Marlin_main.cpp 221 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. unsigned long PingTime = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. int bowden_length[4];
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. float HotendTempBckp = 0;
  225. int fanSpeedBckp = 0;
  226. float pause_lastpos[4];
  227. unsigned long pause_time = 0;
  228. unsigned long start_pause_print = millis();
  229. unsigned long load_filament_time;
  230. bool mesh_bed_leveling_flag = false;
  231. bool mesh_bed_run_from_menu = false;
  232. unsigned char lang_selected = 0;
  233. int8_t FarmMode = 0;
  234. bool prusa_sd_card_upload = false;
  235. unsigned int status_number = 0;
  236. unsigned long total_filament_used;
  237. unsigned int heating_status;
  238. unsigned int heating_status_counter;
  239. bool custom_message;
  240. bool loading_flag = false;
  241. unsigned int custom_message_type;
  242. unsigned int custom_message_state;
  243. bool volumetric_enabled = false;
  244. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  245. #if EXTRUDERS > 1
  246. , DEFAULT_NOMINAL_FILAMENT_DIA
  247. #if EXTRUDERS > 2
  248. , DEFAULT_NOMINAL_FILAMENT_DIA
  249. #endif
  250. #endif
  251. };
  252. float volumetric_multiplier[EXTRUDERS] = {1.0
  253. #if EXTRUDERS > 1
  254. , 1.0
  255. #if EXTRUDERS > 2
  256. , 1.0
  257. #endif
  258. #endif
  259. };
  260. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  261. float add_homing[3]={0,0,0};
  262. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  263. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  264. bool axis_known_position[3] = {false, false, false};
  265. float zprobe_zoffset;
  266. // Extruder offset
  267. #if EXTRUDERS > 1
  268. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  269. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  270. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  271. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  272. #endif
  273. };
  274. #endif
  275. uint8_t active_extruder = 0;
  276. int fanSpeed=0;
  277. #ifdef FWRETRACT
  278. bool autoretract_enabled=false;
  279. bool retracted[EXTRUDERS]={false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #endif
  285. #endif
  286. };
  287. bool retracted_swap[EXTRUDERS]={false
  288. #if EXTRUDERS > 1
  289. , false
  290. #if EXTRUDERS > 2
  291. , false
  292. #endif
  293. #endif
  294. };
  295. float retract_length = RETRACT_LENGTH;
  296. float retract_length_swap = RETRACT_LENGTH_SWAP;
  297. float retract_feedrate = RETRACT_FEEDRATE;
  298. float retract_zlift = RETRACT_ZLIFT;
  299. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  300. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  301. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  302. #endif
  303. #ifdef ULTIPANEL
  304. #ifdef PS_DEFAULT_OFF
  305. bool powersupply = false;
  306. #else
  307. bool powersupply = true;
  308. #endif
  309. #endif
  310. bool cancel_heatup = false ;
  311. #ifdef FILAMENT_SENSOR
  312. //Variables for Filament Sensor input
  313. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  314. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  315. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  316. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  317. int delay_index1=0; //index into ring buffer
  318. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  319. float delay_dist=0; //delay distance counter
  320. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  321. #endif
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. //===========================================================================
  325. //=============================Private Variables=============================
  326. //===========================================================================
  327. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  328. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  329. static float delta[3] = {0.0, 0.0, 0.0};
  330. // For tracing an arc
  331. static float offset[3] = {0.0, 0.0, 0.0};
  332. static bool home_all_axis = true;
  333. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  334. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  335. // Determines Absolute or Relative Coordinates.
  336. // Also there is bool axis_relative_modes[] per axis flag.
  337. static bool relative_mode = false;
  338. // String circular buffer. Commands may be pushed to the buffer from both sides:
  339. // Chained commands will be pushed to the front, interactive (from LCD menu)
  340. // and printing commands (from serial line or from SD card) are pushed to the tail.
  341. // First character of each entry indicates the type of the entry:
  342. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  343. // Command in cmdbuffer was sent over USB.
  344. #define CMDBUFFER_CURRENT_TYPE_USB 1
  345. // Command in cmdbuffer was read from SDCARD.
  346. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  347. // Command in cmdbuffer was generated by the UI.
  348. #define CMDBUFFER_CURRENT_TYPE_UI 3
  349. // Command in cmdbuffer was generated by another G-code.
  350. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  351. // How much space to reserve for the chained commands
  352. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  353. // which are pushed to the front of the queue?
  354. // Maximum 5 commands of max length 20 + null terminator.
  355. #define CMDBUFFER_RESERVE_FRONT (5*21)
  356. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  357. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  358. // Head of the circular buffer, where to read.
  359. static int bufindr = 0;
  360. // Tail of the buffer, where to write.
  361. static int bufindw = 0;
  362. // Number of lines in cmdbuffer.
  363. static int buflen = 0;
  364. // Flag for processing the current command inside the main Arduino loop().
  365. // If a new command was pushed to the front of a command buffer while
  366. // processing another command, this replaces the command on the top.
  367. // Therefore don't remove the command from the queue in the loop() function.
  368. static bool cmdbuffer_front_already_processed = false;
  369. // Type of a command, which is to be executed right now.
  370. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  371. // String of a command, which is to be executed right now.
  372. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  373. // Enable debugging of the command buffer.
  374. // Debugging information will be sent to serial line.
  375. // #define CMDBUFFER_DEBUG
  376. static int serial_count = 0; //index of character read from serial line
  377. static boolean comment_mode = false;
  378. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  379. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  380. //static float tt = 0;
  381. //static float bt = 0;
  382. //Inactivity shutdown variables
  383. static unsigned long previous_millis_cmd = 0;
  384. unsigned long max_inactive_time = 0;
  385. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  386. unsigned long starttime=0;
  387. unsigned long stoptime=0;
  388. unsigned long _usb_timer = 0;
  389. static uint8_t tmp_extruder;
  390. bool Stopped=false;
  391. #if NUM_SERVOS > 0
  392. Servo servos[NUM_SERVOS];
  393. #endif
  394. bool CooldownNoWait = true;
  395. bool target_direction;
  396. //Insert variables if CHDK is defined
  397. #ifdef CHDK
  398. unsigned long chdkHigh = 0;
  399. boolean chdkActive = false;
  400. #endif
  401. //===========================================================================
  402. //=============================Routines======================================
  403. //===========================================================================
  404. void get_arc_coordinates();
  405. bool setTargetedHotend(int code);
  406. void serial_echopair_P(const char *s_P, float v)
  407. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  408. void serial_echopair_P(const char *s_P, double v)
  409. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  410. void serial_echopair_P(const char *s_P, unsigned long v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. #ifdef SDSUPPORT
  413. #include "SdFatUtil.h"
  414. int freeMemory() { return SdFatUtil::FreeRam(); }
  415. #else
  416. extern "C" {
  417. extern unsigned int __bss_end;
  418. extern unsigned int __heap_start;
  419. extern void *__brkval;
  420. int freeMemory() {
  421. int free_memory;
  422. if ((int)__brkval == 0)
  423. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  424. else
  425. free_memory = ((int)&free_memory) - ((int)__brkval);
  426. return free_memory;
  427. }
  428. }
  429. #endif //!SDSUPPORT
  430. // Pop the currently processed command from the queue.
  431. // It is expected, that there is at least one command in the queue.
  432. bool cmdqueue_pop_front()
  433. {
  434. if (buflen > 0) {
  435. #ifdef CMDBUFFER_DEBUG
  436. SERIAL_ECHOPGM("Dequeing ");
  437. SERIAL_ECHO(cmdbuffer+bufindr+1);
  438. SERIAL_ECHOLNPGM("");
  439. SERIAL_ECHOPGM("Old indices: buflen ");
  440. SERIAL_ECHO(buflen);
  441. SERIAL_ECHOPGM(", bufindr ");
  442. SERIAL_ECHO(bufindr);
  443. SERIAL_ECHOPGM(", bufindw ");
  444. SERIAL_ECHO(bufindw);
  445. SERIAL_ECHOPGM(", serial_count ");
  446. SERIAL_ECHO(serial_count);
  447. SERIAL_ECHOPGM(", bufsize ");
  448. SERIAL_ECHO(sizeof(cmdbuffer));
  449. SERIAL_ECHOLNPGM("");
  450. #endif /* CMDBUFFER_DEBUG */
  451. if (-- buflen == 0) {
  452. // Empty buffer.
  453. if (serial_count == 0)
  454. // No serial communication is pending. Reset both pointers to zero.
  455. bufindw = 0;
  456. bufindr = bufindw;
  457. } else {
  458. // There is at least one ready line in the buffer.
  459. // First skip the current command ID and iterate up to the end of the string.
  460. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  461. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  462. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  463. // If the end of the buffer was empty,
  464. if (bufindr == sizeof(cmdbuffer)) {
  465. // skip to the start and find the nonzero command.
  466. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  467. }
  468. #ifdef CMDBUFFER_DEBUG
  469. SERIAL_ECHOPGM("New indices: buflen ");
  470. SERIAL_ECHO(buflen);
  471. SERIAL_ECHOPGM(", bufindr ");
  472. SERIAL_ECHO(bufindr);
  473. SERIAL_ECHOPGM(", bufindw ");
  474. SERIAL_ECHO(bufindw);
  475. SERIAL_ECHOPGM(", serial_count ");
  476. SERIAL_ECHO(serial_count);
  477. SERIAL_ECHOPGM(" new command on the top: ");
  478. SERIAL_ECHO(cmdbuffer+bufindr+1);
  479. SERIAL_ECHOLNPGM("");
  480. #endif /* CMDBUFFER_DEBUG */
  481. }
  482. return true;
  483. }
  484. return false;
  485. }
  486. void cmdqueue_reset()
  487. {
  488. while (cmdqueue_pop_front()) ;
  489. }
  490. // How long a string could be pushed to the front of the command queue?
  491. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  492. // len_asked does not contain the zero terminator size.
  493. bool cmdqueue_could_enqueue_front(int len_asked)
  494. {
  495. // MAX_CMD_SIZE has to accommodate the zero terminator.
  496. if (len_asked >= MAX_CMD_SIZE)
  497. return false;
  498. // Remove the currently processed command from the queue.
  499. if (! cmdbuffer_front_already_processed) {
  500. cmdqueue_pop_front();
  501. cmdbuffer_front_already_processed = true;
  502. }
  503. if (bufindr == bufindw && buflen > 0)
  504. // Full buffer.
  505. return false;
  506. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  507. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  508. if (bufindw < bufindr) {
  509. int bufindr_new = bufindr - len_asked - 2;
  510. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  511. if (endw <= bufindr_new) {
  512. bufindr = bufindr_new;
  513. return true;
  514. }
  515. } else {
  516. // Otherwise the free space is split between the start and end.
  517. if (len_asked + 2 <= bufindr) {
  518. // Could fit at the start.
  519. bufindr -= len_asked + 2;
  520. return true;
  521. }
  522. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  523. if (endw <= bufindr_new) {
  524. memset(cmdbuffer, 0, bufindr);
  525. bufindr = bufindr_new;
  526. return true;
  527. }
  528. }
  529. return false;
  530. }
  531. // Could one enqueue a command of lenthg len_asked into the buffer,
  532. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  533. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  534. // len_asked does not contain the zero terminator size.
  535. bool cmdqueue_could_enqueue_back(int len_asked)
  536. {
  537. // MAX_CMD_SIZE has to accommodate the zero terminator.
  538. if (len_asked >= MAX_CMD_SIZE)
  539. return false;
  540. if (bufindr == bufindw && buflen > 0)
  541. // Full buffer.
  542. return false;
  543. if (serial_count > 0) {
  544. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  545. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  546. // serial data.
  547. // How much memory to reserve for the commands pushed to the front?
  548. // End of the queue, when pushing to the end.
  549. int endw = bufindw + len_asked + 2;
  550. if (bufindw < bufindr)
  551. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  552. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  553. // Otherwise the free space is split between the start and end.
  554. if (// Could one fit to the end, including the reserve?
  555. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  556. // Could one fit to the end, and the reserve to the start?
  557. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  558. return true;
  559. // Could one fit both to the start?
  560. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  561. // Mark the rest of the buffer as used.
  562. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  563. // and point to the start.
  564. bufindw = 0;
  565. return true;
  566. }
  567. } else {
  568. // How much memory to reserve for the commands pushed to the front?
  569. // End of the queue, when pushing to the end.
  570. int endw = bufindw + len_asked + 2;
  571. if (bufindw < bufindr)
  572. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  573. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  574. // Otherwise the free space is split between the start and end.
  575. if (// Could one fit to the end, including the reserve?
  576. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  577. // Could one fit to the end, and the reserve to the start?
  578. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  579. return true;
  580. // Could one fit both to the start?
  581. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  582. // Mark the rest of the buffer as used.
  583. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  584. // and point to the start.
  585. bufindw = 0;
  586. return true;
  587. }
  588. }
  589. return false;
  590. }
  591. #ifdef CMDBUFFER_DEBUG
  592. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  593. {
  594. SERIAL_ECHOPGM("Entry nr: ");
  595. SERIAL_ECHO(nr);
  596. SERIAL_ECHOPGM(", type: ");
  597. SERIAL_ECHO(int(*p));
  598. SERIAL_ECHOPGM(", cmd: ");
  599. SERIAL_ECHO(p+1);
  600. SERIAL_ECHOLNPGM("");
  601. }
  602. static void cmdqueue_dump_to_serial()
  603. {
  604. if (buflen == 0) {
  605. SERIAL_ECHOLNPGM("The command buffer is empty.");
  606. } else {
  607. SERIAL_ECHOPGM("Content of the buffer: entries ");
  608. SERIAL_ECHO(buflen);
  609. SERIAL_ECHOPGM(", indr ");
  610. SERIAL_ECHO(bufindr);
  611. SERIAL_ECHOPGM(", indw ");
  612. SERIAL_ECHO(bufindw);
  613. SERIAL_ECHOLNPGM("");
  614. int nr = 0;
  615. if (bufindr < bufindw) {
  616. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  617. cmdqueue_dump_to_serial_single_line(nr, p);
  618. // Skip the command.
  619. for (++p; *p != 0; ++ p);
  620. // Skip the gaps.
  621. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  622. }
  623. } else {
  624. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  625. cmdqueue_dump_to_serial_single_line(nr, p);
  626. // Skip the command.
  627. for (++p; *p != 0; ++ p);
  628. // Skip the gaps.
  629. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  630. }
  631. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  632. cmdqueue_dump_to_serial_single_line(nr, p);
  633. // Skip the command.
  634. for (++p; *p != 0; ++ p);
  635. // Skip the gaps.
  636. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  637. }
  638. }
  639. SERIAL_ECHOLNPGM("End of the buffer.");
  640. }
  641. }
  642. #endif /* CMDBUFFER_DEBUG */
  643. //adds an command to the main command buffer
  644. //thats really done in a non-safe way.
  645. //needs overworking someday
  646. // Currently the maximum length of a command piped through this function is around 20 characters
  647. void enquecommand(const char *cmd, bool from_progmem)
  648. {
  649. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  650. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  651. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  652. if (cmdqueue_could_enqueue_back(len)) {
  653. // This is dangerous if a mixing of serial and this happens
  654. // This may easily be tested: If serial_count > 0, we have a problem.
  655. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  656. if (from_progmem)
  657. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  658. else
  659. strcpy(cmdbuffer + bufindw + 1, cmd);
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHORPGM(MSG_Enqueing);
  662. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  663. SERIAL_ECHOLNPGM("\"");
  664. bufindw += len + 2;
  665. if (bufindw == sizeof(cmdbuffer))
  666. bufindw = 0;
  667. ++ buflen;
  668. #ifdef CMDBUFFER_DEBUG
  669. cmdqueue_dump_to_serial();
  670. #endif /* CMDBUFFER_DEBUG */
  671. } else {
  672. SERIAL_ERROR_START;
  673. SERIAL_ECHORPGM(MSG_Enqueing);
  674. if (from_progmem)
  675. SERIAL_PROTOCOLRPGM(cmd);
  676. else
  677. SERIAL_ECHO(cmd);
  678. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  679. #ifdef CMDBUFFER_DEBUG
  680. cmdqueue_dump_to_serial();
  681. #endif /* CMDBUFFER_DEBUG */
  682. }
  683. }
  684. void enquecommand_front(const char *cmd, bool from_progmem)
  685. {
  686. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  687. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  688. if (cmdqueue_could_enqueue_front(len)) {
  689. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  690. if (from_progmem)
  691. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  692. else
  693. strcpy(cmdbuffer + bufindr + 1, cmd);
  694. ++ buflen;
  695. SERIAL_ECHO_START;
  696. SERIAL_ECHOPGM("Enqueing to the front: \"");
  697. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  698. SERIAL_ECHOLNPGM("\"");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. } else {
  703. SERIAL_ERROR_START;
  704. SERIAL_ECHOPGM("Enqueing to the front: \"");
  705. if (from_progmem)
  706. SERIAL_PROTOCOLRPGM(cmd);
  707. else
  708. SERIAL_ECHO(cmd);
  709. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  710. #ifdef CMDBUFFER_DEBUG
  711. cmdqueue_dump_to_serial();
  712. #endif /* CMDBUFFER_DEBUG */
  713. }
  714. }
  715. // Mark the command at the top of the command queue as new.
  716. // Therefore it will not be removed from the queue.
  717. void repeatcommand_front()
  718. {
  719. cmdbuffer_front_already_processed = true;
  720. }
  721. bool is_buffer_empty()
  722. {
  723. if (buflen == 0) return true;
  724. else return false;
  725. }
  726. void setup_killpin()
  727. {
  728. #if defined(KILL_PIN) && KILL_PIN > -1
  729. SET_INPUT(KILL_PIN);
  730. WRITE(KILL_PIN,HIGH);
  731. #endif
  732. }
  733. // Set home pin
  734. void setup_homepin(void)
  735. {
  736. #if defined(HOME_PIN) && HOME_PIN > -1
  737. SET_INPUT(HOME_PIN);
  738. WRITE(HOME_PIN,HIGH);
  739. #endif
  740. }
  741. void setup_photpin()
  742. {
  743. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  744. SET_OUTPUT(PHOTOGRAPH_PIN);
  745. WRITE(PHOTOGRAPH_PIN, LOW);
  746. #endif
  747. }
  748. void setup_powerhold()
  749. {
  750. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  751. SET_OUTPUT(SUICIDE_PIN);
  752. WRITE(SUICIDE_PIN, HIGH);
  753. #endif
  754. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  755. SET_OUTPUT(PS_ON_PIN);
  756. #if defined(PS_DEFAULT_OFF)
  757. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  758. #else
  759. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  760. #endif
  761. #endif
  762. }
  763. void suicide()
  764. {
  765. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  766. SET_OUTPUT(SUICIDE_PIN);
  767. WRITE(SUICIDE_PIN, LOW);
  768. #endif
  769. }
  770. void servo_init()
  771. {
  772. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  773. servos[0].attach(SERVO0_PIN);
  774. #endif
  775. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  776. servos[1].attach(SERVO1_PIN);
  777. #endif
  778. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  779. servos[2].attach(SERVO2_PIN);
  780. #endif
  781. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  782. servos[3].attach(SERVO3_PIN);
  783. #endif
  784. #if (NUM_SERVOS >= 5)
  785. #error "TODO: enter initalisation code for more servos"
  786. #endif
  787. }
  788. static void lcd_language_menu();
  789. #ifdef MESH_BED_LEVELING
  790. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  791. #endif
  792. // Factory reset function
  793. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  794. // Level input parameter sets depth of reset
  795. // Quiet parameter masks all waitings for user interact.
  796. int er_progress = 0;
  797. void factory_reset(char level, bool quiet)
  798. {
  799. lcd_implementation_clear();
  800. int cursor_pos = 0;
  801. switch (level) {
  802. // Level 0: Language reset
  803. case 0:
  804. WRITE(BEEPER, HIGH);
  805. _delay_ms(100);
  806. WRITE(BEEPER, LOW);
  807. lcd_force_language_selection();
  808. break;
  809. //Level 1: Reset statistics
  810. case 1:
  811. WRITE(BEEPER, HIGH);
  812. _delay_ms(100);
  813. WRITE(BEEPER, LOW);
  814. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  815. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  816. lcd_menu_statistics();
  817. break;
  818. // Level 2: Prepare for shipping
  819. case 2:
  820. //lcd_printPGM(PSTR("Factory RESET"));
  821. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  822. // Force language selection at the next boot up.
  823. lcd_force_language_selection();
  824. // Force the "Follow calibration flow" message at the next boot up.
  825. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  826. farm_no = 0;
  827. farm_mode == false;
  828. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  829. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  830. WRITE(BEEPER, HIGH);
  831. _delay_ms(100);
  832. WRITE(BEEPER, LOW);
  833. //_delay_ms(2000);
  834. break;
  835. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  836. case 3:
  837. lcd_printPGM(PSTR("Factory RESET"));
  838. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  839. WRITE(BEEPER, HIGH);
  840. _delay_ms(100);
  841. WRITE(BEEPER, LOW);
  842. er_progress = 0;
  843. lcd_print_at_PGM(3, 3, PSTR(" "));
  844. lcd_implementation_print_at(3, 3, er_progress);
  845. // Erase EEPROM
  846. for (int i = 0; i < 4096; i++) {
  847. eeprom_write_byte((uint8_t*)i, 0xFF);
  848. if (i % 41 == 0) {
  849. er_progress++;
  850. lcd_print_at_PGM(3, 3, PSTR(" "));
  851. lcd_implementation_print_at(3, 3, er_progress);
  852. lcd_printPGM(PSTR("%"));
  853. }
  854. }
  855. break;
  856. case 4:
  857. bowden_menu();
  858. break;
  859. default:
  860. break;
  861. }
  862. }
  863. // "Setup" function is called by the Arduino framework on startup.
