Marlin_main.cpp 247 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  83. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  84. //Implemented Codes
  85. //-------------------
  86. // PRUSA CODES
  87. // P F - Returns FW versions
  88. // P R - Returns revision of printer
  89. // G0 -> G1
  90. // G1 - Coordinated Movement X Y Z E
  91. // G2 - CW ARC
  92. // G3 - CCW ARC
  93. // G4 - Dwell S<seconds> or P<milliseconds>
  94. // G10 - retract filament according to settings of M207
  95. // G11 - retract recover filament according to settings of M208
  96. // G28 - Home all Axis
  97. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  98. // G30 - Single Z Probe, probes bed at current XY location.
  99. // G31 - Dock sled (Z_PROBE_SLED only)
  100. // G32 - Undock sled (Z_PROBE_SLED only)
  101. // G80 - Automatic mesh bed leveling
  102. // G81 - Print bed profile
  103. // G90 - Use Absolute Coordinates
  104. // G91 - Use Relative Coordinates
  105. // G92 - Set current position to coordinates given
  106. // M Codes
  107. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  108. // M1 - Same as M0
  109. // M17 - Enable/Power all stepper motors
  110. // M18 - Disable all stepper motors; same as M84
  111. // M20 - List SD card
  112. // M21 - Init SD card
  113. // M22 - Release SD card
  114. // M23 - Select SD file (M23 filename.g)
  115. // M24 - Start/resume SD print
  116. // M25 - Pause SD print
  117. // M26 - Set SD position in bytes (M26 S12345)
  118. // M27 - Report SD print status
  119. // M28 - Start SD write (M28 filename.g)
  120. // M29 - Stop SD write
  121. // M30 - Delete file from SD (M30 filename.g)
  122. // M31 - Output time since last M109 or SD card start to serial
  123. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  124. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  125. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  126. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  127. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  128. // M80 - Turn on Power Supply
  129. // M81 - Turn off Power Supply
  130. // M82 - Set E codes absolute (default)
  131. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. // M84 - Disable steppers until next move,
  133. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. // M92 - Set axis_steps_per_unit - same syntax as G92
  136. // M104 - Set extruder target temp
  137. // M105 - Read current temp
  138. // M106 - Fan on
  139. // M107 - Fan off
  140. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. // M112 - Emergency stop
  144. // M114 - Output current position to serial port
  145. // M115 - Capabilities string
  146. // M117 - display message
  147. // M119 - Output Endstop status to serial port
  148. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  149. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  150. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  151. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. // M140 - Set bed target temp
  153. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  154. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  155. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  156. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  157. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  158. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  159. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  160. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  161. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  162. // M206 - set additional homing offset
  163. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  164. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  165. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  166. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  167. // M220 S<factor in percent>- set speed factor override percentage
  168. // M221 S<factor in percent>- set extrude factor override percentage
  169. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  170. // M240 - Trigger a camera to take a photograph
  171. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  172. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  173. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  174. // M301 - Set PID parameters P I and D
  175. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  176. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  177. // M304 - Set bed PID parameters P I and D
  178. // M400 - Finish all moves
  179. // M401 - Lower z-probe if present
  180. // M402 - Raise z-probe if present
  181. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  182. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  183. // M406 - Turn off Filament Sensor extrusion control
  184. // M407 - Displays measured filament diameter
  185. // M500 - stores parameters in EEPROM
  186. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  187. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  188. // M503 - print the current settings (from memory not from EEPROM)
  189. // M509 - force language selection on next restart
  190. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  191. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  192. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  194. // M907 - Set digital trimpot motor current using axis codes.
  195. // M908 - Control digital trimpot directly.
  196. // M350 - Set microstepping mode.
  197. // M351 - Toggle MS1 MS2 pins directly.
  198. // M928 - Start SD logging (M928 filename.g) - ended by M29
  199. // M999 - Restart after being stopped by error
  200. //Stepper Movement Variables
  201. //===========================================================================
  202. //=============================imported variables============================
  203. //===========================================================================
  204. //===========================================================================
  205. //=============================public variables=============================
  206. //===========================================================================
  207. #ifdef SDSUPPORT
  208. CardReader card;
  209. #endif
  210. unsigned long PingTime = millis();
  211. union Data
  212. {
  213. byte b[2];
  214. int value;
  215. };
  216. float homing_feedrate[] = HOMING_FEEDRATE;
  217. // Currently only the extruder axis may be switched to a relative mode.
  218. // Other axes are always absolute or relative based on the common relative_mode flag.
  219. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  220. int feedmultiply=100; //100->1 200->2
  221. int saved_feedmultiply;
  222. int extrudemultiply=100; //100->1 200->2
  223. int extruder_multiply[EXTRUDERS] = {100
  224. #if EXTRUDERS > 1
  225. , 100
  226. #if EXTRUDERS > 2
  227. , 100
  228. #endif
  229. #endif
  230. };
  231. int bowden_length[4];
  232. bool is_usb_printing = false;
  233. bool homing_flag = false;
  234. bool temp_cal_active = false;
  235. unsigned long kicktime = millis()+100000;
  236. unsigned int usb_printing_counter;
  237. int lcd_change_fil_state = 0;
  238. int feedmultiplyBckp = 100;
  239. float HotendTempBckp = 0;
  240. int fanSpeedBckp = 0;
  241. float pause_lastpos[4];
  242. unsigned long pause_time = 0;
  243. unsigned long start_pause_print = millis();
  244. unsigned long load_filament_time;
  245. bool mesh_bed_leveling_flag = false;
  246. bool mesh_bed_run_from_menu = false;
  247. unsigned char lang_selected = 0;
  248. int8_t FarmMode = 0;
  249. bool prusa_sd_card_upload = false;
  250. unsigned int status_number = 0;
  251. unsigned long total_filament_used;
  252. unsigned int heating_status;
  253. unsigned int heating_status_counter;
  254. bool custom_message;
  255. bool loading_flag = false;
  256. unsigned int custom_message_type;
  257. unsigned int custom_message_state;
  258. char snmm_filaments_used = 0;
  259. float distance_from_min[3];
  260. float angleDiff;
  261. bool fan_state[2];
  262. int fan_edge_counter[2];
  263. int fan_speed[2];
  264. bool volumetric_enabled = false;
  265. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  266. #if EXTRUDERS > 1
  267. , DEFAULT_NOMINAL_FILAMENT_DIA
  268. #if EXTRUDERS > 2
  269. , DEFAULT_NOMINAL_FILAMENT_DIA
  270. #endif
  271. #endif
  272. };
  273. float volumetric_multiplier[EXTRUDERS] = {1.0
  274. #if EXTRUDERS > 1
  275. , 1.0
  276. #if EXTRUDERS > 2
  277. , 1.0
  278. #endif
  279. #endif
  280. };
  281. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  282. float add_homing[3]={0,0,0};
  283. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  284. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  285. bool axis_known_position[3] = {false, false, false};
  286. float zprobe_zoffset;
  287. // Extruder offset
  288. #if EXTRUDERS > 1
  289. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  290. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  291. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  292. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  293. #endif
  294. };
  295. #endif
  296. uint8_t active_extruder = 0;
  297. int fanSpeed=0;
  298. #ifdef FWRETRACT
  299. bool autoretract_enabled=false;
  300. bool retracted[EXTRUDERS]={false
  301. #if EXTRUDERS > 1
  302. , false
  303. #if EXTRUDERS > 2
  304. , false
  305. #endif
  306. #endif
  307. };
  308. bool retracted_swap[EXTRUDERS]={false
  309. #if EXTRUDERS > 1
  310. , false
  311. #if EXTRUDERS > 2
  312. , false
  313. #endif
  314. #endif
  315. };
  316. float retract_length = RETRACT_LENGTH;
  317. float retract_length_swap = RETRACT_LENGTH_SWAP;
  318. float retract_feedrate = RETRACT_FEEDRATE;
  319. float retract_zlift = RETRACT_ZLIFT;
  320. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  321. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  322. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  323. #endif
  324. #ifdef ULTIPANEL
  325. #ifdef PS_DEFAULT_OFF
  326. bool powersupply = false;
  327. #else
  328. bool powersupply = true;
  329. #endif
  330. #endif
  331. bool cancel_heatup = false ;
  332. #ifdef FILAMENT_SENSOR
  333. //Variables for Filament Sensor input
  334. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  335. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  336. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  337. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  338. int delay_index1=0; //index into ring buffer
  339. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  340. float delay_dist=0; //delay distance counter
  341. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  342. #endif
  343. const char errormagic[] PROGMEM = "Error:";
  344. const char echomagic[] PROGMEM = "echo:";
  345. //===========================================================================
  346. //=============================Private Variables=============================
  347. //===========================================================================
  348. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  349. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  350. static float delta[3] = {0.0, 0.0, 0.0};
  351. // For tracing an arc
  352. static float offset[3] = {0.0, 0.0, 0.0};
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. // Determines Absolute or Relative Coordinates.
  355. // Also there is bool axis_relative_modes[] per axis flag.
  356. static bool relative_mode = false;
  357. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  358. //static float tt = 0;
  359. //static float bt = 0;
  360. //Inactivity shutdown variables
  361. static unsigned long previous_millis_cmd = 0;
  362. unsigned long max_inactive_time = 0;
  363. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  364. unsigned long starttime=0;
  365. unsigned long stoptime=0;
  366. unsigned long _usb_timer = 0;
  367. static uint8_t tmp_extruder;
  368. bool extruder_under_pressure = true;
  369. bool Stopped=false;
  370. #if NUM_SERVOS > 0
  371. Servo servos[NUM_SERVOS];
  372. #endif
  373. bool CooldownNoWait = true;
  374. bool target_direction;
  375. //Insert variables if CHDK is defined
  376. #ifdef CHDK
  377. unsigned long chdkHigh = 0;
  378. boolean chdkActive = false;
  379. #endif
  380. //===========================================================================
  381. //=============================Routines======================================
  382. //===========================================================================
  383. void get_arc_coordinates();
  384. bool setTargetedHotend(int code);
  385. void serial_echopair_P(const char *s_P, float v)
  386. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  387. void serial_echopair_P(const char *s_P, double v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, unsigned long v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. #ifdef SDSUPPORT
  392. #include "SdFatUtil.h"
  393. int freeMemory() { return SdFatUtil::FreeRam(); }
  394. #else
  395. extern "C" {
  396. extern unsigned int __bss_end;
  397. extern unsigned int __heap_start;
  398. extern void *__brkval;
  399. int freeMemory() {
  400. int free_memory;
  401. if ((int)__brkval == 0)
  402. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  403. else
  404. free_memory = ((int)&free_memory) - ((int)__brkval);
  405. return free_memory;
  406. }
  407. }
  408. #endif //!SDSUPPORT
  409. void setup_killpin()
  410. {
  411. #if defined(KILL_PIN) && KILL_PIN > -1
  412. SET_INPUT(KILL_PIN);
  413. WRITE(KILL_PIN,HIGH);
  414. #endif
  415. }
  416. // Set home pin
  417. void setup_homepin(void)
  418. {
  419. #if defined(HOME_PIN) && HOME_PIN > -1
  420. SET_INPUT(HOME_PIN);
  421. WRITE(HOME_PIN,HIGH);
  422. #endif
  423. }
  424. void setup_photpin()
  425. {
  426. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  427. SET_OUTPUT(PHOTOGRAPH_PIN);
  428. WRITE(PHOTOGRAPH_PIN, LOW);
  429. #endif
  430. }
  431. void setup_powerhold()
  432. {
  433. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  434. SET_OUTPUT(SUICIDE_PIN);
  435. WRITE(SUICIDE_PIN, HIGH);
  436. #endif
  437. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  438. SET_OUTPUT(PS_ON_PIN);
  439. #if defined(PS_DEFAULT_OFF)
  440. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  441. #else
  442. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  443. #endif
  444. #endif
  445. }
  446. void suicide()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, LOW);
  451. #endif
  452. }
  453. void servo_init()
  454. {
  455. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  456. servos[0].attach(SERVO0_PIN);
  457. #endif
  458. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  459. servos[1].attach(SERVO1_PIN);
  460. #endif
  461. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  462. servos[2].attach(SERVO2_PIN);
  463. #endif
  464. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  465. servos[3].attach(SERVO3_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 5)
  468. #error "TODO: enter initalisation code for more servos"
  469. #endif
  470. }
  471. static void lcd_language_menu();
  472. void stop_and_save_print_to_ram(float z_move, float e_move);
  473. void restore_print_from_ram_and_continue(float e_move);
  474. extern int8_t CrashDetectMenu;
  475. void crashdet_enable()
  476. {
  477. MYSERIAL.println("crashdet_enable");
  478. tmc2130_sg_stop_on_crash = true;
  479. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  480. CrashDetectMenu = 1;
  481. }
  482. void crashdet_disable()
  483. {
  484. MYSERIAL.println("crashdet_disable");
  485. tmc2130_sg_stop_on_crash = false;
  486. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  487. CrashDetectMenu = 0;
  488. }
  489. void crashdet_stop_and_save_print()
  490. {
  491. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  492. }
  493. void crashdet_restore_print_and_continue()
  494. {
  495. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  496. // babystep_apply();
  497. }
  498. void crashdet_stop_and_save_print2()
  499. {
  500. cli();
  501. planner_abort_hard(); //abort printing
  502. cmdqueue_reset(); //empty cmdqueue
  503. card.sdprinting = false;
  504. card.closefile();
  505. sei();
  506. }
  507. #ifdef MESH_BED_LEVELING
  508. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  509. #endif
  510. // Factory reset function
  511. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  512. // Level input parameter sets depth of reset
  513. // Quiet parameter masks all waitings for user interact.
  514. int er_progress = 0;
  515. void factory_reset(char level, bool quiet)
  516. {
  517. lcd_implementation_clear();
  518. int cursor_pos = 0;
  519. switch (level) {
  520. // Level 0: Language reset
  521. case 0:
  522. WRITE(BEEPER, HIGH);
  523. _delay_ms(100);
  524. WRITE(BEEPER, LOW);
  525. lcd_force_language_selection();
  526. break;
  527. //Level 1: Reset statistics
  528. case 1:
  529. WRITE(BEEPER, HIGH);
  530. _delay_ms(100);
  531. WRITE(BEEPER, LOW);
  532. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  533. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  534. lcd_menu_statistics();
  535. break;
  536. // Level 2: Prepare for shipping
  537. case 2:
  538. //lcd_printPGM(PSTR("Factory RESET"));
  539. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  540. // Force language selection at the next boot up.
  541. lcd_force_language_selection();
  542. // Force the "Follow calibration flow" message at the next boot up.
  543. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  544. farm_no = 0;
  545. farm_mode == false;
  546. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  547. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  548. WRITE(BEEPER, HIGH);
  549. _delay_ms(100);
  550. WRITE(BEEPER, LOW);
  551. //_delay_ms(2000);
  552. break;
  553. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  554. case 3:
  555. lcd_printPGM(PSTR("Factory RESET"));
  556. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  557. WRITE(BEEPER, HIGH);
  558. _delay_ms(100);
  559. WRITE(BEEPER, LOW);
  560. er_progress = 0;
  561. lcd_print_at_PGM(3, 3, PSTR(" "));
  562. lcd_implementation_print_at(3, 3, er_progress);
  563. // Erase EEPROM
  564. for (int i = 0; i < 4096; i++) {
  565. eeprom_write_byte((uint8_t*)i, 0xFF);
  566. if (i % 41 == 0) {
  567. er_progress++;
  568. lcd_print_at_PGM(3, 3, PSTR(" "));
  569. lcd_implementation_print_at(3, 3, er_progress);
  570. lcd_printPGM(PSTR("%"));
  571. }
  572. }
  573. break;
  574. case 4:
  575. bowden_menu();
  576. break;
  577. default:
  578. break;
  579. }
  580. }
  581. // "Setup" function is called by the Arduino framework on startup.
  582. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  583. // are initialized by the main() routine provided by the Arduino framework.
  584. void setup()
  585. {
  586. lcd_init();
  587. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  588. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  589. setup_killpin();
  590. setup_powerhold();
  591. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  592. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  593. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  594. if (farm_no == 0xFFFF) farm_no = 0;
  595. if (farm_mode)
  596. {
  597. prusa_statistics(8);
  598. selectedSerialPort = 1;
  599. }
  600. else
  601. selectedSerialPort = 0;
  602. MYSERIAL.begin(BAUDRATE);
  603. SERIAL_PROTOCOLLNPGM("start");
  604. SERIAL_ECHO_START;
  605. #if 0
  606. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  607. for (int i = 0; i < 4096; ++i) {
  608. int b = eeprom_read_byte((unsigned char*)i);
  609. if (b != 255) {
  610. SERIAL_ECHO(i);
  611. SERIAL_ECHO(":");
  612. SERIAL_ECHO(b);
  613. SERIAL_ECHOLN("");
  614. }
  615. }
  616. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  617. #endif
  618. // Check startup - does nothing if bootloader sets MCUSR to 0
  619. byte mcu = MCUSR;
  620. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  621. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  622. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  623. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  624. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  625. MCUSR = 0;
  626. //SERIAL_ECHORPGM(MSG_MARLIN);
  627. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  628. #ifdef STRING_VERSION_CONFIG_H
  629. #ifdef STRING_CONFIG_H_AUTHOR
  630. SERIAL_ECHO_START;
  631. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  632. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  633. SERIAL_ECHORPGM(MSG_AUTHOR);
  634. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  635. SERIAL_ECHOPGM("Compiled: ");
  636. SERIAL_ECHOLNPGM(__DATE__);
  637. #endif
  638. #endif
  639. SERIAL_ECHO_START;
  640. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  641. SERIAL_ECHO(freeMemory());
  642. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  643. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  644. //lcd_update_enable(false); // why do we need this?? - andre
  645. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  646. Config_RetrieveSettings(EEPROM_OFFSET);
  647. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  648. tp_init(); // Initialize temperature loop
  649. plan_init(); // Initialize planner;
  650. watchdog_init();
  651. #ifdef TMC2130
  652. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  653. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  654. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  655. if (crashdet)
  656. {
  657. crashdet_enable();
  658. MYSERIAL.println("CrashDetect ENABLED!");
  659. }
  660. else
  661. {
  662. crashdet_disable();
  663. MYSERIAL.println("CrashDetect DISABLED");
  664. }
  665. #endif //TMC2130
  666. #ifdef PAT9125
  667. MYSERIAL.print("PAT9125_init:");
  668. int pat9125 = pat9125_init(200, 200);
  669. MYSERIAL.println(pat9125);
  670. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  671. if (!pat9125) fsensor = 0; //disable sensor
  672. if (fsensor)
  673. {
  674. fsensor_enable();
  675. MYSERIAL.println("Filament Sensor ENABLED!");
  676. }
  677. else
  678. {
  679. fsensor_disable();
  680. MYSERIAL.println("Filament Sensor DISABLED");
  681. }
  682. #endif //PAT9125
  683. st_init(); // Initialize stepper, this enables interrupts!
  684. setup_photpin();
  685. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  686. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  687. servo_init();
  688. // Reset the machine correction matrix.
  689. // It does not make sense to load the correction matrix until the machine is homed.
  690. world2machine_reset();
  691. if (!READ(BTN_ENC))
  692. {
  693. _delay_ms(1000);
  694. if (!READ(BTN_ENC))
  695. {
  696. lcd_implementation_clear();
  697. lcd_printPGM(PSTR("Factory RESET"));
  698. SET_OUTPUT(BEEPER);
  699. WRITE(BEEPER, HIGH);
  700. while (!READ(BTN_ENC));
  701. WRITE(BEEPER, LOW);
  702. _delay_ms(2000);
  703. char level = reset_menu();
  704. factory_reset(level, false);
  705. switch (level) {
  706. case 0: _delay_ms(0); break;
  707. case 1: _delay_ms(0); break;
  708. case 2: _delay_ms(0); break;
  709. case 3: _delay_ms(0); break;
  710. }
  711. // _delay_ms(100);
  712. /*
  713. #ifdef MESH_BED_LEVELING
  714. _delay_ms(2000);
  715. if (!READ(BTN_ENC))
  716. {
  717. WRITE(BEEPER, HIGH);
  718. _delay_ms(100);
  719. WRITE(BEEPER, LOW);
  720. _delay_ms(200);
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. int _z = 0;
  725. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  726. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  727. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  728. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  729. }
  730. else
  731. {
  732. WRITE(BEEPER, HIGH);
  733. _delay_ms(100);
  734. WRITE(BEEPER, LOW);
  735. }
  736. #endif // mesh */
  737. }
  738. }
  739. else
  740. {
  741. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  742. }
  743. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  744. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  745. #endif
  746. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  747. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  748. #endif
  749. #ifdef DIGIPOT_I2C
  750. digipot_i2c_init();
  751. #endif
  752. setup_homepin();
  753. if (1) {
  754. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  755. // try to run to zero phase before powering the Z motor.
  756. // Move in negative direction
  757. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  758. // Round the current micro-micro steps to micro steps.
  759. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  760. // Until the phase counter is reset to zero.
  761. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  762. delay(2);
  763. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  764. delay(2);
  765. }
  766. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  767. }
  768. #if defined(Z_AXIS_ALWAYS_ON)
  769. enable_z();
  770. #endif
  771. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  772. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  773. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  774. if (farm_no == 0xFFFF) farm_no = 0;
  775. if (farm_mode)
  776. {
  777. prusa_statistics(8);
  778. }
  779. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  780. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  781. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  782. // but this times out if a blocking dialog is shown in setup().
  783. card.initsd();
  784. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  785. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  786. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  787. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  788. // where all the EEPROM entries are set to 0x0ff.
  789. // Once a firmware boots up, it forces at least a language selection, which changes
  790. // EEPROM_LANG to number lower than 0x0ff.
  791. // 1) Set a high power mode.
  792. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  793. }
  794. #ifdef SNMM
  795. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  796. int _z = BOWDEN_LENGTH;
  797. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  798. }
  799. #endif
  800. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  801. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  802. // is being written into the EEPROM, so the update procedure will be triggered only once.
  803. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  804. if (lang_selected >= LANG_NUM){
  805. lcd_mylang();
  806. }
  807. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  808. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  809. temp_cal_active = false;
  810. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  811. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  812. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  813. }
  814. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  815. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  816. }
  817. check_babystep(); //checking if Z babystep is in allowed range
  818. setup_uvlo_interrupt();
  819. #ifndef DEBUG_DISABLE_STARTMSGS
  820. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  821. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  822. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  823. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  824. // Show the message.
  825. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  826. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  827. // Show the message.
  828. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  829. lcd_update_enable(true);
  830. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  831. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  832. lcd_update_enable(true);
  833. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  834. // Show the message.
  835. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  836. }
  837. #endif //DEBUG_DISABLE_STARTMSGS
  838. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  839. lcd_update_enable(true);
  840. lcd_implementation_clear();
  841. lcd_update(2);
  842. // Store the currently running firmware into an eeprom,
  843. // so the next time the firmware gets updated, it will know from which version it has been updated.
  844. update_current_firmware_version_to_eeprom();
  845. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  846. /*
  847. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  848. else {
  849. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  850. lcd_update_enable(true);
  851. lcd_update(2);
  852. lcd_setstatuspgm(WELCOME_MSG);
  853. }
  854. */
  855. manage_heater(); // Update temperatures
  856. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  857. MYSERIAL.println("Power panic detected!");
  858. MYSERIAL.print("Current bed temp:");
  859. MYSERIAL.println(degBed());
  860. MYSERIAL.print("Saved bed temp:");
  861. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  862. #endif
  863. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  864. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  865. MYSERIAL.println("Automatic recovery!");
  866. #endif
  867. recover_print(1);
  868. }
  869. else{
  870. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  871. MYSERIAL.println("Normal recovery!");
  872. #endif
  873. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  874. else {
  875. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  876. lcd_update_enable(true);
  877. lcd_update(2);
  878. lcd_setstatuspgm(WELCOME_MSG);
  879. }
  880. }
  881. }
  882. }
  883. void trace();
  884. #define CHUNK_SIZE 64 // bytes
  885. #define SAFETY_MARGIN 1
  886. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  887. int chunkHead = 0;
  888. int serial_read_stream() {
  889. setTargetHotend(0, 0);
  890. setTargetBed(0);
  891. lcd_implementation_clear();
  892. lcd_printPGM(PSTR(" Upload in progress"));
  893. // first wait for how many bytes we will receive
  894. uint32_t bytesToReceive;
  895. // receive the four bytes
  896. char bytesToReceiveBuffer[4];
  897. for (int i=0; i<4; i++) {
  898. int data;
  899. while ((data = MYSERIAL.read()) == -1) {};
  900. bytesToReceiveBuffer[i] = data;
  901. }
  902. // make it a uint32
  903. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  904. // we're ready, notify the sender
  905. MYSERIAL.write('+');
  906. // lock in the routine
  907. uint32_t receivedBytes = 0;
  908. while (prusa_sd_card_upload) {
  909. int i;
  910. for (i=0; i<CHUNK_SIZE; i++) {
  911. int data;
  912. // check if we're not done
  913. if (receivedBytes == bytesToReceive) {
  914. break;
  915. }
  916. // read the next byte
  917. while ((data = MYSERIAL.read()) == -1) {};
  918. receivedBytes++;
  919. // save it to the chunk
  920. chunk[i] = data;
  921. }
  922. // write the chunk to SD
  923. card.write_command_no_newline(&chunk[0]);
  924. // notify the sender we're ready for more data
  925. MYSERIAL.write('+');
  926. // for safety
  927. manage_heater();
  928. // check if we're done
  929. if(receivedBytes == bytesToReceive) {
  930. trace(); // beep
  931. card.closefile();
  932. prusa_sd_card_upload = false;
  933. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  934. return 0;
  935. }
  936. }
  937. }
  938. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  939. // Before loop(), the setup() function is called by the main() routine.
