temperature.cpp 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. int current_temperature_raw_pinda = 0 ;
  43. float current_temperature_pinda = 0.0;
  44. #endif //PINDA_THERMISTOR
  45. #ifdef AMBIENT_THERMISTOR
  46. int current_temperature_raw_ambient = 0 ;
  47. float current_temperature_ambient = 0.0;
  48. #endif //AMBIENT_THERMISTOR
  49. #ifdef VOLT_PWR_PIN
  50. int current_voltage_raw_pwr = 0;
  51. #endif
  52. #ifdef VOLT_BED_PIN
  53. int current_voltage_raw_bed = 0;
  54. #endif
  55. int current_temperature_bed_raw = 0;
  56. float current_temperature_bed = 0.0;
  57. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  58. int redundant_temperature_raw = 0;
  59. float redundant_temperature = 0.0;
  60. #endif
  61. #ifdef PIDTEMP
  62. float _Kp, _Ki, _Kd;
  63. int pid_cycle, pid_number_of_cycles;
  64. bool pid_tuning_finished = false;
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef FAN_SOFT_PWM
  70. unsigned char fanSpeedSoftPwm;
  71. #endif
  72. unsigned char soft_pwm_bed;
  73. #ifdef BABYSTEPPING
  74. volatile int babystepsTodo[3]={0,0,0};
  75. #endif
  76. //===========================================================================
  77. //=============================private variables============================
  78. //===========================================================================
  79. static volatile bool temp_meas_ready = false;
  80. #ifdef PIDTEMP
  81. //static cannot be external:
  82. static float temp_iState[EXTRUDERS] = { 0 };
  83. static float temp_dState[EXTRUDERS] = { 0 };
  84. static float pTerm[EXTRUDERS];
  85. static float iTerm[EXTRUDERS];
  86. static float dTerm[EXTRUDERS];
  87. //int output;
  88. static float pid_error[EXTRUDERS];
  89. static float temp_iState_min[EXTRUDERS];
  90. static float temp_iState_max[EXTRUDERS];
  91. // static float pid_input[EXTRUDERS];
  92. // static float pid_output[EXTRUDERS];
  93. static bool pid_reset[EXTRUDERS];
  94. #endif //PIDTEMP
  95. #ifdef PIDTEMPBED
  96. //static cannot be external:
  97. static float temp_iState_bed = { 0 };
  98. static float temp_dState_bed = { 0 };
  99. static float pTerm_bed;
  100. static float iTerm_bed;
  101. static float dTerm_bed;
  102. //int output;
  103. static float pid_error_bed;
  104. static float temp_iState_min_bed;
  105. static float temp_iState_max_bed;
  106. #else //PIDTEMPBED
  107. static unsigned long previous_millis_bed_heater;
  108. #endif //PIDTEMPBED
  109. static unsigned char soft_pwm[EXTRUDERS];
  110. #ifdef FAN_SOFT_PWM
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  114. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  116. static unsigned long extruder_autofan_last_check;
  117. #endif
  118. #if EXTRUDERS > 3
  119. # error Unsupported number of extruders
  120. #elif EXTRUDERS > 2
  121. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  122. #elif EXTRUDERS > 1
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  124. #else
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  126. #endif
  127. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  128. // Init min and max temp with extreme values to prevent false errors during startup
  129. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  130. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  131. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  132. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  133. #ifdef BED_MINTEMP
  134. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  135. #endif
  136. #ifdef BED_MAXTEMP
  137. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  138. #endif
  139. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  140. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  141. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  142. #else
  143. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  144. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  145. #endif
  146. static float analog2temp(int raw, uint8_t e);
  147. static float analog2tempBed(int raw);
  148. static float analog2tempAmbient(int raw);
  149. static void updateTemperaturesFromRawValues();
  150. enum TempRunawayStates
  151. {
  152. TempRunaway_INACTIVE = 0,
  153. TempRunaway_PREHEAT = 1,
  154. TempRunaway_ACTIVE = 2,
  155. };
  156. #ifdef WATCH_TEMP_PERIOD
  157. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  158. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  159. #endif //WATCH_TEMP_PERIOD
  160. #ifndef SOFT_PWM_SCALE
  161. #define SOFT_PWM_SCALE 0
  162. #endif
  163. //===========================================================================
  164. //============================= functions ============================
  165. //===========================================================================
  166. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  167. static float temp_runaway_status[4];
  168. static float temp_runaway_target[4];
  169. static float temp_runaway_timer[4];
  170. static int temp_runaway_error_counter[4];
  171. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  172. static void temp_runaway_stop(bool isPreheat, bool isBed);
  173. #endif
  174. void PID_autotune(float temp, int extruder, int ncycles)
  175. {
  176. pid_number_of_cycles = ncycles;
  177. pid_tuning_finished = false;
  178. float input = 0.0;
  179. pid_cycle=0;
  180. bool heating = true;
  181. unsigned long temp_millis = millis();
  182. unsigned long t1=temp_millis;
  183. unsigned long t2=temp_millis;
  184. long t_high = 0;
  185. long t_low = 0;
  186. long bias, d;
  187. float Ku, Tu;
  188. float max = 0, min = 10000;
  189. uint8_t safety_check_cycles = 0;
  190. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  191. float temp_ambient;
  192. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  193. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  194. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  195. unsigned long extruder_autofan_last_check = millis();
  196. #endif
  197. if ((extruder >= EXTRUDERS)
  198. #if (TEMP_BED_PIN <= -1)
  199. ||(extruder < 0)
  200. #endif
  201. ){
  202. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  203. pid_tuning_finished = true;
  204. pid_cycle = 0;
  205. return;
  206. }
  207. SERIAL_ECHOLN("PID Autotune start");
  208. disable_heater(); // switch off all heaters.