  864. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  865. // are initialized by the main() routine provided by the Arduino framework.
  866. void setup()
  867. {
  868. setup_killpin();
  869. setup_powerhold();
  870. MYSERIAL.begin(BAUDRATE);
  871. SERIAL_PROTOCOLLNPGM("start");
  872. SERIAL_ECHO_START;
  873. #if 0
  874. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  875. for (int i = 0; i < 4096; ++i) {
  876. int b = eeprom_read_byte((unsigned char*)i);
  877. if (b != 255) {
  878. SERIAL_ECHO(i);
  879. SERIAL_ECHO(":");
  880. SERIAL_ECHO(b);
  881. SERIAL_ECHOLN("");
  882. }
  883. }
  884. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  885. #endif
  886. // Check startup - does nothing if bootloader sets MCUSR to 0
  887. byte mcu = MCUSR;
  888. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  889. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  890. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  891. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  892. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  893. MCUSR = 0;
  894. //SERIAL_ECHORPGM(MSG_MARLIN);
  895. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  896. #ifdef STRING_VERSION_CONFIG_H
  897. #ifdef STRING_CONFIG_H_AUTHOR
  898. SERIAL_ECHO_START;
  899. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  900. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  901. SERIAL_ECHORPGM(MSG_AUTHOR);
  902. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  903. SERIAL_ECHOPGM("Compiled: ");
  904. SERIAL_ECHOLNPGM(__DATE__);
  905. #endif
  906. #endif
  907. SERIAL_ECHO_START;
  908. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  909. SERIAL_ECHO(freeMemory());
  910. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  911. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  912. lcd_update_enable(false);
  913. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  914. Config_RetrieveSettings();
  915. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  916. tp_init(); // Initialize temperature loop
  917. plan_init(); // Initialize planner;
  918. watchdog_init();
  919. st_init(); // Initialize stepper, this enables interrupts!
  920. setup_photpin();
  921. servo_init();
  922. // Reset the machine correction matrix.
  923. // It does not make sense to load the correction matrix until the machine is homed.
  924. world2machine_reset();
  925. lcd_init();
  926. if (!READ(BTN_ENC))
  927. {
  928. _delay_ms(1000);
  929. if (!READ(BTN_ENC))
  930. {
  931. lcd_implementation_clear();
  932. lcd_printPGM(PSTR("Factory RESET"));
  933. SET_OUTPUT(BEEPER);
  934. WRITE(BEEPER, HIGH);
  935. while (!READ(BTN_ENC));
  936. WRITE(BEEPER, LOW);
  937. _delay_ms(2000);
  938. char level = reset_menu();
  939. factory_reset(level, false);
  940. switch (level) {
  941. case 0: _delay_ms(0); break;
  942. case 1: _delay_ms(0); break;
  943. case 2: _delay_ms(0); break;
  944. case 3: _delay_ms(0); break;
  945. }
  946. // _delay_ms(100);
  947. /*
  948. #ifdef MESH_BED_LEVELING
  949. _delay_ms(2000);
  950. if (!READ(BTN_ENC))
  951. {
  952. WRITE(BEEPER, HIGH);
  953. _delay_ms(100);
  954. WRITE(BEEPER, LOW);
  955. _delay_ms(200);
  956. WRITE(BEEPER, HIGH);
  957. _delay_ms(100);
  958. WRITE(BEEPER, LOW);
  959. int _z = 0;
  960. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  961. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  962. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  963. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  964. }
  965. else
  966. {
  967. WRITE(BEEPER, HIGH);
  968. _delay_ms(100);
  969. WRITE(BEEPER, LOW);
  970. }
  971. #endif // mesh */
  972. }
  973. }
  974. else
  975. {
  976. _delay_ms(1000); // wait 1sec to display the splash screen
  977. }
  978. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  979. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  980. #endif
  981. #ifdef DIGIPOT_I2C
  982. digipot_i2c_init();
  983. #endif
  984. setup_homepin();
  985. #if defined(Z_AXIS_ALWAYS_ON)
  986. enable_z();
  987. #endif
  988. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  989. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  990. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  991. if (farm_no == 0xFFFF) farm_no = 0;
  992. if (farm_mode)
  993. {
  994. prusa_statistics(8);
  995. }
  996. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  997. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  998. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  999. // but this times out if a blocking dialog is shown in setup().
  1000. card.initsd();
  1001. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1002. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1003. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1004. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1005. // where all the EEPROM entries are set to 0x0ff.
  1006. // Once a firmware boots up, it forces at least a language selection, which changes
  1007. // EEPROM_LANG to number lower than 0x0ff.
  1008. // 1) Set a high power mode.
  1009. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1010. }
  1011. #ifdef SNMM
  1012. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1013. int _z = BOWDEN_LENGTH;
  1014. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1015. }
  1016. #endif
  1017. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1018. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1019. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1020. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1021. if (lang_selected >= LANG_NUM){
  1022. lcd_mylang();
  1023. }
  1024. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1025. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1026. temp_cal_active = false;
  1027. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1028. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1029. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1030. }
  1031. check_babystep(); //checking if Z babystep is in allowed range
  1032. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1033. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1034. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1035. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1036. // Show the message.
  1037. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1038. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1039. // Show the message.
  1040. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1041. lcd_update_enable(true);
  1042. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1043. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1044. lcd_update_enable(true);
  1045. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1046. // Show the message.
  1047. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1048. }
  1049. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1050. lcd_update_enable(true);
  1051. // Store the currently running firmware into an eeprom,
  1052. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1053. update_current_firmware_version_to_eeprom();
  1054. }
  1055. void trace();
  1056. #define CHUNK_SIZE 64 // bytes
  1057. #define SAFETY_MARGIN 1
  1058. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1059. int chunkHead = 0;
  1060. int serial_read_stream() {
  1061. setTargetHotend(0, 0);
  1062. setTargetBed(0);
  1063. lcd_implementation_clear();
  1064. lcd_printPGM(PSTR(" Upload in progress"));
  1065. // first wait for how many bytes we will receive
  1066. uint32_t bytesToReceive;
  1067. // receive the four bytes
  1068. char bytesToReceiveBuffer[4];
  1069. for (int i=0; i<4; i++) {
  1070. int data;
  1071. while ((data = MYSERIAL.read()) == -1) {};
  1072. bytesToReceiveBuffer[i] = data;
  1073. }
  1074. // make it a uint32
  1075. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1076. // we're ready, notify the sender
  1077. MYSERIAL.write('+');
  1078. // lock in the routine
  1079. uint32_t receivedBytes = 0;
  1080. while (prusa_sd_card_upload) {
  1081. int i;
  1082. for (i=0; i<CHUNK_SIZE; i++) {
  1083. int data;
  1084. // check if we're not done
  1085. if (receivedBytes == bytesToReceive) {
  1086. break;
  1087. }
  1088. // read the next byte
  1089. while ((data = MYSERIAL.read()) == -1) {};
  1090. receivedBytes++;
  1091. // save it to the chunk
  1092. chunk[i] = data;
  1093. }
  1094. // write the chunk to SD
  1095. card.write_command_no_newline(&chunk[0]);
  1096. // notify the sender we're ready for more data
  1097. MYSERIAL.write('+');
  1098. // for safety
  1099. manage_heater();
  1100. // check if we're done
  1101. if(receivedBytes == bytesToReceive) {
  1102. trace(); // beep
  1103. card.closefile();
  1104. prusa_sd_card_upload = false;
  1105. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1106. return 0;
  1107. }
  1108. }
  1109. }
  1110. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1111. // Before loop(), the setup() function is called by the main() routine.
  1112. void loop()
  1113. {
  1114. bool stack_integrity = true;
  1115. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1116. {
  1117. is_usb_printing = true;
  1118. usb_printing_counter--;
  1119. _usb_timer = millis();
  1120. }
  1121. if (usb_printing_counter == 0)
  1122. {
  1123. is_usb_printing = false;
  1124. }
  1125. if (prusa_sd_card_upload)
  1126. {
  1127. //we read byte-by byte
  1128. serial_read_stream();
  1129. } else
  1130. {
  1131. get_command();
  1132. #ifdef SDSUPPORT
  1133. card.checkautostart(false);
  1134. #endif
  1135. if(buflen)
  1136. {
  1137. #ifdef SDSUPPORT
  1138. if(card.saving)
  1139. {
  1140. // Saving a G-code file onto an SD-card is in progress.
  1141. // Saving starts with M28, saving until M29 is seen.
  1142. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1143. card.write_command(CMDBUFFER_CURRENT_STRING);
  1144. if(card.logging)
  1145. process_commands();
  1146. else
  1147. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1148. } else {
  1149. card.closefile();
  1150. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1151. }
  1152. } else {
  1153. process_commands();
  1154. }
  1155. #else
  1156. process_commands();
  1157. #endif //SDSUPPORT
  1158. if (! cmdbuffer_front_already_processed)
  1159. cmdqueue_pop_front();
  1160. cmdbuffer_front_already_processed = false;
  1161. }
  1162. }
  1163. //check heater every n milliseconds
  1164. manage_heater();
  1165. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1166. checkHitEndstops();
  1167. lcd_update();
  1168. }
  1169. void get_command()
  1170. {
  1171. // Test and reserve space for the new command string.
  1172. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1173. return;
  1174. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1175. while (MYSERIAL.available() > 0) {
  1176. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1177. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1178. rx_buffer_full = true; //sets flag that buffer was full
  1179. }
  1180. char serial_char = MYSERIAL.read();
  1181. TimeSent = millis();
  1182. TimeNow = millis();
  1183. if (serial_char < 0)
  1184. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1185. // and Marlin does not support such file names anyway.
  1186. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1187. // to a hang-up of the print process from an SD card.
  1188. continue;
  1189. if(serial_char == '\n' ||
  1190. serial_char == '\r' ||
  1191. (serial_char == ':' && comment_mode == false) ||
  1192. serial_count >= (MAX_CMD_SIZE - 1) )
  1193. {
  1194. if(!serial_count) { //if empty line
  1195. comment_mode = false; //for new command
  1196. return;
  1197. }
  1198. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1199. if(!comment_mode){
  1200. comment_mode = false; //for new command
  1201. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1202. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1203. {
  1204. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1205. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1206. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1207. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1208. // M110 - set current line number.
  1209. // Line numbers not sent in succession.
  1210. SERIAL_ERROR_START;
  1211. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1212. SERIAL_ERRORLN(gcode_LastN);
  1213. //Serial.println(gcode_N);
  1214. FlushSerialRequestResend();
  1215. serial_count = 0;
  1216. return;
  1217. }
  1218. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1219. {
  1220. byte checksum = 0;
  1221. char *p = cmdbuffer+bufindw+1;
  1222. while (p != strchr_pointer)
  1223. checksum = checksum^(*p++);
  1224. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1225. SERIAL_ERROR_START;
  1226. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1227. SERIAL_ERRORLN(gcode_LastN);
  1228. FlushSerialRequestResend();
  1229. serial_count = 0;
  1230. return;
  1231. }
  1232. // If no errors, remove the checksum and continue parsing.
  1233. *strchr_pointer = 0;
  1234. }
  1235. else
  1236. {
  1237. SERIAL_ERROR_START;
  1238. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1239. SERIAL_ERRORLN(gcode_LastN);
  1240. FlushSerialRequestResend();
  1241. serial_count = 0;
  1242. return;
  1243. }
  1244. gcode_LastN = gcode_N;
  1245. //if no errors, continue parsing
  1246. } // end of 'N' command
  1247. }
  1248. else // if we don't receive 'N' but still see '*'
  1249. {
  1250. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1251. {
  1252. SERIAL_ERROR_START;
  1253. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1254. SERIAL_ERRORLN(gcode_LastN);
  1255. serial_count = 0;
  1256. return;
  1257. }
  1258. } // end of '*' command
  1259. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1260. if (! IS_SD_PRINTING) {
  1261. usb_printing_counter = 10;
  1262. is_usb_printing = true;
  1263. }
  1264. if (Stopped == true) {
  1265. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1266. if (gcode >= 0 && gcode <= 3) {
  1267. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1268. LCD_MESSAGERPGM(MSG_STOPPED);
  1269. }
  1270. }
  1271. } // end of 'G' command
  1272. //If command was e-stop process now
  1273. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1274. kill();
  1275. // Store the current line into buffer, move to the next line.
  1276. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1277. #ifdef CMDBUFFER_DEBUG
  1278. SERIAL_ECHO_START;
  1279. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1280. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1281. SERIAL_ECHOLNPGM("");
  1282. #endif /* CMDBUFFER_DEBUG */
  1283. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1284. if (bufindw == sizeof(cmdbuffer))
  1285. bufindw = 0;
  1286. ++ buflen;
  1287. #ifdef CMDBUFFER_DEBUG
  1288. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1289. SERIAL_ECHO(buflen);
  1290. SERIAL_ECHOLNPGM("");
  1291. #endif /* CMDBUFFER_DEBUG */
  1292. } // end of 'not comment mode'
  1293. serial_count = 0; //clear buffer
  1294. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1295. // in the queue, as this function will reserve the memory.
  1296. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1297. return;
  1298. } // end of "end of line" processing
  1299. else {
  1300. // Not an "end of line" symbol. Store the new character into a buffer.
  1301. if(serial_char == ';') comment_mode = true;
  1302. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1303. }
  1304. } // end of serial line processing loop
  1305. if(farm_mode){
  1306. TimeNow = millis();
  1307. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1308. cmdbuffer[bufindw+serial_count+1] = 0;
  1309. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1310. if (bufindw == sizeof(cmdbuffer))
  1311. bufindw = 0;
  1312. ++ buflen;
  1313. serial_count = 0;
  1314. SERIAL_ECHOPGM("TIMEOUT:");
  1315. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1316. return;
  1317. }
  1318. }
  1319. //add comment
  1320. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1321. rx_buffer_full = false;
  1322. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1323. serial_count = 0;
  1324. }
  1325. #ifdef SDSUPPORT
  1326. if(!card.sdprinting || serial_count!=0){
  1327. // If there is a half filled buffer from serial line, wait until return before
  1328. // continuing with the serial line.
  1329. return;
  1330. }
  1331. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1332. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1333. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1334. static bool stop_buffering=false;
  1335. if(buflen==0) stop_buffering=false;
  1336. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1337. while( !card.eof() && !stop_buffering) {
  1338. int16_t n=card.get();
  1339. char serial_char = (char)n;
  1340. if(serial_char == '\n' ||
  1341. serial_char == '\r' ||
  1342. (serial_char == '#' && comment_mode == false) ||
  1343. (serial_char == ':' && comment_mode == false) ||
  1344. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1345. {
  1346. if(card.eof()){
  1347. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1348. stoptime=millis();
  1349. char time[30];
  1350. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1351. pause_time = 0;
  1352. int hours, minutes;
  1353. minutes=(t/60)%60;
  1354. hours=t/60/60;
  1355. save_statistics(total_filament_used, t);
  1356. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1357. SERIAL_ECHO_START;
  1358. SERIAL_ECHOLN(time);
  1359. lcd_setstatus(time);
  1360. card.printingHasFinished();
  1361. card.checkautostart(true);
  1362. if (farm_mode)
  1363. {
  1364. prusa_statistics(6);
  1365. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1366. }
  1367. }
  1368. if(serial_char=='#')
  1369. stop_buffering=true;
  1370. if(!serial_count)
  1371. {
  1372. comment_mode = false; //for new command
  1373. return; //if empty line
  1374. }
  1375. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1376. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1377. ++ buflen;
  1378. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1379. if (bufindw == sizeof(cmdbuffer))
  1380. bufindw = 0;
  1381. comment_mode = false; //for new command
  1382. serial_count = 0; //clear buffer
  1383. // The following line will reserve buffer space if available.
  1384. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1385. return;
  1386. }
  1387. else
  1388. {
  1389. if(serial_char == ';') comment_mode = true;
  1390. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1391. }
  1392. }
  1393. #endif //SDSUPPORT
  1394. }
  1395. // Return True if a character was found
  1396. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1397. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1398. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1399. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1400. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1401. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1402. #define DEFINE_PGM_READ_ANY(type, reader) \
  1403. static inline type pgm_read_any(const type *p) \
  1404. { return pgm_read_##reader##_near(p); }
  1405. DEFINE_PGM_READ_ANY(float, float);
  1406. DEFINE_PGM_READ_ANY(signed char, byte);
  1407. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1408. static const PROGMEM type array##_P[3] = \
  1409. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1410. static inline type array(int axis) \
  1411. { return pgm_read_any(&array##_P[axis]); } \
  1412. type array##_ext(int axis) \
  1413. { return pgm_read_any(&array##_P[axis]); }
  1414. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1415. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1416. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1417. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1418. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1419. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1420. static void axis_is_at_home(int axis) {
  1421. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1422. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1423. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1424. }
  1425. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1426. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1427. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1428. saved_feedrate = feedrate;
  1429. saved_feedmultiply = feedmultiply;
  1430. feedmultiply = 100;
  1431. previous_millis_cmd = millis();
  1432. enable_endstops(enable_endstops_now);
  1433. }
  1434. static void clean_up_after_endstop_move() {
  1435. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1436. enable_endstops(false);
  1437. #endif
  1438. feedrate = saved_feedrate;
  1439. feedmultiply = saved_feedmultiply;
  1440. previous_millis_cmd = millis();
  1441. }
  1442. #ifdef ENABLE_AUTO_BED_LEVELING
  1443. #ifdef AUTO_BED_LEVELING_GRID
  1444. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1445. {
  1446. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1447. planeNormal.debug("planeNormal");
  1448. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1449. //bedLevel.debug("bedLevel");
  1450. //plan_bed_level_matrix.debug("bed level before");
  1451. //vector_3 uncorrected_position = plan_get_position_mm();
  1452. //uncorrected_position.debug("position before");
  1453. vector_3 corrected_position = plan_get_position();
  1454. // corrected_position.debug("position after");
  1455. current_position[X_AXIS] = corrected_position.x;
  1456. current_position[Y_AXIS] = corrected_position.y;
  1457. current_position[Z_AXIS] = corrected_position.z;
  1458. // put the bed at 0 so we don't go below it.
  1459. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. }
  1462. #else // not AUTO_BED_LEVELING_GRID
  1463. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1464. plan_bed_level_matrix.set_to_identity();
  1465. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1466. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1467. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1468. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1469. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1470. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1471. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1472. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1473. vector_3 corrected_position = plan_get_position();
  1474. current_position[X_AXIS] = corrected_position.x;
  1475. current_position[Y_AXIS] = corrected_position.y;
  1476. current_position[Z_AXIS] = corrected_position.z;
  1477. // put the bed at 0 so we don't go below it.
  1478. current_position[Z_AXIS] = zprobe_zoffset;
  1479. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1480. }
  1481. #endif // AUTO_BED_LEVELING_GRID
  1482. static void run_z_probe() {
  1483. plan_bed_level_matrix.set_to_identity();
  1484. feedrate = homing_feedrate[Z_AXIS];
  1485. // move down until you find the bed
  1486. float zPosition = -10;
  1487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1488. st_synchronize();
  1489. // we have to let the planner know where we are right now as it is not where we said to go.