  940. void loop()
  941. {
  942. bool stack_integrity = true;
  943. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  944. {
  945. is_usb_printing = true;
  946. usb_printing_counter--;
  947. _usb_timer = millis();
  948. }
  949. if (usb_printing_counter == 0)
  950. {
  951. is_usb_printing = false;
  952. }
  953. if (prusa_sd_card_upload)
  954. {
  955. //we read byte-by byte
  956. serial_read_stream();
  957. } else
  958. {
  959. get_command();
  960. #ifdef SDSUPPORT
  961. card.checkautostart(false);
  962. #endif
  963. if(buflen)
  964. {
  965. cmdbuffer_front_already_processed = false;
  966. #ifdef SDSUPPORT
  967. if(card.saving)
  968. {
  969. // Saving a G-code file onto an SD-card is in progress.
  970. // Saving starts with M28, saving until M29 is seen.
  971. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  972. card.write_command(CMDBUFFER_CURRENT_STRING);
  973. if(card.logging)
  974. process_commands();
  975. else
  976. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  977. } else {
  978. card.closefile();
  979. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  980. }
  981. } else {
  982. process_commands();
  983. }
  984. #else
  985. process_commands();
  986. #endif //SDSUPPORT
  987. if (! cmdbuffer_front_already_processed && buflen)
  988. {
  989. cli();
  990. union {
  991. struct {
  992. char lo;
  993. char hi;
  994. } lohi;
  995. uint16_t value;
  996. } sdlen;
  997. sdlen.value = 0;
  998. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  999. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1000. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1001. }
  1002. cmdqueue_pop_front();
  1003. planner_add_sd_length(sdlen.value);
  1004. sei();
  1005. }
  1006. }
  1007. }
  1008. //check heater every n milliseconds
  1009. manage_heater();
  1010. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1011. checkHitEndstops();
  1012. lcd_update();
  1013. #ifdef PAT9125
  1014. fsensor_update();
  1015. #endif //PAT9125
  1016. #ifdef TMC2130
  1017. tmc2130_check_overtemp();
  1018. if (tmc2130_sg_crash)
  1019. {
  1020. tmc2130_sg_crash = false;
  1021. // crashdet_stop_and_save_print();
  1022. enquecommand_P((PSTR("D999")));
  1023. }
  1024. #endif //TMC2130
  1025. }
  1026. #define DEFINE_PGM_READ_ANY(type, reader) \
  1027. static inline type pgm_read_any(const type *p) \
  1028. { return pgm_read_##reader##_near(p); }
  1029. DEFINE_PGM_READ_ANY(float, float);
  1030. DEFINE_PGM_READ_ANY(signed char, byte);
  1031. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1032. static const PROGMEM type array##_P[3] = \
  1033. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1034. static inline type array(int axis) \
  1035. { return pgm_read_any(&array##_P[axis]); } \
  1036. type array##_ext(int axis) \
  1037. { return pgm_read_any(&array##_P[axis]); }
  1038. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1039. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1040. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1041. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1042. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1043. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1044. static void axis_is_at_home(int axis) {
  1045. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1046. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1047. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1048. }
  1049. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1050. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1051. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1052. saved_feedrate = feedrate;
  1053. saved_feedmultiply = feedmultiply;
  1054. feedmultiply = 100;
  1055. previous_millis_cmd = millis();
  1056. enable_endstops(enable_endstops_now);
  1057. }
  1058. static void clean_up_after_endstop_move() {
  1059. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1060. enable_endstops(false);
  1061. #endif
  1062. feedrate = saved_feedrate;
  1063. feedmultiply = saved_feedmultiply;
  1064. previous_millis_cmd = millis();
  1065. }
  1066. #ifdef ENABLE_AUTO_BED_LEVELING
  1067. #ifdef AUTO_BED_LEVELING_GRID
  1068. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1069. {
  1070. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1071. planeNormal.debug("planeNormal");
  1072. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1073. //bedLevel.debug("bedLevel");
  1074. //plan_bed_level_matrix.debug("bed level before");
  1075. //vector_3 uncorrected_position = plan_get_position_mm();
  1076. //uncorrected_position.debug("position before");
  1077. vector_3 corrected_position = plan_get_position();
  1078. // corrected_position.debug("position after");
  1079. current_position[X_AXIS] = corrected_position.x;
  1080. current_position[Y_AXIS] = corrected_position.y;
  1081. current_position[Z_AXIS] = corrected_position.z;
  1082. // put the bed at 0 so we don't go below it.
  1083. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1085. }
  1086. #else // not AUTO_BED_LEVELING_GRID
  1087. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1088. plan_bed_level_matrix.set_to_identity();
  1089. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1090. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1091. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1092. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1093. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1094. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1095. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1096. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1097. vector_3 corrected_position = plan_get_position();
  1098. current_position[X_AXIS] = corrected_position.x;
  1099. current_position[Y_AXIS] = corrected_position.y;
  1100. current_position[Z_AXIS] = corrected_position.z;
  1101. // put the bed at 0 so we don't go below it.
  1102. current_position[Z_AXIS] = zprobe_zoffset;
  1103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1104. }
  1105. #endif // AUTO_BED_LEVELING_GRID
  1106. static void run_z_probe() {
  1107. plan_bed_level_matrix.set_to_identity();
  1108. feedrate = homing_feedrate[Z_AXIS];
  1109. // move down until you find the bed
  1110. float zPosition = -10;
  1111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1112. st_synchronize();
  1113. // we have to let the planner know where we are right now as it is not where we said to go.
  1114. zPosition = st_get_position_mm(Z_AXIS);
  1115. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1116. // move up the retract distance
  1117. zPosition += home_retract_mm(Z_AXIS);
  1118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1119. st_synchronize();
  1120. // move back down slowly to find bed
  1121. feedrate = homing_feedrate[Z_AXIS]/4;
  1122. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1124. st_synchronize();
  1125. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1126. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1127. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1128. }
  1129. static void do_blocking_move_to(float x, float y, float z) {
  1130. float oldFeedRate = feedrate;
  1131. feedrate = homing_feedrate[Z_AXIS];
  1132. current_position[Z_AXIS] = z;
  1133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1134. st_synchronize();
  1135. feedrate = XY_TRAVEL_SPEED;
  1136. current_position[X_AXIS] = x;
  1137. current_position[Y_AXIS] = y;
  1138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1139. st_synchronize();
  1140. feedrate = oldFeedRate;
  1141. }
  1142. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1143. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1144. }
  1145. /// Probe bed height at position (x,y), returns the measured z value
  1146. static float probe_pt(float x, float y, float z_before) {
  1147. // move to right place
  1148. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1149. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1150. run_z_probe();
  1151. float measured_z = current_position[Z_AXIS];
  1152. SERIAL_PROTOCOLRPGM(MSG_BED);
  1153. SERIAL_PROTOCOLPGM(" x: ");
  1154. SERIAL_PROTOCOL(x);
  1155. SERIAL_PROTOCOLPGM(" y: ");
  1156. SERIAL_PROTOCOL(y);
  1157. SERIAL_PROTOCOLPGM(" z: ");
  1158. SERIAL_PROTOCOL(measured_z);
  1159. SERIAL_PROTOCOLPGM("\n");
  1160. return measured_z;
  1161. }
  1162. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1163. #ifdef LIN_ADVANCE
  1164. /**
  1165. * M900: Set and/or Get advance K factor and WH/D ratio
  1166. *
  1167. * K<factor> Set advance K factor
  1168. * R<ratio> Set ratio directly (overrides WH/D)
  1169. * W<width> H<height> D<diam> Set ratio from WH/D
  1170. */
  1171. inline void gcode_M900() {
  1172. st_synchronize();
  1173. const float newK = code_seen('K') ? code_value_float() : -1;
  1174. if (newK >= 0) extruder_advance_k = newK;
  1175. float newR = code_seen('R') ? code_value_float() : -1;
  1176. if (newR < 0) {
  1177. const float newD = code_seen('D') ? code_value_float() : -1,
  1178. newW = code_seen('W') ? code_value_float() : -1,
  1179. newH = code_seen('H') ? code_value_float() : -1;
  1180. if (newD >= 0 && newW >= 0 && newH >= 0)
  1181. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1182. }
  1183. if (newR >= 0) advance_ed_ratio = newR;
  1184. SERIAL_ECHO_START;
  1185. SERIAL_ECHOPGM("Advance K=");
  1186. SERIAL_ECHOLN(extruder_advance_k);
  1187. SERIAL_ECHOPGM(" E/D=");
  1188. const float ratio = advance_ed_ratio;
  1189. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1190. }
  1191. #endif // LIN_ADVANCE
  1192. #ifdef TMC2130
  1193. bool calibrate_z_auto()
  1194. {
  1195. lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1196. bool endstops_enabled = enable_endstops(true);
  1197. int axis_up_dir = -home_dir(Z_AXIS);
  1198. tmc2130_home_enter(Z_AXIS_MASK);
  1199. current_position[Z_AXIS] = 0;
  1200. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1201. set_destination_to_current();
  1202. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1203. feedrate = homing_feedrate[Z_AXIS];
  1204. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1205. tmc2130_home_restart(Z_AXIS);
  1206. st_synchronize();
  1207. // current_position[axis] = 0;
  1208. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1209. tmc2130_home_exit();
  1210. enable_endstops(false);
  1211. current_position[Z_AXIS] = 0;
  1212. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1213. set_destination_to_current();
  1214. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1215. feedrate = homing_feedrate[Z_AXIS] / 2;
  1216. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1217. st_synchronize();
  1218. enable_endstops(endstops_enabled);
  1219. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1221. return true;
  1222. }
  1223. #endif //TMC2130
  1224. void homeaxis(int axis)
  1225. {
  1226. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1227. #define HOMEAXIS_DO(LETTER) \
  1228. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1229. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1230. {
  1231. int axis_home_dir = home_dir(axis);
  1232. feedrate = homing_feedrate[axis];
  1233. #ifdef TMC2130
  1234. tmc2130_home_enter(X_AXIS_MASK << axis);
  1235. #endif
  1236. // Move right a bit, so that the print head does not touch the left end position,
  1237. // and the following left movement has a chance to achieve the required velocity
  1238. // for the stall guard to work.
  1239. current_position[axis] = 0;
  1240. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1241. // destination[axis] = 11.f;
  1242. destination[axis] = 3.f;
  1243. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1244. st_synchronize();
  1245. // Move left away from the possible collision with the collision detection disabled.
  1246. endstops_hit_on_purpose();
  1247. enable_endstops(false);
  1248. current_position[axis] = 0;
  1249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1250. destination[axis] = - 1.;
  1251. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1252. st_synchronize();
  1253. // Now continue to move up to the left end stop with the collision detection enabled.
  1254. enable_endstops(true);
  1255. destination[axis] = - 1.1 * max_length(axis);
  1256. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1257. st_synchronize();
  1258. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1259. endstops_hit_on_purpose();
  1260. enable_endstops(false);
  1261. current_position[axis] = 0;
  1262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1263. destination[axis] = 10.f;
  1264. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1265. st_synchronize();
  1266. endstops_hit_on_purpose();
  1267. // Now move left up to the collision, this time with a repeatable velocity.
  1268. enable_endstops(true);
  1269. destination[axis] = - 15.f;
  1270. feedrate = homing_feedrate[axis]/2;
  1271. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1272. st_synchronize();
  1273. axis_is_at_home(axis);
  1274. axis_known_position[axis] = true;
  1275. #ifdef TMC2130
  1276. tmc2130_home_exit();
  1277. #endif
  1278. // Move the X carriage away from the collision.
  1279. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1280. endstops_hit_on_purpose();
  1281. enable_endstops(false);
  1282. {
  1283. // Two full periods (4 full steps).
  1284. float gap = 0.32f * 2.f;
  1285. current_position[axis] -= gap;
  1286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1287. current_position[axis] += gap;
  1288. }
  1289. destination[axis] = current_position[axis];
  1290. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1291. st_synchronize();
  1292. feedrate = 0.0;
  1293. }
  1294. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1295. {
  1296. int axis_home_dir = home_dir(axis);
  1297. current_position[axis] = 0;
  1298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1299. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1300. feedrate = homing_feedrate[axis];
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. st_synchronize();
  1303. current_position[axis] = 0;
  1304. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1305. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1307. st_synchronize();
  1308. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1309. feedrate = homing_feedrate[axis]/2 ;
  1310. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1311. st_synchronize();
  1312. axis_is_at_home(axis);
  1313. destination[axis] = current_position[axis];
  1314. feedrate = 0.0;
  1315. endstops_hit_on_purpose();
  1316. axis_known_position[axis] = true;
  1317. }
  1318. enable_endstops(endstops_enabled);
  1319. }
  1320. /**/
  1321. void home_xy()
  1322. {
  1323. set_destination_to_current();
  1324. homeaxis(X_AXIS);
  1325. homeaxis(Y_AXIS);
  1326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1327. endstops_hit_on_purpose();
  1328. }
  1329. void refresh_cmd_timeout(void)
  1330. {
  1331. previous_millis_cmd = millis();
  1332. }
  1333. #ifdef FWRETRACT
  1334. void retract(bool retracting, bool swapretract = false) {
  1335. if(retracting && !retracted[active_extruder]) {
  1336. destination[X_AXIS]=current_position[X_AXIS];
  1337. destination[Y_AXIS]=current_position[Y_AXIS];
  1338. destination[Z_AXIS]=current_position[Z_AXIS];
  1339. destination[E_AXIS]=current_position[E_AXIS];
  1340. if (swapretract) {
  1341. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1342. } else {
  1343. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1344. }
  1345. plan_set_e_position(current_position[E_AXIS]);
  1346. float oldFeedrate = feedrate;
  1347. feedrate=retract_feedrate*60;
  1348. retracted[active_extruder]=true;
  1349. prepare_move();
  1350. current_position[Z_AXIS]-=retract_zlift;
  1351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1352. prepare_move();
  1353. feedrate = oldFeedrate;
  1354. } else if(!retracting && retracted[active_extruder]) {
  1355. destination[X_AXIS]=current_position[X_AXIS];
  1356. destination[Y_AXIS]=current_position[Y_AXIS];
  1357. destination[Z_AXIS]=current_position[Z_AXIS];
  1358. destination[E_AXIS]=current_position[E_AXIS];
  1359. current_position[Z_AXIS]+=retract_zlift;
  1360. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1361. //prepare_move();
  1362. if (swapretract) {
  1363. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1364. } else {
  1365. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1366. }
  1367. plan_set_e_position(current_position[E_AXIS]);
  1368. float oldFeedrate = feedrate;
  1369. feedrate=retract_recover_feedrate*60;
  1370. retracted[active_extruder]=false;
  1371. prepare_move();
  1372. feedrate = oldFeedrate;
  1373. }
  1374. } //retract
  1375. #endif //FWRETRACT
  1376. void trace() {
  1377. tone(BEEPER, 440);
  1378. delay(25);
  1379. noTone(BEEPER);
  1380. delay(20);
  1381. }
  1382. /*
  1383. void ramming() {
  1384. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1385. if (current_temperature[0] < 230) {
  1386. //PLA
  1387. max_feedrate[E_AXIS] = 50;
  1388. //current_position[E_AXIS] -= 8;
  1389. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1390. //current_position[E_AXIS] += 8;
  1391. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1392. current_position[E_AXIS] += 5.4;
  1393. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1394. current_position[E_AXIS] += 3.2;
  1395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1396. current_position[E_AXIS] += 3;
  1397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1398. st_synchronize();
  1399. max_feedrate[E_AXIS] = 80;
  1400. current_position[E_AXIS] -= 82;
  1401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1402. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1403. current_position[E_AXIS] -= 20;
  1404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1405. current_position[E_AXIS] += 5;
  1406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1407. current_position[E_AXIS] += 5;
  1408. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1409. current_position[E_AXIS] -= 10;
  1410. st_synchronize();
  1411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1412. current_position[E_AXIS] += 10;
  1413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1414. current_position[E_AXIS] -= 10;
  1415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1416. current_position[E_AXIS] += 10;
  1417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1418. current_position[E_AXIS] -= 10;
  1419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1420. st_synchronize();
  1421. }
  1422. else {
  1423. //ABS
  1424. max_feedrate[E_AXIS] = 50;
  1425. //current_position[E_AXIS] -= 8;
  1426. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1427. //current_position[E_AXIS] += 8;
  1428. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1429. current_position[E_AXIS] += 3.1;
  1430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1431. current_position[E_AXIS] += 3.1;
  1432. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1433. current_position[E_AXIS] += 4;
  1434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1435. st_synchronize();
  1436. //current_position[X_AXIS] += 23; //delay
  1437. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1438. //current_position[X_AXIS] -= 23; //delay
  1439. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1440. delay(4700);
  1441. max_feedrate[E_AXIS] = 80;
  1442. current_position[E_AXIS] -= 92;
  1443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1444. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1445. current_position[E_AXIS] -= 5;
  1446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1447. current_position[E_AXIS] += 5;
  1448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1449. current_position[E_AXIS] -= 5;
  1450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1451. st_synchronize();
  1452. current_position[E_AXIS] += 5;
  1453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1454. current_position[E_AXIS] -= 5;
  1455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1456. current_position[E_AXIS] += 5;
  1457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1458. current_position[E_AXIS] -= 5;
  1459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1460. st_synchronize();
  1461. }
  1462. }
  1463. */
  1464. void process_commands()
  1465. {
  1466. #ifdef FILAMENT_RUNOUT_SUPPORT
  1467. SET_INPUT(FR_SENS);
  1468. #endif
  1469. #ifdef CMDBUFFER_DEBUG
  1470. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1471. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1472. SERIAL_ECHOLNPGM("");
  1473. SERIAL_ECHOPGM("In cmdqueue: ");
  1474. SERIAL_ECHO(buflen);
  1475. SERIAL_ECHOLNPGM("");
  1476. #endif /* CMDBUFFER_DEBUG */
  1477. unsigned long codenum; //throw away variable
  1478. char *starpos = NULL;
  1479. #ifdef ENABLE_AUTO_BED_LEVELING
  1480. float x_tmp, y_tmp, z_tmp, real_z;
  1481. #endif
  1482. // PRUSA GCODES
  1483. #ifdef SNMM
  1484. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1485. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1486. int8_t SilentMode;
  1487. #endif
  1488. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1489. starpos = (strchr(strchr_pointer + 5, '*'));
  1490. if (starpos != NULL)
  1491. *(starpos) = '\0';
  1492. lcd_setstatus(strchr_pointer + 5);
  1493. }
  1494. else if(code_seen("PRUSA")){
  1495. if (code_seen("Ping")) { //PRUSA Ping
  1496. if (farm_mode) {
  1497. PingTime = millis();
  1498. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1499. }
  1500. }
  1501. else if (code_seen("PRN")) {
  1502. MYSERIAL.println(status_number);
  1503. }else if (code_seen("fn")) {
  1504. if (farm_mode) {
  1505. MYSERIAL.println(farm_no);
  1506. }
  1507. else {
  1508. MYSERIAL.println("Not in farm mode.");
  1509. }
  1510. }else if (code_seen("fv")) {
  1511. // get file version
  1512. #ifdef SDSUPPORT
  1513. card.openFile(strchr_pointer + 3,true);
  1514. while (true) {
  1515. uint16_t readByte = card.get();
  1516. MYSERIAL.write(readByte);
  1517. if (readByte=='\n') {
  1518. break;
  1519. }
  1520. }
  1521. card.closefile();
  1522. #endif // SDSUPPORT
  1523. } else if (code_seen("M28")) {
  1524. trace();
  1525. prusa_sd_card_upload = true;
  1526. card.openFile(strchr_pointer+4,false);
  1527. } else if (code_seen("SN")) {
  1528. if (farm_mode) {
  1529. selectedSerialPort = 0;
  1530. MSerial.write(";S");
  1531. // S/N is:CZPX0917X003XC13518
  1532. int numbersRead = 0;
  1533. while (numbersRead < 19) {
  1534. while (MSerial.available() > 0) {
  1535. uint8_t serial_char = MSerial.read();
  1536. selectedSerialPort = 1;
  1537. MSerial.write(serial_char);
  1538. numbersRead++;
  1539. selectedSerialPort = 0;
  1540. }
  1541. }
  1542. selectedSerialPort = 1;
  1543. MSerial.write('\n');
  1544. /*for (int b = 0; b < 3; b++) {
  1545. tone(BEEPER, 110);
  1546. delay(50);
  1547. noTone(BEEPER);
  1548. delay(50);
  1549. }*/
  1550. } else {
  1551. MYSERIAL.println("Not in farm mode.");
  1552. }
  1553. } else if(code_seen("Fir")){
  1554. SERIAL_PROTOCOLLN(FW_version);
  1555. } else if(code_seen("Rev")){
  1556. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1557. } else if(code_seen("Lang")) {
  1558. lcd_force_language_selection();
  1559. } else if(code_seen("Lz")) {
  1560. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1561. } else if (code_seen("SERIAL LOW")) {
  1562. MYSERIAL.println("SERIAL LOW");
  1563. MYSERIAL.begin(BAUDRATE);
  1564. return;
  1565. } else if (code_seen("SERIAL HIGH")) {
  1566. MYSERIAL.println("SERIAL HIGH");
  1567. MYSERIAL.begin(1152000);
  1568. return;
  1569. } else if(code_seen("Beat")) {
  1570. // Kick farm link timer
  1571. kicktime = millis();
  1572. } else if(code_seen("FR")) {
  1573. // Factory full reset
  1574. factory_reset(0,true);
  1575. }
  1576. //else if (code_seen('Cal')) {
  1577. // lcd_calibration();
  1578. // }
  1579. }
  1580. else if (code_seen('^')) {
  1581. // nothing, this is a version line
  1582. } else if(code_seen('G'))
  1583. {
  1584. switch((int)code_value())
  1585. {
  1586. case 0: // G0 -> G1
  1587. case 1: // G1
  1588. if(Stopped == false) {
  1589. #ifdef FILAMENT_RUNOUT_SUPPORT
  1590. if(READ(FR_SENS)){
  1591. feedmultiplyBckp=feedmultiply;
  1592. float target[4];
  1593. float lastpos[4];
  1594. target[X_AXIS]=current_position[X_AXIS];
  1595. target[Y_AXIS]=current_position[Y_AXIS];
  1596. target[Z_AXIS]=current_position[Z_AXIS];
  1597. target[E_AXIS]=current_position[E_AXIS];
  1598. lastpos[X_AXIS]=current_position[X_AXIS];
  1599. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1600. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1601. lastpos[E_AXIS]=current_position[E_AXIS];
  1602. //retract by E
  1603. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1605. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1607. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1608. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1609. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1610. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1612. //finish moves
  1613. st_synchronize();
  1614. //disable extruder steppers so filament can be removed
  1615. disable_e0();
  1616. disable_e1();
  1617. disable_e2();
  1618. delay(100);
  1619. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1620. uint8_t cnt=0;
  1621. int counterBeep = 0;
  1622. lcd_wait_interact();
  1623. while(!lcd_clicked()){
  1624. cnt++;
  1625. manage_heater();
  1626. manage_inactivity(true);
  1627. //lcd_update();
  1628. if(cnt==0)
  1629. {
  1630. #if BEEPER > 0
  1631. if (counterBeep== 500){
  1632. counterBeep = 0;
  1633. }
  1634. SET_OUTPUT(BEEPER);
  1635. if (counterBeep== 0){
  1636. WRITE(BEEPER,HIGH);
  1637. }
  1638. if (counterBeep== 20){
  1639. WRITE(BEEPER,LOW);
  1640. }
  1641. counterBeep++;
  1642. #else
  1643. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1644. lcd_buzz(1000/6,100);
  1645. #else
  1646. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1647. #endif
  1648. #endif
  1649. }
  1650. }
  1651. WRITE(BEEPER,LOW);
  1652. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1653. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1654. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1655. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1656. lcd_change_fil_state = 0;
  1657. lcd_loading_filament();
  1658. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1659. lcd_change_fil_state = 0;
  1660. lcd_alright();
  1661. switch(lcd_change_fil_state){
  1662. case 2:
  1663. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1664. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1665. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1667. lcd_loading_filament();
  1668. break;
  1669. case 3:
  1670. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1671. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1672. lcd_loading_color();
  1673. break;
  1674. default:
  1675. lcd_change_success();
  1676. break;
  1677. }
  1678. }
  1679. target[E_AXIS]+= 5;
  1680. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1681. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1682. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1683. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1684. //plan_set_e_position(current_position[E_AXIS]);
  1685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1686. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1687. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1688. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1689. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1690. plan_set_e_position(lastpos[E_AXIS]);
  1691. feedmultiply=feedmultiplyBckp;
  1692. char cmd[9];
  1693. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1694. enquecommand(cmd);
  1695. }
  1696. #endif
  1697. get_coordinates(); // For X Y Z E F
  1698. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1699. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1700. }
  1701. #ifdef FWRETRACT
  1702. if(autoretract_enabled)
  1703. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1704. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1705. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1706. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1707. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1708. retract(!retracted);
  1709. return;
  1710. }
  1711. }
  1712. #endif //FWRETRACT
  1713. prepare_move();
  1714. //ClearToSend();
  1715. }
  1716. break;
  1717. case 2: // G2 - CW ARC
  1718. if(Stopped == false) {
  1719. get_arc_coordinates();
  1720. prepare_arc_move(true);
  1721. }
  1722. break;
  1723. case 3: // G3 - CCW ARC
  1724. if(Stopped == false) {
  1725. get_arc_coordinates();
  1726. prepare_arc_move(false);
  1727. }
  1728. break;
  1729. case 4: // G4 dwell
  1730. codenum = 0;
  1731. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1732. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1733. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1734. st_synchronize();
  1735. codenum += millis(); // keep track of when we started waiting
  1736. previous_millis_cmd = millis();
  1737. while(millis() < codenum) {
  1738. manage_heater();
  1739. manage_inactivity();
  1740. lcd_update();
  1741. }
  1742. break;
  1743. #ifdef FWRETRACT
  1744. case 10: // G10 retract
  1745. #if EXTRUDERS > 1
  1746. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1747. retract(true,retracted_swap[active_extruder]);
  1748. #else
  1749. retract(true);
  1750. #endif
  1751. break;
  1752. case 11: // G11 retract_recover
  1753. #if EXTRUDERS > 1
  1754. retract(false,retracted_swap[active_extruder]);
  1755. #else
  1756. retract(false);
  1757. #endif
  1758. break;
  1759. #endif //FWRETRACT
  1760. case 28: //G28 Home all Axis one at a time
  1761. {
  1762. st_synchronize();
  1763. #if 1
  1764. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1765. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1766. #endif
  1767. // Flag for the display update routine and to disable the print cancelation during homing.
