Marlin_main.cpp 266 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. sei();
  524. }
  525. void crashdet_detected()
  526. {
  527. // printf("CRASH_DETECTED");
  528. /* while (!is_buffer_empty())
  529. {
  530. process_commands();
  531. cmdqueue_pop_front();
  532. }*/
  533. st_synchronize();
  534. lcd_update_enable(true);
  535. lcd_implementation_clear();
  536. lcd_update(2);
  537. // Increment crash counter
  538. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  539. crash_count++;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  541. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  542. bool yesno = true;
  543. #else
  544. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  545. #endif
  546. lcd_update_enable(true);
  547. lcd_update(2);
  548. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  549. if (yesno)
  550. {
  551. enquecommand_P(PSTR("G28 X"));
  552. enquecommand_P(PSTR("G28 Y"));
  553. enquecommand_P(PSTR("CRASH_RECOVER"));
  554. }
  555. else
  556. {
  557. enquecommand_P(PSTR("CRASH_CANCEL"));
  558. }
  559. }
  560. void crashdet_recover()
  561. {
  562. crashdet_restore_print_and_continue();
  563. tmc2130_sg_stop_on_crash = true;
  564. }
  565. void crashdet_cancel()
  566. {
  567. card.sdprinting = false;
  568. card.closefile();
  569. tmc2130_sg_stop_on_crash = true;
  570. }
  571. #ifdef MESH_BED_LEVELING
  572. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  573. #endif
  574. // Factory reset function
  575. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  576. // Level input parameter sets depth of reset
  577. // Quiet parameter masks all waitings for user interact.
  578. int er_progress = 0;
  579. void factory_reset(char level, bool quiet)
  580. {
  581. lcd_implementation_clear();
  582. int cursor_pos = 0;
  583. switch (level) {
  584. // Level 0: Language reset
  585. case 0:
  586. WRITE(BEEPER, HIGH);
  587. _delay_ms(100);
  588. WRITE(BEEPER, LOW);
  589. lcd_force_language_selection();
  590. break;
  591. //Level 1: Reset statistics
  592. case 1:
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  597. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  600. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  601. lcd_menu_statistics();
  602. break;
  603. // Level 2: Prepare for shipping
  604. case 2:
  605. //lcd_printPGM(PSTR("Factory RESET"));
  606. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  607. // Force language selection at the next boot up.
  608. lcd_force_language_selection();
  609. // Force the "Follow calibration flow" message at the next boot up.
  610. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  611. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  612. farm_no = 0;
  613. farm_mode == false;
  614. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  615. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  616. WRITE(BEEPER, HIGH);
  617. _delay_ms(100);
  618. WRITE(BEEPER, LOW);
  619. //_delay_ms(2000);
  620. break;
  621. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  622. case 3:
  623. lcd_printPGM(PSTR("Factory RESET"));
  624. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  625. WRITE(BEEPER, HIGH);
  626. _delay_ms(100);
  627. WRITE(BEEPER, LOW);
  628. er_progress = 0;
  629. lcd_print_at_PGM(3, 3, PSTR(" "));
  630. lcd_implementation_print_at(3, 3, er_progress);
  631. // Erase EEPROM
  632. for (int i = 0; i < 4096; i++) {
  633. eeprom_write_byte((uint8_t*)i, 0xFF);
  634. if (i % 41 == 0) {
  635. er_progress++;
  636. lcd_print_at_PGM(3, 3, PSTR(" "));
  637. lcd_implementation_print_at(3, 3, er_progress);
  638. lcd_printPGM(PSTR("%"));
  639. }
  640. }
  641. break;
  642. case 4:
  643. bowden_menu();
  644. break;
  645. default:
  646. break;
  647. }
  648. }
  649. #include "LiquidCrystal.h"
  650. extern LiquidCrystal lcd;
  651. FILE _lcdout = {0};
  652. int lcd_putchar(char c, FILE *stream)
  653. {
  654. lcd.write(c);
  655. return 0;
  656. }
  657. FILE _uartout = {0};
  658. int uart_putchar(char c, FILE *stream)
  659. {
  660. MYSERIAL.write(c);
  661. return 0;
  662. }
  663. void lcd_splash()
  664. {
  665. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  666. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  667. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  668. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  669. }
  670. void factory_reset()
  671. {
  672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  673. if (!READ(BTN_ENC))
  674. {
  675. _delay_ms(1000);
  676. if (!READ(BTN_ENC))
  677. {
  678. lcd_implementation_clear();
  679. lcd_printPGM(PSTR("Factory RESET"));
  680. SET_OUTPUT(BEEPER);
  681. WRITE(BEEPER, HIGH);
  682. while (!READ(BTN_ENC));
  683. WRITE(BEEPER, LOW);
  684. _delay_ms(2000);
  685. char level = reset_menu();
  686. factory_reset(level, false);
  687. switch (level) {
  688. case 0: _delay_ms(0); break;
  689. case 1: _delay_ms(0); break;
  690. case 2: _delay_ms(0); break;
  691. case 3: _delay_ms(0); break;
  692. }
  693. // _delay_ms(100);
  694. /*
  695. #ifdef MESH_BED_LEVELING
  696. _delay_ms(2000);
  697. if (!READ(BTN_ENC))
  698. {
  699. WRITE(BEEPER, HIGH);
  700. _delay_ms(100);
  701. WRITE(BEEPER, LOW);
  702. _delay_ms(200);
  703. WRITE(BEEPER, HIGH);
  704. _delay_ms(100);
  705. WRITE(BEEPER, LOW);
  706. int _z = 0;
  707. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  708. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  709. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  710. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  711. }
  712. else
  713. {
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. }
  718. #endif // mesh */
  719. }
  720. }
  721. else
  722. {
  723. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  724. }
  725. KEEPALIVE_STATE(IN_HANDLER);
  726. }
  727. void show_fw_version_warnings() {
  728. if (FW_DEV_VERSION == FW_VERSION_GOLD) return;
  729. switch (FW_DEV_VERSION) {
  730. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  731. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  732. case(FW_VERSION_RC): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_RC); break;
  733. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  734. }
  735. lcd_update_enable(true);
  736. }
  737. // "Setup" function is called by the Arduino framework on startup.
  738. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  739. // are initialized by the main() routine provided by the Arduino framework.
  740. void setup()
  741. {
  742. lcd_init();
  743. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  744. lcd_splash();
  745. setup_killpin();
  746. setup_powerhold();
  747. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  748. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  749. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  750. if (farm_no == 0xFFFF) farm_no = 0;
  751. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  752. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  753. if (farm_mode)
  754. {
  755. prusa_statistics(8);
  756. selectedSerialPort = 1;
  757. }
  758. MYSERIAL.begin(BAUDRATE);
  759. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  760. stdout = uartout;
  761. SERIAL_PROTOCOLLNPGM("start");
  762. SERIAL_ECHO_START;
  763. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  764. #if 0
  765. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  766. for (int i = 0; i < 4096; ++i) {
  767. int b = eeprom_read_byte((unsigned char*)i);
  768. if (b != 255) {
  769. SERIAL_ECHO(i);
  770. SERIAL_ECHO(":");
  771. SERIAL_ECHO(b);
  772. SERIAL_ECHOLN("");
  773. }
  774. }
  775. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  776. #endif
  777. // Check startup - does nothing if bootloader sets MCUSR to 0
  778. byte mcu = MCUSR;
  779. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  780. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  781. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  782. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  783. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  784. if (mcu & 1) puts_P(MSG_POWERUP);
  785. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  786. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  787. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  788. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  789. MCUSR = 0;
  790. //SERIAL_ECHORPGM(MSG_MARLIN);
  791. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  792. #ifdef STRING_VERSION_CONFIG_H
  793. #ifdef STRING_CONFIG_H_AUTHOR
  794. SERIAL_ECHO_START;
  795. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  796. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  797. SERIAL_ECHORPGM(MSG_AUTHOR);
  798. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  799. SERIAL_ECHOPGM("Compiled: ");
  800. SERIAL_ECHOLNPGM(__DATE__);
  801. #endif
  802. #endif
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  805. SERIAL_ECHO(freeMemory());
  806. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  807. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  808. //lcd_update_enable(false); // why do we need this?? - andre
  809. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  810. Config_RetrieveSettings(EEPROM_OFFSET);
  811. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  812. tp_init(); // Initialize temperature loop
  813. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  814. plan_init(); // Initialize planner;
  815. watchdog_init();
  816. factory_reset();
  817. #ifdef TMC2130
  818. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  819. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  820. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  821. if (crashdet)
  822. {
  823. crashdet_enable();
  824. MYSERIAL.println("CrashDetect ENABLED!");
  825. }
  826. else
  827. {
  828. crashdet_disable();
  829. MYSERIAL.println("CrashDetect DISABLED");
  830. }
  831. #endif //TMC2130
  832. st_init(); // Initialize stepper, this enables interrupts!
  833. setup_photpin();
  834. servo_init();
  835. // Reset the machine correction matrix.
  836. // It does not make sense to load the correction matrix until the machine is homed.
  837. world2machine_reset();
  838. #ifdef PAT9125
  839. fsensor_init();
  840. #endif //PAT9125
  841. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  842. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  843. #endif
  844. #ifdef DIGIPOT_I2C
  845. digipot_i2c_init();
  846. #endif
  847. setup_homepin();
  848. if (1) {
  849. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  850. // try to run to zero phase before powering the Z motor.
  851. // Move in negative direction
  852. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  853. // Round the current micro-micro steps to micro steps.
  854. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  855. // Until the phase counter is reset to zero.
  856. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  857. delay(2);
  858. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  859. delay(2);
  860. }
  861. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  862. }
  863. #if defined(Z_AXIS_ALWAYS_ON)
  864. enable_z();
  865. #endif
  866. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  867. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  868. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  869. if (farm_no == 0xFFFF) farm_no = 0;
  870. if (farm_mode)
  871. {
  872. prusa_statistics(8);
  873. }
  874. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  875. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  876. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  877. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  878. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  879. // where all the EEPROM entries are set to 0x0ff.
  880. // Once a firmware boots up, it forces at least a language selection, which changes
  881. // EEPROM_LANG to number lower than 0x0ff.
  882. // 1) Set a high power mode.
  883. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  884. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  885. }
  886. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  887. // but this times out if a blocking dialog is shown in setup().
  888. card.initsd();
  889. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  890. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  891. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  892. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  893. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  894. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  895. #ifdef SNMM
  896. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  897. int _z = BOWDEN_LENGTH;
  898. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  899. }
  900. #endif
  901. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  902. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  903. // is being written into the EEPROM, so the update procedure will be triggered only once.
  904. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  905. if (lang_selected >= LANG_NUM){
  906. lcd_mylang();
  907. }
  908. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  909. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  910. temp_cal_active = false;
  911. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  912. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  913. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  914. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  915. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  916. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  917. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  918. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  919. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  920. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  921. temp_cal_active = true;
  922. }
  923. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  924. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  925. }
  926. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  927. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  928. }
  929. check_babystep(); //checking if Z babystep is in allowed range
  930. setup_uvlo_interrupt();
  931. #ifndef DEBUG_DISABLE_FANCHECK
  932. setup_fan_interrupt();
  933. #endif //DEBUG_DISABLE_FANCHECK
  934. #ifndef DEBUG_DISABLE_FSENSORCHECK
  935. fsensor_setup_interrupt();
  936. #endif //DEBUG_DISABLE_FSENSORCHECK
  937. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  938. #ifndef DEBUG_DISABLE_STARTMSGS
  939. KEEPALIVE_STATE(PAUSED_FOR_USER);
  940. show_fw_version_warnings();
  941. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  942. lcd_wizard(0);
  943. }
  944. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  945. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  946. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  947. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  948. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  949. // Show the message.
  950. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  951. }
  952. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  953. // Show the message.
  954. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  955. lcd_update_enable(true);
  956. }
  957. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  958. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  959. lcd_update_enable(true);
  960. }
  961. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  962. // Show the message.
  963. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  964. }
  965. }
  966. KEEPALIVE_STATE(IN_PROCESS);
  967. #endif //DEBUG_DISABLE_STARTMSGS
  968. lcd_update_enable(true);
  969. lcd_implementation_clear();
  970. lcd_update(2);
  971. // Store the currently running firmware into an eeprom,
  972. // so the next time the firmware gets updated, it will know from which version it has been updated.
  973. update_current_firmware_version_to_eeprom();
  974. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  975. /*
  976. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  977. else {
  978. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  979. lcd_update_enable(true);
  980. lcd_update(2);
  981. lcd_setstatuspgm(WELCOME_MSG);
  982. }
  983. */
  984. manage_heater(); // Update temperatures
  985. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  986. MYSERIAL.println("Power panic detected!");
  987. MYSERIAL.print("Current bed temp:");
  988. MYSERIAL.println(degBed());
  989. MYSERIAL.print("Saved bed temp:");
  990. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  991. #endif
  992. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  993. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  994. MYSERIAL.println("Automatic recovery!");
  995. #endif
  996. recover_print(1);
  997. }
  998. else{
  999. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1000. MYSERIAL.println("Normal recovery!");
  1001. #endif
  1002. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1003. else {
  1004. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1005. lcd_update_enable(true);
  1006. lcd_update(2);
  1007. lcd_setstatuspgm(WELCOME_MSG);
  1008. }
  1009. }
  1010. }
  1011. KEEPALIVE_STATE(NOT_BUSY);
  1012. wdt_enable(WDTO_4S);
  1013. }
  1014. #ifdef PAT9125
  1015. void fsensor_init() {
  1016. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  1017. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1018. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1019. if (!pat9125)
  1020. {
  1021. fsensor = 0; //disable sensor
  1022. fsensor_not_responding = true;
  1023. }
  1024. else {
  1025. fsensor_not_responding = false;
  1026. }
  1027. puts_P(PSTR("FSensor "));
  1028. if (fsensor)
  1029. {
  1030. puts_P(PSTR("ENABLED\n"));
  1031. fsensor_enable();
  1032. }
  1033. else
  1034. {
  1035. puts_P(PSTR("DISABLED\n"));
  1036. fsensor_disable();
  1037. }
  1038. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1039. filament_autoload_enabled = false;
  1040. fsensor_disable();
  1041. #endif //DEBUG_DISABLE_FSENSORCHECK
  1042. }
  1043. #endif //PAT9125
  1044. void trace();
  1045. #define CHUNK_SIZE 64 // bytes
  1046. #define SAFETY_MARGIN 1
  1047. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1048. int chunkHead = 0;
  1049. int serial_read_stream() {
  1050. setTargetHotend(0, 0);
  1051. setTargetBed(0);
  1052. lcd_implementation_clear();
  1053. lcd_printPGM(PSTR(" Upload in progress"));
  1054. // first wait for how many bytes we will receive
  1055. uint32_t bytesToReceive;
  1056. // receive the four bytes
  1057. char bytesToReceiveBuffer[4];
  1058. for (int i=0; i<4; i++) {
  1059. int data;
  1060. while ((data = MYSERIAL.read()) == -1) {};
  1061. bytesToReceiveBuffer[i] = data;
  1062. }
  1063. // make it a uint32
  1064. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1065. // we're ready, notify the sender
  1066. MYSERIAL.write('+');
  1067. // lock in the routine
  1068. uint32_t receivedBytes = 0;
  1069. while (prusa_sd_card_upload) {
  1070. int i;
  1071. for (i=0; i<CHUNK_SIZE; i++) {
  1072. int data;
  1073. // check if we're not done
  1074. if (receivedBytes == bytesToReceive) {
  1075. break;
  1076. }
  1077. // read the next byte
  1078. while ((data = MYSERIAL.read()) == -1) {};
  1079. receivedBytes++;
  1080. // save it to the chunk
  1081. chunk[i] = data;
  1082. }
  1083. // write the chunk to SD
  1084. card.write_command_no_newline(&chunk[0]);
  1085. // notify the sender we're ready for more data
  1086. MYSERIAL.write('+');
  1087. // for safety
  1088. manage_heater();
  1089. // check if we're done
  1090. if(receivedBytes == bytesToReceive) {
  1091. trace(); // beep
  1092. card.closefile();
  1093. prusa_sd_card_upload = false;
  1094. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1095. return 0;
  1096. }
  1097. }
  1098. }
  1099. #ifdef HOST_KEEPALIVE_FEATURE
  1100. /**
  1101. * Output a "busy" message at regular intervals
  1102. * while the machine is not accepting commands.
  1103. */
  1104. void host_keepalive() {
  1105. if (farm_mode) return;
  1106. long ms = millis();
  1107. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1108. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1109. switch (busy_state) {
  1110. case IN_HANDLER:
  1111. case IN_PROCESS:
  1112. SERIAL_ECHO_START;
  1113. SERIAL_ECHOLNPGM("busy: processing");
  1114. break;
  1115. case PAUSED_FOR_USER:
  1116. SERIAL_ECHO_START;
  1117. SERIAL_ECHOLNPGM("busy: paused for user");
  1118. break;
  1119. case PAUSED_FOR_INPUT:
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHOLNPGM("busy: paused for input");
  1122. break;
  1123. default:
  1124. break;
  1125. }
  1126. }
  1127. prev_busy_signal_ms = ms;
  1128. }
  1129. #endif
  1130. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1131. // Before loop(), the setup() function is called by the main() routine.
  1132. void loop()
  1133. {
  1134. KEEPALIVE_STATE(NOT_BUSY);
  1135. bool stack_integrity = true;
  1136. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1137. {
  1138. is_usb_printing = true;
  1139. usb_printing_counter--;
  1140. _usb_timer = millis();
  1141. }
  1142. if (usb_printing_counter == 0)
  1143. {
  1144. is_usb_printing = false;
  1145. }
  1146. if (prusa_sd_card_upload)
  1147. {
  1148. //we read byte-by byte
  1149. serial_read_stream();
  1150. } else
  1151. {
  1152. get_command();
  1153. #ifdef SDSUPPORT
  1154. card.checkautostart(false);
  1155. #endif
  1156. if(buflen)
  1157. {
  1158. cmdbuffer_front_already_processed = false;
  1159. #ifdef SDSUPPORT
  1160. if(card.saving)
  1161. {
  1162. // Saving a G-code file onto an SD-card is in progress.
  1163. // Saving starts with M28, saving until M29 is seen.
  1164. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1165. card.write_command(CMDBUFFER_CURRENT_STRING);
  1166. if(card.logging)
  1167. process_commands();
  1168. else
  1169. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1170. } else {
  1171. card.closefile();
  1172. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1173. }
  1174. } else {
  1175. process_commands();
  1176. }
  1177. #else
  1178. process_commands();
  1179. #endif //SDSUPPORT
  1180. if (! cmdbuffer_front_already_processed && buflen)
  1181. {
  1182. cli();
  1183. union {
  1184. struct {
  1185. char lo;
  1186. char hi;
  1187. } lohi;
  1188. uint16_t value;
  1189. } sdlen;
  1190. sdlen.value = 0;
  1191. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1192. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1193. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1194. }
  1195. cmdqueue_pop_front();
  1196. planner_add_sd_length(sdlen.value);
  1197. sei();
  1198. }
  1199. host_keepalive();
  1200. }
  1201. }
  1202. //check heater every n milliseconds
  1203. manage_heater();
  1204. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1205. checkHitEndstops();
  1206. lcd_update();
  1207. #ifdef PAT9125
  1208. fsensor_update();
  1209. #endif //PAT9125
  1210. #ifdef TMC2130
  1211. tmc2130_check_overtemp();
  1212. if (tmc2130_sg_crash)
  1213. {
  1214. tmc2130_sg_crash = false;
  1215. // crashdet_stop_and_save_print();
  1216. enquecommand_P((PSTR("CRASH_DETECTED")));
  1217. }
  1218. #endif //TMC2130
  1219. }
  1220. #define DEFINE_PGM_READ_ANY(type, reader) \
  1221. static inline type pgm_read_any(const type *p) \
  1222. { return pgm_read_##reader##_near(p); }
  1223. DEFINE_PGM_READ_ANY(float, float);
  1224. DEFINE_PGM_READ_ANY(signed char, byte);
  1225. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1226. static const PROGMEM type array##_P[3] = \
  1227. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1228. static inline type array(int axis) \
  1229. { return pgm_read_any(&array##_P[axis]); } \
  1230. type array##_ext(int axis) \
  1231. { return pgm_read_any(&array##_P[axis]); }
  1232. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1233. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1234. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1235. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1236. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1237. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1238. static void axis_is_at_home(int axis) {
  1239. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1240. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1241. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1242. }
  1243. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1244. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1245. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1246. saved_feedrate = feedrate;
  1247. saved_feedmultiply = feedmultiply;
  1248. feedmultiply = 100;
  1249. previous_millis_cmd = millis();
  1250. enable_endstops(enable_endstops_now);
  1251. }
  1252. static void clean_up_after_endstop_move() {
  1253. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1254. enable_endstops(false);
  1255. #endif
  1256. feedrate = saved_feedrate;
  1257. feedmultiply = saved_feedmultiply;
  1258. previous_millis_cmd = millis();
  1259. }
  1260. #ifdef ENABLE_AUTO_BED_LEVELING
  1261. #ifdef AUTO_BED_LEVELING_GRID
  1262. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1263. {
  1264. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1265. planeNormal.debug("planeNormal");
  1266. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1267. //bedLevel.debug("bedLevel");
  1268. //plan_bed_level_matrix.debug("bed level before");
  1269. //vector_3 uncorrected_position = plan_get_position_mm();
  1270. //uncorrected_position.debug("position before");
  1271. vector_3 corrected_position = plan_get_position();
  1272. // corrected_position.debug("position after");
  1273. current_position[X_AXIS] = corrected_position.x;
  1274. current_position[Y_AXIS] = corrected_position.y;
  1275. current_position[Z_AXIS] = corrected_position.z;
  1276. // put the bed at 0 so we don't go below it.
  1277. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1279. }
  1280. #else // not AUTO_BED_LEVELING_GRID
  1281. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1282. plan_bed_level_matrix.set_to_identity();
  1283. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1284. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1285. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1286. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1287. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1288. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1289. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1290. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1291. vector_3 corrected_position = plan_get_position();
  1292. current_position[X_AXIS] = corrected_position.x;
  1293. current_position[Y_AXIS] = corrected_position.y;
  1294. current_position[Z_AXIS] = corrected_position.z;
  1295. // put the bed at 0 so we don't go below it.
  1296. current_position[Z_AXIS] = zprobe_zoffset;
  1297. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1298. }
  1299. #endif // AUTO_BED_LEVELING_GRID
  1300. static void run_z_probe() {
  1301. plan_bed_level_matrix.set_to_identity();
  1302. feedrate = homing_feedrate[Z_AXIS];
  1303. // move down until you find the bed
  1304. float zPosition = -10;
  1305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1306. st_synchronize();
  1307. // we have to let the planner know where we are right now as it is not where we said to go.
