temperature.cpp 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #ifdef IR_SENSOR_ANALOG
  59. uint16_t current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. struct
  125. {
  126. uint8_t isAltfan : 1;
  127. uint8_t altfanOverride : 1;
  128. } altfanStatus;
  129. #endif //EXTRUDER_ALTFAN_DETECT
  130. #endif
  131. #if EXTRUDERS > 3
  132. # error Unsupported number of extruders
  133. #elif EXTRUDERS > 2
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  135. #elif EXTRUDERS > 1
  136. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  137. #else
  138. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  139. #endif
  140. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  141. // Init min and max temp with extreme values to prevent false errors during startup
  142. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  143. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  144. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  145. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  146. #ifdef BED_MINTEMP
  147. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  148. #endif
  149. #ifdef BED_MAXTEMP
  150. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  151. #endif
  152. #ifdef AMBIENT_MINTEMP
  153. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  154. #endif
  155. #ifdef AMBIENT_MAXTEMP
  156. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  157. #endif
  158. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  159. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  160. static float analog2temp(int raw, uint8_t e);
  161. static float analog2tempBed(int raw);
  162. static float analog2tempAmbient(int raw);
  163. static void updateTemperaturesFromRawValues();
  164. enum TempRunawayStates
  165. {
  166. TempRunaway_INACTIVE = 0,
  167. TempRunaway_PREHEAT = 1,
  168. TempRunaway_ACTIVE = 2,
  169. };
  170. #ifndef SOFT_PWM_SCALE
  171. #define SOFT_PWM_SCALE 0
  172. #endif
  173. //===========================================================================
  174. //============================= functions ============================
  175. //===========================================================================
  176. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  177. static float temp_runaway_status[4];
  178. static float temp_runaway_target[4];
  179. static float temp_runaway_timer[4];
  180. static int temp_runaway_error_counter[4];
  181. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  182. static void temp_runaway_stop(bool isPreheat, bool isBed);
  183. #endif
  184. #ifdef EXTRUDER_ALTFAN_DETECT
  185. ISR(INT6_vect) {
  186. fan_edge_counter[0]++;
  187. }
  188. bool extruder_altfan_detect()
  189. {
  190. setExtruderAutoFanState(3);
  191. SET_INPUT(TACH_0);
  192. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  193. if (overrideVal == EEPROM_EMPTY_VALUE)
  194. {
  195. overrideVal = 0;
  196. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  197. }
  198. altfanStatus.altfanOverride = overrideVal;
  199. CRITICAL_SECTION_START;
  200. EICRB &= ~(1 << ISC61);
  201. EICRB |= (1 << ISC60);
  202. EIMSK |= (1 << INT6);
  203. fan_edge_counter[0] = 0;
  204. CRITICAL_SECTION_END;
  205. extruder_autofan_last_check = _millis();
  206. _delay(1000);
  207. EIMSK &= ~(1 << INT6);
  208. countFanSpeed();
  209. altfanStatus.isAltfan = fan_speed[0] > 100;
  210. setExtruderAutoFanState(1);
  211. return altfanStatus.isAltfan;
  212. }
  213. void altfanOverride_toggle()
  214. {
  215. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  216. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  217. }
  218. bool altfanOverride_get()
  219. {
  220. return altfanStatus.altfanOverride;
  221. }
  222. #endif //EXTRUDER_ALTFAN_DETECT
  223. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  224. bool checkAllHotends(void)
  225. {
  226. bool result=false;
  227. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  228. return(result);
  229. }
  230. void PID_autotune(float temp, int extruder, int ncycles)
  231. {
  232. pid_number_of_cycles = ncycles;
  233. pid_tuning_finished = false;
  234. float input = 0.0;
  235. pid_cycle=0;
  236. bool heating = true;
  237. unsigned long temp_millis = _millis();
  238. unsigned long t1=temp_millis;
  239. unsigned long t2=temp_millis;
  240. long t_high = 0;
  241. long t_low = 0;
  242. long bias, d;
  243. float Ku, Tu;
  244. float max = 0, min = 10000;
  245. uint8_t safety_check_cycles = 0;
  246. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  247. float temp_ambient;
  248. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  249. unsigned long extruder_autofan_last_check = _millis();
  250. #endif
  251. if ((extruder >= EXTRUDERS)
  252. #if (TEMP_BED_PIN <= -1)
  253. ||(extruder < 0)
  254. #endif
  255. ){
  256. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  257. pid_tuning_finished = true;
  258. pid_cycle = 0;
  259. return;
  260. }
  261. SERIAL_ECHOLN("PID Autotune start");
  262. disable_heater(); // switch off all heaters.
  263. if (extruder<0)
  264. {
  265. soft_pwm_bed = (MAX_BED_POWER)/2;
  266. timer02_set_pwm0(soft_pwm_bed << 1);
  267. bias = d = (MAX_BED_POWER)/2;
  268. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  269. }
  270. else
  271. {
  272. soft_pwm[extruder] = (PID_MAX)/2;
  273. bias = d = (PID_MAX)/2;
  274. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  275. }
  276. for(;;) {
  277. #ifdef WATCHDOG
  278. wdt_reset();
  279. #endif //WATCHDOG
  280. if(temp_meas_ready == true) { // temp sample ready
  281. updateTemperaturesFromRawValues();
  282. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  283. max=max(max,input);
  284. min=min(min,input);
  285. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  286. if(_millis() - extruder_autofan_last_check > 2500) {
  287. checkExtruderAutoFans();
  288. extruder_autofan_last_check = _millis();
  289. }
  290. #endif
  291. if(heating == true && input > temp) {
  292. if(_millis() - t2 > 5000) {
  293. heating=false;
  294. if (extruder<0)
  295. {
  296. soft_pwm_bed = (bias - d) >> 1;
  297. timer02_set_pwm0(soft_pwm_bed << 1);
  298. }
  299. else
  300. soft_pwm[extruder] = (bias - d) >> 1;
  301. t1=_millis();
  302. t_high=t1 - t2;
  303. max=temp;
  304. }
  305. }
  306. if(heating == false && input < temp) {
  307. if(_millis() - t1 > 5000) {
  308. heating=true;
  309. t2=_millis();
  310. t_low=t2 - t1;
  311. if(pid_cycle > 0) {
  312. bias += (d*(t_high - t_low))/(t_low + t_high);
  313. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  314. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  315. else d = bias;
  316. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  317. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  318. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  319. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  320. if(pid_cycle > 2) {