  1768. homing_flag = true;
  1769. // Which axes should be homed?
  1770. bool home_x = code_seen(axis_codes[X_AXIS]);
  1771. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1772. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1773. // Either all X,Y,Z codes are present, or none of them.
  1774. bool home_all_axes = home_x == home_y && home_x == home_z;
  1775. if (home_all_axes)
  1776. // No X/Y/Z code provided means to home all axes.
  1777. home_x = home_y = home_z = true;
  1778. #ifdef ENABLE_AUTO_BED_LEVELING
  1779. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1780. #endif //ENABLE_AUTO_BED_LEVELING
  1781. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1782. // the planner will not perform any adjustments in the XY plane.
  1783. // Wait for the motors to stop and update the current position with the absolute values.
  1784. world2machine_revert_to_uncorrected();
  1785. // For mesh bed leveling deactivate the matrix temporarily.
  1786. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1787. // in a single axis only.
  1788. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1789. #ifdef MESH_BED_LEVELING
  1790. uint8_t mbl_was_active = mbl.active;
  1791. mbl.active = 0;
  1792. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1793. #endif
  1794. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1795. // consumed during the first movements following this statement.
  1796. if (home_z)
  1797. babystep_undo();
  1798. saved_feedrate = feedrate;
  1799. saved_feedmultiply = feedmultiply;
  1800. feedmultiply = 100;
  1801. previous_millis_cmd = millis();
  1802. enable_endstops(true);
  1803. memcpy(destination, current_position, sizeof(destination));
  1804. feedrate = 0.0;
  1805. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1806. if(home_z)
  1807. homeaxis(Z_AXIS);
  1808. #endif
  1809. #ifdef QUICK_HOME
  1810. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1811. if(home_x && home_y) //first diagonal move
  1812. {
  1813. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1814. int x_axis_home_dir = home_dir(X_AXIS);
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1817. feedrate = homing_feedrate[X_AXIS];
  1818. if(homing_feedrate[Y_AXIS]<feedrate)
  1819. feedrate = homing_feedrate[Y_AXIS];
  1820. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1821. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1822. } else {
  1823. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1824. }
  1825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1826. st_synchronize();
  1827. axis_is_at_home(X_AXIS);
  1828. axis_is_at_home(Y_AXIS);
  1829. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1830. destination[X_AXIS] = current_position[X_AXIS];
  1831. destination[Y_AXIS] = current_position[Y_AXIS];
  1832. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1833. feedrate = 0.0;
  1834. st_synchronize();
  1835. endstops_hit_on_purpose();
  1836. current_position[X_AXIS] = destination[X_AXIS];
  1837. current_position[Y_AXIS] = destination[Y_AXIS];
  1838. current_position[Z_AXIS] = destination[Z_AXIS];
  1839. }
  1840. #endif /* QUICK_HOME */
  1841. if(home_x)
  1842. homeaxis(X_AXIS);
  1843. if(home_y)
  1844. homeaxis(Y_AXIS);
  1845. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1846. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1847. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1848. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1849. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1850. #ifndef Z_SAFE_HOMING
  1851. if(home_z) {
  1852. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1853. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1854. feedrate = max_feedrate[Z_AXIS];
  1855. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1856. st_synchronize();
  1857. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1858. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1859. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1860. {
  1861. homeaxis(X_AXIS);
  1862. homeaxis(Y_AXIS);
  1863. }
  1864. // 1st mesh bed leveling measurement point, corrected.
  1865. world2machine_initialize();
  1866. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1867. world2machine_reset();
  1868. if (destination[Y_AXIS] < Y_MIN_POS)
  1869. destination[Y_AXIS] = Y_MIN_POS;
  1870. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1871. feedrate = homing_feedrate[Z_AXIS]/10;
  1872. current_position[Z_AXIS] = 0;
  1873. enable_endstops(false);
  1874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1876. st_synchronize();
  1877. current_position[X_AXIS] = destination[X_AXIS];
  1878. current_position[Y_AXIS] = destination[Y_AXIS];
  1879. enable_endstops(true);
  1880. endstops_hit_on_purpose();
  1881. homeaxis(Z_AXIS);
  1882. #else // MESH_BED_LEVELING
  1883. homeaxis(Z_AXIS);
  1884. #endif // MESH_BED_LEVELING
  1885. }
  1886. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1887. if(home_all_axes) {
  1888. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1889. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1890. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1891. feedrate = XY_TRAVEL_SPEED/60;
  1892. current_position[Z_AXIS] = 0;
  1893. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1895. st_synchronize();
  1896. current_position[X_AXIS] = destination[X_AXIS];
  1897. current_position[Y_AXIS] = destination[Y_AXIS];
  1898. homeaxis(Z_AXIS);
  1899. }
  1900. // Let's see if X and Y are homed and probe is inside bed area.
  1901. if(home_z) {
  1902. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1903. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1904. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1905. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1906. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1907. current_position[Z_AXIS] = 0;
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1910. feedrate = max_feedrate[Z_AXIS];
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1912. st_synchronize();
  1913. homeaxis(Z_AXIS);
  1914. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1915. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1916. SERIAL_ECHO_START;
  1917. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1918. } else {
  1919. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1920. SERIAL_ECHO_START;
  1921. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1922. }
  1923. }
  1924. #endif // Z_SAFE_HOMING
  1925. #endif // Z_HOME_DIR < 0
  1926. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1927. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1928. #ifdef ENABLE_AUTO_BED_LEVELING
  1929. if(home_z)
  1930. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1931. #endif
  1932. // Set the planner and stepper routine positions.
  1933. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  1934. // contains the machine coordinates.
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1937. enable_endstops(false);
  1938. #endif
  1939. feedrate = saved_feedrate;
  1940. feedmultiply = saved_feedmultiply;
  1941. previous_millis_cmd = millis();
  1942. endstops_hit_on_purpose();
  1943. #ifndef MESH_BED_LEVELING
  1944. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1945. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1946. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1947. lcd_adjust_z();
  1948. #endif
  1949. // Load the machine correction matrix
  1950. world2machine_initialize();
  1951. // and correct the current_position XY axes to match the transformed coordinate system.
  1952. world2machine_update_current();
  1953. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  1954. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1955. {
  1956. if (! home_z && mbl_was_active) {
  1957. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  1958. mbl.active = true;
  1959. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  1960. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  1961. }
  1962. }
  1963. else
  1964. {
  1965. st_synchronize();
  1966. homing_flag = false;
  1967. // Push the commands to the front of the message queue in the reverse order!
  1968. // There shall be always enough space reserved for these commands.
  1969. // enquecommand_front_P((PSTR("G80")));
  1970. goto case_G80;
  1971. }
  1972. #endif
  1973. if (farm_mode) { prusa_statistics(20); };
  1974. homing_flag = false;
  1975. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  1976. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  1977. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  1978. break;
  1979. }
  1980. #ifdef ENABLE_AUTO_BED_LEVELING
  1981. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1982. {
  1983. #if Z_MIN_PIN == -1
  1984. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1985. #endif
  1986. // Prevent user from running a G29 without first homing in X and Y
  1987. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1988. {
  1989. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1990. SERIAL_ECHO_START;
  1991. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1992. break; // abort G29, since we don't know where we are
  1993. }
  1994. st_synchronize();
  1995. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1996. //vector_3 corrected_position = plan_get_position_mm();
  1997. //corrected_position.debug("position before G29");
  1998. plan_bed_level_matrix.set_to_identity();
  1999. vector_3 uncorrected_position = plan_get_position();
  2000. //uncorrected_position.debug("position durring G29");
  2001. current_position[X_AXIS] = uncorrected_position.x;
  2002. current_position[Y_AXIS] = uncorrected_position.y;
  2003. current_position[Z_AXIS] = uncorrected_position.z;
  2004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2005. setup_for_endstop_move();
  2006. feedrate = homing_feedrate[Z_AXIS];
  2007. #ifdef AUTO_BED_LEVELING_GRID
  2008. // probe at the points of a lattice grid
  2009. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2010. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2011. // solve the plane equation ax + by + d = z
  2012. // A is the matrix with rows [x y 1] for all the probed points
  2013. // B is the vector of the Z positions
  2014. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2015. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2016. // "A" matrix of the linear system of equations
  2017. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2018. // "B" vector of Z points
  2019. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2020. int probePointCounter = 0;
  2021. bool zig = true;
  2022. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2023. {
  2024. int xProbe, xInc;
  2025. if (zig)
  2026. {
  2027. xProbe = LEFT_PROBE_BED_POSITION;
  2028. //xEnd = RIGHT_PROBE_BED_POSITION;
  2029. xInc = xGridSpacing;
  2030. zig = false;
  2031. } else // zag
  2032. {
  2033. xProbe = RIGHT_PROBE_BED_POSITION;
  2034. //xEnd = LEFT_PROBE_BED_POSITION;
  2035. xInc = -xGridSpacing;
  2036. zig = true;
  2037. }
  2038. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2039. {
  2040. float z_before;
  2041. if (probePointCounter == 0)
  2042. {
  2043. // raise before probing
  2044. z_before = Z_RAISE_BEFORE_PROBING;
  2045. } else
  2046. {
  2047. // raise extruder
  2048. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2049. }
  2050. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2051. eqnBVector[probePointCounter] = measured_z;
  2052. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2053. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2054. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2055. probePointCounter++;
  2056. xProbe += xInc;
  2057. }
  2058. }
  2059. clean_up_after_endstop_move();
  2060. // solve lsq problem
  2061. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2062. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2063. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2064. SERIAL_PROTOCOLPGM(" b: ");
  2065. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2066. SERIAL_PROTOCOLPGM(" d: ");
  2067. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2068. set_bed_level_equation_lsq(plane_equation_coefficients);
  2069. free(plane_equation_coefficients);
  2070. #else // AUTO_BED_LEVELING_GRID not defined
  2071. // Probe at 3 arbitrary points
  2072. // probe 1
  2073. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2074. // probe 2
  2075. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2076. // probe 3
  2077. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2078. clean_up_after_endstop_move();
  2079. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2080. #endif // AUTO_BED_LEVELING_GRID
  2081. st_synchronize();
  2082. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2083. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2084. // When the bed is uneven, this height must be corrected.
  2085. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2086. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2087. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2088. z_tmp = current_position[Z_AXIS];
  2089. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2090. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2092. }
  2093. break;
  2094. #ifndef Z_PROBE_SLED
  2095. case 30: // G30 Single Z Probe
  2096. {
  2097. st_synchronize();
  2098. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2099. setup_for_endstop_move();
  2100. feedrate = homing_feedrate[Z_AXIS];
  2101. run_z_probe();
  2102. SERIAL_PROTOCOLPGM(MSG_BED);
  2103. SERIAL_PROTOCOLPGM(" X: ");
  2104. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2105. SERIAL_PROTOCOLPGM(" Y: ");
  2106. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2107. SERIAL_PROTOCOLPGM(" Z: ");
  2108. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2109. SERIAL_PROTOCOLPGM("\n");
  2110. clean_up_after_endstop_move();
  2111. }
  2112. break;
  2113. #else
  2114. case 31: // dock the sled
  2115. dock_sled(true);
  2116. break;
  2117. case 32: // undock the sled
  2118. dock_sled(false);
  2119. break;
  2120. #endif // Z_PROBE_SLED
  2121. #endif // ENABLE_AUTO_BED_LEVELING
  2122. #ifdef MESH_BED_LEVELING
  2123. case 30: // G30 Single Z Probe
  2124. {
  2125. st_synchronize();
  2126. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2127. setup_for_endstop_move();
  2128. feedrate = homing_feedrate[Z_AXIS];
  2129. find_bed_induction_sensor_point_z(-10.f, 3);
  2130. SERIAL_PROTOCOLRPGM(MSG_BED);
  2131. SERIAL_PROTOCOLPGM(" X: ");
  2132. MYSERIAL.print(current_position[X_AXIS], 5);
  2133. SERIAL_PROTOCOLPGM(" Y: ");
  2134. MYSERIAL.print(current_position[Y_AXIS], 5);
  2135. SERIAL_PROTOCOLPGM(" Z: ");
  2136. MYSERIAL.print(current_position[Z_AXIS], 5);
  2137. SERIAL_PROTOCOLPGM("\n");
  2138. clean_up_after_endstop_move();
  2139. }
  2140. break;
  2141. case 75:
  2142. {
  2143. for (int i = 40; i <= 110; i++) {
  2144. MYSERIAL.print(i);
  2145. MYSERIAL.print(" ");
  2146. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2147. }
  2148. }
  2149. break;
  2150. case 76: //PINDA probe temperature calibration
  2151. {
  2152. #ifdef PINDA_THERMISTOR
  2153. if (true)
  2154. {
  2155. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2156. // We don't know where we are! HOME!
  2157. // Push the commands to the front of the message queue in the reverse order!
  2158. // There shall be always enough space reserved for these commands.
  2159. repeatcommand_front(); // repeat G76 with all its parameters
  2160. enquecommand_front_P((PSTR("G28 W0")));
  2161. break;
  2162. }
  2163. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2164. float zero_z;
  2165. int z_shift = 0; //unit: steps
  2166. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2167. if (start_temp < 35) start_temp = 35;
  2168. if (start_temp < current_temperature_pinda) start_temp += 5;
  2169. SERIAL_ECHOPGM("start temperature: ");
  2170. MYSERIAL.println(start_temp);
  2171. // setTargetHotend(200, 0);
  2172. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2173. custom_message = true;
  2174. custom_message_type = 4;
  2175. custom_message_state = 1;
  2176. custom_message = MSG_TEMP_CALIBRATION;
  2177. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2178. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2179. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2181. st_synchronize();
  2182. while (current_temperature_pinda < start_temp)
  2183. {
  2184. delay_keep_alive(1000);
  2185. serialecho_temperatures();
  2186. }
  2187. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2188. current_position[Z_AXIS] = 5;
  2189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2190. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2191. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2193. st_synchronize();
  2194. find_bed_induction_sensor_point_z(-1.f);
  2195. zero_z = current_position[Z_AXIS];
  2196. //current_position[Z_AXIS]
  2197. SERIAL_ECHOLNPGM("");
  2198. SERIAL_ECHOPGM("ZERO: ");
  2199. MYSERIAL.print(current_position[Z_AXIS]);
  2200. SERIAL_ECHOLNPGM("");
  2201. int i = -1; for (; i < 5; i++)
  2202. {
  2203. float temp = (40 + i * 5);
  2204. SERIAL_ECHOPGM("Step: ");
  2205. MYSERIAL.print(i + 2);
  2206. SERIAL_ECHOLNPGM("/6 (skipped)");
  2207. SERIAL_ECHOPGM("PINDA temperature: ");
  2208. MYSERIAL.print((40 + i*5));
  2209. SERIAL_ECHOPGM(" Z shift (mm):");
  2210. MYSERIAL.print(0);
  2211. SERIAL_ECHOLNPGM("");
  2212. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2213. if (start_temp <= temp) break;
  2214. }
  2215. for (i++; i < 5; i++)
  2216. {
  2217. float temp = (40 + i * 5);
  2218. SERIAL_ECHOPGM("Step: ");
  2219. MYSERIAL.print(i + 2);
  2220. SERIAL_ECHOLNPGM("/6");
  2221. custom_message_state = i + 2;
  2222. setTargetBed(50 + 10 * (temp - 30) / 5);
  2223. // setTargetHotend(255, 0);
  2224. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2225. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2226. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2227. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2228. st_synchronize();
  2229. while (current_temperature_pinda < temp)
  2230. {
  2231. delay_keep_alive(1000);
  2232. serialecho_temperatures();
  2233. }
  2234. current_position[Z_AXIS] = 5;
  2235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2236. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2237. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2238. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2239. st_synchronize();
  2240. find_bed_induction_sensor_point_z(-1.f);
  2241. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2242. SERIAL_ECHOLNPGM("");
  2243. SERIAL_ECHOPGM("PINDA temperature: ");
  2244. MYSERIAL.print(current_temperature_pinda);
  2245. SERIAL_ECHOPGM(" Z shift (mm):");
  2246. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2247. SERIAL_ECHOLNPGM("");
  2248. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2249. }
  2250. custom_message_type = 0;
  2251. custom_message = false;
  2252. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2253. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2254. disable_x();
  2255. disable_y();
  2256. disable_z();
  2257. disable_e0();
  2258. disable_e1();
  2259. disable_e2();
  2260. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2261. lcd_update_enable(true);
  2262. lcd_update(2);
  2263. setTargetBed(0); //set bed target temperature back to 0
  2264. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2265. break;
  2266. }
  2267. #endif //PINDA_THERMISTOR
  2268. setTargetBed(PINDA_MIN_T);
  2269. float zero_z;
  2270. int z_shift = 0; //unit: steps
  2271. int t_c; // temperature
  2272. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2273. // We don't know where we are! HOME!
  2274. // Push the commands to the front of the message queue in the reverse order!
  2275. // There shall be always enough space reserved for these commands.
  2276. repeatcommand_front(); // repeat G76 with all its parameters
  2277. enquecommand_front_P((PSTR("G28 W0")));
  2278. break;
  2279. }
  2280. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2281. custom_message = true;
  2282. custom_message_type = 4;
  2283. custom_message_state = 1;
  2284. custom_message = MSG_TEMP_CALIBRATION;
  2285. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2286. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2287. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2289. st_synchronize();
  2290. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2291. delay_keep_alive(1000);
  2292. serialecho_temperatures();
  2293. }
  2294. //enquecommand_P(PSTR("M190 S50"));
  2295. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2296. delay_keep_alive(1000);
  2297. serialecho_temperatures();
  2298. }
  2299. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2300. current_position[Z_AXIS] = 5;
  2301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2302. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2303. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2304. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2305. st_synchronize();
  2306. find_bed_induction_sensor_point_z(-1.f);
  2307. zero_z = current_position[Z_AXIS];
  2308. //current_position[Z_AXIS]
  2309. SERIAL_ECHOLNPGM("");
  2310. SERIAL_ECHOPGM("ZERO: ");
  2311. MYSERIAL.print(current_position[Z_AXIS]);
  2312. SERIAL_ECHOLNPGM("");
  2313. for (int i = 0; i<5; i++) {
  2314. SERIAL_ECHOPGM("Step: ");
  2315. MYSERIAL.print(i+2);
  2316. SERIAL_ECHOLNPGM("/6");
  2317. custom_message_state = i + 2;
  2318. t_c = 60 + i * 10;
  2319. setTargetBed(t_c);
  2320. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2321. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2322. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2323. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2324. st_synchronize();
  2325. while (degBed() < t_c) {
  2326. delay_keep_alive(1000);
  2327. serialecho_temperatures();
  2328. }
  2329. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2330. delay_keep_alive(1000);
  2331. serialecho_temperatures();
  2332. }
  2333. current_position[Z_AXIS] = 5;
  2334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2335. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2336. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2338. st_synchronize();
  2339. find_bed_induction_sensor_point_z(-1.f);
  2340. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2341. SERIAL_ECHOLNPGM("");
  2342. SERIAL_ECHOPGM("Temperature: ");
  2343. MYSERIAL.print(t_c);
  2344. SERIAL_ECHOPGM(" Z shift (mm):");
  2345. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2346. SERIAL_ECHOLNPGM("");
  2347. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2348. }
  2349. custom_message_type = 0;
  2350. custom_message = false;
  2351. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2352. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2353. disable_x();
  2354. disable_y();
  2355. disable_z();
  2356. disable_e0();
  2357. disable_e1();
  2358. disable_e2();
  2359. setTargetBed(0); //set bed target temperature back to 0
  2360. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2361. lcd_update_enable(true);
  2362. lcd_update(2);
  2363. }
  2364. break;
  2365. #ifdef DIS
  2366. case 77:
  2367. {
  2368. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2369. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2370. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2371. float dimension_x = 40;
  2372. float dimension_y = 40;
  2373. int points_x = 40;
  2374. int points_y = 40;
  2375. float offset_x = 74;
  2376. float offset_y = 33;
  2377. if (code_seen('X')) dimension_x = code_value();
  2378. if (code_seen('Y')) dimension_y = code_value();
  2379. if (code_seen('XP')) points_x = code_value();
  2380. if (code_seen('YP')) points_y = code_value();
  2381. if (code_seen('XO')) offset_x = code_value();
  2382. if (code_seen('YO')) offset_y = code_value();
  2383. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2384. } break;
  2385. #endif
  2386. case 79: {
  2387. for (int i = 255; i > 0; i = i - 5) {
  2388. fanSpeed = i;
  2389. //delay_keep_alive(2000);
  2390. for (int j = 0; j < 100; j++) {
  2391. delay_keep_alive(100);
  2392. }
  2393. fan_speed[1];
  2394. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2395. }
  2396. }break;
  2397. /**
  2398. * G80: Mesh-based Z probe, probes a grid and produces a
  2399. * mesh to compensate for variable bed height
  2400. *
  2401. * The S0 report the points as below
  2402. *
  2403. * +----> X-axis
  2404. * |
  2405. * |
  2406. * v Y-axis
  2407. *
  2408. */
  2409. case 80:
  2410. #ifdef MK1BP
  2411. break;
  2412. #endif //MK1BP
  2413. case_G80:
  2414. {
  2415. mesh_bed_leveling_flag = true;
  2416. int8_t verbosity_level = 0;
  2417. static bool run = false;
  2418. if (code_seen('V')) {
  2419. // Just 'V' without a number counts as V1.