  1490. zPosition = st_get_position_mm(Z_AXIS);
  1491. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1492. // move up the retract distance
  1493. zPosition += home_retract_mm(Z_AXIS);
  1494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1495. st_synchronize();
  1496. // move back down slowly to find bed
  1497. feedrate = homing_feedrate[Z_AXIS]/4;
  1498. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1500. st_synchronize();
  1501. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1502. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1504. }
  1505. static void do_blocking_move_to(float x, float y, float z) {
  1506. float oldFeedRate = feedrate;
  1507. feedrate = homing_feedrate[Z_AXIS];
  1508. current_position[Z_AXIS] = z;
  1509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1510. st_synchronize();
  1511. feedrate = XY_TRAVEL_SPEED;
  1512. current_position[X_AXIS] = x;
  1513. current_position[Y_AXIS] = y;
  1514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1515. st_synchronize();
  1516. feedrate = oldFeedRate;
  1517. }
  1518. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1519. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1520. }
  1521. /// Probe bed height at position (x,y), returns the measured z value
  1522. static float probe_pt(float x, float y, float z_before) {
  1523. // move to right place
  1524. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1525. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1526. run_z_probe();
  1527. float measured_z = current_position[Z_AXIS];
  1528. SERIAL_PROTOCOLRPGM(MSG_BED);
  1529. SERIAL_PROTOCOLPGM(" x: ");
  1530. SERIAL_PROTOCOL(x);
  1531. SERIAL_PROTOCOLPGM(" y: ");
  1532. SERIAL_PROTOCOL(y);
  1533. SERIAL_PROTOCOLPGM(" z: ");
  1534. SERIAL_PROTOCOL(measured_z);
  1535. SERIAL_PROTOCOLPGM("\n");
  1536. return measured_z;
  1537. }
  1538. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1539. void homeaxis(int axis) {
  1540. #define HOMEAXIS_DO(LETTER) \
  1541. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1542. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1543. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1544. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1545. 0) {
  1546. int axis_home_dir = home_dir(axis);
  1547. current_position[axis] = 0;
  1548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1549. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1550. feedrate = homing_feedrate[axis];
  1551. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1552. st_synchronize();
  1553. current_position[axis] = 0;
  1554. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1555. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1557. st_synchronize();
  1558. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1559. feedrate = homing_feedrate[axis]/2 ;
  1560. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1561. st_synchronize();
  1562. axis_is_at_home(axis);
  1563. destination[axis] = current_position[axis];
  1564. feedrate = 0.0;
  1565. endstops_hit_on_purpose();
  1566. axis_known_position[axis] = true;
  1567. }
  1568. }
  1569. void home_xy()
  1570. {
  1571. set_destination_to_current();
  1572. homeaxis(X_AXIS);
  1573. homeaxis(Y_AXIS);
  1574. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1575. endstops_hit_on_purpose();
  1576. }
  1577. void refresh_cmd_timeout(void)
  1578. {
  1579. previous_millis_cmd = millis();
  1580. }
  1581. #ifdef FWRETRACT
  1582. void retract(bool retracting, bool swapretract = false) {
  1583. if(retracting && !retracted[active_extruder]) {
  1584. destination[X_AXIS]=current_position[X_AXIS];
  1585. destination[Y_AXIS]=current_position[Y_AXIS];
  1586. destination[Z_AXIS]=current_position[Z_AXIS];
  1587. destination[E_AXIS]=current_position[E_AXIS];
  1588. if (swapretract) {
  1589. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1590. } else {
  1591. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1592. }
  1593. plan_set_e_position(current_position[E_AXIS]);
  1594. float oldFeedrate = feedrate;
  1595. feedrate=retract_feedrate*60;
  1596. retracted[active_extruder]=true;
  1597. prepare_move();
  1598. current_position[Z_AXIS]-=retract_zlift;
  1599. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1600. prepare_move();
  1601. feedrate = oldFeedrate;
  1602. } else if(!retracting && retracted[active_extruder]) {
  1603. destination[X_AXIS]=current_position[X_AXIS];
  1604. destination[Y_AXIS]=current_position[Y_AXIS];
  1605. destination[Z_AXIS]=current_position[Z_AXIS];
  1606. destination[E_AXIS]=current_position[E_AXIS];
  1607. current_position[Z_AXIS]+=retract_zlift;
  1608. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1609. //prepare_move();
  1610. if (swapretract) {
  1611. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1612. } else {
  1613. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1614. }
  1615. plan_set_e_position(current_position[E_AXIS]);
  1616. float oldFeedrate = feedrate;
  1617. feedrate=retract_recover_feedrate*60;
  1618. retracted[active_extruder]=false;
  1619. prepare_move();
  1620. feedrate = oldFeedrate;
  1621. }
  1622. } //retract
  1623. #endif //FWRETRACT
  1624. void trace() {
  1625. tone(BEEPER, 440);
  1626. delay(25);
  1627. noTone(BEEPER);
  1628. delay(20);
  1629. }
  1630. /*
  1631. void ramming() {
  1632. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1633. if (current_temperature[0] < 230) {
  1634. //PLA
  1635. max_feedrate[E_AXIS] = 50;
  1636. //current_position[E_AXIS] -= 8;
  1637. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1638. //current_position[E_AXIS] += 8;
  1639. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1640. current_position[E_AXIS] += 5.4;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1642. current_position[E_AXIS] += 3.2;
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1644. current_position[E_AXIS] += 3;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1646. st_synchronize();
  1647. max_feedrate[E_AXIS] = 80;
  1648. current_position[E_AXIS] -= 82;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1650. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1651. current_position[E_AXIS] -= 20;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1653. current_position[E_AXIS] += 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1655. current_position[E_AXIS] += 5;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1657. current_position[E_AXIS] -= 10;
  1658. st_synchronize();
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1660. current_position[E_AXIS] += 10;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1662. current_position[E_AXIS] -= 10;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1664. current_position[E_AXIS] += 10;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1666. current_position[E_AXIS] -= 10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1668. st_synchronize();
  1669. }
  1670. else {
  1671. //ABS
  1672. max_feedrate[E_AXIS] = 50;
  1673. //current_position[E_AXIS] -= 8;
  1674. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1675. //current_position[E_AXIS] += 8;
  1676. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1677. current_position[E_AXIS] += 3.1;
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1679. current_position[E_AXIS] += 3.1;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1681. current_position[E_AXIS] += 4;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1683. st_synchronize();
  1684. //current_position[X_AXIS] += 23; //delay
  1685. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1686. //current_position[X_AXIS] -= 23; //delay
  1687. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1688. delay(4700);
  1689. max_feedrate[E_AXIS] = 80;
  1690. current_position[E_AXIS] -= 92;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1692. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1693. current_position[E_AXIS] -= 5;
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1695. current_position[E_AXIS] += 5;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1697. current_position[E_AXIS] -= 5;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1699. st_synchronize();
  1700. current_position[E_AXIS] += 5;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1702. current_position[E_AXIS] -= 5;
  1703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1704. current_position[E_AXIS] += 5;
  1705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1706. current_position[E_AXIS] -= 5;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1708. st_synchronize();
  1709. }
  1710. }
  1711. */
  1712. void process_commands()
  1713. {
  1714. #ifdef FILAMENT_RUNOUT_SUPPORT
  1715. SET_INPUT(FR_SENS);
  1716. #endif
  1717. #ifdef CMDBUFFER_DEBUG
  1718. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1719. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1720. SERIAL_ECHOLNPGM("");
  1721. SERIAL_ECHOPGM("In cmdqueue: ");
  1722. SERIAL_ECHO(buflen);
  1723. SERIAL_ECHOLNPGM("");
  1724. #endif /* CMDBUFFER_DEBUG */
  1725. unsigned long codenum; //throw away variable
  1726. char *starpos = NULL;
  1727. #ifdef ENABLE_AUTO_BED_LEVELING
  1728. float x_tmp, y_tmp, z_tmp, real_z;
  1729. #endif
  1730. // PRUSA GCODES
  1731. #ifdef SNMM
  1732. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1733. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1734. int8_t SilentMode;
  1735. #endif
  1736. if(code_seen("PRUSA")){
  1737. if (code_seen("Ping")) { //PRUSA Ping
  1738. if (farm_mode) {
  1739. PingTime = millis();
  1740. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1741. }
  1742. }
  1743. else if (code_seen("PRN")) {
  1744. MYSERIAL.println(status_number);
  1745. }else if (code_seen("fn")) {
  1746. if (farm_mode) {
  1747. MYSERIAL.println(farm_no);
  1748. }
  1749. else {
  1750. MYSERIAL.println("Not in farm mode.");
  1751. }
  1752. }else if (code_seen("fv")) {
  1753. // get file version
  1754. #ifdef SDSUPPORT
  1755. card.openFile(strchr_pointer + 3,true);
  1756. while (true) {
  1757. uint16_t readByte = card.get();
  1758. MYSERIAL.write(readByte);
  1759. if (readByte=='\n') {
  1760. break;
  1761. }
  1762. }
  1763. card.closefile();
  1764. #endif // SDSUPPORT
  1765. } else if (code_seen("M28")) {
  1766. trace();
  1767. prusa_sd_card_upload = true;
  1768. card.openFile(strchr_pointer+4,false);
  1769. } else if(code_seen("Fir")){
  1770. SERIAL_PROTOCOLLN(FW_version);
  1771. } else if(code_seen("Rev")){
  1772. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1773. } else if(code_seen("Lang")) {
  1774. lcd_force_language_selection();
  1775. } else if(code_seen("Lz")) {
  1776. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1777. } else if (code_seen("SERIAL LOW")) {
  1778. MYSERIAL.println("SERIAL LOW");
  1779. MYSERIAL.begin(BAUDRATE);
  1780. return;
  1781. } else if (code_seen("SERIAL HIGH")) {
  1782. MYSERIAL.println("SERIAL HIGH");
  1783. MYSERIAL.begin(1152000);
  1784. return;
  1785. } else if(code_seen("Beat")) {
  1786. // Kick farm link timer
  1787. kicktime = millis();
  1788. } else if(code_seen("FR")) {
  1789. // Factory full reset
  1790. factory_reset(0,true);
  1791. }
  1792. //else if (code_seen('Cal')) {
  1793. // lcd_calibration();
  1794. // }
  1795. }
  1796. else if (code_seen('^')) {
  1797. // nothing, this is a version line
  1798. } else if(code_seen('G'))
  1799. {
  1800. switch((int)code_value())
  1801. {
  1802. case 0: // G0 -> G1
  1803. case 1: // G1
  1804. if(Stopped == false) {
  1805. #ifdef FILAMENT_RUNOUT_SUPPORT
  1806. if(READ(FR_SENS)){
  1807. feedmultiplyBckp=feedmultiply;
  1808. float target[4];
  1809. float lastpos[4];
  1810. target[X_AXIS]=current_position[X_AXIS];
  1811. target[Y_AXIS]=current_position[Y_AXIS];
  1812. target[Z_AXIS]=current_position[Z_AXIS];
  1813. target[E_AXIS]=current_position[E_AXIS];
  1814. lastpos[X_AXIS]=current_position[X_AXIS];
  1815. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1816. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1817. lastpos[E_AXIS]=current_position[E_AXIS];
  1818. //retract by E
  1819. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1820. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1821. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1822. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1823. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1824. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1826. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1827. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1828. //finish moves
  1829. st_synchronize();
  1830. //disable extruder steppers so filament can be removed
  1831. disable_e0();
  1832. disable_e1();
  1833. disable_e2();
  1834. delay(100);
  1835. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1836. uint8_t cnt=0;
  1837. int counterBeep = 0;
  1838. lcd_wait_interact();
  1839. while(!lcd_clicked()){
  1840. cnt++;
  1841. manage_heater();
  1842. manage_inactivity(true);
  1843. //lcd_update();
  1844. if(cnt==0)
  1845. {
  1846. #if BEEPER > 0
  1847. if (counterBeep== 500){
  1848. counterBeep = 0;
  1849. }
  1850. SET_OUTPUT(BEEPER);
  1851. if (counterBeep== 0){
  1852. WRITE(BEEPER,HIGH);
  1853. }
  1854. if (counterBeep== 20){
  1855. WRITE(BEEPER,LOW);
  1856. }
  1857. counterBeep++;
  1858. #else
  1859. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1860. lcd_buzz(1000/6,100);
  1861. #else
  1862. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1863. #endif
  1864. #endif
  1865. }
  1866. }
  1867. WRITE(BEEPER,LOW);
  1868. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1869. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1870. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1871. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1872. lcd_change_fil_state = 0;
  1873. lcd_loading_filament();
  1874. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1875. lcd_change_fil_state = 0;
  1876. lcd_alright();
  1877. switch(lcd_change_fil_state){
  1878. case 2:
  1879. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1881. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1883. lcd_loading_filament();
  1884. break;
  1885. case 3:
  1886. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1888. lcd_loading_color();
  1889. break;
  1890. default:
  1891. lcd_change_success();
  1892. break;
  1893. }
  1894. }
  1895. target[E_AXIS]+= 5;
  1896. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1897. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1899. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1900. //plan_set_e_position(current_position[E_AXIS]);
  1901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1902. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1903. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1904. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1905. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1906. plan_set_e_position(lastpos[E_AXIS]);
  1907. feedmultiply=feedmultiplyBckp;
  1908. char cmd[9];
  1909. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1910. enquecommand(cmd);
  1911. }
  1912. #endif
  1913. get_coordinates(); // For X Y Z E F
  1914. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1915. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1916. }
  1917. #ifdef FWRETRACT
  1918. if(autoretract_enabled)
  1919. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1920. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1921. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1922. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1923. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1924. retract(!retracted);
  1925. return;
  1926. }
  1927. }
  1928. #endif //FWRETRACT
  1929. prepare_move();
  1930. //ClearToSend();
  1931. }
  1932. break;
  1933. case 2: // G2 - CW ARC
  1934. if(Stopped == false) {
  1935. get_arc_coordinates();
  1936. prepare_arc_move(true);
  1937. }
  1938. break;
  1939. case 3: // G3 - CCW ARC
  1940. if(Stopped == false) {
  1941. get_arc_coordinates();
  1942. prepare_arc_move(false);
  1943. }
  1944. break;
  1945. case 4: // G4 dwell
  1946. LCD_MESSAGERPGM(MSG_DWELL);
  1947. codenum = 0;
  1948. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1949. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1950. st_synchronize();
  1951. codenum += millis(); // keep track of when we started waiting
  1952. previous_millis_cmd = millis();
  1953. while(millis() < codenum) {
  1954. manage_heater();
  1955. manage_inactivity();
  1956. lcd_update();
  1957. }
  1958. break;
  1959. #ifdef FWRETRACT
  1960. case 10: // G10 retract
  1961. #if EXTRUDERS > 1
  1962. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1963. retract(true,retracted_swap[active_extruder]);
  1964. #else
  1965. retract(true);
  1966. #endif
  1967. break;
  1968. case 11: // G11 retract_recover
  1969. #if EXTRUDERS > 1
  1970. retract(false,retracted_swap[active_extruder]);
  1971. #else
  1972. retract(false);
  1973. #endif
  1974. break;
  1975. #endif //FWRETRACT
  1976. case 28: //G28 Home all Axis one at a time
  1977. homing_flag = true;
  1978. #ifdef ENABLE_AUTO_BED_LEVELING
  1979. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1980. #endif //ENABLE_AUTO_BED_LEVELING
  1981. // For mesh bed leveling deactivate the matrix temporarily
  1982. #ifdef MESH_BED_LEVELING
  1983. mbl.active = 0;
  1984. #endif
  1985. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1986. // the planner will not perform any adjustments in the XY plane.
  1987. // Wait for the motors to stop and update the current position with the absolute values.
  1988. world2machine_revert_to_uncorrected();
  1989. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1990. // consumed during the first movements following this statement.
  1991. babystep_undo();
  1992. saved_feedrate = feedrate;
  1993. saved_feedmultiply = feedmultiply;
  1994. feedmultiply = 100;
  1995. previous_millis_cmd = millis();
  1996. enable_endstops(true);
  1997. for(int8_t i=0; i < NUM_AXIS; i++)
  1998. destination[i] = current_position[i];
  1999. feedrate = 0.0;
  2000. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2001. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2002. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2003. homeaxis(Z_AXIS);
  2004. }
  2005. #endif
  2006. #ifdef QUICK_HOME
  2007. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2008. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2009. {
  2010. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2011. int x_axis_home_dir = home_dir(X_AXIS);
  2012. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2013. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2014. feedrate = homing_feedrate[X_AXIS];
  2015. if(homing_feedrate[Y_AXIS]<feedrate)
  2016. feedrate = homing_feedrate[Y_AXIS];
  2017. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2018. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2019. } else {
  2020. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2021. }
  2022. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2023. st_synchronize();
  2024. axis_is_at_home(X_AXIS);
  2025. axis_is_at_home(Y_AXIS);
  2026. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2027. destination[X_AXIS] = current_position[X_AXIS];
  2028. destination[Y_AXIS] = current_position[Y_AXIS];
  2029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2030. feedrate = 0.0;
  2031. st_synchronize();
  2032. endstops_hit_on_purpose();
  2033. current_position[X_AXIS] = destination[X_AXIS];
  2034. current_position[Y_AXIS] = destination[Y_AXIS];
  2035. current_position[Z_AXIS] = destination[Z_AXIS];
  2036. }
  2037. #endif /* QUICK_HOME */
  2038. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2039. homeaxis(X_AXIS);
  2040. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2041. homeaxis(Y_AXIS);
  2042. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2043. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2044. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2045. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2046. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2047. #ifndef Z_SAFE_HOMING
  2048. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2049. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2050. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2051. feedrate = max_feedrate[Z_AXIS];
  2052. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2053. st_synchronize();
  2054. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2055. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2056. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2057. {
  2058. homeaxis(X_AXIS);
  2059. homeaxis(Y_AXIS);
  2060. }
  2061. // 1st mesh bed leveling measurement point, corrected.
  2062. world2machine_initialize();
  2063. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2064. world2machine_reset();
  2065. if (destination[Y_AXIS] < Y_MIN_POS)
  2066. destination[Y_AXIS] = Y_MIN_POS;
  2067. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2068. feedrate = homing_feedrate[Z_AXIS]/10;
  2069. current_position[Z_AXIS] = 0;
  2070. enable_endstops(false);
  2071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2072. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2073. st_synchronize();
  2074. current_position[X_AXIS] = destination[X_AXIS];
  2075. current_position[Y_AXIS] = destination[Y_AXIS];
  2076. enable_endstops(true);
  2077. endstops_hit_on_purpose();
  2078. homeaxis(Z_AXIS);
  2079. #else // MESH_BED_LEVELING
  2080. homeaxis(Z_AXIS);
  2081. #endif // MESH_BED_LEVELING
  2082. }
  2083. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2084. if(home_all_axis) {
  2085. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2086. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2087. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2088. feedrate = XY_TRAVEL_SPEED/60;
  2089. current_position[Z_AXIS] = 0;
  2090. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2091. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2092. st_synchronize();
  2093. current_position[X_AXIS] = destination[X_AXIS];
  2094. current_position[Y_AXIS] = destination[Y_AXIS];
  2095. homeaxis(Z_AXIS);
  2096. }
  2097. // Let's see if X and Y are homed and probe is inside bed area.
  2098. if(code_seen(axis_codes[Z_AXIS])) {
  2099. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2100. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2101. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2102. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2103. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2104. current_position[Z_AXIS] = 0;
  2105. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2106. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2107. feedrate = max_feedrate[Z_AXIS];
  2108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2109. st_synchronize();
  2110. homeaxis(Z_AXIS);
  2111. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2112. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2113. SERIAL_ECHO_START;
  2114. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2115. } else {
  2116. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2117. SERIAL_ECHO_START;
  2118. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2119. }
  2120. }
  2121. #endif // Z_SAFE_HOMING
  2122. #endif // Z_HOME_DIR < 0
  2123. if(code_seen(axis_codes[Z_AXIS])) {
  2124. if(code_value_long() != 0) {
  2125. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2126. }
  2127. }
  2128. #ifdef ENABLE_AUTO_BED_LEVELING
  2129. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2130. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2131. }
  2132. #endif
  2133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2134. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2135. enable_endstops(false);
  2136. #endif
  2137. feedrate = saved_feedrate;
  2138. feedmultiply = saved_feedmultiply;
  2139. previous_millis_cmd = millis();
  2140. endstops_hit_on_purpose();
  2141. #ifndef MESH_BED_LEVELING
  2142. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2143. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2144. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2145. lcd_adjust_z();
  2146. #endif
  2147. // Load the machine correction matrix
  2148. world2machine_initialize();
  2149. // and correct the current_position to match the transformed coordinate system.
  2150. world2machine_update_current();
  2151. #ifdef MESH_BED_LEVELING
  2152. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2153. {
  2154. }
  2155. else
  2156. {
  2157. st_synchronize();
  2158. homing_flag = false;
  2159. // Push the commands to the front of the message queue in the reverse order!
  2160. // There shall be always enough space reserved for these commands.
  2161. // enquecommand_front_P((PSTR("G80")));
  2162. goto case_G80;
  2163. }
  2164. #endif
  2165. if (farm_mode) { prusa_statistics(20); };
  2166. homing_flag = false;
  2167. break;
  2168. #ifdef ENABLE_AUTO_BED_LEVELING
  2169. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2170. {
  2171. #if Z_MIN_PIN == -1
  2172. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2173. #endif
  2174. // Prevent user from running a G29 without first homing in X and Y
  2175. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2176. {
  2177. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2178. SERIAL_ECHO_START;
  2179. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2180. break; // abort G29, since we don't know where we are
  2181. }
  2182. st_synchronize();
  2183. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2184. //vector_3 corrected_position = plan_get_position_mm();
  2185. //corrected_position.debug("position before G29");
  2186. plan_bed_level_matrix.set_to_identity();
  2187. vector_3 uncorrected_position = plan_get_position();
  2188. //uncorrected_position.debug("position durring G29");
  2189. current_position[X_AXIS] = uncorrected_position.x;
  2190. current_position[Y_AXIS] = uncorrected_position.y;
  2191. current_position[Z_AXIS] = uncorrected_position.z;
  2192. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2193. setup_for_endstop_move();
  2194. feedrate = homing_feedrate[Z_AXIS];
  2195. #ifdef AUTO_BED_LEVELING_GRID
  2196. // probe at the points of a lattice grid
  2197. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2198. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2199. // solve the plane equation ax + by + d = z
  2200. // A is the matrix with rows [x y 1] for all the probed points
  2201. // B is the vector of the Z positions
  2202. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2203. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2204. // "A" matrix of the linear system of equations
  2205. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2206. // "B" vector of Z points
  2207. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2208. int probePointCounter = 0;
  2209. bool zig = true;
  2210. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2211. {
  2212. int xProbe, xInc;
  2213. if (zig)
  2214. {
  2215. xProbe = LEFT_PROBE_BED_POSITION;
  2216. //xEnd = RIGHT_PROBE_BED_POSITION;
  2217. xInc = xGridSpacing;
  2218. zig = false;
  2219. } else // zag
  2220. {
  2221. xProbe = RIGHT_PROBE_BED_POSITION;
  2222. //xEnd = LEFT_PROBE_BED_POSITION;
  2223. xInc = -xGridSpacing;
  2224. zig = true;
  2225. }
  2226. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2227. {
  2228. float z_before;
  2229. if (probePointCounter == 0)
  2230. {
  2231. // raise before probing
  2232. z_before = Z_RAISE_BEFORE_PROBING;
  2233. } else
  2234. {
  2235. // raise extruder
  2236. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2237. }
  2238. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2239. eqnBVector[probePointCounter] = measured_z;
  2240. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2241. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2242. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2243. probePointCounter++;
  2244. xProbe += xInc;
  2245. }
  2246. }
  2247. clean_up_after_endstop_move();
  2248. // solve lsq problem
  2249. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2250. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2251. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2252. SERIAL_PROTOCOLPGM(" b: ");
  2253. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2254. SERIAL_PROTOCOLPGM(" d: ");
  2255. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2256. set_bed_level_equation_lsq(plane_equation_coefficients);
  2257. free(plane_equation_coefficients);
  2258. #else // AUTO_BED_LEVELING_GRID not defined
  2259. // Probe at 3 arbitrary points
  2260. // probe 1
  2261. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2262. // probe 2
  2263. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2264. // probe 3
  2265. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2266. clean_up_after_endstop_move();
  2267. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2268. #endif // AUTO_BED_LEVELING_GRID
  2269. st_synchronize();
  2270. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2271. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2272. // When the bed is uneven, this height must be corrected.
