatable velocity.
  1634. enable_endstops(true);
  1635. destination[axis] = - 11.f;
  1636. #ifdef TMC2130
  1637. feedrate = homing_feedrate[axis];
  1638. #else //TMC2130
  1639. feedrate = homing_feedrate[axis] / 2;
  1640. #endif //TMC2130
  1641. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1642. st_synchronize();
  1643. #ifdef TMC2130
  1644. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1645. if (pstep) pstep[i] = mscnt >> 4;
  1646. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1647. #endif //TMC2130
  1648. }
  1649. endstops_hit_on_purpose();
  1650. enable_endstops(false);
  1651. #ifdef TMC2130
  1652. uint8_t orig = tmc2130_home_origin[axis];
  1653. uint8_t back = tmc2130_home_bsteps[axis];
  1654. if (tmc2130_home_enabled && (orig <= 63))
  1655. {
  1656. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1657. if (back > 0)
  1658. tmc2130_do_steps(axis, back, 1, 1000);
  1659. }
  1660. else
  1661. tmc2130_do_steps(axis, 8, 2, 1000);
  1662. tmc2130_home_exit();
  1663. #endif //TMC2130
  1664. axis_is_at_home(axis);
  1665. axis_known_position[axis] = true;
  1666. // Move from minimum
  1667. #ifdef TMC2130
  1668. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1669. #else //TMC2130
  1670. float dist = 0.01f * 64;
  1671. #endif //TMC2130
  1672. current_position[axis] -= dist;
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1674. current_position[axis] += dist;
  1675. destination[axis] = current_position[axis];
  1676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. feedrate = 0.0;
  1679. }
  1680. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1681. {
  1682. int axis_home_dir = home_dir(axis);
  1683. current_position[axis] = 0;
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1685. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1686. feedrate = homing_feedrate[axis];
  1687. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1688. st_synchronize();
  1689. current_position[axis] = 0;
  1690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1691. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1692. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1693. st_synchronize();
  1694. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1695. feedrate = homing_feedrate[axis]/2 ;
  1696. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. axis_is_at_home(axis);
  1699. destination[axis] = current_position[axis];
  1700. feedrate = 0.0;
  1701. endstops_hit_on_purpose();
  1702. axis_known_position[axis] = true;
  1703. }
  1704. enable_endstops(endstops_enabled);
  1705. }
  1706. /**/
  1707. void home_xy()
  1708. {
  1709. set_destination_to_current();
  1710. homeaxis(X_AXIS);
  1711. homeaxis(Y_AXIS);
  1712. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1713. endstops_hit_on_purpose();
  1714. }
  1715. void refresh_cmd_timeout(void)
  1716. {
  1717. previous_millis_cmd = millis();
  1718. }
  1719. #ifdef FWRETRACT
  1720. void retract(bool retracting, bool swapretract = false) {
  1721. if(retracting && !retracted[active_extruder]) {
  1722. destination[X_AXIS]=current_position[X_AXIS];
  1723. destination[Y_AXIS]=current_position[Y_AXIS];
  1724. destination[Z_AXIS]=current_position[Z_AXIS];
  1725. destination[E_AXIS]=current_position[E_AXIS];
  1726. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1727. plan_set_e_position(current_position[E_AXIS]);
  1728. float oldFeedrate = feedrate;
  1729. feedrate=retract_feedrate*60;
  1730. retracted[active_extruder]=true;
  1731. prepare_move();
  1732. current_position[Z_AXIS]-=retract_zlift;
  1733. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1734. prepare_move();
  1735. feedrate = oldFeedrate;
  1736. } else if(!retracting && retracted[active_extruder]) {
  1737. destination[X_AXIS]=current_position[X_AXIS];
  1738. destination[Y_AXIS]=current_position[Y_AXIS];
  1739. destination[Z_AXIS]=current_position[Z_AXIS];
  1740. destination[E_AXIS]=current_position[E_AXIS];
  1741. current_position[Z_AXIS]+=retract_zlift;
  1742. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1743. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1744. plan_set_e_position(current_position[E_AXIS]);
  1745. float oldFeedrate = feedrate;
  1746. feedrate=retract_recover_feedrate*60;
  1747. retracted[active_extruder]=false;
  1748. prepare_move();
  1749. feedrate = oldFeedrate;
  1750. }
  1751. } //retract
  1752. #endif //FWRETRACT
  1753. void trace() {
  1754. tone(BEEPER, 440);
  1755. delay(25);
  1756. noTone(BEEPER);
  1757. delay(20);
  1758. }
  1759. /*
  1760. void ramming() {
  1761. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1762. if (current_temperature[0] < 230) {
  1763. //PLA
  1764. max_feedrate[E_AXIS] = 50;
  1765. //current_position[E_AXIS] -= 8;
  1766. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1767. //current_position[E_AXIS] += 8;
  1768. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1769. current_position[E_AXIS] += 5.4;
  1770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1771. current_position[E_AXIS] += 3.2;
  1772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1773. current_position[E_AXIS] += 3;
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1775. st_synchronize();
  1776. max_feedrate[E_AXIS] = 80;
  1777. current_position[E_AXIS] -= 82;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1779. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1780. current_position[E_AXIS] -= 20;
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1782. current_position[E_AXIS] += 5;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1784. current_position[E_AXIS] += 5;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1786. current_position[E_AXIS] -= 10;
  1787. st_synchronize();
  1788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1789. current_position[E_AXIS] += 10;
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1791. current_position[E_AXIS] -= 10;
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1793. current_position[E_AXIS] += 10;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1795. current_position[E_AXIS] -= 10;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1797. st_synchronize();
  1798. }
  1799. else {
  1800. //ABS
  1801. max_feedrate[E_AXIS] = 50;
  1802. //current_position[E_AXIS] -= 8;
  1803. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1804. //current_position[E_AXIS] += 8;
  1805. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1806. current_position[E_AXIS] += 3.1;
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1808. current_position[E_AXIS] += 3.1;
  1809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1810. current_position[E_AXIS] += 4;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1812. st_synchronize();
  1813. //current_position[X_AXIS] += 23; //delay
  1814. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1815. //current_position[X_AXIS] -= 23; //delay
  1816. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1817. delay(4700);
  1818. max_feedrate[E_AXIS] = 80;
  1819. current_position[E_AXIS] -= 92;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1821. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1822. current_position[E_AXIS] -= 5;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1824. current_position[E_AXIS] += 5;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1826. current_position[E_AXIS] -= 5;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1828. st_synchronize();
  1829. current_position[E_AXIS] += 5;
  1830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1831. current_position[E_AXIS] -= 5;
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1833. current_position[E_AXIS] += 5;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1835. current_position[E_AXIS] -= 5;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1837. st_synchronize();
  1838. }
  1839. }
  1840. */
  1841. #ifdef TMC2130
  1842. void force_high_power_mode(bool start_high_power_section) {
  1843. uint8_t silent;
  1844. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1845. if (silent == 1) {
  1846. //we are in silent mode, set to normal mode to enable crash detection
  1847. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1848. st_synchronize();
  1849. cli();
  1850. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1851. tmc2130_init();
  1852. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1853. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1854. st_reset_timer();
  1855. sei();
  1856. digipot_init();
  1857. }
  1858. }
  1859. #endif //TMC2130
  1860. bool gcode_M45(bool onlyZ)
  1861. {
  1862. bool final_result = false;
  1863. #ifdef TMC2130
  1864. FORCE_HIGH_POWER_START;
  1865. #endif // TMC2130
  1866. // Only Z calibration?
  1867. if (!onlyZ)
  1868. {
  1869. setTargetBed(0);
  1870. setTargetHotend(0, 0);
  1871. setTargetHotend(0, 1);
  1872. setTargetHotend(0, 2);
  1873. adjust_bed_reset(); //reset bed level correction
  1874. }
  1875. // Disable the default update procedure of the display. We will do a modal dialog.
  1876. lcd_update_enable(false);
  1877. // Let the planner use the uncorrected coordinates.
  1878. mbl.reset();
  1879. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1880. // the planner will not perform any adjustments in the XY plane.
  1881. // Wait for the motors to stop and update the current position with the absolute values.
  1882. world2machine_revert_to_uncorrected();
  1883. // Reset the baby step value applied without moving the axes.
  1884. babystep_reset();
  1885. // Mark all axes as in a need for homing.
  1886. memset(axis_known_position, 0, sizeof(axis_known_position));
  1887. // Home in the XY plane.
  1888. //set_destination_to_current();
  1889. setup_for_endstop_move();
  1890. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1891. home_xy();
  1892. enable_endstops(false);
  1893. current_position[X_AXIS] += 5;
  1894. current_position[Y_AXIS] += 5;
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1896. st_synchronize();
  1897. // Let the user move the Z axes up to the end stoppers.
  1898. #ifdef TMC2130
  1899. if (calibrate_z_auto())
  1900. {
  1901. #else //TMC2130
  1902. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1903. {
  1904. #endif //TMC2130
  1905. refresh_cmd_timeout();
  1906. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1907. //{
  1908. // lcd_wait_for_cool_down();
  1909. //}
  1910. if(!onlyZ)
  1911. {
  1912. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1913. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1914. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1915. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1916. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1917. KEEPALIVE_STATE(IN_HANDLER);
  1918. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1919. lcd_implementation_print_at(0, 2, 1);
  1920. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1921. }
  1922. // Move the print head close to the bed.
  1923. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1924. bool endstops_enabled = enable_endstops(true);
  1925. tmc2130_home_enter(Z_AXIS_MASK);
  1926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1927. st_synchronize();
  1928. tmc2130_home_exit();
  1929. enable_endstops(endstops_enabled);
  1930. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1931. {
  1932. //#ifdef TMC2130
  1933. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1934. //#endif
  1935. int8_t verbosity_level = 0;
  1936. if (code_seen('V'))
  1937. {
  1938. // Just 'V' without a number counts as V1.
  1939. char c = strchr_pointer[1];
  1940. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1941. }
  1942. if (onlyZ)
  1943. {
  1944. clean_up_after_endstop_move();
  1945. // Z only calibration.
  1946. // Load the machine correction matrix
  1947. world2machine_initialize();
  1948. // and correct the current_position to match the transformed coordinate system.
  1949. world2machine_update_current();
  1950. //FIXME
  1951. bool result = sample_mesh_and_store_reference();
  1952. if (result)
  1953. {
  1954. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1955. // Shipped, the nozzle height has been set already. The user can start printing now.
  1956. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1957. final_result = true;
  1958. // babystep_apply();
  1959. }
  1960. }
  1961. else
  1962. {
  1963. // Reset the baby step value and the baby step applied flag.
  1964. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1965. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1966. // Complete XYZ calibration.
  1967. uint8_t point_too_far_mask = 0;
  1968. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1969. clean_up_after_endstop_move();
  1970. // Print head up.
  1971. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1973. st_synchronize();
  1974. if (result >= 0)
  1975. {
  1976. point_too_far_mask = 0;
  1977. // Second half: The fine adjustment.
  1978. // Let the planner use the uncorrected coordinates.
  1979. mbl.reset();
  1980. world2machine_reset();
  1981. // Home in the XY plane.
  1982. setup_for_endstop_move();
  1983. home_xy();
  1984. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1985. clean_up_after_endstop_move();
  1986. // Print head up.
  1987. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1989. st_synchronize();
  1990. // if (result >= 0) babystep_apply();
  1991. }
  1992. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1993. if (result >= 0)
  1994. {
  1995. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1996. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1997. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1998. final_result = true;
  1999. }
  2000. }
  2001. #ifdef TMC2130
  2002. tmc2130_home_exit();
  2003. #endif
  2004. }
  2005. else
  2006. {
  2007. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2008. final_result = false;
  2009. }
  2010. }
  2011. else
  2012. {
  2013. // Timeouted.
  2014. }
  2015. lcd_update_enable(true);
  2016. #ifdef TMC2130
  2017. FORCE_HIGH_POWER_END;
  2018. #endif // TMC2130
  2019. return final_result;
  2020. }
  2021. void gcode_M701()
  2022. {
  2023. #ifdef SNMM
  2024. extr_adj(snmm_extruder);//loads current extruder
  2025. #else
  2026. enable_z();
  2027. custom_message = true;
  2028. custom_message_type = 2;
  2029. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2030. current_position[E_AXIS] += 70;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2032. current_position[E_AXIS] += 25;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2034. st_synchronize();
  2035. tone(BEEPER, 500);
  2036. delay_keep_alive(50);
  2037. noTone(BEEPER);
  2038. if (!farm_mode && loading_flag) {
  2039. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2040. while (!clean) {
  2041. lcd_update_enable(true);
  2042. lcd_update(2);
  2043. current_position[E_AXIS] += 25;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2045. st_synchronize();
  2046. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2047. }
  2048. }
  2049. lcd_update_enable(true);
  2050. lcd_update(2);
  2051. lcd_setstatuspgm(WELCOME_MSG);
  2052. disable_z();
  2053. loading_flag = false;
  2054. custom_message = false;
  2055. custom_message_type = 0;
  2056. #endif
  2057. }
  2058. void process_commands()
  2059. {
  2060. if (!buflen) return; //empty command
  2061. #ifdef FILAMENT_RUNOUT_SUPPORT
  2062. SET_INPUT(FR_SENS);
  2063. #endif
  2064. #ifdef CMDBUFFER_DEBUG
  2065. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2066. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2067. SERIAL_ECHOLNPGM("");
  2068. SERIAL_ECHOPGM("In cmdqueue: ");
  2069. SERIAL_ECHO(buflen);
  2070. SERIAL_ECHOLNPGM("");
  2071. #endif /* CMDBUFFER_DEBUG */
  2072. unsigned long codenum; //throw away variable
  2073. char *starpos = NULL;
  2074. #ifdef ENABLE_AUTO_BED_LEVELING
  2075. float x_tmp, y_tmp, z_tmp, real_z;
  2076. #endif
  2077. // PRUSA GCODES
  2078. KEEPALIVE_STATE(IN_HANDLER);
  2079. #ifdef SNMM
  2080. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2081. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2082. int8_t SilentMode;
  2083. #endif
  2084. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2085. starpos = (strchr(strchr_pointer + 5, '*'));
  2086. if (starpos != NULL)
  2087. *(starpos) = '\0';
  2088. lcd_setstatus(strchr_pointer + 5);
  2089. }
  2090. else if(code_seen("CRASH_DETECTED"))
  2091. {
  2092. uint8_t mask = 0;
  2093. if (code_seen("X")) mask |= X_AXIS_MASK;
  2094. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2095. crashdet_detected(mask);
  2096. }
  2097. else if(code_seen("CRASH_RECOVER"))
  2098. crashdet_recover();
  2099. else if(code_seen("CRASH_CANCEL"))
  2100. crashdet_cancel();
  2101. else if(code_seen("PRUSA")){
  2102. if (code_seen("Ping")) { //PRUSA Ping
  2103. if (farm_mode) {
  2104. PingTime = millis();
  2105. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2106. }
  2107. }
  2108. else if (code_seen("PRN")) {
  2109. MYSERIAL.println(status_number);
  2110. }else if (code_seen("FAN")) {
  2111. MYSERIAL.print("E0:");
  2112. MYSERIAL.print(60*fan_speed[0]);
  2113. MYSERIAL.println(" RPM");
  2114. MYSERIAL.print("PRN0:");
  2115. MYSERIAL.print(60*fan_speed[1]);
  2116. MYSERIAL.println(" RPM");
  2117. }else if (code_seen("fn")) {
  2118. if (farm_mode) {
  2119. MYSERIAL.println(farm_no);
  2120. }
  2121. else {
  2122. MYSERIAL.println("Not in farm mode.");
  2123. }
  2124. }
  2125. else if (code_seen("thx")) {
  2126. no_response = false;
  2127. }else if (code_seen("fv")) {
  2128. // get file version
  2129. #ifdef SDSUPPORT
  2130. card.openFile(strchr_pointer + 3,true);
  2131. while (true) {
  2132. uint16_t readByte = card.get();
  2133. MYSERIAL.write(readByte);
  2134. if (readByte=='\n') {
  2135. break;
  2136. }
  2137. }
  2138. card.closefile();
  2139. #endif // SDSUPPORT
  2140. } else if (code_seen("M28")) {
  2141. trace();
  2142. prusa_sd_card_upload = true;
  2143. card.openFile(strchr_pointer+4,false);
  2144. } else if (code_seen("SN")) {
  2145. if (farm_mode) {
  2146. selectedSerialPort = 0;
  2147. MSerial.write(";S");
  2148. // S/N is:CZPX0917X003XC13518
  2149. int numbersRead = 0;
  2150. while (numbersRead < 19) {
  2151. while (MSerial.available() > 0) {
  2152. uint8_t serial_char = MSerial.read();
  2153. selectedSerialPort = 1;
  2154. MSerial.write(serial_char);
  2155. numbersRead++;
  2156. selectedSerialPort = 0;
  2157. }
  2158. }
  2159. selectedSerialPort = 1;
  2160. MSerial.write('\n');
  2161. /*for (int b = 0; b < 3; b++) {
  2162. tone(BEEPER, 110);
  2163. delay(50);
  2164. noTone(BEEPER);
  2165. delay(50);
  2166. }*/
  2167. } else {
  2168. MYSERIAL.println("Not in farm mode.");
  2169. }
  2170. } else if(code_seen("Fir")){
  2171. SERIAL_PROTOCOLLN(FW_VERSION);
  2172. } else if(code_seen("Rev")){
  2173. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2174. } else if(code_seen("Lang")) {
  2175. lcd_force_language_selection();
  2176. } else if(code_seen("Lz")) {
  2177. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2178. } else if (code_seen("SERIAL LOW")) {
  2179. MYSERIAL.println("SERIAL LOW");
  2180. MYSERIAL.begin(BAUDRATE);
  2181. return;
  2182. } else if (code_seen("SERIAL HIGH")) {
  2183. MYSERIAL.println("SERIAL HIGH");
  2184. MYSERIAL.begin(1152000);
  2185. return;
  2186. } else if(code_seen("Beat")) {
  2187. // Kick farm link timer
  2188. kicktime = millis();
  2189. } else if(code_seen("FR")) {
  2190. // Factory full reset
  2191. factory_reset(0,true);
  2192. }
  2193. //else if (code_seen('Cal')) {
  2194. // lcd_calibration();
  2195. // }
  2196. }
  2197. else if (code_seen('^')) {
  2198. // nothing, this is a version line
  2199. } else if(code_seen('G'))
  2200. {
  2201. switch((int)code_value())
  2202. {
  2203. case 0: // G0 -> G1
  2204. case 1: // G1
  2205. if(Stopped == false) {
  2206. #ifdef FILAMENT_RUNOUT_SUPPORT
  2207. if(READ(FR_SENS)){
  2208. feedmultiplyBckp=feedmultiply;
  2209. float target[4];
  2210. float lastpos[4];
  2211. target[X_AXIS]=current_position[X_AXIS];
  2212. target[Y_AXIS]=current_position[Y_AXIS];
  2213. target[Z_AXIS]=current_position[Z_AXIS];
  2214. target[E_AXIS]=current_position[E_AXIS];
  2215. lastpos[X_AXIS]=current_position[X_AXIS];
  2216. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2217. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2218. lastpos[E_AXIS]=current_position[E_AXIS];
  2219. //retract by E
  2220. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2221. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2222. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2223. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2224. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2225. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2227. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2228. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2229. //finish moves
  2230. st_synchronize();
  2231. //disable extruder steppers so filament can be removed
  2232. disable_e0();
  2233. disable_e1();
  2234. disable_e2();
  2235. delay(100);
  2236. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2237. uint8_t cnt=0;
  2238. int counterBeep = 0;
  2239. lcd_wait_interact();
  2240. while(!lcd_clicked()){
  2241. cnt++;
  2242. manage_heater();
  2243. manage_inactivity(true);
  2244. //lcd_update();
  2245. if(cnt==0)
  2246. {
  2247. #if BEEPER > 0
  2248. if (counterBeep== 500){
  2249. counterBeep = 0;
  2250. }
  2251. SET_OUTPUT(BEEPER);
  2252. if (counterBeep== 0){
  2253. WRITE(BEEPER,HIGH);
  2254. }
  2255. if (counterBeep== 20){
  2256. WRITE(BEEPER,LOW);
  2257. }
  2258. counterBeep++;
  2259. #else
  2260. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2261. lcd_buzz(1000/6,100);
  2262. #else
  2263. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2264. #endif
  2265. #endif
  2266. }
  2267. }
  2268. WRITE(BEEPER,LOW);
  2269. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2270. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2271. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2272. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2273. lcd_change_fil_state = 0;
  2274. lcd_loading_filament();
  2275. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2276. lcd_change_fil_state = 0;
  2277. lcd_alright();
  2278. switch(lcd_change_fil_state){
  2279. case 2:
  2280. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2281. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2282. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2283. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2284. lcd_loading_filament();
  2285. break;
  2286. case 3:
  2287. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2289. lcd_loading_color();
  2290. break;
  2291. default:
  2292. lcd_change_success();
  2293. break;
  2294. }
  2295. }
  2296. target[E_AXIS]+= 5;
  2297. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2298. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2299. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2300. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2301. //plan_set_e_position(current_position[E_AXIS]);
  2302. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2303. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2304. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2305. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2306. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2307. plan_set_e_position(lastpos[E_AXIS]);
  2308. feedmultiply=feedmultiplyBckp;
  2309. char cmd[9];
  2310. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2311. enquecommand(cmd);
  2312. }
  2313. #endif
  2314. get_coordinates(); // For X Y Z E F
  2315. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2316. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2317. }
  2318. #ifdef FWRETRACT
  2319. if(autoretract_enabled)
  2320. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2321. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2322. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2323. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2324. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2325. retract(!retracted);
  2326. return;
  2327. }
  2328. }
  2329. #endif //FWRETRACT
  2330. prepare_move();
  2331. //ClearToSend();
  2332. }
  2333. break;
  2334. case 2: // G2 - CW ARC
  2335. if(Stopped == false) {
  2336. get_arc_coordinates();
  2337. prepare_arc_move(true);
  2338. }
  2339. break;
  2340. case 3: // G3 - CCW ARC
  2341. if(Stopped == false) {
  2342. get_arc_coordinates();
  2343. prepare_arc_move(false);
  2344. }
  2345. break;
  2346. case 4: // G4 dwell
  2347. codenum = 0;
  2348. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2349. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2350. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2351. st_synchronize();
  2352. codenum += millis(); // keep track of when we started waiting
  2353. previous_millis_cmd = millis();
  2354. while(millis() < codenum) {
  2355. manage_heater();
  2356. manage_inactivity();
  2357. lcd_update();
  2358. }
  2359. break;
  2360. #ifdef FWRETRACT
  2361. case 10: // G10 retract
  2362. #if EXTRUDERS > 1
  2363. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2364. retract(true,retracted_swap[active_extruder]);
  2365. #else
  2366. retract(true);
  2367. #endif
  2368. break;
  2369. case 11: // G11 retract_recover
  2370. #if EXTRUDERS > 1
  2371. retract(false,retracted_swap[active_extruder]);
  2372. #else
  2373. retract(false);
  2374. #endif
  2375. break;
  2376. #endif //FWRETRACT
  2377. case 28: //G28 Home all Axis one at a time
  2378. {
  2379. st_synchronize();
  2380. #if 0
  2381. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2382. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2383. #endif
  2384. // Flag for the display update routine and to disable the print cancelation during homing.