  2420. char c = strchr_pointer[1];
  2421. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2422. }
  2423. // Firstly check if we know where we are
  2424. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2425. // We don't know where we are! HOME!
  2426. // Push the commands to the front of the message queue in the reverse order!
  2427. // There shall be always enough space reserved for these commands.
  2428. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2429. repeatcommand_front(); // repeat G80 with all its parameters
  2430. enquecommand_front_P((PSTR("G28 W0")));
  2431. }
  2432. else {
  2433. mesh_bed_leveling_flag = false;
  2434. }
  2435. break;
  2436. }
  2437. bool temp_comp_start = true;
  2438. #ifdef PINDA_THERMISTOR
  2439. temp_comp_start = false;
  2440. #endif //PINDA_THERMISTOR
  2441. if (temp_comp_start)
  2442. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2443. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2444. temp_compensation_start();
  2445. run = true;
  2446. repeatcommand_front(); // repeat G80 with all its parameters
  2447. enquecommand_front_P((PSTR("G28 W0")));
  2448. }
  2449. else {
  2450. mesh_bed_leveling_flag = false;
  2451. }
  2452. break;
  2453. }
  2454. run = false;
  2455. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2456. mesh_bed_leveling_flag = false;
  2457. break;
  2458. }
  2459. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2460. bool custom_message_old = custom_message;
  2461. unsigned int custom_message_type_old = custom_message_type;
  2462. unsigned int custom_message_state_old = custom_message_state;
  2463. custom_message = true;
  2464. custom_message_type = 1;
  2465. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2466. lcd_update(1);
  2467. mbl.reset(); //reset mesh bed leveling
  2468. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2469. // consumed during the first movements following this statement.
  2470. babystep_undo();
  2471. // Cycle through all points and probe them
  2472. // First move up. During this first movement, the babystepping will be reverted.
  2473. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2475. // The move to the first calibration point.
  2476. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2477. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2478. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2479. if (verbosity_level >= 1) {
  2480. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2481. }
  2482. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2484. // Wait until the move is finished.
  2485. st_synchronize();
  2486. int mesh_point = 0; //index number of calibration point
  2487. int ix = 0;
  2488. int iy = 0;
  2489. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2490. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2491. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2492. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2493. if (verbosity_level >= 1) {
  2494. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2495. }
  2496. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2497. const char *kill_message = NULL;
  2498. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2499. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2500. // Get coords of a measuring point.
  2501. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2502. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2503. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2504. float z0 = 0.f;
  2505. if (has_z && mesh_point > 0) {
  2506. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2507. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2508. //#if 0
  2509. if (verbosity_level >= 1) {
  2510. SERIAL_ECHOPGM("Bed leveling, point: ");
  2511. MYSERIAL.print(mesh_point);
  2512. SERIAL_ECHOPGM(", calibration z: ");
  2513. MYSERIAL.print(z0, 5);
  2514. SERIAL_ECHOLNPGM("");
  2515. }
  2516. //#endif
  2517. }
  2518. // Move Z up to MESH_HOME_Z_SEARCH.
  2519. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2521. st_synchronize();
  2522. // Move to XY position of the sensor point.
  2523. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2524. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2525. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2526. if (verbosity_level >= 1) {
  2527. SERIAL_PROTOCOL(mesh_point);
  2528. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2529. }
  2530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2531. st_synchronize();
  2532. // Go down until endstop is hit
  2533. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2534. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2535. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2536. break;
  2537. }
  2538. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2539. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2540. break;
  2541. }
  2542. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2543. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2544. break;
  2545. }
  2546. if (verbosity_level >= 10) {
  2547. SERIAL_ECHOPGM("X: ");
  2548. MYSERIAL.print(current_position[X_AXIS], 5);
  2549. SERIAL_ECHOLNPGM("");
  2550. SERIAL_ECHOPGM("Y: ");
  2551. MYSERIAL.print(current_position[Y_AXIS], 5);
  2552. SERIAL_PROTOCOLPGM("\n");
  2553. }
  2554. float offset_z = 0;
  2555. #ifdef PINDA_THERMISTOR
  2556. offset_z = temp_compensation_pinda_thermistor_offset();
  2557. #endif //PINDA_THERMISTOR
  2558. if (verbosity_level >= 1) {
  2559. SERIAL_ECHOPGM("mesh bed leveling: ");
  2560. MYSERIAL.print(current_position[Z_AXIS], 5);
  2561. SERIAL_ECHOPGM(" offset: ");
  2562. MYSERIAL.print(offset_z, 5);
  2563. SERIAL_ECHOLNPGM("");
  2564. }
  2565. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2566. custom_message_state--;
  2567. mesh_point++;
  2568. lcd_update(1);
  2569. }
  2570. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2571. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2572. if (verbosity_level >= 20) {
  2573. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2574. MYSERIAL.print(current_position[Z_AXIS], 5);
  2575. }
  2576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2577. st_synchronize();
  2578. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2579. kill(kill_message);
  2580. SERIAL_ECHOLNPGM("killed");
  2581. }
  2582. clean_up_after_endstop_move();
  2583. SERIAL_ECHOLNPGM("clean up finished ");
  2584. bool apply_temp_comp = true;
  2585. #ifdef PINDA_THERMISTOR
  2586. apply_temp_comp = false;
  2587. #endif
  2588. if (apply_temp_comp)
  2589. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2590. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2591. SERIAL_ECHOLNPGM("babystep applied");
  2592. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2593. if (verbosity_level >= 1) {
  2594. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2595. }
  2596. for (uint8_t i = 0; i < 4; ++i) {
  2597. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2598. long correction = 0;
  2599. if (code_seen(codes[i]))
  2600. correction = code_value_long();
  2601. else if (eeprom_bed_correction_valid) {
  2602. unsigned char *addr = (i < 2) ?
  2603. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2604. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2605. correction = eeprom_read_int8(addr);
  2606. }
  2607. if (correction == 0)
  2608. continue;
  2609. float offset = float(correction) * 0.001f;
  2610. if (fabs(offset) > 0.101f) {
  2611. SERIAL_ERROR_START;
  2612. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2613. SERIAL_ECHO(offset);
  2614. SERIAL_ECHOLNPGM(" microns");
  2615. }
  2616. else {
  2617. switch (i) {
  2618. case 0:
  2619. for (uint8_t row = 0; row < 3; ++row) {
  2620. mbl.z_values[row][1] += 0.5f * offset;
  2621. mbl.z_values[row][0] += offset;
  2622. }
  2623. break;
  2624. case 1:
  2625. for (uint8_t row = 0; row < 3; ++row) {
  2626. mbl.z_values[row][1] += 0.5f * offset;
  2627. mbl.z_values[row][2] += offset;
  2628. }
  2629. break;
  2630. case 2:
  2631. for (uint8_t col = 0; col < 3; ++col) {
  2632. mbl.z_values[1][col] += 0.5f * offset;
  2633. mbl.z_values[0][col] += offset;
  2634. }
  2635. break;
  2636. case 3:
  2637. for (uint8_t col = 0; col < 3; ++col) {
  2638. mbl.z_values[1][col] += 0.5f * offset;
  2639. mbl.z_values[2][col] += offset;
  2640. }
  2641. break;
  2642. }
  2643. }
  2644. }
  2645. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2646. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2647. SERIAL_ECHOLNPGM("Upsample finished");
  2648. mbl.active = 1; //activate mesh bed leveling
  2649. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2650. go_home_with_z_lift();
  2651. SERIAL_ECHOLNPGM("Go home finished");
  2652. //unretract (after PINDA preheat retraction)
  2653. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2654. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2656. }
  2657. // Restore custom message state
  2658. custom_message = custom_message_old;
  2659. custom_message_type = custom_message_type_old;
  2660. custom_message_state = custom_message_state_old;
  2661. mesh_bed_leveling_flag = false;
  2662. mesh_bed_run_from_menu = false;
  2663. lcd_update(2);
  2664. }
  2665. break;
  2666. /**
  2667. * G81: Print mesh bed leveling status and bed profile if activated
  2668. */
  2669. case 81:
  2670. if (mbl.active) {
  2671. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2672. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2673. SERIAL_PROTOCOLPGM(",");
  2674. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2675. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2676. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2677. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2678. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2679. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2680. SERIAL_PROTOCOLPGM(" ");
  2681. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2682. }
  2683. SERIAL_PROTOCOLPGM("\n");
  2684. }
  2685. }
  2686. else
  2687. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2688. break;
  2689. #if 0
  2690. /**
  2691. * G82: Single Z probe at current location
  2692. *
  2693. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2694. *
  2695. */
  2696. case 82:
  2697. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2698. setup_for_endstop_move();
  2699. find_bed_induction_sensor_point_z();
  2700. clean_up_after_endstop_move();
  2701. SERIAL_PROTOCOLPGM("Bed found at: ");
  2702. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2703. SERIAL_PROTOCOLPGM("\n");
  2704. break;
  2705. /**
  2706. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2707. */
  2708. case 83:
  2709. {
  2710. int babystepz = code_seen('S') ? code_value() : 0;
  2711. int BabyPosition = code_seen('P') ? code_value() : 0;
  2712. if (babystepz != 0) {
  2713. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2714. // Is the axis indexed starting with zero or one?
  2715. if (BabyPosition > 4) {
  2716. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2717. }else{
  2718. // Save it to the eeprom
  2719. babystepLoadZ = babystepz;
  2720. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2721. // adjust the Z
  2722. babystepsTodoZadd(babystepLoadZ);
  2723. }
  2724. }
  2725. }
  2726. break;
  2727. /**
  2728. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2729. */
  2730. case 84:
  2731. babystepsTodoZsubtract(babystepLoadZ);
  2732. // babystepLoadZ = 0;
  2733. break;
  2734. /**
  2735. * G85: Prusa3D specific: Pick best babystep
  2736. */
  2737. case 85:
  2738. lcd_pick_babystep();
  2739. break;
  2740. #endif
  2741. /**
  2742. * G86: Prusa3D specific: Disable babystep correction after home.
  2743. * This G-code will be performed at the start of a calibration script.
  2744. */
  2745. case 86:
  2746. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2747. break;
  2748. /**
  2749. * G87: Prusa3D specific: Enable babystep correction after home
  2750. * This G-code will be performed at the end of a calibration script.
  2751. */
  2752. case 87:
  2753. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2754. break;
  2755. /**
  2756. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2757. */
  2758. case 88:
  2759. break;
  2760. #endif // ENABLE_MESH_BED_LEVELING
  2761. case 90: // G90
  2762. relative_mode = false;
  2763. break;
  2764. case 91: // G91
  2765. relative_mode = true;
  2766. break;
  2767. case 92: // G92
  2768. if(!code_seen(axis_codes[E_AXIS]))
  2769. st_synchronize();
  2770. for(int8_t i=0; i < NUM_AXIS; i++) {
  2771. if(code_seen(axis_codes[i])) {
  2772. if(i == E_AXIS) {
  2773. current_position[i] = code_value();
  2774. plan_set_e_position(current_position[E_AXIS]);
  2775. }
  2776. else {
  2777. current_position[i] = code_value()+add_homing[i];
  2778. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2779. }
  2780. }
  2781. }
  2782. break;
  2783. case 98: //activate farm mode
  2784. farm_mode = 1;
  2785. PingTime = millis();
  2786. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2787. break;
  2788. case 99: //deactivate farm mode
  2789. farm_mode = 0;
  2790. lcd_printer_connected();
  2791. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2792. lcd_update(2);
  2793. break;
  2794. }
  2795. } // end if(code_seen('G'))
  2796. else if(code_seen('M'))
  2797. {
  2798. int index;
  2799. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2800. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2801. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2802. SERIAL_ECHOLNPGM("Invalid M code");
  2803. } else
  2804. switch((int)code_value())
  2805. {
  2806. #ifdef ULTIPANEL
  2807. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2808. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2809. {
  2810. char *src = strchr_pointer + 2;
  2811. codenum = 0;
  2812. bool hasP = false, hasS = false;
  2813. if (code_seen('P')) {
  2814. codenum = code_value(); // milliseconds to wait
  2815. hasP = codenum > 0;
  2816. }
  2817. if (code_seen('S')) {
  2818. codenum = code_value() * 1000; // seconds to wait
  2819. hasS = codenum > 0;
  2820. }
  2821. starpos = strchr(src, '*');
  2822. if (starpos != NULL) *(starpos) = '\0';
  2823. while (*src == ' ') ++src;
  2824. if (!hasP && !hasS && *src != '\0') {
  2825. lcd_setstatus(src);
  2826. } else {
  2827. LCD_MESSAGERPGM(MSG_USERWAIT);
  2828. }
  2829. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2830. st_synchronize();
  2831. previous_millis_cmd = millis();
  2832. if (codenum > 0){
  2833. codenum += millis(); // keep track of when we started waiting
  2834. while(millis() < codenum && !lcd_clicked()){
  2835. manage_heater();
  2836. manage_inactivity(true);
  2837. lcd_update();
  2838. }
  2839. lcd_ignore_click(false);
  2840. }else{
  2841. if (!lcd_detected())
  2842. break;
  2843. while(!lcd_clicked()){
  2844. manage_heater();
  2845. manage_inactivity(true);
  2846. lcd_update();
  2847. }
  2848. }
  2849. if (IS_SD_PRINTING)
  2850. LCD_MESSAGERPGM(MSG_RESUMING);
  2851. else
  2852. LCD_MESSAGERPGM(WELCOME_MSG);
  2853. }
  2854. break;
  2855. #endif
  2856. case 17:
  2857. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2858. enable_x();
  2859. enable_y();
  2860. enable_z();
  2861. enable_e0();
  2862. enable_e1();
  2863. enable_e2();
  2864. break;
  2865. #ifdef SDSUPPORT
  2866. case 20: // M20 - list SD card
  2867. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2868. card.ls();
  2869. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2870. break;
  2871. case 21: // M21 - init SD card
  2872. card.initsd();
  2873. break;
  2874. case 22: //M22 - release SD card
  2875. card.release();
  2876. break;
  2877. case 23: //M23 - Select file
  2878. starpos = (strchr(strchr_pointer + 4,'*'));
  2879. if(starpos!=NULL)
  2880. *(starpos)='\0';
  2881. card.openFile(strchr_pointer + 4,true);
  2882. break;
  2883. case 24: //M24 - Start SD print
  2884. card.startFileprint();
  2885. starttime=millis();
  2886. break;
  2887. case 25: //M25 - Pause SD print
  2888. card.pauseSDPrint();
  2889. break;
  2890. case 26: //M26 - Set SD index
  2891. if(card.cardOK && code_seen('S')) {
  2892. card.setIndex(code_value_long());
  2893. }
  2894. break;
  2895. case 27: //M27 - Get SD status
  2896. card.getStatus();
  2897. break;
  2898. case 28: //M28 - Start SD write
  2899. starpos = (strchr(strchr_pointer + 4,'*'));
  2900. if(starpos != NULL){
  2901. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2902. strchr_pointer = strchr(npos,' ') + 1;
  2903. *(starpos) = '\0';
  2904. }
  2905. card.openFile(strchr_pointer+4,false);
  2906. break;
  2907. case 29: //M29 - Stop SD write
  2908. //processed in write to file routine above
  2909. //card,saving = false;
  2910. break;
  2911. case 30: //M30 <filename> Delete File
  2912. if (card.cardOK){
  2913. card.closefile();
  2914. starpos = (strchr(strchr_pointer + 4,'*'));
  2915. if(starpos != NULL){
  2916. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2917. strchr_pointer = strchr(npos,' ') + 1;
  2918. *(starpos) = '\0';
  2919. }
  2920. card.removeFile(strchr_pointer + 4);
  2921. }
  2922. break;
  2923. case 32: //M32 - Select file and start SD print
  2924. {
  2925. if(card.sdprinting) {
  2926. st_synchronize();
  2927. }
  2928. starpos = (strchr(strchr_pointer + 4,'*'));
  2929. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2930. if(namestartpos==NULL)
  2931. {
  2932. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2933. }
  2934. else
  2935. namestartpos++; //to skip the '!'
  2936. if(starpos!=NULL)
  2937. *(starpos)='\0';
  2938. bool call_procedure=(code_seen('P'));
  2939. if(strchr_pointer>namestartpos)
  2940. call_procedure=false; //false alert, 'P' found within filename
  2941. if( card.cardOK )
  2942. {
  2943. card.openFile(namestartpos,true,!call_procedure);
  2944. if(code_seen('S'))
  2945. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2946. card.setIndex(code_value_long());
  2947. card.startFileprint();
  2948. if(!call_procedure)
  2949. starttime=millis(); //procedure calls count as normal print time.
  2950. }
  2951. } break;
  2952. case 928: //M928 - Start SD write
  2953. starpos = (strchr(strchr_pointer + 5,'*'));
  2954. if(starpos != NULL){
  2955. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2956. strchr_pointer = strchr(npos,' ') + 1;
  2957. *(starpos) = '\0';
  2958. }
  2959. card.openLogFile(strchr_pointer+5);
  2960. break;
  2961. #endif //SDSUPPORT
  2962. case 31: //M31 take time since the start of the SD print or an M109 command
  2963. {
  2964. stoptime=millis();
  2965. char time[30];
  2966. unsigned long t=(stoptime-starttime)/1000;
  2967. int sec,min;
  2968. min=t/60;
  2969. sec=t%60;
  2970. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2971. SERIAL_ECHO_START;
  2972. SERIAL_ECHOLN(time);
  2973. lcd_setstatus(time);
  2974. autotempShutdown();
  2975. }
  2976. break;
  2977. case 42: //M42 -Change pin status via gcode
  2978. if (code_seen('S'))
  2979. {
  2980. int pin_status = code_value();
  2981. int pin_number = LED_PIN;
  2982. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2983. pin_number = code_value();
  2984. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2985. {
  2986. if (sensitive_pins[i] == pin_number)
  2987. {
  2988. pin_number = -1;
  2989. break;
  2990. }
  2991. }
  2992. #if defined(FAN_PIN) && FAN_PIN > -1
  2993. if (pin_number == FAN_PIN)
  2994. fanSpeed = pin_status;
  2995. #endif
  2996. if (pin_number > -1)
  2997. {
  2998. pinMode(pin_number, OUTPUT);
  2999. digitalWrite(pin_number, pin_status);
  3000. analogWrite(pin_number, pin_status);
  3001. }
  3002. }
  3003. break;
  3004. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3005. // Reset the baby step value and the baby step applied flag.
  3006. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3007. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3008. // Reset the skew and offset in both RAM and EEPROM.
  3009. reset_bed_offset_and_skew();
  3010. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3011. // the planner will not perform any adjustments in the XY plane.
  3012. // Wait for the motors to stop and update the current position with the absolute values.
  3013. world2machine_revert_to_uncorrected();
  3014. break;
  3015. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3016. {
  3017. // Only Z calibration?
  3018. bool onlyZ = code_seen('Z');
  3019. if (!onlyZ) {
  3020. setTargetBed(0);
  3021. setTargetHotend(0, 0);
  3022. setTargetHotend(0, 1);
  3023. setTargetHotend(0, 2);
  3024. adjust_bed_reset(); //reset bed level correction
  3025. }
  3026. // Disable the default update procedure of the display. We will do a modal dialog.
  3027. lcd_update_enable(false);
  3028. // Let the planner use the uncorrected coordinates.
  3029. mbl.reset();
  3030. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3031. // the planner will not perform any adjustments in the XY plane.
  3032. // Wait for the motors to stop and update the current position with the absolute values.
  3033. world2machine_revert_to_uncorrected();
  3034. // Reset the baby step value applied without moving the axes.
  3035. babystep_reset();
  3036. // Mark all axes as in a need for homing.
  3037. memset(axis_known_position, 0, sizeof(axis_known_position));
  3038. // Home in the XY plane.
  3039. //set_destination_to_current();
  3040. setup_for_endstop_move();
  3041. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3042. home_xy();
  3043. // Let the user move the Z axes up to the end stoppers.
  3044. #ifdef TMC2130
  3045. if (calibrate_z_auto()) {
  3046. #else //TMC2130
  3047. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3048. #endif //TMC2130
  3049. refresh_cmd_timeout();
  3050. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3051. lcd_wait_for_cool_down();
  3052. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3053. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3054. lcd_implementation_print_at(0, 2, 1);
  3055. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3056. }
  3057. // Move the print head close to the bed.
  3058. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3060. st_synchronize();
  3061. //#ifdef TMC2130
  3062. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3063. //#endif
  3064. int8_t verbosity_level = 0;
  3065. if (code_seen('V')) {
  3066. // Just 'V' without a number counts as V1.
  3067. char c = strchr_pointer[1];
  3068. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3069. }
  3070. if (onlyZ) {
  3071. clean_up_after_endstop_move();
  3072. // Z only calibration.
  3073. // Load the machine correction matrix
  3074. world2machine_initialize();
  3075. // and correct the current_position to match the transformed coordinate system.
  3076. world2machine_update_current();
  3077. //FIXME
  3078. bool result = sample_mesh_and_store_reference();
  3079. if (result) {
  3080. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3081. // Shipped, the nozzle height has been set already. The user can start printing now.
  3082. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3083. // babystep_apply();
  3084. }
  3085. } else {
  3086. // Reset the baby step value and the baby step applied flag.
  3087. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3088. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3089. // Complete XYZ calibration.
  3090. uint8_t point_too_far_mask = 0;
  3091. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3092. clean_up_after_endstop_move();
  3093. // Print head up.
  3094. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3096. st_synchronize();
  3097. if (result >= 0) {
  3098. point_too_far_mask = 0;
  3099. // Second half: The fine adjustment.
  3100. // Let the planner use the uncorrected coordinates.
  3101. mbl.reset();
  3102. world2machine_reset();
  3103. // Home in the XY plane.
  3104. setup_for_endstop_move();
  3105. home_xy();
  3106. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3107. clean_up_after_endstop_move();
  3108. // Print head up.
  3109. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3111. st_synchronize();
  3112. // if (result >= 0) babystep_apply();
  3113. }
  3114. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3115. if (result >= 0) {
  3116. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3117. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3118. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3119. }
  3120. }
  3121. #ifdef TMC2130
  3122. tmc2130_home_exit();
  3123. #endif
  3124. } else {
  3125. // Timeouted.
  3126. }
  3127. lcd_update_enable(true);
  3128. break;
  3129. }
  3130. /*
  3131. case 46:
  3132. {
  3133. // M46: Prusa3D: Show the assigned IP address.
  3134. uint8_t ip[4];
  3135. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3136. if (hasIP) {
  3137. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3138. SERIAL_ECHO(int(ip[0]));
  3139. SERIAL_ECHOPGM(".");
  3140. SERIAL_ECHO(int(ip[1]));
  3141. SERIAL_ECHOPGM(".");
  3142. SERIAL_ECHO(int(ip[2]));
  3143. SERIAL_ECHOPGM(".");
  3144. SERIAL_ECHO(int(ip[3]));
  3145. SERIAL_ECHOLNPGM("");
  3146. } else {
  3147. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3148. }
  3149. break;
  3150. }
  3151. */
  3152. case 47:
  3153. // M47: Prusa3D: Show end stops dialog on the display.
  3154. lcd_diag_show_end_stops();
  3155. break;
  3156. #if 0
  3157. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3158. {
  3159. // Disable the default update procedure of the display. We will do a modal dialog.
  3160. lcd_update_enable(false);
  3161. // Let the planner use the uncorrected coordinates.
  3162. mbl.reset();
  3163. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3164. // the planner will not perform any adjustments in the XY plane.
  3165. // Wait for the motors to stop and update the current position with the absolute values.
  3166. world2machine_revert_to_uncorrected();
  3167. // Move the print head close to the bed.
  3168. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3170. st_synchronize();
  3171. // Home in the XY plane.
  3172. set_destination_to_current();
  3173. setup_for_endstop_move();
  3174. home_xy();
  3175. int8_t verbosity_level = 0;
  3176. if (code_seen('V')) {
  3177. // Just 'V' without a number counts as V1.
  3178. char c = strchr_pointer[1];
  3179. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3180. }
  3181. bool success = scan_bed_induction_points(verbosity_level);
  3182. clean_up_after_endstop_move();
  3183. // Print head up.
  3184. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3186. st_synchronize();
  3187. lcd_update_enable(true);
  3188. break;
  3189. }
  3190. #endif
  3191. // M48 Z-Probe repeatability measurement function.
  3192. //
  3193. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3194. //
  3195. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3196. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3197. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3198. // regenerated.