  321. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  322. Tu = ((float)(t_low + t_high)/1000.0);
  323. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  324. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  325. _Kp = 0.6*Ku;
  326. _Ki = 2*_Kp/Tu;
  327. _Kd = _Kp*Tu/8;
  328. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  329. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  330. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  331. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  332. /*
  333. _Kp = 0.33*Ku;
  334. _Ki = _Kp/Tu;
  335. _Kd = _Kp*Tu/3;
  336. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  337. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  338. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  339. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  340. _Kp = 0.2*Ku;
  341. _Ki = 2*_Kp/Tu;
  342. _Kd = _Kp*Tu/3;
  343. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  344. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  345. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  346. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  347. */
  348. }
  349. }
  350. if (extruder<0)
  351. {
  352. soft_pwm_bed = (bias + d) >> 1;
  353. timer02_set_pwm0(soft_pwm_bed << 1);
  354. }
  355. else
  356. soft_pwm[extruder] = (bias + d) >> 1;
  357. pid_cycle++;
  358. min=temp;
  359. }
  360. }
  361. }
  362. if(input > (temp + 20)) {
  363. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  364. pid_tuning_finished = true;
  365. pid_cycle = 0;
  366. return;
  367. }
  368. if(_millis() - temp_millis > 2000) {
  369. int p;
  370. if (extruder<0){
  371. p=soft_pwm_bed;
  372. SERIAL_PROTOCOLPGM("B:");
  373. }else{
  374. p=soft_pwm[extruder];
  375. SERIAL_PROTOCOLPGM("T:");
  376. }
  377. SERIAL_PROTOCOL(input);
  378. SERIAL_PROTOCOLPGM(" @:");
  379. SERIAL_PROTOCOLLN(p);
  380. if (safety_check_cycles == 0) { //save ambient temp
  381. temp_ambient = input;
  382. //SERIAL_ECHOPGM("Ambient T: ");
  383. //MYSERIAL.println(temp_ambient);
  384. safety_check_cycles++;
  385. }
  386. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  387. safety_check_cycles++;
  388. }
  389. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  390. safety_check_cycles++;
  391. //SERIAL_ECHOPGM("Time from beginning: ");
  392. //MYSERIAL.print(safety_check_cycles_count * 2);
  393. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  394. //MYSERIAL.println(input - temp_ambient);
  395. if (abs(input - temp_ambient) < 5.0) {
  396. temp_runaway_stop(false, (extruder<0));
  397. pid_tuning_finished = true;
  398. return;
  399. }
  400. }
  401. temp_millis = _millis();
  402. }
  403. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  404. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  405. pid_tuning_finished = true;
  406. pid_cycle = 0;
  407. return;
  408. }
  409. if(pid_cycle > ncycles) {
  410. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  411. pid_tuning_finished = true;
  412. pid_cycle = 0;
  413. return;
  414. }
  415. lcd_update(0);
  416. }
  417. }
  418. void updatePID()
  419. {
  420. #ifdef PIDTEMP
  421. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  422. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  423. }
  424. #endif
  425. #ifdef PIDTEMPBED
  426. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  427. #endif
  428. }
  429. int getHeaterPower(int heater) {
  430. if (heater<0)
  431. return soft_pwm_bed;
  432. return soft_pwm[heater];
  433. }
  434. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  435. #if defined(FAN_PIN) && FAN_PIN > -1
  436. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  437. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  438. #endif
  439. #endif
  440. void setExtruderAutoFanState(uint8_t state)
  441. {
  442. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  443. //the fan to either On or Off during certain tests/errors.
  444. fanState = state;
  445. uint8_t newFanSpeed = 0;
  446. if (fanState & 0x01)
  447. {
  448. #ifdef EXTRUDER_ALTFAN_DETECT
  449. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  450. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  451. #else //EXTRUDER_ALTFAN_DETECT
  452. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  453. #endif //EXTRUDER_ALTFAN_DETECT
  454. }
  455. timer4_set_fan0(newFanSpeed);
  456. }
  457. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  458. void countFanSpeed()
  459. {
  460. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  461. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  462. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  463. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  464. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  465. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  466. SERIAL_ECHOLNPGM(" ");*/
  467. fan_edge_counter[0] = 0;
  468. fan_edge_counter[1] = 0;
  469. }
  470. void checkFanSpeed()
  471. {
  472. uint8_t max_print_fan_errors = 0;
  473. uint8_t max_extruder_fan_errors = 0;
  474. #ifdef FAN_SOFT_PWM
  475. max_print_fan_errors = 3; //15 seconds
  476. max_extruder_fan_errors = 2; //10seconds
  477. #else //FAN_SOFT_PWM
  478. max_print_fan_errors = 15; //15 seconds
  479. max_extruder_fan_errors = 5; //5 seconds
  480. #endif //FAN_SOFT_PWM
  481. if(fans_check_enabled != false)
  482. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  483. static unsigned char fan_speed_errors[2] = { 0,0 };
  484. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  485. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  486. else{
  487. fan_speed_errors[0] = 0;
  488. host_keepalive();
  489. }
  490. #endif
  491. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  492. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  493. else fan_speed_errors[1] = 0;
  494. #endif
  495. // drop the fan_check_error flag when both fans are ok
  496. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  497. // we may even send some info to the LCD from here
  498. fan_check_error = EFCE_FIXED;
  499. }
  500. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  501. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  502. lcd_reset_alert_level(); //for another fan speed error
  503. }
  504. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  505. fan_speed_errors[0] = 0;
  506. fanSpeedError(0); //extruder fan
  507. }
  508. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  509. fan_speed_errors[1] = 0;
  510. fanSpeedError(1); //print fan
  511. }
  512. }
  513. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  514. //! Extracted from fanSpeedError to save some space.