  209. if (extruder<0)
  210. {
  211. soft_pwm_bed = (MAX_BED_POWER)/2;
  212. bias = d = (MAX_BED_POWER)/2;
  213. }
  214. else
  215. {
  216. soft_pwm[extruder] = (PID_MAX)/2;
  217. bias = d = (PID_MAX)/2;
  218. }
  219. for(;;) {
  220. #ifdef WATCHDOG
  221. wdt_reset();
  222. #endif //WATCHDOG
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update(0);
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  396. void countFanSpeed()
  397. {
  398. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  399. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  402. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  403. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  404. SERIAL_ECHOLNPGM(" ");*/
  405. fan_edge_counter[0] = 0;
  406. fan_edge_counter[1] = 0;
  407. }
  408. extern bool fans_check_enabled;
  409. void checkFanSpeed()
  410. {
  411. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  412. static unsigned char fan_speed_errors[2] = { 0,0 };
  413. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  414. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  415. else fan_speed_errors[0] = 0;
  416. #endif
  417. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  418. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  419. else fan_speed_errors[1] = 0;
  420. #endif
  421. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  422. fan_speed_errors[0] = 0;
  423. fanSpeedError(0); //extruder fan
  424. }
  425. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  426. fan_speed_errors[1] = 0;
  427. fanSpeedError(1); //print fan
  428. }
  429. }
  430. void fanSpeedError(unsigned char _fan) {
  431. if (get_message_level() != 0 && isPrintPaused) return;
  432. //to ensure that target temp. is not set to zero in case taht we are resuming print
  433. if (card.sdprinting) {
  434. if (heating_status != 0) {
  435. lcd_print_stop();
  436. }
  437. else {
  438. lcd_pause_print();
  439. }
  440. }
  441. else {
  442. setTargetHotend0(0);
  443. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  444. }
  445. switch (_fan) {
  446. case 0:
  447. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  448. if (get_message_level() == 0) {
  449. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  450. WRITE(BEEPER, HIGH);
  451. delayMicroseconds(200);
  452. WRITE(BEEPER, LOW);
  453. delayMicroseconds(100);
  454. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  455. }
  456. break;
  457. case 1:
  458. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  459. if (get_message_level() == 0) {
  460. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  461. WRITE(BEEPER, HIGH);
  462. delayMicroseconds(200);
  463. WRITE(BEEPER, LOW);
  464. delayMicroseconds(100);
  465. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  466. }
  467. break;
  468. }
  469. }
  470. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  471. void checkExtruderAutoFans()
  472. {
  473. uint8_t fanState = 0;
  474. // which fan pins need to be turned on?
  475. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  476. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  477. fanState |= 1;
  478. #endif
  479. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  480. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  481. {
  482. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  483. fanState |= 1;
  484. else
  485. fanState |= 2;
  486. }
  487. #endif
  488. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  489. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  490. {
  491. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  492. fanState |= 1;
  493. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  494. fanState |= 2;
  495. else
  496. fanState |= 4;
  497. }
  498. #endif
  499. // update extruder auto fan states
  500. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  501. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  502. #endif
  503. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  504. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  505. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  506. #endif
  507. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  508. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  509. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  510. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  511. #endif
  512. }
  513. #endif // any extruder auto fan pins set
  514. void manage_heater()
  515. {
  516. #ifdef WATCHDOG
  517. wdt_reset();
  518. #endif //WATCHDOG
  519. float pid_input;
  520. float pid_output;
  521. if(temp_meas_ready != true) //better readability
  522. return;
  523. updateTemperaturesFromRawValues();
  524. check_max_temp();
  525. check_min_temp();
  526. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  527. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  528. #endif
  529. for(int e = 0; e < EXTRUDERS; e++)
  530. {
  531. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  532. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  533. #endif
  534. #ifdef PIDTEMP
  535. pid_input = current_temperature[e];
  536. #ifndef PID_OPENLOOP
  537. pid_error[e] = target_temperature[e] - pid_input;
  538. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  539. pid_output = BANG_MAX;
  540. pid_reset[e] = true;
  541. }
  542. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  543. pid_output = 0;
  544. pid_reset[e] = true;
  545. }
  546. else {
  547. if(pid_reset[e] == true) {
  548. temp_iState[e] = 0.0;
  549. pid_reset[e] = false;
  550. }
  551. pTerm[e] = cs.Kp * pid_error[e];
  552. temp_iState[e] += pid_error[e];
  553. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  554. iTerm[e] = cs.Ki * temp_iState[e];
  555. //K1 defined in Configuration.h in the PID settings
  556. #define K2 (1.0-K1)
  557. dTerm[e] = (cs.Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  558. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  559. if (pid_output > PID_MAX) {
  560. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  561. pid_output=PID_MAX;
  562. } else if (pid_output < 0){
  563. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  564. pid_output=0;
  565. }
  566. }
  567. temp_dState[e] = pid_input;
  568. #else
  569. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  570. #endif //PID_OPENLOOP
  571. #ifdef PID_DEBUG
  572. SERIAL_ECHO_START;
  573. SERIAL_ECHO(" PID_DEBUG ");
  574. SERIAL_ECHO(e);
  575. SERIAL_ECHO(": Input ");
  576. SERIAL_ECHO(pid_input);
  577. SERIAL_ECHO(" Output ");
  578. SERIAL_ECHO(pid_output);
  579. SERIAL_ECHO(" pTerm ");
  580. SERIAL_ECHO(pTerm[e]);
  581. SERIAL_ECHO(" iTerm ");
  582. SERIAL_ECHO(iTerm[e]);
  583. SERIAL_ECHO(" dTerm ");
  584. SERIAL_ECHOLN(dTerm[e]);
  585. #endif //PID_DEBUG
  586. #else /* PID off */
  587. pid_output = 0;
  588. if(current_temperature[e] < target_temperature[e]) {
  589. pid_output = PID_MAX;
  590. }
  591. #endif
  592. // Check if temperature is within the correct range
  593. if(current_temperature[e] < maxttemp[e])
  594. {
  595. soft_pwm[e] = (int)pid_output >> 1;
  596. }
  597. else
  598. {
  599. soft_pwm[e] = 0;
  600. }
  601. if(target_temperature[e]==0)
  602. soft_pwm[e] = 0;
  603. #ifdef WATCH_TEMP_PERIOD
  604. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  605. {
  606. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  607. {
  608. setTargetHotend(0, e);
  609. LCD_MESSAGEPGM("Heating failed");
  610. SERIAL_ECHO_START;
  611. SERIAL_ECHOLN("Heating failed");
  612. }else{
  613. watchmillis[e] = 0;
  614. }
  615. }
  616. #endif
  617. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  618. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  619. disable_heater();
  620. if(IsStopped() == false) {
  621. SERIAL_ERROR_START;