  3199. //
  3200. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3201. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3202. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3203. //
  3204. #ifdef ENABLE_AUTO_BED_LEVELING
  3205. #ifdef Z_PROBE_REPEATABILITY_TEST
  3206. case 48: // M48 Z-Probe repeatability
  3207. {
  3208. #if Z_MIN_PIN == -1
  3209. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3210. #endif
  3211. double sum=0.0;
  3212. double mean=0.0;
  3213. double sigma=0.0;
  3214. double sample_set[50];
  3215. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3216. double X_current, Y_current, Z_current;
  3217. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3218. if (code_seen('V') || code_seen('v')) {
  3219. verbose_level = code_value();
  3220. if (verbose_level<0 || verbose_level>4 ) {
  3221. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3222. goto Sigma_Exit;
  3223. }
  3224. }
  3225. if (verbose_level > 0) {
  3226. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3227. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3228. }
  3229. if (code_seen('n')) {
  3230. n_samples = code_value();
  3231. if (n_samples<4 || n_samples>50 ) {
  3232. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3233. goto Sigma_Exit;
  3234. }
  3235. }
  3236. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3237. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3238. Z_current = st_get_position_mm(Z_AXIS);
  3239. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3240. ext_position = st_get_position_mm(E_AXIS);
  3241. if (code_seen('X') || code_seen('x') ) {
  3242. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3243. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3244. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3245. goto Sigma_Exit;
  3246. }
  3247. }
  3248. if (code_seen('Y') || code_seen('y') ) {
  3249. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3250. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3251. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3252. goto Sigma_Exit;
  3253. }
  3254. }
  3255. if (code_seen('L') || code_seen('l') ) {
  3256. n_legs = code_value();
  3257. if ( n_legs==1 )
  3258. n_legs = 2;
  3259. if ( n_legs<0 || n_legs>15 ) {
  3260. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3261. goto Sigma_Exit;
  3262. }
  3263. }
  3264. //
  3265. // Do all the preliminary setup work. First raise the probe.
  3266. //
  3267. st_synchronize();
  3268. plan_bed_level_matrix.set_to_identity();
  3269. plan_buffer_line( X_current, Y_current, Z_start_location,
  3270. ext_position,
  3271. homing_feedrate[Z_AXIS]/60,
  3272. active_extruder);
  3273. st_synchronize();
  3274. //
  3275. // Now get everything to the specified probe point So we can safely do a probe to
  3276. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3277. // use that as a starting point for each probe.
  3278. //
  3279. if (verbose_level > 2)
  3280. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3281. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3282. ext_position,
  3283. homing_feedrate[X_AXIS]/60,
  3284. active_extruder);
  3285. st_synchronize();
  3286. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3287. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3288. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3289. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3290. //
  3291. // OK, do the inital probe to get us close to the bed.
  3292. // Then retrace the right amount and use that in subsequent probes
  3293. //
  3294. setup_for_endstop_move();
  3295. run_z_probe();
  3296. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3297. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3298. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3299. ext_position,
  3300. homing_feedrate[X_AXIS]/60,
  3301. active_extruder);
  3302. st_synchronize();
  3303. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3304. for( n=0; n<n_samples; n++) {
  3305. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3306. if ( n_legs) {
  3307. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3308. int rotational_direction, l;
  3309. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3310. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3311. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3312. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3313. //SERIAL_ECHOPAIR(" theta: ",theta);
  3314. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3315. //SERIAL_PROTOCOLLNPGM("");
  3316. for( l=0; l<n_legs-1; l++) {
  3317. if (rotational_direction==1)
  3318. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3319. else
  3320. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3321. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3322. if ( radius<0.0 )
  3323. radius = -radius;
  3324. X_current = X_probe_location + cos(theta) * radius;
  3325. Y_current = Y_probe_location + sin(theta) * radius;
  3326. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3327. X_current = X_MIN_POS;
  3328. if ( X_current>X_MAX_POS)
  3329. X_current = X_MAX_POS;
  3330. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3331. Y_current = Y_MIN_POS;
  3332. if ( Y_current>Y_MAX_POS)
  3333. Y_current = Y_MAX_POS;
  3334. if (verbose_level>3 ) {
  3335. SERIAL_ECHOPAIR("x: ", X_current);
  3336. SERIAL_ECHOPAIR("y: ", Y_current);
  3337. SERIAL_PROTOCOLLNPGM("");
  3338. }
  3339. do_blocking_move_to( X_current, Y_current, Z_current );
  3340. }
  3341. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3342. }
  3343. setup_for_endstop_move();
  3344. run_z_probe();
  3345. sample_set[n] = current_position[Z_AXIS];
  3346. //
  3347. // Get the current mean for the data points we have so far
  3348. //
  3349. sum=0.0;
  3350. for( j=0; j<=n; j++) {
  3351. sum = sum + sample_set[j];
  3352. }
  3353. mean = sum / (double (n+1));
  3354. //
  3355. // Now, use that mean to calculate the standard deviation for the
  3356. // data points we have so far
  3357. //
  3358. sum=0.0;
  3359. for( j=0; j<=n; j++) {
  3360. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3361. }
  3362. sigma = sqrt( sum / (double (n+1)) );
  3363. if (verbose_level > 1) {
  3364. SERIAL_PROTOCOL(n+1);
  3365. SERIAL_PROTOCOL(" of ");
  3366. SERIAL_PROTOCOL(n_samples);
  3367. SERIAL_PROTOCOLPGM(" z: ");
  3368. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3369. }
  3370. if (verbose_level > 2) {
  3371. SERIAL_PROTOCOL(" mean: ");
  3372. SERIAL_PROTOCOL_F(mean,6);
  3373. SERIAL_PROTOCOL(" sigma: ");
  3374. SERIAL_PROTOCOL_F(sigma,6);
  3375. }
  3376. if (verbose_level > 0)
  3377. SERIAL_PROTOCOLPGM("\n");
  3378. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3379. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3380. st_synchronize();
  3381. }
  3382. delay(1000);
  3383. clean_up_after_endstop_move();
  3384. // enable_endstops(true);
  3385. if (verbose_level > 0) {
  3386. SERIAL_PROTOCOLPGM("Mean: ");
  3387. SERIAL_PROTOCOL_F(mean, 6);
  3388. SERIAL_PROTOCOLPGM("\n");
  3389. }
  3390. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3391. SERIAL_PROTOCOL_F(sigma, 6);
  3392. SERIAL_PROTOCOLPGM("\n\n");
  3393. Sigma_Exit:
  3394. break;
  3395. }
  3396. #endif // Z_PROBE_REPEATABILITY_TEST
  3397. #endif // ENABLE_AUTO_BED_LEVELING
  3398. case 104: // M104
  3399. if(setTargetedHotend(104)){
  3400. break;
  3401. }
  3402. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3403. setWatch();
  3404. break;
  3405. case 112: // M112 -Emergency Stop
  3406. kill("", 3);
  3407. break;
  3408. case 140: // M140 set bed temp
  3409. if (code_seen('S')) setTargetBed(code_value());
  3410. break;
  3411. case 105 : // M105
  3412. if(setTargetedHotend(105)){
  3413. break;
  3414. }
  3415. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3416. SERIAL_PROTOCOLPGM("ok T:");
  3417. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3418. SERIAL_PROTOCOLPGM(" /");
  3419. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3420. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3421. SERIAL_PROTOCOLPGM(" B:");
  3422. SERIAL_PROTOCOL_F(degBed(),1);
  3423. SERIAL_PROTOCOLPGM(" /");
  3424. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3425. #endif //TEMP_BED_PIN
  3426. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3427. SERIAL_PROTOCOLPGM(" T");
  3428. SERIAL_PROTOCOL(cur_extruder);
  3429. SERIAL_PROTOCOLPGM(":");
  3430. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3431. SERIAL_PROTOCOLPGM(" /");
  3432. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3433. }
  3434. #else
  3435. SERIAL_ERROR_START;
  3436. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3437. #endif
  3438. SERIAL_PROTOCOLPGM(" @:");
  3439. #ifdef EXTRUDER_WATTS
  3440. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3441. SERIAL_PROTOCOLPGM("W");
  3442. #else
  3443. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3444. #endif
  3445. SERIAL_PROTOCOLPGM(" B@:");
  3446. #ifdef BED_WATTS
  3447. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3448. SERIAL_PROTOCOLPGM("W");
  3449. #else
  3450. SERIAL_PROTOCOL(getHeaterPower(-1));
  3451. #endif
  3452. #ifdef PINDA_THERMISTOR
  3453. SERIAL_PROTOCOLPGM(" P:");
  3454. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3455. #endif //PINDA_THERMISTOR
  3456. #ifdef AMBIENT_THERMISTOR
  3457. SERIAL_PROTOCOLPGM(" A:");
  3458. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3459. #endif //AMBIENT_THERMISTOR
  3460. #ifdef SHOW_TEMP_ADC_VALUES
  3461. {float raw = 0.0;
  3462. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3463. SERIAL_PROTOCOLPGM(" ADC B:");
  3464. SERIAL_PROTOCOL_F(degBed(),1);
  3465. SERIAL_PROTOCOLPGM("C->");
  3466. raw = rawBedTemp();
  3467. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3468. SERIAL_PROTOCOLPGM(" Rb->");
  3469. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3470. SERIAL_PROTOCOLPGM(" Rxb->");
  3471. SERIAL_PROTOCOL_F(raw, 5);
  3472. #endif
  3473. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3474. SERIAL_PROTOCOLPGM(" T");
  3475. SERIAL_PROTOCOL(cur_extruder);
  3476. SERIAL_PROTOCOLPGM(":");
  3477. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3478. SERIAL_PROTOCOLPGM("C->");
  3479. raw = rawHotendTemp(cur_extruder);
  3480. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3481. SERIAL_PROTOCOLPGM(" Rt");
  3482. SERIAL_PROTOCOL(cur_extruder);
  3483. SERIAL_PROTOCOLPGM("->");
  3484. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3485. SERIAL_PROTOCOLPGM(" Rx");
  3486. SERIAL_PROTOCOL(cur_extruder);
  3487. SERIAL_PROTOCOLPGM("->");
  3488. SERIAL_PROTOCOL_F(raw, 5);
  3489. }}
  3490. #endif
  3491. SERIAL_PROTOCOLLN("");
  3492. return;
  3493. break;
  3494. case 109:
  3495. {// M109 - Wait for extruder heater to reach target.
  3496. if(setTargetedHotend(109)){
  3497. break;
  3498. }
  3499. LCD_MESSAGERPGM(MSG_HEATING);
  3500. heating_status = 1;
  3501. if (farm_mode) { prusa_statistics(1); };
  3502. #ifdef AUTOTEMP
  3503. autotemp_enabled=false;
  3504. #endif
  3505. if (code_seen('S')) {
  3506. setTargetHotend(code_value(), tmp_extruder);
  3507. CooldownNoWait = true;
  3508. } else if (code_seen('R')) {
  3509. setTargetHotend(code_value(), tmp_extruder);
  3510. CooldownNoWait = false;
  3511. }
  3512. #ifdef AUTOTEMP
  3513. if (code_seen('S')) autotemp_min=code_value();
  3514. if (code_seen('B')) autotemp_max=code_value();
  3515. if (code_seen('F'))
  3516. {
  3517. autotemp_factor=code_value();
  3518. autotemp_enabled=true;
  3519. }
  3520. #endif
  3521. setWatch();
  3522. codenum = millis();
  3523. /* See if we are heating up or cooling down */
  3524. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3525. cancel_heatup = false;
  3526. wait_for_heater(codenum); //loops until target temperature is reached
  3527. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3528. heating_status = 2;
  3529. if (farm_mode) { prusa_statistics(2); };
  3530. //starttime=millis();
  3531. previous_millis_cmd = millis();
  3532. }
  3533. break;
  3534. case 190: // M190 - Wait for bed heater to reach target.
  3535. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3536. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3537. heating_status = 3;
  3538. if (farm_mode) { prusa_statistics(1); };
  3539. if (code_seen('S'))
  3540. {
  3541. setTargetBed(code_value());
  3542. CooldownNoWait = true;
  3543. }
  3544. else if (code_seen('R'))
  3545. {
  3546. setTargetBed(code_value());
  3547. CooldownNoWait = false;
  3548. }
  3549. codenum = millis();
  3550. cancel_heatup = false;
  3551. target_direction = isHeatingBed(); // true if heating, false if cooling
  3552. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3553. {
  3554. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3555. {
  3556. if (!farm_mode) {
  3557. float tt = degHotend(active_extruder);
  3558. SERIAL_PROTOCOLPGM("T:");
  3559. SERIAL_PROTOCOL(tt);
  3560. SERIAL_PROTOCOLPGM(" E:");
  3561. SERIAL_PROTOCOL((int)active_extruder);
  3562. SERIAL_PROTOCOLPGM(" B:");
  3563. SERIAL_PROTOCOL_F(degBed(), 1);
  3564. SERIAL_PROTOCOLLN("");
  3565. }
  3566. codenum = millis();
  3567. }
  3568. manage_heater();
  3569. manage_inactivity();
  3570. lcd_update();
  3571. }
  3572. LCD_MESSAGERPGM(MSG_BED_DONE);
  3573. heating_status = 4;
  3574. previous_millis_cmd = millis();
  3575. #endif
  3576. break;
  3577. #if defined(FAN_PIN) && FAN_PIN > -1
  3578. case 106: //M106 Fan On
  3579. if (code_seen('S')){
  3580. fanSpeed=constrain(code_value(),0,255);
  3581. }
  3582. else {
  3583. fanSpeed=255;
  3584. }
  3585. break;
  3586. case 107: //M107 Fan Off
  3587. fanSpeed = 0;
  3588. break;
  3589. #endif //FAN_PIN
  3590. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3591. case 80: // M80 - Turn on Power Supply
  3592. SET_OUTPUT(PS_ON_PIN); //GND
  3593. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3594. // If you have a switch on suicide pin, this is useful
  3595. // if you want to start another print with suicide feature after
  3596. // a print without suicide...
  3597. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3598. SET_OUTPUT(SUICIDE_PIN);
  3599. WRITE(SUICIDE_PIN, HIGH);
  3600. #endif
  3601. #ifdef ULTIPANEL
  3602. powersupply = true;
  3603. LCD_MESSAGERPGM(WELCOME_MSG);
  3604. lcd_update();
  3605. #endif
  3606. break;
  3607. #endif
  3608. case 81: // M81 - Turn off Power Supply
  3609. disable_heater();
  3610. st_synchronize();
  3611. disable_e0();
  3612. disable_e1();
  3613. disable_e2();
  3614. finishAndDisableSteppers();
  3615. fanSpeed = 0;
  3616. delay(1000); // Wait a little before to switch off
  3617. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3618. st_synchronize();
  3619. suicide();
  3620. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3621. SET_OUTPUT(PS_ON_PIN);
  3622. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3623. #endif
  3624. #ifdef ULTIPANEL
  3625. powersupply = false;
  3626. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3627. /*
  3628. MACHNAME = "Prusa i3"
  3629. MSGOFF = "Vypnuto"
  3630. "Prusai3"" ""vypnuto""."
  3631. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3632. */
  3633. lcd_update();
  3634. #endif
  3635. break;
  3636. case 82:
  3637. axis_relative_modes[3] = false;
  3638. break;
  3639. case 83:
  3640. axis_relative_modes[3] = true;
  3641. break;
  3642. case 18: //compatibility
  3643. case 84: // M84
  3644. if(code_seen('S')){
  3645. stepper_inactive_time = code_value() * 1000;
  3646. }
  3647. else
  3648. {
  3649. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3650. if(all_axis)
  3651. {
  3652. st_synchronize();
  3653. disable_e0();
  3654. disable_e1();
  3655. disable_e2();
  3656. finishAndDisableSteppers();
  3657. }
  3658. else
  3659. {
  3660. st_synchronize();
  3661. if (code_seen('X')) disable_x();
  3662. if (code_seen('Y')) disable_y();
  3663. if (code_seen('Z')) disable_z();
  3664. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3665. if (code_seen('E')) {
  3666. disable_e0();
  3667. disable_e1();
  3668. disable_e2();
  3669. }
  3670. #endif
  3671. }
  3672. }
  3673. snmm_filaments_used = 0;
  3674. break;
  3675. case 85: // M85
  3676. if(code_seen('S')) {
  3677. max_inactive_time = code_value() * 1000;
  3678. }
  3679. break;
  3680. case 92: // M92
  3681. for(int8_t i=0; i < NUM_AXIS; i++)
  3682. {
  3683. if(code_seen(axis_codes[i]))
  3684. {
  3685. if(i == 3) { // E
  3686. float value = code_value();
  3687. if(value < 20.0) {
  3688. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3689. max_jerk[E_AXIS] *= factor;
  3690. max_feedrate[i] *= factor;
  3691. axis_steps_per_sqr_second[i] *= factor;
  3692. }
  3693. axis_steps_per_unit[i] = value;
  3694. }
  3695. else {
  3696. axis_steps_per_unit[i] = code_value();
  3697. }
  3698. }
  3699. }
  3700. break;
  3701. case 115: // M115
  3702. if (code_seen('V')) {
  3703. // Report the Prusa version number.
  3704. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3705. } else if (code_seen('U')) {
  3706. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3707. // pause the print and ask the user to upgrade the firmware.
  3708. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3709. } else {
  3710. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3711. }
  3712. break;
  3713. /* case 117: // M117 display message
  3714. starpos = (strchr(strchr_pointer + 5,'*'));
  3715. if(starpos!=NULL)
  3716. *(starpos)='\0';
  3717. lcd_setstatus(strchr_pointer + 5);
  3718. break;*/
  3719. case 114: // M114
  3720. SERIAL_PROTOCOLPGM("X:");
  3721. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3722. SERIAL_PROTOCOLPGM(" Y:");
  3723. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3724. SERIAL_PROTOCOLPGM(" Z:");
  3725. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3726. SERIAL_PROTOCOLPGM(" E:");
  3727. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3728. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3729. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3730. SERIAL_PROTOCOLPGM(" Y:");
  3731. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3732. SERIAL_PROTOCOLPGM(" Z:");
  3733. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3734. SERIAL_PROTOCOLPGM(" E:");
  3735. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3736. SERIAL_PROTOCOLLN("");
  3737. break;
  3738. case 120: // M120
  3739. enable_endstops(false) ;
  3740. break;
  3741. case 121: // M121
  3742. enable_endstops(true) ;
  3743. break;
  3744. case 119: // M119
  3745. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3746. SERIAL_PROTOCOLLN("");
  3747. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3748. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3749. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3750. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3751. }else{
  3752. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3753. }
  3754. SERIAL_PROTOCOLLN("");
  3755. #endif
  3756. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3757. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3758. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3759. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3760. }else{
  3761. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3762. }
  3763. SERIAL_PROTOCOLLN("");
  3764. #endif
  3765. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3766. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3767. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3768. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3769. }else{
  3770. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3771. }
  3772. SERIAL_PROTOCOLLN("");
  3773. #endif
  3774. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3775. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3776. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3777. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3778. }else{
  3779. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3780. }
  3781. SERIAL_PROTOCOLLN("");
  3782. #endif
  3783. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3784. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3785. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3786. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3787. }else{
  3788. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3789. }
  3790. SERIAL_PROTOCOLLN("");
  3791. #endif
  3792. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3793. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3794. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3795. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3796. }else{
  3797. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3798. }
  3799. SERIAL_PROTOCOLLN("");
  3800. #endif
  3801. break;
  3802. //TODO: update for all axis, use for loop
  3803. #ifdef BLINKM
  3804. case 150: // M150
  3805. {
  3806. byte red;
  3807. byte grn;
  3808. byte blu;
  3809. if(code_seen('R')) red = code_value();
  3810. if(code_seen('U')) grn = code_value();
  3811. if(code_seen('B')) blu = code_value();
  3812. SendColors(red,grn,blu);
  3813. }
  3814. break;
  3815. #endif //BLINKM
  3816. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3817. {
  3818. tmp_extruder = active_extruder;
  3819. if(code_seen('T')) {
  3820. tmp_extruder = code_value();
  3821. if(tmp_extruder >= EXTRUDERS) {
  3822. SERIAL_ECHO_START;
  3823. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3824. break;
  3825. }
  3826. }
  3827. float area = .0;
  3828. if(code_seen('D')) {
  3829. float diameter = (float)code_value();
  3830. if (diameter == 0.0) {
  3831. // setting any extruder filament size disables volumetric on the assumption that
  3832. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3833. // for all extruders
  3834. volumetric_enabled = false;
  3835. } else {
  3836. filament_size[tmp_extruder] = (float)code_value();
  3837. // make sure all extruders have some sane value for the filament size
  3838. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3839. #if EXTRUDERS > 1
  3840. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3841. #if EXTRUDERS > 2
  3842. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3843. #endif
  3844. #endif
  3845. volumetric_enabled = true;
  3846. }
  3847. } else {
  3848. //reserved for setting filament diameter via UFID or filament measuring device
  3849. break;
  3850. }
  3851. calculate_volumetric_multipliers();
  3852. }
  3853. break;
  3854. case 201: // M201
  3855. for(int8_t i=0; i < NUM_AXIS; i++)
  3856. {
  3857. if(code_seen(axis_codes[i]))
  3858. {
  3859. max_acceleration_units_per_sq_second[i] = code_value();
  3860. }
  3861. }
  3862. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3863. reset_acceleration_rates();
  3864. break;
  3865. #if 0 // Not used for Sprinter/grbl gen6
  3866. case 202: // M202
  3867. for(int8_t i=0; i < NUM_AXIS; i++) {
  3868. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3869. }
  3870. break;
  3871. #endif
  3872. case 203: // M203 max feedrate mm/sec
  3873. for(int8_t i=0; i < NUM_AXIS; i++) {
  3874. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3875. }
  3876. break;
  3877. case 204: // M204 acclereration S normal moves T filmanent only moves
