planner.cpp 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "fancheck.h"
  41. #include "ultralcd.h"
  42. #include "language.h"
  43. #include "ConfigurationStore.h"
  44. #ifdef MESH_BED_LEVELING
  45. #include "mesh_bed_leveling.h"
  46. #include "mesh_bed_calibration.h"
  47. #endif
  48. #ifdef TMC2130
  49. #include "tmc2130.h"
  50. #endif //TMC2130
  51. #include <util/atomic.h>
  52. //===========================================================================
  53. //=============================public variables ============================
  54. //===========================================================================
  55. // Use M203 to override by software
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  85. volatile uint8_t block_buffer_tail; // Index of the block to process now
  86. #ifdef PLANNER_DIAGNOSTICS
  87. // Diagnostic function: Minimum number of planned moves since the last
  88. static uint8_t g_cntr_planner_queue_min = 0;
  89. #endif /* PLANNER_DIAGNOSTICS */
  90. //===========================================================================
  91. //=============================private variables ============================
  92. //===========================================================================
  93. #ifdef PREVENT_DANGEROUS_EXTRUDE
  94. int extrude_min_temp = EXTRUDE_MINTEMP;
  95. #endif
  96. #ifdef LIN_ADVANCE
  97. float extruder_advance_K = LA_K_DEF;
  98. float position_float[NUM_AXIS];
  99. #endif
  100. // Request the next block to start at zero E count
  101. static bool plan_reset_next_e_queue;
  102. static bool plan_reset_next_e_sched;
  103. // Returns the index of the next block in the ring buffer
  104. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  105. static inline uint8_t next_block_index(uint8_t block_index) {
  106. if (++ block_index == BLOCK_BUFFER_SIZE)
  107. block_index = 0;
  108. return block_index;
  109. }
  110. // Returns the index of the previous block in the ring buffer
  111. static inline uint8_t prev_block_index(uint8_t block_index) {
  112. if (block_index == 0)
  113. block_index = BLOCK_BUFFER_SIZE;
  114. -- block_index;
  115. return block_index;
  116. }
  117. //===========================================================================
  118. //=============================functions ============================
  119. //===========================================================================
  120. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  121. // given acceleration:
  122. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  123. {
  124. if (acceleration!=0) {
  125. return((target_rate*target_rate-initial_rate*initial_rate)/
  126. (2.0*acceleration));
  127. }
  128. else {
  129. return 0.0; // acceleration was 0, set acceleration distance to 0
  130. }
  131. }
  132. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  133. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  134. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  135. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  136. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  137. {
  138. if (acceleration!=0) {
  139. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  140. (4.0*acceleration) );
  141. }
  142. else {
  143. return 0.0; // acceleration was 0, set intersection distance to 0
  144. }
  145. }
  146. // Minimum stepper rate 120Hz.
  147. #define MINIMAL_STEP_RATE 120
  148. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  149. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  150. {
  151. // These two lines are the only floating point calculations performed in this routine.
  152. // initial_rate, final_rate in Hz.
  153. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  154. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  155. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  156. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  157. // Limit minimal step rate (Otherwise the timer will overflow.)
  158. if (initial_rate < MINIMAL_STEP_RATE)
  159. initial_rate = MINIMAL_STEP_RATE;
  160. if (initial_rate > block->nominal_rate)
  161. initial_rate = block->nominal_rate;
  162. if (final_rate < MINIMAL_STEP_RATE)
  163. final_rate = MINIMAL_STEP_RATE;
  164. if (final_rate > block->nominal_rate)
  165. final_rate = block->nominal_rate;
  166. uint32_t acceleration = block->acceleration_st;
  167. if (acceleration == 0)
  168. // Don't allow zero acceleration.
  169. acceleration = 1;
  170. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  171. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  172. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  173. //FIXME assert that this result fits a 64bit unsigned int.
  174. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  175. uint32_t final_rate_sqr = final_rate*final_rate;
  176. uint32_t acceleration_x2 = acceleration << 1;
  177. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  178. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  179. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  180. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  181. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  182. // Size of Plateau of Nominal Rate.
  183. uint32_t plateau_steps = 0;
  184. #ifdef LIN_ADVANCE
  185. uint16_t final_adv_steps = 0;
  186. uint16_t max_adv_steps = 0;
  187. if (block->use_advance_lead) {
  188. final_adv_steps = final_rate * block->adv_comp;
  189. }
  190. #endif
  191. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  192. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  193. // in order to reach the final_rate exactly at the end of this block.