  622. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  623. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  624. }
  625. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  626. Stop();
  627. #endif
  628. }
  629. #endif
  630. } // End extruder for loop
  631. #ifndef DEBUG_DISABLE_FANCHECK
  632. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  633. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  634. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  635. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  636. {
  637. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  638. countFanSpeed();
  639. checkFanSpeed();
  640. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  641. checkExtruderAutoFans();
  642. extruder_autofan_last_check = millis();
  643. }
  644. #endif
  645. #endif //DEBUG_DISABLE_FANCHECK
  646. #ifndef PIDTEMPBED
  647. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  648. return;
  649. previous_millis_bed_heater = millis();
  650. #endif
  651. #if TEMP_SENSOR_BED != 0
  652. #ifdef PIDTEMPBED
  653. pid_input = current_temperature_bed;
  654. #ifndef PID_OPENLOOP
  655. pid_error_bed = target_temperature_bed - pid_input;
  656. pTerm_bed = cs.bedKp * pid_error_bed;
  657. temp_iState_bed += pid_error_bed;
  658. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  659. iTerm_bed = cs.bedKi * temp_iState_bed;
  660. //K1 defined in Configuration.h in the PID settings
  661. #define K2 (1.0-K1)
  662. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  663. temp_dState_bed = pid_input;
  664. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  665. if (pid_output > MAX_BED_POWER) {
  666. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  667. pid_output=MAX_BED_POWER;
  668. } else if (pid_output < 0){
  669. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  670. pid_output=0;
  671. }
  672. #else
  673. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  674. #endif //PID_OPENLOOP
  675. if(current_temperature_bed < BED_MAXTEMP)
  676. {
  677. soft_pwm_bed = (int)pid_output >> 1;
  678. }
  679. else {
  680. soft_pwm_bed = 0;
  681. }
  682. #elif !defined(BED_LIMIT_SWITCHING)
  683. // Check if temperature is within the correct range
  684. if(current_temperature_bed < BED_MAXTEMP)
  685. {
  686. if(current_temperature_bed >= target_temperature_bed)
  687. {
  688. soft_pwm_bed = 0;
  689. }
  690. else
  691. {
  692. soft_pwm_bed = MAX_BED_POWER>>1;
  693. }
  694. }
  695. else
  696. {
  697. soft_pwm_bed = 0;
  698. WRITE(HEATER_BED_PIN,LOW);
  699. }
  700. #else //#ifdef BED_LIMIT_SWITCHING
  701. // Check if temperature is within the correct band
  702. if(current_temperature_bed < BED_MAXTEMP)
  703. {
  704. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  705. {
  706. soft_pwm_bed = 0;
  707. }
  708. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  709. {
  710. soft_pwm_bed = MAX_BED_POWER>>1;
  711. }
  712. }
  713. else
  714. {
  715. soft_pwm_bed = 0;
  716. WRITE(HEATER_BED_PIN,LOW);
  717. }
  718. #endif
  719. if(target_temperature_bed==0)
  720. soft_pwm_bed = 0;
  721. #endif
  722. #ifdef HOST_KEEPALIVE_FEATURE
  723. host_keepalive();
  724. #endif
  725. }
  726. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  727. // Derived from RepRap FiveD extruder::getTemperature()
  728. // For hot end temperature measurement.
  729. static float analog2temp(int raw, uint8_t e) {
  730. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  731. if(e > EXTRUDERS)
  732. #else
  733. if(e >= EXTRUDERS)
  734. #endif
  735. {
  736. SERIAL_ERROR_START;
  737. SERIAL_ERROR((int)e);
  738. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  739. kill(PSTR(""), 6);
  740. return 0.0;
  741. }
  742. #ifdef HEATER_0_USES_MAX6675
  743. if (e == 0)
  744. {
  745. return 0.25 * raw;
  746. }
  747. #endif
  748. if(heater_ttbl_map[e] != NULL)
  749. {
  750. float celsius = 0;
  751. uint8_t i;
  752. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  753. for (i=1; i<heater_ttbllen_map[e]; i++)
  754. {
  755. if (PGM_RD_W((*tt)[i][0]) > raw)
  756. {
  757. celsius = PGM_RD_W((*tt)[i-1][1]) +
  758. (raw - PGM_RD_W((*tt)[i-1][0])) *
  759. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  760. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  761. break;
  762. }
  763. }
  764. // Overflow: Set to last value in the table
  765. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  766. return celsius;
  767. }
  768. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  769. }
  770. // Derived from RepRap FiveD extruder::getTemperature()
  771. // For bed temperature measurement.
  772. static float analog2tempBed(int raw) {
  773. #ifdef BED_USES_THERMISTOR
  774. float celsius = 0;
  775. byte i;
  776. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  777. {
  778. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  779. {
  780. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  781. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  782. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  783. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  784. break;
  785. }
  786. }
  787. // Overflow: Set to last value in the table
  788. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  789. // temperature offset adjustment
  790. #ifdef BED_OFFSET
  791. float _offset = BED_OFFSET;
  792. float _offset_center = BED_OFFSET_CENTER;
  793. float _offset_start = BED_OFFSET_START;
  794. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  795. float _second_koef = (_offset / 2) / (100 - _offset_center);
  796. if (celsius >= _offset_start && celsius <= _offset_center)
  797. {
  798. celsius = celsius + (_first_koef * (celsius - _offset_start));
  799. }
  800. else if (celsius > _offset_center && celsius <= 100)
  801. {
  802. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  803. }
  804. else if (celsius > 100)
  805. {
  806. celsius = celsius + _offset;
  807. }
  808. #endif
  809. return celsius;
  810. #elif defined BED_USES_AD595
  811. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  812. #else
  813. return 0;
  814. #endif
  815. }
  816. #ifdef AMBIENT_THERMISTOR
  817. static float analog2tempAmbient(int raw)
  818. {
  819. float celsius = 0;
  820. byte i;
  821. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  822. {
  823. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  824. {
  825. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  826. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  827. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  828. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  829. break;
  830. }
  831. }
  832. // Overflow: Set to last value in the table
  833. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  834. return celsius;
  835. }
  836. #endif //AMBIENT_THERMISTOR
  837. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  838. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  839. static void updateTemperaturesFromRawValues()
  840. {
  841. for(uint8_t e=0;e<EXTRUDERS;e++)
  842. {
  843. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  844. }
  845. #ifdef PINDA_THERMISTOR
  846. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  847. #endif
  848. #ifdef AMBIENT_THERMISTOR
  849. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  850. #endif
  851. #ifdef DEBUG_HEATER_BED_SIM
  852. current_temperature_bed = target_temperature_bed;
  853. #else //DEBUG_HEATER_BED_SIM
  854. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  855. #endif //DEBUG_HEATER_BED_SIM
  856. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  857. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  858. #endif
  859. //Reset the watchdog after we know we have a temperature measurement.