  1308. zPosition = st_get_position_mm(Z_AXIS);
  1309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1310. // move up the retract distance
  1311. zPosition += home_retract_mm(Z_AXIS);
  1312. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1313. st_synchronize();
  1314. // move back down slowly to find bed
  1315. feedrate = homing_feedrate[Z_AXIS]/4;
  1316. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1317. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1318. st_synchronize();
  1319. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1320. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1322. }
  1323. static void do_blocking_move_to(float x, float y, float z) {
  1324. float oldFeedRate = feedrate;
  1325. feedrate = homing_feedrate[Z_AXIS];
  1326. current_position[Z_AXIS] = z;
  1327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1328. st_synchronize();
  1329. feedrate = XY_TRAVEL_SPEED;
  1330. current_position[X_AXIS] = x;
  1331. current_position[Y_AXIS] = y;
  1332. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1333. st_synchronize();
  1334. feedrate = oldFeedRate;
  1335. }
  1336. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1337. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1338. }
  1339. /// Probe bed height at position (x,y), returns the measured z value
  1340. static float probe_pt(float x, float y, float z_before) {
  1341. // move to right place
  1342. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1343. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1344. run_z_probe();
  1345. float measured_z = current_position[Z_AXIS];
  1346. SERIAL_PROTOCOLRPGM(MSG_BED);
  1347. SERIAL_PROTOCOLPGM(" x: ");
  1348. SERIAL_PROTOCOL(x);
  1349. SERIAL_PROTOCOLPGM(" y: ");
  1350. SERIAL_PROTOCOL(y);
  1351. SERIAL_PROTOCOLPGM(" z: ");
  1352. SERIAL_PROTOCOL(measured_z);
  1353. SERIAL_PROTOCOLPGM("\n");
  1354. return measured_z;
  1355. }
  1356. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1357. #ifdef LIN_ADVANCE
  1358. /**
  1359. * M900: Set and/or Get advance K factor and WH/D ratio
  1360. *
  1361. * K<factor> Set advance K factor
  1362. * R<ratio> Set ratio directly (overrides WH/D)
  1363. * W<width> H<height> D<diam> Set ratio from WH/D
  1364. */
  1365. inline void gcode_M900() {
  1366. st_synchronize();
  1367. const float newK = code_seen('K') ? code_value_float() : -1;
  1368. if (newK >= 0) extruder_advance_k = newK;
  1369. float newR = code_seen('R') ? code_value_float() : -1;
  1370. if (newR < 0) {
  1371. const float newD = code_seen('D') ? code_value_float() : -1,
  1372. newW = code_seen('W') ? code_value_float() : -1,
  1373. newH = code_seen('H') ? code_value_float() : -1;
  1374. if (newD >= 0 && newW >= 0 && newH >= 0)
  1375. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1376. }
  1377. if (newR >= 0) advance_ed_ratio = newR;
  1378. SERIAL_ECHO_START;
  1379. SERIAL_ECHOPGM("Advance K=");
  1380. SERIAL_ECHOLN(extruder_advance_k);
  1381. SERIAL_ECHOPGM(" E/D=");
  1382. const float ratio = advance_ed_ratio;
  1383. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1384. }
  1385. #endif // LIN_ADVANCE
  1386. bool check_commands() {
  1387. bool end_command_found = false;
  1388. while (buflen)
  1389. {
  1390. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1391. if (!cmdbuffer_front_already_processed)
  1392. cmdqueue_pop_front();
  1393. cmdbuffer_front_already_processed = false;
  1394. }
  1395. return end_command_found;
  1396. }
  1397. #ifdef TMC2130
  1398. bool calibrate_z_auto()
  1399. {
  1400. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1401. lcd_implementation_clear();
  1402. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1403. bool endstops_enabled = enable_endstops(true);
  1404. int axis_up_dir = -home_dir(Z_AXIS);
  1405. tmc2130_home_enter(Z_AXIS_MASK);
  1406. current_position[Z_AXIS] = 0;
  1407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1408. set_destination_to_current();
  1409. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1410. feedrate = homing_feedrate[Z_AXIS];
  1411. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1412. st_synchronize();
  1413. // current_position[axis] = 0;
  1414. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1415. tmc2130_home_exit();
  1416. enable_endstops(false);
  1417. current_position[Z_AXIS] = 0;
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1419. set_destination_to_current();
  1420. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1421. feedrate = homing_feedrate[Z_AXIS] / 2;
  1422. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1423. st_synchronize();
  1424. enable_endstops(endstops_enabled);
  1425. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1426. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1427. return true;
  1428. }
  1429. #endif //TMC2130
  1430. void homeaxis(int axis)
  1431. {
  1432. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1433. #define HOMEAXIS_DO(LETTER) \
  1434. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1435. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1436. {
  1437. int axis_home_dir = home_dir(axis);
  1438. feedrate = homing_feedrate[axis];
  1439. #ifdef TMC2130
  1440. tmc2130_home_enter(X_AXIS_MASK << axis);
  1441. #endif
  1442. // Move right a bit, so that the print head does not touch the left end position,
  1443. // and the following left movement has a chance to achieve the required velocity
  1444. // for the stall guard to work.
  1445. current_position[axis] = 0;
  1446. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1447. // destination[axis] = 11.f;
  1448. destination[axis] = 3.f;
  1449. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1450. st_synchronize();
  1451. // Move left away from the possible collision with the collision detection disabled.
  1452. endstops_hit_on_purpose();
  1453. enable_endstops(false);
  1454. current_position[axis] = 0;
  1455. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1456. destination[axis] = - 1.;
  1457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1458. st_synchronize();
  1459. // Now continue to move up to the left end stop with the collision detection enabled.
  1460. enable_endstops(true);
  1461. destination[axis] = - 1.1 * max_length(axis);
  1462. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1465. endstops_hit_on_purpose();
  1466. enable_endstops(false);
  1467. current_position[axis] = 0;
  1468. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1469. destination[axis] = 10.f;
  1470. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1471. st_synchronize();
  1472. endstops_hit_on_purpose();
  1473. // Now move left up to the collision, this time with a repeatable velocity.
  1474. enable_endstops(true);
  1475. destination[axis] = - 15.f;
  1476. feedrate = homing_feedrate[axis]/2;
  1477. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1478. st_synchronize();
  1479. axis_is_at_home(axis);
  1480. axis_known_position[axis] = true;
  1481. #ifdef TMC2130
  1482. tmc2130_home_exit();
  1483. #endif
  1484. // Move the X carriage away from the collision.
  1485. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1486. endstops_hit_on_purpose();
  1487. enable_endstops(false);
  1488. {
  1489. // Two full periods (4 full steps).
  1490. float gap = 0.32f * 2.f;
  1491. current_position[axis] -= gap;
  1492. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1493. current_position[axis] += gap;
  1494. }
  1495. destination[axis] = current_position[axis];
  1496. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1497. st_synchronize();
  1498. feedrate = 0.0;
  1499. }
  1500. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1501. {
  1502. int axis_home_dir = home_dir(axis);
  1503. current_position[axis] = 0;
  1504. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1505. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1506. feedrate = homing_feedrate[axis];
  1507. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1508. st_synchronize();
  1509. current_position[axis] = 0;
  1510. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1511. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1512. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1513. st_synchronize();
  1514. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1515. feedrate = homing_feedrate[axis]/2 ;
  1516. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1517. st_synchronize();
  1518. axis_is_at_home(axis);
  1519. destination[axis] = current_position[axis];
  1520. feedrate = 0.0;
  1521. endstops_hit_on_purpose();
  1522. axis_known_position[axis] = true;
  1523. }
  1524. enable_endstops(endstops_enabled);
  1525. }
  1526. /**/
  1527. void home_xy()
  1528. {
  1529. set_destination_to_current();
  1530. homeaxis(X_AXIS);
  1531. homeaxis(Y_AXIS);
  1532. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1533. endstops_hit_on_purpose();
  1534. }
  1535. void refresh_cmd_timeout(void)
  1536. {
  1537. previous_millis_cmd = millis();
  1538. }
  1539. #ifdef FWRETRACT
  1540. void retract(bool retracting, bool swapretract = false) {
  1541. if(retracting && !retracted[active_extruder]) {
  1542. destination[X_AXIS]=current_position[X_AXIS];
  1543. destination[Y_AXIS]=current_position[Y_AXIS];
  1544. destination[Z_AXIS]=current_position[Z_AXIS];
  1545. destination[E_AXIS]=current_position[E_AXIS];
  1546. if (swapretract) {
  1547. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1548. } else {
  1549. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1550. }
  1551. plan_set_e_position(current_position[E_AXIS]);
  1552. float oldFeedrate = feedrate;
  1553. feedrate=retract_feedrate*60;
  1554. retracted[active_extruder]=true;
  1555. prepare_move();
  1556. current_position[Z_AXIS]-=retract_zlift;
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. prepare_move();
  1559. feedrate = oldFeedrate;
  1560. } else if(!retracting && retracted[active_extruder]) {
  1561. destination[X_AXIS]=current_position[X_AXIS];
  1562. destination[Y_AXIS]=current_position[Y_AXIS];
  1563. destination[Z_AXIS]=current_position[Z_AXIS];
  1564. destination[E_AXIS]=current_position[E_AXIS];
  1565. current_position[Z_AXIS]+=retract_zlift;
  1566. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1567. //prepare_move();
  1568. if (swapretract) {
  1569. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1570. } else {
  1571. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1572. }
  1573. plan_set_e_position(current_position[E_AXIS]);
  1574. float oldFeedrate = feedrate;
  1575. feedrate=retract_recover_feedrate*60;
  1576. retracted[active_extruder]=false;
  1577. prepare_move();
  1578. feedrate = oldFeedrate;
  1579. }
  1580. } //retract
  1581. #endif //FWRETRACT
  1582. void trace() {
  1583. tone(BEEPER, 440);
  1584. delay(25);
  1585. noTone(BEEPER);
  1586. delay(20);
  1587. }
  1588. /*
  1589. void ramming() {
  1590. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1591. if (current_temperature[0] < 230) {
  1592. //PLA
  1593. max_feedrate[E_AXIS] = 50;
  1594. //current_position[E_AXIS] -= 8;
  1595. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1596. //current_position[E_AXIS] += 8;
  1597. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1598. current_position[E_AXIS] += 5.4;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1600. current_position[E_AXIS] += 3.2;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1602. current_position[E_AXIS] += 3;
  1603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1604. st_synchronize();
  1605. max_feedrate[E_AXIS] = 80;
  1606. current_position[E_AXIS] -= 82;
  1607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1608. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1609. current_position[E_AXIS] -= 20;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1611. current_position[E_AXIS] += 5;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1613. current_position[E_AXIS] += 5;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1615. current_position[E_AXIS] -= 10;
  1616. st_synchronize();
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1618. current_position[E_AXIS] += 10;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1620. current_position[E_AXIS] -= 10;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1622. current_position[E_AXIS] += 10;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1624. current_position[E_AXIS] -= 10;
  1625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1626. st_synchronize();
  1627. }
  1628. else {
  1629. //ABS
  1630. max_feedrate[E_AXIS] = 50;
  1631. //current_position[E_AXIS] -= 8;
  1632. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1633. //current_position[E_AXIS] += 8;
  1634. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1635. current_position[E_AXIS] += 3.1;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1637. current_position[E_AXIS] += 3.1;
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1639. current_position[E_AXIS] += 4;
  1640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1641. st_synchronize();
  1642. //current_position[X_AXIS] += 23; //delay
  1643. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1644. //current_position[X_AXIS] -= 23; //delay
  1645. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1646. delay(4700);
  1647. max_feedrate[E_AXIS] = 80;
  1648. current_position[E_AXIS] -= 92;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1650. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1651. current_position[E_AXIS] -= 5;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1653. current_position[E_AXIS] += 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1655. current_position[E_AXIS] -= 5;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1657. st_synchronize();
  1658. current_position[E_AXIS] += 5;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1660. current_position[E_AXIS] -= 5;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1662. current_position[E_AXIS] += 5;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1664. current_position[E_AXIS] -= 5;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1666. st_synchronize();
  1667. }
  1668. }
  1669. */
  1670. #ifdef TMC2130
  1671. void force_high_power_mode(bool start_high_power_section) {
  1672. uint8_t silent;
  1673. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1674. if (silent == 1) {
  1675. //we are in silent mode, set to normal mode to enable crash detection
  1676. st_synchronize();
  1677. cli();
  1678. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1679. tmc2130_init();
  1680. sei();
  1681. digipot_init();
  1682. }
  1683. }
  1684. #endif //TMC2130
  1685. bool gcode_M45(bool onlyZ)
  1686. {
  1687. bool final_result = false;
  1688. #ifdef TMC2130
  1689. FORCE_HIGH_POWER_START;
  1690. #endif // TMC2130
  1691. // Only Z calibration?
  1692. if (!onlyZ)
  1693. {
  1694. setTargetBed(0);
  1695. setTargetHotend(0, 0);
  1696. setTargetHotend(0, 1);
  1697. setTargetHotend(0, 2);
  1698. adjust_bed_reset(); //reset bed level correction
  1699. }
  1700. // Disable the default update procedure of the display. We will do a modal dialog.
  1701. lcd_update_enable(false);
  1702. // Let the planner use the uncorrected coordinates.
  1703. mbl.reset();
  1704. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1705. // the planner will not perform any adjustments in the XY plane.
  1706. // Wait for the motors to stop and update the current position with the absolute values.
  1707. world2machine_revert_to_uncorrected();
  1708. // Reset the baby step value applied without moving the axes.
  1709. babystep_reset();
  1710. // Mark all axes as in a need for homing.
  1711. memset(axis_known_position, 0, sizeof(axis_known_position));
  1712. // Home in the XY plane.
  1713. //set_destination_to_current();
  1714. setup_for_endstop_move();
  1715. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1716. home_xy();
  1717. // Let the user move the Z axes up to the end stoppers.
  1718. #ifdef TMC2130
  1719. if (calibrate_z_auto())
  1720. {
  1721. #else //TMC2130
  1722. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1723. {
  1724. #endif //TMC2130
  1725. refresh_cmd_timeout();
  1726. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1727. //{
  1728. // lcd_wait_for_cool_down();
  1729. //}
  1730. if(!onlyZ)
  1731. {
  1732. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1733. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1734. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1735. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1736. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1737. KEEPALIVE_STATE(IN_HANDLER);
  1738. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1739. lcd_implementation_print_at(0, 2, 1);
  1740. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1741. }
  1742. // Move the print head close to the bed.
  1743. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1744. bool endstops_enabled = enable_endstops(true);
  1745. tmc2130_home_enter(Z_AXIS_MASK);
  1746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1747. st_synchronize();
  1748. tmc2130_home_exit();
  1749. enable_endstops(endstops_enabled);
  1750. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1751. {
  1752. //#ifdef TMC2130
  1753. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1754. //#endif
  1755. int8_t verbosity_level = 0;
  1756. if (code_seen('V'))
  1757. {
  1758. // Just 'V' without a number counts as V1.
  1759. char c = strchr_pointer[1];
  1760. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1761. }
  1762. if (onlyZ)
  1763. {
  1764. clean_up_after_endstop_move();
  1765. // Z only calibration.
  1766. // Load the machine correction matrix
  1767. world2machine_initialize();
  1768. // and correct the current_position to match the transformed coordinate system.
  1769. world2machine_update_current();
  1770. //FIXME
  1771. bool result = sample_mesh_and_store_reference();
  1772. if (result)
  1773. {
  1774. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1775. // Shipped, the nozzle height has been set already. The user can start printing now.
  1776. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1777. final_result = true;
  1778. // babystep_apply();
  1779. }
  1780. }
  1781. else
  1782. {
  1783. // Reset the baby step value and the baby step applied flag.
  1784. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1785. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1786. // Complete XYZ calibration.
  1787. uint8_t point_too_far_mask = 0;
  1788. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1789. clean_up_after_endstop_move();
  1790. // Print head up.
  1791. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1793. st_synchronize();
  1794. if (result >= 0)
  1795. {
  1796. point_too_far_mask = 0;
  1797. // Second half: The fine adjustment.
  1798. // Let the planner use the uncorrected coordinates.
  1799. mbl.reset();
  1800. world2machine_reset();
  1801. // Home in the XY plane.
  1802. setup_for_endstop_move();
  1803. home_xy();
  1804. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1805. clean_up_after_endstop_move();
  1806. // Print head up.
  1807. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1809. st_synchronize();
  1810. // if (result >= 0) babystep_apply();
  1811. }
  1812. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1813. if (result >= 0)
  1814. {
  1815. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1816. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1817. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1818. final_result = true;
  1819. }
  1820. }
  1821. #ifdef TMC2130
  1822. tmc2130_home_exit();
  1823. #endif
  1824. }
  1825. else
  1826. {
  1827. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1828. final_result = false;
  1829. }
  1830. }
  1831. else
  1832. {
  1833. // Timeouted.
  1834. }
  1835. lcd_update_enable(true);
  1836. #ifdef TMC2130
  1837. FORCE_HIGH_POWER_END;
  1838. #endif // TMC2130
  1839. return final_result;
  1840. }
  1841. void gcode_M701()
  1842. {
  1843. #ifdef SNMM
  1844. extr_adj(snmm_extruder);//loads current extruder
  1845. #else
  1846. enable_z();
  1847. custom_message = true;
  1848. custom_message_type = 2;
  1849. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1850. current_position[E_AXIS] += 70;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1852. current_position[E_AXIS] += 25;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1854. st_synchronize();
  1855. tone(BEEPER, 500);
  1856. delay_keep_alive(50);
  1857. noTone(BEEPER);
  1858. if (!farm_mode && loading_flag) {
  1859. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1860. while (!clean) {
  1861. lcd_update_enable(true);
  1862. lcd_update(2);
  1863. current_position[E_AXIS] += 25;
  1864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1865. st_synchronize();
  1866. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1867. }
  1868. }
  1869. lcd_update_enable(true);
  1870. lcd_update(2);
  1871. lcd_setstatuspgm(WELCOME_MSG);
  1872. disable_z();
  1873. loading_flag = false;
  1874. custom_message = false;
  1875. custom_message_type = 0;
  1876. #endif
  1877. }
  1878. void process_commands()
  1879. {
  1880. #ifdef FILAMENT_RUNOUT_SUPPORT
  1881. SET_INPUT(FR_SENS);
  1882. #endif
  1883. #ifdef CMDBUFFER_DEBUG
  1884. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1885. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1886. SERIAL_ECHOLNPGM("");
  1887. SERIAL_ECHOPGM("In cmdqueue: ");
  1888. SERIAL_ECHO(buflen);
  1889. SERIAL_ECHOLNPGM("");
  1890. #endif /* CMDBUFFER_DEBUG */
  1891. unsigned long codenum; //throw away variable
  1892. char *starpos = NULL;
  1893. #ifdef ENABLE_AUTO_BED_LEVELING
  1894. float x_tmp, y_tmp, z_tmp, real_z;
  1895. #endif
  1896. // PRUSA GCODES
  1897. KEEPALIVE_STATE(IN_HANDLER);
  1898. #ifdef SNMM
  1899. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1900. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1901. int8_t SilentMode;
  1902. #endif
  1903. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1904. starpos = (strchr(strchr_pointer + 5, '*'));
  1905. if (starpos != NULL)
  1906. *(starpos) = '\0';
  1907. lcd_setstatus(strchr_pointer + 5);
  1908. }
  1909. else if(code_seen("CRASH_DETECTED"))
  1910. crashdet_detected();
  1911. else if(code_seen("CRASH_RECOVER"))
  1912. crashdet_recover();
  1913. else if(code_seen("CRASH_CANCEL"))
  1914. crashdet_cancel();
  1915. else if(code_seen("PRUSA")){
  1916. if (code_seen("Ping")) { //PRUSA Ping
  1917. if (farm_mode) {
  1918. PingTime = millis();
  1919. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1920. }
  1921. }
  1922. else if (code_seen("PRN")) {
  1923. MYSERIAL.println(status_number);
  1924. }else if (code_seen("FAN")) {
  1925. MYSERIAL.print("E0:");
  1926. MYSERIAL.print(60*fan_speed[0]);
  1927. MYSERIAL.println(" RPM");
  1928. MYSERIAL.print("PRN0:");
  1929. MYSERIAL.print(60*fan_speed[1]);
  1930. MYSERIAL.println(" RPM");
  1931. }else if (code_seen("fn")) {
  1932. if (farm_mode) {
  1933. MYSERIAL.println(farm_no);
  1934. }
  1935. else {
  1936. MYSERIAL.println("Not in farm mode.");
  1937. }
  1938. }else if (code_seen("fv")) {
  1939. // get file version
  1940. #ifdef SDSUPPORT
  1941. card.openFile(strchr_pointer + 3,true);
  1942. while (true) {
  1943. uint16_t readByte = card.get();
  1944. MYSERIAL.write(readByte);
  1945. if (readByte=='\n') {
  1946. break;
  1947. }
  1948. }
  1949. card.closefile();
  1950. #endif // SDSUPPORT
  1951. } else if (code_seen("M28")) {
  1952. trace();
  1953. prusa_sd_card_upload = true;
  1954. card.openFile(strchr_pointer+4,false);
  1955. } else if (code_seen("SN")) {
  1956. if (farm_mode) {
  1957. selectedSerialPort = 0;
  1958. MSerial.write(";S");
  1959. // S/N is:CZPX0917X003XC13518
  1960. int numbersRead = 0;
  1961. while (numbersRead < 19) {
  1962. while (MSerial.available() > 0) {
  1963. uint8_t serial_char = MSerial.read();
  1964. selectedSerialPort = 1;
  1965. MSerial.write(serial_char);
  1966. numbersRead++;
  1967. selectedSerialPort = 0;
  1968. }
  1969. }
  1970. selectedSerialPort = 1;
  1971. MSerial.write('\n');
  1972. /*for (int b = 0; b < 3; b++) {
  1973. tone(BEEPER, 110);
  1974. delay(50);
  1975. noTone(BEEPER);
  1976. delay(50);
  1977. }*/
  1978. } else {
  1979. MYSERIAL.println("Not in farm mode.");
  1980. }
  1981. } else if(code_seen("Fir")){
  1982. SERIAL_PROTOCOLLN(FW_VERSION);
  1983. } else if(code_seen("Rev")){
  1984. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1985. } else if(code_seen("Lang")) {
  1986. lcd_force_language_selection();
  1987. } else if(code_seen("Lz")) {
  1988. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1989. } else if (code_seen("SERIAL LOW")) {
  1990. MYSERIAL.println("SERIAL LOW");
  1991. MYSERIAL.begin(BAUDRATE);
  1992. return;
  1993. } else if (code_seen("SERIAL HIGH")) {
  1994. MYSERIAL.println("SERIAL HIGH");
  1995. MYSERIAL.begin(1152000);
  1996. return;
  1997. } else if(code_seen("Beat")) {
  1998. // Kick farm link timer
  1999. kicktime = millis();
  2000. } else if(code_seen("FR")) {
  2001. // Factory full reset
  2002. factory_reset(0,true);
  2003. }
  2004. //else if (code_seen('Cal')) {
  2005. // lcd_calibration();
  2006. // }
  2007. }
  2008. else if (code_seen('^')) {
  2009. // nothing, this is a version line
  2010. } else if(code_seen('G'))
  2011. {
  2012. switch((int)code_value())
  2013. {
  2014. case 0: // G0 -> G1
  2015. case 1: // G1
  2016. if(Stopped == false) {
  2017. #ifdef FILAMENT_RUNOUT_SUPPORT
  2018. if(READ(FR_SENS)){
  2019. feedmultiplyBckp=feedmultiply;
  2020. float target[4];
  2021. float lastpos[4];
  2022. target[X_AXIS]=current_position[X_AXIS];
  2023. target[Y_AXIS]=current_position[Y_AXIS];
  2024. target[Z_AXIS]=current_position[Z_AXIS];
  2025. target[E_AXIS]=current_position[E_AXIS];
  2026. lastpos[X_AXIS]=current_position[X_AXIS];
  2027. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2028. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2029. lastpos[E_AXIS]=current_position[E_AXIS];
  2030. //retract by E
  2031. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2032. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2033. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2034. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2035. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2036. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2037. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2038. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2040. //finish moves
  2041. st_synchronize();
  2042. //disable extruder steppers so filament can be removed
  2043. disable_e0();
  2044. disable_e1();
  2045. disable_e2();
  2046. delay(100);
  2047. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2048. uint8_t cnt=0;
  2049. int counterBeep = 0;
  2050. lcd_wait_interact();
  2051. while(!lcd_clicked()){
  2052. cnt++;
  2053. manage_heater();
  2054. manage_inactivity(true);
  2055. //lcd_update();
  2056. if(cnt==0)
  2057. {
  2058. #if BEEPER > 0
  2059. if (counterBeep== 500){
  2060. counterBeep = 0;
  2061. }
  2062. SET_OUTPUT(BEEPER);
  2063. if (counterBeep== 0){
  2064. WRITE(BEEPER,HIGH);
  2065. }
  2066. if (counterBeep== 20){
  2067. WRITE(BEEPER,LOW);
  2068. }
  2069. counterBeep++;
  2070. #else
  2071. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2072. lcd_buzz(1000/6,100);
  2073. #else
  2074. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2075. #endif
  2076. #endif
  2077. }
  2078. }
  2079. WRITE(BEEPER,LOW);
  2080. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2081. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2082. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2083. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2084. lcd_change_fil_state = 0;
  2085. lcd_loading_filament();
  2086. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2087. lcd_change_fil_state = 0;
  2088. lcd_alright();
  2089. switch(lcd_change_fil_state){
  2090. case 2:
  2091. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2092. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2093. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2094. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2095. lcd_loading_filament();
  2096. break;
  2097. case 3:
  2098. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2099. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2100. lcd_loading_color();
  2101. break;
  2102. default:
  2103. lcd_change_success();
  2104. break;
  2105. }
  2106. }
  2107. target[E_AXIS]+= 5;
  2108. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2109. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2110. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2111. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2112. //plan_set_e_position(current_position[E_AXIS]);
  2113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2114. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2115. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2116. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2117. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2118. plan_set_e_position(lastpos[E_AXIS]);
  2119. feedmultiply=feedmultiplyBckp;
  2120. char cmd[9];
  2121. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2122. enquecommand(cmd);
  2123. }
  2124. #endif
  2125. get_coordinates(); // For X Y Z E F
  2126. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2127. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2128. }
  2129. #ifdef FWRETRACT
  2130. if(autoretract_enabled)
  2131. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2132. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2133. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2134. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2135. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2136. retract(!retracted);
  2137. return;
  2138. }
  2139. }
  2140. #endif //FWRETRACT
  2141. prepare_move();
  2142. //ClearToSend();
  2143. }
  2144. break;
  2145. case 2: // G2 - CW ARC
  2146. if(Stopped == false) {
  2147. get_arc_coordinates();
  2148. prepare_arc_move(true);
  2149. }
  2150. break;
  2151. case 3: // G3 - CCW ARC
  2152. if(Stopped == false) {
  2153. get_arc_coordinates();
  2154. prepare_arc_move(false);
  2155. }
  2156. break;
  2157. case 4: // G4 dwell
  2158. codenum = 0;
  2159. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2160. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2161. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2162. st_synchronize();
  2163. codenum += millis(); // keep track of when we started waiting
  2164. previous_millis_cmd = millis();
  2165. while(millis() < codenum) {
  2166. manage_heater();
  2167. manage_inactivity();
  2168. lcd_update();
  2169. }
  2170. break;
  2171. #ifdef FWRETRACT
  2172. case 10: // G10 retract
  2173. #if EXTRUDERS > 1
  2174. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2175. retract(true,retracted_swap[active_extruder]);
  2176. #else
  2177. retract(true);
  2178. #endif
  2179. break;
  2180. case 11: // G11 retract_recover
  2181. #if EXTRUDERS > 1
  2182. retract(false,retracted_swap[active_extruder]);
  2183. #else
  2184. retract(false);
  2185. #endif
  2186. break;
  2187. #endif //FWRETRACT
  2188. case 28: //G28 Home all Axis one at a time
  2189. {
  2190. st_synchronize();
  2191. #if 0
  2192. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2193. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2194. #endif
  2195. // Flag for the display update routine and to disable the print cancelation during homing.
