fsensor.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "cmdqueue.h"
  10. #include "ultralcd.h"
  11. #include "ConfigurationStore.h"
  12. //! @name Basic parameters
  13. //! @{
  14. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  15. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  16. //! @}
  17. //! @name Optical quality measurement parameters
  18. //! @{
  19. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  20. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  21. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  22. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  23. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  24. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  25. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  26. //! @}
  27. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  28. #define FSENSOR_INT_PIN 63 //!< filament sensor interrupt pin PK1
  29. #define FSENSOR_INT_PIN_MSK 0x02 //!< filament sensor interrupt pin mask (bit1)
  30. void fsensor_stop_and_save_print(void)
  31. {
  32. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  33. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  34. }
  35. void fsensor_restore_print_and_continue(void)
  36. {
  37. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  38. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  39. }
  40. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  41. uint8_t fsensor_int_pin_old = 0;
  42. int16_t fsensor_chunk_len = 0;
  43. //! enabled = initialized and sampled every chunk event
  44. bool fsensor_enabled = true;
  45. //! runout watching is done in fsensor_update (called from main loop)
  46. bool fsensor_watch_runout = true;
  47. //! not responding - is set if any communication error occurred during initialization or readout
  48. bool fsensor_not_responding = false;
  49. //! printing saved
  50. bool fsensor_printing_saved = false;
  51. //! number of errors, updated in ISR
  52. uint8_t fsensor_err_cnt = 0;
  53. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  54. int16_t fsensor_st_cnt = 0;
  55. //! last dy value from pat9125 sensor (used in ISR)
  56. int16_t fsensor_dy_old = 0;
  57. //! log flag: 0=log disabled, 1=log enabled
  58. uint8_t fsensor_log = 1;
  59. //! @name filament autoload variables
  60. //! @{
  61. //! autoload feature enabled
  62. bool fsensor_autoload_enabled = true;
  63. //! autoload watching enable/disable flag
  64. bool fsensor_watch_autoload = false;
  65. //
  66. uint16_t fsensor_autoload_y;
  67. //
  68. uint8_t fsensor_autoload_c;
  69. //
  70. uint32_t fsensor_autoload_last_millis;
  71. //
  72. uint8_t fsensor_autoload_sum;
  73. //! @}
  74. //! @name filament optical quality measurement variables
  75. //! @{
  76. //! Measurement enable/disable flag
  77. bool fsensor_oq_meassure = false;
  78. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  79. uint8_t fsensor_oq_skipchunk;
  80. //! number of samples from start of measurement
  81. uint8_t fsensor_oq_samples;
  82. //! sum of steps in positive direction movements
  83. uint16_t fsensor_oq_st_sum;
  84. //! sum of deltas in positive direction movements
  85. uint16_t fsensor_oq_yd_sum;
  86. //! sum of errors during measurement
  87. uint16_t fsensor_oq_er_sum;
  88. //! max error counter value during measurement
  89. uint8_t fsensor_oq_er_max;
  90. //! minimum delta value
  91. int16_t fsensor_oq_yd_min;
  92. //! maximum delta value
  93. int16_t fsensor_oq_yd_max;
  94. //! sum of shutter value
  95. uint16_t fsensor_oq_sh_sum;
  96. //! @}
  97. void fsensor_init(void)
  98. {
  99. uint8_t pat9125 = pat9125_init();
  100. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  101. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  102. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  103. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  104. if (!pat9125)
  105. {
  106. fsensor = 0; //disable sensor
  107. fsensor_not_responding = true;
  108. }
  109. else
  110. fsensor_not_responding = false;
  111. if (fsensor)
  112. fsensor_enable();
  113. else
  114. fsensor_disable();
  115. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  116. }
  117. bool fsensor_enable(void)
  118. {
  119. uint8_t pat9125 = pat9125_init();
  120. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  121. if (pat9125)
  122. fsensor_not_responding = false;
  123. else
  124. fsensor_not_responding = true;
  125. fsensor_enabled = pat9125?true:false;
  126. fsensor_watch_runout = true;
  127. fsensor_oq_meassure = false;
  128. fsensor_err_cnt = 0;
  129. fsensor_dy_old = 0;
  130. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  131. FSensorStateMenu = fsensor_enabled?1:0;
  132. return fsensor_enabled;
  133. }
  134. void fsensor_disable(void)
  135. {
  136. fsensor_enabled = false;
  137. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  138. FSensorStateMenu = 0;
  139. }
  140. void fsensor_autoload_set(bool State)
  141. {
  142. fsensor_autoload_enabled = State;
  143. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  144. }
  145. void pciSetup(byte pin)
  146. {