  860. #ifdef WATCHDOG
  861. wdt_reset();
  862. #endif //WATCHDOG
  863. CRITICAL_SECTION_START;
  864. temp_meas_ready = false;
  865. CRITICAL_SECTION_END;
  866. }
  867. void tp_init()
  868. {
  869. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  870. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  871. MCUCR=(1<<JTD);
  872. MCUCR=(1<<JTD);
  873. #endif
  874. // Finish init of mult extruder arrays
  875. for(int e = 0; e < EXTRUDERS; e++) {
  876. // populate with the first value
  877. maxttemp[e] = maxttemp[0];
  878. #ifdef PIDTEMP
  879. temp_iState_min[e] = 0.0;
  880. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  881. #endif //PIDTEMP
  882. #ifdef PIDTEMPBED
  883. temp_iState_min_bed = 0.0;
  884. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  885. #endif //PIDTEMPBED
  886. }
  887. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  888. SET_OUTPUT(HEATER_0_PIN);
  889. #endif
  890. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  891. SET_OUTPUT(HEATER_1_PIN);
  892. #endif
  893. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  894. SET_OUTPUT(HEATER_2_PIN);
  895. #endif
  896. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  897. SET_OUTPUT(HEATER_BED_PIN);
  898. #endif
  899. #if defined(FAN_PIN) && (FAN_PIN > -1)
  900. SET_OUTPUT(FAN_PIN);
  901. #ifdef FAST_PWM_FAN
  902. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  903. #endif
  904. #ifdef FAN_SOFT_PWM
  905. soft_pwm_fan = fanSpeedSoftPwm / 2;
  906. #endif
  907. #endif
  908. #ifdef HEATER_0_USES_MAX6675
  909. #ifndef SDSUPPORT
  910. SET_OUTPUT(SCK_PIN);
  911. WRITE(SCK_PIN,0);
  912. SET_OUTPUT(MOSI_PIN);
  913. WRITE(MOSI_PIN,1);
  914. SET_INPUT(MISO_PIN);
  915. WRITE(MISO_PIN,1);
  916. #endif
  917. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  918. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  919. pinMode(SS_PIN, OUTPUT);
  920. digitalWrite(SS_PIN,0);
  921. pinMode(MAX6675_SS, OUTPUT);
  922. digitalWrite(MAX6675_SS,1);
  923. #endif
  924. adc_init();
  925. // Use timer0 for temperature measurement
  926. // Interleave temperature interrupt with millies interrupt
  927. OCR0B = 128;
  928. TIMSK0 |= (1<<OCIE0B);
  929. // Wait for temperature measurement to settle
  930. delay(250);
  931. #ifdef HEATER_0_MINTEMP
  932. minttemp[0] = HEATER_0_MINTEMP;
  933. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  934. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  935. minttemp_raw[0] += OVERSAMPLENR;
  936. #else
  937. minttemp_raw[0] -= OVERSAMPLENR;
  938. #endif
  939. }
  940. #endif //MINTEMP
  941. #ifdef HEATER_0_MAXTEMP
  942. maxttemp[0] = HEATER_0_MAXTEMP;
  943. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  944. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  945. maxttemp_raw[0] -= OVERSAMPLENR;
  946. #else
  947. maxttemp_raw[0] += OVERSAMPLENR;
  948. #endif
  949. }
  950. #endif //MAXTEMP
  951. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  952. minttemp[1] = HEATER_1_MINTEMP;
  953. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  954. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  955. minttemp_raw[1] += OVERSAMPLENR;
  956. #else
  957. minttemp_raw[1] -= OVERSAMPLENR;
  958. #endif
  959. }
  960. #endif // MINTEMP 1
  961. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  962. maxttemp[1] = HEATER_1_MAXTEMP;
  963. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  964. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  965. maxttemp_raw[1] -= OVERSAMPLENR;
  966. #else
  967. maxttemp_raw[1] += OVERSAMPLENR;
  968. #endif
  969. }
  970. #endif //MAXTEMP 1
  971. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  972. minttemp[2] = HEATER_2_MINTEMP;
  973. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  974. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  975. minttemp_raw[2] += OVERSAMPLENR;
  976. #else
  977. minttemp_raw[2] -= OVERSAMPLENR;
  978. #endif
  979. }
  980. #endif //MINTEMP 2
  981. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  982. maxttemp[2] = HEATER_2_MAXTEMP;
  983. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  984. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  985. maxttemp_raw[2] -= OVERSAMPLENR;
  986. #else
  987. maxttemp_raw[2] += OVERSAMPLENR;
  988. #endif
  989. }
  990. #endif //MAXTEMP 2
  991. #ifdef BED_MINTEMP
  992. /* No bed MINTEMP error implemented?!? */
  993. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  994. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  995. bed_minttemp_raw += OVERSAMPLENR;
  996. #else
  997. bed_minttemp_raw -= OVERSAMPLENR;
  998. #endif
  999. }
  1000. #endif //BED_MINTEMP
  1001. #ifdef BED_MAXTEMP
  1002. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1003. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1004. bed_maxttemp_raw -= OVERSAMPLENR;
  1005. #else
  1006. bed_maxttemp_raw += OVERSAMPLENR;
  1007. #endif
  1008. }
  1009. #endif //BED_MAXTEMP
  1010. }
  1011. void setWatch()
  1012. {
  1013. #ifdef WATCH_TEMP_PERIOD
  1014. for (int e = 0; e < EXTRUDERS; e++)
  1015. {
  1016. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1017. {
  1018. watch_start_temp[e] = degHotend(e);
  1019. watchmillis[e] = millis();
  1020. }
  1021. }
  1022. #endif
  1023. }
  1024. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1025. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1026. {
  1027. float __hysteresis = 0;
  1028. int __timeout = 0;
  1029. bool temp_runaway_check_active = false;
  1030. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1031. static int __preheat_counter[2] = { 0,0};
  1032. static int __preheat_errors[2] = { 0,0};
  1033. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1034. {
  1035. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1036. if (_isbed)
  1037. {
  1038. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1039. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1040. }
  1041. #endif