  2385. homing_flag = true;
  2386. // Which axes should be homed?
  2387. bool home_x = code_seen(axis_codes[X_AXIS]);
  2388. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2389. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2390. // calibrate?
  2391. bool calib = code_seen('C');
  2392. // Either all X,Y,Z codes are present, or none of them.
  2393. bool home_all_axes = home_x == home_y && home_x == home_z;
  2394. if (home_all_axes)
  2395. // No X/Y/Z code provided means to home all axes.
  2396. home_x = home_y = home_z = true;
  2397. #ifdef ENABLE_AUTO_BED_LEVELING
  2398. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2399. #endif //ENABLE_AUTO_BED_LEVELING
  2400. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2401. // the planner will not perform any adjustments in the XY plane.
  2402. // Wait for the motors to stop and update the current position with the absolute values.
  2403. world2machine_revert_to_uncorrected();
  2404. // For mesh bed leveling deactivate the matrix temporarily.
  2405. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2406. // in a single axis only.
  2407. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2408. #ifdef MESH_BED_LEVELING
  2409. uint8_t mbl_was_active = mbl.active;
  2410. mbl.active = 0;
  2411. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2412. #endif
  2413. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2414. // consumed during the first movements following this statement.
  2415. if (home_z)
  2416. babystep_undo();
  2417. saved_feedrate = feedrate;
  2418. saved_feedmultiply = feedmultiply;
  2419. feedmultiply = 100;
  2420. previous_millis_cmd = millis();
  2421. enable_endstops(true);
  2422. memcpy(destination, current_position, sizeof(destination));
  2423. feedrate = 0.0;
  2424. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2425. if(home_z)
  2426. homeaxis(Z_AXIS);
  2427. #endif
  2428. #ifdef QUICK_HOME
  2429. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2430. if(home_x && home_y) //first diagonal move
  2431. {
  2432. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2433. int x_axis_home_dir = home_dir(X_AXIS);
  2434. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2435. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2436. feedrate = homing_feedrate[X_AXIS];
  2437. if(homing_feedrate[Y_AXIS]<feedrate)
  2438. feedrate = homing_feedrate[Y_AXIS];
  2439. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2440. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2441. } else {
  2442. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2443. }
  2444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2445. st_synchronize();
  2446. axis_is_at_home(X_AXIS);
  2447. axis_is_at_home(Y_AXIS);
  2448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2449. destination[X_AXIS] = current_position[X_AXIS];
  2450. destination[Y_AXIS] = current_position[Y_AXIS];
  2451. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2452. feedrate = 0.0;
  2453. st_synchronize();
  2454. endstops_hit_on_purpose();
  2455. current_position[X_AXIS] = destination[X_AXIS];
  2456. current_position[Y_AXIS] = destination[Y_AXIS];
  2457. current_position[Z_AXIS] = destination[Z_AXIS];
  2458. }
  2459. #endif /* QUICK_HOME */
  2460. if(home_x)
  2461. {
  2462. if (!calib)
  2463. homeaxis(X_AXIS);
  2464. else
  2465. tmc2130_home_calibrate(X_AXIS);
  2466. }
  2467. if(home_y)
  2468. {
  2469. if (!calib)
  2470. homeaxis(Y_AXIS);
  2471. else
  2472. tmc2130_home_calibrate(Y_AXIS);
  2473. }
  2474. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2475. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2476. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2477. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2478. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2479. #ifndef Z_SAFE_HOMING
  2480. if(home_z) {
  2481. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2482. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2483. feedrate = max_feedrate[Z_AXIS];
  2484. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2485. st_synchronize();
  2486. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2487. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2488. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2489. {
  2490. homeaxis(X_AXIS);
  2491. homeaxis(Y_AXIS);
  2492. }
  2493. // 1st mesh bed leveling measurement point, corrected.
  2494. world2machine_initialize();
  2495. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2496. world2machine_reset();
  2497. if (destination[Y_AXIS] < Y_MIN_POS)
  2498. destination[Y_AXIS] = Y_MIN_POS;
  2499. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2500. feedrate = homing_feedrate[Z_AXIS]/10;
  2501. current_position[Z_AXIS] = 0;
  2502. enable_endstops(false);
  2503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2504. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2505. st_synchronize();
  2506. current_position[X_AXIS] = destination[X_AXIS];
  2507. current_position[Y_AXIS] = destination[Y_AXIS];
  2508. enable_endstops(true);
  2509. endstops_hit_on_purpose();
  2510. homeaxis(Z_AXIS);
  2511. #else // MESH_BED_LEVELING
  2512. homeaxis(Z_AXIS);
  2513. #endif // MESH_BED_LEVELING
  2514. }
  2515. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2516. if(home_all_axes) {
  2517. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2518. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2519. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2520. feedrate = XY_TRAVEL_SPEED/60;
  2521. current_position[Z_AXIS] = 0;
  2522. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2523. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2524. st_synchronize();
  2525. current_position[X_AXIS] = destination[X_AXIS];
  2526. current_position[Y_AXIS] = destination[Y_AXIS];
  2527. homeaxis(Z_AXIS);
  2528. }
  2529. // Let's see if X and Y are homed and probe is inside bed area.
  2530. if(home_z) {
  2531. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2532. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2533. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2534. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2535. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2536. current_position[Z_AXIS] = 0;
  2537. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2538. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2539. feedrate = max_feedrate[Z_AXIS];
  2540. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2541. st_synchronize();
  2542. homeaxis(Z_AXIS);
  2543. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2544. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2545. SERIAL_ECHO_START;
  2546. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2547. } else {
  2548. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2549. SERIAL_ECHO_START;
  2550. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2551. }
  2552. }
  2553. #endif // Z_SAFE_HOMING
  2554. #endif // Z_HOME_DIR < 0
  2555. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2556. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2557. #ifdef ENABLE_AUTO_BED_LEVELING
  2558. if(home_z)
  2559. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2560. #endif
  2561. // Set the planner and stepper routine positions.
  2562. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2563. // contains the machine coordinates.
  2564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2565. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2566. enable_endstops(false);
  2567. #endif
  2568. feedrate = saved_feedrate;
  2569. feedmultiply = saved_feedmultiply;
  2570. previous_millis_cmd = millis();
  2571. endstops_hit_on_purpose();
  2572. #ifndef MESH_BED_LEVELING
  2573. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2574. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2575. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2576. lcd_adjust_z();
  2577. #endif
  2578. // Load the machine correction matrix
  2579. world2machine_initialize();
  2580. // and correct the current_position XY axes to match the transformed coordinate system.
  2581. world2machine_update_current();
  2582. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2583. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2584. {
  2585. if (! home_z && mbl_was_active) {
  2586. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2587. mbl.active = true;
  2588. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2589. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2590. }
  2591. }
  2592. else
  2593. {
  2594. st_synchronize();
  2595. homing_flag = false;
  2596. // Push the commands to the front of the message queue in the reverse order!
  2597. // There shall be always enough space reserved for these commands.
  2598. // enquecommand_front_P((PSTR("G80")));
  2599. goto case_G80;
  2600. }
  2601. #endif
  2602. if (farm_mode) { prusa_statistics(20); };
  2603. homing_flag = false;
  2604. #if 0
  2605. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2606. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2607. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2608. #endif
  2609. break;
  2610. }
  2611. #ifdef ENABLE_AUTO_BED_LEVELING
  2612. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2613. {
  2614. #if Z_MIN_PIN == -1
  2615. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2616. #endif
  2617. // Prevent user from running a G29 without first homing in X and Y
  2618. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2619. {
  2620. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2621. SERIAL_ECHO_START;
  2622. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2623. break; // abort G29, since we don't know where we are
  2624. }
  2625. st_synchronize();
  2626. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2627. //vector_3 corrected_position = plan_get_position_mm();
  2628. //corrected_position.debug("position before G29");
  2629. plan_bed_level_matrix.set_to_identity();
  2630. vector_3 uncorrected_position = plan_get_position();
  2631. //uncorrected_position.debug("position durring G29");
  2632. current_position[X_AXIS] = uncorrected_position.x;
  2633. current_position[Y_AXIS] = uncorrected_position.y;
  2634. current_position[Z_AXIS] = uncorrected_position.z;
  2635. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2636. setup_for_endstop_move();
  2637. feedrate = homing_feedrate[Z_AXIS];
  2638. #ifdef AUTO_BED_LEVELING_GRID
  2639. // probe at the points of a lattice grid
  2640. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2641. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2642. // solve the plane equation ax + by + d = z
  2643. // A is the matrix with rows [x y 1] for all the probed points
  2644. // B is the vector of the Z positions
  2645. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2646. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2647. // "A" matrix of the linear system of equations
  2648. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2649. // "B" vector of Z points
  2650. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2651. int probePointCounter = 0;
  2652. bool zig = true;
  2653. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2654. {
  2655. int xProbe, xInc;
  2656. if (zig)
  2657. {
  2658. xProbe = LEFT_PROBE_BED_POSITION;
  2659. //xEnd = RIGHT_PROBE_BED_POSITION;
  2660. xInc = xGridSpacing;
  2661. zig = false;
  2662. } else // zag
  2663. {
  2664. xProbe = RIGHT_PROBE_BED_POSITION;
  2665. //xEnd = LEFT_PROBE_BED_POSITION;
  2666. xInc = -xGridSpacing;
  2667. zig = true;
  2668. }
  2669. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2670. {
  2671. float z_before;
  2672. if (probePointCounter == 0)
  2673. {
  2674. // raise before probing
  2675. z_before = Z_RAISE_BEFORE_PROBING;
  2676. } else
  2677. {
  2678. // raise extruder
  2679. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2680. }
  2681. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2682. eqnBVector[probePointCounter] = measured_z;
  2683. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2684. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2685. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2686. probePointCounter++;
  2687. xProbe += xInc;
  2688. }
  2689. }
  2690. clean_up_after_endstop_move();
  2691. // solve lsq problem
  2692. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2693. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2694. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2695. SERIAL_PROTOCOLPGM(" b: ");
  2696. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2697. SERIAL_PROTOCOLPGM(" d: ");
  2698. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2699. set_bed_level_equation_lsq(plane_equation_coefficients);
  2700. free(plane_equation_coefficients);
  2701. #else // AUTO_BED_LEVELING_GRID not defined
  2702. // Probe at 3 arbitrary points
  2703. // probe 1
  2704. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2705. // probe 2
  2706. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2707. // probe 3
  2708. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2709. clean_up_after_endstop_move();
  2710. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2711. #endif // AUTO_BED_LEVELING_GRID
  2712. st_synchronize();
  2713. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2714. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2715. // When the bed is uneven, this height must be corrected.
  2716. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2717. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2718. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2719. z_tmp = current_position[Z_AXIS];
  2720. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2721. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2723. }
  2724. break;
  2725. #ifndef Z_PROBE_SLED
  2726. case 30: // G30 Single Z Probe
  2727. {
  2728. st_synchronize();
  2729. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2730. setup_for_endstop_move();
  2731. feedrate = homing_feedrate[Z_AXIS];
  2732. run_z_probe();
  2733. SERIAL_PROTOCOLPGM(MSG_BED);
  2734. SERIAL_PROTOCOLPGM(" X: ");
  2735. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2736. SERIAL_PROTOCOLPGM(" Y: ");
  2737. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2738. SERIAL_PROTOCOLPGM(" Z: ");
  2739. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2740. SERIAL_PROTOCOLPGM("\n");
  2741. clean_up_after_endstop_move();
  2742. }
  2743. break;
  2744. #else
  2745. case 31: // dock the sled
  2746. dock_sled(true);
  2747. break;
  2748. case 32: // undock the sled
  2749. dock_sled(false);
  2750. break;
  2751. #endif // Z_PROBE_SLED
  2752. #endif // ENABLE_AUTO_BED_LEVELING
  2753. #ifdef MESH_BED_LEVELING
  2754. case 30: // G30 Single Z Probe
  2755. {
  2756. st_synchronize();
  2757. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2758. setup_for_endstop_move();
  2759. feedrate = homing_feedrate[Z_AXIS];
  2760. find_bed_induction_sensor_point_z(-10.f, 3);
  2761. SERIAL_PROTOCOLRPGM(MSG_BED);
  2762. SERIAL_PROTOCOLPGM(" X: ");
  2763. MYSERIAL.print(current_position[X_AXIS], 5);
  2764. SERIAL_PROTOCOLPGM(" Y: ");
  2765. MYSERIAL.print(current_position[Y_AXIS], 5);
  2766. SERIAL_PROTOCOLPGM(" Z: ");
  2767. MYSERIAL.print(current_position[Z_AXIS], 5);
  2768. SERIAL_PROTOCOLPGM("\n");
  2769. clean_up_after_endstop_move();
  2770. }
  2771. break;
  2772. case 75:
  2773. {
  2774. for (int i = 40; i <= 110; i++) {
  2775. MYSERIAL.print(i);
  2776. MYSERIAL.print(" ");
  2777. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2778. }
  2779. }
  2780. break;
  2781. case 76: //PINDA probe temperature calibration
  2782. {
  2783. #ifdef PINDA_THERMISTOR
  2784. if (true)
  2785. {
  2786. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2787. {
  2788. // We don't know where we are! HOME!
  2789. // Push the commands to the front of the message queue in the reverse order!
  2790. // There shall be always enough space reserved for these commands.
  2791. repeatcommand_front(); // repeat G76 with all its parameters
  2792. enquecommand_front_P((PSTR("G28 W0")));
  2793. break;
  2794. }
  2795. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2796. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2797. if (result)
  2798. {
  2799. current_position[Z_AXIS] = 50;
  2800. current_position[Y_AXIS] = 190;
  2801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2802. st_synchronize();
  2803. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2804. }
  2805. lcd_update_enable(true);
  2806. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2807. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2808. float zero_z;
  2809. int z_shift = 0; //unit: steps
  2810. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2811. if (start_temp < 35) start_temp = 35;
  2812. if (start_temp < current_temperature_pinda) start_temp += 5;
  2813. SERIAL_ECHOPGM("start temperature: ");
  2814. MYSERIAL.println(start_temp);
  2815. // setTargetHotend(200, 0);
  2816. setTargetBed(70 + (start_temp - 30));
  2817. custom_message = true;
  2818. custom_message_type = 4;
  2819. custom_message_state = 1;
  2820. custom_message = MSG_TEMP_CALIBRATION;
  2821. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2822. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2823. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2825. st_synchronize();
  2826. while (current_temperature_pinda < start_temp)
  2827. {
  2828. delay_keep_alive(1000);
  2829. serialecho_temperatures();
  2830. }
  2831. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2832. current_position[Z_AXIS] = 5;
  2833. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2834. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2835. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2837. st_synchronize();
  2838. find_bed_induction_sensor_point_z(-1.f);
  2839. zero_z = current_position[Z_AXIS];
  2840. //current_position[Z_AXIS]
  2841. SERIAL_ECHOLNPGM("");
  2842. SERIAL_ECHOPGM("ZERO: ");
  2843. MYSERIAL.print(current_position[Z_AXIS]);
  2844. SERIAL_ECHOLNPGM("");
  2845. int i = -1; for (; i < 5; i++)
  2846. {
  2847. float temp = (40 + i * 5);
  2848. SERIAL_ECHOPGM("Step: ");
  2849. MYSERIAL.print(i + 2);
  2850. SERIAL_ECHOLNPGM("/6 (skipped)");
  2851. SERIAL_ECHOPGM("PINDA temperature: ");
  2852. MYSERIAL.print((40 + i*5));
  2853. SERIAL_ECHOPGM(" Z shift (mm):");
  2854. MYSERIAL.print(0);
  2855. SERIAL_ECHOLNPGM("");
  2856. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2857. if (start_temp <= temp) break;
  2858. }
  2859. for (i++; i < 5; i++)
  2860. {
  2861. float temp = (40 + i * 5);
  2862. SERIAL_ECHOPGM("Step: ");
  2863. MYSERIAL.print(i + 2);
  2864. SERIAL_ECHOLNPGM("/6");
  2865. custom_message_state = i + 2;
  2866. setTargetBed(50 + 10 * (temp - 30) / 5);
  2867. // setTargetHotend(255, 0);
  2868. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2869. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2870. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2872. st_synchronize();
  2873. while (current_temperature_pinda < temp)
  2874. {
  2875. delay_keep_alive(1000);
  2876. serialecho_temperatures();
  2877. }
  2878. current_position[Z_AXIS] = 5;
  2879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2880. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2881. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2883. st_synchronize();
  2884. find_bed_induction_sensor_point_z(-1.f);
  2885. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2886. SERIAL_ECHOLNPGM("");
  2887. SERIAL_ECHOPGM("PINDA temperature: ");
  2888. MYSERIAL.print(current_temperature_pinda);
  2889. SERIAL_ECHOPGM(" Z shift (mm):");
  2890. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2891. SERIAL_ECHOLNPGM("");
  2892. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2893. }
  2894. custom_message_type = 0;
  2895. custom_message = false;
  2896. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2897. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2898. disable_x();
  2899. disable_y();
  2900. disable_z();
  2901. disable_e0();
  2902. disable_e1();
  2903. disable_e2();
  2904. setTargetBed(0); //set bed target temperature back to 0
  2905. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2906. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2907. lcd_update_enable(true);
  2908. lcd_update(2);
  2909. break;
  2910. }
  2911. #endif //PINDA_THERMISTOR
  2912. setTargetBed(PINDA_MIN_T);
  2913. float zero_z;
  2914. int z_shift = 0; //unit: steps
  2915. int t_c; // temperature
  2916. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2917. // We don't know where we are! HOME!
  2918. // Push the commands to the front of the message queue in the reverse order!
  2919. // There shall be always enough space reserved for these commands.
  2920. repeatcommand_front(); // repeat G76 with all its parameters
  2921. enquecommand_front_P((PSTR("G28 W0")));
  2922. break;
  2923. }
  2924. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2925. custom_message = true;
  2926. custom_message_type = 4;
  2927. custom_message_state = 1;
  2928. custom_message = MSG_TEMP_CALIBRATION;
  2929. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2930. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2931. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2933. st_synchronize();
  2934. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2935. delay_keep_alive(1000);
  2936. serialecho_temperatures();
  2937. }
  2938. //enquecommand_P(PSTR("M190 S50"));
  2939. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2940. delay_keep_alive(1000);
  2941. serialecho_temperatures();
  2942. }
  2943. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2944. current_position[Z_AXIS] = 5;
  2945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2946. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2947. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2949. st_synchronize();
  2950. find_bed_induction_sensor_point_z(-1.f);
  2951. zero_z = current_position[Z_AXIS];
  2952. //current_position[Z_AXIS]
  2953. SERIAL_ECHOLNPGM("");
  2954. SERIAL_ECHOPGM("ZERO: ");
  2955. MYSERIAL.print(current_position[Z_AXIS]);
  2956. SERIAL_ECHOLNPGM("");
  2957. for (int i = 0; i<5; i++) {
  2958. SERIAL_ECHOPGM("Step: ");
  2959. MYSERIAL.print(i+2);
  2960. SERIAL_ECHOLNPGM("/6");
  2961. custom_message_state = i + 2;
  2962. t_c = 60 + i * 10;
  2963. setTargetBed(t_c);
  2964. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2965. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2966. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2968. st_synchronize();
  2969. while (degBed() < t_c) {
  2970. delay_keep_alive(1000);
  2971. serialecho_temperatures();
  2972. }
  2973. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2974. delay_keep_alive(1000);
  2975. serialecho_temperatures();
  2976. }
  2977. current_position[Z_AXIS] = 5;
  2978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2979. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2980. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2982. st_synchronize();
  2983. find_bed_induction_sensor_point_z(-1.f);
  2984. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2985. SERIAL_ECHOLNPGM("");
  2986. SERIAL_ECHOPGM("Temperature: ");
  2987. MYSERIAL.print(t_c);
  2988. SERIAL_ECHOPGM(" Z shift (mm):");
  2989. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2990. SERIAL_ECHOLNPGM("");
  2991. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2992. }
  2993. custom_message_type = 0;
  2994. custom_message = false;
  2995. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2996. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2997. disable_x();
  2998. disable_y();
  2999. disable_z();
  3000. disable_e0();
  3001. disable_e1();
  3002. disable_e2();
  3003. setTargetBed(0); //set bed target temperature back to 0
  3004. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3005. lcd_update_enable(true);
  3006. lcd_update(2);
  3007. }
  3008. break;
  3009. #ifdef DIS
  3010. case 77:
  3011. {
  3012. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3013. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3014. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3015. float dimension_x = 40;
  3016. float dimension_y = 40;
  3017. int points_x = 40;
  3018. int points_y = 40;
  3019. float offset_x = 74;
  3020. float offset_y = 33;
  3021. if (code_seen('X')) dimension_x = code_value();
  3022. if (code_seen('Y')) dimension_y = code_value();
  3023. if (code_seen('XP')) points_x = code_value();
  3024. if (code_seen('YP')) points_y = code_value();
  3025. if (code_seen('XO')) offset_x = code_value();
  3026. if (code_seen('YO')) offset_y = code_value();
  3027. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3028. } break;
  3029. #endif
  3030. case 79: {
  3031. for (int i = 255; i > 0; i = i - 5) {
  3032. fanSpeed = i;
  3033. //delay_keep_alive(2000);
  3034. for (int j = 0; j < 100; j++) {
  3035. delay_keep_alive(100);
  3036. }
  3037. fan_speed[1];
  3038. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3039. }
  3040. }break;
  3041. /**
  3042. * G80: Mesh-based Z probe, probes a grid and produces a
  3043. * mesh to compensate for variable bed height
  3044. *
  3045. * The S0 report the points as below
  3046. *
  3047. * +----> X-axis
  3048. * |
  3049. * |
  3050. * v Y-axis
  3051. *
  3052. */
  3053. case 80:
  3054. #ifdef MK1BP
  3055. break;
  3056. #endif //MK1BP
  3057. case_G80:
  3058. {
  3059. mesh_bed_leveling_flag = true;
  3060. int8_t verbosity_level = 0;
  3061. static bool run = false;
  3062. if (code_seen('V')) {
  3063. // Just 'V' without a number counts as V1.