  2273. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2274. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2275. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2276. z_tmp = current_position[Z_AXIS];
  2277. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2278. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. }
  2281. break;
  2282. #ifndef Z_PROBE_SLED
  2283. case 30: // G30 Single Z Probe
  2284. {
  2285. st_synchronize();
  2286. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2287. setup_for_endstop_move();
  2288. feedrate = homing_feedrate[Z_AXIS];
  2289. run_z_probe();
  2290. SERIAL_PROTOCOLPGM(MSG_BED);
  2291. SERIAL_PROTOCOLPGM(" X: ");
  2292. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2293. SERIAL_PROTOCOLPGM(" Y: ");
  2294. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2295. SERIAL_PROTOCOLPGM(" Z: ");
  2296. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2297. SERIAL_PROTOCOLPGM("\n");
  2298. clean_up_after_endstop_move();
  2299. }
  2300. break;
  2301. #else
  2302. case 31: // dock the sled
  2303. dock_sled(true);
  2304. break;
  2305. case 32: // undock the sled
  2306. dock_sled(false);
  2307. break;
  2308. #endif // Z_PROBE_SLED
  2309. #endif // ENABLE_AUTO_BED_LEVELING
  2310. #ifdef MESH_BED_LEVELING
  2311. case 30: // G30 Single Z Probe
  2312. {
  2313. st_synchronize();
  2314. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2315. setup_for_endstop_move();
  2316. feedrate = homing_feedrate[Z_AXIS];
  2317. find_bed_induction_sensor_point_z(-10.f, 3);
  2318. SERIAL_PROTOCOLRPGM(MSG_BED);
  2319. SERIAL_PROTOCOLPGM(" X: ");
  2320. MYSERIAL.print(current_position[X_AXIS], 5);
  2321. SERIAL_PROTOCOLPGM(" Y: ");
  2322. MYSERIAL.print(current_position[Y_AXIS], 5);
  2323. SERIAL_PROTOCOLPGM(" Z: ");
  2324. MYSERIAL.print(current_position[Z_AXIS], 5);
  2325. SERIAL_PROTOCOLPGM("\n");
  2326. clean_up_after_endstop_move();
  2327. }
  2328. break;
  2329. case 75:
  2330. {
  2331. for (int i = 40; i <= 110; i++) {
  2332. MYSERIAL.print(i);
  2333. MYSERIAL.print(" ");
  2334. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2335. }
  2336. }
  2337. break;
  2338. case 76: //PINDA probe temperature calibration
  2339. {
  2340. setTargetBed(PINDA_MIN_T);
  2341. float zero_z;
  2342. int z_shift = 0; //unit: steps
  2343. int t_c; // temperature
  2344. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2345. // We don't know where we are! HOME!
  2346. // Push the commands to the front of the message queue in the reverse order!
  2347. // There shall be always enough space reserved for these commands.
  2348. repeatcommand_front(); // repeat G76 with all its parameters
  2349. enquecommand_front_P((PSTR("G28 W0")));
  2350. break;
  2351. }
  2352. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2353. custom_message = true;
  2354. custom_message_type = 4;
  2355. custom_message_state = 1;
  2356. custom_message = MSG_TEMP_CALIBRATION;
  2357. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2358. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2359. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2361. st_synchronize();
  2362. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2363. delay_keep_alive(1000);
  2364. serialecho_temperatures();
  2365. }
  2366. //enquecommand_P(PSTR("M190 S50"));
  2367. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2368. delay_keep_alive(1000);
  2369. serialecho_temperatures();
  2370. }
  2371. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2372. current_position[Z_AXIS] = 5;
  2373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2374. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2375. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2377. st_synchronize();
  2378. find_bed_induction_sensor_point_z(-1.f);
  2379. zero_z = current_position[Z_AXIS];
  2380. //current_position[Z_AXIS]
  2381. SERIAL_ECHOLNPGM("");
  2382. SERIAL_ECHOPGM("ZERO: ");
  2383. MYSERIAL.print(current_position[Z_AXIS]);
  2384. SERIAL_ECHOLNPGM("");
  2385. for (int i = 0; i<5; i++) {
  2386. SERIAL_ECHOPGM("Step: ");
  2387. MYSERIAL.print(i+2);
  2388. SERIAL_ECHOLNPGM("/6");
  2389. custom_message_state = i + 2;
  2390. t_c = 60 + i * 10;
  2391. setTargetBed(t_c);
  2392. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2393. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2394. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2396. st_synchronize();
  2397. while (degBed() < t_c) {
  2398. delay_keep_alive(1000);
  2399. serialecho_temperatures();
  2400. }
  2401. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2402. delay_keep_alive(1000);
  2403. serialecho_temperatures();
  2404. }
  2405. current_position[Z_AXIS] = 5;
  2406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2407. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2408. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2410. st_synchronize();
  2411. find_bed_induction_sensor_point_z(-1.f);
  2412. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2413. SERIAL_ECHOLNPGM("");
  2414. SERIAL_ECHOPGM("Temperature: ");
  2415. MYSERIAL.print(t_c);
  2416. SERIAL_ECHOPGM(" Z shift (mm):");
  2417. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2418. SERIAL_ECHOLNPGM("");
  2419. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2420. }
  2421. custom_message_type = 0;
  2422. custom_message = false;
  2423. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2424. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2425. disable_x();
  2426. disable_y();
  2427. disable_z();
  2428. disable_e0();
  2429. disable_e1();
  2430. disable_e2();
  2431. setTargetBed(0); //set bed target temperature back to 0
  2432. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2433. lcd_update_enable(true);
  2434. lcd_update(2);
  2435. }
  2436. break;
  2437. #ifdef DIS
  2438. case 77:
  2439. {
  2440. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2441. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2442. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2443. float dimension_x = 40;
  2444. float dimension_y = 40;
  2445. int points_x = 40;
  2446. int points_y = 40;
  2447. float offset_x = 74;
  2448. float offset_y = 33;
  2449. if (code_seen('X')) dimension_x = code_value();
  2450. if (code_seen('Y')) dimension_y = code_value();
  2451. if (code_seen('XP')) points_x = code_value();
  2452. if (code_seen('YP')) points_y = code_value();
  2453. if (code_seen('XO')) offset_x = code_value();
  2454. if (code_seen('YO')) offset_y = code_value();
  2455. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2456. } break;
  2457. #endif
  2458. /**
  2459. * G80: Mesh-based Z probe, probes a grid and produces a
  2460. * mesh to compensate for variable bed height
  2461. *
  2462. * The S0 report the points as below
  2463. *
  2464. * +----> X-axis
  2465. * |
  2466. * |
  2467. * v Y-axis
  2468. *
  2469. */
  2470. case 80:
  2471. case_G80:
  2472. {
  2473. mesh_bed_leveling_flag = true;
  2474. int8_t verbosity_level = 0;
  2475. static bool run = false;
  2476. if (code_seen('V')) {
  2477. // Just 'V' without a number counts as V1.
  2478. char c = strchr_pointer[1];
  2479. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2480. }
  2481. // Firstly check if we know where we are
  2482. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2483. // We don't know where we are! HOME!
  2484. // Push the commands to the front of the message queue in the reverse order!
  2485. // There shall be always enough space reserved for these commands.
  2486. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2487. repeatcommand_front(); // repeat G80 with all its parameters
  2488. enquecommand_front_P((PSTR("G28 W0")));
  2489. }
  2490. else {
  2491. mesh_bed_leveling_flag = false;
  2492. }
  2493. break;
  2494. }
  2495. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2496. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2497. temp_compensation_start();
  2498. run = true;
  2499. repeatcommand_front(); // repeat G80 with all its parameters
  2500. enquecommand_front_P((PSTR("G28 W0")));
  2501. }
  2502. else {
  2503. mesh_bed_leveling_flag = false;
  2504. }
  2505. break;
  2506. }
  2507. run = false;
  2508. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2509. mesh_bed_leveling_flag = false;
  2510. break;
  2511. }
  2512. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2513. bool custom_message_old = custom_message;
  2514. unsigned int custom_message_type_old = custom_message_type;
  2515. unsigned int custom_message_state_old = custom_message_state;
  2516. custom_message = true;
  2517. custom_message_type = 1;
  2518. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2519. lcd_update(1);
  2520. mbl.reset(); //reset mesh bed leveling
  2521. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2522. // consumed during the first movements following this statement.
  2523. babystep_undo();
  2524. // Cycle through all points and probe them
  2525. // First move up. During this first movement, the babystepping will be reverted.
  2526. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2528. // The move to the first calibration point.
  2529. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2530. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2531. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2532. if (verbosity_level >= 1) {
  2533. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2534. }
  2535. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2537. // Wait until the move is finished.
  2538. st_synchronize();
  2539. int mesh_point = 0; //index number of calibration point
  2540. int ix = 0;
  2541. int iy = 0;
  2542. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2543. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2544. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2545. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2546. if (verbosity_level >= 1) {
  2547. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2548. }
  2549. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2550. const char *kill_message = NULL;
  2551. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2552. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2553. // Get coords of a measuring point.
  2554. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2555. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2556. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2557. float z0 = 0.f;
  2558. if (has_z && mesh_point > 0) {
  2559. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2560. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2561. //#if 0
  2562. if (verbosity_level >= 1) {
  2563. SERIAL_ECHOPGM("Bed leveling, point: ");
  2564. MYSERIAL.print(mesh_point);
  2565. SERIAL_ECHOPGM(", calibration z: ");
  2566. MYSERIAL.print(z0, 5);
  2567. SERIAL_ECHOLNPGM("");
  2568. }
  2569. //#endif
  2570. }
  2571. // Move Z up to MESH_HOME_Z_SEARCH.
  2572. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2574. st_synchronize();
  2575. // Move to XY position of the sensor point.
  2576. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2577. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2578. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2579. if (verbosity_level >= 1) {
  2580. SERIAL_PROTOCOL(mesh_point);
  2581. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2582. }
  2583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2584. st_synchronize();
  2585. // Go down until endstop is hit
  2586. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2587. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2588. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2589. break;
  2590. }
  2591. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2592. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2593. break;
  2594. }
  2595. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2596. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2597. break;
  2598. }
  2599. if (verbosity_level >= 10) {
  2600. SERIAL_ECHOPGM("X: ");
  2601. MYSERIAL.print(current_position[X_AXIS], 5);
  2602. SERIAL_ECHOLNPGM("");
  2603. SERIAL_ECHOPGM("Y: ");
  2604. MYSERIAL.print(current_position[Y_AXIS], 5);
  2605. SERIAL_PROTOCOLPGM("\n");
  2606. }
  2607. if (verbosity_level >= 1) {
  2608. SERIAL_ECHOPGM("mesh bed leveling: ");
  2609. MYSERIAL.print(current_position[Z_AXIS], 5);
  2610. SERIAL_ECHOLNPGM("");
  2611. }
  2612. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2613. custom_message_state--;
  2614. mesh_point++;
  2615. lcd_update(1);
  2616. }
  2617. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2618. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2619. if (verbosity_level >= 20) {
  2620. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2621. MYSERIAL.print(current_position[Z_AXIS], 5);
  2622. }
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2624. st_synchronize();
  2625. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2626. kill(kill_message);
  2627. SERIAL_ECHOLNPGM("killed");
  2628. }
  2629. clean_up_after_endstop_move();
  2630. SERIAL_ECHOLNPGM("clean up finished ");
  2631. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2632. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2633. SERIAL_ECHOLNPGM("babystep applied");
  2634. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2635. if (verbosity_level >= 1) {
  2636. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2637. }
  2638. for (uint8_t i = 0; i < 4; ++i) {
  2639. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2640. long correction = 0;
  2641. if (code_seen(codes[i]))
  2642. correction = code_value_long();
  2643. else if (eeprom_bed_correction_valid) {
  2644. unsigned char *addr = (i < 2) ?
  2645. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2646. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2647. correction = eeprom_read_int8(addr);
  2648. }
  2649. if (correction == 0)
  2650. continue;
  2651. float offset = float(correction) * 0.001f;
  2652. if (fabs(offset) > 0.101f) {
  2653. SERIAL_ERROR_START;
  2654. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2655. SERIAL_ECHO(offset);
  2656. SERIAL_ECHOLNPGM(" microns");
  2657. }
  2658. else {
  2659. switch (i) {
  2660. case 0:
  2661. for (uint8_t row = 0; row < 3; ++row) {
  2662. mbl.z_values[row][1] += 0.5f * offset;
  2663. mbl.z_values[row][0] += offset;
  2664. }
  2665. break;
  2666. case 1:
  2667. for (uint8_t row = 0; row < 3; ++row) {
  2668. mbl.z_values[row][1] += 0.5f * offset;
  2669. mbl.z_values[row][2] += offset;
  2670. }
  2671. break;
  2672. case 2:
  2673. for (uint8_t col = 0; col < 3; ++col) {
  2674. mbl.z_values[1][col] += 0.5f * offset;
  2675. mbl.z_values[0][col] += offset;
  2676. }
  2677. break;
  2678. case 3:
  2679. for (uint8_t col = 0; col < 3; ++col) {
  2680. mbl.z_values[1][col] += 0.5f * offset;
  2681. mbl.z_values[2][col] += offset;
  2682. }
  2683. break;
  2684. }
  2685. }
  2686. }
  2687. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2688. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2689. SERIAL_ECHOLNPGM("Upsample finished");
  2690. mbl.active = 1; //activate mesh bed leveling
  2691. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2692. go_home_with_z_lift();
  2693. SERIAL_ECHOLNPGM("Go home finished");
  2694. //unretract (after PINDA preheat retraction)
  2695. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2696. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2698. }
  2699. // Restore custom message state
  2700. custom_message = custom_message_old;
  2701. custom_message_type = custom_message_type_old;
  2702. custom_message_state = custom_message_state_old;
  2703. mesh_bed_leveling_flag = false;
  2704. mesh_bed_run_from_menu = false;
  2705. lcd_update(2);
  2706. }
  2707. break;
  2708. /**
  2709. * G81: Print mesh bed leveling status and bed profile if activated
  2710. */
  2711. case 81:
  2712. if (mbl.active) {
  2713. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2714. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2715. SERIAL_PROTOCOLPGM(",");
  2716. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2717. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2718. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2719. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2720. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2721. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2722. SERIAL_PROTOCOLPGM(" ");
  2723. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2724. }
  2725. SERIAL_PROTOCOLPGM("\n");
  2726. }
  2727. }
  2728. else
  2729. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2730. break;
  2731. #if 0
  2732. /**
  2733. * G82: Single Z probe at current location
  2734. *
  2735. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2736. *
  2737. */
  2738. case 82:
  2739. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2740. setup_for_endstop_move();
  2741. find_bed_induction_sensor_point_z();
  2742. clean_up_after_endstop_move();
  2743. SERIAL_PROTOCOLPGM("Bed found at: ");
  2744. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2745. SERIAL_PROTOCOLPGM("\n");
  2746. break;
  2747. /**
  2748. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2749. */
  2750. case 83:
  2751. {
  2752. int babystepz = code_seen('S') ? code_value() : 0;
  2753. int BabyPosition = code_seen('P') ? code_value() : 0;
  2754. if (babystepz != 0) {
  2755. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2756. // Is the axis indexed starting with zero or one?
  2757. if (BabyPosition > 4) {
  2758. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2759. }else{
  2760. // Save it to the eeprom
  2761. babystepLoadZ = babystepz;
  2762. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2763. // adjust the Z
  2764. babystepsTodoZadd(babystepLoadZ);
  2765. }
  2766. }
  2767. }
  2768. break;
  2769. /**
  2770. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2771. */
  2772. case 84:
  2773. babystepsTodoZsubtract(babystepLoadZ);
  2774. // babystepLoadZ = 0;
  2775. break;
  2776. /**
  2777. * G85: Prusa3D specific: Pick best babystep
  2778. */
  2779. case 85:
  2780. lcd_pick_babystep();
  2781. break;
  2782. #endif
  2783. /**
  2784. * G86: Prusa3D specific: Disable babystep correction after home.
  2785. * This G-code will be performed at the start of a calibration script.
  2786. */
  2787. case 86:
  2788. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2789. break;
  2790. /**
  2791. * G87: Prusa3D specific: Enable babystep correction after home
  2792. * This G-code will be performed at the end of a calibration script.
  2793. */
  2794. case 87:
  2795. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2796. break;
  2797. /**
  2798. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2799. */
  2800. case 88:
  2801. break;
  2802. #endif // ENABLE_MESH_BED_LEVELING
  2803. case 90: // G90
  2804. relative_mode = false;
  2805. break;
  2806. case 91: // G91
  2807. relative_mode = true;
  2808. break;
  2809. case 92: // G92
  2810. if(!code_seen(axis_codes[E_AXIS]))
  2811. st_synchronize();
  2812. for(int8_t i=0; i < NUM_AXIS; i++) {
  2813. if(code_seen(axis_codes[i])) {
  2814. if(i == E_AXIS) {
  2815. current_position[i] = code_value();
  2816. plan_set_e_position(current_position[E_AXIS]);
  2817. }
  2818. else {
  2819. current_position[i] = code_value()+add_homing[i];
  2820. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2821. }
  2822. }
  2823. }
  2824. break;
  2825. case 98: //activate farm mode
  2826. farm_mode = 1;
  2827. PingTime = millis();
  2828. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2829. break;
  2830. case 99: //deactivate farm mode
  2831. farm_mode = 0;
  2832. lcd_printer_connected();
  2833. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2834. lcd_update(2);
  2835. break;
  2836. }
  2837. } // end if(code_seen('G'))
  2838. else if(code_seen('M'))
  2839. {
  2840. int index;
  2841. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2842. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2843. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2844. SERIAL_ECHOLNPGM("Invalid M code");
  2845. } else
  2846. switch((int)code_value())
  2847. {
  2848. #ifdef ULTIPANEL
  2849. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2850. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2851. {
  2852. char *src = strchr_pointer + 2;
  2853. codenum = 0;
  2854. bool hasP = false, hasS = false;
  2855. if (code_seen('P')) {
  2856. codenum = code_value(); // milliseconds to wait
  2857. hasP = codenum > 0;
  2858. }
  2859. if (code_seen('S')) {
  2860. codenum = code_value() * 1000; // seconds to wait
  2861. hasS = codenum > 0;
  2862. }
  2863. starpos = strchr(src, '*');
  2864. if (starpos != NULL) *(starpos) = '\0';
  2865. while (*src == ' ') ++src;
  2866. if (!hasP && !hasS && *src != '\0') {
  2867. lcd_setstatus(src);
  2868. } else {
  2869. LCD_MESSAGERPGM(MSG_USERWAIT);
  2870. }
  2871. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2872. st_synchronize();
  2873. previous_millis_cmd = millis();
  2874. if (codenum > 0){
  2875. codenum += millis(); // keep track of when we started waiting
  2876. while(millis() < codenum && !lcd_clicked()){
  2877. manage_heater();
  2878. manage_inactivity(true);
  2879. lcd_update();
  2880. }
  2881. lcd_ignore_click(false);
  2882. }else{
  2883. if (!lcd_detected())
  2884. break;
  2885. while(!lcd_clicked()){
  2886. manage_heater();
  2887. manage_inactivity(true);
  2888. lcd_update();
  2889. }
  2890. }
  2891. if (IS_SD_PRINTING)
  2892. LCD_MESSAGERPGM(MSG_RESUMING);
  2893. else
  2894. LCD_MESSAGERPGM(WELCOME_MSG);
  2895. }
  2896. break;
  2897. #endif
  2898. case 17:
  2899. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2900. enable_x();
  2901. enable_y();
  2902. enable_z();
  2903. enable_e0();
  2904. enable_e1();
  2905. enable_e2();
  2906. break;
  2907. #ifdef SDSUPPORT
  2908. case 20: // M20 - list SD card
  2909. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2910. card.ls();
  2911. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2912. break;
  2913. case 21: // M21 - init SD card
  2914. card.initsd();
  2915. break;
  2916. case 22: //M22 - release SD card
  2917. card.release();
  2918. break;
  2919. case 23: //M23 - Select file
  2920. starpos = (strchr(strchr_pointer + 4,'*'));
  2921. if(starpos!=NULL)
  2922. *(starpos)='\0';
  2923. card.openFile(strchr_pointer + 4,true);
  2924. break;
  2925. case 24: //M24 - Start SD print
  2926. card.startFileprint();
  2927. starttime=millis();
  2928. break;
  2929. case 25: //M25 - Pause SD print
  2930. card.pauseSDPrint();
  2931. break;
  2932. case 26: //M26 - Set SD index
  2933. if(card.cardOK && code_seen('S')) {
  2934. card.setIndex(code_value_long());
  2935. }
  2936. break;
  2937. case 27: //M27 - Get SD status
  2938. card.getStatus();
  2939. break;
  2940. case 28: //M28 - Start SD write
  2941. starpos = (strchr(strchr_pointer + 4,'*'));
  2942. if(starpos != NULL){
  2943. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2944. strchr_pointer = strchr(npos,' ') + 1;
  2945. *(starpos) = '\0';
  2946. }
  2947. card.openFile(strchr_pointer+4,false);
  2948. break;
  2949. case 29: //M29 - Stop SD write
  2950. //processed in write to file routine above
  2951. //card,saving = false;
  2952. break;
  2953. case 30: //M30 <filename> Delete File
  2954. if (card.cardOK){
  2955. card.closefile();
  2956. starpos = (strchr(strchr_pointer + 4,'*'));
  2957. if(starpos != NULL){
  2958. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2959. strchr_pointer = strchr(npos,' ') + 1;
  2960. *(starpos) = '\0';
  2961. }
  2962. card.removeFile(strchr_pointer + 4);
  2963. }
  2964. break;
  2965. case 32: //M32 - Select file and start SD print
  2966. {
  2967. if(card.sdprinting) {
  2968. st_synchronize();
  2969. }
  2970. starpos = (strchr(strchr_pointer + 4,'*'));
  2971. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2972. if(namestartpos==NULL)
  2973. {
  2974. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2975. }
  2976. else
  2977. namestartpos++; //to skip the '!'