  1042. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1043. if (!_isbed)
  1044. {
  1045. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1046. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1047. }
  1048. #endif
  1049. temp_runaway_timer[_heater_id] = millis();
  1050. if (_output == 0)
  1051. {
  1052. temp_runaway_check_active = false;
  1053. temp_runaway_error_counter[_heater_id] = 0;
  1054. }
  1055. if (temp_runaway_target[_heater_id] != _target_temperature)
  1056. {
  1057. if (_target_temperature > 0)
  1058. {
  1059. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1060. temp_runaway_target[_heater_id] = _target_temperature;
  1061. __preheat_start[_heater_id] = _current_temperature;
  1062. __preheat_counter[_heater_id] = 0;
  1063. }
  1064. else
  1065. {
  1066. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1067. temp_runaway_target[_heater_id] = _target_temperature;
  1068. }
  1069. }
  1070. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1071. {
  1072. __preheat_counter[_heater_id]++;
  1073. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1074. {
  1075. /*SERIAL_ECHOPGM("Heater:");
  1076. MYSERIAL.print(_heater_id);
  1077. SERIAL_ECHOPGM(" T:");
  1078. MYSERIAL.print(_current_temperature);
  1079. SERIAL_ECHOPGM(" Tstart:");
  1080. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1081. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1082. __preheat_errors[_heater_id]++;
  1083. /*SERIAL_ECHOPGM(" Preheat errors:");
  1084. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1085. }
  1086. else {
  1087. //SERIAL_ECHOLNPGM("");
  1088. __preheat_errors[_heater_id] = 0;
  1089. }
  1090. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1091. {
  1092. if (farm_mode) { prusa_statistics(0); }
  1093. temp_runaway_stop(true, _isbed);
  1094. if (farm_mode) { prusa_statistics(91); }
  1095. }
  1096. __preheat_start[_heater_id] = _current_temperature;
  1097. __preheat_counter[_heater_id] = 0;
  1098. }
  1099. }
  1100. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1101. {
  1102. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1103. temp_runaway_check_active = false;
  1104. }
  1105. if (_output > 0)
  1106. {
  1107. temp_runaway_check_active = true;
  1108. }
  1109. if (temp_runaway_check_active)
  1110. {
  1111. // we are in range
  1112. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1113. {
  1114. temp_runaway_check_active = false;
  1115. temp_runaway_error_counter[_heater_id] = 0;
  1116. }
  1117. else
  1118. {
  1119. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1120. {
  1121. temp_runaway_error_counter[_heater_id]++;
  1122. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1123. {
  1124. if (farm_mode) { prusa_statistics(0); }
  1125. temp_runaway_stop(false, _isbed);
  1126. if (farm_mode) { prusa_statistics(90); }
  1127. }
  1128. }
  1129. }
  1130. }
  1131. }
  1132. }
  1133. void temp_runaway_stop(bool isPreheat, bool isBed)
  1134. {
  1135. cancel_heatup = true;
  1136. quickStop();
  1137. if (card.sdprinting)
  1138. {
  1139. card.sdprinting = false;
  1140. card.closefile();
  1141. }
  1142. // Clean the input command queue
  1143. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1144. cmdqueue_reset();
  1145. disable_heater();
  1146. disable_x();
  1147. disable_y();
  1148. disable_e0();
  1149. disable_e1();
  1150. disable_e2();
  1151. manage_heater();
  1152. lcd_update(0);
  1153. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1154. WRITE(BEEPER, HIGH);
  1155. delayMicroseconds(500);
  1156. WRITE(BEEPER, LOW);
  1157. delayMicroseconds(100);
  1158. if (isPreheat)
  1159. {
  1160. Stop();
  1161. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1162. SERIAL_ERROR_START;
  1163. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1164. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1165. SET_OUTPUT(FAN_PIN);
  1166. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1167. analogWrite(FAN_PIN, 255);
  1168. fanSpeed = 255;
  1169. delayMicroseconds(2000);
  1170. }
  1171. else
  1172. {
  1173. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1174. SERIAL_ERROR_START;
  1175. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1176. }
  1177. }
  1178. #endif
  1179. void disable_heater()
  1180. {
  1181. setAllTargetHotends(0);
  1182. setTargetBed(0);
  1183. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1184. target_temperature[0]=0;
  1185. soft_pwm[0]=0;
  1186. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1187. WRITE(HEATER_0_PIN,LOW);
  1188. #endif
  1189. #endif
  1190. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1191. target_temperature[1]=0;
  1192. soft_pwm[1]=0;
  1193. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1194. WRITE(HEATER_1_PIN,LOW);
  1195. #endif
  1196. #endif
  1197. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1198. target_temperature[2]=0;
  1199. soft_pwm[2]=0;
  1200. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1201. WRITE(HEATER_2_PIN,LOW);
  1202. #endif
  1203. #endif
  1204. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1205. target_temperature_bed=0;
  1206. soft_pwm_bed=0;
  1207. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1208. WRITE(HEATER_BED_PIN,LOW);
  1209. #endif
  1210. #endif
  1211. }
  1212. void max_temp_error(uint8_t e) {
  1213. disable_heater();
  1214. if(IsStopped() == false) {
  1215. SERIAL_ERROR_START;
  1216. SERIAL_ERRORLN((int)e);
  1217. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1218. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1219. }
  1220. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1221. Stop();
  1222. #endif
  1223. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1224. SET_OUTPUT(FAN_PIN);
  1225. SET_OUTPUT(BEEPER);
  1226. WRITE(FAN_PIN, 1);
  1227. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1228. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1229. WRITE(BEEPER, 1);
  1230. // fanSpeed will consumed by the check_axes_activity() routine.