  515. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  516. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  517. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  518. SERIAL_ECHOLNRPGM(serialMsg);
  519. if (get_message_level() == 0) {
  520. Sound_MakeCustom(200,0,true);
  521. LCD_ALERTMESSAGERPGM(lcdMsg);
  522. }
  523. }
  524. void fanSpeedError(unsigned char _fan) {
  525. if (get_message_level() != 0 && isPrintPaused) return;
  526. //to ensure that target temp. is not set to zero in case that we are resuming print
  527. if (card.sdprinting || is_usb_printing) {
  528. if (heating_status != 0) {
  529. lcd_print_stop();
  530. }
  531. else {
  532. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  533. }
  534. }
  535. else {
  536. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  537. setTargetHotend0(0);
  538. heating_status = 0;
  539. fan_check_error = EFCE_REPORTED;
  540. }
  541. switch (_fan) {
  542. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  543. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  544. break;
  545. case 1:
  546. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  547. break;
  548. }
  549. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  550. }
  551. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  552. void checkExtruderAutoFans()
  553. {
  554. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  555. if (!(fanState & 0x02))
  556. {
  557. fanState &= ~1;
  558. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  559. }
  560. setExtruderAutoFanState(fanState);
  561. #endif
  562. }
  563. #endif // any extruder auto fan pins set
  564. // ready for eventually parameters adjusting
  565. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  566. //void resetPID(uint8_t extruder)
  567. {
  568. }
  569. void manage_heater()
  570. {
  571. #ifdef WATCHDOG
  572. wdt_reset();
  573. #endif //WATCHDOG
  574. float pid_input;
  575. float pid_output;
  576. if(temp_meas_ready != true) //better readability
  577. return;
  578. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  579. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  580. updateTemperaturesFromRawValues();
  581. check_max_temp();
  582. check_min_temp();
  583. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  584. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  585. #endif
  586. for(int e = 0; e < EXTRUDERS; e++)
  587. {
  588. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  589. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  590. #endif
  591. #ifdef PIDTEMP
  592. pid_input = current_temperature[e];
  593. #ifndef PID_OPENLOOP
  594. if(target_temperature[e] == 0) {
  595. pid_output = 0;
  596. pid_reset[e] = true;
  597. } else {
  598. pid_error[e] = target_temperature[e] - pid_input;
  599. if(pid_reset[e]) {
  600. iState_sum[e] = 0.0;
  601. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  602. pid_reset[e] = false;
  603. }
  604. #ifndef PonM
  605. pTerm[e] = cs.Kp * pid_error[e];
  606. iState_sum[e] += pid_error[e];
  607. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  608. iTerm[e] = cs.Ki * iState_sum[e];
  609. // PID_K1 defined in Configuration.h in the PID settings
  610. #define K2 (1.0-PID_K1)
  611. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  612. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  613. if (pid_output > PID_MAX) {
  614. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  615. pid_output=PID_MAX;
  616. } else if (pid_output < 0) {
  617. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  618. pid_output=0;
  619. }
  620. #else // PonM ("Proportional on Measurement" method)
  621. iState_sum[e] += cs.Ki * pid_error[e];
  622. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  623. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  624. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  625. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  626. pid_output = constrain(pid_output, 0, PID_MAX);
  627. #endif // PonM
  628. }
  629. dState_last[e] = pid_input;
  630. #else
  631. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  632. #endif //PID_OPENLOOP
  633. #ifdef PID_DEBUG
  634. SERIAL_ECHO_START;
  635. SERIAL_ECHO(" PID_DEBUG ");
  636. SERIAL_ECHO(e);
  637. SERIAL_ECHO(": Input ");
  638. SERIAL_ECHO(pid_input);
  639. SERIAL_ECHO(" Output ");
  640. SERIAL_ECHO(pid_output);
  641. SERIAL_ECHO(" pTerm ");
  642. SERIAL_ECHO(pTerm[e]);
  643. SERIAL_ECHO(" iTerm ");
  644. SERIAL_ECHO(iTerm[e]);
  645. SERIAL_ECHO(" dTerm ");
  646. SERIAL_ECHOLN(-dTerm[e]);
  647. #endif //PID_DEBUG
  648. #else /* PID off */
  649. pid_output = 0;
  650. if(current_temperature[e] < target_temperature[e]) {
  651. pid_output = PID_MAX;
  652. }
  653. #endif
  654. // Check if temperature is within the correct range
  655. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  656. {
  657. soft_pwm[e] = (int)pid_output >> 1;
  658. }
  659. else
  660. {
  661. soft_pwm[e] = 0;
  662. }
  663. } // End extruder for loop
  664. #define FAN_CHECK_PERIOD 5000 //5s
  665. #define FAN_CHECK_DURATION 100 //100ms
  666. #ifndef DEBUG_DISABLE_FANCHECK
  667. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  668. #ifdef FAN_SOFT_PWM
  669. #ifdef FANCHECK
  670. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  671. extruder_autofan_last_check = _millis();
  672. fanSpeedBckp = fanSpeedSoftPwm;
  673. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  674. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  675. fanSpeedSoftPwm = 255;
  676. }
  677. fan_measuring = true;
  678. }
  679. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  680. countFanSpeed();
  681. checkFanSpeed();
  682. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  683. fanSpeedSoftPwm = fanSpeedBckp;
  684. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  685. extruder_autofan_last_check = _millis();
  686. fan_measuring = false;
  687. }
  688. #endif //FANCHECK
  689. checkExtruderAutoFans();
  690. #else //FAN_SOFT_PWM
  691. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  692. {
  693. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  694. countFanSpeed();
  695. checkFanSpeed();
  696. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  697. checkExtruderAutoFans();
  698. extruder_autofan_last_check = _millis();
  699. }
  700. #endif //FAN_SOFT_PWM
  701. #endif
  702. #endif //DEBUG_DISABLE_FANCHECK
  703. #ifndef PIDTEMPBED
  704. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  705. return;
  706. previous_millis_bed_heater = _millis();
  707. #endif
  708. #if TEMP_SENSOR_BED != 0
  709. #ifdef PIDTEMPBED
  710. pid_input = current_temperature_bed;
  711. #ifndef PID_OPENLOOP
  712. pid_error_bed = target_temperature_bed - pid_input;
  713. pTerm_bed = cs.bedKp * pid_error_bed;
  714. temp_iState_bed += pid_error_bed;
  715. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  716. iTerm_bed = cs.bedKi * temp_iState_bed;
  717. //PID_K1 defined in Configuration.h in the PID settings
  718. #define K2 (1.0-PID_K1)
  719. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  720. temp_dState_bed = pid_input;
  721. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  722. if (pid_output > MAX_BED_POWER) {
  723. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  724. pid_output=MAX_BED_POWER;
  725. } else if (pid_output < 0){
  726. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  727. pid_output=0;
  728. }
  729. #else
  730. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  731. #endif //PID_OPENLOOP
  732. if(current_temperature_bed < BED_MAXTEMP)
  733. {
  734. soft_pwm_bed = (int)pid_output >> 1;
  735. timer02_set_pwm0(soft_pwm_bed << 1);
  736. }
  737. else {
  738. soft_pwm_bed = 0;
  739. timer02_set_pwm0(soft_pwm_bed << 1);
  740. }
  741. #elif !defined(BED_LIMIT_SWITCHING)
  742. // Check if temperature is within the correct range
  743. if(current_temperature_bed < BED_MAXTEMP)
  744. {
  745. if(current_temperature_bed >= target_temperature_bed)
  746. {
  747. soft_pwm_bed = 0;
  748. timer02_set_pwm0(soft_pwm_bed << 1);
  749. }
  750. else
  751. {
  752. soft_pwm_bed = MAX_BED_POWER>>1;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. }
  755. }
  756. else
  757. {
  758. soft_pwm_bed = 0;
  759. timer02_set_pwm0(soft_pwm_bed << 1);
  760. WRITE(HEATER_BED_PIN,LOW);
  761. }
  762. #else //#ifdef BED_LIMIT_SWITCHING
  763. // Check if temperature is within the correct band
  764. if(current_temperature_bed < BED_MAXTEMP)
  765. {
  766. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  767. {
  768. soft_pwm_bed = 0;
  769. timer02_set_pwm0(soft_pwm_bed << 1);
  770. }
  771. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  772. {
  773. soft_pwm_bed = MAX_BED_POWER>>1;
  774. timer02_set_pwm0(soft_pwm_bed << 1);
  775. }
  776. }
  777. else
  778. {
  779. soft_pwm_bed = 0;
  780. timer02_set_pwm0(soft_pwm_bed << 1);
  781. WRITE(HEATER_BED_PIN,LOW);
  782. }
  783. #endif
  784. if(target_temperature_bed==0)
  785. {
  786. soft_pwm_bed = 0;
  787. timer02_set_pwm0(soft_pwm_bed << 1);
  788. }
  789. #endif
  790. host_keepalive();
  791. }
  792. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  793. // Derived from RepRap FiveD extruder::getTemperature()
  794. // For hot end temperature measurement.