  194. if (accel_decel_steps < block->step_event_count.wide) {
  195. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  196. #ifdef LIN_ADVANCE
  197. if (block->use_advance_lead)
  198. max_adv_steps = block->nominal_rate * block->adv_comp;
  199. #endif
  200. } else {
  201. uint32_t acceleration_x4 = acceleration << 2;
  202. // Avoid negative numbers
  203. if (final_rate_sqr >= initial_rate_sqr) {
  204. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  205. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  206. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  207. #if 0
  208. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  209. #else
  210. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  211. if (block->step_event_count.wide & 1)
  212. accelerate_steps += acceleration_x2;
  213. accelerate_steps /= acceleration_x4;
  214. accelerate_steps += (block->step_event_count.wide >> 1);
  215. #endif
  216. if (accelerate_steps > block->step_event_count.wide)
  217. accelerate_steps = block->step_event_count.wide;
  218. } else {
  219. #if 0
  220. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  221. #else
  222. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  223. if (block->step_event_count.wide & 1)
  224. decelerate_steps += acceleration_x2;
  225. decelerate_steps /= acceleration_x4;
  226. decelerate_steps += (block->step_event_count.wide >> 1);
  227. #endif
  228. if (decelerate_steps > block->step_event_count.wide)
  229. decelerate_steps = block->step_event_count.wide;
  230. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  231. }
  232. #ifdef LIN_ADVANCE
  233. if (block->use_advance_lead) {
  234. if(!accelerate_steps || !decelerate_steps) {
  235. // accelerate_steps=0: deceleration-only ramp, max_rate is effectively unused
  236. // decelerate_steps=0: acceleration-only ramp, max_rate _is_ final_rate
  237. max_adv_steps = final_adv_steps;
  238. } else {
  239. float max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
  240. max_adv_steps = max_rate * block->adv_comp;
  241. }
  242. }
  243. #endif
  244. }
  245. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  246. // This block locks the interrupts globally for 4.38 us,
  247. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  248. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  249. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  250. if (! block->busy) { // Don't update variables if block is busy.
  251. block->accelerate_until = accelerate_steps;
  252. block->decelerate_after = accelerate_steps+plateau_steps;
  253. block->initial_rate = initial_rate;
  254. block->final_rate = final_rate;
  255. #ifdef LIN_ADVANCE
  256. block->final_adv_steps = final_adv_steps;
  257. block->max_adv_steps = max_adv_steps;
  258. #endif
  259. }
  260. CRITICAL_SECTION_END;
  261. }
  262. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  263. // decceleration within the allotted distance.
  264. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  265. {
  266. // assert(decceleration < 0);
  267. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  268. }
  269. // Recalculates the motion plan according to the following algorithm:
  270. //
  271. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  272. // so that:
  273. // a. The junction jerk is within the set limit
  274. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  275. // acceleration.
  276. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  277. // a. The speed increase within one block would require faster accelleration than the one, true
  278. // constant acceleration.
  279. //
  280. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  281. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  282. // the set limit. Finally it will:
  283. //
  284. // 3. Recalculate trapezoids for all blocks.
  285. //
  286. //FIXME This routine is called 15x every time a new line is added to the planner,
  287. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  288. // if the CPU is found lacking computational power.
  289. //
  290. // Following sources may be used to optimize the 8-bit AVR code:
  291. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  292. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  293. //
  294. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  295. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  296. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  297. //
  298. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  299. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  300. // https://github.com/rekka/avrmultiplication
  301. //
  302. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  303. // https://courses.cit.cornell.edu/ee476/Math/
  304. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  305. //
  306. void planner_recalculate(const float &safe_final_speed)
  307. {
  308. // Reverse pass
  309. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  310. // by consuming the blocks, therefore shortening the queue.
  311. uint8_t tail = block_buffer_tail;
  312. uint8_t block_index;
  313. block_t *prev, *current, *next;
  314. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  315. // At least three blocks are in the queue?
  316. uint8_t n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  317. if (n_blocks >= 3) {
  318. // Initialize the last tripple of blocks.
  319. block_index = prev_block_index(block_buffer_head);
  320. next = block_buffer + block_index;
  321. current = block_buffer + (block_index = prev_block_index(block_index));
  322. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  323. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  324. // 1) it may already be running at the stepper interrupt,
  325. // 2) there is no way to limit it when going in the forward direction.
  326. while (block_index != tail) {
  327. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  328. // Don't modify the entry velocity of the starting block.
  329. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  330. // for the stepper interrupt routine to use them.
  331. tail = block_index;
  332. // Update the number of blocks to process.
  333. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  334. // SERIAL_ECHOLNPGM("START");
  335. break;
  336. }
  337. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  338. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  339. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  340. if (current->entry_speed != current->max_entry_speed) {
  341. // assert(current->entry_speed < current->max_entry_speed);
  342. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  343. // segment and the maximum acceleration allowed for this segment.
  344. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  345. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  346. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  347. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  348. // together with an assembly 32bit->16bit sqrt function.
  349. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  350. current->max_entry_speed :
  351. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  352. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  353. current->flag |= BLOCK_FLAG_RECALCULATE;
  354. }
  355. next = current;
  356. current = block_buffer + (block_index = prev_block_index(block_index));
  357. }
  358. }
  359. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  360. // Forward pass and recalculate the trapezoids.
  361. if (n_blocks >= 2) {
  362. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  363. block_index = tail;
  364. prev = block_buffer + block_index;
  365. current = block_buffer + (block_index = next_block_index(block_index));
  366. do {
  367. // If the previous block is an acceleration block, but it is not long enough to complete the
  368. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  369. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  370. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  371. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  372. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  373. // Check for junction speed change
  374. if (current->entry_speed != entry_speed) {
  375. current->entry_speed = entry_speed;
  376. current->flag |= BLOCK_FLAG_RECALCULATE;
  377. }
  378. }
  379. // Recalculate if current block entry or exit junction speed has changed.
  380. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  381. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  382. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  383. // Reset current only to ensure next trapezoid is computed.