  2196. homing_flag = true;
  2197. // Which axes should be homed?
  2198. bool home_x = code_seen(axis_codes[X_AXIS]);
  2199. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2200. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2201. // Either all X,Y,Z codes are present, or none of them.
  2202. bool home_all_axes = home_x == home_y && home_x == home_z;
  2203. if (home_all_axes)
  2204. // No X/Y/Z code provided means to home all axes.
  2205. home_x = home_y = home_z = true;
  2206. #ifdef ENABLE_AUTO_BED_LEVELING
  2207. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2208. #endif //ENABLE_AUTO_BED_LEVELING
  2209. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2210. // the planner will not perform any adjustments in the XY plane.
  2211. // Wait for the motors to stop and update the current position with the absolute values.
  2212. world2machine_revert_to_uncorrected();
  2213. // For mesh bed leveling deactivate the matrix temporarily.
  2214. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2215. // in a single axis only.
  2216. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2217. #ifdef MESH_BED_LEVELING
  2218. uint8_t mbl_was_active = mbl.active;
  2219. mbl.active = 0;
  2220. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2221. #endif
  2222. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2223. // consumed during the first movements following this statement.
  2224. if (home_z)
  2225. babystep_undo();
  2226. saved_feedrate = feedrate;
  2227. saved_feedmultiply = feedmultiply;
  2228. feedmultiply = 100;
  2229. previous_millis_cmd = millis();
  2230. enable_endstops(true);
  2231. memcpy(destination, current_position, sizeof(destination));
  2232. feedrate = 0.0;
  2233. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2234. if(home_z)
  2235. homeaxis(Z_AXIS);
  2236. #endif
  2237. #ifdef QUICK_HOME
  2238. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2239. if(home_x && home_y) //first diagonal move
  2240. {
  2241. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2242. int x_axis_home_dir = home_dir(X_AXIS);
  2243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2244. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2245. feedrate = homing_feedrate[X_AXIS];
  2246. if(homing_feedrate[Y_AXIS]<feedrate)
  2247. feedrate = homing_feedrate[Y_AXIS];
  2248. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2249. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2250. } else {
  2251. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2252. }
  2253. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2254. st_synchronize();
  2255. axis_is_at_home(X_AXIS);
  2256. axis_is_at_home(Y_AXIS);
  2257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2258. destination[X_AXIS] = current_position[X_AXIS];
  2259. destination[Y_AXIS] = current_position[Y_AXIS];
  2260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2261. feedrate = 0.0;
  2262. st_synchronize();
  2263. endstops_hit_on_purpose();
  2264. current_position[X_AXIS] = destination[X_AXIS];
  2265. current_position[Y_AXIS] = destination[Y_AXIS];
  2266. current_position[Z_AXIS] = destination[Z_AXIS];
  2267. }
  2268. #endif /* QUICK_HOME */
  2269. if(home_x)
  2270. homeaxis(X_AXIS);
  2271. if(home_y)
  2272. homeaxis(Y_AXIS);
  2273. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2274. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2275. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2276. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2277. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2278. #ifndef Z_SAFE_HOMING
  2279. if(home_z) {
  2280. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2281. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2282. feedrate = max_feedrate[Z_AXIS];
  2283. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2284. st_synchronize();
  2285. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2286. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2287. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2288. {
  2289. homeaxis(X_AXIS);
  2290. homeaxis(Y_AXIS);
  2291. }
  2292. // 1st mesh bed leveling measurement point, corrected.
  2293. world2machine_initialize();
  2294. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2295. world2machine_reset();
  2296. if (destination[Y_AXIS] < Y_MIN_POS)
  2297. destination[Y_AXIS] = Y_MIN_POS;
  2298. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2299. feedrate = homing_feedrate[Z_AXIS]/10;
  2300. current_position[Z_AXIS] = 0;
  2301. enable_endstops(false);
  2302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2304. st_synchronize();
  2305. current_position[X_AXIS] = destination[X_AXIS];
  2306. current_position[Y_AXIS] = destination[Y_AXIS];
  2307. enable_endstops(true);
  2308. endstops_hit_on_purpose();
  2309. homeaxis(Z_AXIS);
  2310. #else // MESH_BED_LEVELING
  2311. homeaxis(Z_AXIS);
  2312. #endif // MESH_BED_LEVELING
  2313. }
  2314. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2315. if(home_all_axes) {
  2316. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2317. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2318. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2319. feedrate = XY_TRAVEL_SPEED/60;
  2320. current_position[Z_AXIS] = 0;
  2321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2322. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2323. st_synchronize();
  2324. current_position[X_AXIS] = destination[X_AXIS];
  2325. current_position[Y_AXIS] = destination[Y_AXIS];
  2326. homeaxis(Z_AXIS);
  2327. }
  2328. // Let's see if X and Y are homed and probe is inside bed area.
  2329. if(home_z) {
  2330. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2331. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2332. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2333. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2334. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2335. current_position[Z_AXIS] = 0;
  2336. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2337. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2338. feedrate = max_feedrate[Z_AXIS];
  2339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2340. st_synchronize();
  2341. homeaxis(Z_AXIS);
  2342. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2343. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2344. SERIAL_ECHO_START;
  2345. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2346. } else {
  2347. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2348. SERIAL_ECHO_START;
  2349. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2350. }
  2351. }
  2352. #endif // Z_SAFE_HOMING
  2353. #endif // Z_HOME_DIR < 0
  2354. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2355. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2356. #ifdef ENABLE_AUTO_BED_LEVELING
  2357. if(home_z)
  2358. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2359. #endif
  2360. // Set the planner and stepper routine positions.
  2361. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2362. // contains the machine coordinates.
  2363. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2364. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2365. enable_endstops(false);
  2366. #endif
  2367. feedrate = saved_feedrate;
  2368. feedmultiply = saved_feedmultiply;
  2369. previous_millis_cmd = millis();
  2370. endstops_hit_on_purpose();
  2371. #ifndef MESH_BED_LEVELING
  2372. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2373. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2374. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2375. lcd_adjust_z();
  2376. #endif
  2377. // Load the machine correction matrix
  2378. world2machine_initialize();
  2379. // and correct the current_position XY axes to match the transformed coordinate system.
  2380. world2machine_update_current();
  2381. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2382. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2383. {
  2384. if (! home_z && mbl_was_active) {
  2385. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2386. mbl.active = true;
  2387. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2388. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2389. }
  2390. }
  2391. else
  2392. {
  2393. st_synchronize();
  2394. homing_flag = false;
  2395. // Push the commands to the front of the message queue in the reverse order!
  2396. // There shall be always enough space reserved for these commands.
  2397. // enquecommand_front_P((PSTR("G80")));
  2398. goto case_G80;
  2399. }
  2400. #endif
  2401. if (farm_mode) { prusa_statistics(20); };
  2402. homing_flag = false;
  2403. #if 0
  2404. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2405. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2406. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2407. #endif
  2408. break;
  2409. }
  2410. #ifdef ENABLE_AUTO_BED_LEVELING
  2411. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2412. {
  2413. #if Z_MIN_PIN == -1
  2414. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2415. #endif
  2416. // Prevent user from running a G29 without first homing in X and Y
  2417. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2418. {
  2419. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2420. SERIAL_ECHO_START;
  2421. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2422. break; // abort G29, since we don't know where we are
  2423. }
  2424. st_synchronize();
  2425. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2426. //vector_3 corrected_position = plan_get_position_mm();
  2427. //corrected_position.debug("position before G29");
  2428. plan_bed_level_matrix.set_to_identity();
  2429. vector_3 uncorrected_position = plan_get_position();
  2430. //uncorrected_position.debug("position durring G29");
  2431. current_position[X_AXIS] = uncorrected_position.x;
  2432. current_position[Y_AXIS] = uncorrected_position.y;
  2433. current_position[Z_AXIS] = uncorrected_position.z;
  2434. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2435. setup_for_endstop_move();
  2436. feedrate = homing_feedrate[Z_AXIS];
  2437. #ifdef AUTO_BED_LEVELING_GRID
  2438. // probe at the points of a lattice grid
  2439. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2440. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2441. // solve the plane equation ax + by + d = z
  2442. // A is the matrix with rows [x y 1] for all the probed points
  2443. // B is the vector of the Z positions
  2444. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2445. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2446. // "A" matrix of the linear system of equations
  2447. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2448. // "B" vector of Z points
  2449. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2450. int probePointCounter = 0;
  2451. bool zig = true;
  2452. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2453. {
  2454. int xProbe, xInc;
  2455. if (zig)
  2456. {
  2457. xProbe = LEFT_PROBE_BED_POSITION;
  2458. //xEnd = RIGHT_PROBE_BED_POSITION;
  2459. xInc = xGridSpacing;
  2460. zig = false;
  2461. } else // zag
  2462. {
  2463. xProbe = RIGHT_PROBE_BED_POSITION;
  2464. //xEnd = LEFT_PROBE_BED_POSITION;
  2465. xInc = -xGridSpacing;
  2466. zig = true;
  2467. }
  2468. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2469. {
  2470. float z_before;
  2471. if (probePointCounter == 0)
  2472. {
  2473. // raise before probing
  2474. z_before = Z_RAISE_BEFORE_PROBING;
  2475. } else
  2476. {
  2477. // raise extruder
  2478. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2479. }
  2480. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2481. eqnBVector[probePointCounter] = measured_z;
  2482. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2483. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2484. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2485. probePointCounter++;
  2486. xProbe += xInc;
  2487. }
  2488. }
  2489. clean_up_after_endstop_move();
  2490. // solve lsq problem
  2491. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2492. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2493. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2494. SERIAL_PROTOCOLPGM(" b: ");
  2495. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2496. SERIAL_PROTOCOLPGM(" d: ");
  2497. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2498. set_bed_level_equation_lsq(plane_equation_coefficients);
  2499. free(plane_equation_coefficients);
  2500. #else // AUTO_BED_LEVELING_GRID not defined
  2501. // Probe at 3 arbitrary points
  2502. // probe 1
  2503. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2504. // probe 2
  2505. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2506. // probe 3
  2507. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2508. clean_up_after_endstop_move();
  2509. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2510. #endif // AUTO_BED_LEVELING_GRID
  2511. st_synchronize();
  2512. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2513. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2514. // When the bed is uneven, this height must be corrected.
  2515. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2516. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2517. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2518. z_tmp = current_position[Z_AXIS];
  2519. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2520. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2521. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2522. }
  2523. break;
  2524. #ifndef Z_PROBE_SLED
  2525. case 30: // G30 Single Z Probe
  2526. {
  2527. st_synchronize();
  2528. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2529. setup_for_endstop_move();
  2530. feedrate = homing_feedrate[Z_AXIS];
  2531. run_z_probe();
  2532. SERIAL_PROTOCOLPGM(MSG_BED);
  2533. SERIAL_PROTOCOLPGM(" X: ");
  2534. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2535. SERIAL_PROTOCOLPGM(" Y: ");
  2536. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2537. SERIAL_PROTOCOLPGM(" Z: ");
  2538. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2539. SERIAL_PROTOCOLPGM("\n");
  2540. clean_up_after_endstop_move();
  2541. }
  2542. break;
  2543. #else
  2544. case 31: // dock the sled
  2545. dock_sled(true);
  2546. break;
  2547. case 32: // undock the sled
  2548. dock_sled(false);
  2549. break;
  2550. #endif // Z_PROBE_SLED
  2551. #endif // ENABLE_AUTO_BED_LEVELING
  2552. #ifdef MESH_BED_LEVELING
  2553. case 30: // G30 Single Z Probe
  2554. {
  2555. st_synchronize();
  2556. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2557. setup_for_endstop_move();
  2558. feedrate = homing_feedrate[Z_AXIS];
  2559. find_bed_induction_sensor_point_z(-10.f, 3);
  2560. SERIAL_PROTOCOLRPGM(MSG_BED);
  2561. SERIAL_PROTOCOLPGM(" X: ");
  2562. MYSERIAL.print(current_position[X_AXIS], 5);
  2563. SERIAL_PROTOCOLPGM(" Y: ");
  2564. MYSERIAL.print(current_position[Y_AXIS], 5);
  2565. SERIAL_PROTOCOLPGM(" Z: ");
  2566. MYSERIAL.print(current_position[Z_AXIS], 5);
  2567. SERIAL_PROTOCOLPGM("\n");
  2568. clean_up_after_endstop_move();
  2569. }
  2570. break;
  2571. case 75:
  2572. {
  2573. for (int i = 40; i <= 110; i++) {
  2574. MYSERIAL.print(i);
  2575. MYSERIAL.print(" ");
  2576. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2577. }
  2578. }
  2579. break;
  2580. case 76: //PINDA probe temperature calibration
  2581. {
  2582. #ifdef PINDA_THERMISTOR
  2583. if (true)
  2584. {
  2585. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2586. // We don't know where we are! HOME!
  2587. // Push the commands to the front of the message queue in the reverse order!
  2588. // There shall be always enough space reserved for these commands.
  2589. repeatcommand_front(); // repeat G76 with all its parameters
  2590. enquecommand_front_P((PSTR("G28 W0")));
  2591. break;
  2592. }
  2593. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2594. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2595. float zero_z;
  2596. int z_shift = 0; //unit: steps
  2597. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2598. if (start_temp < 35) start_temp = 35;
  2599. if (start_temp < current_temperature_pinda) start_temp += 5;
  2600. SERIAL_ECHOPGM("start temperature: ");
  2601. MYSERIAL.println(start_temp);
  2602. // setTargetHotend(200, 0);
  2603. setTargetBed(70 + (start_temp - 30));
  2604. custom_message = true;
  2605. custom_message_type = 4;
  2606. custom_message_state = 1;
  2607. custom_message = MSG_TEMP_CALIBRATION;
  2608. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2609. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2610. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2612. st_synchronize();
  2613. while (current_temperature_pinda < start_temp)
  2614. {
  2615. delay_keep_alive(1000);
  2616. serialecho_temperatures();
  2617. }
  2618. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2619. current_position[Z_AXIS] = 5;
  2620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2621. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2622. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2624. st_synchronize();
  2625. find_bed_induction_sensor_point_z(-1.f);
  2626. zero_z = current_position[Z_AXIS];
  2627. //current_position[Z_AXIS]
  2628. SERIAL_ECHOLNPGM("");
  2629. SERIAL_ECHOPGM("ZERO: ");
  2630. MYSERIAL.print(current_position[Z_AXIS]);
  2631. SERIAL_ECHOLNPGM("");
  2632. int i = -1; for (; i < 5; i++)
  2633. {
  2634. float temp = (40 + i * 5);
  2635. SERIAL_ECHOPGM("Step: ");
  2636. MYSERIAL.print(i + 2);
  2637. SERIAL_ECHOLNPGM("/6 (skipped)");
  2638. SERIAL_ECHOPGM("PINDA temperature: ");
  2639. MYSERIAL.print((40 + i*5));
  2640. SERIAL_ECHOPGM(" Z shift (mm):");
  2641. MYSERIAL.print(0);
  2642. SERIAL_ECHOLNPGM("");
  2643. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2644. if (start_temp <= temp) break;
  2645. }
  2646. for (i++; i < 5; i++)
  2647. {
  2648. float temp = (40 + i * 5);
  2649. SERIAL_ECHOPGM("Step: ");
  2650. MYSERIAL.print(i + 2);
  2651. SERIAL_ECHOLNPGM("/6");
  2652. custom_message_state = i + 2;
  2653. setTargetBed(50 + 10 * (temp - 30) / 5);
  2654. // setTargetHotend(255, 0);
  2655. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2656. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2657. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2659. st_synchronize();
  2660. while (current_temperature_pinda < temp)
  2661. {
  2662. delay_keep_alive(1000);
  2663. serialecho_temperatures();
  2664. }
  2665. current_position[Z_AXIS] = 5;
  2666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2667. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2668. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2670. st_synchronize();
  2671. find_bed_induction_sensor_point_z(-1.f);
  2672. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2673. SERIAL_ECHOLNPGM("");
  2674. SERIAL_ECHOPGM("PINDA temperature: ");
  2675. MYSERIAL.print(current_temperature_pinda);
  2676. SERIAL_ECHOPGM(" Z shift (mm):");
  2677. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2678. SERIAL_ECHOLNPGM("");
  2679. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2680. }
  2681. custom_message_type = 0;
  2682. custom_message = false;
  2683. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2684. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2685. disable_x();
  2686. disable_y();
  2687. disable_z();
  2688. disable_e0();
  2689. disable_e1();
  2690. disable_e2();
  2691. setTargetBed(0); //set bed target temperature back to 0
  2692. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2693. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2694. lcd_update_enable(true);
  2695. lcd_update(2);
  2696. break;
  2697. }
  2698. #endif //PINDA_THERMISTOR
  2699. setTargetBed(PINDA_MIN_T);
  2700. float zero_z;
  2701. int z_shift = 0; //unit: steps
  2702. int t_c; // temperature
  2703. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2704. // We don't know where we are! HOME!
  2705. // Push the commands to the front of the message queue in the reverse order!
  2706. // There shall be always enough space reserved for these commands.
  2707. repeatcommand_front(); // repeat G76 with all its parameters
  2708. enquecommand_front_P((PSTR("G28 W0")));
  2709. break;
  2710. }
  2711. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2712. custom_message = true;
  2713. custom_message_type = 4;
  2714. custom_message_state = 1;
  2715. custom_message = MSG_TEMP_CALIBRATION;
  2716. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2717. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2718. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2720. st_synchronize();
  2721. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2722. delay_keep_alive(1000);
  2723. serialecho_temperatures();
  2724. }
  2725. //enquecommand_P(PSTR("M190 S50"));
  2726. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2727. delay_keep_alive(1000);
  2728. serialecho_temperatures();
  2729. }
  2730. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2731. current_position[Z_AXIS] = 5;
  2732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2733. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2734. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2736. st_synchronize();
  2737. find_bed_induction_sensor_point_z(-1.f);
  2738. zero_z = current_position[Z_AXIS];
  2739. //current_position[Z_AXIS]
  2740. SERIAL_ECHOLNPGM("");
  2741. SERIAL_ECHOPGM("ZERO: ");
  2742. MYSERIAL.print(current_position[Z_AXIS]);
  2743. SERIAL_ECHOLNPGM("");
  2744. for (int i = 0; i<5; i++) {
  2745. SERIAL_ECHOPGM("Step: ");
  2746. MYSERIAL.print(i+2);
  2747. SERIAL_ECHOLNPGM("/6");
  2748. custom_message_state = i + 2;
  2749. t_c = 60 + i * 10;
  2750. setTargetBed(t_c);
  2751. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2752. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2753. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2755. st_synchronize();
  2756. while (degBed() < t_c) {
  2757. delay_keep_alive(1000);
  2758. serialecho_temperatures();
  2759. }
  2760. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2761. delay_keep_alive(1000);
  2762. serialecho_temperatures();
  2763. }
  2764. current_position[Z_AXIS] = 5;
  2765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2766. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2767. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2769. st_synchronize();
  2770. find_bed_induction_sensor_point_z(-1.f);
  2771. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2772. SERIAL_ECHOLNPGM("");
  2773. SERIAL_ECHOPGM("Temperature: ");
  2774. MYSERIAL.print(t_c);
  2775. SERIAL_ECHOPGM(" Z shift (mm):");
  2776. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2777. SERIAL_ECHOLNPGM("");
  2778. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2779. }
  2780. custom_message_type = 0;
  2781. custom_message = false;
  2782. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2783. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2784. disable_x();
  2785. disable_y();
  2786. disable_z();
  2787. disable_e0();
  2788. disable_e1();
  2789. disable_e2();
  2790. setTargetBed(0); //set bed target temperature back to 0
  2791. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2792. lcd_update_enable(true);
  2793. lcd_update(2);
  2794. }
  2795. break;
  2796. #ifdef DIS
  2797. case 77:
  2798. {
  2799. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2800. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2801. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2802. float dimension_x = 40;
  2803. float dimension_y = 40;
  2804. int points_x = 40;
  2805. int points_y = 40;
  2806. float offset_x = 74;
  2807. float offset_y = 33;
  2808. if (code_seen('X')) dimension_x = code_value();
  2809. if (code_seen('Y')) dimension_y = code_value();
  2810. if (code_seen('XP')) points_x = code_value();
  2811. if (code_seen('YP')) points_y = code_value();
  2812. if (code_seen('XO')) offset_x = code_value();
  2813. if (code_seen('YO')) offset_y = code_value();
  2814. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2815. } break;
  2816. #endif
  2817. case 79: {
  2818. for (int i = 255; i > 0; i = i - 5) {
  2819. fanSpeed = i;
  2820. //delay_keep_alive(2000);
  2821. for (int j = 0; j < 100; j++) {
  2822. delay_keep_alive(100);
  2823. }
  2824. fan_speed[1];
  2825. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2826. }
  2827. }break;
  2828. /**
  2829. * G80: Mesh-based Z probe, probes a grid and produces a
  2830. * mesh to compensate for variable bed height
  2831. *
  2832. * The S0 report the points as below
  2833. *
  2834. * +----> X-axis
  2835. * |
  2836. * |
  2837. * v Y-axis
  2838. *
  2839. */
  2840. case 80:
  2841. #ifdef MK1BP
  2842. break;
  2843. #endif //MK1BP
  2844. case_G80:
  2845. {
  2846. mesh_bed_leveling_flag = true;
  2847. int8_t verbosity_level = 0;
  2848. static bool run = false;
  2849. if (code_seen('V')) {
  2850. // Just 'V' without a number counts as V1.
  2851. char c = strchr_pointer[1];
  2852. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2853. }
  2854. // Firstly check if we know where we are
  2855. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2856. // We don't know where we are! HOME!
  2857. // Push the commands to the front of the message queue in the reverse order!
  2858. // There shall be always enough space reserved for these commands.
  2859. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2860. repeatcommand_front(); // repeat G80 with all its parameters
  2861. enquecommand_front_P((PSTR("G28 W0")));
  2862. }
  2863. else {
  2864. mesh_bed_leveling_flag = false;
  2865. }
  2866. break;
  2867. }
  2868. bool temp_comp_start = true;
  2869. #ifdef PINDA_THERMISTOR
  2870. temp_comp_start = false;
  2871. #endif //PINDA_THERMISTOR
  2872. if (temp_comp_start)
  2873. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2874. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2875. temp_compensation_start();
  2876. run = true;
  2877. repeatcommand_front(); // repeat G80 with all its parameters
  2878. enquecommand_front_P((PSTR("G28 W0")));
  2879. }
  2880. else {
  2881. mesh_bed_leveling_flag = false;
  2882. }
  2883. break;
  2884. }
  2885. run = false;
  2886. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2887. mesh_bed_leveling_flag = false;
  2888. break;
  2889. }
  2890. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2891. bool custom_message_old = custom_message;
  2892. unsigned int custom_message_type_old = custom_message_type;
  2893. unsigned int custom_message_state_old = custom_message_state;
  2894. custom_message = true;
  2895. custom_message_type = 1;
  2896. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2897. lcd_update(1);
  2898. mbl.reset(); //reset mesh bed leveling
  2899. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2900. // consumed during the first movements following this statement.
  2901. babystep_undo();
  2902. // Cycle through all points and probe them
  2903. // First move up. During this first movement, the babystepping will be reverted.
  2904. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2905. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2906. // The move to the first calibration point.
  2907. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2908. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2909. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2910. #ifdef SUPPORT_VERBOSITY
  2911. if (verbosity_level >= 1) {
  2912. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2913. }
  2914. #endif //SUPPORT_VERBOSITY
  2915. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2917. // Wait until the move is finished.
  2918. st_synchronize();
  2919. int mesh_point = 0; //index number of calibration point
  2920. int ix = 0;
  2921. int iy = 0;
  2922. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2923. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2924. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2925. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2926. #ifdef SUPPORT_VERBOSITY
  2927. if (verbosity_level >= 1) {
  2928. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2929. }
  2930. #endif // SUPPORT_VERBOSITY
  2931. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2932. const char *kill_message = NULL;
  2933. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2934. // Get coords of a measuring point.