  3064. char c = strchr_pointer[1];
  3065. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3066. }
  3067. // Firstly check if we know where we are
  3068. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3069. // We don't know where we are! HOME!
  3070. // Push the commands to the front of the message queue in the reverse order!
  3071. // There shall be always enough space reserved for these commands.
  3072. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3073. repeatcommand_front(); // repeat G80 with all its parameters
  3074. enquecommand_front_P((PSTR("G28 W0")));
  3075. }
  3076. else {
  3077. mesh_bed_leveling_flag = false;
  3078. }
  3079. break;
  3080. }
  3081. bool temp_comp_start = true;
  3082. #ifdef PINDA_THERMISTOR
  3083. temp_comp_start = false;
  3084. #endif //PINDA_THERMISTOR
  3085. if (temp_comp_start)
  3086. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3087. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3088. temp_compensation_start();
  3089. run = true;
  3090. repeatcommand_front(); // repeat G80 with all its parameters
  3091. enquecommand_front_P((PSTR("G28 W0")));
  3092. }
  3093. else {
  3094. mesh_bed_leveling_flag = false;
  3095. }
  3096. break;
  3097. }
  3098. run = false;
  3099. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3100. mesh_bed_leveling_flag = false;
  3101. break;
  3102. }
  3103. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3104. bool custom_message_old = custom_message;
  3105. unsigned int custom_message_type_old = custom_message_type;
  3106. unsigned int custom_message_state_old = custom_message_state;
  3107. custom_message = true;
  3108. custom_message_type = 1;
  3109. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3110. lcd_update(1);
  3111. mbl.reset(); //reset mesh bed leveling
  3112. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3113. // consumed during the first movements following this statement.
  3114. babystep_undo();
  3115. // Cycle through all points and probe them
  3116. // First move up. During this first movement, the babystepping will be reverted.
  3117. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3119. // The move to the first calibration point.
  3120. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3121. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3122. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3123. #ifdef SUPPORT_VERBOSITY
  3124. if (verbosity_level >= 1) {
  3125. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3126. }
  3127. #endif //SUPPORT_VERBOSITY
  3128. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3130. // Wait until the move is finished.
  3131. st_synchronize();
  3132. int mesh_point = 0; //index number of calibration point
  3133. int ix = 0;
  3134. int iy = 0;
  3135. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3136. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3137. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3138. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3139. #ifdef SUPPORT_VERBOSITY
  3140. if (verbosity_level >= 1) {
  3141. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3142. }
  3143. #endif // SUPPORT_VERBOSITY
  3144. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3145. const char *kill_message = NULL;
  3146. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3147. // Get coords of a measuring point.
  3148. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3149. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3150. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3151. float z0 = 0.f;
  3152. if (has_z && mesh_point > 0) {
  3153. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3154. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3155. //#if 0
  3156. #ifdef SUPPORT_VERBOSITY
  3157. if (verbosity_level >= 1) {
  3158. SERIAL_ECHOLNPGM("");
  3159. SERIAL_ECHOPGM("Bed leveling, point: ");
  3160. MYSERIAL.print(mesh_point);
  3161. SERIAL_ECHOPGM(", calibration z: ");
  3162. MYSERIAL.print(z0, 5);
  3163. SERIAL_ECHOLNPGM("");
  3164. }
  3165. #endif // SUPPORT_VERBOSITY
  3166. //#endif
  3167. }
  3168. // Move Z up to MESH_HOME_Z_SEARCH.
  3169. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3171. st_synchronize();
  3172. // Move to XY position of the sensor point.
  3173. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3174. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3175. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3176. #ifdef SUPPORT_VERBOSITY
  3177. if (verbosity_level >= 1) {
  3178. SERIAL_PROTOCOL(mesh_point);
  3179. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3180. }
  3181. #endif // SUPPORT_VERBOSITY
  3182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3183. st_synchronize();
  3184. // Go down until endstop is hit
  3185. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3186. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3187. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3188. break;
  3189. }
  3190. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3191. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3192. break;
  3193. }
  3194. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3195. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3196. break;
  3197. }
  3198. #ifdef SUPPORT_VERBOSITY
  3199. if (verbosity_level >= 10) {
  3200. SERIAL_ECHOPGM("X: ");
  3201. MYSERIAL.print(current_position[X_AXIS], 5);
  3202. SERIAL_ECHOLNPGM("");
  3203. SERIAL_ECHOPGM("Y: ");
  3204. MYSERIAL.print(current_position[Y_AXIS], 5);
  3205. SERIAL_PROTOCOLPGM("\n");
  3206. }
  3207. #endif // SUPPORT_VERBOSITY
  3208. float offset_z = 0;
  3209. #ifdef PINDA_THERMISTOR
  3210. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3211. #endif //PINDA_THERMISTOR
  3212. // #ifdef SUPPORT_VERBOSITY
  3213. /* if (verbosity_level >= 1)
  3214. {
  3215. SERIAL_ECHOPGM("mesh bed leveling: ");
  3216. MYSERIAL.print(current_position[Z_AXIS], 5);
  3217. SERIAL_ECHOPGM(" offset: ");
  3218. MYSERIAL.print(offset_z, 5);
  3219. SERIAL_ECHOLNPGM("");
  3220. }*/
  3221. // #endif // SUPPORT_VERBOSITY
  3222. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3223. custom_message_state--;
  3224. mesh_point++;
  3225. lcd_update(1);
  3226. }
  3227. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3228. #ifdef SUPPORT_VERBOSITY
  3229. if (verbosity_level >= 20) {
  3230. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3231. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3232. MYSERIAL.print(current_position[Z_AXIS], 5);
  3233. }
  3234. #endif // SUPPORT_VERBOSITY
  3235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3236. st_synchronize();
  3237. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3238. kill(kill_message);
  3239. SERIAL_ECHOLNPGM("killed");
  3240. }
  3241. clean_up_after_endstop_move();
  3242. // SERIAL_ECHOLNPGM("clean up finished ");
  3243. bool apply_temp_comp = true;
  3244. #ifdef PINDA_THERMISTOR
  3245. apply_temp_comp = false;
  3246. #endif
  3247. if (apply_temp_comp)
  3248. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3249. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3250. // SERIAL_ECHOLNPGM("babystep applied");
  3251. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3252. #ifdef SUPPORT_VERBOSITY
  3253. if (verbosity_level >= 1) {
  3254. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3255. }
  3256. #endif // SUPPORT_VERBOSITY
  3257. for (uint8_t i = 0; i < 4; ++i) {
  3258. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3259. long correction = 0;
  3260. if (code_seen(codes[i]))
  3261. correction = code_value_long();
  3262. else if (eeprom_bed_correction_valid) {
  3263. unsigned char *addr = (i < 2) ?
  3264. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3265. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3266. correction = eeprom_read_int8(addr);
  3267. }
  3268. if (correction == 0)
  3269. continue;
  3270. float offset = float(correction) * 0.001f;
  3271. if (fabs(offset) > 0.101f) {
  3272. SERIAL_ERROR_START;
  3273. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3274. SERIAL_ECHO(offset);
  3275. SERIAL_ECHOLNPGM(" microns");
  3276. }
  3277. else {
  3278. switch (i) {
  3279. case 0:
  3280. for (uint8_t row = 0; row < 3; ++row) {
  3281. mbl.z_values[row][1] += 0.5f * offset;
  3282. mbl.z_values[row][0] += offset;
  3283. }
  3284. break;
  3285. case 1:
  3286. for (uint8_t row = 0; row < 3; ++row) {
  3287. mbl.z_values[row][1] += 0.5f * offset;
  3288. mbl.z_values[row][2] += offset;
  3289. }
  3290. break;
  3291. case 2:
  3292. for (uint8_t col = 0; col < 3; ++col) {
  3293. mbl.z_values[1][col] += 0.5f * offset;
  3294. mbl.z_values[0][col] += offset;
  3295. }
  3296. break;
  3297. case 3:
  3298. for (uint8_t col = 0; col < 3; ++col) {
  3299. mbl.z_values[1][col] += 0.5f * offset;
  3300. mbl.z_values[2][col] += offset;
  3301. }
  3302. break;
  3303. }
  3304. }
  3305. }
  3306. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3307. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3308. // SERIAL_ECHOLNPGM("Upsample finished");
  3309. mbl.active = 1; //activate mesh bed leveling
  3310. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3311. go_home_with_z_lift();
  3312. // SERIAL_ECHOLNPGM("Go home finished");
  3313. //unretract (after PINDA preheat retraction)
  3314. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3315. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3317. }
  3318. KEEPALIVE_STATE(NOT_BUSY);
  3319. // Restore custom message state
  3320. custom_message = custom_message_old;
  3321. custom_message_type = custom_message_type_old;
  3322. custom_message_state = custom_message_state_old;
  3323. mesh_bed_leveling_flag = false;
  3324. mesh_bed_run_from_menu = false;
  3325. lcd_update(2);
  3326. }
  3327. break;
  3328. /**
  3329. * G81: Print mesh bed leveling status and bed profile if activated
  3330. */
  3331. case 81:
  3332. if (mbl.active) {
  3333. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3334. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3335. SERIAL_PROTOCOLPGM(",");
  3336. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3337. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3338. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3339. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3340. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3341. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3342. SERIAL_PROTOCOLPGM(" ");
  3343. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3344. }
  3345. SERIAL_PROTOCOLPGM("\n");
  3346. }
  3347. }
  3348. else
  3349. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3350. break;
  3351. #if 0
  3352. /**
  3353. * G82: Single Z probe at current location
  3354. *
  3355. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3356. *
  3357. */
  3358. case 82:
  3359. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3360. setup_for_endstop_move();
  3361. find_bed_induction_sensor_point_z();
  3362. clean_up_after_endstop_move();
  3363. SERIAL_PROTOCOLPGM("Bed found at: ");
  3364. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3365. SERIAL_PROTOCOLPGM("\n");
  3366. break;
  3367. /**
  3368. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3369. */
  3370. case 83:
  3371. {
  3372. int babystepz = code_seen('S') ? code_value() : 0;
  3373. int BabyPosition = code_seen('P') ? code_value() : 0;
  3374. if (babystepz != 0) {
  3375. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3376. // Is the axis indexed starting with zero or one?
  3377. if (BabyPosition > 4) {
  3378. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3379. }else{
  3380. // Save it to the eeprom
  3381. babystepLoadZ = babystepz;
  3382. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3383. // adjust the Z
  3384. babystepsTodoZadd(babystepLoadZ);
  3385. }
  3386. }
  3387. }
  3388. break;
  3389. /**
  3390. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3391. */
  3392. case 84:
  3393. babystepsTodoZsubtract(babystepLoadZ);
  3394. // babystepLoadZ = 0;
  3395. break;
  3396. /**
  3397. * G85: Prusa3D specific: Pick best babystep
  3398. */
  3399. case 85:
  3400. lcd_pick_babystep();
  3401. break;
  3402. #endif
  3403. /**
  3404. * G86: Prusa3D specific: Disable babystep correction after home.
  3405. * This G-code will be performed at the start of a calibration script.
  3406. */
  3407. case 86:
  3408. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3409. break;
  3410. /**
  3411. * G87: Prusa3D specific: Enable babystep correction after home
  3412. * This G-code will be performed at the end of a calibration script.
  3413. */
  3414. case 87:
  3415. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3416. break;
  3417. /**
  3418. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3419. */
  3420. case 88:
  3421. break;
  3422. #endif // ENABLE_MESH_BED_LEVELING
  3423. case 90: // G90
  3424. relative_mode = false;
  3425. break;
  3426. case 91: // G91
  3427. relative_mode = true;
  3428. break;
  3429. case 92: // G92
  3430. if(!code_seen(axis_codes[E_AXIS]))
  3431. st_synchronize();
  3432. for(int8_t i=0; i < NUM_AXIS; i++) {
  3433. if(code_seen(axis_codes[i])) {
  3434. if(i == E_AXIS) {
  3435. current_position[i] = code_value();
  3436. plan_set_e_position(current_position[E_AXIS]);
  3437. }
  3438. else {
  3439. current_position[i] = code_value()+add_homing[i];
  3440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3441. }
  3442. }
  3443. }
  3444. break;
  3445. case 98: //activate farm mode
  3446. farm_mode = 1;
  3447. PingTime = millis();
  3448. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3449. break;
  3450. case 99: //deactivate farm mode
  3451. farm_mode = 0;
  3452. lcd_printer_connected();
  3453. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3454. lcd_update(2);
  3455. break;
  3456. default:
  3457. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3458. }
  3459. } // end if(code_seen('G'))
  3460. else if(code_seen('M'))
  3461. {
  3462. int index;
  3463. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3464. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3465. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3466. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3467. } else
  3468. switch((int)code_value())
  3469. {
  3470. #ifdef ULTIPANEL
  3471. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3472. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3473. {
  3474. char *src = strchr_pointer + 2;
  3475. codenum = 0;
  3476. bool hasP = false, hasS = false;
  3477. if (code_seen('P')) {
  3478. codenum = code_value(); // milliseconds to wait
  3479. hasP = codenum > 0;
  3480. }
  3481. if (code_seen('S')) {
  3482. codenum = code_value() * 1000; // seconds to wait
  3483. hasS = codenum > 0;
  3484. }
  3485. starpos = strchr(src, '*');
  3486. if (starpos != NULL) *(starpos) = '\0';
  3487. while (*src == ' ') ++src;
  3488. if (!hasP && !hasS && *src != '\0') {
  3489. lcd_setstatus(src);
  3490. } else {
  3491. LCD_MESSAGERPGM(MSG_USERWAIT);
  3492. }
  3493. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3494. st_synchronize();
  3495. previous_millis_cmd = millis();
  3496. if (codenum > 0){
  3497. codenum += millis(); // keep track of when we started waiting
  3498. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3499. while(millis() < codenum && !lcd_clicked()){
  3500. manage_heater();
  3501. manage_inactivity(true);
  3502. lcd_update();
  3503. }
  3504. KEEPALIVE_STATE(IN_HANDLER);
  3505. lcd_ignore_click(false);
  3506. }else{
  3507. if (!lcd_detected())
  3508. break;
  3509. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3510. while(!lcd_clicked()){
  3511. manage_heater();
  3512. manage_inactivity(true);
  3513. lcd_update();
  3514. }
  3515. KEEPALIVE_STATE(IN_HANDLER);
  3516. }
  3517. if (IS_SD_PRINTING)
  3518. LCD_MESSAGERPGM(MSG_RESUMING);
  3519. else
  3520. LCD_MESSAGERPGM(WELCOME_MSG);
  3521. }
  3522. break;
  3523. #endif
  3524. case 17:
  3525. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3526. enable_x();
  3527. enable_y();
  3528. enable_z();
  3529. enable_e0();
  3530. enable_e1();
  3531. enable_e2();
  3532. break;
  3533. #ifdef SDSUPPORT
  3534. case 20: // M20 - list SD card
  3535. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3536. card.ls();
  3537. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3538. break;
  3539. case 21: // M21 - init SD card
  3540. card.initsd();
  3541. break;
  3542. case 22: //M22 - release SD card
  3543. card.release();
  3544. break;
  3545. case 23: //M23 - Select file
  3546. starpos = (strchr(strchr_pointer + 4,'*'));
  3547. if(starpos!=NULL)
  3548. *(starpos)='\0';
  3549. card.openFile(strchr_pointer + 4,true);
  3550. break;
  3551. case 24: //M24 - Start SD print
  3552. if (!card.paused)
  3553. failstats_reset_print();
  3554. card.startFileprint();
  3555. starttime=millis();
  3556. break;
  3557. case 25: //M25 - Pause SD print
  3558. card.pauseSDPrint();
  3559. break;
  3560. case 26: //M26 - Set SD index
  3561. if(card.cardOK && code_seen('S')) {
  3562. card.setIndex(code_value_long());
  3563. }
  3564. break;
  3565. case 27: //M27 - Get SD status
  3566. card.getStatus();
  3567. break;
  3568. case 28: //M28 - Start SD write
  3569. starpos = (strchr(strchr_pointer + 4,'*'));
  3570. if(starpos != NULL){
  3571. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3572. strchr_pointer = strchr(npos,' ') + 1;
  3573. *(starpos) = '\0';
  3574. }
  3575. card.openFile(strchr_pointer+4,false);
  3576. break;
  3577. case 29: //M29 - Stop SD write
  3578. //processed in write to file routine above
  3579. //card,saving = false;
  3580. break;
  3581. case 30: //M30 <filename> Delete File
  3582. if (card.cardOK){
  3583. card.closefile();
  3584. starpos = (strchr(strchr_pointer + 4,'*'));
  3585. if(starpos != NULL){
  3586. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3587. strchr_pointer = strchr(npos,' ') + 1;
  3588. *(starpos) = '\0';
  3589. }
  3590. card.removeFile(strchr_pointer + 4);
  3591. }
  3592. break;
  3593. case 32: //M32 - Select file and start SD print
  3594. {
  3595. if(card.sdprinting) {
  3596. st_synchronize();
  3597. }
  3598. starpos = (strchr(strchr_pointer + 4,'*'));
  3599. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3600. if(namestartpos==NULL)
  3601. {
  3602. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3603. }
  3604. else
  3605. namestartpos++; //to skip the '!'
  3606. if(starpos!=NULL)
  3607. *(starpos)='\0';
  3608. bool call_procedure=(code_seen('P'));
  3609. if(strchr_pointer>namestartpos)
  3610. call_procedure=false; //false alert, 'P' found within filename
  3611. if( card.cardOK )
  3612. {
  3613. card.openFile(namestartpos,true,!call_procedure);
  3614. if(code_seen('S'))
  3615. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3616. card.setIndex(code_value_long());
  3617. card.startFileprint();
  3618. if(!call_procedure)
  3619. starttime=millis(); //procedure calls count as normal print time.
  3620. }
  3621. } break;
  3622. case 928: //M928 - Start SD write
  3623. starpos = (strchr(strchr_pointer + 5,'*'));
  3624. if(starpos != NULL){
  3625. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3626. strchr_pointer = strchr(npos,' ') + 1;
  3627. *(starpos) = '\0';
  3628. }
  3629. card.openLogFile(strchr_pointer+5);
  3630. break;
  3631. #endif //SDSUPPORT
  3632. case 31: //M31 take time since the start of the SD print or an M109 command
  3633. {
  3634. stoptime=millis();
  3635. char time[30];
  3636. unsigned long t=(stoptime-starttime)/1000;
  3637. int sec,min;
  3638. min=t/60;
  3639. sec=t%60;
  3640. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3641. SERIAL_ECHO_START;
  3642. SERIAL_ECHOLN(time);
  3643. lcd_setstatus(time);
  3644. autotempShutdown();
  3645. }
  3646. break;
  3647. #ifndef _DISABLE_M42_M226
  3648. case 42: //M42 -Change pin status via gcode
  3649. if (code_seen('S'))
  3650. {
  3651. int pin_status = code_value();
  3652. int pin_number = LED_PIN;
  3653. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3654. pin_number = code_value();
  3655. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3656. {
  3657. if (sensitive_pins[i] == pin_number)
  3658. {
  3659. pin_number = -1;
  3660. break;
  3661. }
  3662. }
  3663. #if defined(FAN_PIN) && FAN_PIN > -1
  3664. if (pin_number == FAN_PIN)
  3665. fanSpeed = pin_status;
  3666. #endif
  3667. if (pin_number > -1)
  3668. {
  3669. pinMode(pin_number, OUTPUT);
  3670. digitalWrite(pin_number, pin_status);
  3671. analogWrite(pin_number, pin_status);
  3672. }
  3673. }
  3674. break;
  3675. #endif //_DISABLE_M42_M226
  3676. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3677. // Reset the baby step value and the baby step applied flag.
  3678. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3679. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3680. // Reset the skew and offset in both RAM and EEPROM.
  3681. reset_bed_offset_and_skew();
  3682. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3683. // the planner will not perform any adjustments in the XY plane.
  3684. // Wait for the motors to stop and update the current position with the absolute values.
  3685. world2machine_revert_to_uncorrected();
  3686. break;
  3687. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3688. {
  3689. bool only_Z = code_seen('Z');
  3690. gcode_M45(only_Z);
  3691. }
  3692. break;
  3693. /*
  3694. case 46:
  3695. {
  3696. // M46: Prusa3D: Show the assigned IP address.