  384. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  385. }
  386. prev = current;
  387. current = block_buffer + (block_index = next_block_index(block_index));
  388. } while (block_index != block_buffer_head);
  389. }
  390. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  391. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  392. current = block_buffer + prev_block_index(block_buffer_head);
  393. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  394. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  395. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  396. }
  397. void plan_init() {
  398. block_buffer_head = 0;
  399. block_buffer_tail = 0;
  400. memset(position, 0, sizeof(position)); // clear position
  401. #ifdef LIN_ADVANCE
  402. memset(position_float, 0, sizeof(position_float)); // clear position
  403. #endif
  404. memset(previous_speed, 0, sizeof(previous_speed));
  405. previous_nominal_speed = 0.0;
  406. plan_reset_next_e_queue = false;
  407. plan_reset_next_e_sched = false;
  408. }
  409. #ifdef AUTOTEMP
  410. void getHighESpeed()
  411. {
  412. static float oldt=0;
  413. if(!autotemp_enabled){
  414. return;
  415. }
  416. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  417. return; //do nothing
  418. }
  419. float high=0.0;
  420. uint8_t block_index = block_buffer_tail;
  421. while(block_index != block_buffer_head) {
  422. if((block_buffer[block_index].steps_x.wide != 0) ||
  423. (block_buffer[block_index].steps_y.wide != 0) ||
  424. (block_buffer[block_index].steps_z.wide != 0)) {
  425. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  426. //se; mm/sec;
  427. if(se>high)
  428. {
  429. high=se;
  430. }
  431. }
  432. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  433. }
  434. float g=autotemp_min+high*autotemp_factor;
  435. float t=g;
  436. if(t<autotemp_min)
  437. t=autotemp_min;
  438. if(t>autotemp_max)
  439. t=autotemp_max;
  440. if(oldt>t)
  441. {
  442. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  443. }
  444. oldt=t;
  445. setTargetHotend0(t);
  446. }
  447. #endif
  448. bool e_active()
  449. {
  450. unsigned char e_active = 0;
  451. block_t *block;
  452. if(block_buffer_tail != block_buffer_head)
  453. {
  454. uint8_t block_index = block_buffer_tail;
  455. while(block_index != block_buffer_head)
  456. {
  457. block = &block_buffer[block_index];
  458. if(block->steps_e.wide != 0) e_active++;
  459. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  460. }
  461. }
  462. return (e_active > 0) ? true : false ;
  463. }
  464. void check_axes_activity()
  465. {
  466. unsigned char x_active = 0;
  467. unsigned char y_active = 0;
  468. unsigned char z_active = 0;
  469. unsigned char e_active = 0;
  470. unsigned char tail_fan_speed = fanSpeed;
  471. block_t *block;
  472. if(block_buffer_tail != block_buffer_head)
  473. {
  474. uint8_t block_index = block_buffer_tail;
  475. tail_fan_speed = block_buffer[block_index].fan_speed;
  476. while(block_index != block_buffer_head)
  477. {
  478. block = &block_buffer[block_index];
  479. if(block->steps_x.wide != 0) x_active++;
  480. if(block->steps_y.wide != 0) y_active++;
  481. if(block->steps_z.wide != 0) z_active++;
  482. if(block->steps_e.wide != 0) e_active++;
  483. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  484. }
  485. }
  486. if((DISABLE_X) && (x_active == 0)) disable_x();
  487. if((DISABLE_Y) && (y_active == 0)) disable_y();
  488. if((DISABLE_Z) && (z_active == 0)) disable_z();
  489. if((DISABLE_E) && (e_active == 0))
  490. {
  491. disable_e0();
  492. disable_e1();
  493. disable_e2();
  494. }
  495. #if defined(FAN_PIN) && FAN_PIN > -1
  496. #ifdef FAN_KICKSTART_TIME
  497. static unsigned long fan_kick_end;
  498. if (tail_fan_speed) {
  499. if (fan_kick_end == 0) {
  500. // Just starting up fan - run at full power.
  501. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  502. tail_fan_speed = 255;
  503. } else if (fan_kick_end > _millis())
  504. // Fan still spinning up.
  505. tail_fan_speed = 255;
  506. } else {
  507. fan_kick_end = 0;
  508. }
  509. #endif//FAN_KICKSTART_TIME
  510. #ifdef FAN_SOFT_PWM
  511. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  512. fanSpeedBckp = tail_fan_speed;
  513. }
  514. else {
  515. fanSpeedSoftPwm = tail_fan_speed;
  516. }
  517. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  518. #else
  519. analogWrite(FAN_PIN,tail_fan_speed);
  520. #endif//!FAN_SOFT_PWM
  521. #endif//FAN_PIN > -1
  522. #ifdef AUTOTEMP
  523. getHighESpeed();
  524. #endif
  525. }
  526. bool planner_aborted = false;
  527. #ifdef PLANNER_DIAGNOSTICS
  528. static inline void planner_update_queue_min_counter()
  529. {
  530. uint8_t new_counter = moves_planned();
  531. if (new_counter < g_cntr_planner_queue_min)
  532. g_cntr_planner_queue_min = new_counter;
  533. }
  534. #endif /* PLANNER_DIAGNOSTICS */
  535. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  536. void planner_reset_position()
  537. {
  538. // First update the planner's current position in the physical motor steps.