  2935. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2936. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2937. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2938. float z0 = 0.f;
  2939. if (has_z && mesh_point > 0) {
  2940. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2941. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2942. //#if 0
  2943. #ifdef SUPPORT_VERBOSITY
  2944. if (verbosity_level >= 1) {
  2945. SERIAL_ECHOLNPGM("");
  2946. SERIAL_ECHOPGM("Bed leveling, point: ");
  2947. MYSERIAL.print(mesh_point);
  2948. SERIAL_ECHOPGM(", calibration z: ");
  2949. MYSERIAL.print(z0, 5);
  2950. SERIAL_ECHOLNPGM("");
  2951. }
  2952. #endif // SUPPORT_VERBOSITY
  2953. //#endif
  2954. }
  2955. // Move Z up to MESH_HOME_Z_SEARCH.
  2956. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2958. st_synchronize();
  2959. // Move to XY position of the sensor point.
  2960. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2961. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2962. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2963. #ifdef SUPPORT_VERBOSITY
  2964. if (verbosity_level >= 1) {
  2965. SERIAL_PROTOCOL(mesh_point);
  2966. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2967. }
  2968. #endif // SUPPORT_VERBOSITY
  2969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2970. st_synchronize();
  2971. // Go down until endstop is hit
  2972. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2973. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2974. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2975. break;
  2976. }
  2977. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2978. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2979. break;
  2980. }
  2981. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2982. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2983. break;
  2984. }
  2985. #ifdef SUPPORT_VERBOSITY
  2986. if (verbosity_level >= 10) {
  2987. SERIAL_ECHOPGM("X: ");
  2988. MYSERIAL.print(current_position[X_AXIS], 5);
  2989. SERIAL_ECHOLNPGM("");
  2990. SERIAL_ECHOPGM("Y: ");
  2991. MYSERIAL.print(current_position[Y_AXIS], 5);
  2992. SERIAL_PROTOCOLPGM("\n");
  2993. }
  2994. #endif // SUPPORT_VERBOSITY
  2995. float offset_z = 0;
  2996. #ifdef PINDA_THERMISTOR
  2997. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2998. #endif //PINDA_THERMISTOR
  2999. // #ifdef SUPPORT_VERBOSITY
  3000. /* if (verbosity_level >= 1)
  3001. {
  3002. SERIAL_ECHOPGM("mesh bed leveling: ");
  3003. MYSERIAL.print(current_position[Z_AXIS], 5);
  3004. SERIAL_ECHOPGM(" offset: ");
  3005. MYSERIAL.print(offset_z, 5);
  3006. SERIAL_ECHOLNPGM("");
  3007. }*/
  3008. // #endif // SUPPORT_VERBOSITY
  3009. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3010. custom_message_state--;
  3011. mesh_point++;
  3012. lcd_update(1);
  3013. }
  3014. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3015. #ifdef SUPPORT_VERBOSITY
  3016. if (verbosity_level >= 20) {
  3017. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3018. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3019. MYSERIAL.print(current_position[Z_AXIS], 5);
  3020. }
  3021. #endif // SUPPORT_VERBOSITY
  3022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3023. st_synchronize();
  3024. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3025. kill(kill_message);
  3026. SERIAL_ECHOLNPGM("killed");
  3027. }
  3028. clean_up_after_endstop_move();
  3029. // SERIAL_ECHOLNPGM("clean up finished ");
  3030. bool apply_temp_comp = true;
  3031. #ifdef PINDA_THERMISTOR
  3032. apply_temp_comp = false;
  3033. #endif
  3034. if (apply_temp_comp)
  3035. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3036. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3037. // SERIAL_ECHOLNPGM("babystep applied");
  3038. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3039. #ifdef SUPPORT_VERBOSITY
  3040. if (verbosity_level >= 1) {
  3041. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3042. }
  3043. #endif // SUPPORT_VERBOSITY
  3044. for (uint8_t i = 0; i < 4; ++i) {
  3045. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3046. long correction = 0;
  3047. if (code_seen(codes[i]))
  3048. correction = code_value_long();
  3049. else if (eeprom_bed_correction_valid) {
  3050. unsigned char *addr = (i < 2) ?
  3051. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3052. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3053. correction = eeprom_read_int8(addr);
  3054. }
  3055. if (correction == 0)
  3056. continue;
  3057. float offset = float(correction) * 0.001f;
  3058. if (fabs(offset) > 0.101f) {
  3059. SERIAL_ERROR_START;
  3060. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3061. SERIAL_ECHO(offset);
  3062. SERIAL_ECHOLNPGM(" microns");
  3063. }
  3064. else {
  3065. switch (i) {
  3066. case 0:
  3067. for (uint8_t row = 0; row < 3; ++row) {
  3068. mbl.z_values[row][1] += 0.5f * offset;
  3069. mbl.z_values[row][0] += offset;
  3070. }
  3071. break;
  3072. case 1:
  3073. for (uint8_t row = 0; row < 3; ++row) {
  3074. mbl.z_values[row][1] += 0.5f * offset;
  3075. mbl.z_values[row][2] += offset;
  3076. }
  3077. break;
  3078. case 2:
  3079. for (uint8_t col = 0; col < 3; ++col) {
  3080. mbl.z_values[1][col] += 0.5f * offset;
  3081. mbl.z_values[0][col] += offset;
  3082. }
  3083. break;
  3084. case 3:
  3085. for (uint8_t col = 0; col < 3; ++col) {
  3086. mbl.z_values[1][col] += 0.5f * offset;
  3087. mbl.z_values[2][col] += offset;
  3088. }
  3089. break;
  3090. }
  3091. }
  3092. }
  3093. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3094. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3095. // SERIAL_ECHOLNPGM("Upsample finished");
  3096. mbl.active = 1; //activate mesh bed leveling
  3097. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3098. go_home_with_z_lift();
  3099. // SERIAL_ECHOLNPGM("Go home finished");
  3100. //unretract (after PINDA preheat retraction)
  3101. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3102. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3104. }
  3105. KEEPALIVE_STATE(NOT_BUSY);
  3106. // Restore custom message state
  3107. custom_message = custom_message_old;
  3108. custom_message_type = custom_message_type_old;
  3109. custom_message_state = custom_message_state_old;
  3110. mesh_bed_leveling_flag = false;
  3111. mesh_bed_run_from_menu = false;
  3112. lcd_update(2);
  3113. }
  3114. break;
  3115. /**
  3116. * G81: Print mesh bed leveling status and bed profile if activated
  3117. */
  3118. case 81:
  3119. if (mbl.active) {
  3120. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3121. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3122. SERIAL_PROTOCOLPGM(",");
  3123. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3124. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3125. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3126. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3127. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3128. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3129. SERIAL_PROTOCOLPGM(" ");
  3130. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3131. }
  3132. SERIAL_PROTOCOLPGM("\n");
  3133. }
  3134. }
  3135. else
  3136. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3137. break;
  3138. #if 0
  3139. /**
  3140. * G82: Single Z probe at current location
  3141. *
  3142. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3143. *
  3144. */
  3145. case 82:
  3146. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3147. setup_for_endstop_move();
  3148. find_bed_induction_sensor_point_z();
  3149. clean_up_after_endstop_move();
  3150. SERIAL_PROTOCOLPGM("Bed found at: ");
  3151. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3152. SERIAL_PROTOCOLPGM("\n");
  3153. break;
  3154. /**
  3155. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3156. */
  3157. case 83:
  3158. {
  3159. int babystepz = code_seen('S') ? code_value() : 0;
  3160. int BabyPosition = code_seen('P') ? code_value() : 0;
  3161. if (babystepz != 0) {
  3162. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3163. // Is the axis indexed starting with zero or one?
  3164. if (BabyPosition > 4) {
  3165. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3166. }else{
  3167. // Save it to the eeprom
  3168. babystepLoadZ = babystepz;
  3169. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3170. // adjust the Z
  3171. babystepsTodoZadd(babystepLoadZ);
  3172. }
  3173. }
  3174. }
  3175. break;
  3176. /**
  3177. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3178. */
  3179. case 84:
  3180. babystepsTodoZsubtract(babystepLoadZ);
  3181. // babystepLoadZ = 0;
  3182. break;
  3183. /**
  3184. * G85: Prusa3D specific: Pick best babystep
  3185. */
  3186. case 85:
  3187. lcd_pick_babystep();
  3188. break;
  3189. #endif
  3190. /**
  3191. * G86: Prusa3D specific: Disable babystep correction after home.
  3192. * This G-code will be performed at the start of a calibration script.
  3193. */
  3194. case 86:
  3195. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3196. break;
  3197. /**
  3198. * G87: Prusa3D specific: Enable babystep correction after home
  3199. * This G-code will be performed at the end of a calibration script.
  3200. */
  3201. case 87:
  3202. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3203. break;
  3204. /**
  3205. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3206. */
  3207. case 88:
  3208. break;
  3209. #endif // ENABLE_MESH_BED_LEVELING
  3210. case 90: // G90
  3211. relative_mode = false;
  3212. break;
  3213. case 91: // G91
  3214. relative_mode = true;
  3215. break;
  3216. case 92: // G92
  3217. if(!code_seen(axis_codes[E_AXIS]))
  3218. st_synchronize();
  3219. for(int8_t i=0; i < NUM_AXIS; i++) {
  3220. if(code_seen(axis_codes[i])) {
  3221. if(i == E_AXIS) {
  3222. current_position[i] = code_value();
  3223. plan_set_e_position(current_position[E_AXIS]);
  3224. }
  3225. else {
  3226. current_position[i] = code_value()+add_homing[i];
  3227. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3228. }
  3229. }
  3230. }
  3231. break;
  3232. case 98: //activate farm mode
  3233. farm_mode = 1;
  3234. PingTime = millis();
  3235. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3236. break;
  3237. case 99: //deactivate farm mode
  3238. farm_mode = 0;
  3239. lcd_printer_connected();
  3240. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3241. lcd_update(2);
  3242. break;
  3243. }
  3244. } // end if(code_seen('G'))
  3245. else if(code_seen('M'))
  3246. {
  3247. int index;
  3248. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3249. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3250. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3251. SERIAL_ECHOLNPGM("Invalid M code");
  3252. } else
  3253. switch((int)code_value())
  3254. {
  3255. #ifdef ULTIPANEL
  3256. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3257. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3258. {
  3259. char *src = strchr_pointer + 2;
  3260. codenum = 0;
  3261. bool hasP = false, hasS = false;
  3262. if (code_seen('P')) {
  3263. codenum = code_value(); // milliseconds to wait
  3264. hasP = codenum > 0;
  3265. }
  3266. if (code_seen('S')) {
  3267. codenum = code_value() * 1000; // seconds to wait
  3268. hasS = codenum > 0;
  3269. }
  3270. starpos = strchr(src, '*');
  3271. if (starpos != NULL) *(starpos) = '\0';
  3272. while (*src == ' ') ++src;
  3273. if (!hasP && !hasS && *src != '\0') {
  3274. lcd_setstatus(src);
  3275. } else {
  3276. LCD_MESSAGERPGM(MSG_USERWAIT);
  3277. }
  3278. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3279. st_synchronize();
  3280. previous_millis_cmd = millis();
  3281. if (codenum > 0){
  3282. codenum += millis(); // keep track of when we started waiting
  3283. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3284. while(millis() < codenum && !lcd_clicked()){
  3285. manage_heater();
  3286. manage_inactivity(true);
  3287. lcd_update();
  3288. }
  3289. KEEPALIVE_STATE(IN_HANDLER);
  3290. lcd_ignore_click(false);
  3291. }else{
  3292. if (!lcd_detected())
  3293. break;
  3294. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3295. while(!lcd_clicked()){
  3296. manage_heater();
  3297. manage_inactivity(true);
  3298. lcd_update();
  3299. }
  3300. KEEPALIVE_STATE(IN_HANDLER);
  3301. }
  3302. if (IS_SD_PRINTING)
  3303. LCD_MESSAGERPGM(MSG_RESUMING);
  3304. else
  3305. LCD_MESSAGERPGM(WELCOME_MSG);
  3306. }
  3307. break;
  3308. #endif
  3309. case 17:
  3310. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3311. enable_x();
  3312. enable_y();
  3313. enable_z();
  3314. enable_e0();
  3315. enable_e1();
  3316. enable_e2();
  3317. break;
  3318. #ifdef SDSUPPORT
  3319. case 20: // M20 - list SD card
  3320. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3321. card.ls();
  3322. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3323. break;
  3324. case 21: // M21 - init SD card
  3325. card.initsd();
  3326. break;
  3327. case 22: //M22 - release SD card
  3328. card.release();
  3329. break;
  3330. case 23: //M23 - Select file
  3331. starpos = (strchr(strchr_pointer + 4,'*'));
  3332. if(starpos!=NULL)
  3333. *(starpos)='\0';
  3334. card.openFile(strchr_pointer + 4,true);
  3335. break;
  3336. case 24: //M24 - Start SD print
  3337. card.startFileprint();
  3338. starttime=millis();
  3339. break;
  3340. case 25: //M25 - Pause SD print
  3341. card.pauseSDPrint();
  3342. break;
  3343. case 26: //M26 - Set SD index
  3344. if(card.cardOK && code_seen('S')) {
  3345. card.setIndex(code_value_long());
  3346. }
  3347. break;
  3348. case 27: //M27 - Get SD status
  3349. card.getStatus();
  3350. break;
  3351. case 28: //M28 - Start SD write
  3352. starpos = (strchr(strchr_pointer + 4,'*'));
  3353. if(starpos != NULL){
  3354. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3355. strchr_pointer = strchr(npos,' ') + 1;
  3356. *(starpos) = '\0';
  3357. }
  3358. card.openFile(strchr_pointer+4,false);
  3359. break;
  3360. case 29: //M29 - Stop SD write
  3361. //processed in write to file routine above
  3362. //card,saving = false;
  3363. break;
  3364. case 30: //M30 <filename> Delete File
  3365. if (card.cardOK){
  3366. card.closefile();
  3367. starpos = (strchr(strchr_pointer + 4,'*'));
  3368. if(starpos != NULL){
  3369. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3370. strchr_pointer = strchr(npos,' ') + 1;
  3371. *(starpos) = '\0';
  3372. }
  3373. card.removeFile(strchr_pointer + 4);
  3374. }
  3375. break;
  3376. case 32: //M32 - Select file and start SD print
  3377. {
  3378. if(card.sdprinting) {
  3379. st_synchronize();
  3380. }
  3381. starpos = (strchr(strchr_pointer + 4,'*'));
  3382. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3383. if(namestartpos==NULL)
  3384. {
  3385. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3386. }
  3387. else
  3388. namestartpos++; //to skip the '!'
  3389. if(starpos!=NULL)
  3390. *(starpos)='\0';
  3391. bool call_procedure=(code_seen('P'));
  3392. if(strchr_pointer>namestartpos)
  3393. call_procedure=false; //false alert, 'P' found within filename
  3394. if( card.cardOK )
  3395. {
  3396. card.openFile(namestartpos,true,!call_procedure);
  3397. if(code_seen('S'))
  3398. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3399. card.setIndex(code_value_long());
  3400. card.startFileprint();
  3401. if(!call_procedure)
  3402. starttime=millis(); //procedure calls count as normal print time.
  3403. }
  3404. } break;
  3405. case 928: //M928 - Start SD write
  3406. starpos = (strchr(strchr_pointer + 5,'*'));
  3407. if(starpos != NULL){
  3408. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3409. strchr_pointer = strchr(npos,' ') + 1;
  3410. *(starpos) = '\0';
  3411. }
  3412. card.openLogFile(strchr_pointer+5);
  3413. break;
  3414. #endif //SDSUPPORT
  3415. case 31: //M31 take time since the start of the SD print or an M109 command
  3416. {
  3417. stoptime=millis();
  3418. char time[30];
  3419. unsigned long t=(stoptime-starttime)/1000;
  3420. int sec,min;
  3421. min=t/60;
  3422. sec=t%60;
  3423. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3424. SERIAL_ECHO_START;
  3425. SERIAL_ECHOLN(time);
  3426. lcd_setstatus(time);
  3427. autotempShutdown();
  3428. }
  3429. break;
  3430. #ifndef _DISABLE_M42_M226
  3431. case 42: //M42 -Change pin status via gcode
  3432. if (code_seen('S'))
  3433. {
  3434. int pin_status = code_value();
  3435. int pin_number = LED_PIN;
  3436. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3437. pin_number = code_value();
  3438. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3439. {
  3440. if (sensitive_pins[i] == pin_number)
  3441. {
  3442. pin_number = -1;
  3443. break;
  3444. }
  3445. }
  3446. #if defined(FAN_PIN) && FAN_PIN > -1
  3447. if (pin_number == FAN_PIN)
  3448. fanSpeed = pin_status;
  3449. #endif
  3450. if (pin_number > -1)
  3451. {
  3452. pinMode(pin_number, OUTPUT);
  3453. digitalWrite(pin_number, pin_status);
  3454. analogWrite(pin_number, pin_status);
  3455. }
  3456. }
  3457. break;
  3458. #endif //_DISABLE_M42_M226
  3459. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3460. // Reset the baby step value and the baby step applied flag.
  3461. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3462. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3463. // Reset the skew and offset in both RAM and EEPROM.
  3464. reset_bed_offset_and_skew();
  3465. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3466. // the planner will not perform any adjustments in the XY plane.
  3467. // Wait for the motors to stop and update the current position with the absolute values.
  3468. world2machine_revert_to_uncorrected();
  3469. break;
  3470. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3471. {
  3472. bool only_Z = code_seen('Z');
  3473. gcode_M45(only_Z);
  3474. }
  3475. break;
  3476. /*
  3477. case 46:
  3478. {
  3479. // M46: Prusa3D: Show the assigned IP address.
  3480. uint8_t ip[4];
  3481. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3482. if (hasIP) {
  3483. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3484. SERIAL_ECHO(int(ip[0]));
  3485. SERIAL_ECHOPGM(".");
  3486. SERIAL_ECHO(int(ip[1]));
  3487. SERIAL_ECHOPGM(".");
  3488. SERIAL_ECHO(int(ip[2]));
  3489. SERIAL_ECHOPGM(".");
  3490. SERIAL_ECHO(int(ip[3]));
  3491. SERIAL_ECHOLNPGM("");
  3492. } else {
  3493. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3494. }
  3495. break;
  3496. }
  3497. */
  3498. case 47:
  3499. // M47: Prusa3D: Show end stops dialog on the display.
  3500. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3501. lcd_diag_show_end_stops();
  3502. KEEPALIVE_STATE(IN_HANDLER);
  3503. break;
  3504. #if 0
  3505. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3506. {
  3507. // Disable the default update procedure of the display. We will do a modal dialog.
  3508. lcd_update_enable(false);
  3509. // Let the planner use the uncorrected coordinates.
  3510. mbl.reset();
  3511. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3512. // the planner will not perform any adjustments in the XY plane.
  3513. // Wait for the motors to stop and update the current position with the absolute values.
  3514. world2machine_revert_to_uncorrected();
  3515. // Move the print head close to the bed.
  3516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3518. st_synchronize();
  3519. // Home in the XY plane.
  3520. set_destination_to_current();
  3521. setup_for_endstop_move();
  3522. home_xy();
  3523. int8_t verbosity_level = 0;
  3524. if (code_seen('V')) {
  3525. // Just 'V' without a number counts as V1.
  3526. char c = strchr_pointer[1];
  3527. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3528. }
  3529. bool success = scan_bed_induction_points(verbosity_level);
  3530. clean_up_after_endstop_move();
  3531. // Print head up.
  3532. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3534. st_synchronize();
  3535. lcd_update_enable(true);
  3536. break;
  3537. }
  3538. #endif
  3539. // M48 Z-Probe repeatability measurement function.
  3540. //
  3541. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3542. //
  3543. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3544. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3545. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3546. // regenerated.
  3547. //
  3548. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3549. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3550. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3551. //
  3552. #ifdef ENABLE_AUTO_BED_LEVELING
  3553. #ifdef Z_PROBE_REPEATABILITY_TEST
  3554. case 48: // M48 Z-Probe repeatability
  3555. {
  3556. #if Z_MIN_PIN == -1
  3557. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3558. #endif
  3559. double sum=0.0;
  3560. double mean=0.0;
  3561. double sigma=0.0;
  3562. double sample_set[50];
  3563. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3564. double X_current, Y_current, Z_current;
  3565. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3566. if (code_seen('V') || code_seen('v')) {
  3567. verbose_level = code_value();
  3568. if (verbose_level<0 || verbose_level>4 ) {
  3569. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3570. goto Sigma_Exit;
  3571. }
  3572. }
  3573. if (verbose_level > 0) {
  3574. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3575. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3576. }
  3577. if (code_seen('n')) {
  3578. n_samples = code_value();
  3579. if (n_samples<4 || n_samples>50 ) {
  3580. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3581. goto Sigma_Exit;
  3582. }
  3583. }
  3584. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3585. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3586. Z_current = st_get_position_mm(Z_AXIS);
  3587. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3588. ext_position = st_get_position_mm(E_AXIS);
  3589. if (code_seen('X') || code_seen('x') ) {
  3590. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3591. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3592. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3593. goto Sigma_Exit;
  3594. }
  3595. }
  3596. if (code_seen('Y') || code_seen('y') ) {
  3597. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3598. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3599. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3600. goto Sigma_Exit;
  3601. }
  3602. }
  3603. if (code_seen('L') || code_seen('l') ) {
  3604. n_legs = code_value();
  3605. if ( n_legs==1 )
  3606. n_legs = 2;
  3607. if ( n_legs<0 || n_legs>15 ) {
  3608. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3609. goto Sigma_Exit;
  3610. }
  3611. }
  3612. //
  3613. // Do all the preliminary setup work. First raise the probe.
  3614. //
  3615. st_synchronize();
  3616. plan_bed_level_matrix.set_to_identity();
  3617. plan_buffer_line( X_current, Y_current, Z_start_location,
  3618. ext_position,
  3619. homing_feedrate[Z_AXIS]/60,
  3620. active_extruder);
  3621. st_synchronize();
  3622. //
  3623. // Now get everything to the specified probe point So we can safely do a probe to
  3624. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3625. // use that as a starting point for each probe.
  3626. //
  3627. if (verbose_level > 2)
  3628. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3629. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3630. ext_position,
  3631. homing_feedrate[X_AXIS]/60,
  3632. active_extruder);
  3633. st_synchronize();
  3634. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3635. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3636. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3637. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3638. //
  3639. // OK, do the inital probe to get us close to the bed.