  3878. {
  3879. if(code_seen('S')) acceleration = code_value() ;
  3880. if(code_seen('T')) retract_acceleration = code_value() ;
  3881. }
  3882. break;
  3883. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3884. {
  3885. if(code_seen('S')) minimumfeedrate = code_value();
  3886. if(code_seen('T')) mintravelfeedrate = code_value();
  3887. if(code_seen('B')) minsegmenttime = code_value() ;
  3888. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3889. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3890. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3891. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3892. }
  3893. break;
  3894. case 206: // M206 additional homing offset
  3895. for(int8_t i=0; i < 3; i++)
  3896. {
  3897. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3898. }
  3899. break;
  3900. #ifdef FWRETRACT
  3901. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3902. {
  3903. if(code_seen('S'))
  3904. {
  3905. retract_length = code_value() ;
  3906. }
  3907. if(code_seen('F'))
  3908. {
  3909. retract_feedrate = code_value()/60 ;
  3910. }
  3911. if(code_seen('Z'))
  3912. {
  3913. retract_zlift = code_value() ;
  3914. }
  3915. }break;
  3916. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3917. {
  3918. if(code_seen('S'))
  3919. {
  3920. retract_recover_length = code_value() ;
  3921. }
  3922. if(code_seen('F'))
  3923. {
  3924. retract_recover_feedrate = code_value()/60 ;
  3925. }
  3926. }break;
  3927. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3928. {
  3929. if(code_seen('S'))
  3930. {
  3931. int t= code_value() ;
  3932. switch(t)
  3933. {
  3934. case 0:
  3935. {
  3936. autoretract_enabled=false;
  3937. retracted[0]=false;
  3938. #if EXTRUDERS > 1
  3939. retracted[1]=false;
  3940. #endif
  3941. #if EXTRUDERS > 2
  3942. retracted[2]=false;
  3943. #endif
  3944. }break;
  3945. case 1:
  3946. {
  3947. autoretract_enabled=true;
  3948. retracted[0]=false;
  3949. #if EXTRUDERS > 1
  3950. retracted[1]=false;
  3951. #endif
  3952. #if EXTRUDERS > 2
  3953. retracted[2]=false;
  3954. #endif
  3955. }break;
  3956. default:
  3957. SERIAL_ECHO_START;
  3958. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3959. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3960. SERIAL_ECHOLNPGM("\"(1)");
  3961. }
  3962. }
  3963. }break;
  3964. #endif // FWRETRACT
  3965. #if EXTRUDERS > 1
  3966. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3967. {
  3968. if(setTargetedHotend(218)){
  3969. break;
  3970. }
  3971. if(code_seen('X'))
  3972. {
  3973. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3974. }
  3975. if(code_seen('Y'))
  3976. {
  3977. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3978. }
  3979. SERIAL_ECHO_START;
  3980. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3981. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3982. {
  3983. SERIAL_ECHO(" ");
  3984. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3985. SERIAL_ECHO(",");
  3986. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3987. }
  3988. SERIAL_ECHOLN("");
  3989. }break;
  3990. #endif
  3991. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3992. {
  3993. if(code_seen('S'))
  3994. {
  3995. feedmultiply = code_value() ;
  3996. }
  3997. }
  3998. break;
  3999. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4000. {
  4001. if(code_seen('S'))
  4002. {
  4003. int tmp_code = code_value();
  4004. if (code_seen('T'))
  4005. {
  4006. if(setTargetedHotend(221)){
  4007. break;
  4008. }
  4009. extruder_multiply[tmp_extruder] = tmp_code;
  4010. }
  4011. else
  4012. {
  4013. extrudemultiply = tmp_code ;
  4014. }
  4015. }
  4016. }
  4017. break;
  4018. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4019. {
  4020. if(code_seen('P')){
  4021. int pin_number = code_value(); // pin number
  4022. int pin_state = -1; // required pin state - default is inverted
  4023. if(code_seen('S')) pin_state = code_value(); // required pin state
  4024. if(pin_state >= -1 && pin_state <= 1){
  4025. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4026. {
  4027. if (sensitive_pins[i] == pin_number)
  4028. {
  4029. pin_number = -1;
  4030. break;
  4031. }
  4032. }
  4033. if (pin_number > -1)
  4034. {
  4035. int target = LOW;
  4036. st_synchronize();
  4037. pinMode(pin_number, INPUT);
  4038. switch(pin_state){
  4039. case 1:
  4040. target = HIGH;
  4041. break;
  4042. case 0:
  4043. target = LOW;
  4044. break;
  4045. case -1:
  4046. target = !digitalRead(pin_number);
  4047. break;
  4048. }
  4049. while(digitalRead(pin_number) != target){
  4050. manage_heater();
  4051. manage_inactivity();
  4052. lcd_update();
  4053. }
  4054. }
  4055. }
  4056. }
  4057. }
  4058. break;
  4059. #if NUM_SERVOS > 0
  4060. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4061. {
  4062. int servo_index = -1;
  4063. int servo_position = 0;
  4064. if (code_seen('P'))
  4065. servo_index = code_value();
  4066. if (code_seen('S')) {
  4067. servo_position = code_value();
  4068. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4069. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4070. servos[servo_index].attach(0);
  4071. #endif
  4072. servos[servo_index].write(servo_position);
  4073. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4074. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4075. servos[servo_index].detach();
  4076. #endif
  4077. }
  4078. else {
  4079. SERIAL_ECHO_START;
  4080. SERIAL_ECHO("Servo ");
  4081. SERIAL_ECHO(servo_index);
  4082. SERIAL_ECHOLN(" out of range");
  4083. }
  4084. }
  4085. else if (servo_index >= 0) {
  4086. SERIAL_PROTOCOL(MSG_OK);
  4087. SERIAL_PROTOCOL(" Servo ");
  4088. SERIAL_PROTOCOL(servo_index);
  4089. SERIAL_PROTOCOL(": ");
  4090. SERIAL_PROTOCOL(servos[servo_index].read());
  4091. SERIAL_PROTOCOLLN("");
  4092. }
  4093. }
  4094. break;
  4095. #endif // NUM_SERVOS > 0
  4096. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4097. case 300: // M300
  4098. {
  4099. int beepS = code_seen('S') ? code_value() : 110;
  4100. int beepP = code_seen('P') ? code_value() : 1000;
  4101. if (beepS > 0)
  4102. {
  4103. #if BEEPER > 0
  4104. tone(BEEPER, beepS);
  4105. delay(beepP);
  4106. noTone(BEEPER);
  4107. #elif defined(ULTRALCD)
  4108. lcd_buzz(beepS, beepP);
  4109. #elif defined(LCD_USE_I2C_BUZZER)
  4110. lcd_buzz(beepP, beepS);
  4111. #endif
  4112. }
  4113. else
  4114. {
  4115. delay(beepP);
  4116. }
  4117. }
  4118. break;
  4119. #endif // M300
  4120. #ifdef PIDTEMP
  4121. case 301: // M301
  4122. {
  4123. if(code_seen('P')) Kp = code_value();
  4124. if(code_seen('I')) Ki = scalePID_i(code_value());
  4125. if(code_seen('D')) Kd = scalePID_d(code_value());
  4126. #ifdef PID_ADD_EXTRUSION_RATE
  4127. if(code_seen('C')) Kc = code_value();
  4128. #endif
  4129. updatePID();
  4130. SERIAL_PROTOCOLRPGM(MSG_OK);
  4131. SERIAL_PROTOCOL(" p:");
  4132. SERIAL_PROTOCOL(Kp);
  4133. SERIAL_PROTOCOL(" i:");
  4134. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4135. SERIAL_PROTOCOL(" d:");
  4136. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4137. #ifdef PID_ADD_EXTRUSION_RATE
  4138. SERIAL_PROTOCOL(" c:");
  4139. //Kc does not have scaling applied above, or in resetting defaults
  4140. SERIAL_PROTOCOL(Kc);
  4141. #endif
  4142. SERIAL_PROTOCOLLN("");
  4143. }
  4144. break;
  4145. #endif //PIDTEMP
  4146. #ifdef PIDTEMPBED
  4147. case 304: // M304
  4148. {
  4149. if(code_seen('P')) bedKp = code_value();
  4150. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4151. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4152. updatePID();
  4153. SERIAL_PROTOCOLRPGM(MSG_OK);
  4154. SERIAL_PROTOCOL(" p:");
  4155. SERIAL_PROTOCOL(bedKp);
  4156. SERIAL_PROTOCOL(" i:");
  4157. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4158. SERIAL_PROTOCOL(" d:");
  4159. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4160. SERIAL_PROTOCOLLN("");
  4161. }
  4162. break;
  4163. #endif //PIDTEMP
  4164. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4165. {
  4166. #ifdef CHDK
  4167. SET_OUTPUT(CHDK);
  4168. WRITE(CHDK, HIGH);
  4169. chdkHigh = millis();
  4170. chdkActive = true;
  4171. #else
  4172. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4173. const uint8_t NUM_PULSES=16;
  4174. const float PULSE_LENGTH=0.01524;
  4175. for(int i=0; i < NUM_PULSES; i++) {
  4176. WRITE(PHOTOGRAPH_PIN, HIGH);
  4177. _delay_ms(PULSE_LENGTH);
  4178. WRITE(PHOTOGRAPH_PIN, LOW);
  4179. _delay_ms(PULSE_LENGTH);
  4180. }
  4181. delay(7.33);
  4182. for(int i=0; i < NUM_PULSES; i++) {
  4183. WRITE(PHOTOGRAPH_PIN, HIGH);
  4184. _delay_ms(PULSE_LENGTH);
  4185. WRITE(PHOTOGRAPH_PIN, LOW);
  4186. _delay_ms(PULSE_LENGTH);
  4187. }
  4188. #endif
  4189. #endif //chdk end if
  4190. }
  4191. break;
  4192. #ifdef DOGLCD
  4193. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4194. {
  4195. if (code_seen('C')) {
  4196. lcd_setcontrast( ((int)code_value())&63 );
  4197. }
  4198. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4199. SERIAL_PROTOCOL(lcd_contrast);
  4200. SERIAL_PROTOCOLLN("");
  4201. }
  4202. break;
  4203. #endif
  4204. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4205. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4206. {
  4207. float temp = .0;
  4208. if (code_seen('S')) temp=code_value();
  4209. set_extrude_min_temp(temp);
  4210. }
  4211. break;
  4212. #endif
  4213. case 303: // M303 PID autotune
  4214. {
  4215. float temp = 150.0;
  4216. int e=0;
  4217. int c=5;
  4218. if (code_seen('E')) e=code_value();
  4219. if (e<0)
  4220. temp=70;
  4221. if (code_seen('S')) temp=code_value();
  4222. if (code_seen('C')) c=code_value();
  4223. PID_autotune(temp, e, c);
  4224. }
  4225. break;
  4226. case 400: // M400 finish all moves
  4227. {
  4228. st_synchronize();
  4229. }
  4230. break;
  4231. #ifdef FILAMENT_SENSOR
  4232. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4233. {
  4234. #if (FILWIDTH_PIN > -1)
  4235. if(code_seen('N')) filament_width_nominal=code_value();
  4236. else{
  4237. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4238. SERIAL_PROTOCOLLN(filament_width_nominal);
  4239. }
  4240. #endif
  4241. }
  4242. break;
  4243. case 405: //M405 Turn on filament sensor for control
  4244. {
  4245. if(code_seen('D')) meas_delay_cm=code_value();
  4246. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4247. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4248. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4249. {
  4250. int temp_ratio = widthFil_to_size_ratio();
  4251. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4252. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4253. }
  4254. delay_index1=0;
  4255. delay_index2=0;
  4256. }
  4257. filament_sensor = true ;
  4258. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4259. //SERIAL_PROTOCOL(filament_width_meas);
  4260. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4261. //SERIAL_PROTOCOL(extrudemultiply);
  4262. }
  4263. break;
  4264. case 406: //M406 Turn off filament sensor for control
  4265. {
  4266. filament_sensor = false ;
  4267. }
  4268. break;
  4269. case 407: //M407 Display measured filament diameter
  4270. {
  4271. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4272. SERIAL_PROTOCOLLN(filament_width_meas);
  4273. }
  4274. break;
  4275. #endif
  4276. case 500: // M500 Store settings in EEPROM
  4277. {
  4278. Config_StoreSettings(EEPROM_OFFSET);
  4279. }
  4280. break;
  4281. case 501: // M501 Read settings from EEPROM
  4282. {
  4283. Config_RetrieveSettings(EEPROM_OFFSET);
  4284. }
  4285. break;
  4286. case 502: // M502 Revert to default settings
  4287. {
  4288. Config_ResetDefault();
  4289. }
  4290. break;
  4291. case 503: // M503 print settings currently in memory
  4292. {
  4293. Config_PrintSettings();
  4294. }
  4295. break;
  4296. case 509: //M509 Force language selection
  4297. {
  4298. lcd_force_language_selection();
  4299. SERIAL_ECHO_START;
  4300. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4301. }
  4302. break;
  4303. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4304. case 540:
  4305. {
  4306. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4307. }
  4308. break;
  4309. #endif
  4310. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4311. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4312. {
  4313. float value;
  4314. if (code_seen('Z'))
  4315. {
  4316. value = code_value();
  4317. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4318. {
  4319. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4320. SERIAL_ECHO_START;
  4321. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4322. SERIAL_PROTOCOLLN("");
  4323. }
  4324. else
  4325. {
  4326. SERIAL_ECHO_START;
  4327. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4328. SERIAL_ECHORPGM(MSG_Z_MIN);
  4329. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4330. SERIAL_ECHORPGM(MSG_Z_MAX);
  4331. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4332. SERIAL_PROTOCOLLN("");
  4333. }
  4334. }
  4335. else
  4336. {
  4337. SERIAL_ECHO_START;
  4338. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4339. SERIAL_ECHO(-zprobe_zoffset);
  4340. SERIAL_PROTOCOLLN("");
  4341. }
  4342. break;
  4343. }
  4344. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4345. #ifdef FILAMENTCHANGEENABLE
  4346. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4347. {
  4348. MYSERIAL.println("!!!!M600!!!!");
  4349. st_synchronize();
  4350. float target[4];
  4351. float lastpos[4];
  4352. if (farm_mode)
  4353. {
  4354. prusa_statistics(22);
  4355. }
  4356. feedmultiplyBckp=feedmultiply;
  4357. int8_t TooLowZ = 0;
  4358. target[X_AXIS]=current_position[X_AXIS];
  4359. target[Y_AXIS]=current_position[Y_AXIS];
  4360. target[Z_AXIS]=current_position[Z_AXIS];
  4361. target[E_AXIS]=current_position[E_AXIS];
  4362. lastpos[X_AXIS]=current_position[X_AXIS];
  4363. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4364. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4365. lastpos[E_AXIS]=current_position[E_AXIS];
  4366. //Restract extruder
  4367. if(code_seen('E'))
  4368. {
  4369. target[E_AXIS]+= code_value();
  4370. }
  4371. else
  4372. {
  4373. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4374. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4375. #endif
  4376. }
  4377. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4378. //Lift Z
  4379. if(code_seen('Z'))
  4380. {
  4381. target[Z_AXIS]+= code_value();
  4382. }
  4383. else
  4384. {
  4385. #ifdef FILAMENTCHANGE_ZADD
  4386. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4387. if(target[Z_AXIS] < 10){
  4388. target[Z_AXIS]+= 10 ;
  4389. TooLowZ = 1;
  4390. }else{
  4391. TooLowZ = 0;
  4392. }
  4393. #endif
  4394. }
  4395. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4396. //Move XY to side
  4397. if(code_seen('X'))
  4398. {
  4399. target[X_AXIS]+= code_value();
  4400. }
  4401. else
  4402. {
  4403. #ifdef FILAMENTCHANGE_XPOS
  4404. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4405. #endif
  4406. }
  4407. if(code_seen('Y'))
  4408. {
  4409. target[Y_AXIS]= code_value();
  4410. }
  4411. else
  4412. {
  4413. #ifdef FILAMENTCHANGE_YPOS
  4414. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4415. #endif
  4416. }
  4417. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4418. st_synchronize();
  4419. custom_message = true;
  4420. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4421. // Unload filament
  4422. if(code_seen('L'))
  4423. {
  4424. target[E_AXIS]+= code_value();
  4425. }
  4426. else
  4427. {
  4428. #ifdef SNMM
  4429. #else
  4430. #ifdef FILAMENTCHANGE_FINALRETRACT
  4431. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4432. #endif
  4433. #endif // SNMM
  4434. }
  4435. #ifdef SNMM
  4436. target[E_AXIS] += 12;
  4437. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4438. target[E_AXIS] += 6;
  4439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4440. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4441. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4442. st_synchronize();
  4443. target[E_AXIS] += (FIL_COOLING);
  4444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4445. target[E_AXIS] += (FIL_COOLING*-1);
  4446. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4447. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4449. st_synchronize();
  4450. #else
  4451. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4452. #endif // SNMM
  4453. //finish moves
  4454. st_synchronize();
  4455. //disable extruder steppers so filament can be removed
  4456. disable_e0();
  4457. disable_e1();
  4458. disable_e2();
  4459. delay(100);
  4460. //Wait for user to insert filament
  4461. uint8_t cnt=0;
  4462. int counterBeep = 0;
  4463. lcd_wait_interact();
  4464. load_filament_time = millis();
  4465. while(!lcd_clicked()){
  4466. cnt++;
  4467. manage_heater();
  4468. manage_inactivity(true);
  4469. /*#ifdef SNMM
  4470. target[E_AXIS] += 0.002;
  4471. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4472. #endif // SNMM*/
  4473. if(cnt==0)
  4474. {
  4475. #if BEEPER > 0
  4476. if (counterBeep== 500){
  4477. counterBeep = 0;
  4478. }
  4479. SET_OUTPUT(BEEPER);
  4480. if (counterBeep== 0){
  4481. WRITE(BEEPER,HIGH);
  4482. }
  4483. if (counterBeep== 20){
  4484. WRITE(BEEPER,LOW);
  4485. }
  4486. counterBeep++;
  4487. #else
  4488. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4489. lcd_buzz(1000/6,100);
  4490. #else
  4491. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4492. #endif
  4493. #endif
  4494. }
  4495. }
  4496. #ifdef SNMM
  4497. display_loading();
  4498. do {
  4499. target[E_AXIS] += 0.002;
  4500. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4501. delay_keep_alive(2);
  4502. } while (!lcd_clicked());
  4503. /*if (millis() - load_filament_time > 2) {
  4504. load_filament_time = millis();
  4505. target[E_AXIS] += 0.001;
  4506. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4507. }*/
  4508. #endif
  4509. //Filament inserted
  4510. WRITE(BEEPER,LOW);
  4511. //Feed the filament to the end of nozzle quickly
  4512. #ifdef SNMM
  4513. st_synchronize();
  4514. target[E_AXIS] += bowden_length[snmm_extruder];
  4515. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4516. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4517. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4518. target[E_AXIS] += 40;
  4519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4520. target[E_AXIS] += 10;
  4521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4522. #else
  4523. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4525. #endif // SNMM
  4526. //Extrude some filament
  4527. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4529. //Wait for user to check the state
  4530. lcd_change_fil_state = 0;
  4531. lcd_loading_filament();
  4532. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4533. lcd_change_fil_state = 0;
  4534. lcd_alright();
  4535. switch(lcd_change_fil_state){
  4536. // Filament failed to load so load it again
  4537. case 2:
  4538. #ifdef SNMM
  4539. display_loading();
  4540. do {
  4541. target[E_AXIS] += 0.002;
  4542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4543. delay_keep_alive(2);
  4544. } while (!lcd_clicked());
  4545. st_synchronize();
  4546. target[E_AXIS] += bowden_length[snmm_extruder];
  4547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4548. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4549. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4550. target[E_AXIS] += 40;
  4551. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4552. target[E_AXIS] += 10;
  4553. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4554. #else
  4555. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4556. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4557. #endif
  4558. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4560. lcd_loading_filament();
  4561. break;
  4562. // Filament loaded properly but color is not clear
  4563. case 3:
  4564. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4565. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4566. lcd_loading_color();
  4567. break;
  4568. // Everything good
  4569. default:
  4570. lcd_change_success();
  4571. lcd_update_enable(true);
  4572. break;
  4573. }
  4574. }
  4575. //Not let's go back to print
  4576. //Feed a little of filament to stabilize pressure
  4577. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4578. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4579. //Retract
  4580. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4581. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4582. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4583. //Move XY back
  4584. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4585. //Move Z back
  4586. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4587. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4588. //Unretract
  4589. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4590. //Set E position to original
  4591. plan_set_e_position(lastpos[E_AXIS]);
  4592. //Recover feed rate
  4593. feedmultiply=feedmultiplyBckp;
  4594. char cmd[9];
  4595. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4596. enquecommand(cmd);
  4597. lcd_setstatuspgm(WELCOME_MSG);
  4598. custom_message = false;
  4599. custom_message_type = 0;
  4600. #ifdef PAT9125
  4601. if (fsensor_M600)
  4602. {
  4603. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4604. st_synchronize();
  4605. while (!is_buffer_empty())
  4606. {
  4607. process_commands();
  4608. cmdqueue_pop_front();
  4609. }
  4610. fsensor_enable();
  4611. fsensor_restore_print_and_continue();
  4612. }
  4613. #endif //PAT9125
  4614. }
  4615. break;
  4616. #endif //FILAMENTCHANGEENABLE
  4617. case 601: {
  4618. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4619. }
  4620. break;
  4621. case 602: {
  4622. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4623. }
  4624. break;
  4625. #ifdef LIN_ADVANCE
  4626. case 900: // M900: Set LIN_ADVANCE options.
  4627. gcode_M900();
  4628. break;
  4629. #endif
  4630. case 907: // M907 Set digital trimpot motor current using axis codes.
  4631. {
  4632. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4633. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4634. if(code_seen('B')) digipot_current(4,code_value());
  4635. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4636. #endif
  4637. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4638. if(code_seen('X')) digipot_current(0, code_value());
  4639. #endif
  4640. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4641. if(code_seen('Z')) digipot_current(1, code_value());
  4642. #endif
  4643. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4644. if(code_seen('E')) digipot_current(2, code_value());
  4645. #endif
  4646. #ifdef DIGIPOT_I2C
  4647. // this one uses actual amps in floating point
  4648. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4649. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4650. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4651. #endif
  4652. }
  4653. break;
  4654. case 908: // M908 Control digital trimpot directly.