  539. position[X_AXIS] = st_get_position(X_AXIS);
  540. position[Y_AXIS] = st_get_position(Y_AXIS);
  541. position[Z_AXIS] = st_get_position(Z_AXIS);
  542. position[E_AXIS] = st_get_position(E_AXIS);
  543. // Second update the current position of the front end.
  544. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  545. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  546. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  547. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  548. // Apply the mesh bed leveling correction to the Z axis.
  549. #ifdef MESH_BED_LEVELING
  550. if (mbl.active) {
  551. #if 1
  552. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  553. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  554. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  555. #else
  556. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  557. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  558. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  559. else {
  560. float t = float(step_events_completed) / float(current_block->step_event_count);
  561. float vec[3] = {
  562. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  563. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  564. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  565. };
  566. float pos1[3], pos2[3];
  567. for (int8_t i = 0; i < 3; ++ i) {
  568. if (current_block->direction_bits & (1<<i))
  569. vec[i] = - vec[i];
  570. pos1[i] = current_position[i] - vec[i] * t;
  571. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  572. }
  573. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  574. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  575. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  576. }
  577. #endif
  578. }
  579. #endif
  580. // Apply inverse world correction matrix.
  581. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  582. set_destination_to_current();
  583. #ifdef LIN_ADVANCE
  584. memcpy(position_float, current_position, sizeof(position_float));
  585. #endif
  586. }
  587. void planner_abort_hard()
  588. {
  589. // Abort the stepper routine and flush the planner queue.
  590. DISABLE_STEPPER_DRIVER_INTERRUPT();
  591. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  592. planner_reset_position();
  593. // Relay to planner wait routine that the current line shall be canceled.
  594. planner_aborted = true;
  595. // Clear the planner queue, reset and re-enable the stepper timer.
  596. quickStop();
  597. // Resets planner junction speeds. Assumes start from rest.
  598. previous_nominal_speed = 0.0;
  599. memset(previous_speed, 0, sizeof(previous_speed));
  600. // Reset position sync requests
  601. plan_reset_next_e_queue = false;
  602. plan_reset_next_e_sched = false;
  603. }
  604. void plan_buffer_line_curposXYZE(float feed_rate) {
  605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder );
  606. }
  607. void plan_buffer_line_destinationXYZE(float feed_rate) {
  608. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate, active_extruder);
  609. }
  610. void plan_set_position_curposXYZE(){
  611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  612. }
  613. float junction_deviation = 0.1;
  614. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  615. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  616. // calculation the caller must also provide the physical length of the line in millimeters.
  617. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_start_position, uint16_t segment_idx)
  618. {
  619. // CRITICAL_SECTION_START; //prevent stack overflow in ISR
  620. // printf_P(PSTR("plan_buffer_line(%f, %f, %f, %f, %f, %u, [%f,%f,%f,%f], %u)\n"), x, y, z, e, feed_rate, extruder, gcode_start_position[0], gcode_start_position[1], gcode_start_position[2], gcode_start_position[3], segment_idx);
  621. // CRITICAL_SECTION_END;
  622. // Calculate the buffer head after we push this byte
  623. uint8_t next_buffer_head = next_block_index(block_buffer_head);
  624. // If the buffer is full: good! That means we are well ahead of the robot.
  625. // Rest here until there is room in the buffer.
  626. if (block_buffer_tail == next_buffer_head) {
  627. do {
  628. manage_heater();
  629. // Vojtech: Don't disable motors inside the planner!
  630. manage_inactivity(false);
  631. lcd_update(0);
  632. } while (block_buffer_tail == next_buffer_head);
  633. }
  634. #ifdef PLANNER_DIAGNOSTICS
  635. planner_update_queue_min_counter();
  636. #endif /* PLANNER_DIAGNOSTICS */
  637. if(planner_aborted) {
  638. // avoid planning the block early if aborted
  639. return;
  640. }
  641. // Prepare to set up new block
  642. block_t *block = &block_buffer[block_buffer_head];
  643. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  644. block->busy = false;
  645. // Set sdlen for calculating sd position
  646. block->sdlen = 0;
  647. // Save original start position of the move
  648. if (gcode_start_position)
  649. memcpy(block->gcode_start_position, gcode_start_position, sizeof(block_t::gcode_start_position));
  650. else
  651. memcpy(block->gcode_start_position, current_position, sizeof(block_t::gcode_start_position));
  652. // Save the index of this segment (when a single G0/1/2/3 command plans multiple segments)
  653. block->segment_idx = segment_idx;
  654. // Save the global feedrate at scheduling time
  655. block->gcode_feedrate = feedrate;
  656. // Reset the starting E position when requested
  657. if (plan_reset_next_e_queue)
  658. {
  659. position[E_AXIS] = 0;
  660. #ifdef LIN_ADVANCE
  661. position_float[E_AXIS] = 0;
  662. #endif
  663. // the block might still be discarded later, but we need to ensure the lower-level
  664. // count_position is also reset correctly for consistent results!
  665. plan_reset_next_e_queue = false;
  666. plan_reset_next_e_sched = true;
  667. }
  668. #ifdef ENABLE_AUTO_BED_LEVELING
  669. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  670. #endif // ENABLE_AUTO_BED_LEVELING
  671. // Apply the machine correction matrix.