  3697. uint8_t ip[4];
  3698. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3699. if (hasIP) {
  3700. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3701. SERIAL_ECHO(int(ip[0]));
  3702. SERIAL_ECHOPGM(".");
  3703. SERIAL_ECHO(int(ip[1]));
  3704. SERIAL_ECHOPGM(".");
  3705. SERIAL_ECHO(int(ip[2]));
  3706. SERIAL_ECHOPGM(".");
  3707. SERIAL_ECHO(int(ip[3]));
  3708. SERIAL_ECHOLNPGM("");
  3709. } else {
  3710. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3711. }
  3712. break;
  3713. }
  3714. */
  3715. case 47:
  3716. // M47: Prusa3D: Show end stops dialog on the display.
  3717. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3718. lcd_diag_show_end_stops();
  3719. KEEPALIVE_STATE(IN_HANDLER);
  3720. break;
  3721. #if 0
  3722. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3723. {
  3724. // Disable the default update procedure of the display. We will do a modal dialog.
  3725. lcd_update_enable(false);
  3726. // Let the planner use the uncorrected coordinates.
  3727. mbl.reset();
  3728. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3729. // the planner will not perform any adjustments in the XY plane.
  3730. // Wait for the motors to stop and update the current position with the absolute values.
  3731. world2machine_revert_to_uncorrected();
  3732. // Move the print head close to the bed.
  3733. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3735. st_synchronize();
  3736. // Home in the XY plane.
  3737. set_destination_to_current();
  3738. setup_for_endstop_move();
  3739. home_xy();
  3740. int8_t verbosity_level = 0;
  3741. if (code_seen('V')) {
  3742. // Just 'V' without a number counts as V1.
  3743. char c = strchr_pointer[1];
  3744. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3745. }
  3746. bool success = scan_bed_induction_points(verbosity_level);
  3747. clean_up_after_endstop_move();
  3748. // Print head up.
  3749. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3751. st_synchronize();
  3752. lcd_update_enable(true);
  3753. break;
  3754. }
  3755. #endif
  3756. // M48 Z-Probe repeatability measurement function.
  3757. //
  3758. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3759. //
  3760. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3761. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3762. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3763. // regenerated.
  3764. //
  3765. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3766. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3767. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3768. //
  3769. #ifdef ENABLE_AUTO_BED_LEVELING
  3770. #ifdef Z_PROBE_REPEATABILITY_TEST
  3771. case 48: // M48 Z-Probe repeatability
  3772. {
  3773. #if Z_MIN_PIN == -1
  3774. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3775. #endif
  3776. double sum=0.0;
  3777. double mean=0.0;
  3778. double sigma=0.0;
  3779. double sample_set[50];
  3780. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3781. double X_current, Y_current, Z_current;
  3782. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3783. if (code_seen('V') || code_seen('v')) {
  3784. verbose_level = code_value();
  3785. if (verbose_level<0 || verbose_level>4 ) {
  3786. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3787. goto Sigma_Exit;
  3788. }
  3789. }
  3790. if (verbose_level > 0) {
  3791. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3792. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3793. }
  3794. if (code_seen('n')) {
  3795. n_samples = code_value();
  3796. if (n_samples<4 || n_samples>50 ) {
  3797. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3798. goto Sigma_Exit;
  3799. }
  3800. }
  3801. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3802. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3803. Z_current = st_get_position_mm(Z_AXIS);
  3804. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3805. ext_position = st_get_position_mm(E_AXIS);
  3806. if (code_seen('X') || code_seen('x') ) {
  3807. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3808. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3809. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3810. goto Sigma_Exit;
  3811. }
  3812. }
  3813. if (code_seen('Y') || code_seen('y') ) {
  3814. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3815. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3816. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3817. goto Sigma_Exit;
  3818. }
  3819. }
  3820. if (code_seen('L') || code_seen('l') ) {
  3821. n_legs = code_value();
  3822. if ( n_legs==1 )
  3823. n_legs = 2;
  3824. if ( n_legs<0 || n_legs>15 ) {
  3825. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3826. goto Sigma_Exit;
  3827. }
  3828. }
  3829. //
  3830. // Do all the preliminary setup work. First raise the probe.
  3831. //
  3832. st_synchronize();
  3833. plan_bed_level_matrix.set_to_identity();
  3834. plan_buffer_line( X_current, Y_current, Z_start_location,
  3835. ext_position,
  3836. homing_feedrate[Z_AXIS]/60,
  3837. active_extruder);
  3838. st_synchronize();
  3839. //
  3840. // Now get everything to the specified probe point So we can safely do a probe to
  3841. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3842. // use that as a starting point for each probe.
  3843. //
  3844. if (verbose_level > 2)
  3845. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3846. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3847. ext_position,
  3848. homing_feedrate[X_AXIS]/60,
  3849. active_extruder);
  3850. st_synchronize();
  3851. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3852. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3853. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3854. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3855. //
  3856. // OK, do the inital probe to get us close to the bed.
  3857. // Then retrace the right amount and use that in subsequent probes
  3858. //
  3859. setup_for_endstop_move();
  3860. run_z_probe();
  3861. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3862. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3863. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3864. ext_position,
  3865. homing_feedrate[X_AXIS]/60,
  3866. active_extruder);
  3867. st_synchronize();
  3868. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3869. for( n=0; n<n_samples; n++) {
  3870. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3871. if ( n_legs) {
  3872. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3873. int rotational_direction, l;
  3874. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3875. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3876. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3877. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3878. //SERIAL_ECHOPAIR(" theta: ",theta);
  3879. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3880. //SERIAL_PROTOCOLLNPGM("");
  3881. for( l=0; l<n_legs-1; l++) {
  3882. if (rotational_direction==1)
  3883. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3884. else
  3885. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3886. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3887. if ( radius<0.0 )
  3888. radius = -radius;
  3889. X_current = X_probe_location + cos(theta) * radius;
  3890. Y_current = Y_probe_location + sin(theta) * radius;
  3891. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3892. X_current = X_MIN_POS;
  3893. if ( X_current>X_MAX_POS)
  3894. X_current = X_MAX_POS;
  3895. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3896. Y_current = Y_MIN_POS;
  3897. if ( Y_current>Y_MAX_POS)
  3898. Y_current = Y_MAX_POS;
  3899. if (verbose_level>3 ) {
  3900. SERIAL_ECHOPAIR("x: ", X_current);
  3901. SERIAL_ECHOPAIR("y: ", Y_current);
  3902. SERIAL_PROTOCOLLNPGM("");
  3903. }
  3904. do_blocking_move_to( X_current, Y_current, Z_current );
  3905. }
  3906. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3907. }
  3908. setup_for_endstop_move();
  3909. run_z_probe();
  3910. sample_set[n] = current_position[Z_AXIS];
  3911. //
  3912. // Get the current mean for the data points we have so far
  3913. //
  3914. sum=0.0;
  3915. for( j=0; j<=n; j++) {
  3916. sum = sum + sample_set[j];
  3917. }
  3918. mean = sum / (double (n+1));
  3919. //
  3920. // Now, use that mean to calculate the standard deviation for the
  3921. // data points we have so far
  3922. //
  3923. sum=0.0;
  3924. for( j=0; j<=n; j++) {
  3925. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3926. }
  3927. sigma = sqrt( sum / (double (n+1)) );
  3928. if (verbose_level > 1) {
  3929. SERIAL_PROTOCOL(n+1);
  3930. SERIAL_PROTOCOL(" of ");
  3931. SERIAL_PROTOCOL(n_samples);
  3932. SERIAL_PROTOCOLPGM(" z: ");
  3933. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3934. }
  3935. if (verbose_level > 2) {
  3936. SERIAL_PROTOCOL(" mean: ");
  3937. SERIAL_PROTOCOL_F(mean,6);
  3938. SERIAL_PROTOCOL(" sigma: ");
  3939. SERIAL_PROTOCOL_F(sigma,6);
  3940. }
  3941. if (verbose_level > 0)
  3942. SERIAL_PROTOCOLPGM("\n");
  3943. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3944. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3945. st_synchronize();
  3946. }
  3947. delay(1000);
  3948. clean_up_after_endstop_move();
  3949. // enable_endstops(true);
  3950. if (verbose_level > 0) {
  3951. SERIAL_PROTOCOLPGM("Mean: ");
  3952. SERIAL_PROTOCOL_F(mean, 6);
  3953. SERIAL_PROTOCOLPGM("\n");
  3954. }
  3955. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3956. SERIAL_PROTOCOL_F(sigma, 6);
  3957. SERIAL_PROTOCOLPGM("\n\n");
  3958. Sigma_Exit:
  3959. break;
  3960. }
  3961. #endif // Z_PROBE_REPEATABILITY_TEST
  3962. #endif // ENABLE_AUTO_BED_LEVELING
  3963. case 104: // M104
  3964. if(setTargetedHotend(104)){
  3965. break;
  3966. }
  3967. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3968. setWatch();
  3969. break;
  3970. case 112: // M112 -Emergency Stop
  3971. kill("", 3);
  3972. break;
  3973. case 140: // M140 set bed temp
  3974. if (code_seen('S')) setTargetBed(code_value());
  3975. break;
  3976. case 105 : // M105
  3977. if(setTargetedHotend(105)){
  3978. break;
  3979. }
  3980. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3981. SERIAL_PROTOCOLPGM("ok T:");
  3982. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3983. SERIAL_PROTOCOLPGM(" /");
  3984. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3985. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3986. SERIAL_PROTOCOLPGM(" B:");
  3987. SERIAL_PROTOCOL_F(degBed(),1);
  3988. SERIAL_PROTOCOLPGM(" /");
  3989. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3990. #endif //TEMP_BED_PIN
  3991. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3992. SERIAL_PROTOCOLPGM(" T");
  3993. SERIAL_PROTOCOL(cur_extruder);
  3994. SERIAL_PROTOCOLPGM(":");
  3995. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3996. SERIAL_PROTOCOLPGM(" /");
  3997. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3998. }
  3999. #else
  4000. SERIAL_ERROR_START;
  4001. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4002. #endif
  4003. SERIAL_PROTOCOLPGM(" @:");
  4004. #ifdef EXTRUDER_WATTS
  4005. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4006. SERIAL_PROTOCOLPGM("W");
  4007. #else
  4008. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4009. #endif
  4010. SERIAL_PROTOCOLPGM(" B@:");
  4011. #ifdef BED_WATTS
  4012. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4013. SERIAL_PROTOCOLPGM("W");
  4014. #else
  4015. SERIAL_PROTOCOL(getHeaterPower(-1));
  4016. #endif
  4017. #ifdef PINDA_THERMISTOR
  4018. SERIAL_PROTOCOLPGM(" P:");
  4019. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4020. #endif //PINDA_THERMISTOR
  4021. #ifdef AMBIENT_THERMISTOR
  4022. SERIAL_PROTOCOLPGM(" A:");
  4023. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4024. #endif //AMBIENT_THERMISTOR
  4025. #ifdef SHOW_TEMP_ADC_VALUES
  4026. {float raw = 0.0;
  4027. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4028. SERIAL_PROTOCOLPGM(" ADC B:");
  4029. SERIAL_PROTOCOL_F(degBed(),1);
  4030. SERIAL_PROTOCOLPGM("C->");
  4031. raw = rawBedTemp();
  4032. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4033. SERIAL_PROTOCOLPGM(" Rb->");
  4034. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4035. SERIAL_PROTOCOLPGM(" Rxb->");
  4036. SERIAL_PROTOCOL_F(raw, 5);
  4037. #endif
  4038. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4039. SERIAL_PROTOCOLPGM(" T");
  4040. SERIAL_PROTOCOL(cur_extruder);
  4041. SERIAL_PROTOCOLPGM(":");
  4042. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4043. SERIAL_PROTOCOLPGM("C->");
  4044. raw = rawHotendTemp(cur_extruder);
  4045. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4046. SERIAL_PROTOCOLPGM(" Rt");
  4047. SERIAL_PROTOCOL(cur_extruder);
  4048. SERIAL_PROTOCOLPGM("->");
  4049. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4050. SERIAL_PROTOCOLPGM(" Rx");
  4051. SERIAL_PROTOCOL(cur_extruder);
  4052. SERIAL_PROTOCOLPGM("->");
  4053. SERIAL_PROTOCOL_F(raw, 5);
  4054. }}
  4055. #endif
  4056. SERIAL_PROTOCOLLN("");
  4057. KEEPALIVE_STATE(NOT_BUSY);
  4058. return;
  4059. break;
  4060. case 109:
  4061. {// M109 - Wait for extruder heater to reach target.
  4062. if(setTargetedHotend(109)){
  4063. break;
  4064. }
  4065. LCD_MESSAGERPGM(MSG_HEATING);
  4066. heating_status = 1;
  4067. if (farm_mode) { prusa_statistics(1); };
  4068. #ifdef AUTOTEMP
  4069. autotemp_enabled=false;
  4070. #endif
  4071. if (code_seen('S')) {
  4072. setTargetHotend(code_value(), tmp_extruder);
  4073. CooldownNoWait = true;
  4074. } else if (code_seen('R')) {
  4075. setTargetHotend(code_value(), tmp_extruder);
  4076. CooldownNoWait = false;
  4077. }
  4078. #ifdef AUTOTEMP
  4079. if (code_seen('S')) autotemp_min=code_value();
  4080. if (code_seen('B')) autotemp_max=code_value();
  4081. if (code_seen('F'))
  4082. {
  4083. autotemp_factor=code_value();
  4084. autotemp_enabled=true;
  4085. }
  4086. #endif
  4087. setWatch();
  4088. codenum = millis();
  4089. /* See if we are heating up or cooling down */
  4090. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4091. KEEPALIVE_STATE(NOT_BUSY);
  4092. cancel_heatup = false;
  4093. wait_for_heater(codenum); //loops until target temperature is reached
  4094. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4095. KEEPALIVE_STATE(IN_HANDLER);
  4096. heating_status = 2;
  4097. if (farm_mode) { prusa_statistics(2); };
  4098. //starttime=millis();
  4099. previous_millis_cmd = millis();
  4100. }
  4101. break;
  4102. case 190: // M190 - Wait for bed heater to reach target.
  4103. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4104. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4105. heating_status = 3;
  4106. if (farm_mode) { prusa_statistics(1); };
  4107. if (code_seen('S'))
  4108. {
  4109. setTargetBed(code_value());
  4110. CooldownNoWait = true;
  4111. }
  4112. else if (code_seen('R'))
  4113. {
  4114. setTargetBed(code_value());
  4115. CooldownNoWait = false;
  4116. }
  4117. codenum = millis();
  4118. cancel_heatup = false;
  4119. target_direction = isHeatingBed(); // true if heating, false if cooling
  4120. KEEPALIVE_STATE(NOT_BUSY);
  4121. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4122. {
  4123. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4124. {
  4125. if (!farm_mode) {
  4126. float tt = degHotend(active_extruder);
  4127. SERIAL_PROTOCOLPGM("T:");
  4128. SERIAL_PROTOCOL(tt);
  4129. SERIAL_PROTOCOLPGM(" E:");
  4130. SERIAL_PROTOCOL((int)active_extruder);
  4131. SERIAL_PROTOCOLPGM(" B:");
  4132. SERIAL_PROTOCOL_F(degBed(), 1);
  4133. SERIAL_PROTOCOLLN("");
  4134. }
  4135. codenum = millis();
  4136. }
  4137. manage_heater();
  4138. manage_inactivity();
  4139. lcd_update();
  4140. }
  4141. LCD_MESSAGERPGM(MSG_BED_DONE);
  4142. KEEPALIVE_STATE(IN_HANDLER);
  4143. heating_status = 4;
  4144. previous_millis_cmd = millis();
  4145. #endif
  4146. break;
  4147. #if defined(FAN_PIN) && FAN_PIN > -1
  4148. case 106: //M106 Fan On
  4149. if (code_seen('S')){
  4150. fanSpeed=constrain(code_value(),0,255);
  4151. }
  4152. else {
  4153. fanSpeed=255;
  4154. }
  4155. break;
  4156. case 107: //M107 Fan Off
  4157. fanSpeed = 0;
  4158. break;
  4159. #endif //FAN_PIN
  4160. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4161. case 80: // M80 - Turn on Power Supply
  4162. SET_OUTPUT(PS_ON_PIN); //GND
  4163. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4164. // If you have a switch on suicide pin, this is useful
  4165. // if you want to start another print with suicide feature after
  4166. // a print without suicide...
  4167. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4168. SET_OUTPUT(SUICIDE_PIN);
  4169. WRITE(SUICIDE_PIN, HIGH);
  4170. #endif
  4171. #ifdef ULTIPANEL
  4172. powersupply = true;
  4173. LCD_MESSAGERPGM(WELCOME_MSG);
  4174. lcd_update();
  4175. #endif
  4176. break;
  4177. #endif
  4178. case 81: // M81 - Turn off Power Supply
  4179. disable_heater();
  4180. st_synchronize();
  4181. disable_e0();
  4182. disable_e1();
  4183. disable_e2();
  4184. finishAndDisableSteppers();
  4185. fanSpeed = 0;
  4186. delay(1000); // Wait a little before to switch off
  4187. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4188. st_synchronize();
  4189. suicide();
  4190. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4191. SET_OUTPUT(PS_ON_PIN);
  4192. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4193. #endif
  4194. #ifdef ULTIPANEL
  4195. powersupply = false;
  4196. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4197. /*
  4198. MACHNAME = "Prusa i3"
  4199. MSGOFF = "Vypnuto"
  4200. "Prusai3"" ""vypnuto""."
  4201. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4202. */
  4203. lcd_update();
  4204. #endif
  4205. break;
  4206. case 82:
  4207. axis_relative_modes[3] = false;
  4208. break;
  4209. case 83:
  4210. axis_relative_modes[3] = true;
  4211. break;
  4212. case 18: //compatibility
  4213. case 84: // M84
  4214. if(code_seen('S')){
  4215. stepper_inactive_time = code_value() * 1000;
  4216. }
  4217. else
  4218. {
  4219. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4220. if(all_axis)
  4221. {
  4222. st_synchronize();
  4223. disable_e0();
  4224. disable_e1();
  4225. disable_e2();
  4226. finishAndDisableSteppers();
  4227. }
  4228. else
  4229. {
  4230. st_synchronize();
  4231. if (code_seen('X')) disable_x();
  4232. if (code_seen('Y')) disable_y();
  4233. if (code_seen('Z')) disable_z();
  4234. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4235. if (code_seen('E')) {
  4236. disable_e0();
  4237. disable_e1();
  4238. disable_e2();
  4239. }
  4240. #endif
  4241. }
  4242. }
  4243. snmm_filaments_used = 0;
  4244. break;
  4245. case 85: // M85
  4246. if(code_seen('S')) {
  4247. max_inactive_time = code_value() * 1000;
  4248. }
  4249. break;
  4250. case 92: // M92
  4251. for(int8_t i=0; i < NUM_AXIS; i++)
  4252. {
  4253. if(code_seen(axis_codes[i]))
  4254. {
  4255. if(i == 3) { // E
  4256. float value = code_value();
  4257. if(value < 20.0) {
  4258. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4259. max_jerk[E_AXIS] *= factor;
  4260. max_feedrate[i] *= factor;
  4261. axis_steps_per_sqr_second[i] *= factor;
  4262. }
  4263. axis_steps_per_unit[i] = value;
  4264. }
  4265. else {
  4266. axis_steps_per_unit[i] = code_value();
  4267. }
  4268. }
  4269. }
  4270. break;
  4271. case 110: // M110 - reset line pos
  4272. if (code_seen('N'))
  4273. gcode_LastN = code_value_long();
  4274. break;
  4275. #ifdef HOST_KEEPALIVE_FEATURE
  4276. case 113: // M113 - Get or set Host Keepalive interval
  4277. if (code_seen('S')) {
  4278. host_keepalive_interval = (uint8_t)code_value_short();
  4279. // NOMORE(host_keepalive_interval, 60);
  4280. }
  4281. else {
  4282. SERIAL_ECHO_START;
  4283. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4284. SERIAL_PROTOCOLLN("");
  4285. }
  4286. break;
  4287. #endif
  4288. case 115: // M115
  4289. if (code_seen('V')) {
  4290. // Report the Prusa version number.
  4291. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4292. } else if (code_seen('U')) {
  4293. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4294. // pause the print and ask the user to upgrade the firmware.