  3640. // Then retrace the right amount and use that in subsequent probes
  3641. //
  3642. setup_for_endstop_move();
  3643. run_z_probe();
  3644. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3645. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3646. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3647. ext_position,
  3648. homing_feedrate[X_AXIS]/60,
  3649. active_extruder);
  3650. st_synchronize();
  3651. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3652. for( n=0; n<n_samples; n++) {
  3653. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3654. if ( n_legs) {
  3655. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3656. int rotational_direction, l;
  3657. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3658. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3659. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3660. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3661. //SERIAL_ECHOPAIR(" theta: ",theta);
  3662. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3663. //SERIAL_PROTOCOLLNPGM("");
  3664. for( l=0; l<n_legs-1; l++) {
  3665. if (rotational_direction==1)
  3666. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3667. else
  3668. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3669. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3670. if ( radius<0.0 )
  3671. radius = -radius;
  3672. X_current = X_probe_location + cos(theta) * radius;
  3673. Y_current = Y_probe_location + sin(theta) * radius;
  3674. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3675. X_current = X_MIN_POS;
  3676. if ( X_current>X_MAX_POS)
  3677. X_current = X_MAX_POS;
  3678. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3679. Y_current = Y_MIN_POS;
  3680. if ( Y_current>Y_MAX_POS)
  3681. Y_current = Y_MAX_POS;
  3682. if (verbose_level>3 ) {
  3683. SERIAL_ECHOPAIR("x: ", X_current);
  3684. SERIAL_ECHOPAIR("y: ", Y_current);
  3685. SERIAL_PROTOCOLLNPGM("");
  3686. }
  3687. do_blocking_move_to( X_current, Y_current, Z_current );
  3688. }
  3689. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3690. }
  3691. setup_for_endstop_move();
  3692. run_z_probe();
  3693. sample_set[n] = current_position[Z_AXIS];
  3694. //
  3695. // Get the current mean for the data points we have so far
  3696. //
  3697. sum=0.0;
  3698. for( j=0; j<=n; j++) {
  3699. sum = sum + sample_set[j];
  3700. }
  3701. mean = sum / (double (n+1));
  3702. //
  3703. // Now, use that mean to calculate the standard deviation for the
  3704. // data points we have so far
  3705. //
  3706. sum=0.0;
  3707. for( j=0; j<=n; j++) {
  3708. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3709. }
  3710. sigma = sqrt( sum / (double (n+1)) );
  3711. if (verbose_level > 1) {
  3712. SERIAL_PROTOCOL(n+1);
  3713. SERIAL_PROTOCOL(" of ");
  3714. SERIAL_PROTOCOL(n_samples);
  3715. SERIAL_PROTOCOLPGM(" z: ");
  3716. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3717. }
  3718. if (verbose_level > 2) {
  3719. SERIAL_PROTOCOL(" mean: ");
  3720. SERIAL_PROTOCOL_F(mean,6);
  3721. SERIAL_PROTOCOL(" sigma: ");
  3722. SERIAL_PROTOCOL_F(sigma,6);
  3723. }
  3724. if (verbose_level > 0)
  3725. SERIAL_PROTOCOLPGM("\n");
  3726. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3727. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3728. st_synchronize();
  3729. }
  3730. delay(1000);
  3731. clean_up_after_endstop_move();
  3732. // enable_endstops(true);
  3733. if (verbose_level > 0) {
  3734. SERIAL_PROTOCOLPGM("Mean: ");
  3735. SERIAL_PROTOCOL_F(mean, 6);
  3736. SERIAL_PROTOCOLPGM("\n");
  3737. }
  3738. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3739. SERIAL_PROTOCOL_F(sigma, 6);
  3740. SERIAL_PROTOCOLPGM("\n\n");
  3741. Sigma_Exit:
  3742. break;
  3743. }
  3744. #endif // Z_PROBE_REPEATABILITY_TEST
  3745. #endif // ENABLE_AUTO_BED_LEVELING
  3746. case 104: // M104
  3747. if(setTargetedHotend(104)){
  3748. break;
  3749. }
  3750. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3751. setWatch();
  3752. break;
  3753. case 112: // M112 -Emergency Stop
  3754. kill("", 3);
  3755. break;
  3756. case 140: // M140 set bed temp
  3757. if (code_seen('S')) setTargetBed(code_value());
  3758. break;
  3759. case 105 : // M105
  3760. if(setTargetedHotend(105)){
  3761. break;
  3762. }
  3763. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3764. SERIAL_PROTOCOLPGM("ok T:");
  3765. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3766. SERIAL_PROTOCOLPGM(" /");
  3767. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3768. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3769. SERIAL_PROTOCOLPGM(" B:");
  3770. SERIAL_PROTOCOL_F(degBed(),1);
  3771. SERIAL_PROTOCOLPGM(" /");
  3772. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3773. #endif //TEMP_BED_PIN
  3774. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3775. SERIAL_PROTOCOLPGM(" T");
  3776. SERIAL_PROTOCOL(cur_extruder);
  3777. SERIAL_PROTOCOLPGM(":");
  3778. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3779. SERIAL_PROTOCOLPGM(" /");
  3780. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3781. }
  3782. #else
  3783. SERIAL_ERROR_START;
  3784. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3785. #endif
  3786. SERIAL_PROTOCOLPGM(" @:");
  3787. #ifdef EXTRUDER_WATTS
  3788. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3789. SERIAL_PROTOCOLPGM("W");
  3790. #else
  3791. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3792. #endif
  3793. SERIAL_PROTOCOLPGM(" B@:");
  3794. #ifdef BED_WATTS
  3795. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3796. SERIAL_PROTOCOLPGM("W");
  3797. #else
  3798. SERIAL_PROTOCOL(getHeaterPower(-1));
  3799. #endif
  3800. #ifdef PINDA_THERMISTOR
  3801. SERIAL_PROTOCOLPGM(" P:");
  3802. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3803. #endif //PINDA_THERMISTOR
  3804. #ifdef AMBIENT_THERMISTOR
  3805. SERIAL_PROTOCOLPGM(" A:");
  3806. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3807. #endif //AMBIENT_THERMISTOR
  3808. #ifdef SHOW_TEMP_ADC_VALUES
  3809. {float raw = 0.0;
  3810. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3811. SERIAL_PROTOCOLPGM(" ADC B:");
  3812. SERIAL_PROTOCOL_F(degBed(),1);
  3813. SERIAL_PROTOCOLPGM("C->");
  3814. raw = rawBedTemp();
  3815. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3816. SERIAL_PROTOCOLPGM(" Rb->");
  3817. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3818. SERIAL_PROTOCOLPGM(" Rxb->");
  3819. SERIAL_PROTOCOL_F(raw, 5);
  3820. #endif
  3821. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3822. SERIAL_PROTOCOLPGM(" T");
  3823. SERIAL_PROTOCOL(cur_extruder);
  3824. SERIAL_PROTOCOLPGM(":");
  3825. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3826. SERIAL_PROTOCOLPGM("C->");
  3827. raw = rawHotendTemp(cur_extruder);
  3828. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3829. SERIAL_PROTOCOLPGM(" Rt");
  3830. SERIAL_PROTOCOL(cur_extruder);
  3831. SERIAL_PROTOCOLPGM("->");
  3832. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3833. SERIAL_PROTOCOLPGM(" Rx");
  3834. SERIAL_PROTOCOL(cur_extruder);
  3835. SERIAL_PROTOCOLPGM("->");
  3836. SERIAL_PROTOCOL_F(raw, 5);
  3837. }}
  3838. #endif
  3839. SERIAL_PROTOCOLLN("");
  3840. KEEPALIVE_STATE(NOT_BUSY);
  3841. return;
  3842. break;
  3843. case 109:
  3844. {// M109 - Wait for extruder heater to reach target.
  3845. if(setTargetedHotend(109)){
  3846. break;
  3847. }
  3848. LCD_MESSAGERPGM(MSG_HEATING);
  3849. heating_status = 1;
  3850. if (farm_mode) { prusa_statistics(1); };
  3851. #ifdef AUTOTEMP
  3852. autotemp_enabled=false;
  3853. #endif
  3854. if (code_seen('S')) {
  3855. setTargetHotend(code_value(), tmp_extruder);
  3856. CooldownNoWait = true;
  3857. } else if (code_seen('R')) {
  3858. setTargetHotend(code_value(), tmp_extruder);
  3859. CooldownNoWait = false;
  3860. }
  3861. #ifdef AUTOTEMP
  3862. if (code_seen('S')) autotemp_min=code_value();
  3863. if (code_seen('B')) autotemp_max=code_value();
  3864. if (code_seen('F'))
  3865. {
  3866. autotemp_factor=code_value();
  3867. autotemp_enabled=true;
  3868. }
  3869. #endif
  3870. setWatch();
  3871. codenum = millis();
  3872. /* See if we are heating up or cooling down */
  3873. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3874. KEEPALIVE_STATE(NOT_BUSY);
  3875. cancel_heatup = false;
  3876. wait_for_heater(codenum); //loops until target temperature is reached
  3877. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3878. KEEPALIVE_STATE(IN_HANDLER);
  3879. heating_status = 2;
  3880. if (farm_mode) { prusa_statistics(2); };
  3881. //starttime=millis();
  3882. previous_millis_cmd = millis();
  3883. }
  3884. break;
  3885. case 190: // M190 - Wait for bed heater to reach target.
  3886. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3887. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3888. heating_status = 3;
  3889. if (farm_mode) { prusa_statistics(1); };
  3890. if (code_seen('S'))
  3891. {
  3892. setTargetBed(code_value());
  3893. CooldownNoWait = true;
  3894. }
  3895. else if (code_seen('R'))
  3896. {
  3897. setTargetBed(code_value());
  3898. CooldownNoWait = false;
  3899. }
  3900. codenum = millis();
  3901. cancel_heatup = false;
  3902. target_direction = isHeatingBed(); // true if heating, false if cooling
  3903. KEEPALIVE_STATE(NOT_BUSY);
  3904. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3905. {
  3906. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3907. {
  3908. if (!farm_mode) {
  3909. float tt = degHotend(active_extruder);
  3910. SERIAL_PROTOCOLPGM("T:");
  3911. SERIAL_PROTOCOL(tt);
  3912. SERIAL_PROTOCOLPGM(" E:");
  3913. SERIAL_PROTOCOL((int)active_extruder);
  3914. SERIAL_PROTOCOLPGM(" B:");
  3915. SERIAL_PROTOCOL_F(degBed(), 1);
  3916. SERIAL_PROTOCOLLN("");
  3917. }
  3918. codenum = millis();
  3919. }
  3920. manage_heater();
  3921. manage_inactivity();
  3922. lcd_update();
  3923. }
  3924. LCD_MESSAGERPGM(MSG_BED_DONE);
  3925. KEEPALIVE_STATE(IN_HANDLER);
  3926. heating_status = 4;
  3927. previous_millis_cmd = millis();
  3928. #endif
  3929. break;
  3930. #if defined(FAN_PIN) && FAN_PIN > -1
  3931. case 106: //M106 Fan On
  3932. if (code_seen('S')){
  3933. fanSpeed=constrain(code_value(),0,255);
  3934. }
  3935. else {
  3936. fanSpeed=255;
  3937. }
  3938. break;
  3939. case 107: //M107 Fan Off
  3940. fanSpeed = 0;
  3941. break;
  3942. #endif //FAN_PIN
  3943. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3944. case 80: // M80 - Turn on Power Supply
  3945. SET_OUTPUT(PS_ON_PIN); //GND
  3946. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3947. // If you have a switch on suicide pin, this is useful
  3948. // if you want to start another print with suicide feature after
  3949. // a print without suicide...
  3950. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3951. SET_OUTPUT(SUICIDE_PIN);
  3952. WRITE(SUICIDE_PIN, HIGH);
  3953. #endif
  3954. #ifdef ULTIPANEL
  3955. powersupply = true;
  3956. LCD_MESSAGERPGM(WELCOME_MSG);
  3957. lcd_update();
  3958. #endif
  3959. break;
  3960. #endif
  3961. case 81: // M81 - Turn off Power Supply
  3962. disable_heater();
  3963. st_synchronize();
  3964. disable_e0();
  3965. disable_e1();
  3966. disable_e2();
  3967. finishAndDisableSteppers();
  3968. fanSpeed = 0;
  3969. delay(1000); // Wait a little before to switch off
  3970. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3971. st_synchronize();
  3972. suicide();
  3973. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3974. SET_OUTPUT(PS_ON_PIN);
  3975. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3976. #endif
  3977. #ifdef ULTIPANEL
  3978. powersupply = false;
  3979. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3980. /*
  3981. MACHNAME = "Prusa i3"
  3982. MSGOFF = "Vypnuto"
  3983. "Prusai3"" ""vypnuto""."
  3984. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3985. */
  3986. lcd_update();
  3987. #endif
  3988. break;
  3989. case 82:
  3990. axis_relative_modes[3] = false;
  3991. break;
  3992. case 83:
  3993. axis_relative_modes[3] = true;
  3994. break;
  3995. case 18: //compatibility
  3996. case 84: // M84
  3997. if(code_seen('S')){
  3998. stepper_inactive_time = code_value() * 1000;
  3999. }
  4000. else
  4001. {
  4002. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4003. if(all_axis)
  4004. {
  4005. st_synchronize();
  4006. disable_e0();
  4007. disable_e1();
  4008. disable_e2();
  4009. finishAndDisableSteppers();
  4010. }
  4011. else
  4012. {
  4013. st_synchronize();
  4014. if (code_seen('X')) disable_x();
  4015. if (code_seen('Y')) disable_y();
  4016. if (code_seen('Z')) disable_z();
  4017. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4018. if (code_seen('E')) {
  4019. disable_e0();
  4020. disable_e1();
  4021. disable_e2();
  4022. }
  4023. #endif
  4024. }
  4025. }
  4026. snmm_filaments_used = 0;
  4027. break;
  4028. case 85: // M85
  4029. if(code_seen('S')) {
  4030. max_inactive_time = code_value() * 1000;
  4031. }
  4032. break;
  4033. case 92: // M92
  4034. for(int8_t i=0; i < NUM_AXIS; i++)
  4035. {
  4036. if(code_seen(axis_codes[i]))
  4037. {
  4038. if(i == 3) { // E
  4039. float value = code_value();
  4040. if(value < 20.0) {
  4041. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4042. max_jerk[E_AXIS] *= factor;
  4043. max_feedrate[i] *= factor;
  4044. axis_steps_per_sqr_second[i] *= factor;
  4045. }
  4046. axis_steps_per_unit[i] = value;
  4047. }
  4048. else {
  4049. axis_steps_per_unit[i] = code_value();
  4050. }
  4051. }
  4052. }
  4053. break;
  4054. case 110: // M110 - reset line pos
  4055. if (code_seen('N'))
  4056. gcode_LastN = code_value_long();
  4057. break;
  4058. #ifdef HOST_KEEPALIVE_FEATURE
  4059. case 113: // M113 - Get or set Host Keepalive interval
  4060. if (code_seen('S')) {
  4061. host_keepalive_interval = (uint8_t)code_value_short();
  4062. // NOMORE(host_keepalive_interval, 60);
  4063. }
  4064. else {
  4065. SERIAL_ECHO_START;
  4066. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4067. SERIAL_PROTOCOLLN("");
  4068. }
  4069. break;
  4070. #endif
  4071. case 115: // M115
  4072. if (code_seen('V')) {
  4073. // Report the Prusa version number.
  4074. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4075. } else if (code_seen('U')) {
  4076. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4077. // pause the print and ask the user to upgrade the firmware.
  4078. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4079. } else {
  4080. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4081. }
  4082. break;
  4083. /* case 117: // M117 display message
  4084. starpos = (strchr(strchr_pointer + 5,'*'));
  4085. if(starpos!=NULL)
  4086. *(starpos)='\0';
  4087. lcd_setstatus(strchr_pointer + 5);
  4088. break;*/
  4089. case 114: // M114
  4090. SERIAL_PROTOCOLPGM("X:");
  4091. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4092. SERIAL_PROTOCOLPGM(" Y:");
  4093. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4094. SERIAL_PROTOCOLPGM(" Z:");
  4095. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4096. SERIAL_PROTOCOLPGM(" E:");
  4097. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4098. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4099. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4100. SERIAL_PROTOCOLPGM(" Y:");
  4101. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4102. SERIAL_PROTOCOLPGM(" Z:");
  4103. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4104. SERIAL_PROTOCOLPGM(" E:");
  4105. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4106. SERIAL_PROTOCOLLN("");
  4107. break;
  4108. case 120: // M120
  4109. enable_endstops(false) ;
  4110. break;
  4111. case 121: // M121
  4112. enable_endstops(true) ;
  4113. break;
  4114. case 119: // M119
  4115. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4116. SERIAL_PROTOCOLLN("");
  4117. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4118. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4119. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4120. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4121. }else{
  4122. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4123. }
  4124. SERIAL_PROTOCOLLN("");
  4125. #endif
  4126. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4127. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4128. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4129. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4130. }else{
  4131. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4132. }
  4133. SERIAL_PROTOCOLLN("");
  4134. #endif
  4135. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4136. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4137. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4138. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4139. }else{
  4140. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4141. }
  4142. SERIAL_PROTOCOLLN("");
  4143. #endif
  4144. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4145. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4146. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4147. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4148. }else{
  4149. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4150. }
  4151. SERIAL_PROTOCOLLN("");
  4152. #endif
  4153. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4154. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4155. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4156. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4157. }else{
  4158. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4159. }
  4160. SERIAL_PROTOCOLLN("");
  4161. #endif
  4162. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4163. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4164. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4165. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4166. }else{
  4167. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4168. }
  4169. SERIAL_PROTOCOLLN("");
  4170. #endif
  4171. break;
  4172. //TODO: update for all axis, use for loop
  4173. #ifdef BLINKM
  4174. case 150: // M150
  4175. {
  4176. byte red;
  4177. byte grn;
  4178. byte blu;
  4179. if(code_seen('R')) red = code_value();
  4180. if(code_seen('U')) grn = code_value();
  4181. if(code_seen('B')) blu = code_value();
  4182. SendColors(red,grn,blu);
  4183. }
  4184. break;
  4185. #endif //BLINKM
  4186. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4187. {
  4188. tmp_extruder = active_extruder;
  4189. if(code_seen('T')) {
  4190. tmp_extruder = code_value();
  4191. if(tmp_extruder >= EXTRUDERS) {
  4192. SERIAL_ECHO_START;
  4193. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4194. break;
  4195. }
  4196. }
  4197. float area = .0;
  4198. if(code_seen('D')) {
  4199. float diameter = (float)code_value();
  4200. if (diameter == 0.0) {
  4201. // setting any extruder filament size disables volumetric on the assumption that
  4202. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4203. // for all extruders
  4204. volumetric_enabled = false;
  4205. } else {
  4206. filament_size[tmp_extruder] = (float)code_value();
  4207. // make sure all extruders have some sane value for the filament size
  4208. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4209. #if EXTRUDERS > 1
  4210. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4211. #if EXTRUDERS > 2
  4212. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4213. #endif
  4214. #endif
  4215. volumetric_enabled = true;
  4216. }
  4217. } else {
  4218. //reserved for setting filament diameter via UFID or filament measuring device
  4219. break;
  4220. }
  4221. calculate_volumetric_multipliers();
  4222. }
  4223. break;
  4224. case 201: // M201
  4225. for(int8_t i=0; i < NUM_AXIS; i++)
  4226. {
  4227. if(code_seen(axis_codes[i]))
  4228. {
  4229. max_acceleration_units_per_sq_second[i] = code_value();
  4230. }
  4231. }
  4232. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4233. reset_acceleration_rates();
  4234. break;
  4235. #if 0 // Not used for Sprinter/grbl gen6
  4236. case 202: // M202
  4237. for(int8_t i=0; i < NUM_AXIS; i++) {
  4238. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4239. }
  4240. break;
  4241. #endif
  4242. case 203: // M203 max feedrate mm/sec
  4243. for(int8_t i=0; i < NUM_AXIS; i++) {
  4244. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4245. }
  4246. break;
  4247. case 204: // M204 acclereration S normal moves T filmanent only moves
  4248. {
  4249. if(code_seen('S')) acceleration = code_value() ;
  4250. if(code_seen('T')) retract_acceleration = code_value() ;
  4251. }
  4252. break;
  4253. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4254. {
  4255. if(code_seen('S')) minimumfeedrate = code_value();
  4256. if(code_seen('T')) mintravelfeedrate = code_value();
  4257. if(code_seen('B')) minsegmenttime = code_value() ;
  4258. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4259. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4260. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4261. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4262. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4263. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4264. }
  4265. break;
  4266. case 206: // M206 additional homing offset
  4267. for(int8_t i=0; i < 3; i++)
  4268. {
  4269. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4270. }
  4271. break;
  4272. #ifdef FWRETRACT
  4273. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4274. {
  4275. if(code_seen('S'))
  4276. {
  4277. retract_length = code_value() ;
  4278. }
  4279. if(code_seen('F'))
  4280. {
  4281. retract_feedrate = code_value()/60 ;
  4282. }
  4283. if(code_seen('Z'))
  4284. {
  4285. retract_zlift = code_value() ;
  4286. }
  4287. }break;
  4288. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4289. {
  4290. if(code_seen('S'))
  4291. {
  4292. retract_recover_length = code_value() ;
  4293. }
  4294. if(code_seen('F'))
  4295. {
  4296. retract_recover_feedrate = code_value()/60 ;
  4297. }
  4298. }break;
  4299. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4300. {
  4301. if(code_seen('S'))
  4302. {
  4303. int t= code_value() ;
  4304. switch(t)
  4305. {
  4306. case 0:
  4307. {
  4308. autoretract_enabled=false;
  4309. retracted[0]=false;
  4310. #if EXTRUDERS > 1
  4311. retracted[1]=false;
  4312. #endif
  4313. #if EXTRUDERS > 2
  4314. retracted[2]=false;
  4315. #endif
  4316. }break;
  4317. case 1:
  4318. {
  4319. autoretract_enabled=true;
  4320. retracted[0]=false;
  4321. #if EXTRUDERS > 1
  4322. retracted[1]=false;
  4323. #endif
  4324. #if EXTRUDERS > 2
  4325. retracted[2]=false;
  4326. #endif
  4327. }break;
  4328. default:
  4329. SERIAL_ECHO_START;
  4330. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4331. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4332. SERIAL_ECHOLNPGM("\"(1)");
  4333. }
  4334. }
  4335. }break;
  4336. #endif // FWRETRACT
  4337. #if EXTRUDERS > 1
  4338. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4339. {
  4340. if(setTargetedHotend(218)){
  4341. break;
  4342. }
  4343. if(code_seen('X'))
  4344. {
  4345. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4346. }
  4347. if(code_seen('Y'))
  4348. {
  4349. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4350. }
  4351. SERIAL_ECHO_START;
  4352. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4353. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4354. {
  4355. SERIAL_ECHO(" ");
  4356. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4357. SERIAL_ECHO(",");
  4358. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4359. }
  4360. SERIAL_ECHOLN("");
  4361. }break;
  4362. #endif
  4363. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4364. {
  4365. if(code_seen('S'))
  4366. {
  4367. feedmultiply = code_value() ;
  4368. }
  4369. }
  4370. break;
  4371. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4372. {
  4373. if(code_seen('S'))
  4374. {
  4375. int tmp_code = code_value();
  4376. if (code_seen('T'))
  4377. {
  4378. if(setTargetedHotend(221)){
  4379. break;
  4380. }
  4381. extruder_multiply[tmp_extruder] = tmp_code;
  4382. }
  4383. else
  4384. {
  4385. extrudemultiply = tmp_code ;
  4386. }
  4387. }
  4388. }
  4389. break;
  4390. #ifndef _DISABLE_M42_M226
  4391. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4392. {
  4393. if(code_seen('P')){
  4394. int pin_number = code_value(); // pin number
  4395. int pin_state = -1; // required pin state - default is inverted
  4396. if(code_seen('S')) pin_state = code_value(); // required pin state
  4397. if(pin_state >= -1 && pin_state <= 1){
  4398. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4399. {
  4400. if (sensitive_pins[i] == pin_number)
  4401. {
  4402. pin_number = -1;
  4403. break;
  4404. }
  4405. }
  4406. if (pin_number > -1)
  4407. {
  4408. int target = LOW;
  4409. st_synchronize();
  4410. pinMode(pin_number, INPUT);
  4411. switch(pin_state){
  4412. case 1:
  4413. target = HIGH;
  4414. break;
  4415. case 0:
  4416. target = LOW;
  4417. break;
  4418. case -1:
  4419. target = !digitalRead(pin_number);
  4420. break;
  4421. }
  4422. while(digitalRead(pin_number) != target){
  4423. manage_heater();
  4424. manage_inactivity();
  4425. lcd_update();
  4426. }
  4427. }
  4428. }
  4429. }
  4430. }
  4431. break;
  4432. #endif //_DISABLE_M42_M226
  4433. #if NUM_SERVOS > 0
  4434. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4435. {
  4436. int servo_index = -1;
  4437. int servo_position = 0;
  4438. if (code_seen('P'))
  4439. servo_index = code_value();
  4440. if (code_seen('S')) {
  4441. servo_position = code_value();
  4442. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4443. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4444. servos[servo_index].attach(0);
  4445. #endif
  4446. servos[servo_index].write(servo_position);
  4447. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4448. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4449. servos[servo_index].detach();
  4450. #endif
  4451. }
  4452. else {
  4453. SERIAL_ECHO_START;
  4454. SERIAL_ECHO("Servo ");
  4455. SERIAL_ECHO(servo_index);
  4456. SERIAL_ECHOLN(" out of range");
  4457. }
  4458. }
  4459. else if (servo_index >= 0) {
  4460. SERIAL_PROTOCOL(MSG_OK);
  4461. SERIAL_PROTOCOL(" Servo ");
  4462. SERIAL_PROTOCOL(servo_index);
  4463. SERIAL_PROTOCOL(": ");
  4464. SERIAL_PROTOCOL(servos[servo_index].read());
  4465. SERIAL_PROTOCOLLN("");
  4466. }
  4467. }
  4468. break;
  4469. #endif // NUM_SERVOS > 0
  4470. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4471. case 300: // M300
  4472. {
  4473. int beepS = code_seen('S') ? code_value() : 110;
  4474. int beepP = code_seen('P') ? code_value() : 1000;
  4475. if (beepS > 0)
  4476. {
  4477. #if BEEPER > 0
  4478. tone(BEEPER, beepS);
  4479. delay(beepP);
  4480. noTone(BEEPER);
  4481. #elif defined(ULTRALCD)
  4482. lcd_buzz(beepS, beepP);
  4483. #elif defined(LCD_USE_I2C_BUZZER)
  4484. lcd_buzz(beepP, beepS);
  4485. #endif
  4486. }
  4487. else
  4488. {
  4489. delay(beepP);
  4490. }
  4491. }
  4492. break;
  4493. #endif // M300
  4494. #ifdef PIDTEMP
  4495. case 301: // M301
  4496. {
  4497. if(code_seen('P')) Kp = code_value();
  4498. if(code_seen('I')) Ki = scalePID_i(code_value());
  4499. if(code_seen('D')) Kd = scalePID_d(code_value());
  4500. #ifdef PID_ADD_EXTRUSION_RATE
  4501. if(code_seen('C')) Kc = code_value();
  4502. #endif
  4503. updatePID();
  4504. SERIAL_PROTOCOLRPGM(MSG_OK);
  4505. SERIAL_PROTOCOL(" p:");
  4506. SERIAL_PROTOCOL(Kp);
  4507. SERIAL_PROTOCOL(" i:");
  4508. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4509. SERIAL_PROTOCOL(" d:");
  4510. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4511. #ifdef PID_ADD_EXTRUSION_RATE
  4512. SERIAL_PROTOCOL(" c:");
  4513. //Kc does not have scaling applied above, or in resetting defaults
  4514. SERIAL_PROTOCOL(Kc);
  4515. #endif
  4516. SERIAL_PROTOCOLLN("");
  4517. }
  4518. break;
  4519. #endif //PIDTEMP
  4520. #ifdef PIDTEMPBED
  4521. case 304: // M304
  4522. {
  4523. if(code_seen('P')) bedKp = code_value();
  4524. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4525. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4526. updatePID();
  4527. SERIAL_PROTOCOLRPGM(MSG_OK);
  4528. SERIAL_PROTOCOL(" p:");
  4529. SERIAL_PROTOCOL(bedKp);
  4530. SERIAL_PROTOCOL(" i:");
  4531. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4532. SERIAL_PROTOCOL(" d:");
  4533. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4534. SERIAL_PROTOCOLLN("");
  4535. }
  4536. break;
  4537. #endif //PIDTEMP
  4538. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4539. {
  4540. #ifdef CHDK
  4541. SET_OUTPUT(CHDK);
  4542. WRITE(CHDK, HIGH);
  4543. chdkHigh = millis();
  4544. chdkActive = true;
  4545. #else
  4546. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4547. const uint8_t NUM_PULSES=16;
  4548. const float PULSE_LENGTH=0.01524;