  147. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  148. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  149. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  150. }
  151. void fsensor_autoload_check_start(void)
  152. {
  153. // puts_P(_N("fsensor_autoload_check_start\n"));
  154. if (!fsensor_enabled) return;
  155. if (!fsensor_autoload_enabled) return;
  156. if (fsensor_watch_autoload) return;
  157. if (!pat9125_update_y()) //update sensor
  158. {
  159. fsensor_disable();
  160. fsensor_not_responding = true;
  161. fsensor_watch_autoload = false;
  162. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  163. return;
  164. }
  165. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  166. fsensor_autoload_y = pat9125_y; //save current y value
  167. fsensor_autoload_c = 0; //reset number of changes counter
  168. fsensor_autoload_sum = 0;
  169. fsensor_autoload_last_millis = millis();
  170. fsensor_watch_runout = false;
  171. fsensor_watch_autoload = true;
  172. fsensor_err_cnt = 0;
  173. }
  174. void fsensor_autoload_check_stop(void)
  175. {
  176. // puts_P(_N("fsensor_autoload_check_stop\n"));
  177. if (!fsensor_enabled) return;
  178. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  179. if (!fsensor_autoload_enabled) return;
  180. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  181. if (!fsensor_watch_autoload) return;
  182. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  183. fsensor_autoload_sum = 0;
  184. fsensor_watch_autoload = false;
  185. fsensor_watch_runout = true;
  186. fsensor_err_cnt = 0;
  187. }
  188. bool fsensor_check_autoload(void)
  189. {
  190. if (!fsensor_enabled) return false;
  191. if (!fsensor_autoload_enabled) return false;
  192. if (!fsensor_watch_autoload)
  193. {
  194. fsensor_autoload_check_start();
  195. return false;
  196. }
  197. #if 0
  198. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  199. #endif
  200. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  201. fsensor_autoload_last_millis = millis();
  202. if (!pat9125_update_y()) //update sensor
  203. {
  204. fsensor_disable();
  205. fsensor_not_responding = true;
  206. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  207. return false;
  208. }
  209. int16_t dy = pat9125_y - fsensor_autoload_y;
  210. if (dy) //? dy value is nonzero
  211. {
  212. if (dy > 0) //? delta-y value is positive (inserting)
  213. {
  214. fsensor_autoload_sum += dy;
  215. fsensor_autoload_c += 3; //increment change counter by 3
  216. }
  217. else if (fsensor_autoload_c > 1)
  218. fsensor_autoload_c -= 2; //decrement change counter by 2
  219. fsensor_autoload_y = pat9125_y; //save current value
  220. }
  221. else if (fsensor_autoload_c > 0)
  222. fsensor_autoload_c--;
  223. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  224. #if 0
  225. puts_P(_N("fsensor_check_autoload\n"));
  226. if (fsensor_autoload_c != fsensor_autoload_c_old)
  227. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  228. #endif
  229. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  230. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  231. {
  232. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  233. return true;
  234. }
  235. return false;
  236. }
  237. void fsensor_oq_meassure_start(uint8_t skip)
  238. {
  239. if (!fsensor_enabled) return;
  240. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  241. fsensor_oq_skipchunk = skip;
  242. fsensor_oq_samples = 0;
  243. fsensor_oq_st_sum = 0;
  244. fsensor_oq_yd_sum = 0;
  245. fsensor_oq_er_sum = 0;
  246. fsensor_oq_er_max = 0;
  247. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  248. fsensor_oq_yd_max = 0;
  249. fsensor_oq_sh_sum = 0;
  250. pat9125_update();
  251. pat9125_y = 0;
  252. fsensor_watch_runout = false;
  253. fsensor_oq_meassure = true;
  254. }
  255. void fsensor_oq_meassure_stop(void)
  256. {
  257. if (!fsensor_enabled) return;
  258. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  259. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  260. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  261. fsensor_oq_meassure = false;
  262. fsensor_watch_runout = true;
  263. fsensor_err_cnt = 0;
  264. }
  265. const char _OK[] PROGMEM = "OK";
  266. const char _NG[] PROGMEM = "NG!";
  267. bool fsensor_oq_result(void)
  268. {
  269. if (!fsensor_enabled) return true;
  270. printf_P(_N("fsensor_oq_result\n"));
  271. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  272. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  273. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  274. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  275. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  276. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  277. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  278. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  279. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  280. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  281. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  282. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  283. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  284. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  285. printf_P(_N(" yd_qua = %u\n"), yd_qua);