  4295. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4296. } else {
  4297. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4298. }
  4299. break;
  4300. /* case 117: // M117 display message
  4301. starpos = (strchr(strchr_pointer + 5,'*'));
  4302. if(starpos!=NULL)
  4303. *(starpos)='\0';
  4304. lcd_setstatus(strchr_pointer + 5);
  4305. break;*/
  4306. case 114: // M114
  4307. SERIAL_PROTOCOLPGM("X:");
  4308. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4309. SERIAL_PROTOCOLPGM(" Y:");
  4310. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4311. SERIAL_PROTOCOLPGM(" Z:");
  4312. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4313. SERIAL_PROTOCOLPGM(" E:");
  4314. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4315. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4316. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4317. SERIAL_PROTOCOLPGM(" Y:");
  4318. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4319. SERIAL_PROTOCOLPGM(" Z:");
  4320. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4321. SERIAL_PROTOCOLPGM(" E:");
  4322. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4323. SERIAL_PROTOCOLLN("");
  4324. break;
  4325. case 120: // M120
  4326. enable_endstops(false) ;
  4327. break;
  4328. case 121: // M121
  4329. enable_endstops(true) ;
  4330. break;
  4331. case 119: // M119
  4332. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4333. SERIAL_PROTOCOLLN("");
  4334. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4335. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4336. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4337. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4338. }else{
  4339. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4340. }
  4341. SERIAL_PROTOCOLLN("");
  4342. #endif
  4343. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4344. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4345. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4346. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4347. }else{
  4348. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4349. }
  4350. SERIAL_PROTOCOLLN("");
  4351. #endif
  4352. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4353. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4354. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4355. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4356. }else{
  4357. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4358. }
  4359. SERIAL_PROTOCOLLN("");
  4360. #endif
  4361. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4362. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4363. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4364. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4365. }else{
  4366. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4367. }
  4368. SERIAL_PROTOCOLLN("");
  4369. #endif
  4370. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4371. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4372. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4373. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4374. }else{
  4375. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4376. }
  4377. SERIAL_PROTOCOLLN("");
  4378. #endif
  4379. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4380. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4381. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4382. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4383. }else{
  4384. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4385. }
  4386. SERIAL_PROTOCOLLN("");
  4387. #endif
  4388. break;
  4389. //TODO: update for all axis, use for loop
  4390. #ifdef BLINKM
  4391. case 150: // M150
  4392. {
  4393. byte red;
  4394. byte grn;
  4395. byte blu;
  4396. if(code_seen('R')) red = code_value();
  4397. if(code_seen('U')) grn = code_value();
  4398. if(code_seen('B')) blu = code_value();
  4399. SendColors(red,grn,blu);
  4400. }
  4401. break;
  4402. #endif //BLINKM
  4403. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4404. {
  4405. tmp_extruder = active_extruder;
  4406. if(code_seen('T')) {
  4407. tmp_extruder = code_value();
  4408. if(tmp_extruder >= EXTRUDERS) {
  4409. SERIAL_ECHO_START;
  4410. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4411. break;
  4412. }
  4413. }
  4414. float area = .0;
  4415. if(code_seen('D')) {
  4416. float diameter = (float)code_value();
  4417. if (diameter == 0.0) {
  4418. // setting any extruder filament size disables volumetric on the assumption that
  4419. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4420. // for all extruders
  4421. volumetric_enabled = false;
  4422. } else {
  4423. filament_size[tmp_extruder] = (float)code_value();
  4424. // make sure all extruders have some sane value for the filament size
  4425. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4426. #if EXTRUDERS > 1
  4427. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4428. #if EXTRUDERS > 2
  4429. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4430. #endif
  4431. #endif
  4432. volumetric_enabled = true;
  4433. }
  4434. } else {
  4435. //reserved for setting filament diameter via UFID or filament measuring device
  4436. break;
  4437. }
  4438. calculate_extruder_multipliers();
  4439. }
  4440. break;
  4441. case 201: // M201
  4442. for(int8_t i=0; i < NUM_AXIS; i++)
  4443. {
  4444. if(code_seen(axis_codes[i]))
  4445. {
  4446. max_acceleration_units_per_sq_second[i] = code_value();
  4447. }
  4448. }
  4449. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4450. reset_acceleration_rates();
  4451. break;
  4452. #if 0 // Not used for Sprinter/grbl gen6
  4453. case 202: // M202
  4454. for(int8_t i=0; i < NUM_AXIS; i++) {
  4455. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4456. }
  4457. break;
  4458. #endif
  4459. case 203: // M203 max feedrate mm/sec
  4460. for(int8_t i=0; i < NUM_AXIS; i++) {
  4461. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4462. }
  4463. break;
  4464. case 204: // M204 acclereration S normal moves T filmanent only moves
  4465. {
  4466. if(code_seen('S')) acceleration = code_value() ;
  4467. if(code_seen('T')) retract_acceleration = code_value() ;
  4468. }
  4469. break;
  4470. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4471. {
  4472. if(code_seen('S')) minimumfeedrate = code_value();
  4473. if(code_seen('T')) mintravelfeedrate = code_value();
  4474. if(code_seen('B')) minsegmenttime = code_value() ;
  4475. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4476. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4477. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4478. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4479. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4480. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4481. }
  4482. break;
  4483. case 206: // M206 additional homing offset
  4484. for(int8_t i=0; i < 3; i++)
  4485. {
  4486. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4487. }
  4488. break;
  4489. #ifdef FWRETRACT
  4490. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4491. {
  4492. if(code_seen('S'))
  4493. {
  4494. retract_length = code_value() ;
  4495. }
  4496. if(code_seen('F'))
  4497. {
  4498. retract_feedrate = code_value()/60 ;
  4499. }
  4500. if(code_seen('Z'))
  4501. {
  4502. retract_zlift = code_value() ;
  4503. }
  4504. }break;
  4505. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4506. {
  4507. if(code_seen('S'))
  4508. {
  4509. retract_recover_length = code_value() ;
  4510. }
  4511. if(code_seen('F'))
  4512. {
  4513. retract_recover_feedrate = code_value()/60 ;
  4514. }
  4515. }break;
  4516. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4517. {
  4518. if(code_seen('S'))
  4519. {
  4520. int t= code_value() ;
  4521. switch(t)
  4522. {
  4523. case 0:
  4524. {
  4525. autoretract_enabled=false;
  4526. retracted[0]=false;
  4527. #if EXTRUDERS > 1
  4528. retracted[1]=false;
  4529. #endif
  4530. #if EXTRUDERS > 2
  4531. retracted[2]=false;
  4532. #endif
  4533. }break;
  4534. case 1:
  4535. {
  4536. autoretract_enabled=true;
  4537. retracted[0]=false;
  4538. #if EXTRUDERS > 1
  4539. retracted[1]=false;
  4540. #endif
  4541. #if EXTRUDERS > 2
  4542. retracted[2]=false;
  4543. #endif
  4544. }break;
  4545. default:
  4546. SERIAL_ECHO_START;
  4547. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4548. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4549. SERIAL_ECHOLNPGM("\"(1)");
  4550. }
  4551. }
  4552. }break;
  4553. #endif // FWRETRACT
  4554. #if EXTRUDERS > 1
  4555. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4556. {
  4557. if(setTargetedHotend(218)){
  4558. break;
  4559. }
  4560. if(code_seen('X'))
  4561. {
  4562. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4563. }
  4564. if(code_seen('Y'))
  4565. {
  4566. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4567. }
  4568. SERIAL_ECHO_START;
  4569. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4570. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4571. {
  4572. SERIAL_ECHO(" ");
  4573. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4574. SERIAL_ECHO(",");
  4575. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4576. }
  4577. SERIAL_ECHOLN("");
  4578. }break;
  4579. #endif
  4580. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4581. {
  4582. if(code_seen('S'))
  4583. {
  4584. feedmultiply = code_value() ;
  4585. }
  4586. }
  4587. break;
  4588. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4589. {
  4590. if(code_seen('S'))
  4591. {
  4592. int tmp_code = code_value();
  4593. if (code_seen('T'))
  4594. {
  4595. if(setTargetedHotend(221)){
  4596. break;
  4597. }
  4598. extruder_multiply[tmp_extruder] = tmp_code;
  4599. }
  4600. else
  4601. {
  4602. extrudemultiply = tmp_code ;
  4603. }
  4604. }
  4605. calculate_extruder_multipliers();
  4606. }
  4607. break;
  4608. #ifndef _DISABLE_M42_M226
  4609. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4610. {
  4611. if(code_seen('P')){
  4612. int pin_number = code_value(); // pin number
  4613. int pin_state = -1; // required pin state - default is inverted
  4614. if(code_seen('S')) pin_state = code_value(); // required pin state
  4615. if(pin_state >= -1 && pin_state <= 1){
  4616. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4617. {
  4618. if (sensitive_pins[i] == pin_number)
  4619. {
  4620. pin_number = -1;
  4621. break;
  4622. }
  4623. }
  4624. if (pin_number > -1)
  4625. {
  4626. int target = LOW;
  4627. st_synchronize();
  4628. pinMode(pin_number, INPUT);
  4629. switch(pin_state){
  4630. case 1:
  4631. target = HIGH;
  4632. break;
  4633. case 0:
  4634. target = LOW;
  4635. break;
  4636. case -1:
  4637. target = !digitalRead(pin_number);
  4638. break;
  4639. }
  4640. while(digitalRead(pin_number) != target){
  4641. manage_heater();
  4642. manage_inactivity();
  4643. lcd_update();
  4644. }
  4645. }
  4646. }
  4647. }
  4648. }
  4649. break;
  4650. #endif //_DISABLE_M42_M226
  4651. #if NUM_SERVOS > 0
  4652. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4653. {
  4654. int servo_index = -1;
  4655. int servo_position = 0;
  4656. if (code_seen('P'))
  4657. servo_index = code_value();
  4658. if (code_seen('S')) {
  4659. servo_position = code_value();
  4660. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4661. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4662. servos[servo_index].attach(0);
  4663. #endif
  4664. servos[servo_index].write(servo_position);
  4665. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4666. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4667. servos[servo_index].detach();
  4668. #endif
  4669. }
  4670. else {
  4671. SERIAL_ECHO_START;
  4672. SERIAL_ECHO("Servo ");
  4673. SERIAL_ECHO(servo_index);
  4674. SERIAL_ECHOLN(" out of range");
  4675. }
  4676. }
  4677. else if (servo_index >= 0) {
  4678. SERIAL_PROTOCOL(MSG_OK);
  4679. SERIAL_PROTOCOL(" Servo ");
  4680. SERIAL_PROTOCOL(servo_index);
  4681. SERIAL_PROTOCOL(": ");
  4682. SERIAL_PROTOCOL(servos[servo_index].read());
  4683. SERIAL_PROTOCOLLN("");
  4684. }
  4685. }
  4686. break;
  4687. #endif // NUM_SERVOS > 0
  4688. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4689. case 300: // M300
  4690. {
  4691. int beepS = code_seen('S') ? code_value() : 110;
  4692. int beepP = code_seen('P') ? code_value() : 1000;
  4693. if (beepS > 0)
  4694. {
  4695. #if BEEPER > 0
  4696. tone(BEEPER, beepS);
  4697. delay(beepP);
  4698. noTone(BEEPER);
  4699. #elif defined(ULTRALCD)
  4700. lcd_buzz(beepS, beepP);
  4701. #elif defined(LCD_USE_I2C_BUZZER)
  4702. lcd_buzz(beepP, beepS);
  4703. #endif
  4704. }
  4705. else
  4706. {
  4707. delay(beepP);
  4708. }
  4709. }
  4710. break;
  4711. #endif // M300
  4712. #ifdef PIDTEMP
  4713. case 301: // M301
  4714. {
  4715. if(code_seen('P')) Kp = code_value();
  4716. if(code_seen('I')) Ki = scalePID_i(code_value());
  4717. if(code_seen('D')) Kd = scalePID_d(code_value());
  4718. #ifdef PID_ADD_EXTRUSION_RATE
  4719. if(code_seen('C')) Kc = code_value();
  4720. #endif
  4721. updatePID();
  4722. SERIAL_PROTOCOLRPGM(MSG_OK);
  4723. SERIAL_PROTOCOL(" p:");
  4724. SERIAL_PROTOCOL(Kp);
  4725. SERIAL_PROTOCOL(" i:");
  4726. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4727. SERIAL_PROTOCOL(" d:");
  4728. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4729. #ifdef PID_ADD_EXTRUSION_RATE
  4730. SERIAL_PROTOCOL(" c:");
  4731. //Kc does not have scaling applied above, or in resetting defaults
  4732. SERIAL_PROTOCOL(Kc);
  4733. #endif
  4734. SERIAL_PROTOCOLLN("");
  4735. }
  4736. break;
  4737. #endif //PIDTEMP
  4738. #ifdef PIDTEMPBED
  4739. case 304: // M304
  4740. {
  4741. if(code_seen('P')) bedKp = code_value();
  4742. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4743. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4744. updatePID();
  4745. SERIAL_PROTOCOLRPGM(MSG_OK);
  4746. SERIAL_PROTOCOL(" p:");
  4747. SERIAL_PROTOCOL(bedKp);
  4748. SERIAL_PROTOCOL(" i:");
  4749. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4750. SERIAL_PROTOCOL(" d:");
  4751. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4752. SERIAL_PROTOCOLLN("");
  4753. }
  4754. break;
  4755. #endif //PIDTEMP
  4756. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4757. {
  4758. #ifdef CHDK
  4759. SET_OUTPUT(CHDK);
  4760. WRITE(CHDK, HIGH);
  4761. chdkHigh = millis();
  4762. chdkActive = true;
  4763. #else
  4764. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4765. const uint8_t NUM_PULSES=16;
  4766. const float PULSE_LENGTH=0.01524;
  4767. for(int i=0; i < NUM_PULSES; i++) {
  4768. WRITE(PHOTOGRAPH_PIN, HIGH);
  4769. _delay_ms(PULSE_LENGTH);
  4770. WRITE(PHOTOGRAPH_PIN, LOW);
  4771. _delay_ms(PULSE_LENGTH);
  4772. }
  4773. delay(7.33);
  4774. for(int i=0; i < NUM_PULSES; i++) {
  4775. WRITE(PHOTOGRAPH_PIN, HIGH);
  4776. _delay_ms(PULSE_LENGTH);
  4777. WRITE(PHOTOGRAPH_PIN, LOW);
  4778. _delay_ms(PULSE_LENGTH);
  4779. }
  4780. #endif
  4781. #endif //chdk end if
  4782. }
  4783. break;
  4784. #ifdef DOGLCD
  4785. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4786. {
  4787. if (code_seen('C')) {
  4788. lcd_setcontrast( ((int)code_value())&63 );
  4789. }
  4790. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4791. SERIAL_PROTOCOL(lcd_contrast);
  4792. SERIAL_PROTOCOLLN("");
  4793. }
  4794. break;
  4795. #endif
  4796. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4797. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4798. {
  4799. float temp = .0;
  4800. if (code_seen('S')) temp=code_value();
  4801. set_extrude_min_temp(temp);
  4802. }
  4803. break;
  4804. #endif
  4805. case 303: // M303 PID autotune
  4806. {
  4807. float temp = 150.0;
  4808. int e=0;
  4809. int c=5;
  4810. if (code_seen('E')) e=code_value();
  4811. if (e<0)
  4812. temp=70;
  4813. if (code_seen('S')) temp=code_value();
  4814. if (code_seen('C')) c=code_value();
  4815. PID_autotune(temp, e, c);
  4816. }
  4817. break;
  4818. case 400: // M400 finish all moves
  4819. {
  4820. st_synchronize();
  4821. }
  4822. break;
  4823. case 500: // M500 Store settings in EEPROM
  4824. {
  4825. Config_StoreSettings(EEPROM_OFFSET);
  4826. }
  4827. break;
  4828. case 501: // M501 Read settings from EEPROM
  4829. {
  4830. Config_RetrieveSettings(EEPROM_OFFSET);
  4831. }
  4832. break;
  4833. case 502: // M502 Revert to default settings
  4834. {
  4835. Config_ResetDefault();
  4836. }
  4837. break;
  4838. case 503: // M503 print settings currently in memory
  4839. {
  4840. Config_PrintSettings();
  4841. }
  4842. break;
  4843. case 509: //M509 Force language selection
  4844. {
  4845. lcd_force_language_selection();
  4846. SERIAL_ECHO_START;
  4847. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4848. }
  4849. break;
  4850. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4851. case 540:
  4852. {
  4853. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4854. }
  4855. break;
  4856. #endif
  4857. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4858. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4859. {
  4860. float value;
  4861. if (code_seen('Z'))
  4862. {
  4863. value = code_value();
  4864. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4865. {
  4866. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4867. SERIAL_ECHO_START;
  4868. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4869. SERIAL_PROTOCOLLN("");
  4870. }
  4871. else
  4872. {
  4873. SERIAL_ECHO_START;
  4874. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4875. SERIAL_ECHORPGM(MSG_Z_MIN);
  4876. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4877. SERIAL_ECHORPGM(MSG_Z_MAX);
  4878. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4879. SERIAL_PROTOCOLLN("");
  4880. }
  4881. }
  4882. else
  4883. {
  4884. SERIAL_ECHO_START;
  4885. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4886. SERIAL_ECHO(-zprobe_zoffset);
  4887. SERIAL_PROTOCOLLN("");
  4888. }
  4889. break;
  4890. }
  4891. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4892. #ifdef FILAMENTCHANGEENABLE
  4893. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4894. {
  4895. bool old_fsensor_enabled = fsensor_enabled;
  4896. fsensor_enabled = false; //temporary solution for unexpected restarting
  4897. st_synchronize();
  4898. float target[4];
  4899. float lastpos[4];
  4900. if (farm_mode)
  4901. {
  4902. prusa_statistics(22);
  4903. }
  4904. feedmultiplyBckp=feedmultiply;
  4905. int8_t TooLowZ = 0;
  4906. float HotendTempBckp = degTargetHotend(active_extruder);
  4907. int fanSpeedBckp = fanSpeed;
  4908. target[X_AXIS]=current_position[X_AXIS];
  4909. target[Y_AXIS]=current_position[Y_AXIS];
  4910. target[Z_AXIS]=current_position[Z_AXIS];
  4911. target[E_AXIS]=current_position[E_AXIS];
  4912. lastpos[X_AXIS]=current_position[X_AXIS];
  4913. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4914. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4915. lastpos[E_AXIS]=current_position[E_AXIS];
  4916. //Restract extruder
  4917. if(code_seen('E'))
  4918. {
  4919. target[E_AXIS]+= code_value();
  4920. }
  4921. else
  4922. {
  4923. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4924. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4925. #endif
  4926. }
  4927. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4928. //Lift Z
  4929. if(code_seen('Z'))
  4930. {
  4931. target[Z_AXIS]+= code_value();
  4932. }
  4933. else
  4934. {
  4935. #ifdef FILAMENTCHANGE_ZADD
  4936. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4937. if(target[Z_AXIS] < 10){
  4938. target[Z_AXIS]+= 10 ;
  4939. TooLowZ = 1;
  4940. }else{
  4941. TooLowZ = 0;
  4942. }
  4943. #endif
  4944. }
  4945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4946. //Move XY to side
  4947. if(code_seen('X'))
  4948. {
  4949. target[X_AXIS]+= code_value();
  4950. }
  4951. else
  4952. {
  4953. #ifdef FILAMENTCHANGE_XPOS
  4954. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4955. #endif
  4956. }
  4957. if(code_seen('Y'))
  4958. {
  4959. target[Y_AXIS]= code_value();
  4960. }
  4961. else
  4962. {
  4963. #ifdef FILAMENTCHANGE_YPOS
  4964. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4965. #endif
  4966. }
  4967. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4968. st_synchronize();
  4969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4970. uint8_t cnt = 0;
  4971. int counterBeep = 0;
  4972. fanSpeed = 0;
  4973. unsigned long waiting_start_time = millis();
  4974. uint8_t wait_for_user_state = 0;
  4975. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4976. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4977. //cnt++;
  4978. manage_heater();
  4979. manage_inactivity(true);
  4980. /*#ifdef SNMM
  4981. target[E_AXIS] += 0.002;
  4982. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4983. #endif // SNMM*/
  4984. //if (cnt == 0)
  4985. {
  4986. #if BEEPER > 0
  4987. if (counterBeep == 500) {
  4988. counterBeep = 0;
  4989. }
  4990. SET_OUTPUT(BEEPER);
  4991. if (counterBeep == 0) {
  4992. WRITE(BEEPER, HIGH);
  4993. }
  4994. if (counterBeep == 20) {
  4995. WRITE(BEEPER, LOW);
  4996. }
  4997. counterBeep++;
  4998. #else
  4999. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5000. lcd_buzz(1000 / 6, 100);
  5001. #else
  5002. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5003. #endif
  5004. #endif
  5005. }
  5006. switch (wait_for_user_state) {
  5007. case 0:
  5008. delay_keep_alive(4);
  5009. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5010. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5011. wait_for_user_state = 1;
  5012. setTargetHotend(0, 0);
  5013. setTargetHotend(0, 1);
  5014. setTargetHotend(0, 2);
  5015. st_synchronize();
  5016. disable_e0();
  5017. disable_e1();
  5018. disable_e2();
  5019. }
  5020. break;
  5021. case 1:
  5022. delay_keep_alive(4);
  5023. if (lcd_clicked()) {
  5024. setTargetHotend(HotendTempBckp, active_extruder);
  5025. lcd_wait_for_heater();
  5026. wait_for_user_state = 2;
  5027. }
  5028. break;
  5029. case 2:
  5030. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5031. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5032. waiting_start_time = millis();
  5033. wait_for_user_state = 0;
  5034. }
  5035. else {
  5036. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5037. lcd.setCursor(1, 4);
  5038. lcd.print(ftostr3(degHotend(active_extruder)));
  5039. }
  5040. break;
  5041. }
  5042. }
  5043. WRITE(BEEPER, LOW);
  5044. lcd_change_fil_state = 0;
  5045. // Unload filament
  5046. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5047. KEEPALIVE_STATE(IN_HANDLER);
  5048. custom_message = true;
  5049. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5050. if (code_seen('L'))
  5051. {
  5052. target[E_AXIS] += code_value();
  5053. }
  5054. else
  5055. {
  5056. #ifdef SNMM
  5057. #else
  5058. #ifdef FILAMENTCHANGE_FINALRETRACT
  5059. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5060. #endif
  5061. #endif // SNMM
  5062. }
  5063. #ifdef SNMM
  5064. target[E_AXIS] += 12;
  5065. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5066. target[E_AXIS] += 6;
  5067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5068. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5070. st_synchronize();
  5071. target[E_AXIS] += (FIL_COOLING);
  5072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5073. target[E_AXIS] += (FIL_COOLING*-1);
  5074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5075. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5077. st_synchronize();
  5078. #else
  5079. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5080. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5081. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5082. st_synchronize();
  5083. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5084. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5085. target[E_AXIS] -= 45;
  5086. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5087. st_synchronize();
  5088. target[E_AXIS] -= 15;
  5089. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5090. st_synchronize();
  5091. target[E_AXIS] -= 20;
  5092. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5093. st_synchronize();
  5094. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5095. #endif // SNMM
  5096. //finish moves
  5097. st_synchronize();
  5098. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5099. //disable extruder steppers so filament can be removed
  5100. disable_e0();
  5101. disable_e1();
  5102. disable_e2();
  5103. delay(100);
  5104. WRITE(BEEPER, HIGH);
  5105. counterBeep = 0;
  5106. while(!lcd_clicked() && (counterBeep < 50)) {
  5107. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5108. delay_keep_alive(100);
  5109. counterBeep++;
  5110. }
  5111. WRITE(BEEPER, LOW);
  5112. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5113. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5114. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5115. //lcd_return_to_status();
  5116. lcd_update_enable(true);
  5117. //Wait for user to insert filament
  5118. lcd_wait_interact();
  5119. //load_filament_time = millis();
  5120. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5121. #ifdef PAT9125
  5122. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5123. #endif //PAT9125
  5124. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5125. while(!lcd_clicked())
  5126. {
  5127. manage_heater();
  5128. manage_inactivity(true);
  5129. #ifdef PAT9125
  5130. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5131. {
  5132. tone(BEEPER, 1000);
  5133. delay_keep_alive(50);
  5134. noTone(BEEPER);
  5135. break;
  5136. }
  5137. #endif //PAT9125
  5138. /*#ifdef SNMM
  5139. target[E_AXIS] += 0.002;
  5140. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5141. #endif // SNMM*/
  5142. }
  5143. #ifdef PAT9125
  5144. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5145. #endif //PAT9125
  5146. //WRITE(BEEPER, LOW);
  5147. KEEPALIVE_STATE(IN_HANDLER);
  5148. #ifdef SNMM
  5149. display_loading();
  5150. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5151. do {
  5152. target[E_AXIS] += 0.002;
  5153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5154. delay_keep_alive(2);
  5155. } while (!lcd_clicked());
  5156. KEEPALIVE_STATE(IN_HANDLER);
  5157. /*if (millis() - load_filament_time > 2) {
  5158. load_filament_time = millis();
  5159. target[E_AXIS] += 0.001;
  5160. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5161. }*/
  5162. //Filament inserted
  5163. //Feed the filament to the end of nozzle quickly
  5164. st_synchronize();
  5165. target[E_AXIS] += bowden_length[snmm_extruder];
  5166. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5167. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5169. target[E_AXIS] += 40;
  5170. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5171. target[E_AXIS] += 10;
  5172. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5173. #else
  5174. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5175. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5176. #endif // SNMM
  5177. //Extrude some filament
  5178. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5180. //Wait for user to check the state
  5181. lcd_change_fil_state = 0;
  5182. lcd_loading_filament();
  5183. tone(BEEPER, 500);
  5184. delay_keep_alive(50);
  5185. noTone(BEEPER);
  5186. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5187. lcd_change_fil_state = 0;
  5188. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5189. lcd_alright();
  5190. KEEPALIVE_STATE(IN_HANDLER);
  5191. switch(lcd_change_fil_state){
  5192. // Filament failed to load so load it again
  5193. case 2:
  5194. #ifdef SNMM
  5195. display_loading();
  5196. do {
  5197. target[E_AXIS] += 0.002;
  5198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5199. delay_keep_alive(2);
  5200. } while (!lcd_clicked());
  5201. st_synchronize();
  5202. target[E_AXIS] += bowden_length[snmm_extruder];
  5203. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5204. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5205. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5206. target[E_AXIS] += 40;
  5207. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5208. target[E_AXIS] += 10;
  5209. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5210. #else
  5211. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5212. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5213. #endif
  5214. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5216. lcd_loading_filament();
  5217. break;
  5218. // Filament loaded properly but color is not clear
  5219. case 3:
  5220. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5221. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5222. lcd_loading_color();
  5223. break;
  5224. // Everything good
  5225. default:
  5226. lcd_change_success();
  5227. lcd_update_enable(true);
  5228. break;
  5229. }
  5230. }
  5231. //Not let's go back to print
  5232. fanSpeed = fanSpeedBckp;
  5233. //Feed a little of filament to stabilize pressure
  5234. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5235. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5236. //Retract
  5237. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5238. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5239. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5240. //Move XY back
  5241. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5242. //Move Z back
  5243. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5244. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5245. //Unretract
  5246. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5247. //Set E position to original
  5248. plan_set_e_position(lastpos[E_AXIS]);
  5249. //Recover feed rate
  5250. feedmultiply=feedmultiplyBckp;
  5251. char cmd[9];
  5252. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5253. enquecommand(cmd);
  5254. lcd_setstatuspgm(WELCOME_MSG);
  5255. custom_message = false;
  5256. custom_message_type = 0;
  5257. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5258. #ifdef PAT9125
  5259. if (fsensor_M600)
  5260. {
  5261. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5262. st_synchronize();
  5263. while (!is_buffer_empty())
  5264. {
  5265. process_commands();
  5266. cmdqueue_pop_front();
  5267. }
  5268. fsensor_enable();
  5269. fsensor_restore_print_and_continue();
  5270. }
  5271. #endif //PAT9125
  5272. }
  5273. break;
  5274. #endif //FILAMENTCHANGEENABLE
  5275. case 601: {
  5276. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5277. }
  5278. break;
  5279. case 602: {
  5280. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5281. }
  5282. break;
  5283. #ifdef LIN_ADVANCE
  5284. case 900: // M900: Set LIN_ADVANCE options.