  1231. fanSpeed=255;
  1232. if (farm_mode) { prusa_statistics(93); }
  1233. }
  1234. void min_temp_error(uint8_t e) {
  1235. #ifdef DEBUG_DISABLE_MINTEMP
  1236. return;
  1237. #endif
  1238. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1239. disable_heater();
  1240. if(IsStopped() == false) {
  1241. SERIAL_ERROR_START;
  1242. SERIAL_ERRORLN((int)e);
  1243. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1244. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1245. }
  1246. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1247. Stop();
  1248. #endif
  1249. if (farm_mode) { prusa_statistics(92); }
  1250. }
  1251. void bed_max_temp_error(void) {
  1252. #if HEATER_BED_PIN > -1
  1253. WRITE(HEATER_BED_PIN, 0);
  1254. #endif
  1255. if(IsStopped() == false) {
  1256. SERIAL_ERROR_START;
  1257. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1258. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1259. }
  1260. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1261. Stop();
  1262. #endif
  1263. }
  1264. void bed_min_temp_error(void) {
  1265. #ifdef DEBUG_DISABLE_MINTEMP
  1266. return;
  1267. #endif
  1268. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1269. #if HEATER_BED_PIN > -1
  1270. WRITE(HEATER_BED_PIN, 0);
  1271. #endif
  1272. if(IsStopped() == false) {
  1273. SERIAL_ERROR_START;
  1274. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1275. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1276. }
  1277. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1278. Stop();
  1279. #endif
  1280. }
  1281. #ifdef HEATER_0_USES_MAX6675
  1282. #define MAX6675_HEAT_INTERVAL 250
  1283. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1284. int max6675_temp = 2000;
  1285. int read_max6675()
  1286. {
  1287. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1288. return max6675_temp;
  1289. max6675_previous_millis = millis();
  1290. max6675_temp = 0;
  1291. #ifdef PRR
  1292. PRR &= ~(1<<PRSPI);
  1293. #elif defined PRR0
  1294. PRR0 &= ~(1<<PRSPI);
  1295. #endif
  1296. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1297. // enable TT_MAX6675
  1298. WRITE(MAX6675_SS, 0);
  1299. // ensure 100ns delay - a bit extra is fine
  1300. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1301. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1302. // read MSB
  1303. SPDR = 0;
  1304. for (;(SPSR & (1<<SPIF)) == 0;);
  1305. max6675_temp = SPDR;
  1306. max6675_temp <<= 8;
  1307. // read LSB
  1308. SPDR = 0;
  1309. for (;(SPSR & (1<<SPIF)) == 0;);
  1310. max6675_temp |= SPDR;
  1311. // disable TT_MAX6675
  1312. WRITE(MAX6675_SS, 1);
  1313. if (max6675_temp & 4)
  1314. {
  1315. // thermocouple open
  1316. max6675_temp = 2000;
  1317. }
  1318. else
  1319. {
  1320. max6675_temp = max6675_temp >> 3;
  1321. }
  1322. return max6675_temp;
  1323. }
  1324. #endif
  1325. extern "C" {
  1326. void adc_ready(void) //callback from adc when sampling finished
  1327. {
  1328. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1329. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1330. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1331. #ifdef VOLT_PWR_PIN
  1332. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1333. #endif
  1334. #ifdef AMBIENT_THERMISTOR
  1335. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1336. #endif //AMBIENT_THERMISTOR
  1337. #ifdef VOLT_BED_PIN
  1338. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1339. #endif
  1340. temp_meas_ready = true;
  1341. }
  1342. } // extern "C"
  1343. // Timer 0 is shared with millies
  1344. ISR(TIMER0_COMPB_vect) // @ 1kHz ~ 1ms
  1345. {
  1346. static bool _lock = false;
  1347. if (_lock) return;
  1348. _lock = true;
  1349. asm("sei");
  1350. if (!temp_meas_ready) adc_cycle();
  1351. lcd_buttons_update();
  1352. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1353. static unsigned char soft_pwm_0;
  1354. #ifdef SLOW_PWM_HEATERS
  1355. static unsigned char slow_pwm_count = 0;
  1356. static unsigned char state_heater_0 = 0;
  1357. static unsigned char state_timer_heater_0 = 0;
  1358. #endif
  1359. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1360. static unsigned char soft_pwm_1;
  1361. #ifdef SLOW_PWM_HEATERS
  1362. static unsigned char state_heater_1 = 0;
  1363. static unsigned char state_timer_heater_1 = 0;
  1364. #endif
  1365. #endif
  1366. #if EXTRUDERS > 2
  1367. static unsigned char soft_pwm_2;
  1368. #ifdef SLOW_PWM_HEATERS
  1369. static unsigned char state_heater_2 = 0;
  1370. static unsigned char state_timer_heater_2 = 0;
  1371. #endif
  1372. #endif
  1373. #if HEATER_BED_PIN > -1
  1374. static unsigned char soft_pwm_b;
  1375. #ifdef SLOW_PWM_HEATERS
  1376. static unsigned char state_heater_b = 0;
  1377. static unsigned char state_timer_heater_b = 0;
  1378. #endif
  1379. #endif
  1380. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1381. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1382. #endif
  1383. #ifndef SLOW_PWM_HEATERS
  1384. /*
  1385. * standard PWM modulation
  1386. */
  1387. if (pwm_count == 0)
  1388. {
  1389. soft_pwm_0 = soft_pwm[0];
  1390. if(soft_pwm_0 > 0)
  1391. {
  1392. WRITE(HEATER_0_PIN,1);
  1393. #ifdef HEATERS_PARALLEL
  1394. WRITE(HEATER_1_PIN,1);
  1395. #endif
  1396. } else WRITE(HEATER_0_PIN,0);
  1397. #if EXTRUDERS > 1
  1398. soft_pwm_1 = soft_pwm[1];
  1399. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1400. #endif
  1401. #if EXTRUDERS > 2
  1402. soft_pwm_2 = soft_pwm[2];
  1403. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1404. #endif
  1405. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1406. soft_pwm_b = soft_pwm_bed;
  1407. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1408. #endif