  2978. if(starpos!=NULL)
  2979. *(starpos)='\0';
  2980. bool call_procedure=(code_seen('P'));
  2981. if(strchr_pointer>namestartpos)
  2982. call_procedure=false; //false alert, 'P' found within filename
  2983. if( card.cardOK )
  2984. {
  2985. card.openFile(namestartpos,true,!call_procedure);
  2986. if(code_seen('S'))
  2987. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2988. card.setIndex(code_value_long());
  2989. card.startFileprint();
  2990. if(!call_procedure)
  2991. starttime=millis(); //procedure calls count as normal print time.
  2992. }
  2993. } break;
  2994. case 928: //M928 - Start SD write
  2995. starpos = (strchr(strchr_pointer + 5,'*'));
  2996. if(starpos != NULL){
  2997. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2998. strchr_pointer = strchr(npos,' ') + 1;
  2999. *(starpos) = '\0';
  3000. }
  3001. card.openLogFile(strchr_pointer+5);
  3002. break;
  3003. #endif //SDSUPPORT
  3004. case 31: //M31 take time since the start of the SD print or an M109 command
  3005. {
  3006. stoptime=millis();
  3007. char time[30];
  3008. unsigned long t=(stoptime-starttime)/1000;
  3009. int sec,min;
  3010. min=t/60;
  3011. sec=t%60;
  3012. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3013. SERIAL_ECHO_START;
  3014. SERIAL_ECHOLN(time);
  3015. lcd_setstatus(time);
  3016. autotempShutdown();
  3017. }
  3018. break;
  3019. case 42: //M42 -Change pin status via gcode
  3020. if (code_seen('S'))
  3021. {
  3022. int pin_status = code_value();
  3023. int pin_number = LED_PIN;
  3024. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3025. pin_number = code_value();
  3026. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3027. {
  3028. if (sensitive_pins[i] == pin_number)
  3029. {
  3030. pin_number = -1;
  3031. break;
  3032. }
  3033. }
  3034. #if defined(FAN_PIN) && FAN_PIN > -1
  3035. if (pin_number == FAN_PIN)
  3036. fanSpeed = pin_status;
  3037. #endif
  3038. if (pin_number > -1)
  3039. {
  3040. pinMode(pin_number, OUTPUT);
  3041. digitalWrite(pin_number, pin_status);
  3042. analogWrite(pin_number, pin_status);
  3043. }
  3044. }
  3045. break;
  3046. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3047. // Reset the baby step value and the baby step applied flag.
  3048. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3049. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3050. // Reset the skew and offset in both RAM and EEPROM.
  3051. reset_bed_offset_and_skew();
  3052. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3053. // the planner will not perform any adjustments in the XY plane.
  3054. // Wait for the motors to stop and update the current position with the absolute values.
  3055. world2machine_revert_to_uncorrected();
  3056. break;
  3057. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3058. {
  3059. // Only Z calibration?
  3060. bool onlyZ = code_seen('Z');
  3061. if (!onlyZ) {
  3062. setTargetBed(0);
  3063. setTargetHotend(0, 0);
  3064. setTargetHotend(0, 1);
  3065. setTargetHotend(0, 2);
  3066. adjust_bed_reset(); //reset bed level correction
  3067. }
  3068. // Disable the default update procedure of the display. We will do a modal dialog.
  3069. lcd_update_enable(false);
  3070. // Let the planner use the uncorrected coordinates.
  3071. mbl.reset();
  3072. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3073. // the planner will not perform any adjustments in the XY plane.
  3074. // Wait for the motors to stop and update the current position with the absolute values.
  3075. world2machine_revert_to_uncorrected();
  3076. // Reset the baby step value applied without moving the axes.
  3077. babystep_reset();
  3078. // Mark all axes as in a need for homing.
  3079. memset(axis_known_position, 0, sizeof(axis_known_position));
  3080. // Let the user move the Z axes up to the end stoppers.
  3081. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3082. refresh_cmd_timeout();
  3083. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3084. lcd_wait_for_cool_down();
  3085. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3086. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3087. lcd_implementation_print_at(0, 2, 1);
  3088. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3089. }
  3090. // Move the print head close to the bed.
  3091. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3093. st_synchronize();
  3094. // Home in the XY plane.
  3095. set_destination_to_current();
  3096. setup_for_endstop_move();
  3097. home_xy();
  3098. int8_t verbosity_level = 0;
  3099. if (code_seen('V')) {
  3100. // Just 'V' without a number counts as V1.
  3101. char c = strchr_pointer[1];
  3102. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3103. }
  3104. if (onlyZ) {
  3105. clean_up_after_endstop_move();
  3106. // Z only calibration.
  3107. // Load the machine correction matrix
  3108. world2machine_initialize();
  3109. // and correct the current_position to match the transformed coordinate system.
  3110. world2machine_update_current();
  3111. //FIXME
  3112. bool result = sample_mesh_and_store_reference();
  3113. if (result) {
  3114. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3115. // Shipped, the nozzle height has been set already. The user can start printing now.
  3116. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3117. // babystep_apply();
  3118. }
  3119. } else {
  3120. // Reset the baby step value and the baby step applied flag.
  3121. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3122. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3123. // Complete XYZ calibration.
  3124. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3125. uint8_t point_too_far_mask = 0;
  3126. clean_up_after_endstop_move();
  3127. // Print head up.
  3128. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3130. st_synchronize();
  3131. if (result >= 0) {
  3132. // Second half: The fine adjustment.
  3133. // Let the planner use the uncorrected coordinates.
  3134. mbl.reset();
  3135. world2machine_reset();
  3136. // Home in the XY plane.
  3137. setup_for_endstop_move();
  3138. home_xy();
  3139. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3140. clean_up_after_endstop_move();
  3141. // Print head up.
  3142. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3144. st_synchronize();
  3145. // if (result >= 0) babystep_apply();
  3146. }
  3147. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3148. if (result >= 0) {
  3149. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3150. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3151. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3152. }
  3153. }
  3154. } else {
  3155. // Timeouted.
  3156. }
  3157. lcd_update_enable(true);
  3158. break;
  3159. }
  3160. /*
  3161. case 46:
  3162. {
  3163. // M46: Prusa3D: Show the assigned IP address.
  3164. uint8_t ip[4];
  3165. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3166. if (hasIP) {
  3167. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3168. SERIAL_ECHO(int(ip[0]));
  3169. SERIAL_ECHOPGM(".");
  3170. SERIAL_ECHO(int(ip[1]));
  3171. SERIAL_ECHOPGM(".");
  3172. SERIAL_ECHO(int(ip[2]));
  3173. SERIAL_ECHOPGM(".");
  3174. SERIAL_ECHO(int(ip[3]));
  3175. SERIAL_ECHOLNPGM("");
  3176. } else {
  3177. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3178. }
  3179. break;
  3180. }
  3181. */
  3182. case 47:
  3183. // M47: Prusa3D: Show end stops dialog on the display.
  3184. lcd_diag_show_end_stops();
  3185. break;
  3186. #if 0
  3187. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3188. {
  3189. // Disable the default update procedure of the display. We will do a modal dialog.
  3190. lcd_update_enable(false);
  3191. // Let the planner use the uncorrected coordinates.
  3192. mbl.reset();
  3193. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3194. // the planner will not perform any adjustments in the XY plane.
  3195. // Wait for the motors to stop and update the current position with the absolute values.
  3196. world2machine_revert_to_uncorrected();
  3197. // Move the print head close to the bed.
  3198. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3200. st_synchronize();
  3201. // Home in the XY plane.
  3202. set_destination_to_current();
  3203. setup_for_endstop_move();
  3204. home_xy();
  3205. int8_t verbosity_level = 0;
  3206. if (code_seen('V')) {
  3207. // Just 'V' without a number counts as V1.
  3208. char c = strchr_pointer[1];
  3209. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3210. }
  3211. bool success = scan_bed_induction_points(verbosity_level);
  3212. clean_up_after_endstop_move();
  3213. // Print head up.
  3214. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3216. st_synchronize();
  3217. lcd_update_enable(true);
  3218. break;
  3219. }
  3220. #endif
  3221. // M48 Z-Probe repeatability measurement function.
  3222. //
  3223. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3224. //
  3225. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3226. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3227. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3228. // regenerated.
  3229. //
  3230. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3231. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3232. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3233. //
  3234. #ifdef ENABLE_AUTO_BED_LEVELING
  3235. #ifdef Z_PROBE_REPEATABILITY_TEST
  3236. case 48: // M48 Z-Probe repeatability
  3237. {
  3238. #if Z_MIN_PIN == -1
  3239. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3240. #endif
  3241. double sum=0.0;
  3242. double mean=0.0;
  3243. double sigma=0.0;
  3244. double sample_set[50];
  3245. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3246. double X_current, Y_current, Z_current;
  3247. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3248. if (code_seen('V') || code_seen('v')) {
  3249. verbose_level = code_value();
  3250. if (verbose_level<0 || verbose_level>4 ) {
  3251. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3252. goto Sigma_Exit;
  3253. }
  3254. }
  3255. if (verbose_level > 0) {
  3256. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3257. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3258. }
  3259. if (code_seen('n')) {
  3260. n_samples = code_value();
  3261. if (n_samples<4 || n_samples>50 ) {
  3262. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3263. goto Sigma_Exit;
  3264. }
  3265. }
  3266. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3267. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3268. Z_current = st_get_position_mm(Z_AXIS);
  3269. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3270. ext_position = st_get_position_mm(E_AXIS);
  3271. if (code_seen('X') || code_seen('x') ) {
  3272. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3273. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3274. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3275. goto Sigma_Exit;
  3276. }
  3277. }
  3278. if (code_seen('Y') || code_seen('y') ) {
  3279. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3280. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3281. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3282. goto Sigma_Exit;
  3283. }
  3284. }
  3285. if (code_seen('L') || code_seen('l') ) {
  3286. n_legs = code_value();
  3287. if ( n_legs==1 )
  3288. n_legs = 2;
  3289. if ( n_legs<0 || n_legs>15 ) {
  3290. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3291. goto Sigma_Exit;
  3292. }
  3293. }
  3294. //
  3295. // Do all the preliminary setup work. First raise the probe.
  3296. //
  3297. st_synchronize();
  3298. plan_bed_level_matrix.set_to_identity();
  3299. plan_buffer_line( X_current, Y_current, Z_start_location,
  3300. ext_position,
  3301. homing_feedrate[Z_AXIS]/60,
  3302. active_extruder);
  3303. st_synchronize();
  3304. //
  3305. // Now get everything to the specified probe point So we can safely do a probe to
  3306. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3307. // use that as a starting point for each probe.
  3308. //
  3309. if (verbose_level > 2)
  3310. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3311. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3312. ext_position,
  3313. homing_feedrate[X_AXIS]/60,
  3314. active_extruder);
  3315. st_synchronize();
  3316. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3317. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3318. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3319. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3320. //
  3321. // OK, do the inital probe to get us close to the bed.
  3322. // Then retrace the right amount and use that in subsequent probes
  3323. //
  3324. setup_for_endstop_move();
  3325. run_z_probe();
  3326. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3327. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3328. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3329. ext_position,
  3330. homing_feedrate[X_AXIS]/60,
  3331. active_extruder);
  3332. st_synchronize();
  3333. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3334. for( n=0; n<n_samples; n++) {
  3335. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3336. if ( n_legs) {
  3337. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3338. int rotational_direction, l;
  3339. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3340. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3341. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3342. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3343. //SERIAL_ECHOPAIR(" theta: ",theta);
  3344. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3345. //SERIAL_PROTOCOLLNPGM("");
  3346. for( l=0; l<n_legs-1; l++) {
  3347. if (rotational_direction==1)
  3348. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3349. else
  3350. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3351. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3352. if ( radius<0.0 )
  3353. radius = -radius;
  3354. X_current = X_probe_location + cos(theta) * radius;
  3355. Y_current = Y_probe_location + sin(theta) * radius;
  3356. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3357. X_current = X_MIN_POS;
  3358. if ( X_current>X_MAX_POS)
  3359. X_current = X_MAX_POS;
  3360. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3361. Y_current = Y_MIN_POS;
  3362. if ( Y_current>Y_MAX_POS)
  3363. Y_current = Y_MAX_POS;
  3364. if (verbose_level>3 ) {
  3365. SERIAL_ECHOPAIR("x: ", X_current);
  3366. SERIAL_ECHOPAIR("y: ", Y_current);
  3367. SERIAL_PROTOCOLLNPGM("");
  3368. }
  3369. do_blocking_move_to( X_current, Y_current, Z_current );
  3370. }
  3371. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3372. }
  3373. setup_for_endstop_move();
  3374. run_z_probe();
  3375. sample_set[n] = current_position[Z_AXIS];
  3376. //
  3377. // Get the current mean for the data points we have so far
  3378. //
  3379. sum=0.0;
  3380. for( j=0; j<=n; j++) {
  3381. sum = sum + sample_set[j];
  3382. }
  3383. mean = sum / (double (n+1));
  3384. //
  3385. // Now, use that mean to calculate the standard deviation for the
  3386. // data points we have so far
  3387. //
  3388. sum=0.0;
  3389. for( j=0; j<=n; j++) {
  3390. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3391. }
  3392. sigma = sqrt( sum / (double (n+1)) );
  3393. if (verbose_level > 1) {
  3394. SERIAL_PROTOCOL(n+1);
  3395. SERIAL_PROTOCOL(" of ");
  3396. SERIAL_PROTOCOL(n_samples);
  3397. SERIAL_PROTOCOLPGM(" z: ");
  3398. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3399. }
  3400. if (verbose_level > 2) {
  3401. SERIAL_PROTOCOL(" mean: ");
  3402. SERIAL_PROTOCOL_F(mean,6);
  3403. SERIAL_PROTOCOL(" sigma: ");
  3404. SERIAL_PROTOCOL_F(sigma,6);
  3405. }
  3406. if (verbose_level > 0)
  3407. SERIAL_PROTOCOLPGM("\n");
  3408. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3409. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3410. st_synchronize();
  3411. }
  3412. delay(1000);
  3413. clean_up_after_endstop_move();
  3414. // enable_endstops(true);
  3415. if (verbose_level > 0) {
  3416. SERIAL_PROTOCOLPGM("Mean: ");
  3417. SERIAL_PROTOCOL_F(mean, 6);
  3418. SERIAL_PROTOCOLPGM("\n");
  3419. }
  3420. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3421. SERIAL_PROTOCOL_F(sigma, 6);
  3422. SERIAL_PROTOCOLPGM("\n\n");
  3423. Sigma_Exit:
  3424. break;
  3425. }
  3426. #endif // Z_PROBE_REPEATABILITY_TEST
  3427. #endif // ENABLE_AUTO_BED_LEVELING
  3428. case 104: // M104
  3429. if(setTargetedHotend(104)){
  3430. break;
  3431. }
  3432. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3433. setWatch();
  3434. break;
  3435. case 112: // M112 -Emergency Stop
  3436. kill();
  3437. break;
  3438. case 140: // M140 set bed temp
  3439. if (code_seen('S')) setTargetBed(code_value());
  3440. break;
  3441. case 105 : // M105
  3442. if(setTargetedHotend(105)){
  3443. break;
  3444. }
  3445. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3446. SERIAL_PROTOCOLPGM("ok T:");
  3447. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3448. SERIAL_PROTOCOLPGM(" /");
  3449. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3450. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3451. SERIAL_PROTOCOLPGM(" B:");
  3452. SERIAL_PROTOCOL_F(degBed(),1);
  3453. SERIAL_PROTOCOLPGM(" /");
  3454. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3455. #endif //TEMP_BED_PIN
  3456. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3457. SERIAL_PROTOCOLPGM(" T");
  3458. SERIAL_PROTOCOL(cur_extruder);
  3459. SERIAL_PROTOCOLPGM(":");
  3460. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3461. SERIAL_PROTOCOLPGM(" /");
  3462. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3463. }
  3464. #else
  3465. SERIAL_ERROR_START;
  3466. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3467. #endif
  3468. SERIAL_PROTOCOLPGM(" @:");
  3469. #ifdef EXTRUDER_WATTS
  3470. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3471. SERIAL_PROTOCOLPGM("W");
  3472. #else
  3473. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3474. #endif
  3475. SERIAL_PROTOCOLPGM(" B@:");
  3476. #ifdef BED_WATTS
  3477. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3478. SERIAL_PROTOCOLPGM("W");
  3479. #else
  3480. SERIAL_PROTOCOL(getHeaterPower(-1));
  3481. #endif
  3482. #ifdef SHOW_TEMP_ADC_VALUES
  3483. {float raw = 0.0;
  3484. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3485. SERIAL_PROTOCOLPGM(" ADC B:");
  3486. SERIAL_PROTOCOL_F(degBed(),1);
  3487. SERIAL_PROTOCOLPGM("C->");
  3488. raw = rawBedTemp();
  3489. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3490. SERIAL_PROTOCOLPGM(" Rb->");
  3491. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3492. SERIAL_PROTOCOLPGM(" Rxb->");
  3493. SERIAL_PROTOCOL_F(raw, 5);
  3494. #endif
  3495. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3496. SERIAL_PROTOCOLPGM(" T");
  3497. SERIAL_PROTOCOL(cur_extruder);
  3498. SERIAL_PROTOCOLPGM(":");
  3499. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3500. SERIAL_PROTOCOLPGM("C->");
  3501. raw = rawHotendTemp(cur_extruder);
  3502. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3503. SERIAL_PROTOCOLPGM(" Rt");
  3504. SERIAL_PROTOCOL(cur_extruder);
  3505. SERIAL_PROTOCOLPGM("->");
  3506. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3507. SERIAL_PROTOCOLPGM(" Rx");
  3508. SERIAL_PROTOCOL(cur_extruder);
  3509. SERIAL_PROTOCOLPGM("->");
  3510. SERIAL_PROTOCOL_F(raw, 5);
  3511. }}
  3512. #endif
  3513. SERIAL_PROTOCOLLN("");
  3514. return;
  3515. break;
  3516. case 109:
  3517. {// M109 - Wait for extruder heater to reach target.
  3518. if(setTargetedHotend(109)){
  3519. break;
  3520. }
  3521. LCD_MESSAGERPGM(MSG_HEATING);
  3522. heating_status = 1;
  3523. if (farm_mode) { prusa_statistics(1); };
  3524. #ifdef AUTOTEMP
  3525. autotemp_enabled=false;
  3526. #endif
  3527. if (code_seen('S')) {
  3528. setTargetHotend(code_value(), tmp_extruder);
  3529. CooldownNoWait = true;
  3530. } else if (code_seen('R')) {
  3531. setTargetHotend(code_value(), tmp_extruder);
  3532. CooldownNoWait = false;
  3533. }
  3534. #ifdef AUTOTEMP
  3535. if (code_seen('S')) autotemp_min=code_value();
  3536. if (code_seen('B')) autotemp_max=code_value();
  3537. if (code_seen('F'))
  3538. {
  3539. autotemp_factor=code_value();
  3540. autotemp_enabled=true;
  3541. }
  3542. #endif
  3543. setWatch();
  3544. codenum = millis();
  3545. /* See if we are heating up or cooling down */
  3546. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3547. cancel_heatup = false;
  3548. wait_for_heater(codenum); //loops until target temperature is reached
  3549. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3550. heating_status = 2;
  3551. if (farm_mode) { prusa_statistics(2); };
  3552. //starttime=millis();
  3553. previous_millis_cmd = millis();
  3554. }
  3555. break;
  3556. case 190: // M190 - Wait for bed heater to reach target.