  4549. for(int i=0; i < NUM_PULSES; i++) {
  4550. WRITE(PHOTOGRAPH_PIN, HIGH);
  4551. _delay_ms(PULSE_LENGTH);
  4552. WRITE(PHOTOGRAPH_PIN, LOW);
  4553. _delay_ms(PULSE_LENGTH);
  4554. }
  4555. delay(7.33);
  4556. for(int i=0; i < NUM_PULSES; i++) {
  4557. WRITE(PHOTOGRAPH_PIN, HIGH);
  4558. _delay_ms(PULSE_LENGTH);
  4559. WRITE(PHOTOGRAPH_PIN, LOW);
  4560. _delay_ms(PULSE_LENGTH);
  4561. }
  4562. #endif
  4563. #endif //chdk end if
  4564. }
  4565. break;
  4566. #ifdef DOGLCD
  4567. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4568. {
  4569. if (code_seen('C')) {
  4570. lcd_setcontrast( ((int)code_value())&63 );
  4571. }
  4572. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4573. SERIAL_PROTOCOL(lcd_contrast);
  4574. SERIAL_PROTOCOLLN("");
  4575. }
  4576. break;
  4577. #endif
  4578. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4579. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4580. {
  4581. float temp = .0;
  4582. if (code_seen('S')) temp=code_value();
  4583. set_extrude_min_temp(temp);
  4584. }
  4585. break;
  4586. #endif
  4587. case 303: // M303 PID autotune
  4588. {
  4589. float temp = 150.0;
  4590. int e=0;
  4591. int c=5;
  4592. if (code_seen('E')) e=code_value();
  4593. if (e<0)
  4594. temp=70;
  4595. if (code_seen('S')) temp=code_value();
  4596. if (code_seen('C')) c=code_value();
  4597. PID_autotune(temp, e, c);
  4598. }
  4599. break;
  4600. case 400: // M400 finish all moves
  4601. {
  4602. st_synchronize();
  4603. }
  4604. break;
  4605. #ifdef FILAMENT_SENSOR
  4606. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4607. {
  4608. #if (FILWIDTH_PIN > -1)
  4609. if(code_seen('N')) filament_width_nominal=code_value();
  4610. else{
  4611. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4612. SERIAL_PROTOCOLLN(filament_width_nominal);
  4613. }
  4614. #endif
  4615. }
  4616. break;
  4617. case 405: //M405 Turn on filament sensor for control
  4618. {
  4619. if(code_seen('D')) meas_delay_cm=code_value();
  4620. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4621. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4622. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4623. {
  4624. int temp_ratio = widthFil_to_size_ratio();
  4625. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4626. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4627. }
  4628. delay_index1=0;
  4629. delay_index2=0;
  4630. }
  4631. filament_sensor = true ;
  4632. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4633. //SERIAL_PROTOCOL(filament_width_meas);
  4634. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4635. //SERIAL_PROTOCOL(extrudemultiply);
  4636. }
  4637. break;
  4638. case 406: //M406 Turn off filament sensor for control
  4639. {
  4640. filament_sensor = false ;
  4641. }
  4642. break;
  4643. case 407: //M407 Display measured filament diameter
  4644. {
  4645. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4646. SERIAL_PROTOCOLLN(filament_width_meas);
  4647. }
  4648. break;
  4649. #endif
  4650. case 500: // M500 Store settings in EEPROM
  4651. {
  4652. Config_StoreSettings(EEPROM_OFFSET);
  4653. }
  4654. break;
  4655. case 501: // M501 Read settings from EEPROM
  4656. {
  4657. Config_RetrieveSettings(EEPROM_OFFSET);
  4658. }
  4659. break;
  4660. case 502: // M502 Revert to default settings
  4661. {
  4662. Config_ResetDefault();
  4663. }
  4664. break;
  4665. case 503: // M503 print settings currently in memory
  4666. {
  4667. Config_PrintSettings();
  4668. }
  4669. break;
  4670. case 509: //M509 Force language selection
  4671. {
  4672. lcd_force_language_selection();
  4673. SERIAL_ECHO_START;
  4674. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4675. }
  4676. break;
  4677. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4678. case 540:
  4679. {
  4680. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4681. }
  4682. break;
  4683. #endif
  4684. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4685. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4686. {
  4687. float value;
  4688. if (code_seen('Z'))
  4689. {
  4690. value = code_value();
  4691. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4692. {
  4693. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4694. SERIAL_ECHO_START;
  4695. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4696. SERIAL_PROTOCOLLN("");
  4697. }
  4698. else
  4699. {
  4700. SERIAL_ECHO_START;
  4701. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4702. SERIAL_ECHORPGM(MSG_Z_MIN);
  4703. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4704. SERIAL_ECHORPGM(MSG_Z_MAX);
  4705. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4706. SERIAL_PROTOCOLLN("");
  4707. }
  4708. }
  4709. else
  4710. {
  4711. SERIAL_ECHO_START;
  4712. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4713. SERIAL_ECHO(-zprobe_zoffset);
  4714. SERIAL_PROTOCOLLN("");
  4715. }
  4716. break;
  4717. }
  4718. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4719. #ifdef FILAMENTCHANGEENABLE
  4720. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4721. {
  4722. bool old_fsensor_enabled = fsensor_enabled;
  4723. fsensor_enabled = false; //temporary solution for unexpected restarting
  4724. st_synchronize();
  4725. float target[4];
  4726. float lastpos[4];
  4727. if (farm_mode)
  4728. {
  4729. prusa_statistics(22);
  4730. }
  4731. feedmultiplyBckp=feedmultiply;
  4732. int8_t TooLowZ = 0;
  4733. float HotendTempBckp = degTargetHotend(active_extruder);
  4734. int fanSpeedBckp = fanSpeed;
  4735. target[X_AXIS]=current_position[X_AXIS];
  4736. target[Y_AXIS]=current_position[Y_AXIS];
  4737. target[Z_AXIS]=current_position[Z_AXIS];
  4738. target[E_AXIS]=current_position[E_AXIS];
  4739. lastpos[X_AXIS]=current_position[X_AXIS];
  4740. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4741. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4742. lastpos[E_AXIS]=current_position[E_AXIS];
  4743. //Restract extruder
  4744. if(code_seen('E'))
  4745. {
  4746. target[E_AXIS]+= code_value();
  4747. }
  4748. else
  4749. {
  4750. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4751. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4752. #endif
  4753. }
  4754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4755. //Lift Z
  4756. if(code_seen('Z'))
  4757. {
  4758. target[Z_AXIS]+= code_value();
  4759. }
  4760. else
  4761. {
  4762. #ifdef FILAMENTCHANGE_ZADD
  4763. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4764. if(target[Z_AXIS] < 10){
  4765. target[Z_AXIS]+= 10 ;
  4766. TooLowZ = 1;
  4767. }else{
  4768. TooLowZ = 0;
  4769. }
  4770. #endif
  4771. }
  4772. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4773. //Move XY to side
  4774. if(code_seen('X'))
  4775. {
  4776. target[X_AXIS]+= code_value();
  4777. }
  4778. else
  4779. {
  4780. #ifdef FILAMENTCHANGE_XPOS
  4781. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4782. #endif
  4783. }
  4784. if(code_seen('Y'))
  4785. {
  4786. target[Y_AXIS]= code_value();
  4787. }
  4788. else
  4789. {
  4790. #ifdef FILAMENTCHANGE_YPOS
  4791. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4792. #endif
  4793. }
  4794. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4795. st_synchronize();
  4796. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4797. uint8_t cnt = 0;
  4798. int counterBeep = 0;
  4799. fanSpeed = 0;
  4800. unsigned long waiting_start_time = millis();
  4801. uint8_t wait_for_user_state = 0;
  4802. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4803. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4804. //cnt++;
  4805. manage_heater();
  4806. manage_inactivity(true);
  4807. /*#ifdef SNMM
  4808. target[E_AXIS] += 0.002;
  4809. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4810. #endif // SNMM*/
  4811. //if (cnt == 0)
  4812. {
  4813. #if BEEPER > 0
  4814. if (counterBeep == 500) {
  4815. counterBeep = 0;
  4816. }
  4817. SET_OUTPUT(BEEPER);
  4818. if (counterBeep == 0) {
  4819. WRITE(BEEPER, HIGH);
  4820. }
  4821. if (counterBeep == 20) {
  4822. WRITE(BEEPER, LOW);
  4823. }
  4824. counterBeep++;
  4825. #else
  4826. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4827. lcd_buzz(1000 / 6, 100);
  4828. #else
  4829. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4830. #endif
  4831. #endif
  4832. }
  4833. switch (wait_for_user_state) {
  4834. case 0:
  4835. delay_keep_alive(4);
  4836. if (millis() > waiting_start_time + M600_TIMEOUT * 1000) {
  4837. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4838. wait_for_user_state = 1;
  4839. setTargetHotend(0, 0);
  4840. setTargetHotend(0, 1);
  4841. setTargetHotend(0, 2);
  4842. st_synchronize();
  4843. disable_e0();
  4844. disable_e1();
  4845. disable_e2();
  4846. }
  4847. break;
  4848. case 1:
  4849. delay_keep_alive(4);
  4850. if (lcd_clicked()) {
  4851. setTargetHotend(HotendTempBckp, active_extruder);
  4852. lcd_wait_for_heater();
  4853. wait_for_user_state = 2;
  4854. }
  4855. break;
  4856. case 2:
  4857. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4858. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4859. waiting_start_time = millis();
  4860. wait_for_user_state = 0;
  4861. }
  4862. else {
  4863. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4864. lcd.setCursor(1, 4);
  4865. lcd.print(ftostr3(degHotend(active_extruder)));
  4866. }
  4867. break;
  4868. }
  4869. }
  4870. WRITE(BEEPER, LOW);
  4871. lcd_change_fil_state = 0;
  4872. // Unload filament
  4873. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4874. KEEPALIVE_STATE(IN_HANDLER);
  4875. custom_message = true;
  4876. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4877. if (code_seen('L'))
  4878. {
  4879. target[E_AXIS] += code_value();
  4880. }
  4881. else
  4882. {
  4883. #ifdef SNMM
  4884. #else
  4885. #ifdef FILAMENTCHANGE_FINALRETRACT
  4886. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4887. #endif
  4888. #endif // SNMM
  4889. }
  4890. #ifdef SNMM
  4891. target[E_AXIS] += 12;
  4892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4893. target[E_AXIS] += 6;
  4894. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4895. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4896. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4897. st_synchronize();
  4898. target[E_AXIS] += (FIL_COOLING);
  4899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4900. target[E_AXIS] += (FIL_COOLING*-1);
  4901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4902. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4903. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4904. st_synchronize();
  4905. #else
  4906. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4907. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4908. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4909. target[E_AXIS] -= 45;
  4910. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4911. st_synchronize();
  4912. target[E_AXIS] -= 15;
  4913. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 160 / 60, active_extruder);
  4914. st_synchronize();
  4915. target[E_AXIS] -= 20;
  4916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000 / 60, active_extruder);
  4917. st_synchronize();
  4918. #endif // SNMM
  4919. //finish moves
  4920. st_synchronize();
  4921. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  4922. //disable extruder steppers so filament can be removed
  4923. disable_e0();
  4924. disable_e1();
  4925. disable_e2();
  4926. delay(100);
  4927. WRITE(BEEPER, HIGH);
  4928. counterBeep = 0;
  4929. while(!lcd_clicked() && (counterBeep < 50)) {
  4930. if(counterBeep > 5) WRITE(BEEPER, LOW);
  4931. delay_keep_alive(100);
  4932. counterBeep++;
  4933. }
  4934. WRITE(BEEPER, LOW);
  4935. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4936. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, true);
  4937. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  4938. //lcd_return_to_status();
  4939. lcd_update_enable(true);
  4940. //Wait for user to insert filament
  4941. lcd_wait_interact();
  4942. //load_filament_time = millis();
  4943. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4944. #ifdef PAT9125
  4945. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  4946. #endif //PAT9125
  4947. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  4948. while(!lcd_clicked())
  4949. {
  4950. manage_heater();
  4951. manage_inactivity(true);
  4952. #ifdef PAT9125
  4953. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  4954. {
  4955. tone(BEEPER, 1000);
  4956. delay_keep_alive(50);
  4957. noTone(BEEPER);
  4958. break;
  4959. }
  4960. #endif //PAT9125
  4961. /*#ifdef SNMM
  4962. target[E_AXIS] += 0.002;
  4963. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4964. #endif // SNMM*/
  4965. }
  4966. #ifdef PAT9125
  4967. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  4968. #endif //PAT9125
  4969. //WRITE(BEEPER, LOW);
  4970. KEEPALIVE_STATE(IN_HANDLER);
  4971. #ifdef SNMM
  4972. display_loading();
  4973. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4974. do {
  4975. target[E_AXIS] += 0.002;
  4976. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4977. delay_keep_alive(2);
  4978. } while (!lcd_clicked());
  4979. KEEPALIVE_STATE(IN_HANDLER);
  4980. /*if (millis() - load_filament_time > 2) {
  4981. load_filament_time = millis();
  4982. target[E_AXIS] += 0.001;
  4983. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4984. }*/
  4985. //Filament inserted
  4986. //Feed the filament to the end of nozzle quickly
  4987. st_synchronize();
  4988. target[E_AXIS] += bowden_length[snmm_extruder];
  4989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4990. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4992. target[E_AXIS] += 40;
  4993. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4994. target[E_AXIS] += 10;
  4995. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4996. #else
  4997. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4999. #endif // SNMM
  5000. //Extrude some filament
  5001. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5002. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5003. //Wait for user to check the state
  5004. lcd_change_fil_state = 0;
  5005. lcd_loading_filament();
  5006. tone(BEEPER, 500);
  5007. delay_keep_alive(50);
  5008. noTone(BEEPER);
  5009. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5010. lcd_change_fil_state = 0;
  5011. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5012. lcd_alright();
  5013. KEEPALIVE_STATE(IN_HANDLER);
  5014. switch(lcd_change_fil_state){
  5015. // Filament failed to load so load it again
  5016. case 2:
  5017. #ifdef SNMM
  5018. display_loading();
  5019. do {
  5020. target[E_AXIS] += 0.002;
  5021. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5022. delay_keep_alive(2);
  5023. } while (!lcd_clicked());
  5024. st_synchronize();
  5025. target[E_AXIS] += bowden_length[snmm_extruder];
  5026. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5027. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5028. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5029. target[E_AXIS] += 40;
  5030. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5031. target[E_AXIS] += 10;
  5032. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5033. #else
  5034. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5036. #endif
  5037. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5038. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5039. lcd_loading_filament();
  5040. break;
  5041. // Filament loaded properly but color is not clear
  5042. case 3:
  5043. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5044. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5045. lcd_loading_color();
  5046. break;
  5047. // Everything good
  5048. default:
  5049. lcd_change_success();
  5050. lcd_update_enable(true);
  5051. break;
  5052. }
  5053. }
  5054. //Not let's go back to print
  5055. fanSpeed = fanSpeedBckp;
  5056. //Feed a little of filament to stabilize pressure
  5057. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5059. //Retract
  5060. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5062. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5063. //Move XY back
  5064. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5065. //Move Z back
  5066. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5067. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5068. //Unretract
  5069. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5070. //Set E position to original
  5071. plan_set_e_position(lastpos[E_AXIS]);
  5072. //Recover feed rate
  5073. feedmultiply=feedmultiplyBckp;
  5074. char cmd[9];
  5075. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5076. enquecommand(cmd);
  5077. lcd_setstatuspgm(WELCOME_MSG);
  5078. custom_message = false;
  5079. custom_message_type = 0;
  5080. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5081. #ifdef PAT9125
  5082. if (fsensor_M600)
  5083. {
  5084. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5085. st_synchronize();
  5086. while (!is_buffer_empty())
  5087. {
  5088. process_commands();
  5089. cmdqueue_pop_front();
  5090. }
  5091. fsensor_enable();
  5092. fsensor_restore_print_and_continue();
  5093. }
  5094. #endif //PAT9125
  5095. }
  5096. break;
  5097. #endif //FILAMENTCHANGEENABLE
  5098. case 601: {
  5099. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5100. }
  5101. break;
  5102. case 602: {
  5103. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5104. }
  5105. break;
  5106. #ifdef LIN_ADVANCE
  5107. case 900: // M900: Set LIN_ADVANCE options.
  5108. gcode_M900();
  5109. break;
  5110. #endif
  5111. case 907: // M907 Set digital trimpot motor current using axis codes.
  5112. {
  5113. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5114. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5115. if(code_seen('B')) digipot_current(4,code_value());
  5116. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5117. #endif
  5118. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5119. if(code_seen('X')) digipot_current(0, code_value());
  5120. #endif
  5121. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5122. if(code_seen('Z')) digipot_current(1, code_value());
  5123. #endif
  5124. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5125. if(code_seen('E')) digipot_current(2, code_value());
  5126. #endif
  5127. #ifdef DIGIPOT_I2C
  5128. // this one uses actual amps in floating point
  5129. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5130. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5131. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5132. #endif
  5133. }
  5134. break;
  5135. case 908: // M908 Control digital trimpot directly.
  5136. {
  5137. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5138. uint8_t channel,current;
  5139. if(code_seen('P')) channel=code_value();
  5140. if(code_seen('S')) current=code_value();
  5141. digitalPotWrite(channel, current);
  5142. #endif
  5143. }
  5144. break;
  5145. case 910: // M910 TMC2130 init
  5146. {
  5147. tmc2130_init();
  5148. }
  5149. break;
  5150. case 911: // M911 Set TMC2130 holding currents
  5151. {
  5152. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5153. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5154. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5155. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5156. }
  5157. break;
  5158. case 912: // M912 Set TMC2130 running currents
  5159. {
  5160. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5161. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5162. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5163. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5164. }
  5165. break;
  5166. case 913: // M913 Print TMC2130 currents
  5167. {
  5168. tmc2130_print_currents();
  5169. }
  5170. break;
  5171. case 914: // M914 Set normal mode
  5172. {
  5173. tmc2130_mode = TMC2130_MODE_NORMAL;
  5174. tmc2130_init();
  5175. }
  5176. break;
  5177. case 915: // M915 Set silent mode
  5178. {
  5179. tmc2130_mode = TMC2130_MODE_SILENT;
  5180. tmc2130_init();
  5181. }
  5182. break;
  5183. case 916: // M916 Set sg_thrs
  5184. {
  5185. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5186. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5187. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5188. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5189. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5190. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5191. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5192. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5193. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5194. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5195. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5196. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5197. }
  5198. break;
  5199. case 917: // M917 Set TMC2130 pwm_ampl
  5200. {
  5201. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5202. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5203. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5204. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5205. }
  5206. break;
  5207. case 918: // M918 Set TMC2130 pwm_grad
  5208. {
  5209. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5210. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5211. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5212. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5213. }
  5214. break;
  5215. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5216. {
  5217. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5218. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5219. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5220. if(code_seen('B')) microstep_mode(4,code_value());
  5221. microstep_readings();
  5222. #endif
  5223. }
  5224. break;
  5225. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5226. {
  5227. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5228. if(code_seen('S')) switch((int)code_value())
  5229. {
  5230. case 1:
  5231. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5232. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5233. break;
  5234. case 2:
  5235. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5236. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5237. break;
  5238. }
  5239. microstep_readings();
  5240. #endif
  5241. }
  5242. break;
  5243. case 701: //M701: load filament
  5244. {
  5245. gcode_M701();
  5246. }
  5247. break;
  5248. case 702:
  5249. {
  5250. #ifdef SNMM
  5251. if (code_seen('U')) {
  5252. extr_unload_used(); //unload all filaments which were used in current print
  5253. }
  5254. else if (code_seen('C')) {
  5255. extr_unload(); //unload just current filament
  5256. }
  5257. else {
  5258. extr_unload_all(); //unload all filaments
  5259. }
  5260. #else
  5261. bool old_fsensor_enabled = fsensor_enabled;
  5262. fsensor_enabled = false;
  5263. custom_message = true;
  5264. custom_message_type = 2;
  5265. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5266. // extr_unload2();
  5267. current_position[E_AXIS] -= 45;
  5268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5269. st_synchronize();
  5270. current_position[E_AXIS] -= 15;
  5271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 160 / 60, active_extruder);
  5272. st_synchronize();
  5273. current_position[E_AXIS] -= 20;
  5274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000 / 60, active_extruder);
  5275. st_synchronize();
  5276. lcd_setstatuspgm(WELCOME_MSG);
  5277. custom_message = false;
  5278. custom_message_type = 0;
  5279. fsensor_enabled = old_fsensor_enabled;
  5280. #endif
  5281. }
  5282. break;
  5283. case 999: // M999: Restart after being stopped
  5284. Stopped = false;
  5285. lcd_reset_alert_level();
  5286. gcode_LastN = Stopped_gcode_LastN;
  5287. FlushSerialRequestResend();
  5288. break;
  5289. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5290. }
  5291. } // end if(code_seen('M')) (end of M codes)
  5292. else if(code_seen('T'))
  5293. {
  5294. int index;
  5295. st_synchronize();
  5296. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5297. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5298. SERIAL_ECHOLNPGM("Invalid T code.");
  5299. }
  5300. else {
  5301. if (*(strchr_pointer + index) == '?') {
  5302. tmp_extruder = choose_extruder_menu();
  5303. }
  5304. else {
  5305. tmp_extruder = code_value();
  5306. }
  5307. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5308. #ifdef SNMM
  5309. #ifdef LIN_ADVANCE
  5310. if (snmm_extruder != tmp_extruder)
  5311. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5312. #endif
  5313. snmm_extruder = tmp_extruder;
  5314. delay(100);
  5315. disable_e0();
  5316. disable_e1();
  5317. disable_e2();
  5318. pinMode(E_MUX0_PIN, OUTPUT);
  5319. pinMode(E_MUX1_PIN, OUTPUT);
  5320. pinMode(E_MUX2_PIN, OUTPUT);
  5321. delay(100);
  5322. SERIAL_ECHO_START;
  5323. SERIAL_ECHO("T:");
  5324. SERIAL_ECHOLN((int)tmp_extruder);
  5325. switch (tmp_extruder) {
  5326. case 1:
  5327. WRITE(E_MUX0_PIN, HIGH);
  5328. WRITE(E_MUX1_PIN, LOW);
  5329. WRITE(E_MUX2_PIN, LOW);
  5330. break;
  5331. case 2:
  5332. WRITE(E_MUX0_PIN, LOW);
  5333. WRITE(E_MUX1_PIN, HIGH);
  5334. WRITE(E_MUX2_PIN, LOW);
  5335. break;
  5336. case 3:
  5337. WRITE(E_MUX0_PIN, HIGH);
  5338. WRITE(E_MUX1_PIN, HIGH);
  5339. WRITE(E_MUX2_PIN, LOW);
  5340. break;
  5341. default:
  5342. WRITE(E_MUX0_PIN, LOW);
  5343. WRITE(E_MUX1_PIN, LOW);
  5344. WRITE(E_MUX2_PIN, LOW);
  5345. break;
  5346. }
  5347. delay(100);
  5348. #else
  5349. if (tmp_extruder >= EXTRUDERS) {
  5350. SERIAL_ECHO_START;
  5351. SERIAL_ECHOPGM("T");
  5352. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5353. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5354. }
  5355. else {
  5356. boolean make_move = false;
  5357. if (code_seen('F')) {
  5358. make_move = true;
  5359. next_feedrate = code_value();
  5360. if (next_feedrate > 0.0) {
  5361. feedrate = next_feedrate;
  5362. }
  5363. }
  5364. #if EXTRUDERS > 1
  5365. if (tmp_extruder != active_extruder) {
  5366. // Save current position to return to after applying extruder offset
  5367. memcpy(destination, current_position, sizeof(destination));
  5368. // Offset extruder (only by XY)
  5369. int i;
  5370. for (i = 0; i < 2; i++) {
  5371. current_position[i] = current_position[i] -
  5372. extruder_offset[i][active_extruder] +
  5373. extruder_offset[i][tmp_extruder];
  5374. }
  5375. // Set the new active extruder and position
  5376. active_extruder = tmp_extruder;
  5377. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5378. // Move to the old position if 'F' was in the parameters
  5379. if (make_move && Stopped == false) {
  5380. prepare_move();
  5381. }
  5382. }
  5383. #endif
  5384. SERIAL_ECHO_START;
  5385. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5386. SERIAL_PROTOCOLLN((int)active_extruder);
  5387. }
  5388. #endif
  5389. }
  5390. } // end if(code_seen('T')) (end of T codes)
  5391. #ifdef DEBUG_DCODES
  5392. else if (code_seen('D')) // D codes (debug)
  5393. {
  5394. switch((int)code_value())
  5395. {
  5396. case -1: // D-1 - Endless loop
  5397. dcode__1(); break;
  5398. case 0: // D0 - Reset
  5399. dcode_0(); break;
  5400. case 1: // D1 - Clear EEPROM
  5401. dcode_1(); break;
  5402. case 2: // D2 - Read/Write RAM
  5403. dcode_2(); break;
  5404. case 3: // D3 - Read/Write EEPROM
  5405. dcode_3(); break;
  5406. case 4: // D4 - Read/Write PIN
  5407. dcode_4(); break;
  5408. case 5: // D5 - Read/Write FLASH
  5409. // dcode_5(); break;
  5410. break;
  5411. case 6: // D6 - Read/Write external FLASH
  5412. dcode_6(); break;
  5413. case 7: // D7 - Read/Write Bootloader
  5414. dcode_7(); break;
  5415. case 8: // D8 - Read/Write PINDA
  5416. dcode_8(); break;
  5417. case 9: // D9 - Read/Write ADC
  5418. dcode_9(); break;
  5419. case 10: // D10 - XYZ calibration = OK
  5420. dcode_10(); break;
  5421. case 12: //D12 - Reset failstat counters
  5422. dcode_12(); break;
  5423. case 2130: // D9125 - TMC2130
  5424. dcode_2130(); break;
  5425. case 9125: // D9125 - PAT9125
  5426. dcode_9125(); break;
  5427. }
  5428. }
  5429. #endif //DEBUG_DCODES
  5430. else
  5431. {
  5432. SERIAL_ECHO_START;
  5433. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5434. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5435. SERIAL_ECHOLNPGM("\"(2)");
  5436. }
  5437. KEEPALIVE_STATE(NOT_BUSY);
  5438. ClearToSend();
  5439. }
  5440. void FlushSerialRequestResend()
  5441. {
  5442. //char cmdbuffer[bufindr][100]="Resend:";
  5443. MYSERIAL.flush();
  5444. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5445. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5446. previous_millis_cmd = millis();
  5447. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5448. }
  5449. // Confirm the execution of a command, if sent from a serial line.