  1409. #ifdef FAN_SOFT_PWM
  1410. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1411. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1412. #endif
  1413. }
  1414. if(soft_pwm_0 < pwm_count)
  1415. {
  1416. WRITE(HEATER_0_PIN,0);
  1417. #ifdef HEATERS_PARALLEL
  1418. WRITE(HEATER_1_PIN,0);
  1419. #endif
  1420. }
  1421. #if EXTRUDERS > 1
  1422. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1423. #endif
  1424. #if EXTRUDERS > 2
  1425. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1426. #endif
  1427. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1428. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1429. #endif
  1430. #ifdef FAN_SOFT_PWM
  1431. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1432. #endif
  1433. pwm_count += (1 << SOFT_PWM_SCALE);
  1434. pwm_count &= 0x7f;
  1435. #else //ifndef SLOW_PWM_HEATERS
  1436. /*
  1437. * SLOW PWM HEATERS
  1438. *
  1439. * for heaters drived by relay
  1440. */
  1441. #ifndef MIN_STATE_TIME
  1442. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1443. #endif
  1444. if (slow_pwm_count == 0) {
  1445. // EXTRUDER 0
  1446. soft_pwm_0 = soft_pwm[0];
  1447. if (soft_pwm_0 > 0) {
  1448. // turn ON heather only if the minimum time is up
  1449. if (state_timer_heater_0 == 0) {
  1450. // if change state set timer
  1451. if (state_heater_0 == 0) {
  1452. state_timer_heater_0 = MIN_STATE_TIME;
  1453. }
  1454. state_heater_0 = 1;
  1455. WRITE(HEATER_0_PIN, 1);
  1456. #ifdef HEATERS_PARALLEL
  1457. WRITE(HEATER_1_PIN, 1);
  1458. #endif
  1459. }
  1460. } else {
  1461. // turn OFF heather only if the minimum time is up
  1462. if (state_timer_heater_0 == 0) {
  1463. // if change state set timer
  1464. if (state_heater_0 == 1) {
  1465. state_timer_heater_0 = MIN_STATE_TIME;
  1466. }
  1467. state_heater_0 = 0;
  1468. WRITE(HEATER_0_PIN, 0);
  1469. #ifdef HEATERS_PARALLEL
  1470. WRITE(HEATER_1_PIN, 0);
  1471. #endif
  1472. }
  1473. }
  1474. #if EXTRUDERS > 1
  1475. // EXTRUDER 1
  1476. soft_pwm_1 = soft_pwm[1];
  1477. if (soft_pwm_1 > 0) {
  1478. // turn ON heather only if the minimum time is up
  1479. if (state_timer_heater_1 == 0) {
  1480. // if change state set timer
  1481. if (state_heater_1 == 0) {
  1482. state_timer_heater_1 = MIN_STATE_TIME;
  1483. }
  1484. state_heater_1 = 1;
  1485. WRITE(HEATER_1_PIN, 1);
  1486. }
  1487. } else {
  1488. // turn OFF heather only if the minimum time is up
  1489. if (state_timer_heater_1 == 0) {
  1490. // if change state set timer
  1491. if (state_heater_1 == 1) {
  1492. state_timer_heater_1 = MIN_STATE_TIME;
  1493. }
  1494. state_heater_1 = 0;
  1495. WRITE(HEATER_1_PIN, 0);
  1496. }
  1497. }
  1498. #endif
  1499. #if EXTRUDERS > 2
  1500. // EXTRUDER 2
  1501. soft_pwm_2 = soft_pwm[2];
  1502. if (soft_pwm_2 > 0) {
  1503. // turn ON heather only if the minimum time is up
  1504. if (state_timer_heater_2 == 0) {
  1505. // if change state set timer
  1506. if (state_heater_2 == 0) {
  1507. state_timer_heater_2 = MIN_STATE_TIME;
  1508. }
  1509. state_heater_2 = 1;
  1510. WRITE(HEATER_2_PIN, 1);
  1511. }
  1512. } else {
  1513. // turn OFF heather only if the minimum time is up
  1514. if (state_timer_heater_2 == 0) {
  1515. // if change state set timer
  1516. if (state_heater_2 == 1) {
  1517. state_timer_heater_2 = MIN_STATE_TIME;
  1518. }
  1519. state_heater_2 = 0;
  1520. WRITE(HEATER_2_PIN, 0);
  1521. }
  1522. }
  1523. #endif
  1524. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1525. // BED
  1526. soft_pwm_b = soft_pwm_bed;
  1527. if (soft_pwm_b > 0) {
  1528. // turn ON heather only if the minimum time is up
  1529. if (state_timer_heater_b == 0) {
  1530. // if change state set timer
  1531. if (state_heater_b == 0) {
  1532. state_timer_heater_b = MIN_STATE_TIME;
  1533. }
  1534. state_heater_b = 1;
  1535. WRITE(HEATER_BED_PIN, 1);
  1536. }
  1537. } else {
  1538. // turn OFF heather only if the minimum time is up
  1539. if (state_timer_heater_b == 0) {
  1540. // if change state set timer
  1541. if (state_heater_b == 1) {
  1542. state_timer_heater_b = MIN_STATE_TIME;
  1543. }
  1544. state_heater_b = 0;
  1545. WRITE(HEATER_BED_PIN, 0);
  1546. }
  1547. }
  1548. #endif
  1549. } // if (slow_pwm_count == 0)
  1550. // EXTRUDER 0
  1551. if (soft_pwm_0 < slow_pwm_count) {
  1552. // turn OFF heather only if the minimum time is up
  1553. if (state_timer_heater_0 == 0) {
  1554. // if change state set timer
  1555. if (state_heater_0 == 1) {
  1556. state_timer_heater_0 = MIN_STATE_TIME;
  1557. }
  1558. state_heater_0 = 0;
  1559. WRITE(HEATER_0_PIN, 0);
  1560. #ifdef HEATERS_PARALLEL
  1561. WRITE(HEATER_1_PIN, 0);
  1562. #endif
  1563. }
  1564. }
  1565. #if EXTRUDERS > 1
  1566. // EXTRUDER 1
  1567. if (soft_pwm_1 < slow_pwm_count) {
  1568. // turn OFF heather only if the minimum time is up
  1569. if (state_timer_heater_1 == 0) {
  1570. // if change state set timer
  1571. if (state_heater_1 == 1) {
  1572. state_timer_heater_1 = MIN_STATE_TIME;
  1573. }
  1574. state_heater_1 = 0;
  1575. WRITE(HEATER_1_PIN, 0);
  1576. }
  1577. }
  1578. #endif
  1579. #if EXTRUDERS > 2
  1580. // EXTRUDER 2
  1581. if (soft_pwm_2 < slow_pwm_count) {
  1582. // turn OFF heather only if the minimum time is up
  1583. if (state_timer_heater_2 == 0) {
  1584. // if change state set timer
  1585. if (state_heater_2 == 1) {
  1586. state_timer_heater_2 = MIN_STATE_TIME;
  1587. }
  1588. state_heater_2 = 0;
  1589. WRITE(HEATER_2_PIN, 0);
  1590. }
  1591. }
  1592. #endif
  1593. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1594. // BED
  1595. if (soft_pwm_b < slow_pwm_count) {
  1596. // turn OFF heather only if the minimum time is up
  1597. if (state_timer_heater_b == 0) {