  5285. gcode_M900();
  5286. break;
  5287. #endif
  5288. case 907: // M907 Set digital trimpot motor current using axis codes.
  5289. {
  5290. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5291. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5292. if(code_seen('B')) digipot_current(4,code_value());
  5293. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5294. #endif
  5295. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5296. if(code_seen('X')) digipot_current(0, code_value());
  5297. #endif
  5298. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5299. if(code_seen('Z')) digipot_current(1, code_value());
  5300. #endif
  5301. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5302. if(code_seen('E')) digipot_current(2, code_value());
  5303. #endif
  5304. #ifdef DIGIPOT_I2C
  5305. // this one uses actual amps in floating point
  5306. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5307. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5308. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5309. #endif
  5310. }
  5311. break;
  5312. case 908: // M908 Control digital trimpot directly.
  5313. {
  5314. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5315. uint8_t channel,current;
  5316. if(code_seen('P')) channel=code_value();
  5317. if(code_seen('S')) current=code_value();
  5318. digitalPotWrite(channel, current);
  5319. #endif
  5320. }
  5321. break;
  5322. case 910: // M910 TMC2130 init
  5323. {
  5324. tmc2130_init();
  5325. }
  5326. break;
  5327. case 911: // M911 Set TMC2130 holding currents
  5328. {
  5329. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5330. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5331. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5332. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5333. }
  5334. break;
  5335. case 912: // M912 Set TMC2130 running currents
  5336. {
  5337. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5338. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5339. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5340. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5341. }
  5342. break;
  5343. case 913: // M913 Print TMC2130 currents
  5344. {
  5345. tmc2130_print_currents();
  5346. }
  5347. break;
  5348. case 914: // M914 Set normal mode
  5349. {
  5350. tmc2130_mode = TMC2130_MODE_NORMAL;
  5351. tmc2130_init();
  5352. }
  5353. break;
  5354. case 915: // M915 Set silent mode
  5355. {
  5356. tmc2130_mode = TMC2130_MODE_SILENT;
  5357. tmc2130_init();
  5358. }
  5359. break;
  5360. case 916: // M916 Set sg_thrs
  5361. {
  5362. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5363. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5364. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5365. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5366. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5367. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5368. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5369. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5370. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5371. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5372. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5373. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5374. }
  5375. break;
  5376. case 917: // M917 Set TMC2130 pwm_ampl
  5377. {
  5378. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5379. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5380. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5381. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5382. }
  5383. break;
  5384. case 918: // M918 Set TMC2130 pwm_grad
  5385. {
  5386. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5387. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5388. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5389. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5390. }
  5391. break;
  5392. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5393. {
  5394. #ifdef TMC2130
  5395. if(code_seen('E'))
  5396. {
  5397. uint16_t res_new = code_value();
  5398. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5399. {
  5400. st_synchronize();
  5401. uint8_t axis = E_AXIS;
  5402. uint16_t res = tmc2130_get_res(axis);
  5403. tmc2130_set_res(axis, res_new);
  5404. if (res_new > res)
  5405. {
  5406. uint16_t fac = (res_new / res);
  5407. axis_steps_per_unit[axis] *= fac;
  5408. position[E_AXIS] *= fac;
  5409. }
  5410. else
  5411. {
  5412. uint16_t fac = (res / res_new);
  5413. axis_steps_per_unit[axis] /= fac;
  5414. position[E_AXIS] /= fac;
  5415. }
  5416. }
  5417. }
  5418. #else //TMC2130
  5419. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5420. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5421. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5422. if(code_seen('B')) microstep_mode(4,code_value());
  5423. microstep_readings();
  5424. #endif
  5425. #endif //TMC2130
  5426. }
  5427. break;
  5428. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5429. {
  5430. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5431. if(code_seen('S')) switch((int)code_value())
  5432. {
  5433. case 1:
  5434. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5435. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5436. break;
  5437. case 2:
  5438. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5439. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5440. break;
  5441. }
  5442. microstep_readings();
  5443. #endif
  5444. }
  5445. break;
  5446. case 701: //M701: load filament
  5447. {
  5448. gcode_M701();
  5449. }
  5450. break;
  5451. case 702:
  5452. {
  5453. #ifdef SNMM
  5454. if (code_seen('U')) {
  5455. extr_unload_used(); //unload all filaments which were used in current print
  5456. }
  5457. else if (code_seen('C')) {
  5458. extr_unload(); //unload just current filament
  5459. }
  5460. else {
  5461. extr_unload_all(); //unload all filaments
  5462. }
  5463. #else
  5464. bool old_fsensor_enabled = fsensor_enabled;
  5465. fsensor_enabled = false;
  5466. custom_message = true;
  5467. custom_message_type = 2;
  5468. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5469. // extr_unload2();
  5470. current_position[E_AXIS] -= 45;
  5471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5472. st_synchronize();
  5473. current_position[E_AXIS] -= 15;
  5474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5475. st_synchronize();
  5476. current_position[E_AXIS] -= 20;
  5477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5478. st_synchronize();
  5479. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5480. //disable extruder steppers so filament can be removed
  5481. disable_e0();
  5482. disable_e1();
  5483. disable_e2();
  5484. delay(100);
  5485. WRITE(BEEPER, HIGH);
  5486. uint8_t counterBeep = 0;
  5487. while (!lcd_clicked() && (counterBeep < 50)) {
  5488. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5489. delay_keep_alive(100);
  5490. counterBeep++;
  5491. }
  5492. WRITE(BEEPER, LOW);
  5493. st_synchronize();
  5494. while (lcd_clicked()) delay_keep_alive(100);
  5495. lcd_update_enable(true);
  5496. lcd_setstatuspgm(WELCOME_MSG);
  5497. custom_message = false;
  5498. custom_message_type = 0;
  5499. fsensor_enabled = old_fsensor_enabled;
  5500. #endif
  5501. }
  5502. break;
  5503. case 999: // M999: Restart after being stopped
  5504. Stopped = false;
  5505. lcd_reset_alert_level();
  5506. gcode_LastN = Stopped_gcode_LastN;
  5507. FlushSerialRequestResend();
  5508. break;
  5509. default:
  5510. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5511. }
  5512. } // end if(code_seen('M')) (end of M codes)
  5513. else if(code_seen('T'))
  5514. {
  5515. int index;
  5516. st_synchronize();
  5517. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5518. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5519. SERIAL_ECHOLNPGM("Invalid T code.");
  5520. }
  5521. else {
  5522. if (*(strchr_pointer + index) == '?') {
  5523. tmp_extruder = choose_extruder_menu();
  5524. }
  5525. else {
  5526. tmp_extruder = code_value();
  5527. }
  5528. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5529. #ifdef SNMM
  5530. #ifdef LIN_ADVANCE
  5531. if (snmm_extruder != tmp_extruder)
  5532. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5533. #endif
  5534. snmm_extruder = tmp_extruder;
  5535. delay(100);
  5536. disable_e0();
  5537. disable_e1();
  5538. disable_e2();
  5539. pinMode(E_MUX0_PIN, OUTPUT);
  5540. pinMode(E_MUX1_PIN, OUTPUT);
  5541. pinMode(E_MUX2_PIN, OUTPUT);
  5542. delay(100);
  5543. SERIAL_ECHO_START;
  5544. SERIAL_ECHO("T:");
  5545. SERIAL_ECHOLN((int)tmp_extruder);
  5546. switch (tmp_extruder) {
  5547. case 1:
  5548. WRITE(E_MUX0_PIN, HIGH);
  5549. WRITE(E_MUX1_PIN, LOW);
  5550. WRITE(E_MUX2_PIN, LOW);
  5551. break;
  5552. case 2:
  5553. WRITE(E_MUX0_PIN, LOW);
  5554. WRITE(E_MUX1_PIN, HIGH);
  5555. WRITE(E_MUX2_PIN, LOW);
  5556. break;
  5557. case 3:
  5558. WRITE(E_MUX0_PIN, HIGH);
  5559. WRITE(E_MUX1_PIN, HIGH);
  5560. WRITE(E_MUX2_PIN, LOW);
  5561. break;
  5562. default:
  5563. WRITE(E_MUX0_PIN, LOW);
  5564. WRITE(E_MUX1_PIN, LOW);
  5565. WRITE(E_MUX2_PIN, LOW);
  5566. break;
  5567. }
  5568. delay(100);
  5569. #else
  5570. if (tmp_extruder >= EXTRUDERS) {
  5571. SERIAL_ECHO_START;
  5572. SERIAL_ECHOPGM("T");
  5573. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5574. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5575. }
  5576. else {
  5577. boolean make_move = false;
  5578. if (code_seen('F')) {
  5579. make_move = true;
  5580. next_feedrate = code_value();
  5581. if (next_feedrate > 0.0) {
  5582. feedrate = next_feedrate;
  5583. }
  5584. }
  5585. #if EXTRUDERS > 1
  5586. if (tmp_extruder != active_extruder) {
  5587. // Save current position to return to after applying extruder offset
  5588. memcpy(destination, current_position, sizeof(destination));
  5589. // Offset extruder (only by XY)
  5590. int i;
  5591. for (i = 0; i < 2; i++) {
  5592. current_position[i] = current_position[i] -
  5593. extruder_offset[i][active_extruder] +
  5594. extruder_offset[i][tmp_extruder];
  5595. }
  5596. // Set the new active extruder and position
  5597. active_extruder = tmp_extruder;
  5598. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5599. // Move to the old position if 'F' was in the parameters
  5600. if (make_move && Stopped == false) {
  5601. prepare_move();
  5602. }
  5603. }
  5604. #endif
  5605. SERIAL_ECHO_START;
  5606. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5607. SERIAL_PROTOCOLLN((int)active_extruder);
  5608. }
  5609. #endif
  5610. }
  5611. } // end if(code_seen('T')) (end of T codes)
  5612. #ifdef DEBUG_DCODES
  5613. else if (code_seen('D')) // D codes (debug)
  5614. {
  5615. switch((int)code_value())
  5616. {
  5617. case -1: // D-1 - Endless loop
  5618. dcode__1(); break;
  5619. case 0: // D0 - Reset
  5620. dcode_0(); break;
  5621. case 1: // D1 - Clear EEPROM
  5622. dcode_1(); break;
  5623. case 2: // D2 - Read/Write RAM
  5624. dcode_2(); break;
  5625. case 3: // D3 - Read/Write EEPROM
  5626. dcode_3(); break;
  5627. case 4: // D4 - Read/Write PIN
  5628. dcode_4(); break;
  5629. case 5: // D5 - Read/Write FLASH
  5630. // dcode_5(); break;
  5631. break;
  5632. case 6: // D6 - Read/Write external FLASH
  5633. dcode_6(); break;
  5634. case 7: // D7 - Read/Write Bootloader
  5635. dcode_7(); break;
  5636. case 8: // D8 - Read/Write PINDA
  5637. dcode_8(); break;
  5638. case 9: // D9 - Read/Write ADC
  5639. dcode_9(); break;
  5640. case 10: // D10 - XYZ calibration = OK
  5641. dcode_10(); break;
  5642. case 2130: // D9125 - TMC2130
  5643. dcode_2130(); break;
  5644. case 9125: // D9125 - PAT9125
  5645. dcode_9125(); break;
  5646. }
  5647. }
  5648. #endif //DEBUG_DCODES
  5649. else
  5650. {
  5651. SERIAL_ECHO_START;
  5652. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5653. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5654. SERIAL_ECHOLNPGM("\"(2)");
  5655. }
  5656. KEEPALIVE_STATE(NOT_BUSY);
  5657. ClearToSend();
  5658. }
  5659. void FlushSerialRequestResend()
  5660. {
  5661. //char cmdbuffer[bufindr][100]="Resend:";
  5662. MYSERIAL.flush();
  5663. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5664. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5665. previous_millis_cmd = millis();
  5666. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5667. }
  5668. // Confirm the execution of a command, if sent from a serial line.
  5669. // Execution of a command from a SD card will not be confirmed.
  5670. void ClearToSend()
  5671. {
  5672. previous_millis_cmd = millis();
  5673. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5674. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5675. }
  5676. void get_coordinates()
  5677. {
  5678. bool seen[4]={false,false,false,false};
  5679. for(int8_t i=0; i < NUM_AXIS; i++) {
  5680. if(code_seen(axis_codes[i]))
  5681. {
  5682. bool relative = axis_relative_modes[i] || relative_mode;
  5683. destination[i] = (float)code_value();
  5684. if (i == E_AXIS) {
  5685. float emult = extruder_multiplier[active_extruder];
  5686. if (emult != 1.) {
  5687. if (! relative) {
  5688. destination[i] -= current_position[i];
  5689. relative = true;
  5690. }
  5691. destination[i] *= emult;
  5692. }
  5693. }
  5694. if (relative)
  5695. destination[i] += current_position[i];
  5696. seen[i]=true;
  5697. }
  5698. else destination[i] = current_position[i]; //Are these else lines really needed?
  5699. }
  5700. if(code_seen('F')) {
  5701. next_feedrate = code_value();
  5702. #ifdef MAX_SILENT_FEEDRATE
  5703. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5704. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5705. #endif //MAX_SILENT_FEEDRATE
  5706. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5707. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  5708. {
  5709. // float e_max_speed =
  5710. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  5711. }
  5712. }
  5713. }
  5714. void get_arc_coordinates()
  5715. {
  5716. #ifdef SF_ARC_FIX
  5717. bool relative_mode_backup = relative_mode;
  5718. relative_mode = true;
  5719. #endif
  5720. get_coordinates();
  5721. #ifdef SF_ARC_FIX
  5722. relative_mode=relative_mode_backup;
  5723. #endif
  5724. if(code_seen('I')) {
  5725. offset[0] = code_value();
  5726. }
  5727. else {
  5728. offset[0] = 0.0;
  5729. }
  5730. if(code_seen('J')) {
  5731. offset[1] = code_value();
  5732. }
  5733. else {
  5734. offset[1] = 0.0;
  5735. }
  5736. }
  5737. void clamp_to_software_endstops(float target[3])
  5738. {
  5739. #ifdef DEBUG_DISABLE_SWLIMITS
  5740. return;
  5741. #endif //DEBUG_DISABLE_SWLIMITS
  5742. world2machine_clamp(target[0], target[1]);
  5743. // Clamp the Z coordinate.
  5744. if (min_software_endstops) {
  5745. float negative_z_offset = 0;
  5746. #ifdef ENABLE_AUTO_BED_LEVELING
  5747. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5748. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5749. #endif
  5750. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5751. }
  5752. if (max_software_endstops) {
  5753. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5754. }
  5755. }
  5756. #ifdef MESH_BED_LEVELING
  5757. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5758. float dx = x - current_position[X_AXIS];
  5759. float dy = y - current_position[Y_AXIS];
  5760. float dz = z - current_position[Z_AXIS];
  5761. int n_segments = 0;
  5762. if (mbl.active) {
  5763. float len = abs(dx) + abs(dy);
  5764. if (len > 0)
  5765. // Split to 3cm segments or shorter.
  5766. n_segments = int(ceil(len / 30.f));
  5767. }
  5768. if (n_segments > 1) {
  5769. float de = e - current_position[E_AXIS];
  5770. for (int i = 1; i < n_segments; ++ i) {
  5771. float t = float(i) / float(n_segments);
  5772. plan_buffer_line(
  5773. current_position[X_AXIS] + t * dx,
  5774. current_position[Y_AXIS] + t * dy,
  5775. current_position[Z_AXIS] + t * dz,
  5776. current_position[E_AXIS] + t * de,
  5777. feed_rate, extruder);
  5778. }
  5779. }
  5780. // The rest of the path.
  5781. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5782. current_position[X_AXIS] = x;
  5783. current_position[Y_AXIS] = y;
  5784. current_position[Z_AXIS] = z;
  5785. current_position[E_AXIS] = e;
  5786. }
  5787. #endif // MESH_BED_LEVELING
  5788. void prepare_move()
  5789. {
  5790. clamp_to_software_endstops(destination);
  5791. previous_millis_cmd = millis();
  5792. // Do not use feedmultiply for E or Z only moves
  5793. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5794. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5795. }
  5796. else {
  5797. #ifdef MESH_BED_LEVELING
  5798. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5799. #else
  5800. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5801. #endif
  5802. }
  5803. for(int8_t i=0; i < NUM_AXIS; i++) {
  5804. current_position[i] = destination[i];
  5805. }
  5806. }
  5807. void prepare_arc_move(char isclockwise) {
  5808. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5809. // Trace the arc
  5810. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5811. // As far as the parser is concerned, the position is now == target. In reality the
  5812. // motion control system might still be processing the action and the real tool position
  5813. // in any intermediate location.