  672. {
  673. #if 0
  674. SERIAL_ECHOPGM("Planner, current position - servos: ");
  675. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  676. SERIAL_ECHOPGM(", ");
  677. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  678. SERIAL_ECHOPGM(", ");
  679. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  680. SERIAL_ECHOLNPGM("");
  681. SERIAL_ECHOPGM("Planner, target position, initial: ");
  682. MYSERIAL.print(x, 5);
  683. SERIAL_ECHOPGM(", ");
  684. MYSERIAL.print(y, 5);
  685. SERIAL_ECHOLNPGM("");
  686. SERIAL_ECHOPGM("Planner, world2machine: ");
  687. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  688. SERIAL_ECHOPGM(", ");
  689. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  690. SERIAL_ECHOPGM(", ");
  691. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  692. SERIAL_ECHOPGM(", ");
  693. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  694. SERIAL_ECHOLNPGM("");
  695. SERIAL_ECHOPGM("Planner, offset: ");
  696. MYSERIAL.print(world2machine_shift[0], 5);
  697. SERIAL_ECHOPGM(", ");
  698. MYSERIAL.print(world2machine_shift[1], 5);
  699. SERIAL_ECHOLNPGM("");
  700. #endif
  701. world2machine(x, y);
  702. #if 0
  703. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  704. MYSERIAL.print(x, 5);
  705. SERIAL_ECHOPGM(", ");
  706. MYSERIAL.print(y, 5);
  707. SERIAL_ECHOLNPGM("");
  708. #endif
  709. }
  710. // The target position of the tool in absolute steps
  711. // Calculate target position in absolute steps
  712. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  713. long target[4];
  714. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  715. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  716. #ifdef MESH_BED_LEVELING
  717. if (mbl.active){
  718. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  719. }else{
  720. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  721. }
  722. #else
  723. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  724. #endif // ENABLE_MESH_BED_LEVELING
  725. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  726. #ifdef PREVENT_DANGEROUS_EXTRUDE
  727. if(target[E_AXIS]!=position[E_AXIS])
  728. {
  729. if((int)degHotend(active_extruder)<extrude_min_temp)
  730. {
  731. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  732. #ifdef LIN_ADVANCE
  733. position_float[E_AXIS] = e;
  734. #endif
  735. SERIAL_ECHO_START;
  736. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  737. }
  738. #ifdef PREVENT_LENGTHY_EXTRUDE
  739. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  740. {
  741. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  742. #ifdef LIN_ADVANCE
  743. position_float[E_AXIS] = e;
  744. #endif
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  747. }
  748. #endif
  749. }
  750. #endif
  751. // Number of steps for each axis
  752. #ifndef COREXY
  753. // default non-h-bot planning
  754. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  755. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  756. #else
  757. // corexy planning
  758. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  759. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  760. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  761. #endif
  762. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  763. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  764. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  765. // Bail if this is a zero-length block
  766. if (block->step_event_count.wide <= dropsegments)
  767. {
  768. #ifdef PLANNER_DIAGNOSTICS
  769. planner_update_queue_min_counter();
  770. #endif /* PLANNER_DIAGNOSTICS */
  771. return;
  772. }
  773. block->fan_speed = fanSpeed;
  774. // Compute direction bits for this block
  775. block->direction_bits = 0;
  776. #ifndef COREXY
  777. if (target[X_AXIS] < position[X_AXIS])
  778. {
  779. block->direction_bits |= (1<<X_AXIS);
  780. }
  781. if (target[Y_AXIS] < position[Y_AXIS])
  782. {
  783. block->direction_bits |= (1<<Y_AXIS);
  784. }
  785. #else
  786. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  787. {
  788. block->direction_bits |= (1<<X_AXIS);
  789. }
  790. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  791. {
  792. block->direction_bits |= (1<<Y_AXIS);
  793. }
  794. #endif
  795. if (target[Z_AXIS] < position[Z_AXIS])
  796. {
  797. block->direction_bits |= (1<<Z_AXIS);
  798. }
  799. if (target[E_AXIS] < position[E_AXIS])
  800. {
  801. block->direction_bits |= (1<<E_AXIS);
  802. }
  803. block->active_extruder = extruder;
  804. //enable active axes
  805. #ifdef COREXY
  806. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  807. {
  808. enable_x();
  809. enable_y();
  810. }
  811. #else
  812. if(block->steps_x.wide != 0) enable_x();
  813. if(block->steps_y.wide != 0) enable_y();
  814. #endif
  815. if(block->steps_z.wide != 0) enable_z();
  816. // Enable extruder(s)
  817. if(block->steps_e.wide != 0)
  818. {
  819. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  820. {
  821. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  822. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  823. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  824. switch(extruder)
  825. {
  826. case 0:
  827. enable_e0();
  828. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  829. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  830. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  831. break;
  832. case 1:
  833. enable_e1();
  834. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  835. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  836. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  837. break;
  838. case 2:
  839. enable_e2();
  840. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  841. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  842. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  843. break;
  844. }
  845. }
  846. else //enable all
  847. {
  848. enable_e0();
  849. enable_e1();
  850. enable_e2();
  851. }
  852. }
  853. if (block->steps_e.wide == 0)
  854. {
  855. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  856. }
  857. else
  858. {
  859. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  860. }
  861. /* This part of the code calculates the total length of the movement.