  5450. // Execution of a command from a SD card will not be confirmed.
  5451. void ClearToSend()
  5452. {
  5453. previous_millis_cmd = millis();
  5454. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5455. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5456. }
  5457. void get_coordinates()
  5458. {
  5459. bool seen[4]={false,false,false,false};
  5460. for(int8_t i=0; i < NUM_AXIS; i++) {
  5461. if(code_seen(axis_codes[i]))
  5462. {
  5463. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5464. seen[i]=true;
  5465. }
  5466. else destination[i] = current_position[i]; //Are these else lines really needed?
  5467. }
  5468. if(code_seen('F')) {
  5469. next_feedrate = code_value();
  5470. #ifdef MAX_SILENT_FEEDRATE
  5471. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5472. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5473. #endif //MAX_SILENT_FEEDRATE
  5474. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5475. }
  5476. }
  5477. void get_arc_coordinates()
  5478. {
  5479. #ifdef SF_ARC_FIX
  5480. bool relative_mode_backup = relative_mode;
  5481. relative_mode = true;
  5482. #endif
  5483. get_coordinates();
  5484. #ifdef SF_ARC_FIX
  5485. relative_mode=relative_mode_backup;
  5486. #endif
  5487. if(code_seen('I')) {
  5488. offset[0] = code_value();
  5489. }
  5490. else {
  5491. offset[0] = 0.0;
  5492. }
  5493. if(code_seen('J')) {
  5494. offset[1] = code_value();
  5495. }
  5496. else {
  5497. offset[1] = 0.0;
  5498. }
  5499. }
  5500. void clamp_to_software_endstops(float target[3])
  5501. {
  5502. #ifdef DEBUG_DISABLE_SWLIMITS
  5503. return;
  5504. #endif //DEBUG_DISABLE_SWLIMITS
  5505. world2machine_clamp(target[0], target[1]);
  5506. // Clamp the Z coordinate.
  5507. if (min_software_endstops) {
  5508. float negative_z_offset = 0;
  5509. #ifdef ENABLE_AUTO_BED_LEVELING
  5510. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5511. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5512. #endif
  5513. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5514. }
  5515. if (max_software_endstops) {
  5516. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5517. }
  5518. }
  5519. #ifdef MESH_BED_LEVELING
  5520. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5521. float dx = x - current_position[X_AXIS];
  5522. float dy = y - current_position[Y_AXIS];
  5523. float dz = z - current_position[Z_AXIS];
  5524. int n_segments = 0;
  5525. if (mbl.active) {
  5526. float len = abs(dx) + abs(dy);
  5527. if (len > 0)
  5528. // Split to 3cm segments or shorter.
  5529. n_segments = int(ceil(len / 30.f));
  5530. }
  5531. if (n_segments > 1) {
  5532. float de = e - current_position[E_AXIS];
  5533. for (int i = 1; i < n_segments; ++ i) {
  5534. float t = float(i) / float(n_segments);
  5535. plan_buffer_line(
  5536. current_position[X_AXIS] + t * dx,
  5537. current_position[Y_AXIS] + t * dy,
  5538. current_position[Z_AXIS] + t * dz,
  5539. current_position[E_AXIS] + t * de,
  5540. feed_rate, extruder);
  5541. }
  5542. }
  5543. // The rest of the path.
  5544. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5545. current_position[X_AXIS] = x;
  5546. current_position[Y_AXIS] = y;
  5547. current_position[Z_AXIS] = z;
  5548. current_position[E_AXIS] = e;
  5549. }
  5550. #endif // MESH_BED_LEVELING
  5551. void prepare_move()
  5552. {
  5553. clamp_to_software_endstops(destination);
  5554. previous_millis_cmd = millis();
  5555. // Do not use feedmultiply for E or Z only moves
  5556. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5557. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5558. }
  5559. else {
  5560. #ifdef MESH_BED_LEVELING
  5561. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5562. #else
  5563. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5564. #endif
  5565. }
  5566. for(int8_t i=0; i < NUM_AXIS; i++) {
  5567. current_position[i] = destination[i];
  5568. }
  5569. }
  5570. void prepare_arc_move(char isclockwise) {
  5571. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5572. // Trace the arc
  5573. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5574. // As far as the parser is concerned, the position is now == target. In reality the
  5575. // motion control system might still be processing the action and the real tool position
  5576. // in any intermediate location.
  5577. for(int8_t i=0; i < NUM_AXIS; i++) {
  5578. current_position[i] = destination[i];
  5579. }
  5580. previous_millis_cmd = millis();
  5581. }
  5582. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5583. #if defined(FAN_PIN)
  5584. #if CONTROLLERFAN_PIN == FAN_PIN
  5585. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5586. #endif
  5587. #endif
  5588. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5589. unsigned long lastMotorCheck = 0;
  5590. void controllerFan()
  5591. {
  5592. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5593. {
  5594. lastMotorCheck = millis();
  5595. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5596. #if EXTRUDERS > 2
  5597. || !READ(E2_ENABLE_PIN)
  5598. #endif
  5599. #if EXTRUDER > 1
  5600. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5601. || !READ(X2_ENABLE_PIN)
  5602. #endif
  5603. || !READ(E1_ENABLE_PIN)
  5604. #endif
  5605. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5606. {
  5607. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5608. }
  5609. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5610. {
  5611. digitalWrite(CONTROLLERFAN_PIN, 0);
  5612. analogWrite(CONTROLLERFAN_PIN, 0);
  5613. }
  5614. else
  5615. {
  5616. // allows digital or PWM fan output to be used (see M42 handling)
  5617. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5618. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5619. }
  5620. }
  5621. }
  5622. #endif
  5623. #ifdef TEMP_STAT_LEDS
  5624. static bool blue_led = false;
  5625. static bool red_led = false;
  5626. static uint32_t stat_update = 0;
  5627. void handle_status_leds(void) {
  5628. float max_temp = 0.0;
  5629. if(millis() > stat_update) {
  5630. stat_update += 500; // Update every 0.5s
  5631. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5632. max_temp = max(max_temp, degHotend(cur_extruder));
  5633. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5634. }
  5635. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5636. max_temp = max(max_temp, degTargetBed());
  5637. max_temp = max(max_temp, degBed());
  5638. #endif
  5639. if((max_temp > 55.0) && (red_led == false)) {
  5640. digitalWrite(STAT_LED_RED, 1);
  5641. digitalWrite(STAT_LED_BLUE, 0);
  5642. red_led = true;
  5643. blue_led = false;
  5644. }
  5645. if((max_temp < 54.0) && (blue_led == false)) {
  5646. digitalWrite(STAT_LED_RED, 0);
  5647. digitalWrite(STAT_LED_BLUE, 1);
  5648. red_led = false;
  5649. blue_led = true;
  5650. }
  5651. }
  5652. }
  5653. #endif
  5654. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5655. {
  5656. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5657. {
  5658. if (fsensor_autoload_enabled)
  5659. {
  5660. if (fsensor_check_autoload())
  5661. {
  5662. if (degHotend0() > EXTRUDE_MINTEMP)
  5663. {
  5664. fsensor_autoload_check_stop();
  5665. tone(BEEPER, 1000);
  5666. delay_keep_alive(50);
  5667. noTone(BEEPER);
  5668. loading_flag = true;
  5669. enquecommand_front_P((PSTR("M701")));
  5670. }
  5671. else
  5672. {
  5673. lcd_update_enable(false);
  5674. lcd_implementation_clear();
  5675. lcd.setCursor(0, 0);
  5676. lcd_printPGM(MSG_ERROR);
  5677. lcd.setCursor(0, 2);
  5678. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5679. delay(2000);
  5680. lcd_implementation_clear();
  5681. lcd_update_enable(true);
  5682. }
  5683. }
  5684. }
  5685. else
  5686. fsensor_autoload_check_start();
  5687. }
  5688. else
  5689. if (fsensor_autoload_enabled)
  5690. fsensor_autoload_check_stop();
  5691. #if defined(KILL_PIN) && KILL_PIN > -1
  5692. static int killCount = 0; // make the inactivity button a bit less responsive
  5693. const int KILL_DELAY = 10000;
  5694. #endif
  5695. if(buflen < (BUFSIZE-1)){
  5696. get_command();
  5697. }
  5698. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5699. if(max_inactive_time)
  5700. kill("", 4);
  5701. if(stepper_inactive_time) {
  5702. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5703. {
  5704. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5705. disable_x();
  5706. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5707. disable_y();
  5708. disable_z();
  5709. disable_e0();
  5710. disable_e1();
  5711. disable_e2();
  5712. }
  5713. }
  5714. }
  5715. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5716. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5717. {
  5718. chdkActive = false;
  5719. WRITE(CHDK, LOW);
  5720. }
  5721. #endif
  5722. #if defined(KILL_PIN) && KILL_PIN > -1
  5723. // Check if the kill button was pressed and wait just in case it was an accidental
  5724. // key kill key press
  5725. // -------------------------------------------------------------------------------
  5726. if( 0 == READ(KILL_PIN) )
  5727. {
  5728. killCount++;
  5729. }
  5730. else if (killCount > 0)
  5731. {
  5732. killCount--;
  5733. }
  5734. // Exceeded threshold and we can confirm that it was not accidental
  5735. // KILL the machine
  5736. // ----------------------------------------------------------------
  5737. if ( killCount >= KILL_DELAY)
  5738. {
  5739. kill("", 5);
  5740. }
  5741. #endif
  5742. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5743. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5744. #endif
  5745. #ifdef EXTRUDER_RUNOUT_PREVENT
  5746. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5747. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5748. {
  5749. bool oldstatus=READ(E0_ENABLE_PIN);
  5750. enable_e0();
  5751. float oldepos=current_position[E_AXIS];
  5752. float oldedes=destination[E_AXIS];
  5753. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5754. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5755. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5756. current_position[E_AXIS]=oldepos;
  5757. destination[E_AXIS]=oldedes;
  5758. plan_set_e_position(oldepos);
  5759. previous_millis_cmd=millis();
  5760. st_synchronize();
  5761. WRITE(E0_ENABLE_PIN,oldstatus);
  5762. }
  5763. #endif
  5764. #ifdef TEMP_STAT_LEDS
  5765. handle_status_leds();
  5766. #endif
  5767. check_axes_activity();
  5768. }
  5769. void kill(const char *full_screen_message, unsigned char id)
  5770. {
  5771. SERIAL_ECHOPGM("KILL: ");
  5772. MYSERIAL.println(int(id));
  5773. //return;
  5774. cli(); // Stop interrupts
  5775. disable_heater();
  5776. disable_x();
  5777. // SERIAL_ECHOLNPGM("kill - disable Y");
  5778. disable_y();
  5779. disable_z();
  5780. disable_e0();
  5781. disable_e1();
  5782. disable_e2();
  5783. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5784. pinMode(PS_ON_PIN,INPUT);
  5785. #endif
  5786. SERIAL_ERROR_START;
  5787. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5788. if (full_screen_message != NULL) {
  5789. SERIAL_ERRORLNRPGM(full_screen_message);
  5790. lcd_display_message_fullscreen_P(full_screen_message);
  5791. } else {
  5792. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5793. }
  5794. // FMC small patch to update the LCD before ending
  5795. sei(); // enable interrupts
  5796. for ( int i=5; i--; lcd_update())
  5797. {
  5798. delay(200);
  5799. }
  5800. cli(); // disable interrupts
  5801. suicide();
  5802. while(1)
  5803. {
  5804. wdt_reset();
  5805. /* Intentionally left empty */
  5806. } // Wait for reset
  5807. }
  5808. void Stop()
  5809. {
  5810. disable_heater();
  5811. if(Stopped == false) {
  5812. Stopped = true;
  5813. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5814. SERIAL_ERROR_START;
  5815. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5816. LCD_MESSAGERPGM(MSG_STOPPED);
  5817. }
  5818. }
  5819. bool IsStopped() { return Stopped; };
  5820. #ifdef FAST_PWM_FAN
  5821. void setPwmFrequency(uint8_t pin, int val)
  5822. {
  5823. val &= 0x07;
  5824. switch(digitalPinToTimer(pin))
  5825. {
  5826. #if defined(TCCR0A)
  5827. case TIMER0A:
  5828. case TIMER0B:
  5829. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5830. // TCCR0B |= val;
  5831. break;
  5832. #endif
  5833. #if defined(TCCR1A)
  5834. case TIMER1A:
  5835. case TIMER1B:
  5836. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5837. // TCCR1B |= val;
  5838. break;
  5839. #endif
  5840. #if defined(TCCR2)
  5841. case TIMER2:
  5842. case TIMER2:
  5843. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5844. TCCR2 |= val;
  5845. break;
  5846. #endif
  5847. #if defined(TCCR2A)
  5848. case TIMER2A:
  5849. case TIMER2B:
  5850. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5851. TCCR2B |= val;
  5852. break;
  5853. #endif
  5854. #if defined(TCCR3A)
  5855. case TIMER3A:
  5856. case TIMER3B:
  5857. case TIMER3C:
  5858. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5859. TCCR3B |= val;
  5860. break;
  5861. #endif
  5862. #if defined(TCCR4A)
  5863. case TIMER4A:
  5864. case TIMER4B:
  5865. case TIMER4C:
  5866. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5867. TCCR4B |= val;
  5868. break;
  5869. #endif
  5870. #if defined(TCCR5A)
  5871. case TIMER5A:
  5872. case TIMER5B:
  5873. case TIMER5C:
  5874. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5875. TCCR5B |= val;
  5876. break;
  5877. #endif
  5878. }
  5879. }
  5880. #endif //FAST_PWM_FAN
  5881. bool setTargetedHotend(int code){
  5882. tmp_extruder = active_extruder;
  5883. if(code_seen('T')) {
  5884. tmp_extruder = code_value();
  5885. if(tmp_extruder >= EXTRUDERS) {
  5886. SERIAL_ECHO_START;
  5887. switch(code){
  5888. case 104:
  5889. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5890. break;
  5891. case 105:
  5892. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5893. break;
  5894. case 109:
  5895. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5896. break;
  5897. case 218:
  5898. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5899. break;
  5900. case 221:
  5901. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5902. break;
  5903. }
  5904. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5905. return true;
  5906. }
  5907. }
  5908. return false;
  5909. }
  5910. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5911. {
  5912. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5913. {
  5914. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5915. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5916. }
  5917. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5918. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5919. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5920. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5921. total_filament_used = 0;
  5922. }
  5923. float calculate_volumetric_multiplier(float diameter) {
  5924. float area = .0;
  5925. float radius = .0;
  5926. radius = diameter * .5;
  5927. if (! volumetric_enabled || radius == 0) {
  5928. area = 1;
  5929. }
  5930. else {
  5931. area = M_PI * pow(radius, 2);
  5932. }
  5933. return 1.0 / area;
  5934. }
  5935. void calculate_volumetric_multipliers() {
  5936. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5937. #if EXTRUDERS > 1
  5938. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5939. #if EXTRUDERS > 2
  5940. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5941. #endif
  5942. #endif
  5943. }
  5944. void delay_keep_alive(unsigned int ms)
  5945. {
  5946. for (;;) {
  5947. manage_heater();
  5948. // Manage inactivity, but don't disable steppers on timeout.
  5949. manage_inactivity(true);
  5950. lcd_update();
  5951. if (ms == 0)
  5952. break;
  5953. else if (ms >= 50) {
  5954. delay(50);
  5955. ms -= 50;
  5956. } else {
  5957. delay(ms);
  5958. ms = 0;
  5959. }
  5960. }
  5961. }
  5962. void wait_for_heater(long codenum) {
  5963. #ifdef TEMP_RESIDENCY_TIME
  5964. long residencyStart;
  5965. residencyStart = -1;
  5966. /* continue to loop until we have reached the target temp
  5967. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5968. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5969. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5970. #else
  5971. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5972. #endif //TEMP_RESIDENCY_TIME
  5973. if ((millis() - codenum) > 1000UL)
  5974. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5975. if (!farm_mode) {
  5976. SERIAL_PROTOCOLPGM("T:");
  5977. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5978. SERIAL_PROTOCOLPGM(" E:");
  5979. SERIAL_PROTOCOL((int)tmp_extruder);
  5980. #ifdef TEMP_RESIDENCY_TIME
  5981. SERIAL_PROTOCOLPGM(" W:");
  5982. if (residencyStart > -1)
  5983. {
  5984. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5985. SERIAL_PROTOCOLLN(codenum);
  5986. }
  5987. else
  5988. {
  5989. SERIAL_PROTOCOLLN("?");
  5990. }
  5991. }
  5992. #else
  5993. SERIAL_PROTOCOLLN("");
  5994. #endif
  5995. codenum = millis();
  5996. }
  5997. manage_heater();
  5998. manage_inactivity();
  5999. lcd_update();
  6000. #ifdef TEMP_RESIDENCY_TIME
  6001. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6002. or when current temp falls outside the hysteresis after target temp was reached */
  6003. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6004. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6005. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6006. {
  6007. residencyStart = millis();
  6008. }
  6009. #endif //TEMP_RESIDENCY_TIME
  6010. }
  6011. }
  6012. void check_babystep() {
  6013. int babystep_z;
  6014. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6015. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6016. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6017. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6018. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6019. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6020. lcd_update_enable(true);
  6021. }
  6022. }
  6023. #ifdef DIS
  6024. void d_setup()
  6025. {
  6026. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6027. pinMode(D_DATA, INPUT_PULLUP);
  6028. pinMode(D_REQUIRE, OUTPUT);
  6029. digitalWrite(D_REQUIRE, HIGH);
  6030. }
  6031. float d_ReadData()
  6032. {
  6033. int digit[13];
  6034. String mergeOutput;
  6035. float output;
  6036. digitalWrite(D_REQUIRE, HIGH);
  6037. for (int i = 0; i<13; i++)
  6038. {
  6039. for (int j = 0; j < 4; j++)
  6040. {
  6041. while (digitalRead(D_DATACLOCK) == LOW) {}
  6042. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6043. bitWrite(digit[i], j, digitalRead(D_DATA));
  6044. }
  6045. }
  6046. digitalWrite(D_REQUIRE, LOW);
  6047. mergeOutput = "";
  6048. output = 0;
  6049. for (int r = 5; r <= 10; r++) //Merge digits
  6050. {
  6051. mergeOutput += digit[r];
  6052. }
  6053. output = mergeOutput.toFloat();
  6054. if (digit[4] == 8) //Handle sign
  6055. {
  6056. output *= -1;
  6057. }
  6058. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6059. {
  6060. output /= 10;
  6061. }
  6062. return output;
  6063. }
  6064. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6065. int t1 = 0;
  6066. int t_delay = 0;
  6067. int digit[13];
  6068. int m;
  6069. char str[3];
  6070. //String mergeOutput;
  6071. char mergeOutput[15];
  6072. float output;
  6073. int mesh_point = 0; //index number of calibration point
  6074. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6075. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6076. float mesh_home_z_search = 4;
  6077. float row[x_points_num];
  6078. int ix = 0;
  6079. int iy = 0;
  6080. char* filename_wldsd = "wldsd.txt";
  6081. char data_wldsd[70];
  6082. char numb_wldsd[10];
  6083. d_setup();
  6084. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6085. // We don't know where we are! HOME!
  6086. // Push the commands to the front of the message queue in the reverse order!
  6087. // There shall be always enough space reserved for these commands.