  5814. for(int8_t i=0; i < NUM_AXIS; i++) {
  5815. current_position[i] = destination[i];
  5816. }
  5817. previous_millis_cmd = millis();
  5818. }
  5819. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5820. #if defined(FAN_PIN)
  5821. #if CONTROLLERFAN_PIN == FAN_PIN
  5822. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5823. #endif
  5824. #endif
  5825. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5826. unsigned long lastMotorCheck = 0;
  5827. void controllerFan()
  5828. {
  5829. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5830. {
  5831. lastMotorCheck = millis();
  5832. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5833. #if EXTRUDERS > 2
  5834. || !READ(E2_ENABLE_PIN)
  5835. #endif
  5836. #if EXTRUDER > 1
  5837. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5838. || !READ(X2_ENABLE_PIN)
  5839. #endif
  5840. || !READ(E1_ENABLE_PIN)
  5841. #endif
  5842. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5843. {
  5844. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5845. }
  5846. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5847. {
  5848. digitalWrite(CONTROLLERFAN_PIN, 0);
  5849. analogWrite(CONTROLLERFAN_PIN, 0);
  5850. }
  5851. else
  5852. {
  5853. // allows digital or PWM fan output to be used (see M42 handling)
  5854. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5855. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5856. }
  5857. }
  5858. }
  5859. #endif
  5860. #ifdef TEMP_STAT_LEDS
  5861. static bool blue_led = false;
  5862. static bool red_led = false;
  5863. static uint32_t stat_update = 0;
  5864. void handle_status_leds(void) {
  5865. float max_temp = 0.0;
  5866. if(millis() > stat_update) {
  5867. stat_update += 500; // Update every 0.5s
  5868. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5869. max_temp = max(max_temp, degHotend(cur_extruder));
  5870. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5871. }
  5872. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5873. max_temp = max(max_temp, degTargetBed());
  5874. max_temp = max(max_temp, degBed());
  5875. #endif
  5876. if((max_temp > 55.0) && (red_led == false)) {
  5877. digitalWrite(STAT_LED_RED, 1);
  5878. digitalWrite(STAT_LED_BLUE, 0);
  5879. red_led = true;
  5880. blue_led = false;
  5881. }
  5882. if((max_temp < 54.0) && (blue_led == false)) {
  5883. digitalWrite(STAT_LED_RED, 0);
  5884. digitalWrite(STAT_LED_BLUE, 1);
  5885. red_led = false;
  5886. blue_led = true;
  5887. }
  5888. }
  5889. }
  5890. #endif
  5891. #ifdef SAFETYTIMER
  5892. /**
  5893. * @brief Turn off heating after 15 minutes of inactivity
  5894. */
  5895. static void handleSafetyTimer()
  5896. {
  5897. static_assert(EXTRUDERS == 1,"Implemented only for one extruder.");
  5898. static Timer safetyTimer;
  5899. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  5900. (!degTargetBed() && !degTargetHotend(0)))
  5901. {
  5902. safetyTimer.stop();
  5903. }
  5904. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  5905. {
  5906. safetyTimer.start();
  5907. }
  5908. else if (safetyTimer.expired(15*60*1000))
  5909. {
  5910. setTargetBed(0);
  5911. setTargetHotend(0, 0);
  5912. }
  5913. }
  5914. #endif //SAFETYTIMER
  5915. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5916. {
  5917. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5918. {
  5919. if (fsensor_autoload_enabled)
  5920. {
  5921. if (fsensor_check_autoload())
  5922. {
  5923. if (degHotend0() > EXTRUDE_MINTEMP)
  5924. {
  5925. fsensor_autoload_check_stop();
  5926. tone(BEEPER, 1000);
  5927. delay_keep_alive(50);
  5928. noTone(BEEPER);
  5929. loading_flag = true;
  5930. enquecommand_front_P((PSTR("M701")));
  5931. }
  5932. else
  5933. {
  5934. lcd_update_enable(false);
  5935. lcd_implementation_clear();
  5936. lcd.setCursor(0, 0);
  5937. lcd_printPGM(MSG_ERROR);
  5938. lcd.setCursor(0, 2);
  5939. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5940. delay(2000);
  5941. lcd_implementation_clear();
  5942. lcd_update_enable(true);
  5943. }
  5944. }
  5945. }
  5946. else
  5947. fsensor_autoload_check_start();
  5948. }
  5949. else
  5950. if (fsensor_autoload_enabled)
  5951. fsensor_autoload_check_stop();
  5952. #ifdef SAFETYTIMER
  5953. handleSafetyTimer();
  5954. #endif //SAFETYTIMER
  5955. #if defined(KILL_PIN) && KILL_PIN > -1
  5956. static int killCount = 0; // make the inactivity button a bit less responsive
  5957. const int KILL_DELAY = 10000;
  5958. #endif
  5959. if(buflen < (BUFSIZE-1)){
  5960. get_command();
  5961. }
  5962. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5963. if(max_inactive_time)
  5964. kill("", 4);
  5965. if(stepper_inactive_time) {
  5966. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5967. {
  5968. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5969. disable_x();
  5970. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5971. disable_y();
  5972. disable_z();
  5973. disable_e0();
  5974. disable_e1();
  5975. disable_e2();
  5976. }
  5977. }
  5978. }
  5979. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5980. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5981. {
  5982. chdkActive = false;
  5983. WRITE(CHDK, LOW);
  5984. }
  5985. #endif
  5986. #if defined(KILL_PIN) && KILL_PIN > -1
  5987. // Check if the kill button was pressed and wait just in case it was an accidental
  5988. // key kill key press
  5989. // -------------------------------------------------------------------------------
  5990. if( 0 == READ(KILL_PIN) )
  5991. {
  5992. killCount++;
  5993. }
  5994. else if (killCount > 0)
  5995. {
  5996. killCount--;
  5997. }
  5998. // Exceeded threshold and we can confirm that it was not accidental
  5999. // KILL the machine
  6000. // ----------------------------------------------------------------
  6001. if ( killCount >= KILL_DELAY)
  6002. {
  6003. kill("", 5);
  6004. }
  6005. #endif
  6006. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6007. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6008. #endif
  6009. #ifdef EXTRUDER_RUNOUT_PREVENT
  6010. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6011. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6012. {
  6013. bool oldstatus=READ(E0_ENABLE_PIN);
  6014. enable_e0();
  6015. float oldepos=current_position[E_AXIS];
  6016. float oldedes=destination[E_AXIS];
  6017. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6018. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6019. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6020. current_position[E_AXIS]=oldepos;
  6021. destination[E_AXIS]=oldedes;
  6022. plan_set_e_position(oldepos);
  6023. previous_millis_cmd=millis();
  6024. st_synchronize();
  6025. WRITE(E0_ENABLE_PIN,oldstatus);
  6026. }
  6027. #endif
  6028. #ifdef TEMP_STAT_LEDS
  6029. handle_status_leds();
  6030. #endif
  6031. check_axes_activity();
  6032. }
  6033. void kill(const char *full_screen_message, unsigned char id)
  6034. {
  6035. SERIAL_ECHOPGM("KILL: ");
  6036. MYSERIAL.println(int(id));
  6037. //return;
  6038. cli(); // Stop interrupts
  6039. disable_heater();
  6040. disable_x();
  6041. // SERIAL_ECHOLNPGM("kill - disable Y");
  6042. disable_y();
  6043. disable_z();
  6044. disable_e0();
  6045. disable_e1();
  6046. disable_e2();
  6047. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6048. pinMode(PS_ON_PIN,INPUT);
  6049. #endif
  6050. SERIAL_ERROR_START;
  6051. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6052. if (full_screen_message != NULL) {
  6053. SERIAL_ERRORLNRPGM(full_screen_message);
  6054. lcd_display_message_fullscreen_P(full_screen_message);
  6055. } else {
  6056. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6057. }
  6058. // FMC small patch to update the LCD before ending
  6059. sei(); // enable interrupts
  6060. for ( int i=5; i--; lcd_update())
  6061. {
  6062. delay(200);
  6063. }
  6064. cli(); // disable interrupts
  6065. suicide();
  6066. while(1)
  6067. {
  6068. wdt_reset();
  6069. /* Intentionally left empty */
  6070. } // Wait for reset
  6071. }
  6072. void Stop()
  6073. {
  6074. disable_heater();
  6075. if(Stopped == false) {
  6076. Stopped = true;
  6077. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6078. SERIAL_ERROR_START;
  6079. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6080. LCD_MESSAGERPGM(MSG_STOPPED);
  6081. }
  6082. }
  6083. bool IsStopped() { return Stopped; };
  6084. #ifdef FAST_PWM_FAN
  6085. void setPwmFrequency(uint8_t pin, int val)
  6086. {
  6087. val &= 0x07;
  6088. switch(digitalPinToTimer(pin))
  6089. {
  6090. #if defined(TCCR0A)
  6091. case TIMER0A:
  6092. case TIMER0B:
  6093. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6094. // TCCR0B |= val;
  6095. break;
  6096. #endif
  6097. #if defined(TCCR1A)
  6098. case TIMER1A:
  6099. case TIMER1B:
  6100. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6101. // TCCR1B |= val;
  6102. break;
  6103. #endif
  6104. #if defined(TCCR2)
  6105. case TIMER2:
  6106. case TIMER2:
  6107. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6108. TCCR2 |= val;
  6109. break;
  6110. #endif
  6111. #if defined(TCCR2A)
  6112. case TIMER2A:
  6113. case TIMER2B:
  6114. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6115. TCCR2B |= val;
  6116. break;
  6117. #endif
  6118. #if defined(TCCR3A)
  6119. case TIMER3A:
  6120. case TIMER3B:
  6121. case TIMER3C:
  6122. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6123. TCCR3B |= val;
  6124. break;
  6125. #endif
  6126. #if defined(TCCR4A)
  6127. case TIMER4A:
  6128. case TIMER4B:
  6129. case TIMER4C:
  6130. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6131. TCCR4B |= val;
  6132. break;
  6133. #endif
  6134. #if defined(TCCR5A)
  6135. case TIMER5A:
  6136. case TIMER5B:
  6137. case TIMER5C:
  6138. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6139. TCCR5B |= val;
  6140. break;
  6141. #endif
  6142. }
  6143. }
  6144. #endif //FAST_PWM_FAN
  6145. bool setTargetedHotend(int code){
  6146. tmp_extruder = active_extruder;
  6147. if(code_seen('T')) {
  6148. tmp_extruder = code_value();
  6149. if(tmp_extruder >= EXTRUDERS) {
  6150. SERIAL_ECHO_START;
  6151. switch(code){
  6152. case 104:
  6153. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6154. break;
  6155. case 105:
  6156. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6157. break;
  6158. case 109:
  6159. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6160. break;
  6161. case 218:
  6162. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6163. break;
  6164. case 221:
  6165. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6166. break;
  6167. }
  6168. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6169. return true;
  6170. }
  6171. }
  6172. return false;
  6173. }
  6174. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6175. {
  6176. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6177. {
  6178. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6179. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6180. }
  6181. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6182. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6183. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6184. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6185. total_filament_used = 0;
  6186. }
  6187. float calculate_extruder_multiplier(float diameter) {
  6188. float out = 1.f;
  6189. if (volumetric_enabled && diameter > 0.f) {
  6190. float area = M_PI * diameter * diameter * 0.25;
  6191. out = 1.f / area;
  6192. }
  6193. if (extrudemultiply != 100)
  6194. out *= float(extrudemultiply) * 0.01f;
  6195. return out;
  6196. }
  6197. void calculate_extruder_multipliers() {
  6198. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6199. #if EXTRUDERS > 1
  6200. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6201. #if EXTRUDERS > 2
  6202. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6203. #endif
  6204. #endif
  6205. }
  6206. void delay_keep_alive(unsigned int ms)
  6207. {
  6208. for (;;) {
  6209. manage_heater();
  6210. // Manage inactivity, but don't disable steppers on timeout.
  6211. manage_inactivity(true);
  6212. lcd_update();
  6213. if (ms == 0)
  6214. break;
  6215. else if (ms >= 50) {
  6216. delay(50);
  6217. ms -= 50;
  6218. } else {
  6219. delay(ms);
  6220. ms = 0;
  6221. }
  6222. }
  6223. }
  6224. void wait_for_heater(long codenum) {
  6225. #ifdef TEMP_RESIDENCY_TIME
  6226. long residencyStart;
  6227. residencyStart = -1;
  6228. /* continue to loop until we have reached the target temp
  6229. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6230. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6231. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6232. #else
  6233. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6234. #endif //TEMP_RESIDENCY_TIME
  6235. if ((millis() - codenum) > 1000UL)
  6236. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6237. if (!farm_mode) {
  6238. SERIAL_PROTOCOLPGM("T:");
  6239. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6240. SERIAL_PROTOCOLPGM(" E:");
  6241. SERIAL_PROTOCOL((int)tmp_extruder);
  6242. #ifdef TEMP_RESIDENCY_TIME
  6243. SERIAL_PROTOCOLPGM(" W:");
  6244. if (residencyStart > -1)
  6245. {
  6246. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6247. SERIAL_PROTOCOLLN(codenum);
  6248. }
  6249. else
  6250. {
  6251. SERIAL_PROTOCOLLN("?");
  6252. }
  6253. }
  6254. #else
  6255. SERIAL_PROTOCOLLN("");
  6256. #endif
  6257. codenum = millis();
  6258. }
  6259. manage_heater();
  6260. manage_inactivity();
  6261. lcd_update();
  6262. #ifdef TEMP_RESIDENCY_TIME
  6263. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6264. or when current temp falls outside the hysteresis after target temp was reached */
  6265. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6266. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6267. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6268. {
  6269. residencyStart = millis();
  6270. }
  6271. #endif //TEMP_RESIDENCY_TIME
  6272. }
  6273. }
  6274. void check_babystep() {
  6275. int babystep_z;
  6276. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6277. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6278. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6279. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6280. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6281. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6282. lcd_update_enable(true);
  6283. }
  6284. }
  6285. #ifdef DIS
  6286. void d_setup()
  6287. {
  6288. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6289. pinMode(D_DATA, INPUT_PULLUP);
  6290. pinMode(D_REQUIRE, OUTPUT);
  6291. digitalWrite(D_REQUIRE, HIGH);
  6292. }
  6293. float d_ReadData()
  6294. {
  6295. int digit[13];
  6296. String mergeOutput;
  6297. float output;
  6298. digitalWrite(D_REQUIRE, HIGH);
  6299. for (int i = 0; i<13; i++)
  6300. {
  6301. for (int j = 0; j < 4; j++)
  6302. {
  6303. while (digitalRead(D_DATACLOCK) == LOW) {}
  6304. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6305. bitWrite(digit[i], j, digitalRead(D_DATA));
  6306. }
  6307. }
  6308. digitalWrite(D_REQUIRE, LOW);
  6309. mergeOutput = "";
  6310. output = 0;
  6311. for (int r = 5; r <= 10; r++) //Merge digits
  6312. {
  6313. mergeOutput += digit[r];
  6314. }
  6315. output = mergeOutput.toFloat();
  6316. if (digit[4] == 8) //Handle sign
  6317. {
  6318. output *= -1;
  6319. }
  6320. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6321. {
  6322. output /= 10;
  6323. }
  6324. return output;
  6325. }
  6326. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6327. int t1 = 0;
  6328. int t_delay = 0;
  6329. int digit[13];
  6330. int m;
  6331. char str[3];
  6332. //String mergeOutput;
  6333. char mergeOutput[15];
  6334. float output;
  6335. int mesh_point = 0; //index number of calibration point
  6336. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6337. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6338. float mesh_home_z_search = 4;
  6339. float row[x_points_num];
  6340. int ix = 0;
  6341. int iy = 0;
  6342. char* filename_wldsd = "wldsd.txt";
  6343. char data_wldsd[70];
  6344. char numb_wldsd[10];
  6345. d_setup();
  6346. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6347. // We don't know where we are! HOME!
  6348. // Push the commands to the front of the message queue in the reverse order!
  6349. // There shall be always enough space reserved for these commands.
  6350. repeatcommand_front(); // repeat G80 with all its parameters
  6351. enquecommand_front_P((PSTR("G28 W0")));
  6352. enquecommand_front_P((PSTR("G1 Z5")));
  6353. return;
  6354. }
  6355. bool custom_message_old = custom_message;
  6356. unsigned int custom_message_type_old = custom_message_type;
  6357. unsigned int custom_message_state_old = custom_message_state;
  6358. custom_message = true;
  6359. custom_message_type = 1;
  6360. custom_message_state = (x_points_num * y_points_num) + 10;
  6361. lcd_update(1);
  6362. mbl.reset();
  6363. babystep_undo();
  6364. card.openFile(filename_wldsd, false);
  6365. current_position[Z_AXIS] = mesh_home_z_search;
  6366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6367. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6368. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6369. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6370. setup_for_endstop_move(false);
  6371. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6372. SERIAL_PROTOCOL(x_points_num);
  6373. SERIAL_PROTOCOLPGM(",");
  6374. SERIAL_PROTOCOL(y_points_num);
  6375. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6376. SERIAL_PROTOCOL(mesh_home_z_search);
  6377. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6378. SERIAL_PROTOCOL(x_dimension);
  6379. SERIAL_PROTOCOLPGM(",");
  6380. SERIAL_PROTOCOL(y_dimension);
  6381. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6382. while (mesh_point != x_points_num * y_points_num) {
  6383. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6384. iy = mesh_point / x_points_num;
  6385. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6386. float z0 = 0.f;
  6387. current_position[Z_AXIS] = mesh_home_z_search;
  6388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6389. st_synchronize();
  6390. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6391. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6393. st_synchronize();
  6394. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6395. break;
  6396. card.closefile();
  6397. }
  6398. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6399. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6400. //strcat(data_wldsd, numb_wldsd);
  6401. //MYSERIAL.println(data_wldsd);
  6402. //delay(1000);
  6403. //delay(3000);
  6404. //t1 = millis();
  6405. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6406. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6407. memset(digit, 0, sizeof(digit));
  6408. //cli();
  6409. digitalWrite(D_REQUIRE, LOW);
  6410. for (int i = 0; i<13; i++)
  6411. {
  6412. //t1 = millis();
  6413. for (int j = 0; j < 4; j++)
  6414. {
  6415. while (digitalRead(D_DATACLOCK) == LOW) {}
  6416. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6417. bitWrite(digit[i], j, digitalRead(D_DATA));
  6418. }
  6419. //t_delay = (millis() - t1);
  6420. //SERIAL_PROTOCOLPGM(" ");
  6421. //SERIAL_PROTOCOL_F(t_delay, 5);
  6422. //SERIAL_PROTOCOLPGM(" ");
  6423. }
  6424. //sei();
  6425. digitalWrite(D_REQUIRE, HIGH);
  6426. mergeOutput[0] = '\0';
  6427. output = 0;
  6428. for (int r = 5; r <= 10; r++) //Merge digits
  6429. {
  6430. sprintf(str, "%d", digit[r]);
  6431. strcat(mergeOutput, str);
  6432. }
  6433. output = atof(mergeOutput);
  6434. if (digit[4] == 8) //Handle sign
  6435. {
  6436. output *= -1;
  6437. }
  6438. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6439. {
  6440. output *= 0.1;
  6441. }
  6442. //output = d_ReadData();
  6443. //row[ix] = current_position[Z_AXIS];
  6444. memset(data_wldsd, 0, sizeof(data_wldsd));
  6445. for (int i = 0; i <3; i++) {
  6446. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6447. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6448. strcat(data_wldsd, numb_wldsd);
  6449. strcat(data_wldsd, ";");
  6450. }
  6451. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6452. dtostrf(output, 8, 5, numb_wldsd);
  6453. strcat(data_wldsd, numb_wldsd);
  6454. //strcat(data_wldsd, ";");
  6455. card.write_command(data_wldsd);
  6456. //row[ix] = d_ReadData();
  6457. row[ix] = output; // current_position[Z_AXIS];
  6458. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6459. for (int i = 0; i < x_points_num; i++) {
  6460. SERIAL_PROTOCOLPGM(" ");
  6461. SERIAL_PROTOCOL_F(row[i], 5);
  6462. }
  6463. SERIAL_PROTOCOLPGM("\n");
  6464. }
  6465. custom_message_state--;
  6466. mesh_point++;
  6467. lcd_update(1);
  6468. }
  6469. card.closefile();
  6470. }
  6471. #endif
  6472. void temp_compensation_start() {
  6473. custom_message = true;
  6474. custom_message_type = 5;
  6475. custom_message_state = PINDA_HEAT_T + 1;
  6476. lcd_update(2);
  6477. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6478. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6479. }
  6480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6481. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6482. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6483. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6485. st_synchronize();
  6486. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6487. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6488. delay_keep_alive(1000);
  6489. custom_message_state = PINDA_HEAT_T - i;
  6490. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6491. else lcd_update(1);
  6492. }
  6493. custom_message_type = 0;
  6494. custom_message_state = 0;
  6495. custom_message = false;
  6496. }
  6497. void temp_compensation_apply() {
  6498. int i_add;
  6499. int compensation_value;
  6500. int z_shift = 0;
  6501. float z_shift_mm;
  6502. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6503. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6504. i_add = (target_temperature_bed - 60) / 10;
  6505. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6506. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6507. }else {
  6508. //interpolation
  6509. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6510. }
  6511. SERIAL_PROTOCOLPGM("\n");
  6512. SERIAL_PROTOCOLPGM("Z shift applied:");
  6513. MYSERIAL.print(z_shift_mm);
  6514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6515. st_synchronize();
  6516. plan_set_z_position(current_position[Z_AXIS]);
  6517. }
  6518. else {
  6519. //we have no temp compensation data
  6520. }
  6521. }
  6522. float temp_comp_interpolation(float inp_temperature) {
  6523. //cubic spline interpolation
  6524. int n, i, j, k;
  6525. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6526. int shift[10];
  6527. int temp_C[10];
  6528. n = 6; //number of measured points
  6529. shift[0] = 0;
  6530. for (i = 0; i < n; i++) {
  6531. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6532. temp_C[i] = 50 + i * 10; //temperature in C
  6533. #ifdef PINDA_THERMISTOR
  6534. temp_C[i] = 35 + i * 5; //temperature in C
  6535. #else
  6536. temp_C[i] = 50 + i * 10; //temperature in C
  6537. #endif
  6538. x[i] = (float)temp_C[i];
  6539. f[i] = (float)shift[i];
  6540. }
  6541. if (inp_temperature < x[0]) return 0;
  6542. for (i = n - 1; i>0; i--) {
  6543. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6544. h[i - 1] = x[i] - x[i - 1];
  6545. }
  6546. //*********** formation of h, s , f matrix **************
  6547. for (i = 1; i<n - 1; i++) {
  6548. m[i][i] = 2 * (h[i - 1] + h[i]);
  6549. if (i != 1) {
  6550. m[i][i - 1] = h[i - 1];
  6551. m[i - 1][i] = h[i - 1];
  6552. }
  6553. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6554. }
  6555. //*********** forward elimination **************
  6556. for (i = 1; i<n - 2; i++) {
  6557. temp = (m[i + 1][i] / m[i][i]);
  6558. for (j = 1; j <= n - 1; j++)
  6559. m[i + 1][j] -= temp*m[i][j];
  6560. }
  6561. //*********** backward substitution *********
  6562. for (i = n - 2; i>0; i--) {
  6563. sum = 0;
  6564. for (j = i; j <= n - 2; j++)
  6565. sum += m[i][j] * s[j];
  6566. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6567. }
  6568. for (i = 0; i<n - 1; i++)
  6569. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6570. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6571. b = s[i] / 2;
  6572. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6573. d = f[i];
  6574. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6575. }
  6576. return sum;
  6577. }
  6578. #ifdef PINDA_THERMISTOR
  6579. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6580. {
  6581. if (!temp_cal_active) return 0;
  6582. if (!calibration_status_pinda()) return 0;
  6583. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6584. }
  6585. #endif //PINDA_THERMISTOR
  6586. void long_pause() //long pause print
  6587. {
  6588. st_synchronize();
  6589. //save currently set parameters to global variables
  6590. saved_feedmultiply = feedmultiply;
  6591. HotendTempBckp = degTargetHotend(active_extruder);
  6592. fanSpeedBckp = fanSpeed;
  6593. start_pause_print = millis();
  6594. //save position
  6595. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6596. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6597. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6598. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6599. //retract
  6600. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6602. //lift z
  6603. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6604. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6606. //set nozzle target temperature to 0
  6607. setTargetHotend(0, 0);
  6608. setTargetHotend(0, 1);
  6609. setTargetHotend(0, 2);
  6610. //Move XY to side
  6611. current_position[X_AXIS] = X_PAUSE_POS;
  6612. current_position[Y_AXIS] = Y_PAUSE_POS;
  6613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6614. // Turn off the print fan
  6615. fanSpeed = 0;
  6616. st_synchronize();
  6617. }
  6618. void serialecho_temperatures() {
  6619. float tt = degHotend(active_extruder);
  6620. SERIAL_PROTOCOLPGM("T:");
  6621. SERIAL_PROTOCOL(tt);
  6622. SERIAL_PROTOCOLPGM(" E:");
  6623. SERIAL_PROTOCOL((int)active_extruder);
  6624. SERIAL_PROTOCOLPGM(" B:");
  6625. SERIAL_PROTOCOL_F(degBed(), 1);
  6626. SERIAL_PROTOCOLLN("");
  6627. }
  6628. extern uint32_t sdpos_atomic;
  6629. void uvlo_()
  6630. {
  6631. unsigned long time_start = millis();
  6632. bool sd_print = card.sdprinting;
  6633. // Conserve power as soon as possible.