  795. static float analog2temp(int raw, uint8_t e) {
  796. if(e >= EXTRUDERS)
  797. {
  798. SERIAL_ERROR_START;
  799. SERIAL_ERROR((int)e);
  800. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  801. kill(NULL, 6);
  802. return 0.0;
  803. }
  804. #ifdef HEATER_0_USES_MAX6675
  805. if (e == 0)
  806. {
  807. return 0.25 * raw;
  808. }
  809. #endif
  810. if(heater_ttbl_map[e] != NULL)
  811. {
  812. float celsius = 0;
  813. uint8_t i;
  814. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  815. for (i=1; i<heater_ttbllen_map[e]; i++)
  816. {
  817. if (PGM_RD_W((*tt)[i][0]) > raw)
  818. {
  819. celsius = PGM_RD_W((*tt)[i-1][1]) +
  820. (raw - PGM_RD_W((*tt)[i-1][0])) *
  821. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  822. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  823. break;
  824. }
  825. }
  826. // Overflow: Set to last value in the table
  827. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  828. return celsius;
  829. }
  830. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  831. }
  832. // Derived from RepRap FiveD extruder::getTemperature()
  833. // For bed temperature measurement.
  834. static float analog2tempBed(int raw) {
  835. #ifdef BED_USES_THERMISTOR
  836. float celsius = 0;
  837. byte i;
  838. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  839. {
  840. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  841. {
  842. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  843. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  844. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  845. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  846. break;
  847. }
  848. }
  849. // Overflow: Set to last value in the table
  850. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  851. // temperature offset adjustment
  852. #ifdef BED_OFFSET
  853. float _offset = BED_OFFSET;
  854. float _offset_center = BED_OFFSET_CENTER;
  855. float _offset_start = BED_OFFSET_START;
  856. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  857. float _second_koef = (_offset / 2) / (100 - _offset_center);
  858. if (celsius >= _offset_start && celsius <= _offset_center)
  859. {
  860. celsius = celsius + (_first_koef * (celsius - _offset_start));
  861. }
  862. else if (celsius > _offset_center && celsius <= 100)
  863. {
  864. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  865. }
  866. else if (celsius > 100)
  867. {
  868. celsius = celsius + _offset;
  869. }
  870. #endif
  871. return celsius;
  872. #elif defined BED_USES_AD595
  873. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  874. #else
  875. return 0;
  876. #endif
  877. }
  878. #ifdef AMBIENT_THERMISTOR
  879. static float analog2tempAmbient(int raw)
  880. {
  881. float celsius = 0;
  882. byte i;
  883. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  884. {
  885. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  886. {
  887. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  888. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  889. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  890. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  891. break;
  892. }
  893. }
  894. // Overflow: Set to last value in the table
  895. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  896. return celsius;
  897. }
  898. #endif //AMBIENT_THERMISTOR
  899. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  900. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  901. static void updateTemperaturesFromRawValues()
  902. {
  903. for(uint8_t e=0;e<EXTRUDERS;e++)
  904. {
  905. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  906. }
  907. #ifdef PINDA_THERMISTOR
  908. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  909. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  910. #endif
  911. #ifdef AMBIENT_THERMISTOR
  912. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  913. #endif
  914. #ifdef DEBUG_HEATER_BED_SIM
  915. current_temperature_bed = target_temperature_bed;
  916. #else //DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  918. #endif //DEBUG_HEATER_BED_SIM
  919. CRITICAL_SECTION_START;
  920. temp_meas_ready = false;
  921. CRITICAL_SECTION_END;
  922. }
  923. void tp_init()
  924. {
  925. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  926. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  927. MCUCR=(1<<JTD);
  928. MCUCR=(1<<JTD);
  929. #endif
  930. // Finish init of mult extruder arrays
  931. for(int e = 0; e < EXTRUDERS; e++) {
  932. // populate with the first value
  933. maxttemp[e] = maxttemp[0];
  934. #ifdef PIDTEMP
  935. iState_sum_min[e] = 0.0;
  936. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  937. #endif //PIDTEMP
  938. #ifdef PIDTEMPBED
  939. temp_iState_min_bed = 0.0;
  940. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  941. #endif //PIDTEMPBED
  942. }
  943. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  944. SET_OUTPUT(HEATER_0_PIN);
  945. #endif
  946. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  947. SET_OUTPUT(HEATER_1_PIN);
  948. #endif
  949. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  950. SET_OUTPUT(HEATER_2_PIN);
  951. #endif
  952. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  953. SET_OUTPUT(HEATER_BED_PIN);
  954. #endif
  955. #if defined(FAN_PIN) && (FAN_PIN > -1)
  956. SET_OUTPUT(FAN_PIN);
  957. #ifdef FAST_PWM_FAN
  958. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  959. #endif
  960. #ifdef FAN_SOFT_PWM
  961. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  962. #endif
  963. #endif
  964. #ifdef HEATER_0_USES_MAX6675
  965. #ifndef SDSUPPORT
  966. SET_OUTPUT(SCK_PIN);
  967. WRITE(SCK_PIN,0);
  968. SET_OUTPUT(MOSI_PIN);
  969. WRITE(MOSI_PIN,1);
  970. SET_INPUT(MISO_PIN);
  971. WRITE(MISO_PIN,1);
  972. #endif
  973. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  974. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  975. pinMode(SS_PIN, OUTPUT);
  976. digitalWrite(SS_PIN,0);
  977. pinMode(MAX6675_SS, OUTPUT);
  978. digitalWrite(MAX6675_SS,1);
  979. #endif
  980. adc_init();
  981. timer0_init();
  982. OCR2B = 128;
  983. TIMSK2 |= (1<<OCIE2B);
  984. timer4_init(); //for tone and Extruder fan PWM
  985. // Wait for temperature measurement to settle
  986. _delay(250);
  987. #ifdef HEATER_0_MINTEMP
  988. minttemp[0] = HEATER_0_MINTEMP;
  989. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  990. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  991. minttemp_raw[0] += OVERSAMPLENR;
  992. #else
  993. minttemp_raw[0] -= OVERSAMPLENR;
  994. #endif
  995. }
  996. #endif //MINTEMP
  997. #ifdef HEATER_0_MAXTEMP
  998. maxttemp[0] = HEATER_0_MAXTEMP;
  999. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1000. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1001. maxttemp_raw[0] -= OVERSAMPLENR;
  1002. #else
  1003. maxttemp_raw[0] += OVERSAMPLENR;
  1004. #endif
  1005. }
  1006. #endif //MAXTEMP
  1007. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1008. minttemp[1] = HEATER_1_MINTEMP;
  1009. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1010. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1011. minttemp_raw[1] += OVERSAMPLENR;
  1012. #else
  1013. minttemp_raw[1] -= OVERSAMPLENR;
  1014. #endif
  1015. }
  1016. #endif // MINTEMP 1
  1017. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1018. maxttemp[1] = HEATER_1_MAXTEMP;
  1019. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1020. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1021. maxttemp_raw[1] -= OVERSAMPLENR;
  1022. #else
  1023. maxttemp_raw[1] += OVERSAMPLENR;
  1024. #endif
  1025. }
  1026. #endif //MAXTEMP 1
  1027. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1028. minttemp[2] = HEATER_2_MINTEMP;
  1029. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1030. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1031. minttemp_raw[2] += OVERSAMPLENR;
  1032. #else
  1033. minttemp_raw[2] -= OVERSAMPLENR;
  1034. #endif
  1035. }
  1036. #endif //MINTEMP 2
  1037. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1038. maxttemp[2] = HEATER_2_MAXTEMP;
  1039. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1040. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1041. maxttemp_raw[2] -= OVERSAMPLENR;