  6088. repeatcommand_front(); // repeat G80 with all its parameters
  6089. enquecommand_front_P((PSTR("G28 W0")));
  6090. enquecommand_front_P((PSTR("G1 Z5")));
  6091. return;
  6092. }
  6093. bool custom_message_old = custom_message;
  6094. unsigned int custom_message_type_old = custom_message_type;
  6095. unsigned int custom_message_state_old = custom_message_state;
  6096. custom_message = true;
  6097. custom_message_type = 1;
  6098. custom_message_state = (x_points_num * y_points_num) + 10;
  6099. lcd_update(1);
  6100. mbl.reset();
  6101. babystep_undo();
  6102. card.openFile(filename_wldsd, false);
  6103. current_position[Z_AXIS] = mesh_home_z_search;
  6104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6105. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6106. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6107. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6108. setup_for_endstop_move(false);
  6109. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6110. SERIAL_PROTOCOL(x_points_num);
  6111. SERIAL_PROTOCOLPGM(",");
  6112. SERIAL_PROTOCOL(y_points_num);
  6113. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6114. SERIAL_PROTOCOL(mesh_home_z_search);
  6115. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6116. SERIAL_PROTOCOL(x_dimension);
  6117. SERIAL_PROTOCOLPGM(",");
  6118. SERIAL_PROTOCOL(y_dimension);
  6119. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6120. while (mesh_point != x_points_num * y_points_num) {
  6121. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6122. iy = mesh_point / x_points_num;
  6123. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6124. float z0 = 0.f;
  6125. current_position[Z_AXIS] = mesh_home_z_search;
  6126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6127. st_synchronize();
  6128. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6129. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6131. st_synchronize();
  6132. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6133. break;
  6134. card.closefile();
  6135. }
  6136. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6137. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6138. //strcat(data_wldsd, numb_wldsd);
  6139. //MYSERIAL.println(data_wldsd);
  6140. //delay(1000);
  6141. //delay(3000);
  6142. //t1 = millis();
  6143. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6144. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6145. memset(digit, 0, sizeof(digit));
  6146. //cli();
  6147. digitalWrite(D_REQUIRE, LOW);
  6148. for (int i = 0; i<13; i++)
  6149. {
  6150. //t1 = millis();
  6151. for (int j = 0; j < 4; j++)
  6152. {
  6153. while (digitalRead(D_DATACLOCK) == LOW) {}
  6154. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6155. bitWrite(digit[i], j, digitalRead(D_DATA));
  6156. }
  6157. //t_delay = (millis() - t1);
  6158. //SERIAL_PROTOCOLPGM(" ");
  6159. //SERIAL_PROTOCOL_F(t_delay, 5);
  6160. //SERIAL_PROTOCOLPGM(" ");
  6161. }
  6162. //sei();
  6163. digitalWrite(D_REQUIRE, HIGH);
  6164. mergeOutput[0] = '\0';
  6165. output = 0;
  6166. for (int r = 5; r <= 10; r++) //Merge digits
  6167. {
  6168. sprintf(str, "%d", digit[r]);
  6169. strcat(mergeOutput, str);
  6170. }
  6171. output = atof(mergeOutput);
  6172. if (digit[4] == 8) //Handle sign
  6173. {
  6174. output *= -1;
  6175. }
  6176. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6177. {
  6178. output *= 0.1;
  6179. }
  6180. //output = d_ReadData();
  6181. //row[ix] = current_position[Z_AXIS];
  6182. memset(data_wldsd, 0, sizeof(data_wldsd));
  6183. for (int i = 0; i <3; i++) {
  6184. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6185. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6186. strcat(data_wldsd, numb_wldsd);
  6187. strcat(data_wldsd, ";");
  6188. }
  6189. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6190. dtostrf(output, 8, 5, numb_wldsd);
  6191. strcat(data_wldsd, numb_wldsd);
  6192. //strcat(data_wldsd, ";");
  6193. card.write_command(data_wldsd);
  6194. //row[ix] = d_ReadData();
  6195. row[ix] = output; // current_position[Z_AXIS];
  6196. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6197. for (int i = 0; i < x_points_num; i++) {
  6198. SERIAL_PROTOCOLPGM(" ");
  6199. SERIAL_PROTOCOL_F(row[i], 5);
  6200. }
  6201. SERIAL_PROTOCOLPGM("\n");
  6202. }
  6203. custom_message_state--;
  6204. mesh_point++;
  6205. lcd_update(1);
  6206. }
  6207. card.closefile();
  6208. }
  6209. #endif
  6210. void temp_compensation_start() {
  6211. custom_message = true;
  6212. custom_message_type = 5;
  6213. custom_message_state = PINDA_HEAT_T + 1;
  6214. lcd_update(2);
  6215. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6216. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6217. }
  6218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6219. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6220. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6221. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6223. st_synchronize();
  6224. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6225. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6226. delay_keep_alive(1000);
  6227. custom_message_state = PINDA_HEAT_T - i;
  6228. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6229. else lcd_update(1);
  6230. }
  6231. custom_message_type = 0;
  6232. custom_message_state = 0;
  6233. custom_message = false;
  6234. }
  6235. void temp_compensation_apply() {
  6236. int i_add;
  6237. int compensation_value;
  6238. int z_shift = 0;
  6239. float z_shift_mm;
  6240. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6241. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6242. i_add = (target_temperature_bed - 60) / 10;
  6243. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6244. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6245. }else {
  6246. //interpolation
  6247. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6248. }
  6249. SERIAL_PROTOCOLPGM("\n");
  6250. SERIAL_PROTOCOLPGM("Z shift applied:");
  6251. MYSERIAL.print(z_shift_mm);
  6252. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6253. st_synchronize();
  6254. plan_set_z_position(current_position[Z_AXIS]);
  6255. }
  6256. else {
  6257. //we have no temp compensation data
  6258. }
  6259. }
  6260. float temp_comp_interpolation(float inp_temperature) {
  6261. //cubic spline interpolation
  6262. int n, i, j, k;
  6263. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6264. int shift[10];
  6265. int temp_C[10];
  6266. n = 6; //number of measured points
  6267. shift[0] = 0;
  6268. for (i = 0; i < n; i++) {
  6269. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6270. temp_C[i] = 50 + i * 10; //temperature in C
  6271. #ifdef PINDA_THERMISTOR
  6272. temp_C[i] = 35 + i * 5; //temperature in C
  6273. #else
  6274. temp_C[i] = 50 + i * 10; //temperature in C
  6275. #endif
  6276. x[i] = (float)temp_C[i];
  6277. f[i] = (float)shift[i];
  6278. }
  6279. if (inp_temperature < x[0]) return 0;
  6280. for (i = n - 1; i>0; i--) {
  6281. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6282. h[i - 1] = x[i] - x[i - 1];
  6283. }
  6284. //*********** formation of h, s , f matrix **************
  6285. for (i = 1; i<n - 1; i++) {
  6286. m[i][i] = 2 * (h[i - 1] + h[i]);
  6287. if (i != 1) {
  6288. m[i][i - 1] = h[i - 1];
  6289. m[i - 1][i] = h[i - 1];
  6290. }
  6291. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6292. }
  6293. //*********** forward elimination **************
  6294. for (i = 1; i<n - 2; i++) {
  6295. temp = (m[i + 1][i] / m[i][i]);
  6296. for (j = 1; j <= n - 1; j++)
  6297. m[i + 1][j] -= temp*m[i][j];
  6298. }
  6299. //*********** backward substitution *********
  6300. for (i = n - 2; i>0; i--) {
  6301. sum = 0;
  6302. for (j = i; j <= n - 2; j++)
  6303. sum += m[i][j] * s[j];
  6304. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6305. }
  6306. for (i = 0; i<n - 1; i++)
  6307. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6308. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6309. b = s[i] / 2;
  6310. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6311. d = f[i];
  6312. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6313. }
  6314. return sum;
  6315. }
  6316. #ifdef PINDA_THERMISTOR
  6317. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6318. {
  6319. if (!temp_cal_active) return 0;
  6320. if (!calibration_status_pinda()) return 0;
  6321. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6322. }
  6323. #endif //PINDA_THERMISTOR
  6324. void long_pause() //long pause print
  6325. {
  6326. st_synchronize();
  6327. //save currently set parameters to global variables
  6328. saved_feedmultiply = feedmultiply;
  6329. HotendTempBckp = degTargetHotend(active_extruder);
  6330. fanSpeedBckp = fanSpeed;
  6331. start_pause_print = millis();
  6332. //save position
  6333. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6334. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6335. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6336. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6337. //retract
  6338. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6340. //lift z
  6341. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6342. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6344. //set nozzle target temperature to 0
  6345. setTargetHotend(0, 0);
  6346. setTargetHotend(0, 1);
  6347. setTargetHotend(0, 2);
  6348. //Move XY to side
  6349. current_position[X_AXIS] = X_PAUSE_POS;
  6350. current_position[Y_AXIS] = Y_PAUSE_POS;
  6351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6352. // Turn off the print fan
  6353. fanSpeed = 0;
  6354. st_synchronize();
  6355. }
  6356. void serialecho_temperatures() {
  6357. float tt = degHotend(active_extruder);
  6358. SERIAL_PROTOCOLPGM("T:");
  6359. SERIAL_PROTOCOL(tt);
  6360. SERIAL_PROTOCOLPGM(" E:");
  6361. SERIAL_PROTOCOL((int)active_extruder);
  6362. SERIAL_PROTOCOLPGM(" B:");
  6363. SERIAL_PROTOCOL_F(degBed(), 1);
  6364. SERIAL_PROTOCOLLN("");
  6365. }
  6366. extern uint32_t sdpos_atomic;
  6367. void uvlo_()
  6368. {
  6369. unsigned long time_start = millis();
  6370. bool sd_print = card.sdprinting;
  6371. // Conserve power as soon as possible.
  6372. disable_x();
  6373. disable_y();
  6374. disable_e0();
  6375. tmc2130_set_current_h(Z_AXIS, 20);
  6376. tmc2130_set_current_r(Z_AXIS, 20);
  6377. tmc2130_set_current_h(E_AXIS, 20);
  6378. tmc2130_set_current_r(E_AXIS, 20);
  6379. // Indicate that the interrupt has been triggered.
  6380. // SERIAL_ECHOLNPGM("UVLO");
  6381. // Read out the current Z motor microstep counter. This will be later used
  6382. // for reaching the zero full step before powering off.
  6383. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6384. // Calculate the file position, from which to resume this print.
  6385. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6386. {
  6387. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6388. sd_position -= sdlen_planner;
  6389. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6390. sd_position -= sdlen_cmdqueue;
  6391. if (sd_position < 0) sd_position = 0;
  6392. }
  6393. // Backup the feedrate in mm/min.
  6394. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6395. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6396. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6397. // are in action.
  6398. planner_abort_hard();
  6399. // Store the current extruder position.
  6400. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6401. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6402. // Clean the input command queue.
  6403. cmdqueue_reset();
  6404. card.sdprinting = false;
  6405. // card.closefile();
  6406. // Enable stepper driver interrupt to move Z axis.
  6407. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6408. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6409. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6410. sei();
  6411. plan_buffer_line(
  6412. current_position[X_AXIS],
  6413. current_position[Y_AXIS],
  6414. current_position[Z_AXIS],
  6415. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6416. 95, active_extruder);
  6417. st_synchronize();
  6418. disable_e0();
  6419. plan_buffer_line(
  6420. current_position[X_AXIS],
  6421. current_position[Y_AXIS],
  6422. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6423. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6424. 40, active_extruder);
  6425. st_synchronize();
  6426. disable_e0();
  6427. plan_buffer_line(
  6428. current_position[X_AXIS],
  6429. current_position[Y_AXIS],
  6430. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6431. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6432. 40, active_extruder);
  6433. st_synchronize();
  6434. disable_e0();
  6435. disable_z();
  6436. // Move Z up to the next 0th full step.
  6437. // Write the file position.
  6438. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6439. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6440. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6441. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6442. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6443. // Scale the z value to 1u resolution.
  6444. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6445. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6446. }
  6447. // Read out the current Z motor microstep counter. This will be later used
  6448. // for reaching the zero full step before powering off.
  6449. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6450. // Store the current position.
  6451. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6452. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6453. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6454. // Store the current feed rate, temperatures and fan speed.
  6455. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6456. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6457. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6458. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6459. // Finaly store the "power outage" flag.
  6460. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6461. st_synchronize();
  6462. SERIAL_ECHOPGM("stps");
  6463. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6464. disable_z();
  6465. // Increment power failure counter
  6466. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6467. power_count++;
  6468. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6469. SERIAL_ECHOLNPGM("UVLO - end");
  6470. MYSERIAL.println(millis() - time_start);
  6471. #if 0
  6472. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6473. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6475. st_synchronize();
  6476. #endif
  6477. cli();
  6478. volatile unsigned int ppcount = 0;
  6479. SET_OUTPUT(BEEPER);
  6480. WRITE(BEEPER, HIGH);
  6481. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6482. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6483. }
  6484. WRITE(BEEPER, LOW);
  6485. while(1){
  6486. #if 1
  6487. WRITE(BEEPER, LOW);
  6488. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6489. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6490. }
  6491. #endif
  6492. };
  6493. }
  6494. void setup_fan_interrupt() {
  6495. //INT7
  6496. DDRE &= ~(1 << 7); //input pin
  6497. PORTE &= ~(1 << 7); //no internal pull-up
  6498. //start with sensing rising edge
  6499. EICRB &= ~(1 << 6);
  6500. EICRB |= (1 << 7);
  6501. //enable INT7 interrupt
  6502. EIMSK |= (1 << 7);
  6503. }
  6504. ISR(INT7_vect) {
  6505. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6506. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6507. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6508. t_fan_rising_edge = millis_nc();
  6509. }
  6510. else { //interrupt was triggered by falling edge
  6511. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6512. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6513. }
  6514. }
  6515. EICRB ^= (1 << 6); //change edge
  6516. }
  6517. void setup_uvlo_interrupt() {
  6518. DDRE &= ~(1 << 4); //input pin
  6519. PORTE &= ~(1 << 4); //no internal pull-up
  6520. //sensing falling edge
  6521. EICRB |= (1 << 0);
  6522. EICRB &= ~(1 << 1);
  6523. //enable INT4 interrupt
  6524. EIMSK |= (1 << 4);
  6525. }
  6526. ISR(INT4_vect) {
  6527. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6528. SERIAL_ECHOLNPGM("INT4");
  6529. if (IS_SD_PRINTING) uvlo_();
  6530. }
  6531. void recover_print(uint8_t automatic) {
  6532. char cmd[30];
  6533. lcd_update_enable(true);
  6534. lcd_update(2);
  6535. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6536. recover_machine_state_after_power_panic();
  6537. // Set the target bed and nozzle temperatures.
  6538. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6539. enquecommand(cmd);
  6540. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6541. enquecommand(cmd);
  6542. // Lift the print head, so one may remove the excess priming material.
  6543. if (current_position[Z_AXIS] < 25)
  6544. enquecommand_P(PSTR("G1 Z25 F800"));
  6545. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6546. enquecommand_P(PSTR("G28 X Y"));
  6547. // Set the target bed and nozzle temperatures and wait.
  6548. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6549. enquecommand(cmd);
  6550. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6551. enquecommand(cmd);
  6552. enquecommand_P(PSTR("M83")); //E axis relative mode
  6553. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6554. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6555. if(automatic == 0){
  6556. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6557. }
  6558. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6559. // Mark the power panic status as inactive.
  6560. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6561. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6562. delay_keep_alive(1000);
  6563. }*/
  6564. SERIAL_ECHOPGM("After waiting for temp:");
  6565. SERIAL_ECHOPGM("Current position X_AXIS:");
  6566. MYSERIAL.println(current_position[X_AXIS]);
  6567. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6568. MYSERIAL.println(current_position[Y_AXIS]);
  6569. // Restart the print.
  6570. restore_print_from_eeprom();
  6571. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6572. MYSERIAL.print(current_position[Z_AXIS]);
  6573. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6574. MYSERIAL.print(current_position[E_AXIS]);
  6575. }
  6576. void recover_machine_state_after_power_panic()
  6577. {
  6578. char cmd[30];
  6579. // 1) Recover the logical cordinates at the time of the power panic.
  6580. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6581. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6582. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6583. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6584. // The current position after power panic is moved to the next closest 0th full step.
  6585. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6586. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6587. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6588. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6589. sprintf_P(cmd, PSTR("G92 E"));
  6590. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6591. enquecommand(cmd);
  6592. }
  6593. memcpy(destination, current_position, sizeof(destination));
  6594. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6595. print_world_coordinates();
  6596. // 2) Initialize the logical to physical coordinate system transformation.
  6597. world2machine_initialize();
  6598. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6599. mbl.active = false;
  6600. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6601. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6602. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6603. // Scale the z value to 10u resolution.
  6604. int16_t v;
  6605. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6606. if (v != 0)
  6607. mbl.active = true;
  6608. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6609. }
  6610. if (mbl.active)
  6611. mbl.upsample_3x3();
  6612. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6613. // print_mesh_bed_leveling_table();
  6614. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6615. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6616. babystep_load();
  6617. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6618. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6619. // 6) Power up the motors, mark their positions as known.
  6620. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6621. axis_known_position[X_AXIS] = true; enable_x();
  6622. axis_known_position[Y_AXIS] = true; enable_y();
  6623. axis_known_position[Z_AXIS] = true; enable_z();
  6624. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6625. print_physical_coordinates();
  6626. // 7) Recover the target temperatures.
  6627. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6628. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6629. }
  6630. void restore_print_from_eeprom() {
  6631. float x_rec, y_rec, z_pos;
  6632. int feedrate_rec;
  6633. uint8_t fan_speed_rec;
  6634. char cmd[30];
  6635. char* c;
  6636. char filename[13];
  6637. uint8_t depth = 0;
  6638. char dir_name[9];
  6639. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6640. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6641. SERIAL_ECHOPGM("Feedrate:");
  6642. MYSERIAL.println(feedrate_rec);
  6643. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6644. MYSERIAL.println(int(depth));
  6645. for (int i = 0; i < depth; i++) {
  6646. for (int j = 0; j < 8; j++) {
  6647. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6648. }
  6649. dir_name[8] = '\0';
  6650. MYSERIAL.println(dir_name);
  6651. card.chdir(dir_name);
  6652. }
  6653. for (int i = 0; i < 8; i++) {
  6654. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6655. }
  6656. filename[8] = '\0';
  6657. MYSERIAL.print(filename);
  6658. strcat_P(filename, PSTR(".gco"));
  6659. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6660. for (c = &cmd[4]; *c; c++)
  6661. *c = tolower(*c);
  6662. enquecommand(cmd);
  6663. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6664. SERIAL_ECHOPGM("Position read from eeprom:");
  6665. MYSERIAL.println(position);
  6666. // E axis relative mode.
  6667. enquecommand_P(PSTR("M83"));
  6668. // Move to the XY print position in logical coordinates, where the print has been killed.
  6669. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6670. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6671. strcat_P(cmd, PSTR(" F2000"));
  6672. enquecommand(cmd);
  6673. // Move the Z axis down to the print, in logical coordinates.
  6674. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6675. enquecommand(cmd);
  6676. // Unretract.
  6677. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6678. // Set the feedrate saved at the power panic.
  6679. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6680. enquecommand(cmd);
  6681. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6682. {
  6683. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6684. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6685. }
  6686. // Set the fan speed saved at the power panic.
  6687. strcpy_P(cmd, PSTR("M106 S"));
  6688. strcat(cmd, itostr3(int(fan_speed_rec)));
  6689. enquecommand(cmd);
  6690. // Set a position in the file.
  6691. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6692. enquecommand(cmd);
  6693. // Start SD print.
  6694. enquecommand_P(PSTR("M24"));
  6695. }
  6696. ////////////////////////////////////////////////////////////////////////////////
  6697. // new save/restore printing
  6698. //extern uint32_t sdpos_atomic;
  6699. bool saved_printing = false;
  6700. uint32_t saved_sdpos = 0;
  6701. float saved_pos[4] = {0, 0, 0, 0};
  6702. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6703. float saved_feedrate2 = 0;
  6704. uint8_t saved_active_extruder = 0;
  6705. bool saved_extruder_under_pressure = false;
  6706. void stop_and_save_print_to_ram(float z_move, float e_move)
  6707. {
  6708. if (saved_printing) return;
  6709. cli();
  6710. unsigned char nplanner_blocks = number_of_blocks();
  6711. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6712. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6713. saved_sdpos -= sdlen_planner;
  6714. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6715. saved_sdpos -= sdlen_cmdqueue;
  6716. #if 0
  6717. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6718. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6719. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6720. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6721. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6722. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6723. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6724. {
  6725. card.setIndex(saved_sdpos);
  6726. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6727. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6728. MYSERIAL.print(char(card.get()));
  6729. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6730. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6731. MYSERIAL.print(char(card.get()));
  6732. SERIAL_ECHOLNPGM("End of command buffer");
  6733. }
  6734. {
  6735. // Print the content of the planner buffer, line by line:
  6736. card.setIndex(saved_sdpos);
  6737. int8_t iline = 0;
  6738. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6739. SERIAL_ECHOPGM("Planner line (from file): ");
  6740. MYSERIAL.print(int(iline), DEC);
  6741. SERIAL_ECHOPGM(", length: ");
  6742. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6743. SERIAL_ECHOPGM(", steps: (");
  6744. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6745. SERIAL_ECHOPGM(",");
  6746. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6747. SERIAL_ECHOPGM(",");
  6748. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6749. SERIAL_ECHOPGM(",");
  6750. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6751. SERIAL_ECHOPGM("), events: ");
  6752. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6753. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6754. MYSERIAL.print(char(card.get()));
  6755. }
  6756. }
  6757. {
  6758. // Print the content of the command buffer, line by line:
  6759. int8_t iline = 0;
  6760. union {
  6761. struct {
  6762. char lo;
  6763. char hi;
  6764. } lohi;
  6765. uint16_t value;
  6766. } sdlen_single;
  6767. int _bufindr = bufindr;
  6768. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6769. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6770. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6771. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6772. }
  6773. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6774. MYSERIAL.print(int(iline), DEC);
  6775. SERIAL_ECHOPGM(", type: ");
  6776. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6777. SERIAL_ECHOPGM(", len: ");
  6778. MYSERIAL.println(sdlen_single.value, DEC);
  6779. // Print the content of the buffer line.
  6780. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6781. SERIAL_ECHOPGM("Buffer line (from file): ");
  6782. MYSERIAL.print(int(iline), DEC);
  6783. MYSERIAL.println(int(iline), DEC);
  6784. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6785. MYSERIAL.print(char(card.get()));
  6786. if (-- _buflen == 0)
  6787. break;
  6788. // First skip the current command ID and iterate up to the end of the string.
  6789. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6790. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6791. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6792. // If the end of the buffer was empty,
  6793. if (_bufindr == sizeof(cmdbuffer)) {
  6794. // skip to the start and find the nonzero command.
  6795. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6796. }
  6797. }
  6798. }
  6799. #endif
  6800. #if 0
  6801. saved_feedrate2 = feedrate; //save feedrate
  6802. #else
  6803. // Try to deduce the feedrate from the first block of the planner.
  6804. // Speed is in mm/min.
  6805. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6806. #endif
  6807. planner_abort_hard(); //abort printing
  6808. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6809. saved_active_extruder = active_extruder; //save active_extruder
  6810. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6811. cmdqueue_reset(); //empty cmdqueue
  6812. card.sdprinting = false;
  6813. // card.closefile();
  6814. saved_printing = true;
  6815. sei();
  6816. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6817. #if 1
  6818. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6819. char buf[48];
  6820. strcpy_P(buf, PSTR("G1 Z"));
  6821. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6822. strcat_P(buf, PSTR(" E"));
  6823. // Relative extrusion
  6824. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6825. strcat_P(buf, PSTR(" F"));
  6826. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6827. // At this point the command queue is empty.
  6828. enquecommand(buf, false);
  6829. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6830. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6831. repeatcommand_front();
  6832. #else
  6833. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6834. st_synchronize(); //wait moving
  6835. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6836. memcpy(destination, current_position, sizeof(destination));
  6837. #endif
  6838. }
  6839. }
  6840. void restore_print_from_ram_and_continue(float e_move)
  6841. {
  6842. if (!saved_printing) return;
  6843. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6844. // current_position[axis] = st_get_position_mm(axis);
  6845. active_extruder = saved_active_extruder; //restore active_extruder
  6846. feedrate = saved_feedrate2; //restore feedrate
  6847. float e = saved_pos[E_AXIS] - e_move;
  6848. plan_set_e_position(e);
  6849. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6850. st_synchronize();
  6851. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6852. memcpy(destination, current_position, sizeof(destination));
  6853. card.setIndex(saved_sdpos);
  6854. sdpos_atomic = saved_sdpos;
  6855. card.sdprinting = true;
  6856. saved_printing = false;
  6857. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6858. }
  6859. void print_world_coordinates()
  6860. {
  6861. SERIAL_ECHOPGM("world coordinates: (");
  6862. MYSERIAL.print(current_position[X_AXIS], 3);
  6863. SERIAL_ECHOPGM(", ");
  6864. MYSERIAL.print(current_position[Y_AXIS], 3);
  6865. SERIAL_ECHOPGM(", ");
  6866. MYSERIAL.print(current_position[Z_AXIS], 3);
  6867. SERIAL_ECHOLNPGM(")");
  6868. }
  6869. void print_physical_coordinates()
  6870. {
  6871. SERIAL_ECHOPGM("physical coordinates: (");
  6872. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6873. SERIAL_ECHOPGM(", ");
  6874. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6875. SERIAL_ECHOPGM(", ");
  6876. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6877. SERIAL_ECHOLNPGM(")");
  6878. }
  6879. void print_mesh_bed_leveling_table()
  6880. {
  6881. SERIAL_ECHOPGM("mesh bed leveling: ");
  6882. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6883. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6884. MYSERIAL.print(mbl.z_values[y][x], 3);
  6885. SERIAL_ECHOPGM(" ");
  6886. }
  6887. SERIAL_ECHOLNPGM("");
  6888. }
  6889. #define FIL_LOAD_LENGTH 60
  6890. void extr_unload2() { //unloads filament
  6891. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6892. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6893. // int8_t SilentMode;
  6894. uint8_t snmm_extruder = 0;
  6895. if (degHotend0() > EXTRUDE_MINTEMP) {
  6896. lcd_implementation_clear();
  6897. lcd_display_message_fullscreen_P(PSTR(""));
  6898. max_feedrate[E_AXIS] = 50;
  6899. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6900. // lcd.print(" ");
  6901. // lcd.print(snmm_extruder + 1);
  6902. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6903. if (current_position[Z_AXIS] < 15) {
  6904. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6905. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6906. }
  6907. current_position[E_AXIS] += 10; //extrusion
  6908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6909. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6910. if (current_temperature[0] < 230) { //PLA & all other filaments
  6911. current_position[E_AXIS] += 5.4;
  6912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6913. current_position[E_AXIS] += 3.2;
  6914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6915. current_position[E_AXIS] += 3;
  6916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6917. }
  6918. else { //ABS
  6919. current_position[E_AXIS] += 3.1;
  6920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6921. current_position[E_AXIS] += 3.1;
  6922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6923. current_position[E_AXIS] += 4;
  6924. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6925. /*current_position[X_AXIS] += 23; //delay
  6926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6927. current_position[X_AXIS] -= 23; //delay
  6928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6929. delay_keep_alive(4700);
  6930. }
  6931. max_feedrate[E_AXIS] = 80;
  6932. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6934. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6936. st_synchronize();
  6937. //digipot_init();
  6938. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6939. // else digipot_current(2, tmp_motor_loud[2]);
  6940. lcd_update_enable(true);
  6941. // lcd_return_to_status();
  6942. max_feedrate[E_AXIS] = 50;
  6943. }
  6944. else {
  6945. lcd_implementation_clear();
  6946. lcd.setCursor(0, 0);
  6947. lcd_printPGM(MSG_ERROR);
  6948. lcd.setCursor(0, 2);
  6949. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6950. delay(2000);
  6951. lcd_implementation_clear();
  6952. }
  6953. // lcd_return_to_status();
  6954. }