  4655. {
  4656. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4657. uint8_t channel,current;
  4658. if(code_seen('P')) channel=code_value();
  4659. if(code_seen('S')) current=code_value();
  4660. digitalPotWrite(channel, current);
  4661. #endif
  4662. }
  4663. break;
  4664. case 910: // M910 TMC2130 init
  4665. {
  4666. tmc2130_init();
  4667. }
  4668. break;
  4669. case 911: // M911 Set TMC2130 holding currents
  4670. {
  4671. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4672. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4673. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4674. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4675. }
  4676. break;
  4677. case 912: // M912 Set TMC2130 running currents
  4678. {
  4679. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4680. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4681. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4682. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4683. }
  4684. break;
  4685. case 913: // M913 Print TMC2130 currents
  4686. {
  4687. tmc2130_print_currents();
  4688. }
  4689. break;
  4690. case 914: // M914 Set normal mode
  4691. {
  4692. tmc2130_mode = TMC2130_MODE_NORMAL;
  4693. tmc2130_init();
  4694. }
  4695. break;
  4696. case 915: // M915 Set silent mode
  4697. {
  4698. tmc2130_mode = TMC2130_MODE_SILENT;
  4699. tmc2130_init();
  4700. }
  4701. break;
  4702. case 916: // M916 Set sg_thrs
  4703. {
  4704. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4705. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4706. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4707. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4708. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4709. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4710. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4711. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4712. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4713. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4714. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4715. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4716. }
  4717. break;
  4718. case 917: // M917 Set TMC2130 pwm_ampl
  4719. {
  4720. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4721. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4722. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4723. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4724. }
  4725. break;
  4726. case 918: // M918 Set TMC2130 pwm_grad
  4727. {
  4728. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4729. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4730. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4731. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4732. }
  4733. break;
  4734. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4735. {
  4736. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4737. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4738. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4739. if(code_seen('B')) microstep_mode(4,code_value());
  4740. microstep_readings();
  4741. #endif
  4742. }
  4743. break;
  4744. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4745. {
  4746. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4747. if(code_seen('S')) switch((int)code_value())
  4748. {
  4749. case 1:
  4750. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4751. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4752. break;
  4753. case 2:
  4754. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4755. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4756. break;
  4757. }
  4758. microstep_readings();
  4759. #endif
  4760. }
  4761. break;
  4762. case 701: //M701: load filament
  4763. {
  4764. enable_z();
  4765. custom_message = true;
  4766. custom_message_type = 2;
  4767. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4768. current_position[E_AXIS] += 70;
  4769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4770. current_position[E_AXIS] += 25;
  4771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4772. st_synchronize();
  4773. if (!farm_mode && loading_flag) {
  4774. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4775. while (!clean) {
  4776. lcd_update_enable(true);
  4777. lcd_update(2);
  4778. current_position[E_AXIS] += 25;
  4779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4780. st_synchronize();
  4781. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4782. }
  4783. }
  4784. lcd_update_enable(true);
  4785. lcd_update(2);
  4786. lcd_setstatuspgm(WELCOME_MSG);
  4787. disable_z();
  4788. loading_flag = false;
  4789. custom_message = false;
  4790. custom_message_type = 0;
  4791. }
  4792. break;
  4793. case 702:
  4794. {
  4795. #ifdef SNMM
  4796. if (code_seen('U')) {
  4797. extr_unload_used(); //unload all filaments which were used in current print
  4798. }
  4799. else if (code_seen('C')) {
  4800. extr_unload(); //unload just current filament
  4801. }
  4802. else {
  4803. extr_unload_all(); //unload all filaments
  4804. }
  4805. #else
  4806. custom_message = true;
  4807. custom_message_type = 2;
  4808. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4809. current_position[E_AXIS] -= 80;
  4810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4811. st_synchronize();
  4812. lcd_setstatuspgm(WELCOME_MSG);
  4813. custom_message = false;
  4814. custom_message_type = 0;
  4815. #endif
  4816. }
  4817. break;
  4818. case 999: // M999: Restart after being stopped
  4819. Stopped = false;
  4820. lcd_reset_alert_level();
  4821. gcode_LastN = Stopped_gcode_LastN;
  4822. FlushSerialRequestResend();
  4823. break;
  4824. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4825. }
  4826. } // end if(code_seen('M')) (end of M codes)
  4827. else if(code_seen('T'))
  4828. {
  4829. int index;
  4830. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4831. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4832. SERIAL_ECHOLNPGM("Invalid T code.");
  4833. }
  4834. else {
  4835. if (*(strchr_pointer + index) == '?') {
  4836. tmp_extruder = choose_extruder_menu();
  4837. }
  4838. else {
  4839. tmp_extruder = code_value();
  4840. }
  4841. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4842. #ifdef SNMM
  4843. #ifdef LIN_ADVANCE
  4844. if (snmm_extruder != tmp_extruder)
  4845. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4846. #endif
  4847. snmm_extruder = tmp_extruder;
  4848. st_synchronize();
  4849. delay(100);
  4850. disable_e0();
  4851. disable_e1();
  4852. disable_e2();
  4853. pinMode(E_MUX0_PIN, OUTPUT);
  4854. pinMode(E_MUX1_PIN, OUTPUT);
  4855. pinMode(E_MUX2_PIN, OUTPUT);
  4856. delay(100);
  4857. SERIAL_ECHO_START;
  4858. SERIAL_ECHO("T:");
  4859. SERIAL_ECHOLN((int)tmp_extruder);
  4860. switch (tmp_extruder) {
  4861. case 1:
  4862. WRITE(E_MUX0_PIN, HIGH);
  4863. WRITE(E_MUX1_PIN, LOW);
  4864. WRITE(E_MUX2_PIN, LOW);
  4865. break;
  4866. case 2:
  4867. WRITE(E_MUX0_PIN, LOW);
  4868. WRITE(E_MUX1_PIN, HIGH);
  4869. WRITE(E_MUX2_PIN, LOW);
  4870. break;
  4871. case 3:
  4872. WRITE(E_MUX0_PIN, HIGH);
  4873. WRITE(E_MUX1_PIN, HIGH);
  4874. WRITE(E_MUX2_PIN, LOW);
  4875. break;
  4876. default:
  4877. WRITE(E_MUX0_PIN, LOW);
  4878. WRITE(E_MUX1_PIN, LOW);
  4879. WRITE(E_MUX2_PIN, LOW);
  4880. break;
  4881. }
  4882. delay(100);
  4883. #else
  4884. if (tmp_extruder >= EXTRUDERS) {
  4885. SERIAL_ECHO_START;
  4886. SERIAL_ECHOPGM("T");
  4887. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4888. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4889. }
  4890. else {
  4891. boolean make_move = false;
  4892. if (code_seen('F')) {
  4893. make_move = true;
  4894. next_feedrate = code_value();
  4895. if (next_feedrate > 0.0) {
  4896. feedrate = next_feedrate;
  4897. }
  4898. }
  4899. #if EXTRUDERS > 1
  4900. if (tmp_extruder != active_extruder) {
  4901. // Save current position to return to after applying extruder offset
  4902. memcpy(destination, current_position, sizeof(destination));
  4903. // Offset extruder (only by XY)
  4904. int i;
  4905. for (i = 0; i < 2; i++) {
  4906. current_position[i] = current_position[i] -
  4907. extruder_offset[i][active_extruder] +
  4908. extruder_offset[i][tmp_extruder];
  4909. }
  4910. // Set the new active extruder and position
  4911. active_extruder = tmp_extruder;
  4912. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4913. // Move to the old position if 'F' was in the parameters
  4914. if (make_move && Stopped == false) {
  4915. prepare_move();
  4916. }
  4917. }
  4918. #endif
  4919. SERIAL_ECHO_START;
  4920. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4921. SERIAL_PROTOCOLLN((int)active_extruder);
  4922. }
  4923. #endif
  4924. }
  4925. } // end if(code_seen('T')) (end of T codes)
  4926. #ifdef DEBUG_DCODES
  4927. else if (code_seen('D')) // D codes (debug)
  4928. {
  4929. switch((int)code_value())
  4930. {
  4931. case 0: // D0 - Reset
  4932. dcode_0(); break;
  4933. case 1: // D1 - Clear EEPROM
  4934. dcode_1(); break;
  4935. case 2: // D2 - Read/Write RAM
  4936. dcode_2(); break;
  4937. case 3: // D3 - Read/Write EEPROM
  4938. dcode_3(); break;
  4939. case 4: // D4 - Read/Write PIN
  4940. dcode_4(); break;
  4941. case 5:
  4942. MYSERIAL.println("D5 - Test");
  4943. if (code_seen('P'))
  4944. selectedSerialPort = (int)code_value();
  4945. MYSERIAL.print("selectedSerialPort = ");
  4946. MYSERIAL.println(selectedSerialPort, DEC);
  4947. break;
  4948. case 10: // D10 - Tell the printer that XYZ calibration went OK
  4949. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4950. break;
  4951. case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
  4952. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
  4953. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
  4954. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
  4955. case 999:
  4956. {
  4957. MYSERIAL.println("D999 - crash");
  4958. /* while (!is_buffer_empty())
  4959. {
  4960. process_commands();
  4961. cmdqueue_pop_front();
  4962. }*/
  4963. st_synchronize();
  4964. lcd_update_enable(true);
  4965. lcd_implementation_clear();
  4966. lcd_update(2);
  4967. // Increment crash counter
  4968. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  4969. crash_count++;
  4970. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  4971. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  4972. bool yesno = true;
  4973. #else
  4974. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  4975. #endif
  4976. lcd_update_enable(true);
  4977. lcd_update(2);
  4978. lcd_setstatuspgm(WELCOME_MSG);
  4979. if (yesno)
  4980. {
  4981. enquecommand_P(PSTR("G28 X"));
  4982. enquecommand_P(PSTR("G28 Y"));
  4983. enquecommand_P(PSTR("D1000"));
  4984. }
  4985. else
  4986. {
  4987. enquecommand_P(PSTR("D1001"));
  4988. }
  4989. }
  4990. break;
  4991. case 1000:
  4992. crashdet_restore_print_and_continue();
  4993. tmc2130_sg_stop_on_crash = true;
  4994. break;
  4995. case 1001:
  4996. card.sdprinting = false;
  4997. card.closefile();
  4998. tmc2130_sg_stop_on_crash = true;
  4999. break;
  5000. /* case 4:
  5001. {
  5002. MYSERIAL.println("D4 - Test");
  5003. uint8_t data[16];
  5004. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5005. MYSERIAL.println(cnt, DEC);
  5006. for (int i = 0; i < cnt; i++)
  5007. {
  5008. serial_print_hex_byte(data[i]);
  5009. MYSERIAL.write(' ');
  5010. }
  5011. MYSERIAL.write('\n');
  5012. }
  5013. break;
  5014. /* case 3:
  5015. if (code_seen('L')) // lcd pwm (0-255)
  5016. {
  5017. lcdSoftPwm = (int)code_value();
  5018. }
  5019. if (code_seen('B')) // lcd blink delay (0-255)
  5020. {
  5021. lcdBlinkDelay = (int)code_value();
  5022. }
  5023. // calibrate_z_auto();
  5024. /* MYSERIAL.print("fsensor_enable()");
  5025. #ifdef PAT9125
  5026. fsensor_enable();
  5027. #endif*/
  5028. break;
  5029. // case 4:
  5030. // lcdBlinkDelay = 10;
  5031. /* MYSERIAL.print("fsensor_disable()");
  5032. #ifdef PAT9125
  5033. fsensor_disable();
  5034. #endif
  5035. break;*/
  5036. // break;
  5037. /* case 5:
  5038. {
  5039. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5040. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5041. MYSERIAL.println(val);
  5042. homeaxis(0);
  5043. }
  5044. break;*/
  5045. case 6:
  5046. {
  5047. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5048. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5049. MYSERIAL.println(val);*/
  5050. homeaxis(1);
  5051. }
  5052. break;
  5053. case 7:
  5054. {
  5055. MYSERIAL.print("pat9125_init=");
  5056. MYSERIAL.println(pat9125_init(200, 200));
  5057. }
  5058. break;
  5059. case 8:
  5060. {
  5061. MYSERIAL.print("swi2c_check=");
  5062. MYSERIAL.println(swi2c_check(0x75));
  5063. }
  5064. break;
  5065. }
  5066. }
  5067. #endif //DEBUG_DCODES
  5068. else
  5069. {
  5070. SERIAL_ECHO_START;
  5071. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5072. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5073. SERIAL_ECHOLNPGM("\"(2)");
  5074. }
  5075. ClearToSend();
  5076. }
  5077. void FlushSerialRequestResend()
  5078. {
  5079. //char cmdbuffer[bufindr][100]="Resend:";
  5080. MYSERIAL.flush();
  5081. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5082. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5083. ClearToSend();
  5084. }
  5085. // Confirm the execution of a command, if sent from a serial line.
  5086. // Execution of a command from a SD card will not be confirmed.
  5087. void ClearToSend()
  5088. {
  5089. previous_millis_cmd = millis();
  5090. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5091. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5092. }
  5093. void get_coordinates()
  5094. {
  5095. bool seen[4]={false,false,false,false};
  5096. for(int8_t i=0; i < NUM_AXIS; i++) {
  5097. if(code_seen(axis_codes[i]))
  5098. {
  5099. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5100. seen[i]=true;
  5101. }
  5102. else destination[i] = current_position[i]; //Are these else lines really needed?
  5103. }
  5104. if(code_seen('F')) {
  5105. next_feedrate = code_value();
  5106. #ifdef MAX_SILENT_FEEDRATE
  5107. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5108. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5109. #endif //MAX_SILENT_FEEDRATE
  5110. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5111. }
  5112. }
  5113. void get_arc_coordinates()
  5114. {
  5115. #ifdef SF_ARC_FIX
  5116. bool relative_mode_backup = relative_mode;
  5117. relative_mode = true;
  5118. #endif
  5119. get_coordinates();
  5120. #ifdef SF_ARC_FIX
  5121. relative_mode=relative_mode_backup;
  5122. #endif
  5123. if(code_seen('I')) {
  5124. offset[0] = code_value();
  5125. }
  5126. else {
  5127. offset[0] = 0.0;
  5128. }
  5129. if(code_seen('J')) {
  5130. offset[1] = code_value();
  5131. }
  5132. else {
  5133. offset[1] = 0.0;
  5134. }
  5135. }
  5136. void clamp_to_software_endstops(float target[3])
  5137. {
  5138. #ifdef DEBUG_DISABLE_SWLIMITS
  5139. return;
  5140. #endif //DEBUG_DISABLE_SWLIMITS
  5141. world2machine_clamp(target[0], target[1]);
  5142. // Clamp the Z coordinate.
  5143. if (min_software_endstops) {
  5144. float negative_z_offset = 0;
  5145. #ifdef ENABLE_AUTO_BED_LEVELING
  5146. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5147. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5148. #endif
  5149. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5150. }
  5151. if (max_software_endstops) {
  5152. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5153. }
  5154. }
  5155. #ifdef MESH_BED_LEVELING
  5156. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5157. float dx = x - current_position[X_AXIS];
  5158. float dy = y - current_position[Y_AXIS];
  5159. float dz = z - current_position[Z_AXIS];
  5160. int n_segments = 0;
  5161. if (mbl.active) {
  5162. float len = abs(dx) + abs(dy);
  5163. if (len > 0)
  5164. // Split to 3cm segments or shorter.
  5165. n_segments = int(ceil(len / 30.f));
  5166. }
  5167. if (n_segments > 1) {
  5168. float de = e - current_position[E_AXIS];
  5169. for (int i = 1; i < n_segments; ++ i) {
  5170. float t = float(i) / float(n_segments);
  5171. plan_buffer_line(
  5172. current_position[X_AXIS] + t * dx,
  5173. current_position[Y_AXIS] + t * dy,
  5174. current_position[Z_AXIS] + t * dz,
  5175. current_position[E_AXIS] + t * de,
  5176. feed_rate, extruder);
  5177. }
  5178. }
  5179. // The rest of the path.
  5180. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5181. current_position[X_AXIS] = x;
  5182. current_position[Y_AXIS] = y;
  5183. current_position[Z_AXIS] = z;
  5184. current_position[E_AXIS] = e;
  5185. }
  5186. #endif // MESH_BED_LEVELING
  5187. void prepare_move()
  5188. {
  5189. clamp_to_software_endstops(destination);
  5190. previous_millis_cmd = millis();
  5191. // Do not use feedmultiply for E or Z only moves
  5192. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5193. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5194. }
  5195. else {
  5196. #ifdef MESH_BED_LEVELING
  5197. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5198. #else
  5199. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5200. #endif
  5201. }
  5202. for(int8_t i=0; i < NUM_AXIS; i++) {
  5203. current_position[i] = destination[i];
  5204. }
  5205. }
  5206. void prepare_arc_move(char isclockwise) {
  5207. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5208. // Trace the arc
  5209. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5210. // As far as the parser is concerned, the position is now == target. In reality the
  5211. // motion control system might still be processing the action and the real tool position
  5212. // in any intermediate location.
  5213. for(int8_t i=0; i < NUM_AXIS; i++) {
  5214. current_position[i] = destination[i];
  5215. }
  5216. previous_millis_cmd = millis();
  5217. }
  5218. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5219. #if defined(FAN_PIN)
  5220. #if CONTROLLERFAN_PIN == FAN_PIN
  5221. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5222. #endif
  5223. #endif
  5224. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5225. unsigned long lastMotorCheck = 0;
  5226. void controllerFan()
  5227. {
  5228. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5229. {
  5230. lastMotorCheck = millis();
  5231. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5232. #if EXTRUDERS > 2
  5233. || !READ(E2_ENABLE_PIN)
  5234. #endif
  5235. #if EXTRUDER > 1
  5236. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5237. || !READ(X2_ENABLE_PIN)
  5238. #endif
  5239. || !READ(E1_ENABLE_PIN)
  5240. #endif
  5241. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5242. {
  5243. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5244. }
  5245. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5246. {
  5247. digitalWrite(CONTROLLERFAN_PIN, 0);
  5248. analogWrite(CONTROLLERFAN_PIN, 0);
  5249. }
  5250. else
  5251. {
  5252. // allows digital or PWM fan output to be used (see M42 handling)
  5253. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5254. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5255. }
  5256. }
  5257. }
  5258. #endif
  5259. #ifdef TEMP_STAT_LEDS
  5260. static bool blue_led = false;
  5261. static bool red_led = false;
  5262. static uint32_t stat_update = 0;
  5263. void handle_status_leds(void) {
  5264. float max_temp = 0.0;
  5265. if(millis() > stat_update) {
  5266. stat_update += 500; // Update every 0.5s
  5267. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5268. max_temp = max(max_temp, degHotend(cur_extruder));
  5269. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5270. }
  5271. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5272. max_temp = max(max_temp, degTargetBed());
  5273. max_temp = max(max_temp, degBed());
  5274. #endif
  5275. if((max_temp > 55.0) && (red_led == false)) {
  5276. digitalWrite(STAT_LED_RED, 1);
  5277. digitalWrite(STAT_LED_BLUE, 0);
  5278. red_led = true;
  5279. blue_led = false;
  5280. }
  5281. if((max_temp < 54.0) && (blue_led == false)) {
  5282. digitalWrite(STAT_LED_RED, 0);
  5283. digitalWrite(STAT_LED_BLUE, 1);
  5284. red_led = false;
  5285. blue_led = true;
  5286. }
  5287. }
  5288. }
  5289. #endif
  5290. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5291. {
  5292. #if defined(KILL_PIN) && KILL_PIN > -1
  5293. static int killCount = 0; // make the inactivity button a bit less responsive
  5294. const int KILL_DELAY = 10000;
  5295. #endif
  5296. if(buflen < (BUFSIZE-1)){
  5297. get_command();
  5298. }
  5299. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5300. if(max_inactive_time)
  5301. kill("", 4);
  5302. if(stepper_inactive_time) {
  5303. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5304. {
  5305. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5306. disable_x();
  5307. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5308. disable_y();
  5309. disable_z();
  5310. disable_e0();
  5311. disable_e1();
  5312. disable_e2();
  5313. }
  5314. }
  5315. }
  5316. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5317. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5318. {
  5319. chdkActive = false;
  5320. WRITE(CHDK, LOW);
  5321. }
  5322. #endif
  5323. #if defined(KILL_PIN) && KILL_PIN > -1
  5324. // Check if the kill button was pressed and wait just in case it was an accidental
  5325. // key kill key press
  5326. // -------------------------------------------------------------------------------
  5327. if( 0 == READ(KILL_PIN) )
  5328. {
  5329. killCount++;
  5330. }
  5331. else if (killCount > 0)
  5332. {
  5333. killCount--;
  5334. }
  5335. // Exceeded threshold and we can confirm that it was not accidental
  5336. // KILL the machine
  5337. // ----------------------------------------------------------------
  5338. if ( killCount >= KILL_DELAY)
  5339. {
  5340. kill("", 5);
  5341. }
  5342. #endif
  5343. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5344. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5345. #endif
  5346. #ifdef EXTRUDER_RUNOUT_PREVENT
  5347. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5348. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5349. {
  5350. bool oldstatus=READ(E0_ENABLE_PIN);
  5351. enable_e0();
  5352. float oldepos=current_position[E_AXIS];
  5353. float oldedes=destination[E_AXIS];
  5354. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5355. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5356. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5357. current_position[E_AXIS]=oldepos;
  5358. destination[E_AXIS]=oldedes;
  5359. plan_set_e_position(oldepos);
  5360. previous_millis_cmd=millis();
  5361. st_synchronize();
  5362. WRITE(E0_ENABLE_PIN,oldstatus);
  5363. }
  5364. #endif
  5365. #ifdef TEMP_STAT_LEDS
  5366. handle_status_leds();
  5367. #endif
  5368. check_axes_activity();
  5369. }
  5370. void kill(const char *full_screen_message, unsigned char id)
  5371. {
  5372. SERIAL_ECHOPGM("KILL: ");
  5373. MYSERIAL.println(int(id));
  5374. //return;
  5375. cli(); // Stop interrupts
  5376. disable_heater();
  5377. disable_x();
  5378. // SERIAL_ECHOLNPGM("kill - disable Y");
  5379. disable_y();
  5380. disable_z();
  5381. disable_e0();
  5382. disable_e1();
  5383. disable_e2();
  5384. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5385. pinMode(PS_ON_PIN,INPUT);
  5386. #endif
  5387. SERIAL_ERROR_START;
  5388. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5389. if (full_screen_message != NULL) {
  5390. SERIAL_ERRORLNRPGM(full_screen_message);
  5391. lcd_display_message_fullscreen_P(full_screen_message);
  5392. } else {
  5393. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5394. }
  5395. // FMC small patch to update the LCD before ending
  5396. sei(); // enable interrupts
  5397. for ( int i=5; i--; lcd_update())
  5398. {
  5399. delay(200);
  5400. }
  5401. cli(); // disable interrupts
  5402. suicide();
  5403. while(1) { /* Intentionally left empty */ } // Wait for reset
  5404. }
  5405. void Stop()
  5406. {
  5407. disable_heater();
  5408. if(Stopped == false) {
  5409. Stopped = true;
  5410. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5411. SERIAL_ERROR_START;
  5412. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5413. LCD_MESSAGERPGM(MSG_STOPPED);
  5414. }
  5415. }
  5416. bool IsStopped() { return Stopped; };
  5417. #ifdef FAST_PWM_FAN
  5418. void setPwmFrequency(uint8_t pin, int val)
  5419. {
  5420. val &= 0x07;
  5421. switch(digitalPinToTimer(pin))
  5422. {
  5423. #if defined(TCCR0A)
  5424. case TIMER0A:
  5425. case TIMER0B:
  5426. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5427. // TCCR0B |= val;
  5428. break;
  5429. #endif
  5430. #if defined(TCCR1A)
  5431. case TIMER1A:
  5432. case TIMER1B:
  5433. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5434. // TCCR1B |= val;
  5435. break;
  5436. #endif
  5437. #if defined(TCCR2)
  5438. case TIMER2:
  5439. case TIMER2:
  5440. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5441. TCCR2 |= val;
  5442. break;
  5443. #endif
  5444. #if defined(TCCR2A)
  5445. case TIMER2A:
  5446. case TIMER2B:
  5447. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5448. TCCR2B |= val;
  5449. break;
  5450. #endif
  5451. #if defined(TCCR3A)
  5452. case TIMER3A:
  5453. case TIMER3B:
  5454. case TIMER3C:
  5455. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5456. TCCR3B |= val;
  5457. break;
  5458. #endif
  5459. #if defined(TCCR4A)
  5460. case TIMER4A:
  5461. case TIMER4B:
  5462. case TIMER4C:
  5463. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5464. TCCR4B |= val;
  5465. break;
  5466. #endif
  5467. #if defined(TCCR5A)
  5468. case TIMER5A:
  5469. case TIMER5B:
  5470. case TIMER5C:
  5471. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5472. TCCR5B |= val;
  5473. break;
  5474. #endif
  5475. }
  5476. }
  5477. #endif //FAST_PWM_FAN
  5478. bool setTargetedHotend(int code){
  5479. tmp_extruder = active_extruder;
  5480. if(code_seen('T')) {
  5481. tmp_extruder = code_value();
  5482. if(tmp_extruder >= EXTRUDERS) {
  5483. SERIAL_ECHO_START;
  5484. switch(code){
  5485. case 104:
  5486. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5487. break;
  5488. case 105:
  5489. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5490. break;
  5491. case 109:
  5492. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5493. break;
  5494. case 218:
  5495. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5496. break;
  5497. case 221:
  5498. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5499. break;
  5500. }
  5501. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5502. return true;
  5503. }
  5504. }
  5505. return false;
  5506. }
  5507. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5508. {
  5509. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5510. {
  5511. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5512. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5513. }
  5514. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5515. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5516. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5517. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5518. total_filament_used = 0;
  5519. }
  5520. float calculate_volumetric_multiplier(float diameter) {
  5521. float area = .0;
  5522. float radius = .0;
  5523. radius = diameter * .5;
  5524. if (! volumetric_enabled || radius == 0) {
  5525. area = 1;
  5526. }
  5527. else {
  5528. area = M_PI * pow(radius, 2);
  5529. }
  5530. return 1.0 / area;
  5531. }
  5532. void calculate_volumetric_multipliers() {
  5533. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5534. #if EXTRUDERS > 1
  5535. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5536. #if EXTRUDERS > 2
  5537. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5538. #endif
  5539. #endif
  5540. }
  5541. void delay_keep_alive(unsigned int ms)
  5542. {
  5543. for (;;) {
  5544. manage_heater();
  5545. // Manage inactivity, but don't disable steppers on timeout.
  5546. manage_inactivity(true);
  5547. lcd_update();
  5548. if (ms == 0)
  5549. break;
  5550. else if (ms >= 50) {
  5551. delay(50);
  5552. ms -= 50;
  5553. } else {
  5554. delay(ms);
  5555. ms = 0;
  5556. }
  5557. }
  5558. }
  5559. void wait_for_heater(long codenum) {
  5560. #ifdef TEMP_RESIDENCY_TIME
  5561. long residencyStart;
  5562. residencyStart = -1;
  5563. /* continue to loop until we have reached the target temp
  5564. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5565. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5566. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5567. #else
  5568. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5569. #endif //TEMP_RESIDENCY_TIME
  5570. if ((millis() - codenum) > 1000UL)
  5571. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5572. if (!farm_mode) {
  5573. SERIAL_PROTOCOLPGM("T:");
  5574. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5575. SERIAL_PROTOCOLPGM(" E:");
  5576. SERIAL_PROTOCOL((int)tmp_extruder);
  5577. #ifdef TEMP_RESIDENCY_TIME
  5578. SERIAL_PROTOCOLPGM(" W:");
  5579. if (residencyStart > -1)
  5580. {
  5581. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5582. SERIAL_PROTOCOLLN(codenum);
  5583. }
  5584. else
  5585. {
  5586. SERIAL_PROTOCOLLN("?");
  5587. }
  5588. }
  5589. #else
  5590. SERIAL_PROTOCOLLN("");
  5591. #endif
  5592. codenum = millis();
  5593. }
  5594. manage_heater();
  5595. manage_inactivity();
  5596. lcd_update();
  5597. #ifdef TEMP_RESIDENCY_TIME
  5598. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5599. or when current temp falls outside the hysteresis after target temp was reached */
  5600. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5601. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5602. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5603. {
  5604. residencyStart = millis();
  5605. }
  5606. #endif //TEMP_RESIDENCY_TIME
  5607. }
  5608. }
  5609. void check_babystep() {
  5610. int babystep_z;
  5611. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5612. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5613. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5614. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5615. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5616. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5617. lcd_update_enable(true);
  5618. }
  5619. }
  5620. #ifdef DIS
  5621. void d_setup()
  5622. {
  5623. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5624. pinMode(D_DATA, INPUT_PULLUP);
  5625. pinMode(D_REQUIRE, OUTPUT);
  5626. digitalWrite(D_REQUIRE, HIGH);
  5627. }
  5628. float d_ReadData()
  5629. {
  5630. int digit[13];
  5631. String mergeOutput;
  5632. float output;
  5633. digitalWrite(D_REQUIRE, HIGH);
  5634. for (int i = 0; i<13; i++)
  5635. {
  5636. for (int j = 0; j < 4; j++)
  5637. {
  5638. while (digitalRead(D_DATACLOCK) == LOW) {}
  5639. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5640. bitWrite(digit[i], j, digitalRead(D_DATA));
  5641. }
  5642. }
  5643. digitalWrite(D_REQUIRE, LOW);
  5644. mergeOutput = "";
  5645. output = 0;
  5646. for (int r = 5; r <= 10; r++) //Merge digits
  5647. {
  5648. mergeOutput += digit[r];
  5649. }
  5650. output = mergeOutput.toFloat();
  5651. if (digit[4] == 8) //Handle sign
  5652. {
  5653. output *= -1;
  5654. }
  5655. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5656. {
  5657. output /= 10;
  5658. }
  5659. return output;
  5660. }
  5661. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5662. int t1 = 0;
  5663. int t_delay = 0;
  5664. int digit[13];
  5665. int m;
  5666. char str[3];
  5667. //String mergeOutput;
  5668. char mergeOutput[15];
  5669. float output;
  5670. int mesh_point = 0; //index number of calibration point
  5671. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5672. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5673. float mesh_home_z_search = 4;
  5674. float row[x_points_num];
  5675. int ix = 0;
  5676. int iy = 0;
  5677. char* filename_wldsd = "wldsd.txt";
  5678. char data_wldsd[70];
  5679. char numb_wldsd[10];
  5680. d_setup();
  5681. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5682. // We don't know where we are! HOME!