  3557. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3558. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3559. heating_status = 3;
  3560. if (farm_mode) { prusa_statistics(1); };
  3561. if (code_seen('S'))
  3562. {
  3563. setTargetBed(code_value());
  3564. CooldownNoWait = true;
  3565. }
  3566. else if (code_seen('R'))
  3567. {
  3568. setTargetBed(code_value());
  3569. CooldownNoWait = false;
  3570. }
  3571. codenum = millis();
  3572. cancel_heatup = false;
  3573. target_direction = isHeatingBed(); // true if heating, false if cooling
  3574. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3575. {
  3576. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3577. {
  3578. if (!farm_mode) {
  3579. float tt = degHotend(active_extruder);
  3580. SERIAL_PROTOCOLPGM("T:");
  3581. SERIAL_PROTOCOL(tt);
  3582. SERIAL_PROTOCOLPGM(" E:");
  3583. SERIAL_PROTOCOL((int)active_extruder);
  3584. SERIAL_PROTOCOLPGM(" B:");
  3585. SERIAL_PROTOCOL_F(degBed(), 1);
  3586. SERIAL_PROTOCOLLN("");
  3587. }
  3588. codenum = millis();
  3589. }
  3590. manage_heater();
  3591. manage_inactivity();
  3592. lcd_update();
  3593. }
  3594. LCD_MESSAGERPGM(MSG_BED_DONE);
  3595. heating_status = 4;
  3596. previous_millis_cmd = millis();
  3597. #endif
  3598. break;
  3599. #if defined(FAN_PIN) && FAN_PIN > -1
  3600. case 106: //M106 Fan On
  3601. if (code_seen('S')){
  3602. fanSpeed=constrain(code_value(),0,255);
  3603. }
  3604. else {
  3605. fanSpeed=255;
  3606. }
  3607. break;
  3608. case 107: //M107 Fan Off
  3609. fanSpeed = 0;
  3610. break;
  3611. #endif //FAN_PIN
  3612. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3613. case 80: // M80 - Turn on Power Supply
  3614. SET_OUTPUT(PS_ON_PIN); //GND
  3615. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3616. // If you have a switch on suicide pin, this is useful
  3617. // if you want to start another print with suicide feature after
  3618. // a print without suicide...
  3619. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3620. SET_OUTPUT(SUICIDE_PIN);
  3621. WRITE(SUICIDE_PIN, HIGH);
  3622. #endif
  3623. #ifdef ULTIPANEL
  3624. powersupply = true;
  3625. LCD_MESSAGERPGM(WELCOME_MSG);
  3626. lcd_update();
  3627. #endif
  3628. break;
  3629. #endif
  3630. case 81: // M81 - Turn off Power Supply
  3631. disable_heater();
  3632. st_synchronize();
  3633. disable_e0();
  3634. disable_e1();
  3635. disable_e2();
  3636. finishAndDisableSteppers();
  3637. fanSpeed = 0;
  3638. delay(1000); // Wait a little before to switch off
  3639. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3640. st_synchronize();
  3641. suicide();
  3642. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3643. SET_OUTPUT(PS_ON_PIN);
  3644. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3645. #endif
  3646. #ifdef ULTIPANEL
  3647. powersupply = false;
  3648. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3649. /*
  3650. MACHNAME = "Prusa i3"
  3651. MSGOFF = "Vypnuto"
  3652. "Prusai3"" ""vypnuto""."
  3653. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3654. */
  3655. lcd_update();
  3656. #endif
  3657. break;
  3658. case 82:
  3659. axis_relative_modes[3] = false;
  3660. break;
  3661. case 83:
  3662. axis_relative_modes[3] = true;
  3663. break;
  3664. case 18: //compatibility
  3665. case 84: // M84
  3666. if(code_seen('S')){
  3667. stepper_inactive_time = code_value() * 1000;
  3668. }
  3669. else
  3670. {
  3671. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3672. if(all_axis)
  3673. {
  3674. st_synchronize();
  3675. disable_e0();
  3676. disable_e1();
  3677. disable_e2();
  3678. finishAndDisableSteppers();
  3679. }
  3680. else
  3681. {
  3682. st_synchronize();
  3683. if (code_seen('X')) disable_x();
  3684. if (code_seen('Y')) disable_y();
  3685. if (code_seen('Z')) disable_z();
  3686. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3687. if (code_seen('E')) {
  3688. disable_e0();
  3689. disable_e1();
  3690. disable_e2();
  3691. }
  3692. #endif
  3693. }
  3694. }
  3695. break;
  3696. case 85: // M85
  3697. if(code_seen('S')) {
  3698. max_inactive_time = code_value() * 1000;
  3699. }
  3700. break;
  3701. case 92: // M92
  3702. for(int8_t i=0; i < NUM_AXIS; i++)
  3703. {
  3704. if(code_seen(axis_codes[i]))
  3705. {
  3706. if(i == 3) { // E
  3707. float value = code_value();
  3708. if(value < 20.0) {
  3709. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3710. max_jerk[E_AXIS] *= factor;
  3711. max_feedrate[i] *= factor;
  3712. axis_steps_per_sqr_second[i] *= factor;
  3713. }
  3714. axis_steps_per_unit[i] = value;
  3715. }
  3716. else {
  3717. axis_steps_per_unit[i] = code_value();
  3718. }
  3719. }
  3720. }
  3721. break;
  3722. case 115: // M115
  3723. if (code_seen('V')) {
  3724. // Report the Prusa version number.
  3725. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3726. } else if (code_seen('U')) {
  3727. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3728. // pause the print and ask the user to upgrade the firmware.
  3729. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3730. } else {
  3731. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3732. }
  3733. break;
  3734. case 117: // M117 display message
  3735. starpos = (strchr(strchr_pointer + 5,'*'));
  3736. if(starpos!=NULL)
  3737. *(starpos)='\0';
  3738. lcd_setstatus(strchr_pointer + 5);
  3739. break;
  3740. case 114: // M114
  3741. SERIAL_PROTOCOLPGM("X:");
  3742. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3743. SERIAL_PROTOCOLPGM(" Y:");
  3744. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3745. SERIAL_PROTOCOLPGM(" Z:");
  3746. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3747. SERIAL_PROTOCOLPGM(" E:");
  3748. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3749. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3750. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3751. SERIAL_PROTOCOLPGM(" Y:");
  3752. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3753. SERIAL_PROTOCOLPGM(" Z:");
  3754. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3755. SERIAL_PROTOCOLLN("");
  3756. break;
  3757. case 120: // M120
  3758. enable_endstops(false) ;
  3759. break;
  3760. case 121: // M121
  3761. enable_endstops(true) ;
  3762. break;
  3763. case 119: // M119
  3764. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3765. SERIAL_PROTOCOLLN("");
  3766. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3767. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3768. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3769. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3770. }else{
  3771. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3772. }
  3773. SERIAL_PROTOCOLLN("");
  3774. #endif
  3775. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3776. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3777. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3778. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3779. }else{
  3780. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3781. }
  3782. SERIAL_PROTOCOLLN("");
  3783. #endif
  3784. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3785. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3786. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3787. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3788. }else{
  3789. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3790. }
  3791. SERIAL_PROTOCOLLN("");
  3792. #endif
  3793. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3794. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3795. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3796. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3797. }else{
  3798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3799. }
  3800. SERIAL_PROTOCOLLN("");
  3801. #endif
  3802. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3803. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3804. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3805. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3806. }else{
  3807. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3808. }
  3809. SERIAL_PROTOCOLLN("");
  3810. #endif
  3811. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3812. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3813. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3814. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3815. }else{
  3816. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3817. }
  3818. SERIAL_PROTOCOLLN("");
  3819. #endif
  3820. break;
  3821. //TODO: update for all axis, use for loop
  3822. #ifdef BLINKM
  3823. case 150: // M150
  3824. {
  3825. byte red;
  3826. byte grn;
  3827. byte blu;
  3828. if(code_seen('R')) red = code_value();
  3829. if(code_seen('U')) grn = code_value();
  3830. if(code_seen('B')) blu = code_value();
  3831. SendColors(red,grn,blu);
  3832. }
  3833. break;
  3834. #endif //BLINKM
  3835. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3836. {
  3837. tmp_extruder = active_extruder;
  3838. if(code_seen('T')) {
  3839. tmp_extruder = code_value();
  3840. if(tmp_extruder >= EXTRUDERS) {
  3841. SERIAL_ECHO_START;
  3842. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3843. break;
  3844. }
  3845. }
  3846. float area = .0;
  3847. if(code_seen('D')) {
  3848. float diameter = (float)code_value();
  3849. if (diameter == 0.0) {
  3850. // setting any extruder filament size disables volumetric on the assumption that
  3851. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3852. // for all extruders
  3853. volumetric_enabled = false;
  3854. } else {
  3855. filament_size[tmp_extruder] = (float)code_value();
  3856. // make sure all extruders have some sane value for the filament size
  3857. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3858. #if EXTRUDERS > 1
  3859. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3860. #if EXTRUDERS > 2
  3861. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3862. #endif
  3863. #endif
  3864. volumetric_enabled = true;
  3865. }
  3866. } else {
  3867. //reserved for setting filament diameter via UFID or filament measuring device
  3868. break;
  3869. }
  3870. calculate_volumetric_multipliers();
  3871. }
  3872. break;
  3873. case 201: // M201
  3874. for(int8_t i=0; i < NUM_AXIS; i++)
  3875. {
  3876. if(code_seen(axis_codes[i]))
  3877. {
  3878. max_acceleration_units_per_sq_second[i] = code_value();
  3879. }
  3880. }
  3881. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3882. reset_acceleration_rates();
  3883. break;
  3884. #if 0 // Not used for Sprinter/grbl gen6
  3885. case 202: // M202
  3886. for(int8_t i=0; i < NUM_AXIS; i++) {
  3887. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3888. }
  3889. break;
  3890. #endif
  3891. case 203: // M203 max feedrate mm/sec
  3892. for(int8_t i=0; i < NUM_AXIS; i++) {
  3893. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3894. }
  3895. break;
  3896. case 204: // M204 acclereration S normal moves T filmanent only moves
  3897. {
  3898. if(code_seen('S')) acceleration = code_value() ;
  3899. if(code_seen('T')) retract_acceleration = code_value() ;
  3900. }
  3901. break;
  3902. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3903. {
  3904. if(code_seen('S')) minimumfeedrate = code_value();
  3905. if(code_seen('T')) mintravelfeedrate = code_value();
  3906. if(code_seen('B')) minsegmenttime = code_value() ;
  3907. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3908. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3909. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3910. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3911. }
  3912. break;
  3913. case 206: // M206 additional homing offset
  3914. for(int8_t i=0; i < 3; i++)
  3915. {
  3916. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3917. }
  3918. break;
  3919. #ifdef FWRETRACT
  3920. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3921. {
  3922. if(code_seen('S'))
  3923. {
  3924. retract_length = code_value() ;
  3925. }
  3926. if(code_seen('F'))
  3927. {
  3928. retract_feedrate = code_value()/60 ;
  3929. }
  3930. if(code_seen('Z'))
  3931. {
  3932. retract_zlift = code_value() ;
  3933. }
  3934. }break;
  3935. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3936. {
  3937. if(code_seen('S'))
  3938. {
  3939. retract_recover_length = code_value() ;
  3940. }
  3941. if(code_seen('F'))
  3942. {
  3943. retract_recover_feedrate = code_value()/60 ;
  3944. }
  3945. }break;
  3946. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3947. {
  3948. if(code_seen('S'))
  3949. {
  3950. int t= code_value() ;
  3951. switch(t)
  3952. {
  3953. case 0:
  3954. {
  3955. autoretract_enabled=false;
  3956. retracted[0]=false;
  3957. #if EXTRUDERS > 1
  3958. retracted[1]=false;
  3959. #endif
  3960. #if EXTRUDERS > 2
  3961. retracted[2]=false;
  3962. #endif
  3963. }break;
  3964. case 1:
  3965. {
  3966. autoretract_enabled=true;
  3967. retracted[0]=false;
  3968. #if EXTRUDERS > 1
  3969. retracted[1]=false;
  3970. #endif
  3971. #if EXTRUDERS > 2
  3972. retracted[2]=false;
  3973. #endif
  3974. }break;
  3975. default:
  3976. SERIAL_ECHO_START;
  3977. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3978. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3979. SERIAL_ECHOLNPGM("\"");
  3980. }
  3981. }
  3982. }break;
  3983. #endif // FWRETRACT
  3984. #if EXTRUDERS > 1
  3985. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3986. {
  3987. if(setTargetedHotend(218)){
  3988. break;
  3989. }
  3990. if(code_seen('X'))
  3991. {
  3992. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3993. }
  3994. if(code_seen('Y'))
  3995. {
  3996. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3997. }
  3998. SERIAL_ECHO_START;
  3999. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4000. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4001. {
  4002. SERIAL_ECHO(" ");
  4003. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4004. SERIAL_ECHO(",");
  4005. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4006. }
  4007. SERIAL_ECHOLN("");
  4008. }break;
  4009. #endif
  4010. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4011. {
  4012. if(code_seen('S'))
  4013. {
  4014. feedmultiply = code_value() ;
  4015. }
  4016. }
  4017. break;
  4018. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4019. {
  4020. if(code_seen('S'))
  4021. {
  4022. int tmp_code = code_value();
  4023. if (code_seen('T'))
  4024. {
  4025. if(setTargetedHotend(221)){
  4026. break;
  4027. }
  4028. extruder_multiply[tmp_extruder] = tmp_code;
  4029. }
  4030. else
  4031. {
  4032. extrudemultiply = tmp_code ;
  4033. }
  4034. }
  4035. }
  4036. break;
  4037. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4038. {
  4039. if(code_seen('P')){
  4040. int pin_number = code_value(); // pin number
  4041. int pin_state = -1; // required pin state - default is inverted
  4042. if(code_seen('S')) pin_state = code_value(); // required pin state
  4043. if(pin_state >= -1 && pin_state <= 1){
  4044. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4045. {
  4046. if (sensitive_pins[i] == pin_number)
  4047. {
  4048. pin_number = -1;
  4049. break;
  4050. }
  4051. }
  4052. if (pin_number > -1)
  4053. {
  4054. int target = LOW;
  4055. st_synchronize();
  4056. pinMode(pin_number, INPUT);
  4057. switch(pin_state){
  4058. case 1:
  4059. target = HIGH;
  4060. break;
  4061. case 0:
  4062. target = LOW;
  4063. break;
  4064. case -1:
  4065. target = !digitalRead(pin_number);
  4066. break;
  4067. }
  4068. while(digitalRead(pin_number) != target){
  4069. manage_heater();
  4070. manage_inactivity();
  4071. lcd_update();
  4072. }
  4073. }
  4074. }
  4075. }
  4076. }
  4077. break;
  4078. #if NUM_SERVOS > 0
  4079. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4080. {
  4081. int servo_index = -1;
  4082. int servo_position = 0;
  4083. if (code_seen('P'))
  4084. servo_index = code_value();
  4085. if (code_seen('S')) {
  4086. servo_position = code_value();
  4087. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4088. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4089. servos[servo_index].attach(0);
  4090. #endif
  4091. servos[servo_index].write(servo_position);
  4092. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4093. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4094. servos[servo_index].detach();
  4095. #endif
  4096. }
  4097. else {
  4098. SERIAL_ECHO_START;
  4099. SERIAL_ECHO("Servo ");
  4100. SERIAL_ECHO(servo_index);
  4101. SERIAL_ECHOLN(" out of range");
  4102. }
  4103. }
  4104. else if (servo_index >= 0) {
  4105. SERIAL_PROTOCOL(MSG_OK);
  4106. SERIAL_PROTOCOL(" Servo ");
  4107. SERIAL_PROTOCOL(servo_index);
  4108. SERIAL_PROTOCOL(": ");
  4109. SERIAL_PROTOCOL(servos[servo_index].read());
  4110. SERIAL_PROTOCOLLN("");
  4111. }
  4112. }
  4113. break;
  4114. #endif // NUM_SERVOS > 0
  4115. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4116. case 300: // M300
  4117. {
  4118. int beepS = code_seen('S') ? code_value() : 110;
  4119. int beepP = code_seen('P') ? code_value() : 1000;
  4120. if (beepS > 0)
  4121. {
  4122. #if BEEPER > 0
  4123. tone(BEEPER, beepS);
  4124. delay(beepP);
  4125. noTone(BEEPER);
  4126. #elif defined(ULTRALCD)
  4127. lcd_buzz(beepS, beepP);
  4128. #elif defined(LCD_USE_I2C_BUZZER)
  4129. lcd_buzz(beepP, beepS);
  4130. #endif
  4131. }
  4132. else
  4133. {
  4134. delay(beepP);
  4135. }
  4136. }
  4137. break;
  4138. #endif // M300
  4139. #ifdef PIDTEMP
  4140. case 301: // M301
  4141. {
  4142. if(code_seen('P')) Kp = code_value();
  4143. if(code_seen('I')) Ki = scalePID_i(code_value());
  4144. if(code_seen('D')) Kd = scalePID_d(code_value());
  4145. #ifdef PID_ADD_EXTRUSION_RATE
  4146. if(code_seen('C')) Kc = code_value();
  4147. #endif
  4148. updatePID();
  4149. SERIAL_PROTOCOLRPGM(MSG_OK);
  4150. SERIAL_PROTOCOL(" p:");
  4151. SERIAL_PROTOCOL(Kp);
  4152. SERIAL_PROTOCOL(" i:");
  4153. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4154. SERIAL_PROTOCOL(" d:");
  4155. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4156. #ifdef PID_ADD_EXTRUSION_RATE
  4157. SERIAL_PROTOCOL(" c:");
  4158. //Kc does not have scaling applied above, or in resetting defaults
  4159. SERIAL_PROTOCOL(Kc);
  4160. #endif
  4161. SERIAL_PROTOCOLLN("");
  4162. }
  4163. break;
  4164. #endif //PIDTEMP
  4165. #ifdef PIDTEMPBED
  4166. case 304: // M304
  4167. {
  4168. if(code_seen('P')) bedKp = code_value();
  4169. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4170. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4171. updatePID();
  4172. SERIAL_PROTOCOLRPGM(MSG_OK);
  4173. SERIAL_PROTOCOL(" p:");
  4174. SERIAL_PROTOCOL(bedKp);
  4175. SERIAL_PROTOCOL(" i:");
  4176. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4177. SERIAL_PROTOCOL(" d:");
  4178. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4179. SERIAL_PROTOCOLLN("");
  4180. }
  4181. break;
  4182. #endif //PIDTEMP
  4183. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4184. {
  4185. #ifdef CHDK
  4186. SET_OUTPUT(CHDK);
  4187. WRITE(CHDK, HIGH);
  4188. chdkHigh = millis();
  4189. chdkActive = true;
  4190. #else
  4191. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4192. const uint8_t NUM_PULSES=16;
  4193. const float PULSE_LENGTH=0.01524;
  4194. for(int i=0; i < NUM_PULSES; i++) {
  4195. WRITE(PHOTOGRAPH_PIN, HIGH);
  4196. _delay_ms(PULSE_LENGTH);
  4197. WRITE(PHOTOGRAPH_PIN, LOW);
  4198. _delay_ms(PULSE_LENGTH);
  4199. }
  4200. delay(7.33);
  4201. for(int i=0; i < NUM_PULSES; i++) {
  4202. WRITE(PHOTOGRAPH_PIN, HIGH);
  4203. _delay_ms(PULSE_LENGTH);
  4204. WRITE(PHOTOGRAPH_PIN, LOW);
  4205. _delay_ms(PULSE_LENGTH);
  4206. }
  4207. #endif
  4208. #endif //chdk end if
  4209. }
  4210. break;
  4211. #ifdef DOGLCD
  4212. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4213. {
  4214. if (code_seen('C')) {
  4215. lcd_setcontrast( ((int)code_value())&63 );
  4216. }
  4217. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4218. SERIAL_PROTOCOL(lcd_contrast);
  4219. SERIAL_PROTOCOLLN("");
  4220. }
  4221. break;
  4222. #endif
  4223. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4224. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4225. {
  4226. float temp = .0;
  4227. if (code_seen('S')) temp=code_value();
  4228. set_extrude_min_temp(temp);
  4229. }
  4230. break;
  4231. #endif
  4232. case 303: // M303 PID autotune
  4233. {
  4234. float temp = 150.0;
  4235. int e=0;
  4236. int c=5;
  4237. if (code_seen('E')) e=code_value();
  4238. if (e<0)
  4239. temp=70;
  4240. if (code_seen('S')) temp=code_value();
  4241. if (code_seen('C')) c=code_value();
  4242. PID_autotune(temp, e, c);
  4243. }
  4244. break;
  4245. case 400: // M400 finish all moves
  4246. {
  4247. st_synchronize();
  4248. }
  4249. break;
  4250. #ifdef FILAMENT_SENSOR
  4251. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4252. {
  4253. #if (FILWIDTH_PIN > -1)
  4254. if(code_seen('N')) filament_width_nominal=code_value();
  4255. else{
  4256. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4257. SERIAL_PROTOCOLLN(filament_width_nominal);
  4258. }
  4259. #endif
  4260. }
  4261. break;
  4262. case 405: //M405 Turn on filament sensor for control
  4263. {
  4264. if(code_seen('D')) meas_delay_cm=code_value();
  4265. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4266. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4267. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4268. {
  4269. int temp_ratio = widthFil_to_size_ratio();
  4270. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4271. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4272. }
  4273. delay_index1=0;
  4274. delay_index2=0;
  4275. }
  4276. filament_sensor = true ;
  4277. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4278. //SERIAL_PROTOCOL(filament_width_meas);
  4279. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4280. //SERIAL_PROTOCOL(extrudemultiply);
  4281. }