  862. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  863. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  864. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  865. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  866. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  867. */
  868. #ifndef COREXY
  869. float delta_mm[4];
  870. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  871. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  872. #else
  873. float delta_mm[6];
  874. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  875. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  876. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  877. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  878. #endif
  879. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  880. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  881. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  882. {
  883. block->millimeters = fabs(delta_mm[E_AXIS]);
  884. }
  885. else
  886. {
  887. #ifndef COREXY
  888. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  889. #else
  890. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  891. #endif
  892. }
  893. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  894. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  895. float inverse_second = feed_rate * inverse_millimeters;
  896. uint8_t moves_queued = moves_planned();
  897. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  898. #ifdef SLOWDOWN
  899. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  900. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  901. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  902. // segment time in micro seconds
  903. unsigned long segment_time = lround(1000000.0/inverse_second);
  904. if (segment_time < cs.minsegmenttime)
  905. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  906. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  907. }
  908. #endif // SLOWDOWN
  909. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  910. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  911. // Calculate and limit speed in mm/sec for each axis
  912. float current_speed[4];
  913. float speed_factor = 1.0; //factor <=1 do decrease speed
  914. for(int i=0; i < 4; i++)
  915. {
  916. current_speed[i] = delta_mm[i] * inverse_second;
  917. if(fabs(current_speed[i]) > max_feedrate[i])
  918. {
  919. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  920. }
  921. }
  922. // Correct the speed
  923. if( speed_factor < 1.0)
  924. {
  925. for(unsigned char i=0; i < 4; i++)
  926. {
  927. current_speed[i] *= speed_factor;
  928. }
  929. block->nominal_speed *= speed_factor;
  930. block->nominal_rate *= speed_factor;
  931. }
  932. #ifdef LIN_ADVANCE
  933. float e_D_ratio = 0;
  934. #endif
  935. // Compute and limit the acceleration rate for the trapezoid generator.
  936. // block->step_event_count ... event count of the fastest axis
  937. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  938. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  939. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  940. {
  941. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  942. #ifdef LIN_ADVANCE
  943. block->use_advance_lead = false;
  944. #endif
  945. }
  946. else
  947. {
  948. float acceleration = (block->steps_e.wide == 0? cs.travel_acceleration: cs.acceleration);
  949. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  950. #ifdef LIN_ADVANCE
  951. /**
  952. * Use LIN_ADVANCE within this block if all these are true:
  953. *
  954. * extruder_advance_K : There is an advance factor set.
  955. * delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
  956. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  957. */
  958. block->use_advance_lead = extruder_advance_K > 0
  959. && delta_mm[E_AXIS] >= 0
  960. && fabs(delta_mm[Z_AXIS]) < 0.5;
  961. if (block->use_advance_lead) {
  962. #ifdef LA_FLOWADJ
  963. // M221/FLOW should change uniformly the extrusion thickness
  964. float delta_e = (e - position_float[E_AXIS]) / extruder_multiplier[extruder];
  965. #else
  966. // M221/FLOW only adjusts for an incorrect source diameter
  967. float delta_e = (e - position_float[E_AXIS]);
  968. #endif
  969. float delta_D = sqrt(sq(x - position_float[X_AXIS])
  970. + sq(y - position_float[Y_AXIS])
  971. + sq(z - position_float[Z_AXIS]));
  972. // all extrusion moves with LA require a compression which is proportional to the
  973. // extrusion_length to distance ratio (e/D)
  974. e_D_ratio = delta_e / delta_D;
  975. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  976. // print move due to min. steps per segment. Never execute this with advance! This assumes
  977. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  978. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  979. if (e_D_ratio > 3.0)
  980. block->use_advance_lead = false;
  981. else if (e_D_ratio > 0) {
  982. const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
  983. if (cs.acceleration > max_accel_per_s2) {
  984. block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
  985. #ifdef LA_DEBUG
  986. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  987. #endif
  988. }
  989. }
  990. }
  991. #endif
  992. // Limit acceleration per axis
  993. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  994. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  995. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; }
  996. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  997. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; }
  998. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  999. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; }
  1000. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  1001. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; }
  1002. }
  1003. // Acceleration of the segment, in mm/sec^2
  1004. block->acceleration = block->acceleration_st / steps_per_mm;
  1005. #if 0
  1006. // Oversample diagonal movements by a power of 2 up to 8x
  1007. // to achieve more accurate diagonal movements.
  1008. uint8_t bresenham_oversample = 1;
  1009. for (uint8_t i = 0; i < 3; ++ i) {
  1010. if (block->nominal_rate >= 5000) // 5kHz
  1011. break;
  1012. block->nominal_rate << 1;
  1013. bresenham_oversample << 1;
  1014. block->step_event_count << 1;
  1015. }
  1016. if (bresenham_oversample > 1)
  1017. // Lower the acceleration steps/sec^2 to account for the oversampling.
  1018. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  1019. #endif
  1020. block->acceleration_rate = ((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1021. // Start with a safe speed.