  1042. #else
  1043. maxttemp_raw[2] += OVERSAMPLENR;
  1044. #endif
  1045. }
  1046. #endif //MAXTEMP 2
  1047. #ifdef BED_MINTEMP
  1048. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1049. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1050. bed_minttemp_raw += OVERSAMPLENR;
  1051. #else
  1052. bed_minttemp_raw -= OVERSAMPLENR;
  1053. #endif
  1054. }
  1055. #endif //BED_MINTEMP
  1056. #ifdef BED_MAXTEMP
  1057. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1058. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1059. bed_maxttemp_raw -= OVERSAMPLENR;
  1060. #else
  1061. bed_maxttemp_raw += OVERSAMPLENR;
  1062. #endif
  1063. }
  1064. #endif //BED_MAXTEMP
  1065. #ifdef AMBIENT_MINTEMP
  1066. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1067. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1068. ambient_minttemp_raw += OVERSAMPLENR;
  1069. #else
  1070. ambient_minttemp_raw -= OVERSAMPLENR;
  1071. #endif
  1072. }
  1073. #endif //AMBIENT_MINTEMP
  1074. #ifdef AMBIENT_MAXTEMP
  1075. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1076. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1077. ambient_maxttemp_raw -= OVERSAMPLENR;
  1078. #else
  1079. ambient_maxttemp_raw += OVERSAMPLENR;
  1080. #endif
  1081. }
  1082. #endif //AMBIENT_MAXTEMP
  1083. }
  1084. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1085. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1086. {
  1087. float __delta;
  1088. float __hysteresis = 0;
  1089. int __timeout = 0;
  1090. bool temp_runaway_check_active = false;
  1091. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1092. static int __preheat_counter[2] = { 0,0};
  1093. static int __preheat_errors[2] = { 0,0};
  1094. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1095. {
  1096. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1097. if (_isbed)
  1098. {
  1099. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1100. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1101. }
  1102. #endif
  1103. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1104. if (!_isbed)
  1105. {
  1106. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1107. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1108. }
  1109. #endif
  1110. temp_runaway_timer[_heater_id] = _millis();
  1111. if (_output == 0)
  1112. {
  1113. temp_runaway_check_active = false;
  1114. temp_runaway_error_counter[_heater_id] = 0;
  1115. }
  1116. if (temp_runaway_target[_heater_id] != _target_temperature)
  1117. {
  1118. if (_target_temperature > 0)
  1119. {
  1120. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1121. temp_runaway_target[_heater_id] = _target_temperature;
  1122. __preheat_start[_heater_id] = _current_temperature;
  1123. __preheat_counter[_heater_id] = 0;
  1124. }
  1125. else
  1126. {
  1127. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1128. temp_runaway_target[_heater_id] = _target_temperature;
  1129. }
  1130. }
  1131. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1132. {
  1133. __preheat_counter[_heater_id]++;
  1134. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1135. {
  1136. /*SERIAL_ECHOPGM("Heater:");
  1137. MYSERIAL.print(_heater_id);
  1138. SERIAL_ECHOPGM(" T:");
  1139. MYSERIAL.print(_current_temperature);
  1140. SERIAL_ECHOPGM(" Tstart:");
  1141. MYSERIAL.print(__preheat_start[_heater_id]);
  1142. SERIAL_ECHOPGM(" delta:");
  1143. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1144. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1145. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1146. __delta=2.0;
  1147. if(_isbed)
  1148. {
  1149. __delta=3.0;
  1150. if(_current_temperature>90.0) __delta=2.0;
  1151. if(_current_temperature>105.0) __delta=0.6;
  1152. }
  1153. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1154. __preheat_errors[_heater_id]++;
  1155. /*SERIAL_ECHOPGM(" Preheat errors:");
  1156. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1157. }
  1158. else {
  1159. //SERIAL_ECHOLNPGM("");
  1160. __preheat_errors[_heater_id] = 0;
  1161. }
  1162. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1163. {
  1164. if (farm_mode) { prusa_statistics(0); }
  1165. temp_runaway_stop(true, _isbed);
  1166. if (farm_mode) { prusa_statistics(91); }
  1167. }
  1168. __preheat_start[_heater_id] = _current_temperature;
  1169. __preheat_counter[_heater_id] = 0;
  1170. }
  1171. }
  1172. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1173. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1174. {
  1175. /*SERIAL_ECHOPGM("Heater:");
  1176. MYSERIAL.print(_heater_id);
  1177. MYSERIAL.println(" ->tempRunaway");*/
  1178. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1179. temp_runaway_check_active = false;
  1180. temp_runaway_error_counter[_heater_id] = 0;
  1181. }
  1182. if (_output > 0)
  1183. {
  1184. temp_runaway_check_active = true;
  1185. }
  1186. if (temp_runaway_check_active)
  1187. {
  1188. // we are in range
  1189. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1190. {
  1191. temp_runaway_check_active = false;
  1192. temp_runaway_error_counter[_heater_id] = 0;
  1193. }
  1194. else
  1195. {
  1196. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1197. {
  1198. temp_runaway_error_counter[_heater_id]++;
  1199. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1200. {
  1201. if (farm_mode) { prusa_statistics(0); }
  1202. temp_runaway_stop(false, _isbed);
  1203. if (farm_mode) { prusa_statistics(90); }
  1204. }
  1205. }
  1206. }
  1207. }
  1208. }
  1209. }
  1210. void temp_runaway_stop(bool isPreheat, bool isBed)
  1211. {
  1212. cancel_heatup = true;
  1213. quickStop();
  1214. if (card.sdprinting)
  1215. {
  1216. card.sdprinting = false;
  1217. card.closefile();
  1218. }
  1219. // Clean the input command queue
  1220. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1221. cmdqueue_reset();
  1222. disable_heater();
  1223. disable_x();
  1224. disable_y();
  1225. disable_e0();
  1226. disable_e1();
  1227. disable_e2();
  1228. manage_heater();
  1229. lcd_update(0);
  1230. Sound_MakeCustom(200,0,true);
  1231. if (isPreheat)
  1232. {
  1233. Stop();
  1234. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1235. SERIAL_ERROR_START;
  1236. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1237. #ifdef EXTRUDER_ALTFAN_DETECT
  1238. altfanStatus.altfanOverride = 1; //full speed
  1239. #endif //EXTRUDER_ALTFAN_DETECT
  1240. setExtruderAutoFanState(3);
  1241. SET_OUTPUT(FAN_PIN);
  1242. #ifdef FAN_SOFT_PWM
  1243. fanSpeedSoftPwm = 255;
  1244. #else //FAN_SOFT_PWM
  1245. analogWrite(FAN_PIN, 255);
  1246. #endif //FAN_SOFT_PWM
  1247. fanSpeed = 255;
  1248. delayMicroseconds(2000);
  1249. }
  1250. else
  1251. {
  1252. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1253. SERIAL_ERROR_START;
  1254. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1255. }
  1256. }
  1257. #endif
  1258. void disable_heater()
  1259. {
  1260. setAllTargetHotends(0);
  1261. setTargetBed(0);
  1262. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1263. target_temperature[0]=0;
  1264. soft_pwm[0]=0;
  1265. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1266. WRITE(HEATER_0_PIN,LOW);
  1267. #endif
  1268. #endif
  1269. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1270. target_temperature[1]=0;
  1271. soft_pwm[1]=0;
  1272. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1273. WRITE(HEATER_1_PIN,LOW);
  1274. #endif
  1275. #endif
  1276. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1277. target_temperature[2]=0;
  1278. soft_pwm[2]=0;
  1279. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1280. WRITE(HEATER_2_PIN,LOW);
  1281. #endif
  1282. #endif
  1283. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1284. target_temperature_bed=0;
  1285. soft_pwm_bed=0;
  1286. timer02_set_pwm0(soft_pwm_bed << 1);
  1287. bedPWMDisabled = 0;
  1288. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1289. //WRITE(HEATER_BED_PIN,LOW);
  1290. #endif
  1291. #endif
  1292. }
  1293. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1294. //! than raw const char * of the messages themselves.