  4282. break;
  4283. case 406: //M406 Turn off filament sensor for control
  4284. {
  4285. filament_sensor = false ;
  4286. }
  4287. break;
  4288. case 407: //M407 Display measured filament diameter
  4289. {
  4290. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4291. SERIAL_PROTOCOLLN(filament_width_meas);
  4292. }
  4293. break;
  4294. #endif
  4295. case 500: // M500 Store settings in EEPROM
  4296. {
  4297. Config_StoreSettings();
  4298. }
  4299. break;
  4300. case 501: // M501 Read settings from EEPROM
  4301. {
  4302. Config_RetrieveSettings();
  4303. }
  4304. break;
  4305. case 502: // M502 Revert to default settings
  4306. {
  4307. Config_ResetDefault();
  4308. }
  4309. break;
  4310. case 503: // M503 print settings currently in memory
  4311. {
  4312. Config_PrintSettings();
  4313. }
  4314. break;
  4315. case 509: //M509 Force language selection
  4316. {
  4317. lcd_force_language_selection();
  4318. SERIAL_ECHO_START;
  4319. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4320. }
  4321. break;
  4322. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4323. case 540:
  4324. {
  4325. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4326. }
  4327. break;
  4328. #endif
  4329. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4330. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4331. {
  4332. float value;
  4333. if (code_seen('Z'))
  4334. {
  4335. value = code_value();
  4336. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4337. {
  4338. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4339. SERIAL_ECHO_START;
  4340. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4341. SERIAL_PROTOCOLLN("");
  4342. }
  4343. else
  4344. {
  4345. SERIAL_ECHO_START;
  4346. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4347. SERIAL_ECHORPGM(MSG_Z_MIN);
  4348. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4349. SERIAL_ECHORPGM(MSG_Z_MAX);
  4350. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4351. SERIAL_PROTOCOLLN("");
  4352. }
  4353. }
  4354. else
  4355. {
  4356. SERIAL_ECHO_START;
  4357. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4358. SERIAL_ECHO(-zprobe_zoffset);
  4359. SERIAL_PROTOCOLLN("");
  4360. }
  4361. break;
  4362. }
  4363. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4364. #ifdef FILAMENTCHANGEENABLE
  4365. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4366. {
  4367. st_synchronize();
  4368. float target[4];
  4369. float lastpos[4];
  4370. if (farm_mode)
  4371. {
  4372. prusa_statistics(22);
  4373. }
  4374. feedmultiplyBckp=feedmultiply;
  4375. int8_t TooLowZ = 0;
  4376. target[X_AXIS]=current_position[X_AXIS];
  4377. target[Y_AXIS]=current_position[Y_AXIS];
  4378. target[Z_AXIS]=current_position[Z_AXIS];
  4379. target[E_AXIS]=current_position[E_AXIS];
  4380. lastpos[X_AXIS]=current_position[X_AXIS];
  4381. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4382. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4383. lastpos[E_AXIS]=current_position[E_AXIS];
  4384. //Restract extruder
  4385. if(code_seen('E'))
  4386. {
  4387. target[E_AXIS]+= code_value();
  4388. }
  4389. else
  4390. {
  4391. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4392. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4393. #endif
  4394. }
  4395. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4396. //Lift Z
  4397. if(code_seen('Z'))
  4398. {
  4399. target[Z_AXIS]+= code_value();
  4400. }
  4401. else
  4402. {
  4403. #ifdef FILAMENTCHANGE_ZADD
  4404. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4405. if(target[Z_AXIS] < 10){
  4406. target[Z_AXIS]+= 10 ;
  4407. TooLowZ = 1;
  4408. }else{
  4409. TooLowZ = 0;
  4410. }
  4411. #endif
  4412. }
  4413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4414. //Move XY to side
  4415. if(code_seen('X'))
  4416. {
  4417. target[X_AXIS]+= code_value();
  4418. }
  4419. else
  4420. {
  4421. #ifdef FILAMENTCHANGE_XPOS
  4422. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4423. #endif
  4424. }
  4425. if(code_seen('Y'))
  4426. {
  4427. target[Y_AXIS]= code_value();
  4428. }
  4429. else
  4430. {
  4431. #ifdef FILAMENTCHANGE_YPOS
  4432. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4433. #endif
  4434. }
  4435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4436. st_synchronize();
  4437. custom_message = true;
  4438. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4439. // Unload filament
  4440. if(code_seen('L'))
  4441. {
  4442. target[E_AXIS]+= code_value();
  4443. }
  4444. else
  4445. {
  4446. #ifdef SNMM
  4447. #else
  4448. #ifdef FILAMENTCHANGE_FINALRETRACT
  4449. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4450. #endif
  4451. #endif // SNMM
  4452. }
  4453. #ifdef SNMM
  4454. target[E_AXIS] += 12;
  4455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4456. target[E_AXIS] += 6;
  4457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4458. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4460. st_synchronize();
  4461. target[E_AXIS] += (FIL_COOLING);
  4462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4463. target[E_AXIS] += (FIL_COOLING*-1);
  4464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4465. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4467. st_synchronize();
  4468. #else
  4469. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4470. #endif // SNMM
  4471. //finish moves
  4472. st_synchronize();
  4473. //disable extruder steppers so filament can be removed
  4474. disable_e0();
  4475. disable_e1();
  4476. disable_e2();
  4477. delay(100);
  4478. //Wait for user to insert filament
  4479. uint8_t cnt=0;
  4480. int counterBeep = 0;
  4481. lcd_wait_interact();
  4482. load_filament_time = millis();
  4483. while(!lcd_clicked()){
  4484. cnt++;
  4485. manage_heater();
  4486. manage_inactivity(true);
  4487. /*#ifdef SNMM
  4488. target[E_AXIS] += 0.002;
  4489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4490. #endif // SNMM*/
  4491. if(cnt==0)
  4492. {
  4493. #if BEEPER > 0
  4494. if (counterBeep== 500){
  4495. counterBeep = 0;
  4496. }
  4497. SET_OUTPUT(BEEPER);
  4498. if (counterBeep== 0){
  4499. WRITE(BEEPER,HIGH);
  4500. }
  4501. if (counterBeep== 20){
  4502. WRITE(BEEPER,LOW);
  4503. }
  4504. counterBeep++;
  4505. #else
  4506. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4507. lcd_buzz(1000/6,100);
  4508. #else
  4509. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4510. #endif
  4511. #endif
  4512. }
  4513. }
  4514. #ifdef SNMM
  4515. display_loading();
  4516. do {
  4517. target[E_AXIS] += 0.002;
  4518. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4519. delay_keep_alive(2);
  4520. } while (!lcd_clicked());
  4521. /*if (millis() - load_filament_time > 2) {
  4522. load_filament_time = millis();
  4523. target[E_AXIS] += 0.001;
  4524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4525. }*/
  4526. #endif
  4527. //Filament inserted
  4528. WRITE(BEEPER,LOW);
  4529. //Feed the filament to the end of nozzle quickly
  4530. #ifdef SNMM
  4531. st_synchronize();
  4532. target[E_AXIS] += bowden_length[snmm_extruder];
  4533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4534. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4536. target[E_AXIS] += 40;
  4537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4538. target[E_AXIS] += 10;
  4539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4540. #else
  4541. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4543. #endif // SNMM
  4544. //Extrude some filament
  4545. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4547. //Wait for user to check the state
  4548. lcd_change_fil_state = 0;
  4549. lcd_loading_filament();
  4550. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4551. lcd_change_fil_state = 0;
  4552. lcd_alright();
  4553. switch(lcd_change_fil_state){
  4554. // Filament failed to load so load it again
  4555. case 2:
  4556. #ifdef SNMM
  4557. display_loading();
  4558. do {
  4559. target[E_AXIS] += 0.002;
  4560. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4561. delay_keep_alive(2);
  4562. } while (!lcd_clicked());
  4563. st_synchronize();
  4564. target[E_AXIS] += bowden_length[snmm_extruder];
  4565. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4566. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4567. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4568. target[E_AXIS] += 40;
  4569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4570. target[E_AXIS] += 10;
  4571. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4572. #else
  4573. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4574. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4575. #endif
  4576. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4578. lcd_loading_filament();
  4579. break;
  4580. // Filament loaded properly but color is not clear
  4581. case 3:
  4582. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4583. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4584. lcd_loading_color();
  4585. break;
  4586. // Everything good
  4587. default:
  4588. lcd_change_success();
  4589. lcd_update_enable(true);
  4590. break;
  4591. }
  4592. }
  4593. //Not let's go back to print
  4594. //Feed a little of filament to stabilize pressure
  4595. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4596. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4597. //Retract
  4598. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4599. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4600. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4601. //Move XY back
  4602. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4603. //Move Z back
  4604. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4605. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4606. //Unretract
  4607. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4608. //Set E position to original
  4609. plan_set_e_position(lastpos[E_AXIS]);
  4610. //Recover feed rate
  4611. feedmultiply=feedmultiplyBckp;
  4612. char cmd[9];
  4613. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4614. enquecommand(cmd);
  4615. lcd_setstatuspgm(WELCOME_MSG);
  4616. custom_message = false;
  4617. custom_message_type = 0;
  4618. }
  4619. break;
  4620. #endif //FILAMENTCHANGEENABLE
  4621. case 601: {
  4622. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4623. }
  4624. break;
  4625. case 602: {
  4626. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4627. }
  4628. break;
  4629. case 907: // M907 Set digital trimpot motor current using axis codes.
  4630. {
  4631. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4632. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4633. if(code_seen('B')) digipot_current(4,code_value());
  4634. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4635. #endif
  4636. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4637. if(code_seen('X')) digipot_current(0, code_value());
  4638. #endif
  4639. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4640. if(code_seen('Z')) digipot_current(1, code_value());
  4641. #endif
  4642. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4643. if(code_seen('E')) digipot_current(2, code_value());
  4644. #endif
  4645. #ifdef DIGIPOT_I2C
  4646. // this one uses actual amps in floating point
  4647. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4648. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4649. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4650. #endif
  4651. }
  4652. break;
  4653. case 908: // M908 Control digital trimpot directly.
  4654. {
  4655. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4656. uint8_t channel,current;
  4657. if(code_seen('P')) channel=code_value();
  4658. if(code_seen('S')) current=code_value();
  4659. digitalPotWrite(channel, current);
  4660. #endif
  4661. }
  4662. break;
  4663. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4664. {
  4665. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4666. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4667. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4668. if(code_seen('B')) microstep_mode(4,code_value());
  4669. microstep_readings();
  4670. #endif
  4671. }
  4672. break;
  4673. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4674. {
  4675. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4676. if(code_seen('S')) switch((int)code_value())
  4677. {
  4678. case 1:
  4679. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4680. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4681. break;
  4682. case 2:
  4683. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4684. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4685. break;
  4686. }
  4687. microstep_readings();
  4688. #endif
  4689. }
  4690. break;
  4691. case 701: //M701: load filament
  4692. {
  4693. enable_z();
  4694. custom_message = true;
  4695. custom_message_type = 2;
  4696. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4697. current_position[E_AXIS] += 70;
  4698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4699. current_position[E_AXIS] += 25;
  4700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4701. st_synchronize();
  4702. if (!farm_mode && loading_flag) {
  4703. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4704. while (!clean) {
  4705. lcd_update_enable(true);
  4706. lcd_update(2);
  4707. current_position[E_AXIS] += 25;
  4708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4709. st_synchronize();
  4710. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4711. }
  4712. }
  4713. lcd_update_enable(true);
  4714. lcd_update(2);
  4715. lcd_setstatuspgm(WELCOME_MSG);
  4716. disable_z();
  4717. loading_flag = false;
  4718. custom_message = false;
  4719. custom_message_type = 0;
  4720. }
  4721. break;
  4722. case 702:
  4723. {
  4724. #ifdef SNMM
  4725. extr_unload_all();
  4726. #else
  4727. custom_message = true;
  4728. custom_message_type = 2;
  4729. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4730. current_position[E_AXIS] += 3;
  4731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  4732. current_position[E_AXIS] -= 80;
  4733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4734. st_synchronize();
  4735. lcd_setstatuspgm(WELCOME_MSG);
  4736. custom_message = false;
  4737. custom_message_type = 0;
  4738. #endif
  4739. }
  4740. break;
  4741. case 999: // M999: Restart after being stopped
  4742. Stopped = false;
  4743. lcd_reset_alert_level();
  4744. gcode_LastN = Stopped_gcode_LastN;
  4745. FlushSerialRequestResend();
  4746. break;
  4747. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4748. }
  4749. } // end if(code_seen('M')) (end of M codes)
  4750. else if(code_seen('T'))
  4751. {
  4752. int index;
  4753. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4754. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4755. SERIAL_ECHOLNPGM("Invalid T code.");
  4756. }
  4757. else {
  4758. tmp_extruder = code_value();
  4759. #ifdef SNMM
  4760. snmm_extruder = tmp_extruder;
  4761. st_synchronize();
  4762. delay(100);
  4763. disable_e0();
  4764. disable_e1();
  4765. disable_e2();
  4766. pinMode(E_MUX0_PIN, OUTPUT);
  4767. pinMode(E_MUX1_PIN, OUTPUT);
  4768. pinMode(E_MUX2_PIN, OUTPUT);
  4769. delay(100);
  4770. SERIAL_ECHO_START;
  4771. SERIAL_ECHO("T:");
  4772. SERIAL_ECHOLN((int)tmp_extruder);
  4773. switch (tmp_extruder) {
  4774. case 1:
  4775. WRITE(E_MUX0_PIN, HIGH);
  4776. WRITE(E_MUX1_PIN, LOW);
  4777. WRITE(E_MUX2_PIN, LOW);
  4778. break;
  4779. case 2:
  4780. WRITE(E_MUX0_PIN, LOW);
  4781. WRITE(E_MUX1_PIN, HIGH);
  4782. WRITE(E_MUX2_PIN, LOW);
  4783. break;
  4784. case 3:
  4785. WRITE(E_MUX0_PIN, HIGH);
  4786. WRITE(E_MUX1_PIN, HIGH);
  4787. WRITE(E_MUX2_PIN, LOW);
  4788. break;
  4789. default:
  4790. WRITE(E_MUX0_PIN, LOW);
  4791. WRITE(E_MUX1_PIN, LOW);
  4792. WRITE(E_MUX2_PIN, LOW);
  4793. break;
  4794. }
  4795. delay(100);
  4796. #else
  4797. if (tmp_extruder >= EXTRUDERS) {
  4798. SERIAL_ECHO_START;
  4799. SERIAL_ECHOPGM("T");
  4800. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4801. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4802. }
  4803. else {
  4804. boolean make_move = false;
  4805. if (code_seen('F')) {
  4806. make_move = true;
  4807. next_feedrate = code_value();
  4808. if (next_feedrate > 0.0) {
  4809. feedrate = next_feedrate;
  4810. }
  4811. }
  4812. #if EXTRUDERS > 1
  4813. if (tmp_extruder != active_extruder) {
  4814. // Save current position to return to after applying extruder offset
  4815. memcpy(destination, current_position, sizeof(destination));
  4816. // Offset extruder (only by XY)
  4817. int i;
  4818. for (i = 0; i < 2; i++) {
  4819. current_position[i] = current_position[i] -
  4820. extruder_offset[i][active_extruder] +
  4821. extruder_offset[i][tmp_extruder];
  4822. }
  4823. // Set the new active extruder and position
  4824. active_extruder = tmp_extruder;
  4825. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4826. // Move to the old position if 'F' was in the parameters
  4827. if (make_move && Stopped == false) {
  4828. prepare_move();
  4829. }
  4830. }
  4831. #endif
  4832. SERIAL_ECHO_START;
  4833. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4834. SERIAL_PROTOCOLLN((int)active_extruder);
  4835. }
  4836. #endif
  4837. }
  4838. } // end if(code_seen('T')) (end of T codes)
  4839. else
  4840. {
  4841. SERIAL_ECHO_START;
  4842. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4843. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4844. SERIAL_ECHOLNPGM("\"");
  4845. }
  4846. ClearToSend();
  4847. }
  4848. void FlushSerialRequestResend()
  4849. {
  4850. //char cmdbuffer[bufindr][100]="Resend:";
  4851. MYSERIAL.flush();
  4852. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4853. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4854. ClearToSend();
  4855. }
  4856. // Confirm the execution of a command, if sent from a serial line.
  4857. // Execution of a command from a SD card will not be confirmed.
  4858. void ClearToSend()
  4859. {
  4860. previous_millis_cmd = millis();
  4861. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4862. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4863. }
  4864. void get_coordinates()
  4865. {
  4866. bool seen[4]={false,false,false,false};
  4867. for(int8_t i=0; i < NUM_AXIS; i++) {
  4868. if(code_seen(axis_codes[i]))
  4869. {
  4870. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4871. seen[i]=true;
  4872. }
  4873. else destination[i] = current_position[i]; //Are these else lines really needed?
  4874. }
  4875. if(code_seen('F')) {
  4876. next_feedrate = code_value();
  4877. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4878. }
  4879. }
  4880. void get_arc_coordinates()
  4881. {
  4882. #ifdef SF_ARC_FIX
  4883. bool relative_mode_backup = relative_mode;
  4884. relative_mode = true;
  4885. #endif
  4886. get_coordinates();
  4887. #ifdef SF_ARC_FIX
  4888. relative_mode=relative_mode_backup;
  4889. #endif
  4890. if(code_seen('I')) {
  4891. offset[0] = code_value();
  4892. }
  4893. else {
  4894. offset[0] = 0.0;
  4895. }
  4896. if(code_seen('J')) {
  4897. offset[1] = code_value();
  4898. }
  4899. else {
  4900. offset[1] = 0.0;
  4901. }
  4902. }
  4903. void clamp_to_software_endstops(float target[3])
  4904. {
  4905. world2machine_clamp(target[0], target[1]);
  4906. // Clamp the Z coordinate.
  4907. if (min_software_endstops) {
  4908. float negative_z_offset = 0;
  4909. #ifdef ENABLE_AUTO_BED_LEVELING
  4910. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4911. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4912. #endif
  4913. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4914. }
  4915. if (max_software_endstops) {
  4916. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4917. }
  4918. }
  4919. #ifdef MESH_BED_LEVELING
  4920. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4921. float dx = x - current_position[X_AXIS];
  4922. float dy = y - current_position[Y_AXIS];
  4923. float dz = z - current_position[Z_AXIS];
  4924. int n_segments = 0;
  4925. if (mbl.active) {
  4926. float len = abs(dx) + abs(dy);
  4927. if (len > 0)
  4928. // Split to 3cm segments or shorter.
  4929. n_segments = int(ceil(len / 30.f));
  4930. }
  4931. if (n_segments > 1) {
  4932. float de = e - current_position[E_AXIS];
  4933. for (int i = 1; i < n_segments; ++ i) {
  4934. float t = float(i) / float(n_segments);
  4935. plan_buffer_line(
  4936. current_position[X_AXIS] + t * dx,
  4937. current_position[Y_AXIS] + t * dy,
  4938. current_position[Z_AXIS] + t * dz,
  4939. current_position[E_AXIS] + t * de,
  4940. feed_rate, extruder);
  4941. }
  4942. }
  4943. // The rest of the path.
  4944. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4945. current_position[X_AXIS] = x;
  4946. current_position[Y_AXIS] = y;
  4947. current_position[Z_AXIS] = z;
  4948. current_position[E_AXIS] = e;
  4949. }
  4950. #endif // MESH_BED_LEVELING
  4951. void prepare_move()
  4952. {
  4953. clamp_to_software_endstops(destination);
  4954. previous_millis_cmd = millis();
  4955. // Do not use feedmultiply for E or Z only moves
  4956. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4957. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4958. }
  4959. else {
  4960. #ifdef MESH_BED_LEVELING
  4961. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4962. #else
  4963. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4964. #endif
  4965. }
  4966. for(int8_t i=0; i < NUM_AXIS; i++) {
  4967. current_position[i] = destination[i];
  4968. }
  4969. }
  4970. void prepare_arc_move(char isclockwise) {
  4971. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4972. // Trace the arc
  4973. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4974. // As far as the parser is concerned, the position is now == target. In reality the
  4975. // motion control system might still be processing the action and the real tool position
  4976. // in any intermediate location.