  1022. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1023. float safe_speed = block->nominal_speed;
  1024. bool limited = false;
  1025. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1026. float jerk = fabs(current_speed[axis]);
  1027. if (jerk > cs.max_jerk[axis]) {
  1028. // The actual jerk is lower, if it has been limited by the XY jerk.
  1029. if (limited) {
  1030. // Spare one division by a following gymnastics:
  1031. // Instead of jerk *= safe_speed / block->nominal_speed,
  1032. // multiply max_jerk[axis] by the divisor.
  1033. jerk *= safe_speed;
  1034. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1035. if (jerk > mjerk) {
  1036. safe_speed *= mjerk / jerk;
  1037. limited = true;
  1038. }
  1039. } else {
  1040. safe_speed = cs.max_jerk[axis];
  1041. limited = true;
  1042. }
  1043. }
  1044. }
  1045. // Reset the block flag.
  1046. block->flag = 0;
  1047. if (plan_reset_next_e_sched)
  1048. {
  1049. // finally propagate a pending reset
  1050. block->flag |= BLOCK_FLAG_E_RESET;
  1051. plan_reset_next_e_sched = false;
  1052. }
  1053. // Initial limit on the segment entry velocity.
  1054. float vmax_junction;
  1055. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1056. // Is it because we don't want to tinker with the first buffer line, which
  1057. // is likely to be executed by the stepper interrupt routine soon?
  1058. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1059. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1060. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1061. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1062. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1063. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1064. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1065. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1066. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1067. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1068. float v_factor = 1.f;
  1069. limited = false;
  1070. // Now limit the jerk in all axes.
  1071. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1072. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1073. float v_exit = previous_speed[axis];
  1074. float v_entry = current_speed [axis];
  1075. if (prev_speed_larger)
  1076. v_exit *= smaller_speed_factor;
  1077. if (limited) {
  1078. v_exit *= v_factor;
  1079. v_entry *= v_factor;
  1080. }
  1081. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1082. float jerk =
  1083. (v_exit > v_entry) ?
  1084. ((v_entry > 0.f || v_exit < 0.f) ?
  1085. // coasting
  1086. (v_exit - v_entry) :
  1087. // axis reversal
  1088. max(v_exit, - v_entry)) :
  1089. // v_exit <= v_entry
  1090. ((v_entry < 0.f || v_exit > 0.f) ?
  1091. // coasting
  1092. (v_entry - v_exit) :
  1093. // axis reversal
  1094. max(- v_exit, v_entry));
  1095. if (jerk > cs.max_jerk[axis]) {
  1096. v_factor *= cs.max_jerk[axis] / jerk;
  1097. limited = true;
  1098. }
  1099. }
  1100. if (limited)
  1101. vmax_junction *= v_factor;
  1102. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1103. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1104. float vmax_junction_threshold = vmax_junction * 0.99f;
  1105. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1106. // Not coasting. The machine will stop and start the movements anyway,
  1107. // better to start the segment from start.
  1108. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1109. vmax_junction = safe_speed;
  1110. }
  1111. } else {
  1112. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1113. vmax_junction = safe_speed;
  1114. }
  1115. // Max entry speed of this block equals the max exit speed of the previous block.
  1116. block->max_entry_speed = vmax_junction;
  1117. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1118. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1119. block->entry_speed = min(vmax_junction, v_allowable);
  1120. // Initialize planner efficiency flags
  1121. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1122. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1123. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1124. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1125. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1126. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1127. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1128. // Always calculate trapezoid for new block
  1129. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1130. // Update previous path unit_vector and nominal speed
  1131. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1132. previous_nominal_speed = block->nominal_speed;
  1133. previous_safe_speed = safe_speed;
  1134. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1135. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1136. #ifdef LIN_ADVANCE
  1137. if (block->use_advance_lead) {
  1138. // calculate the compression ratio for the segment (the required advance steps are computed
  1139. // during trapezoid planning)
  1140. float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
  1141. block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
  1142. float advance_speed;
  1143. if (e_D_ratio > 0)
  1144. advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1145. else
  1146. advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
  1147. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1148. // still need to replicate the *exact* same step grouping policy (see below)
  1149. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1150. float advance_rate = (F_CPU / 8.0) / advance_speed;
  1151. if (advance_speed > 20000) {
  1152. block->advance_rate = advance_rate * 4;
  1153. block->advance_step_loops = 4;
  1154. }
  1155. else if (advance_speed > 10000) {
  1156. block->advance_rate = advance_rate * 2;
  1157. block->advance_step_loops = 2;
  1158. }
  1159. else
  1160. {
  1161. // never overflow the internal accumulator with very low rates
  1162. if (advance_rate < UINT16_MAX)
  1163. block->advance_rate = advance_rate;
  1164. else
  1165. block->advance_rate = UINT16_MAX;
  1166. block->advance_step_loops = 1;
  1167. }
  1168. #ifdef LA_DEBUG
  1169. if (block->advance_step_loops > 2)
  1170. // @wavexx: we should really check for the difference between step_loops and
  1171. // advance_step_loops instead. A difference of more than 1 will lead
  1172. // to uneven speed and *should* be adjusted here by furthermore
  1173. // reducing the speed.