  286. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  287. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  288. if (yd_qua >= 8) res_sh_avg = true;
  289. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  290. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  291. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  292. return res;
  293. }
  294. ISR(PCINT2_vect)
  295. {
  296. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  297. fsensor_int_pin_old = PINK;
  298. static bool _lock = false;
  299. if (_lock) return;
  300. _lock = true;
  301. int st_cnt = fsensor_st_cnt;
  302. fsensor_st_cnt = 0;
  303. sei();
  304. uint8_t old_err_cnt = fsensor_err_cnt;
  305. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  306. if (!pat9125_res)
  307. {
  308. fsensor_disable();
  309. fsensor_not_responding = true;
  310. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  311. }
  312. if (st_cnt != 0)
  313. { //movement
  314. if (st_cnt > 0) //positive movement
  315. {
  316. if (pat9125_y < 0)
  317. {
  318. if (fsensor_err_cnt)
  319. fsensor_err_cnt += 2;
  320. else
  321. fsensor_err_cnt++;
  322. }
  323. else if (pat9125_y > 0)
  324. {
  325. if (fsensor_err_cnt)
  326. fsensor_err_cnt--;
  327. }
  328. else //(pat9125_y == 0)
  329. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  330. fsensor_err_cnt++;
  331. if (fsensor_oq_meassure)
  332. {
  333. if (fsensor_oq_skipchunk)
  334. {
  335. fsensor_oq_skipchunk--;
  336. fsensor_err_cnt = 0;
  337. }
  338. else
  339. {
  340. if (st_cnt == fsensor_chunk_len)
  341. {
  342. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  343. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  344. }
  345. fsensor_oq_samples++;
  346. fsensor_oq_st_sum += st_cnt;
  347. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  348. if (fsensor_err_cnt > old_err_cnt)
  349. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  350. if (fsensor_oq_er_max < fsensor_err_cnt)
  351. fsensor_oq_er_max = fsensor_err_cnt;
  352. fsensor_oq_sh_sum += pat9125_s;
  353. }
  354. }
  355. }
  356. else //negative movement
  357. {
  358. }
  359. }
  360. else
  361. { //no movement
  362. }
  363. #ifdef DEBUG_FSENSOR_LOG
  364. if (fsensor_log)
  365. {
  366. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  367. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  368. }
  369. #endif //DEBUG_FSENSOR_LOG
  370. fsensor_dy_old = pat9125_y;
  371. pat9125_y = 0;
  372. _lock = false;
  373. return;
  374. }
  375. void fsensor_st_block_begin(block_t* bl)
  376. {
  377. if (!fsensor_enabled) return;
  378. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  379. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  380. {
  381. if (_READ(63)) _WRITE(63, LOW);
  382. else _WRITE(63, HIGH);
  383. }
  384. }
  385. void fsensor_st_block_chunk(block_t* bl, int cnt)
  386. {
  387. if (!fsensor_enabled) return;
  388. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  389. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  390. {
  391. if (_READ(63)) _WRITE(63, LOW);
  392. else _WRITE(63, HIGH);
  393. }
  394. }
  395. //! @brief filament sensor update (perform M600 on filament runout)
  396. //!
  397. //! Works only if filament sensor is enabled.
  398. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  399. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  400. void fsensor_update(void)
  401. {
  402. if (fsensor_enabled)
  403. {
  404. if (fsensor_printing_saved)
  405. {
  406. fsensor_restore_print_and_continue();
  407. fsensor_printing_saved = false;
  408. fsensor_watch_runout = true;
  409. fsensor_err_cnt = 0;
  410. }
  411. else if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  412. {
  413. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  414. fsensor_autoload_enabled = false;
  415. fsensor_stop_and_save_print();
  416. fsensor_printing_saved = true;
  417. fsensor_err_cnt = 0;
  418. fsensor_oq_meassure_start(0);
  419. enquecommand_front_P((PSTR("G1 E-3 F200")));
  420. process_commands();
  421. cmdqueue_pop_front();
  422. st_synchronize();
  423. enquecommand_front_P((PSTR("G1 E3 F200")));
  424. process_commands();
  425. cmdqueue_pop_front();
  426. st_synchronize();
  427. fsensor_oq_meassure_stop();
  428. bool err = false;
  429. err |= (fsensor_oq_er_sum > 1);
  430. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  431. if (!err)
  432. {
  433. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  434. fsensor_restore_print_and_continue();
  435. fsensor_printing_saved = false;
  436. }
  437. else
  438. {
  439. printf_P(PSTR("fsensor_update - M600\n"));
  440. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  441. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  442. enquecommand_front_P((PSTR("M600")));
  443. fsensor_watch_runout = false;
  444. }
  445. fsensor_autoload_enabled = autoload_enabled_tmp;
  446. }
  447. }
  448. }
  449. void fsensor_setup_interrupt(void)
  450. {
  451. pinMode(FSENSOR_INT_PIN, OUTPUT);
  452. digitalWrite(FSENSOR_INT_PIN, LOW);
  453. fsensor_int_pin_old = 0;
  454. pciSetup(FSENSOR_INT_PIN);
  455. }