  1295. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1296. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1297. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1298. //! remember the last alert message sent to the LCD
  1299. //! to prevent flicker and improve speed
  1300. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1301. //! update the current temperature error message
  1302. //! @param type short error abbreviation (PROGMEM)
  1303. //! @param func optional lcd update function (lcd_setalertstatus when first setting the error)
  1304. void temp_update_messagepgm(const char* PROGMEM type, void (*func)(const char*) = lcd_updatestatus)
  1305. {
  1306. char msg[LCD_WIDTH];
  1307. strcpy_P(msg, PSTR("Err: "));
  1308. strcat_P(msg, type);
  1309. (*func)(msg);
  1310. }
  1311. //! signal a temperature error on both the lcd and serial
  1312. //! @param type short error abbreviation (PROGMEM)
  1313. //! @param e optional extruder index for hotend errors
  1314. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1315. {
  1316. temp_update_messagepgm(type, lcd_setalertstatus);
  1317. SERIAL_ERROR_START;
  1318. if(e != EXTRUDERS) {
  1319. SERIAL_ERROR((int)e);
  1320. SERIAL_ERRORPGM(": ");
  1321. }
  1322. SERIAL_ERRORPGM("Heaters switched off. ");
  1323. SERIAL_ERRORRPGM(type);
  1324. SERIAL_ERRORLNPGM(" triggered!");
  1325. }
  1326. void max_temp_error(uint8_t e) {
  1327. disable_heater();
  1328. if(IsStopped() == false) {
  1329. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1330. }
  1331. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1332. Stop();
  1333. #endif
  1334. SET_OUTPUT(FAN_PIN);
  1335. SET_OUTPUT(BEEPER);
  1336. WRITE(FAN_PIN, 1);
  1337. WRITE(BEEPER, 1);
  1338. #ifdef EXTRUDER_ALTFAN_DETECT
  1339. altfanStatus.altfanOverride = 1; //full speed
  1340. #endif //EXTRUDER_ALTFAN_DETECT
  1341. setExtruderAutoFanState(3);
  1342. // fanSpeed will consumed by the check_axes_activity() routine.
  1343. fanSpeed=255;
  1344. if (farm_mode) { prusa_statistics(93); }
  1345. }
  1346. void min_temp_error(uint8_t e) {
  1347. #ifdef DEBUG_DISABLE_MINTEMP
  1348. return;
  1349. #endif
  1350. disable_heater();
  1351. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1352. static const char err[] PROGMEM = "MINTEMP";
  1353. if(IsStopped() == false) {
  1354. temp_error_messagepgm(err, e);
  1355. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1356. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1357. // we are already stopped due to some error, only update the status message without flickering
  1358. temp_update_messagepgm(err);
  1359. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1360. }
  1361. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1362. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1363. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1364. // lcd_print_stop();
  1365. // }
  1366. Stop();
  1367. #endif
  1368. if (farm_mode) { prusa_statistics(92); }
  1369. }
  1370. void bed_max_temp_error(void) {
  1371. disable_heater();
  1372. if(IsStopped() == false) {
  1373. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1374. }
  1375. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1376. Stop();
  1377. #endif
  1378. }
  1379. void bed_min_temp_error(void) {
  1380. #ifdef DEBUG_DISABLE_MINTEMP
  1381. return;
  1382. #endif
  1383. disable_heater();
  1384. static const char err[] PROGMEM = "MINTEMP BED";
  1385. if(IsStopped() == false) {
  1386. temp_error_messagepgm(err);
  1387. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1388. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1389. // we are already stopped due to some error, only update the status message without flickering
  1390. temp_update_messagepgm(err);
  1391. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1392. }
  1393. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1394. Stop();
  1395. #endif
  1396. }
  1397. #ifdef AMBIENT_THERMISTOR
  1398. void ambient_max_temp_error(void) {
  1399. disable_heater();
  1400. if(IsStopped() == false) {
  1401. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1402. }
  1403. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1404. Stop();
  1405. #endif
  1406. }
  1407. void ambient_min_temp_error(void) {
  1408. #ifdef DEBUG_DISABLE_MINTEMP
  1409. return;
  1410. #endif
  1411. disable_heater();
  1412. if(IsStopped() == false) {
  1413. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1414. }
  1415. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1416. Stop();
  1417. #endif
  1418. }
  1419. #endif
  1420. #ifdef HEATER_0_USES_MAX6675
  1421. #define MAX6675_HEAT_INTERVAL 250
  1422. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1423. int max6675_temp = 2000;
  1424. int read_max6675()
  1425. {
  1426. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1427. return max6675_temp;
  1428. max6675_previous_millis = _millis();
  1429. max6675_temp = 0;
  1430. #ifdef PRR
  1431. PRR &= ~(1<<PRSPI);
  1432. #elif defined PRR0
  1433. PRR0 &= ~(1<<PRSPI);
  1434. #endif
  1435. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1436. // enable TT_MAX6675
  1437. WRITE(MAX6675_SS, 0);
  1438. // ensure 100ns delay - a bit extra is fine
  1439. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1440. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1441. // read MSB
  1442. SPDR = 0;
  1443. for (;(SPSR & (1<<SPIF)) == 0;);
  1444. max6675_temp = SPDR;
  1445. max6675_temp <<= 8;
  1446. // read LSB
  1447. SPDR = 0;
  1448. for (;(SPSR & (1<<SPIF)) == 0;);
  1449. max6675_temp |= SPDR;
  1450. // disable TT_MAX6675
  1451. WRITE(MAX6675_SS, 1);
  1452. if (max6675_temp & 4)
  1453. {
  1454. // thermocouple open
  1455. max6675_temp = 2000;
  1456. }
  1457. else
  1458. {
  1459. max6675_temp = max6675_temp >> 3;
  1460. }
  1461. return max6675_temp;
  1462. }
  1463. #endif