  5683. // Push the commands to the front of the message queue in the reverse order!
  5684. // There shall be always enough space reserved for these commands.
  5685. repeatcommand_front(); // repeat G80 with all its parameters
  5686. enquecommand_front_P((PSTR("G28 W0")));
  5687. enquecommand_front_P((PSTR("G1 Z5")));
  5688. return;
  5689. }
  5690. bool custom_message_old = custom_message;
  5691. unsigned int custom_message_type_old = custom_message_type;
  5692. unsigned int custom_message_state_old = custom_message_state;
  5693. custom_message = true;
  5694. custom_message_type = 1;
  5695. custom_message_state = (x_points_num * y_points_num) + 10;
  5696. lcd_update(1);
  5697. mbl.reset();
  5698. babystep_undo();
  5699. card.openFile(filename_wldsd, false);
  5700. current_position[Z_AXIS] = mesh_home_z_search;
  5701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5702. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5703. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5704. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5705. setup_for_endstop_move(false);
  5706. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5707. SERIAL_PROTOCOL(x_points_num);
  5708. SERIAL_PROTOCOLPGM(",");
  5709. SERIAL_PROTOCOL(y_points_num);
  5710. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5711. SERIAL_PROTOCOL(mesh_home_z_search);
  5712. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5713. SERIAL_PROTOCOL(x_dimension);
  5714. SERIAL_PROTOCOLPGM(",");
  5715. SERIAL_PROTOCOL(y_dimension);
  5716. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5717. while (mesh_point != x_points_num * y_points_num) {
  5718. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5719. iy = mesh_point / x_points_num;
  5720. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5721. float z0 = 0.f;
  5722. current_position[Z_AXIS] = mesh_home_z_search;
  5723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5724. st_synchronize();
  5725. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5726. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5728. st_synchronize();
  5729. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5730. break;
  5731. card.closefile();
  5732. }
  5733. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5734. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5735. //strcat(data_wldsd, numb_wldsd);
  5736. //MYSERIAL.println(data_wldsd);
  5737. //delay(1000);
  5738. //delay(3000);
  5739. //t1 = millis();
  5740. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5741. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5742. memset(digit, 0, sizeof(digit));
  5743. //cli();
  5744. digitalWrite(D_REQUIRE, LOW);
  5745. for (int i = 0; i<13; i++)
  5746. {
  5747. //t1 = millis();
  5748. for (int j = 0; j < 4; j++)
  5749. {
  5750. while (digitalRead(D_DATACLOCK) == LOW) {}
  5751. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5752. bitWrite(digit[i], j, digitalRead(D_DATA));
  5753. }
  5754. //t_delay = (millis() - t1);
  5755. //SERIAL_PROTOCOLPGM(" ");
  5756. //SERIAL_PROTOCOL_F(t_delay, 5);
  5757. //SERIAL_PROTOCOLPGM(" ");
  5758. }
  5759. //sei();
  5760. digitalWrite(D_REQUIRE, HIGH);
  5761. mergeOutput[0] = '\0';
  5762. output = 0;
  5763. for (int r = 5; r <= 10; r++) //Merge digits
  5764. {
  5765. sprintf(str, "%d", digit[r]);
  5766. strcat(mergeOutput, str);
  5767. }
  5768. output = atof(mergeOutput);
  5769. if (digit[4] == 8) //Handle sign
  5770. {
  5771. output *= -1;
  5772. }
  5773. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5774. {
  5775. output *= 0.1;
  5776. }
  5777. //output = d_ReadData();
  5778. //row[ix] = current_position[Z_AXIS];
  5779. memset(data_wldsd, 0, sizeof(data_wldsd));
  5780. for (int i = 0; i <3; i++) {
  5781. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5782. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5783. strcat(data_wldsd, numb_wldsd);
  5784. strcat(data_wldsd, ";");
  5785. }
  5786. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5787. dtostrf(output, 8, 5, numb_wldsd);
  5788. strcat(data_wldsd, numb_wldsd);
  5789. //strcat(data_wldsd, ";");
  5790. card.write_command(data_wldsd);
  5791. //row[ix] = d_ReadData();
  5792. row[ix] = output; // current_position[Z_AXIS];
  5793. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5794. for (int i = 0; i < x_points_num; i++) {
  5795. SERIAL_PROTOCOLPGM(" ");
  5796. SERIAL_PROTOCOL_F(row[i], 5);
  5797. }
  5798. SERIAL_PROTOCOLPGM("\n");
  5799. }
  5800. custom_message_state--;
  5801. mesh_point++;
  5802. lcd_update(1);
  5803. }
  5804. card.closefile();
  5805. }
  5806. #endif
  5807. void temp_compensation_start() {
  5808. custom_message = true;
  5809. custom_message_type = 5;
  5810. custom_message_state = PINDA_HEAT_T + 1;
  5811. lcd_update(2);
  5812. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5813. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5814. }
  5815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5816. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5817. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5818. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5820. st_synchronize();
  5821. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5822. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5823. delay_keep_alive(1000);
  5824. custom_message_state = PINDA_HEAT_T - i;
  5825. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5826. else lcd_update(1);
  5827. }
  5828. custom_message_type = 0;
  5829. custom_message_state = 0;
  5830. custom_message = false;
  5831. }
  5832. void temp_compensation_apply() {
  5833. int i_add;
  5834. int compensation_value;
  5835. int z_shift = 0;
  5836. float z_shift_mm;
  5837. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5838. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5839. i_add = (target_temperature_bed - 60) / 10;
  5840. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5841. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5842. }else {
  5843. //interpolation
  5844. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5845. }
  5846. SERIAL_PROTOCOLPGM("\n");
  5847. SERIAL_PROTOCOLPGM("Z shift applied:");
  5848. MYSERIAL.print(z_shift_mm);
  5849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5850. st_synchronize();
  5851. plan_set_z_position(current_position[Z_AXIS]);
  5852. }
  5853. else {
  5854. //we have no temp compensation data
  5855. }
  5856. }
  5857. float temp_comp_interpolation(float inp_temperature) {
  5858. //cubic spline interpolation
  5859. int n, i, j, k;
  5860. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5861. int shift[10];
  5862. int temp_C[10];
  5863. n = 6; //number of measured points
  5864. shift[0] = 0;
  5865. for (i = 0; i < n; i++) {
  5866. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5867. temp_C[i] = 50 + i * 10; //temperature in C
  5868. #ifdef PINDA_THERMISTOR
  5869. temp_C[i] = 35 + i * 5; //temperature in C
  5870. #else
  5871. temp_C[i] = 50 + i * 10; //temperature in C
  5872. #endif
  5873. x[i] = (float)temp_C[i];
  5874. f[i] = (float)shift[i];
  5875. }
  5876. if (inp_temperature < x[0]) return 0;
  5877. for (i = n - 1; i>0; i--) {
  5878. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5879. h[i - 1] = x[i] - x[i - 1];
  5880. }
  5881. //*********** formation of h, s , f matrix **************
  5882. for (i = 1; i<n - 1; i++) {
  5883. m[i][i] = 2 * (h[i - 1] + h[i]);
  5884. if (i != 1) {
  5885. m[i][i - 1] = h[i - 1];
  5886. m[i - 1][i] = h[i - 1];
  5887. }
  5888. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5889. }
  5890. //*********** forward elimination **************
  5891. for (i = 1; i<n - 2; i++) {
  5892. temp = (m[i + 1][i] / m[i][i]);
  5893. for (j = 1; j <= n - 1; j++)
  5894. m[i + 1][j] -= temp*m[i][j];
  5895. }
  5896. //*********** backward substitution *********
  5897. for (i = n - 2; i>0; i--) {
  5898. sum = 0;
  5899. for (j = i; j <= n - 2; j++)
  5900. sum += m[i][j] * s[j];
  5901. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5902. }
  5903. for (i = 0; i<n - 1; i++)
  5904. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5905. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5906. b = s[i] / 2;
  5907. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5908. d = f[i];
  5909. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5910. }
  5911. return sum;
  5912. }
  5913. #ifdef PINDA_THERMISTOR
  5914. float temp_compensation_pinda_thermistor_offset()
  5915. {
  5916. if (!temp_cal_active) return 0;
  5917. if (!calibration_status_pinda()) return 0;
  5918. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  5919. }
  5920. #endif //PINDA_THERMISTOR
  5921. void long_pause() //long pause print
  5922. {
  5923. st_synchronize();
  5924. //save currently set parameters to global variables
  5925. saved_feedmultiply = feedmultiply;
  5926. HotendTempBckp = degTargetHotend(active_extruder);
  5927. fanSpeedBckp = fanSpeed;
  5928. start_pause_print = millis();
  5929. //save position
  5930. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5931. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5932. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5933. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5934. //retract
  5935. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5937. //lift z
  5938. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5939. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5941. //set nozzle target temperature to 0
  5942. setTargetHotend(0, 0);
  5943. setTargetHotend(0, 1);
  5944. setTargetHotend(0, 2);
  5945. //Move XY to side
  5946. current_position[X_AXIS] = X_PAUSE_POS;
  5947. current_position[Y_AXIS] = Y_PAUSE_POS;
  5948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5949. // Turn off the print fan
  5950. fanSpeed = 0;
  5951. st_synchronize();
  5952. }
  5953. void serialecho_temperatures() {
  5954. float tt = degHotend(active_extruder);
  5955. SERIAL_PROTOCOLPGM("T:");
  5956. SERIAL_PROTOCOL(tt);
  5957. SERIAL_PROTOCOLPGM(" E:");
  5958. SERIAL_PROTOCOL((int)active_extruder);
  5959. SERIAL_PROTOCOLPGM(" B:");
  5960. SERIAL_PROTOCOL_F(degBed(), 1);
  5961. SERIAL_PROTOCOLLN("");
  5962. }
  5963. extern uint32_t sdpos_atomic;
  5964. void uvlo_()
  5965. {
  5966. // Conserve power as soon as possible.
  5967. disable_x();
  5968. disable_y();
  5969. // Indicate that the interrupt has been triggered.
  5970. SERIAL_ECHOLNPGM("UVLO");
  5971. // Read out the current Z motor microstep counter. This will be later used
  5972. // for reaching the zero full step before powering off.
  5973. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  5974. // Calculate the file position, from which to resume this print.
  5975. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  5976. {
  5977. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  5978. sd_position -= sdlen_planner;
  5979. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  5980. sd_position -= sdlen_cmdqueue;
  5981. if (sd_position < 0) sd_position = 0;
  5982. }
  5983. // Backup the feedrate in mm/min.
  5984. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  5985. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  5986. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  5987. // are in action.
  5988. planner_abort_hard();
  5989. // Clean the input command queue.
  5990. cmdqueue_reset();
  5991. card.sdprinting = false;
  5992. // card.closefile();
  5993. // Enable stepper driver interrupt to move Z axis.
  5994. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  5995. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  5996. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  5997. sei();
  5998. plan_buffer_line(
  5999. current_position[X_AXIS],
  6000. current_position[Y_AXIS],
  6001. current_position[Z_AXIS],
  6002. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6003. 400, active_extruder);
  6004. plan_buffer_line(
  6005. current_position[X_AXIS],
  6006. current_position[Y_AXIS],
  6007. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6008. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6009. 40, active_extruder);
  6010. // Move Z up to the next 0th full step.
  6011. // Write the file position.
  6012. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6013. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6014. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6015. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6016. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6017. // Scale the z value to 1u resolution.
  6018. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6019. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6020. }
  6021. // Read out the current Z motor microstep counter. This will be later used
  6022. // for reaching the zero full step before powering off.
  6023. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6024. // Store the current position.
  6025. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6026. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6027. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6028. // Store the current feed rate, temperatures and fan speed.
  6029. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6030. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6031. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6032. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6033. // Finaly store the "power outage" flag.
  6034. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6035. st_synchronize();
  6036. SERIAL_ECHOPGM("stps");
  6037. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6038. #if 0
  6039. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6040. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6042. st_synchronize();
  6043. #endif
  6044. disable_z();
  6045. // Increment power failure counter
  6046. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6047. power_count++;
  6048. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6049. SERIAL_ECHOLNPGM("UVLO - end");
  6050. cli();
  6051. while(1);
  6052. }
  6053. void setup_uvlo_interrupt() {
  6054. DDRE &= ~(1 << 4); //input pin
  6055. PORTE &= ~(1 << 4); //no internal pull-up
  6056. //sensing falling edge
  6057. EICRB |= (1 << 0);
  6058. EICRB &= ~(1 << 1);
  6059. //enable INT4 interrupt
  6060. EIMSK |= (1 << 4);
  6061. }
  6062. ISR(INT4_vect) {
  6063. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6064. SERIAL_ECHOLNPGM("INT4");
  6065. if (IS_SD_PRINTING) uvlo_();
  6066. }
  6067. void recover_print(uint8_t automatic) {
  6068. char cmd[30];
  6069. lcd_update_enable(true);
  6070. lcd_update(2);
  6071. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6072. recover_machine_state_after_power_panic();
  6073. // Set the target bed and nozzle temperatures.
  6074. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6075. enquecommand(cmd);
  6076. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6077. enquecommand(cmd);
  6078. // Lift the print head, so one may remove the excess priming material.
  6079. if (current_position[Z_AXIS] < 25)
  6080. enquecommand_P(PSTR("G1 Z25 F800"));
  6081. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6082. enquecommand_P(PSTR("G28 X Y"));
  6083. // Set the target bed and nozzle temperatures and wait.
  6084. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6085. enquecommand(cmd);
  6086. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6087. enquecommand(cmd);
  6088. enquecommand_P(PSTR("M83")); //E axis relative mode
  6089. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6090. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6091. if(automatic == 0){
  6092. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6093. }
  6094. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6095. // Mark the power panic status as inactive.
  6096. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6097. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6098. delay_keep_alive(1000);
  6099. }*/
  6100. SERIAL_ECHOPGM("After waiting for temp:");
  6101. SERIAL_ECHOPGM("Current position X_AXIS:");
  6102. MYSERIAL.println(current_position[X_AXIS]);
  6103. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6104. MYSERIAL.println(current_position[Y_AXIS]);
  6105. // Restart the print.
  6106. restore_print_from_eeprom();
  6107. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6108. MYSERIAL.print(current_position[Z_AXIS]);
  6109. }
  6110. void recover_machine_state_after_power_panic()
  6111. {
  6112. // 1) Recover the logical cordinates at the time of the power panic.
  6113. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6114. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6115. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6116. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6117. // The current position after power panic is moved to the next closest 0th full step.
  6118. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6119. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6120. memcpy(destination, current_position, sizeof(destination));
  6121. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6122. print_world_coordinates();
  6123. // 2) Initialize the logical to physical coordinate system transformation.
  6124. world2machine_initialize();
  6125. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6126. mbl.active = false;
  6127. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6128. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6129. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6130. // Scale the z value to 10u resolution.
  6131. int16_t v;
  6132. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6133. if (v != 0)
  6134. mbl.active = true;
  6135. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6136. }
  6137. if (mbl.active)
  6138. mbl.upsample_3x3();
  6139. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6140. print_mesh_bed_leveling_table();
  6141. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6142. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6143. babystep_load();
  6144. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6146. // 6) Power up the motors, mark their positions as known.
  6147. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6148. axis_known_position[X_AXIS] = true; enable_x();
  6149. axis_known_position[Y_AXIS] = true; enable_y();
  6150. axis_known_position[Z_AXIS] = true; enable_z();
  6151. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6152. print_physical_coordinates();
  6153. // 7) Recover the target temperatures.
  6154. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6155. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6156. }
  6157. void restore_print_from_eeprom() {
  6158. float x_rec, y_rec, z_pos;
  6159. int feedrate_rec;
  6160. uint8_t fan_speed_rec;
  6161. char cmd[30];
  6162. char* c;
  6163. char filename[13];
  6164. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6165. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6166. SERIAL_ECHOPGM("Feedrate:");
  6167. MYSERIAL.println(feedrate_rec);
  6168. for (int i = 0; i < 8; i++) {
  6169. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6170. }
  6171. filename[8] = '\0';
  6172. MYSERIAL.print(filename);
  6173. strcat_P(filename, PSTR(".gco"));
  6174. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6175. for (c = &cmd[4]; *c; c++)
  6176. *c = tolower(*c);
  6177. enquecommand(cmd);
  6178. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6179. SERIAL_ECHOPGM("Position read from eeprom:");
  6180. MYSERIAL.println(position);
  6181. // E axis relative mode.
  6182. enquecommand_P(PSTR("M83"));
  6183. // Move to the XY print position in logical coordinates, where the print has been killed.
  6184. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6185. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6186. strcat_P(cmd, PSTR(" F2000"));
  6187. enquecommand(cmd);
  6188. // Move the Z axis down to the print, in logical coordinates.
  6189. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6190. enquecommand(cmd);
  6191. // Unretract.
  6192. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6193. // Set the feedrate saved at the power panic.
  6194. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6195. enquecommand(cmd);
  6196. // Set the fan speed saved at the power panic.
  6197. strcpy_P(cmd, PSTR("M106 S"));
  6198. strcat(cmd, itostr3(int(fan_speed_rec)));
  6199. enquecommand(cmd);
  6200. // Set a position in the file.
  6201. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6202. enquecommand(cmd);
  6203. // Start SD print.
  6204. enquecommand_P(PSTR("M24"));
  6205. }
  6206. ////////////////////////////////////////////////////////////////////////////////
  6207. // new save/restore printing
  6208. //extern uint32_t sdpos_atomic;
  6209. bool saved_printing = false;
  6210. uint32_t saved_sdpos = 0;
  6211. float saved_pos[4] = {0, 0, 0, 0};
  6212. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6213. float saved_feedrate2 = 0;
  6214. uint8_t saved_active_extruder = 0;
  6215. bool saved_extruder_under_pressure = false;
  6216. void stop_and_save_print_to_ram(float z_move, float e_move)
  6217. {
  6218. if (saved_printing) return;
  6219. cli();
  6220. unsigned char nplanner_blocks = number_of_blocks();
  6221. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6222. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6223. saved_sdpos -= sdlen_planner;
  6224. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6225. saved_sdpos -= sdlen_cmdqueue;
  6226. #if 0
  6227. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6228. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6229. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6230. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6231. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6232. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6233. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6234. {
  6235. card.setIndex(saved_sdpos);
  6236. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6237. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6238. MYSERIAL.print(char(card.get()));
  6239. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6240. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6241. MYSERIAL.print(char(card.get()));
  6242. SERIAL_ECHOLNPGM("End of command buffer");
  6243. }
  6244. {
  6245. // Print the content of the planner buffer, line by line:
  6246. card.setIndex(saved_sdpos);
  6247. int8_t iline = 0;
  6248. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6249. SERIAL_ECHOPGM("Planner line (from file): ");
  6250. MYSERIAL.print(int(iline), DEC);
  6251. SERIAL_ECHOPGM(", length: ");
  6252. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6253. SERIAL_ECHOPGM(", steps: (");
  6254. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6255. SERIAL_ECHOPGM(",");
  6256. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6257. SERIAL_ECHOPGM(",");
  6258. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6259. SERIAL_ECHOPGM(",");
  6260. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6261. SERIAL_ECHOPGM("), events: ");
  6262. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6263. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6264. MYSERIAL.print(char(card.get()));
  6265. }
  6266. }
  6267. {
  6268. // Print the content of the command buffer, line by line:
  6269. int8_t iline = 0;
  6270. union {
  6271. struct {
  6272. char lo;
  6273. char hi;
  6274. } lohi;
  6275. uint16_t value;
  6276. } sdlen_single;
  6277. int _bufindr = bufindr;
  6278. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6279. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6280. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6281. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6282. }
  6283. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6284. MYSERIAL.print(int(iline), DEC);
  6285. SERIAL_ECHOPGM(", type: ");
  6286. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6287. SERIAL_ECHOPGM(", len: ");
  6288. MYSERIAL.println(sdlen_single.value, DEC);
  6289. // Print the content of the buffer line.
  6290. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6291. SERIAL_ECHOPGM("Buffer line (from file): ");
  6292. MYSERIAL.print(int(iline), DEC);
  6293. MYSERIAL.println(int(iline), DEC);
  6294. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6295. MYSERIAL.print(char(card.get()));
  6296. if (-- _buflen == 0)
  6297. break;
  6298. // First skip the current command ID and iterate up to the end of the string.
  6299. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6300. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6301. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6302. // If the end of the buffer was empty,
  6303. if (_bufindr == sizeof(cmdbuffer)) {
  6304. // skip to the start and find the nonzero command.
  6305. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6306. }
  6307. }
  6308. }
  6309. #endif
  6310. #if 0
  6311. saved_feedrate2 = feedrate; //save feedrate
  6312. #else
  6313. // Try to deduce the feedrate from the first block of the planner.
  6314. // Speed is in mm/min.
  6315. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6316. #endif
  6317. planner_abort_hard(); //abort printing
  6318. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6319. saved_active_extruder = active_extruder; //save active_extruder
  6320. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6321. cmdqueue_reset(); //empty cmdqueue
  6322. card.sdprinting = false;
  6323. // card.closefile();
  6324. saved_printing = true;
  6325. sei();
  6326. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6327. #if 1
  6328. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6329. char buf[48];
  6330. strcpy_P(buf, PSTR("G1 Z"));
  6331. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6332. strcat_P(buf, PSTR(" E"));
  6333. // Relative extrusion
  6334. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6335. strcat_P(buf, PSTR(" F"));
  6336. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6337. // At this point the command queue is empty.
  6338. enquecommand(buf, false);
  6339. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6340. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6341. repeatcommand_front();
  6342. #else
  6343. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6344. st_synchronize(); //wait moving
  6345. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6346. memcpy(destination, current_position, sizeof(destination));
  6347. #endif
  6348. }
  6349. }
  6350. void restore_print_from_ram_and_continue(float e_move)
  6351. {
  6352. if (!saved_printing) return;
  6353. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6354. // current_position[axis] = st_get_position_mm(axis);
  6355. active_extruder = saved_active_extruder; //restore active_extruder
  6356. feedrate = saved_feedrate2; //restore feedrate
  6357. float e = saved_pos[E_AXIS] - e_move;
  6358. plan_set_e_position(e);
  6359. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6360. st_synchronize();
  6361. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6362. memcpy(destination, current_position, sizeof(destination));
  6363. card.setIndex(saved_sdpos);
  6364. sdpos_atomic = saved_sdpos;
  6365. card.sdprinting = true;
  6366. saved_printing = false;
  6367. }
  6368. void print_world_coordinates()
  6369. {
  6370. SERIAL_ECHOPGM("world coordinates: (");
  6371. MYSERIAL.print(current_position[X_AXIS], 3);
  6372. SERIAL_ECHOPGM(", ");
  6373. MYSERIAL.print(current_position[Y_AXIS], 3);
  6374. SERIAL_ECHOPGM(", ");
  6375. MYSERIAL.print(current_position[Z_AXIS], 3);
  6376. SERIAL_ECHOLNPGM(")");
  6377. }
  6378. void print_physical_coordinates()
  6379. {
  6380. SERIAL_ECHOPGM("physical coordinates: (");
  6381. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6382. SERIAL_ECHOPGM(", ");
  6383. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6384. SERIAL_ECHOPGM(", ");
  6385. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6386. SERIAL_ECHOLNPGM(")");
  6387. }
  6388. void print_mesh_bed_leveling_table()
  6389. {
  6390. SERIAL_ECHOPGM("mesh bed leveling: ");
  6391. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6392. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6393. MYSERIAL.print(mbl.z_values[y][x], 3);
  6394. SERIAL_ECHOPGM(" ");
  6395. }
  6396. SERIAL_ECHOLNPGM("");
  6397. }