  1174. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1175. #endif
  1176. }
  1177. #endif
  1178. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1179. if (block->step_event_count.wide <= 32767)
  1180. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1181. ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
  1182. // Move the buffer head ensuring the current block hasn't been cancelled from an isr context
  1183. // (this is possible both during crash detection *and* uvlo, thus needing a global cli)
  1184. if(planner_aborted) return;
  1185. block_buffer_head = next_buffer_head;
  1186. }
  1187. // Update position
  1188. memcpy(position, target, sizeof(target)); // position[] = target[]
  1189. #ifdef LIN_ADVANCE
  1190. position_float[X_AXIS] = x;
  1191. position_float[Y_AXIS] = y;
  1192. position_float[Z_AXIS] = z;
  1193. position_float[E_AXIS] = e;
  1194. #endif
  1195. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1196. // the machine limits (maximum acceleration and maximum jerk).
  1197. // This runs asynchronously with the stepper interrupt controller, which may
  1198. // interfere with the process.
  1199. planner_recalculate(safe_speed);
  1200. // SERIAL_ECHOPGM("Q");
  1201. // SERIAL_ECHO(int(moves_planned()));
  1202. // SERIAL_ECHOLNPGM("");
  1203. #ifdef PLANNER_DIAGNOSTICS
  1204. planner_update_queue_min_counter();
  1205. #endif /* PLANNER_DIAGNOSTIC */
  1206. // The stepper timer interrupt will run continuously from now on.
  1207. // If there are no planner blocks to be executed by the stepper routine,
  1208. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1209. // from the planner queue if available.
  1210. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1211. }
  1212. #ifdef ENABLE_AUTO_BED_LEVELING
  1213. vector_3 plan_get_position() {
  1214. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1215. //position.debug("in plan_get position");
  1216. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1217. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1218. //inverse.debug("in plan_get inverse");
  1219. position.apply_rotation(inverse);
  1220. //position.debug("after rotation");
  1221. return position;
  1222. }
  1223. #endif // ENABLE_AUTO_BED_LEVELING
  1224. void plan_set_position(float x, float y, float z, const float &e)
  1225. {
  1226. #ifdef ENABLE_AUTO_BED_LEVELING
  1227. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1228. #endif // ENABLE_AUTO_BED_LEVELING
  1229. world2machine(x, y);
  1230. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1231. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1232. #ifdef MESH_BED_LEVELING
  1233. position[Z_AXIS] = mbl.active ?
  1234. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1235. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1236. #else
  1237. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1238. #endif // ENABLE_MESH_BED_LEVELING
  1239. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1240. #ifdef LIN_ADVANCE
  1241. position_float[X_AXIS] = x;
  1242. position_float[Y_AXIS] = y;
  1243. position_float[Z_AXIS] = z;
  1244. position_float[E_AXIS] = e;
  1245. #endif
  1246. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1247. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1248. memset(previous_speed, 0, sizeof(previous_speed));
  1249. }
  1250. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1251. void plan_set_z_position(const float &z)
  1252. {
  1253. #ifdef LIN_ADVANCE
  1254. position_float[Z_AXIS] = z;
  1255. #endif
  1256. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1257. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1258. }
  1259. void plan_set_e_position(const float &e)
  1260. {
  1261. #ifdef LIN_ADVANCE
  1262. position_float[E_AXIS] = e;
  1263. #endif
  1264. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1265. st_set_e_position(position[E_AXIS]);
  1266. }
  1267. void plan_reset_next_e()
  1268. {
  1269. plan_reset_next_e_queue = true;
  1270. }
  1271. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1272. void set_extrude_min_temp(int temp)
  1273. {
  1274. extrude_min_temp = temp;
  1275. }
  1276. #endif
  1277. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1278. void reset_acceleration_rates()
  1279. {
  1280. for(int8_t i=0; i < NUM_AXIS; i++)
  1281. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1282. }
  1283. #ifdef TMC2130
  1284. void update_mode_profile()
  1285. {
  1286. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1287. {
  1288. max_feedrate = cs.max_feedrate_normal;
  1289. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1290. }
  1291. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1292. {
  1293. max_feedrate = cs.max_feedrate_silent;
  1294. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1295. }
  1296. reset_acceleration_rates();
  1297. }
  1298. #endif //TMC2130
  1299. uint8_t number_of_blocks()
  1300. {
  1301. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1302. }
  1303. #ifdef PLANNER_DIAGNOSTICS
  1304. uint8_t planner_queue_min()
  1305. {
  1306. return g_cntr_planner_queue_min;
  1307. }
  1308. void planner_queue_min_reset()
  1309. {
  1310. g_cntr_planner_queue_min = moves_planned();
  1311. }
  1312. #endif /* PLANNER_DIAGNOSTICS */
  1313. void planner_add_sd_length(uint16_t sdlen)
  1314. {
  1315. if (block_buffer_head != block_buffer_tail) {
  1316. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1317. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1318. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1319. } else {
  1320. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1321. // at a power panic, so the length of this command may be forgotten.
  1322. }
  1323. }
  1324. uint16_t planner_calc_sd_length()
  1325. {
  1326. uint8_t _block_buffer_head = block_buffer_head;
  1327. uint8_t _block_buffer_tail = block_buffer_tail;
  1328. uint16_t sdlen = 0;
  1329. while (_block_buffer_head != _block_buffer_tail)
  1330. {
  1331. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1332. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1333. }
  1334. return sdlen;
  1335. }