  1464. extern "C" {
  1465. void adc_ready(void) //callback from adc when sampling finished
  1466. {
  1467. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1468. #ifdef PINDA_THERMISTOR
  1469. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1470. #endif //PINDA_THERMISTOR
  1471. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1472. #ifdef VOLT_PWR_PIN
  1473. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1474. #endif
  1475. #ifdef AMBIENT_THERMISTOR
  1476. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1477. #endif //AMBIENT_THERMISTOR
  1478. #ifdef VOLT_BED_PIN
  1479. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1480. #endif
  1481. #ifdef IR_SENSOR_ANALOG
  1482. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1483. #endif //IR_SENSOR_ANALOG
  1484. temp_meas_ready = true;
  1485. }
  1486. } // extern "C"
  1487. FORCE_INLINE static void temperature_isr()
  1488. {
  1489. if (!temp_meas_ready) adc_cycle();
  1490. lcd_buttons_update();
  1491. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1492. static uint8_t soft_pwm_0;
  1493. #ifdef SLOW_PWM_HEATERS
  1494. static unsigned char slow_pwm_count = 0;
  1495. static unsigned char state_heater_0 = 0;
  1496. static unsigned char state_timer_heater_0 = 0;
  1497. #endif
  1498. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1499. static unsigned char soft_pwm_1;
  1500. #ifdef SLOW_PWM_HEATERS
  1501. static unsigned char state_heater_1 = 0;
  1502. static unsigned char state_timer_heater_1 = 0;
  1503. #endif
  1504. #endif
  1505. #if EXTRUDERS > 2
  1506. static unsigned char soft_pwm_2;
  1507. #ifdef SLOW_PWM_HEATERS
  1508. static unsigned char state_heater_2 = 0;
  1509. static unsigned char state_timer_heater_2 = 0;
  1510. #endif
  1511. #endif
  1512. #if HEATER_BED_PIN > -1
  1513. // @@DR static unsigned char soft_pwm_b;
  1514. #ifdef SLOW_PWM_HEATERS
  1515. static unsigned char state_heater_b = 0;
  1516. static unsigned char state_timer_heater_b = 0;
  1517. #endif
  1518. #endif
  1519. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1520. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1521. #endif
  1522. #ifndef SLOW_PWM_HEATERS
  1523. /*
  1524. * standard PWM modulation
  1525. */
  1526. if (pwm_count == 0)
  1527. {
  1528. soft_pwm_0 = soft_pwm[0];
  1529. if(soft_pwm_0 > 0)
  1530. {
  1531. WRITE(HEATER_0_PIN,1);
  1532. #ifdef HEATERS_PARALLEL
  1533. WRITE(HEATER_1_PIN,1);
  1534. #endif
  1535. } else WRITE(HEATER_0_PIN,0);
  1536. #if EXTRUDERS > 1
  1537. soft_pwm_1 = soft_pwm[1];
  1538. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1539. #endif
  1540. #if EXTRUDERS > 2
  1541. soft_pwm_2 = soft_pwm[2];
  1542. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1543. #endif
  1544. }
  1545. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1546. #if 0 // @@DR vypnuto pro hw pwm bedu
  1547. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1548. // teoreticky by se tato cast uz vubec nemusela poustet
  1549. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1550. {
  1551. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1552. # ifndef SYSTEM_TIMER_2
  1553. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1554. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1555. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1556. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1557. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1558. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1559. # endif //SYSTEM_TIMER_2
  1560. }
  1561. #endif
  1562. #endif
  1563. #ifdef FAN_SOFT_PWM
  1564. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1565. {
  1566. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1567. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1568. }
  1569. #endif
  1570. if(soft_pwm_0 < pwm_count)
  1571. {
  1572. WRITE(HEATER_0_PIN,0);
  1573. #ifdef HEATERS_PARALLEL
  1574. WRITE(HEATER_1_PIN,0);
  1575. #endif
  1576. }
  1577. #if EXTRUDERS > 1
  1578. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1579. #endif
  1580. #if EXTRUDERS > 2
  1581. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1582. #endif
  1583. #if 0 // @@DR
  1584. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1585. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1586. //WRITE(HEATER_BED_PIN,0);
  1587. }
  1588. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1589. #endif
  1590. #endif
  1591. #ifdef FAN_SOFT_PWM
  1592. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1593. #endif
  1594. pwm_count += (1 << SOFT_PWM_SCALE);
  1595. pwm_count &= 0x7f;
  1596. #else //ifndef SLOW_PWM_HEATERS
  1597. /*
  1598. * SLOW PWM HEATERS
  1599. *
  1600. * for heaters drived by relay
  1601. */
  1602. #ifndef MIN_STATE_TIME
  1603. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1604. #endif
  1605. if (slow_pwm_count == 0) {
  1606. // EXTRUDER 0
  1607. soft_pwm_0 = soft_pwm[0];
  1608. if (soft_pwm_0 > 0) {
  1609. // turn ON heather only if the minimum time is up
  1610. if (state_timer_heater_0 == 0) {
  1611. // if change state set timer
  1612. if (state_heater_0 == 0) {
  1613. state_timer_heater_0 = MIN_STATE_TIME;
  1614. }
  1615. state_heater_0 = 1;
  1616. WRITE(HEATER_0_PIN, 1);
  1617. #ifdef HEATERS_PARALLEL
  1618. WRITE(HEATER_1_PIN, 1);
  1619. #endif
  1620. }
  1621. } else {
  1622. // turn OFF heather only if the minimum time is up
  1623. if (state_timer_heater_0 == 0) {
  1624. // if change state set timer
  1625. if (state_heater_0 == 1) {
  1626. state_timer_heater_0 = MIN_STATE_TIME;
  1627. }
  1628. state_heater_0 = 0;
  1629. WRITE(HEATER_0_PIN, 0);
  1630. #ifdef HEATERS_PARALLEL
  1631. WRITE(HEATER_1_PIN, 0);
  1632. #endif
  1633. }
  1634. }
  1635. #if EXTRUDERS > 1
  1636. // EXTRUDER 1
  1637. soft_pwm_1 = soft_pwm[1];
  1638. if (soft_pwm_1 > 0) {
  1639. // turn ON heather only if the minimum time is up