  4977. for(int8_t i=0; i < NUM_AXIS; i++) {
  4978. current_position[i] = destination[i];
  4979. }
  4980. previous_millis_cmd = millis();
  4981. }
  4982. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4983. #if defined(FAN_PIN)
  4984. #if CONTROLLERFAN_PIN == FAN_PIN
  4985. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4986. #endif
  4987. #endif
  4988. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4989. unsigned long lastMotorCheck = 0;
  4990. void controllerFan()
  4991. {
  4992. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4993. {
  4994. lastMotorCheck = millis();
  4995. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4996. #if EXTRUDERS > 2
  4997. || !READ(E2_ENABLE_PIN)
  4998. #endif
  4999. #if EXTRUDER > 1
  5000. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5001. || !READ(X2_ENABLE_PIN)
  5002. #endif
  5003. || !READ(E1_ENABLE_PIN)
  5004. #endif
  5005. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5006. {
  5007. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5008. }
  5009. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5010. {
  5011. digitalWrite(CONTROLLERFAN_PIN, 0);
  5012. analogWrite(CONTROLLERFAN_PIN, 0);
  5013. }
  5014. else
  5015. {
  5016. // allows digital or PWM fan output to be used (see M42 handling)
  5017. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5018. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5019. }
  5020. }
  5021. }
  5022. #endif
  5023. #ifdef TEMP_STAT_LEDS
  5024. static bool blue_led = false;
  5025. static bool red_led = false;
  5026. static uint32_t stat_update = 0;
  5027. void handle_status_leds(void) {
  5028. float max_temp = 0.0;
  5029. if(millis() > stat_update) {
  5030. stat_update += 500; // Update every 0.5s
  5031. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5032. max_temp = max(max_temp, degHotend(cur_extruder));
  5033. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5034. }
  5035. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5036. max_temp = max(max_temp, degTargetBed());
  5037. max_temp = max(max_temp, degBed());
  5038. #endif
  5039. if((max_temp > 55.0) && (red_led == false)) {
  5040. digitalWrite(STAT_LED_RED, 1);
  5041. digitalWrite(STAT_LED_BLUE, 0);
  5042. red_led = true;
  5043. blue_led = false;
  5044. }
  5045. if((max_temp < 54.0) && (blue_led == false)) {
  5046. digitalWrite(STAT_LED_RED, 0);
  5047. digitalWrite(STAT_LED_BLUE, 1);
  5048. red_led = false;
  5049. blue_led = true;
  5050. }
  5051. }
  5052. }
  5053. #endif
  5054. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5055. {
  5056. #if defined(KILL_PIN) && KILL_PIN > -1
  5057. static int killCount = 0; // make the inactivity button a bit less responsive
  5058. const int KILL_DELAY = 10000;
  5059. #endif
  5060. if(buflen < (BUFSIZE-1)){
  5061. get_command();
  5062. }
  5063. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5064. if(max_inactive_time)
  5065. kill();
  5066. if(stepper_inactive_time) {
  5067. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5068. {
  5069. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5070. disable_x();
  5071. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5072. disable_y();
  5073. disable_z();
  5074. disable_e0();
  5075. disable_e1();
  5076. disable_e2();
  5077. }
  5078. }
  5079. }
  5080. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5081. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5082. {
  5083. chdkActive = false;
  5084. WRITE(CHDK, LOW);
  5085. }
  5086. #endif
  5087. #if defined(KILL_PIN) && KILL_PIN > -1
  5088. // Check if the kill button was pressed and wait just in case it was an accidental
  5089. // key kill key press
  5090. // -------------------------------------------------------------------------------
  5091. if( 0 == READ(KILL_PIN) )
  5092. {
  5093. killCount++;
  5094. }
  5095. else if (killCount > 0)
  5096. {
  5097. killCount--;
  5098. }
  5099. // Exceeded threshold and we can confirm that it was not accidental
  5100. // KILL the machine
  5101. // ----------------------------------------------------------------
  5102. if ( killCount >= KILL_DELAY)
  5103. {
  5104. kill();
  5105. }
  5106. #endif
  5107. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5108. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5109. #endif
  5110. #ifdef EXTRUDER_RUNOUT_PREVENT
  5111. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5112. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5113. {
  5114. bool oldstatus=READ(E0_ENABLE_PIN);
  5115. enable_e0();
  5116. float oldepos=current_position[E_AXIS];
  5117. float oldedes=destination[E_AXIS];
  5118. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5119. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5120. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5121. current_position[E_AXIS]=oldepos;
  5122. destination[E_AXIS]=oldedes;
  5123. plan_set_e_position(oldepos);
  5124. previous_millis_cmd=millis();
  5125. st_synchronize();
  5126. WRITE(E0_ENABLE_PIN,oldstatus);
  5127. }
  5128. #endif
  5129. #ifdef TEMP_STAT_LEDS
  5130. handle_status_leds();
  5131. #endif
  5132. check_axes_activity();
  5133. }
  5134. void kill(const char *full_screen_message)
  5135. {
  5136. cli(); // Stop interrupts
  5137. disable_heater();
  5138. disable_x();
  5139. // SERIAL_ECHOLNPGM("kill - disable Y");
  5140. disable_y();
  5141. disable_z();
  5142. disable_e0();
  5143. disable_e1();
  5144. disable_e2();
  5145. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5146. pinMode(PS_ON_PIN,INPUT);
  5147. #endif
  5148. SERIAL_ERROR_START;
  5149. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5150. if (full_screen_message != NULL) {
  5151. SERIAL_ERRORLNRPGM(full_screen_message);
  5152. lcd_display_message_fullscreen_P(full_screen_message);
  5153. } else {
  5154. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5155. }
  5156. // FMC small patch to update the LCD before ending
  5157. sei(); // enable interrupts
  5158. for ( int i=5; i--; lcd_update())
  5159. {
  5160. delay(200);
  5161. }
  5162. cli(); // disable interrupts
  5163. suicide();
  5164. while(1) { /* Intentionally left empty */ } // Wait for reset
  5165. }
  5166. void Stop()
  5167. {
  5168. disable_heater();
  5169. if(Stopped == false) {
  5170. Stopped = true;
  5171. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5172. SERIAL_ERROR_START;
  5173. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5174. LCD_MESSAGERPGM(MSG_STOPPED);
  5175. }
  5176. }
  5177. bool IsStopped() { return Stopped; };
  5178. #ifdef FAST_PWM_FAN
  5179. void setPwmFrequency(uint8_t pin, int val)
  5180. {
  5181. val &= 0x07;
  5182. switch(digitalPinToTimer(pin))
  5183. {
  5184. #if defined(TCCR0A)
  5185. case TIMER0A:
  5186. case TIMER0B:
  5187. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5188. // TCCR0B |= val;
  5189. break;
  5190. #endif
  5191. #if defined(TCCR1A)
  5192. case TIMER1A:
  5193. case TIMER1B:
  5194. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5195. // TCCR1B |= val;
  5196. break;
  5197. #endif
  5198. #if defined(TCCR2)
  5199. case TIMER2:
  5200. case TIMER2:
  5201. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5202. TCCR2 |= val;
  5203. break;
  5204. #endif
  5205. #if defined(TCCR2A)
  5206. case TIMER2A:
  5207. case TIMER2B:
  5208. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5209. TCCR2B |= val;
  5210. break;
  5211. #endif
  5212. #if defined(TCCR3A)
  5213. case TIMER3A:
  5214. case TIMER3B:
  5215. case TIMER3C:
  5216. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5217. TCCR3B |= val;
  5218. break;
  5219. #endif
  5220. #if defined(TCCR4A)
  5221. case TIMER4A:
  5222. case TIMER4B:
  5223. case TIMER4C:
  5224. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5225. TCCR4B |= val;
  5226. break;
  5227. #endif
  5228. #if defined(TCCR5A)
  5229. case TIMER5A:
  5230. case TIMER5B:
  5231. case TIMER5C:
  5232. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5233. TCCR5B |= val;
  5234. break;
  5235. #endif
  5236. }
  5237. }
  5238. #endif //FAST_PWM_FAN
  5239. bool setTargetedHotend(int code){
  5240. tmp_extruder = active_extruder;
  5241. if(code_seen('T')) {
  5242. tmp_extruder = code_value();
  5243. if(tmp_extruder >= EXTRUDERS) {
  5244. SERIAL_ECHO_START;
  5245. switch(code){
  5246. case 104:
  5247. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5248. break;
  5249. case 105:
  5250. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5251. break;
  5252. case 109:
  5253. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5254. break;
  5255. case 218:
  5256. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5257. break;
  5258. case 221:
  5259. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5260. break;
  5261. }
  5262. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5263. return true;
  5264. }
  5265. }
  5266. return false;
  5267. }
  5268. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5269. {
  5270. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5271. {
  5272. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5273. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5274. }
  5275. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5276. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5277. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5278. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5279. total_filament_used = 0;
  5280. }
  5281. float calculate_volumetric_multiplier(float diameter) {
  5282. float area = .0;
  5283. float radius = .0;
  5284. radius = diameter * .5;
  5285. if (! volumetric_enabled || radius == 0) {
  5286. area = 1;
  5287. }
  5288. else {
  5289. area = M_PI * pow(radius, 2);
  5290. }
  5291. return 1.0 / area;
  5292. }
  5293. void calculate_volumetric_multipliers() {
  5294. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5295. #if EXTRUDERS > 1
  5296. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5297. #if EXTRUDERS > 2
  5298. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5299. #endif
  5300. #endif
  5301. }
  5302. void delay_keep_alive(unsigned int ms)
  5303. {
  5304. for (;;) {
  5305. manage_heater();
  5306. // Manage inactivity, but don't disable steppers on timeout.
  5307. manage_inactivity(true);
  5308. lcd_update();
  5309. if (ms == 0)
  5310. break;
  5311. else if (ms >= 50) {
  5312. delay(50);
  5313. ms -= 50;
  5314. } else {
  5315. delay(ms);
  5316. ms = 0;
  5317. }
  5318. }
  5319. }
  5320. void wait_for_heater(long codenum) {
  5321. #ifdef TEMP_RESIDENCY_TIME
  5322. long residencyStart;
  5323. residencyStart = -1;
  5324. /* continue to loop until we have reached the target temp
  5325. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5326. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5327. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5328. #else
  5329. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5330. #endif //TEMP_RESIDENCY_TIME
  5331. if ((millis() - codenum) > 1000UL)
  5332. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5333. if (!farm_mode) {
  5334. SERIAL_PROTOCOLPGM("T:");
  5335. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5336. SERIAL_PROTOCOLPGM(" E:");
  5337. SERIAL_PROTOCOL((int)tmp_extruder);
  5338. #ifdef TEMP_RESIDENCY_TIME
  5339. SERIAL_PROTOCOLPGM(" W:");
  5340. if (residencyStart > -1)
  5341. {
  5342. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5343. SERIAL_PROTOCOLLN(codenum);
  5344. }
  5345. else
  5346. {
  5347. SERIAL_PROTOCOLLN("?");
  5348. }
  5349. }
  5350. #else
  5351. SERIAL_PROTOCOLLN("");
  5352. #endif
  5353. codenum = millis();
  5354. }
  5355. manage_heater();
  5356. manage_inactivity();
  5357. lcd_update();
  5358. #ifdef TEMP_RESIDENCY_TIME
  5359. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5360. or when current temp falls outside the hysteresis after target temp was reached */
  5361. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5362. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5363. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5364. {
  5365. residencyStart = millis();
  5366. }
  5367. #endif //TEMP_RESIDENCY_TIME
  5368. }
  5369. }
  5370. void check_babystep() {
  5371. int babystep_z;
  5372. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5373. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5374. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5375. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5376. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5377. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5378. lcd_update_enable(true);
  5379. }
  5380. }
  5381. #ifdef DIS
  5382. void d_setup()
  5383. {
  5384. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5385. pinMode(D_DATA, INPUT_PULLUP);
  5386. pinMode(D_REQUIRE, OUTPUT);
  5387. digitalWrite(D_REQUIRE, HIGH);
  5388. }
  5389. float d_ReadData()
  5390. {
  5391. int digit[13];
  5392. String mergeOutput;
  5393. float output;
  5394. digitalWrite(D_REQUIRE, HIGH);
  5395. for (int i = 0; i<13; i++)
  5396. {
  5397. for (int j = 0; j < 4; j++)
  5398. {
  5399. while (digitalRead(D_DATACLOCK) == LOW) {}
  5400. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5401. bitWrite(digit[i], j, digitalRead(D_DATA));
  5402. }
  5403. }
  5404. digitalWrite(D_REQUIRE, LOW);
  5405. mergeOutput = "";
  5406. output = 0;
  5407. for (int r = 5; r <= 10; r++) //Merge digits
  5408. {
  5409. mergeOutput += digit[r];
  5410. }
  5411. output = mergeOutput.toFloat();
  5412. if (digit[4] == 8) //Handle sign
  5413. {
  5414. output *= -1;
  5415. }
  5416. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5417. {
  5418. output /= 10;
  5419. }
  5420. return output;
  5421. }
  5422. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5423. int t1 = 0;
  5424. int t_delay = 0;
  5425. int digit[13];
  5426. int m;
  5427. char str[3];
  5428. //String mergeOutput;
  5429. char mergeOutput[15];
  5430. float output;
  5431. int mesh_point = 0; //index number of calibration point
  5432. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5433. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5434. float mesh_home_z_search = 4;
  5435. float row[x_points_num];
  5436. int ix = 0;
  5437. int iy = 0;
  5438. char* filename_wldsd = "wldsd.txt";
  5439. char data_wldsd[70];
  5440. char numb_wldsd[10];
  5441. d_setup();
  5442. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5443. // We don't know where we are! HOME!
  5444. // Push the commands to the front of the message queue in the reverse order!
  5445. // There shall be always enough space reserved for these commands.
  5446. repeatcommand_front(); // repeat G80 with all its parameters
  5447. enquecommand_front_P((PSTR("G28 W0")));
  5448. enquecommand_front_P((PSTR("G1 Z5")));
  5449. return;
  5450. }
  5451. bool custom_message_old = custom_message;
  5452. unsigned int custom_message_type_old = custom_message_type;
  5453. unsigned int custom_message_state_old = custom_message_state;
  5454. custom_message = true;
  5455. custom_message_type = 1;
  5456. custom_message_state = (x_points_num * y_points_num) + 10;
  5457. lcd_update(1);
  5458. mbl.reset();
  5459. babystep_undo();
  5460. card.openFile(filename_wldsd, false);
  5461. current_position[Z_AXIS] = mesh_home_z_search;
  5462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5463. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5464. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5465. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5466. setup_for_endstop_move(false);
  5467. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5468. SERIAL_PROTOCOL(x_points_num);
  5469. SERIAL_PROTOCOLPGM(",");
  5470. SERIAL_PROTOCOL(y_points_num);
  5471. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5472. SERIAL_PROTOCOL(mesh_home_z_search);
  5473. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5474. SERIAL_PROTOCOL(x_dimension);
  5475. SERIAL_PROTOCOLPGM(",");
  5476. SERIAL_PROTOCOL(y_dimension);
  5477. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5478. while (mesh_point != x_points_num * y_points_num) {
  5479. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5480. iy = mesh_point / x_points_num;
  5481. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5482. float z0 = 0.f;
  5483. current_position[Z_AXIS] = mesh_home_z_search;
  5484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5485. st_synchronize();
  5486. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5487. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5489. st_synchronize();
  5490. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5491. break;
  5492. card.closefile();
  5493. }
  5494. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5495. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5496. //strcat(data_wldsd, numb_wldsd);
  5497. //MYSERIAL.println(data_wldsd);
  5498. //delay(1000);
  5499. //delay(3000);
  5500. //t1 = millis();
  5501. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5502. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5503. memset(digit, 0, sizeof(digit));
  5504. //cli();
  5505. digitalWrite(D_REQUIRE, LOW);
  5506. for (int i = 0; i<13; i++)
  5507. {
  5508. //t1 = millis();
  5509. for (int j = 0; j < 4; j++)
  5510. {
  5511. while (digitalRead(D_DATACLOCK) == LOW) {}
  5512. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5513. bitWrite(digit[i], j, digitalRead(D_DATA));
  5514. }
  5515. //t_delay = (millis() - t1);
  5516. //SERIAL_PROTOCOLPGM(" ");
  5517. //SERIAL_PROTOCOL_F(t_delay, 5);
  5518. //SERIAL_PROTOCOLPGM(" ");
  5519. }
  5520. //sei();
  5521. digitalWrite(D_REQUIRE, HIGH);
  5522. mergeOutput[0] = '\0';
  5523. output = 0;
  5524. for (int r = 5; r <= 10; r++) //Merge digits
  5525. {
  5526. sprintf(str, "%d", digit[r]);
  5527. strcat(mergeOutput, str);
  5528. }
  5529. output = atof(mergeOutput);
  5530. if (digit[4] == 8) //Handle sign
  5531. {
  5532. output *= -1;
  5533. }
  5534. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5535. {
  5536. output *= 0.1;
  5537. }
  5538. //output = d_ReadData();
  5539. //row[ix] = current_position[Z_AXIS];
  5540. memset(data_wldsd, 0, sizeof(data_wldsd));
  5541. for (int i = 0; i <3; i++) {
  5542. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5543. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5544. strcat(data_wldsd, numb_wldsd);
  5545. strcat(data_wldsd, ";");
  5546. }
  5547. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5548. dtostrf(output, 8, 5, numb_wldsd);
  5549. strcat(data_wldsd, numb_wldsd);
  5550. //strcat(data_wldsd, ";");
  5551. card.write_command(data_wldsd);
  5552. //row[ix] = d_ReadData();
  5553. row[ix] = output; // current_position[Z_AXIS];
  5554. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5555. for (int i = 0; i < x_points_num; i++) {
  5556. SERIAL_PROTOCOLPGM(" ");
  5557. SERIAL_PROTOCOL_F(row[i], 5);
  5558. }
  5559. SERIAL_PROTOCOLPGM("\n");
  5560. }
  5561. custom_message_state--;
  5562. mesh_point++;
  5563. lcd_update(1);
  5564. }
  5565. card.closefile();
  5566. }
  5567. #endif
  5568. void temp_compensation_start() {
  5569. custom_message = true;
  5570. custom_message_type = 5;
  5571. custom_message_state = PINDA_HEAT_T + 1;
  5572. lcd_update(2);
  5573. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5574. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5575. }
  5576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5577. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5578. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5579. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5581. st_synchronize();
  5582. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5583. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5584. delay_keep_alive(1000);
  5585. custom_message_state = PINDA_HEAT_T - i;
  5586. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5587. else lcd_update(1);
  5588. }
  5589. custom_message_type = 0;
  5590. custom_message_state = 0;
  5591. custom_message = false;
  5592. }
  5593. void temp_compensation_apply() {
  5594. int i_add;
  5595. int compensation_value;
  5596. int z_shift = 0;
  5597. float z_shift_mm;
  5598. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5599. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5600. i_add = (target_temperature_bed - 60) / 10;
  5601. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5602. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5603. }else {
  5604. //interpolation
  5605. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5606. }
  5607. SERIAL_PROTOCOLPGM("\n");
  5608. SERIAL_PROTOCOLPGM("Z shift applied:");
  5609. MYSERIAL.print(z_shift_mm);
  5610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5611. st_synchronize();
  5612. plan_set_z_position(current_position[Z_AXIS]);
  5613. }
  5614. else {
  5615. //we have no temp compensation data
  5616. }
  5617. }
  5618. float temp_comp_interpolation(float inp_temperature) {
  5619. //cubic spline interpolation
  5620. int n, i, j, k;
  5621. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5622. int shift[10];
  5623. int temp_C[10];
  5624. n = 6; //number of measured points
  5625. shift[0] = 0;
  5626. for (i = 0; i < n; i++) {
  5627. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5628. temp_C[i] = 50 + i * 10; //temperature in C
  5629. x[i] = (float)temp_C[i];
  5630. f[i] = (float)shift[i];
  5631. }
  5632. if (inp_temperature < x[0]) return 0;
  5633. for (i = n - 1; i>0; i--) {
  5634. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5635. h[i - 1] = x[i] - x[i - 1];
  5636. }
  5637. //*********** formation of h, s , f matrix **************
  5638. for (i = 1; i<n - 1; i++) {
  5639. m[i][i] = 2 * (h[i - 1] + h[i]);
  5640. if (i != 1) {
  5641. m[i][i - 1] = h[i - 1];
  5642. m[i - 1][i] = h[i - 1];
  5643. }
  5644. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5645. }
  5646. //*********** forward elimination **************
  5647. for (i = 1; i<n - 2; i++) {
  5648. temp = (m[i + 1][i] / m[i][i]);
  5649. for (j = 1; j <= n - 1; j++)
  5650. m[i + 1][j] -= temp*m[i][j];
  5651. }
  5652. //*********** backward substitution *********
  5653. for (i = n - 2; i>0; i--) {
  5654. sum = 0;
  5655. for (j = i; j <= n - 2; j++)
  5656. sum += m[i][j] * s[j];
  5657. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5658. }
  5659. for (i = 0; i<n - 1; i++)
  5660. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5661. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5662. b = s[i] / 2;
  5663. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5664. d = f[i];
  5665. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5666. }
  5667. return sum;
  5668. }
  5669. void long_pause() //long pause print
  5670. {
  5671. st_synchronize();
  5672. //save currently set parameters to global variables
  5673. saved_feedmultiply = feedmultiply;
  5674. HotendTempBckp = degTargetHotend(active_extruder);
  5675. fanSpeedBckp = fanSpeed;
  5676. start_pause_print = millis();
  5677. //save position
  5678. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5679. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5680. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5681. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5682. //retract
  5683. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5685. //lift z
  5686. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5687. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5689. //set nozzle target temperature to 0
  5690. setTargetHotend(0, 0);
  5691. setTargetHotend(0, 1);
  5692. setTargetHotend(0, 2);
  5693. //Move XY to side
  5694. current_position[X_AXIS] = X_PAUSE_POS;
  5695. current_position[Y_AXIS] = Y_PAUSE_POS;
  5696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5697. // Turn off the print fan
  5698. fanSpeed = 0;
  5699. st_synchronize();
  5700. }
  5701. void serialecho_temperatures() {
  5702. float tt = degHotend(active_extruder);
  5703. SERIAL_PROTOCOLPGM("T:");
  5704. SERIAL_PROTOCOL(tt);
  5705. SERIAL_PROTOCOLPGM(" E:");
  5706. SERIAL_PROTOCOL((int)active_extruder);
  5707. SERIAL_PROTOCOLPGM(" B:");
  5708. SERIAL_PROTOCOL_F(degBed(), 1);
  5709. SERIAL_PROTOCOLLN("");
  5710. }