  1598. // if change state set timer
  1599. if (state_heater_b == 1) {
  1600. state_timer_heater_b = MIN_STATE_TIME;
  1601. }
  1602. state_heater_b = 0;
  1603. WRITE(HEATER_BED_PIN, 0);
  1604. }
  1605. }
  1606. #endif
  1607. #ifdef FAN_SOFT_PWM
  1608. if (pwm_count == 0){
  1609. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1610. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1611. }
  1612. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1613. #endif
  1614. pwm_count += (1 << SOFT_PWM_SCALE);
  1615. pwm_count &= 0x7f;
  1616. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1617. if ((pwm_count % 64) == 0) {
  1618. slow_pwm_count++;
  1619. slow_pwm_count &= 0x7f;
  1620. // Extruder 0
  1621. if (state_timer_heater_0 > 0) {
  1622. state_timer_heater_0--;
  1623. }
  1624. #if EXTRUDERS > 1
  1625. // Extruder 1
  1626. if (state_timer_heater_1 > 0)
  1627. state_timer_heater_1--;
  1628. #endif
  1629. #if EXTRUDERS > 2
  1630. // Extruder 2
  1631. if (state_timer_heater_2 > 0)
  1632. state_timer_heater_2--;
  1633. #endif
  1634. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1635. // Bed
  1636. if (state_timer_heater_b > 0)
  1637. state_timer_heater_b--;
  1638. #endif
  1639. } //if ((pwm_count % 64) == 0) {
  1640. #endif //ifndef SLOW_PWM_HEATERS
  1641. #ifdef BABYSTEPPING
  1642. for(uint8_t axis=0;axis<3;axis++)
  1643. {
  1644. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1645. if(curTodo>0)
  1646. {
  1647. asm("cli");
  1648. babystep(axis,/*fwd*/true);
  1649. babystepsTodo[axis]--; //less to do next time
  1650. asm("sei");
  1651. }
  1652. else
  1653. if(curTodo<0)
  1654. {
  1655. asm("cli");
  1656. babystep(axis,/*fwd*/false);
  1657. babystepsTodo[axis]++; //less to do next time
  1658. asm("sei");
  1659. }
  1660. }
  1661. #endif //BABYSTEPPING
  1662. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1663. check_fans();
  1664. #endif //(defined(TACH_0))
  1665. _lock = false;
  1666. }
  1667. void check_max_temp()
  1668. {
  1669. //heater
  1670. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1671. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1672. #else
  1673. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1674. #endif
  1675. max_temp_error(0);
  1676. }
  1677. //bed
  1678. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1679. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1680. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1681. #else
  1682. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1683. #endif
  1684. target_temperature_bed = 0;
  1685. bed_max_temp_error();
  1686. }
  1687. #endif
  1688. }
  1689. void check_min_temp_heater0()
  1690. {
  1691. //heater
  1692. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1693. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1694. #else
  1695. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1696. #endif
  1697. min_temp_error(0);
  1698. }
  1699. }
  1700. void check_min_temp_bed()
  1701. {
  1702. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1703. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1704. #else
  1705. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1706. #endif
  1707. bed_min_temp_error();
  1708. }
  1709. }
  1710. void check_min_temp()
  1711. {
  1712. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1713. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1714. #ifdef AMBIENT_THERMISTOR
  1715. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1716. { // ambient temperature is low
  1717. #endif //AMBIENT_THERMISTOR
  1718. // *** 'common' part of code for MK2.5 & MK3
  1719. // * nozzle checking
  1720. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1721. { // ~ nozzle heating is on
  1722. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>=minttemp[active_extruder]); // for eventually delay cutting
  1723. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1724. {
  1725. bCheckingOnHeater=true; // not necessary
  1726. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1727. }
  1728. }
  1729. else { // ~ nozzle heating is off
  1730. oTimer4minTempHeater.start();
  1731. bCheckingOnHeater=false;
  1732. }
  1733. // * bed checking
  1734. if(target_temperature_bed>BED_MINTEMP)
  1735. { // ~ bed heating is on
  1736. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>=BED_MINTEMP); // for eventually delay cutting
  1737. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1738. {
  1739. bCheckingOnBed=true; // not necessary
  1740. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1741. }
  1742. }
  1743. else { // ~ bed heating is off
  1744. oTimer4minTempBed.start();
  1745. bCheckingOnBed=false;
  1746. }
  1747. // *** end of 'common' part
  1748. #ifdef AMBIENT_THERMISTOR
  1749. }
  1750. else { // ambient temperature is standard
  1751. check_min_temp_heater0();
  1752. check_min_temp_bed();
  1753. }
  1754. #endif //AMBIENT_THERMISTOR
  1755. }
  1756. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1757. void check_fans() {
  1758. if (READ(TACH_0) != fan_state[0]) {
  1759. fan_edge_counter[0] ++;
  1760. fan_state[0] = !fan_state[0];
  1761. }
  1762. //if (READ(TACH_1) != fan_state[1]) {
  1763. // fan_edge_counter[1] ++;
  1764. // fan_state[1] = !fan_state[1];
  1765. //}
  1766. }
  1767. #endif //TACH_0
  1768. #ifdef PIDTEMP
  1769. // Apply the scale factors to the PID values
  1770. float scalePID_i(float i)
  1771. {
  1772. return i*PID_dT;
  1773. }
  1774. float unscalePID_i(float i)
  1775. {
  1776. return i/PID_dT;
  1777. }
  1778. float scalePID_d(float d)
  1779. {
  1780. return d/PID_dT;
  1781. }
  1782. float unscalePID_d(float d)
  1783. {
  1784. return d*PID_dT;
  1785. }
  1786. #endif //PIDTEMP