  6634. disable_x();
  6635. disable_y();
  6636. disable_e0();
  6637. tmc2130_set_current_h(Z_AXIS, 20);
  6638. tmc2130_set_current_r(Z_AXIS, 20);
  6639. tmc2130_set_current_h(E_AXIS, 20);
  6640. tmc2130_set_current_r(E_AXIS, 20);
  6641. // Indicate that the interrupt has been triggered.
  6642. // SERIAL_ECHOLNPGM("UVLO");
  6643. // Read out the current Z motor microstep counter. This will be later used
  6644. // for reaching the zero full step before powering off.
  6645. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  6646. // Calculate the file position, from which to resume this print.
  6647. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6648. {
  6649. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6650. sd_position -= sdlen_planner;
  6651. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6652. sd_position -= sdlen_cmdqueue;
  6653. if (sd_position < 0) sd_position = 0;
  6654. }
  6655. // Backup the feedrate in mm/min.
  6656. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6657. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6658. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6659. // are in action.
  6660. planner_abort_hard();
  6661. // Store the current extruder position.
  6662. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6663. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6664. // Clean the input command queue.
  6665. cmdqueue_reset();
  6666. card.sdprinting = false;
  6667. // card.closefile();
  6668. // Enable stepper driver interrupt to move Z axis.
  6669. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6670. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6671. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6672. sei();
  6673. plan_buffer_line(
  6674. current_position[X_AXIS],
  6675. current_position[Y_AXIS],
  6676. current_position[Z_AXIS],
  6677. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6678. 95, active_extruder);
  6679. st_synchronize();
  6680. disable_e0();
  6681. plan_buffer_line(
  6682. current_position[X_AXIS],
  6683. current_position[Y_AXIS],
  6684. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6685. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6686. 40, active_extruder);
  6687. st_synchronize();
  6688. disable_e0();
  6689. plan_buffer_line(
  6690. current_position[X_AXIS],
  6691. current_position[Y_AXIS],
  6692. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6693. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6694. 40, active_extruder);
  6695. st_synchronize();
  6696. disable_e0();
  6697. disable_z();
  6698. // Move Z up to the next 0th full step.
  6699. // Write the file position.
  6700. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6701. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6702. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6703. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6704. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6705. // Scale the z value to 1u resolution.
  6706. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6707. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6708. }
  6709. // Read out the current Z motor microstep counter. This will be later used
  6710. // for reaching the zero full step before powering off.
  6711. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6712. // Store the current position.
  6713. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6714. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6715. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6716. // Store the current feed rate, temperatures and fan speed.
  6717. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6718. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6719. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6720. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6721. // Finaly store the "power outage" flag.
  6722. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6723. st_synchronize();
  6724. SERIAL_ECHOPGM("stps");
  6725. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6726. disable_z();
  6727. // Increment power failure counter
  6728. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6729. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6730. SERIAL_ECHOLNPGM("UVLO - end");
  6731. MYSERIAL.println(millis() - time_start);
  6732. #if 0
  6733. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6734. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6736. st_synchronize();
  6737. #endif
  6738. cli();
  6739. volatile unsigned int ppcount = 0;
  6740. SET_OUTPUT(BEEPER);
  6741. WRITE(BEEPER, HIGH);
  6742. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6743. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6744. }
  6745. WRITE(BEEPER, LOW);
  6746. while(1){
  6747. #if 1
  6748. WRITE(BEEPER, LOW);
  6749. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6750. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6751. }
  6752. #endif
  6753. };
  6754. }
  6755. void setup_fan_interrupt() {
  6756. //INT7
  6757. DDRE &= ~(1 << 7); //input pin
  6758. PORTE &= ~(1 << 7); //no internal pull-up
  6759. //start with sensing rising edge
  6760. EICRB &= ~(1 << 6);
  6761. EICRB |= (1 << 7);
  6762. //enable INT7 interrupt
  6763. EIMSK |= (1 << 7);
  6764. }
  6765. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6766. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6767. ISR(INT7_vect) {
  6768. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6769. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6770. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6771. t_fan_rising_edge = millis_nc();
  6772. }
  6773. else { //interrupt was triggered by falling edge
  6774. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6775. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6776. }
  6777. }
  6778. EICRB ^= (1 << 6); //change edge
  6779. }
  6780. void setup_uvlo_interrupt() {
  6781. DDRE &= ~(1 << 4); //input pin
  6782. PORTE &= ~(1 << 4); //no internal pull-up
  6783. //sensing falling edge
  6784. EICRB |= (1 << 0);
  6785. EICRB &= ~(1 << 1);
  6786. //enable INT4 interrupt
  6787. EIMSK |= (1 << 4);
  6788. }
  6789. ISR(INT4_vect) {
  6790. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6791. SERIAL_ECHOLNPGM("INT4");
  6792. if (IS_SD_PRINTING) uvlo_();
  6793. }
  6794. void recover_print(uint8_t automatic) {
  6795. char cmd[30];
  6796. lcd_update_enable(true);
  6797. lcd_update(2);
  6798. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6799. recover_machine_state_after_power_panic();
  6800. // Set the target bed and nozzle temperatures.
  6801. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6802. enquecommand(cmd);
  6803. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6804. enquecommand(cmd);
  6805. // Lift the print head, so one may remove the excess priming material.
  6806. if (current_position[Z_AXIS] < 25)
  6807. enquecommand_P(PSTR("G1 Z25 F800"));
  6808. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6809. enquecommand_P(PSTR("G28 X Y"));
  6810. // Set the target bed and nozzle temperatures and wait.
  6811. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6812. enquecommand(cmd);
  6813. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6814. enquecommand(cmd);
  6815. enquecommand_P(PSTR("M83")); //E axis relative mode
  6816. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6817. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6818. if(automatic == 0){
  6819. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6820. }
  6821. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6822. // Mark the power panic status as inactive.
  6823. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6824. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6825. delay_keep_alive(1000);
  6826. }*/
  6827. SERIAL_ECHOPGM("After waiting for temp:");
  6828. SERIAL_ECHOPGM("Current position X_AXIS:");
  6829. MYSERIAL.println(current_position[X_AXIS]);
  6830. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6831. MYSERIAL.println(current_position[Y_AXIS]);
  6832. // Restart the print.
  6833. restore_print_from_eeprom();
  6834. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6835. MYSERIAL.print(current_position[Z_AXIS]);
  6836. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6837. MYSERIAL.print(current_position[E_AXIS]);
  6838. }
  6839. void recover_machine_state_after_power_panic()
  6840. {
  6841. char cmd[30];
  6842. // 1) Recover the logical cordinates at the time of the power panic.
  6843. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6844. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6845. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6846. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6847. // The current position after power panic is moved to the next closest 0th full step.
  6848. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6849. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6850. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6851. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6852. sprintf_P(cmd, PSTR("G92 E"));
  6853. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6854. enquecommand(cmd);
  6855. }
  6856. memcpy(destination, current_position, sizeof(destination));
  6857. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6858. print_world_coordinates();
  6859. // 2) Initialize the logical to physical coordinate system transformation.
  6860. world2machine_initialize();
  6861. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6862. mbl.active = false;
  6863. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6864. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6865. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6866. // Scale the z value to 10u resolution.
  6867. int16_t v;
  6868. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6869. if (v != 0)
  6870. mbl.active = true;
  6871. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6872. }
  6873. if (mbl.active)
  6874. mbl.upsample_3x3();
  6875. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6876. // print_mesh_bed_leveling_table();
  6877. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6878. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6879. babystep_load();
  6880. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6881. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6882. // 6) Power up the motors, mark their positions as known.
  6883. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6884. axis_known_position[X_AXIS] = true; enable_x();
  6885. axis_known_position[Y_AXIS] = true; enable_y();
  6886. axis_known_position[Z_AXIS] = true; enable_z();
  6887. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6888. print_physical_coordinates();
  6889. // 7) Recover the target temperatures.
  6890. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6891. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6892. }
  6893. void restore_print_from_eeprom() {
  6894. float x_rec, y_rec, z_pos;
  6895. int feedrate_rec;
  6896. uint8_t fan_speed_rec;
  6897. char cmd[30];
  6898. char* c;
  6899. char filename[13];
  6900. uint8_t depth = 0;
  6901. char dir_name[9];
  6902. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6903. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6904. SERIAL_ECHOPGM("Feedrate:");
  6905. MYSERIAL.println(feedrate_rec);
  6906. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6907. MYSERIAL.println(int(depth));
  6908. for (int i = 0; i < depth; i++) {
  6909. for (int j = 0; j < 8; j++) {
  6910. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6911. }
  6912. dir_name[8] = '\0';
  6913. MYSERIAL.println(dir_name);
  6914. card.chdir(dir_name);
  6915. }
  6916. for (int i = 0; i < 8; i++) {
  6917. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6918. }
  6919. filename[8] = '\0';
  6920. MYSERIAL.print(filename);
  6921. strcat_P(filename, PSTR(".gco"));
  6922. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6923. for (c = &cmd[4]; *c; c++)
  6924. *c = tolower(*c);
  6925. enquecommand(cmd);
  6926. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6927. SERIAL_ECHOPGM("Position read from eeprom:");
  6928. MYSERIAL.println(position);
  6929. // E axis relative mode.
  6930. enquecommand_P(PSTR("M83"));
  6931. // Move to the XY print position in logical coordinates, where the print has been killed.
  6932. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6933. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6934. strcat_P(cmd, PSTR(" F2000"));
  6935. enquecommand(cmd);
  6936. // Move the Z axis down to the print, in logical coordinates.
  6937. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6938. enquecommand(cmd);
  6939. // Unretract.
  6940. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6941. // Set the feedrate saved at the power panic.
  6942. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6943. enquecommand(cmd);
  6944. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6945. {
  6946. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6947. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6948. }
  6949. // Set the fan speed saved at the power panic.
  6950. strcpy_P(cmd, PSTR("M106 S"));
  6951. strcat(cmd, itostr3(int(fan_speed_rec)));
  6952. enquecommand(cmd);
  6953. // Set a position in the file.
  6954. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6955. enquecommand(cmd);
  6956. // Start SD print.
  6957. enquecommand_P(PSTR("M24"));
  6958. }
  6959. ////////////////////////////////////////////////////////////////////////////////
  6960. // new save/restore printing
  6961. //extern uint32_t sdpos_atomic;
  6962. bool saved_printing = false;
  6963. uint32_t saved_sdpos = 0;
  6964. float saved_pos[4] = {0, 0, 0, 0};
  6965. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6966. float saved_feedrate2 = 0;
  6967. uint8_t saved_active_extruder = 0;
  6968. bool saved_extruder_under_pressure = false;
  6969. void stop_and_save_print_to_ram(float z_move, float e_move)
  6970. {
  6971. if (saved_printing) return;
  6972. cli();
  6973. unsigned char nplanner_blocks = number_of_blocks();
  6974. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6975. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6976. saved_sdpos -= sdlen_planner;
  6977. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6978. saved_sdpos -= sdlen_cmdqueue;
  6979. #if 0
  6980. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6981. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6982. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6983. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6984. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6985. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6986. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6987. {
  6988. card.setIndex(saved_sdpos);
  6989. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6990. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6991. MYSERIAL.print(char(card.get()));
  6992. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6993. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6994. MYSERIAL.print(char(card.get()));
  6995. SERIAL_ECHOLNPGM("End of command buffer");
  6996. }
  6997. {
  6998. // Print the content of the planner buffer, line by line:
  6999. card.setIndex(saved_sdpos);
  7000. int8_t iline = 0;
  7001. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7002. SERIAL_ECHOPGM("Planner line (from file): ");
  7003. MYSERIAL.print(int(iline), DEC);
  7004. SERIAL_ECHOPGM(", length: ");
  7005. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7006. SERIAL_ECHOPGM(", steps: (");
  7007. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7008. SERIAL_ECHOPGM(",");
  7009. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7010. SERIAL_ECHOPGM(",");
  7011. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7012. SERIAL_ECHOPGM(",");
  7013. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7014. SERIAL_ECHOPGM("), events: ");
  7015. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7016. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7017. MYSERIAL.print(char(card.get()));
  7018. }
  7019. }
  7020. {
  7021. // Print the content of the command buffer, line by line:
  7022. int8_t iline = 0;
  7023. union {
  7024. struct {
  7025. char lo;
  7026. char hi;
  7027. } lohi;
  7028. uint16_t value;
  7029. } sdlen_single;
  7030. int _bufindr = bufindr;
  7031. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7032. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7033. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7034. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7035. }
  7036. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7037. MYSERIAL.print(int(iline), DEC);
  7038. SERIAL_ECHOPGM(", type: ");
  7039. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7040. SERIAL_ECHOPGM(", len: ");
  7041. MYSERIAL.println(sdlen_single.value, DEC);
  7042. // Print the content of the buffer line.
  7043. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7044. SERIAL_ECHOPGM("Buffer line (from file): ");
  7045. MYSERIAL.print(int(iline), DEC);
  7046. MYSERIAL.println(int(iline), DEC);
  7047. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7048. MYSERIAL.print(char(card.get()));
  7049. if (-- _buflen == 0)
  7050. break;
  7051. // First skip the current command ID and iterate up to the end of the string.
  7052. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7053. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7054. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7055. // If the end of the buffer was empty,
  7056. if (_bufindr == sizeof(cmdbuffer)) {
  7057. // skip to the start and find the nonzero command.
  7058. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7059. }
  7060. }
  7061. }
  7062. #endif
  7063. #if 0
  7064. saved_feedrate2 = feedrate; //save feedrate
  7065. #else
  7066. // Try to deduce the feedrate from the first block of the planner.
  7067. // Speed is in mm/min.
  7068. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7069. #endif
  7070. planner_abort_hard(); //abort printing
  7071. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7072. saved_active_extruder = active_extruder; //save active_extruder
  7073. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7074. cmdqueue_reset(); //empty cmdqueue
  7075. card.sdprinting = false;
  7076. // card.closefile();
  7077. saved_printing = true;
  7078. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7079. st_reset_timer();
  7080. sei();
  7081. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7082. #if 1
  7083. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7084. char buf[48];
  7085. strcpy_P(buf, PSTR("G1 Z"));
  7086. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7087. strcat_P(buf, PSTR(" E"));
  7088. // Relative extrusion
  7089. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7090. strcat_P(buf, PSTR(" F"));
  7091. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7092. // At this point the command queue is empty.
  7093. enquecommand(buf, false);
  7094. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7095. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7096. repeatcommand_front();
  7097. #else
  7098. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7099. st_synchronize(); //wait moving
  7100. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7101. memcpy(destination, current_position, sizeof(destination));
  7102. #endif
  7103. }
  7104. }
  7105. void restore_print_from_ram_and_continue(float e_move)
  7106. {
  7107. if (!saved_printing) return;
  7108. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7109. // current_position[axis] = st_get_position_mm(axis);
  7110. active_extruder = saved_active_extruder; //restore active_extruder
  7111. feedrate = saved_feedrate2; //restore feedrate
  7112. float e = saved_pos[E_AXIS] - e_move;
  7113. plan_set_e_position(e);
  7114. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7115. st_synchronize();
  7116. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7117. memcpy(destination, current_position, sizeof(destination));
  7118. card.setIndex(saved_sdpos);
  7119. sdpos_atomic = saved_sdpos;
  7120. card.sdprinting = true;
  7121. saved_printing = false;
  7122. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7123. }
  7124. void print_world_coordinates()
  7125. {
  7126. SERIAL_ECHOPGM("world coordinates: (");
  7127. MYSERIAL.print(current_position[X_AXIS], 3);
  7128. SERIAL_ECHOPGM(", ");
  7129. MYSERIAL.print(current_position[Y_AXIS], 3);
  7130. SERIAL_ECHOPGM(", ");
  7131. MYSERIAL.print(current_position[Z_AXIS], 3);
  7132. SERIAL_ECHOLNPGM(")");
  7133. }
  7134. void print_physical_coordinates()
  7135. {
  7136. SERIAL_ECHOPGM("physical coordinates: (");
  7137. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7138. SERIAL_ECHOPGM(", ");
  7139. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7140. SERIAL_ECHOPGM(", ");
  7141. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7142. SERIAL_ECHOLNPGM(")");
  7143. }
  7144. void print_mesh_bed_leveling_table()
  7145. {
  7146. SERIAL_ECHOPGM("mesh bed leveling: ");
  7147. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7148. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7149. MYSERIAL.print(mbl.z_values[y][x], 3);
  7150. SERIAL_ECHOPGM(" ");
  7151. }
  7152. SERIAL_ECHOLNPGM("");
  7153. }
  7154. #define FIL_LOAD_LENGTH 60
  7155. void extr_unload2() { //unloads filament
  7156. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7157. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7158. // int8_t SilentMode;
  7159. uint8_t snmm_extruder = 0;
  7160. if (degHotend0() > EXTRUDE_MINTEMP) {
  7161. lcd_implementation_clear();
  7162. lcd_display_message_fullscreen_P(PSTR(""));
  7163. max_feedrate[E_AXIS] = 50;
  7164. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7165. // lcd.print(" ");
  7166. // lcd.print(snmm_extruder + 1);
  7167. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7168. if (current_position[Z_AXIS] < 15) {
  7169. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7171. }
  7172. current_position[E_AXIS] += 10; //extrusion
  7173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7174. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7175. if (current_temperature[0] < 230) { //PLA & all other filaments
  7176. current_position[E_AXIS] += 5.4;
  7177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7178. current_position[E_AXIS] += 3.2;
  7179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7180. current_position[E_AXIS] += 3;
  7181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7182. }
  7183. else { //ABS
  7184. current_position[E_AXIS] += 3.1;
  7185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7186. current_position[E_AXIS] += 3.1;
  7187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7188. current_position[E_AXIS] += 4;
  7189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7190. /*current_position[X_AXIS] += 23; //delay
  7191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7192. current_position[X_AXIS] -= 23; //delay
  7193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7194. delay_keep_alive(4700);
  7195. }
  7196. max_feedrate[E_AXIS] = 80;
  7197. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7199. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7201. st_synchronize();
  7202. //digipot_init();
  7203. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7204. // else digipot_current(2, tmp_motor_loud[2]);
  7205. lcd_update_enable(true);
  7206. // lcd_return_to_status();
  7207. max_feedrate[E_AXIS] = 50;
  7208. }
  7209. else {
  7210. lcd_implementation_clear();
  7211. lcd.setCursor(0, 0);
  7212. lcd_printPGM(MSG_ERROR);
  7213. lcd.setCursor(0, 2);
  7214. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7215. delay(2000);
  7216. lcd_implementation_clear();
  7217. }
  7218. // lcd_return_to_status();
  7219. }