  1640. if (state_timer_heater_1 == 0) {
  1641. // if change state set timer
  1642. if (state_heater_1 == 0) {
  1643. state_timer_heater_1 = MIN_STATE_TIME;
  1644. }
  1645. state_heater_1 = 1;
  1646. WRITE(HEATER_1_PIN, 1);
  1647. }
  1648. } else {
  1649. // turn OFF heather only if the minimum time is up
  1650. if (state_timer_heater_1 == 0) {
  1651. // if change state set timer
  1652. if (state_heater_1 == 1) {
  1653. state_timer_heater_1 = MIN_STATE_TIME;
  1654. }
  1655. state_heater_1 = 0;
  1656. WRITE(HEATER_1_PIN, 0);
  1657. }
  1658. }
  1659. #endif
  1660. #if EXTRUDERS > 2
  1661. // EXTRUDER 2
  1662. soft_pwm_2 = soft_pwm[2];
  1663. if (soft_pwm_2 > 0) {
  1664. // turn ON heather only if the minimum time is up
  1665. if (state_timer_heater_2 == 0) {
  1666. // if change state set timer
  1667. if (state_heater_2 == 0) {
  1668. state_timer_heater_2 = MIN_STATE_TIME;
  1669. }
  1670. state_heater_2 = 1;
  1671. WRITE(HEATER_2_PIN, 1);
  1672. }
  1673. } else {
  1674. // turn OFF heather only if the minimum time is up
  1675. if (state_timer_heater_2 == 0) {
  1676. // if change state set timer
  1677. if (state_heater_2 == 1) {
  1678. state_timer_heater_2 = MIN_STATE_TIME;
  1679. }
  1680. state_heater_2 = 0;
  1681. WRITE(HEATER_2_PIN, 0);
  1682. }
  1683. }
  1684. #endif
  1685. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1686. // BED
  1687. soft_pwm_b = soft_pwm_bed;
  1688. if (soft_pwm_b > 0) {
  1689. // turn ON heather only if the minimum time is up
  1690. if (state_timer_heater_b == 0) {
  1691. // if change state set timer
  1692. if (state_heater_b == 0) {
  1693. state_timer_heater_b = MIN_STATE_TIME;
  1694. }
  1695. state_heater_b = 1;
  1696. //WRITE(HEATER_BED_PIN, 1);
  1697. }
  1698. } else {
  1699. // turn OFF heather only if the minimum time is up
  1700. if (state_timer_heater_b == 0) {
  1701. // if change state set timer
  1702. if (state_heater_b == 1) {
  1703. state_timer_heater_b = MIN_STATE_TIME;
  1704. }
  1705. state_heater_b = 0;
  1706. WRITE(HEATER_BED_PIN, 0);
  1707. }
  1708. }
  1709. #endif
  1710. } // if (slow_pwm_count == 0)
  1711. // EXTRUDER 0
  1712. if (soft_pwm_0 < slow_pwm_count) {
  1713. // turn OFF heather only if the minimum time is up
  1714. if (state_timer_heater_0 == 0) {
  1715. // if change state set timer
  1716. if (state_heater_0 == 1) {
  1717. state_timer_heater_0 = MIN_STATE_TIME;
  1718. }
  1719. state_heater_0 = 0;
  1720. WRITE(HEATER_0_PIN, 0);
  1721. #ifdef HEATERS_PARALLEL
  1722. WRITE(HEATER_1_PIN, 0);
  1723. #endif
  1724. }
  1725. }
  1726. #if EXTRUDERS > 1
  1727. // EXTRUDER 1
  1728. if (soft_pwm_1 < slow_pwm_count) {
  1729. // turn OFF heather only if the minimum time is up
  1730. if (state_timer_heater_1 == 0) {
  1731. // if change state set timer
  1732. if (state_heater_1 == 1) {
  1733. state_timer_heater_1 = MIN_STATE_TIME;
  1734. }
  1735. state_heater_1 = 0;
  1736. WRITE(HEATER_1_PIN, 0);
  1737. }
  1738. }
  1739. #endif
  1740. #if EXTRUDERS > 2
  1741. // EXTRUDER 2
  1742. if (soft_pwm_2 < slow_pwm_count) {
  1743. // turn OFF heather only if the minimum time is up
  1744. if (state_timer_heater_2 == 0) {
  1745. // if change state set timer
  1746. if (state_heater_2 == 1) {
  1747. state_timer_heater_2 = MIN_STATE_TIME;
  1748. }
  1749. state_heater_2 = 0;
  1750. WRITE(HEATER_2_PIN, 0);
  1751. }
  1752. }
  1753. #endif
  1754. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1755. // BED
  1756. if (soft_pwm_b < slow_pwm_count) {
  1757. // turn OFF heather only if the minimum time is up
  1758. if (state_timer_heater_b == 0) {
  1759. // if change state set timer
  1760. if (state_heater_b == 1) {
  1761. state_timer_heater_b = MIN_STATE_TIME;
  1762. }
  1763. state_heater_b = 0;
  1764. WRITE(HEATER_BED_PIN, 0);
  1765. }
  1766. }
  1767. #endif
  1768. #ifdef FAN_SOFT_PWM
  1769. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1770. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1771. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1772. }
  1773. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1774. #endif
  1775. pwm_count += (1 << SOFT_PWM_SCALE);
  1776. pwm_count &= 0x7f;
  1777. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1778. if ((pwm_count % 64) == 0) {
  1779. slow_pwm_count++;
  1780. slow_pwm_count &= 0x7f;
  1781. // Extruder 0
  1782. if (state_timer_heater_0 > 0) {
  1783. state_timer_heater_0--;
  1784. }
  1785. #if EXTRUDERS > 1
  1786. // Extruder 1
  1787. if (state_timer_heater_1 > 0)
  1788. state_timer_heater_1--;
  1789. #endif
  1790. #if EXTRUDERS > 2
  1791. // Extruder 2
  1792. if (state_timer_heater_2 > 0)
  1793. state_timer_heater_2--;
  1794. #endif
  1795. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1796. // Bed
  1797. if (state_timer_heater_b > 0)
  1798. state_timer_heater_b--;
  1799. #endif
  1800. } //if ((pwm_count % 64) == 0) {
  1801. #endif //ifndef SLOW_PWM_HEATERS
  1802. #ifdef BABYSTEPPING
  1803. for(uint8_t axis=0;axis<3;axis++)
  1804. {
  1805. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1806. if(curTodo>0)
  1807. {
  1808. asm("cli");
  1809. babystep(axis,/*fwd*/true);
  1810. babystepsTodo[axis]--; //less to do next time
  1811. asm("sei");
  1812. }
  1813. else
  1814. if(curTodo<0)
  1815. {
  1816. asm("cli");
  1817. babystep(axis,/*fwd*/false);
  1818. babystepsTodo[axis]++; //less to do next time
  1819. asm("sei");
  1820. }
  1821. }
  1822. #endif //BABYSTEPPING
  1823. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1824. check_fans();
  1825. #endif //(defined(TACH_0))
  1826. }
  1827. // Timer2 (originaly timer0) is shared with millies
  1828. #ifdef SYSTEM_TIMER_2
  1829. ISR(TIMER2_COMPB_vect)
  1830. #else //SYSTEM_TIMER_2
  1831. ISR(TIMER0_COMPB_vect)
  1832. #endif //SYSTEM_TIMER_2
  1833. {
  1834. static bool _lock = false;
  1835. if (!_lock)
  1836. {
  1837. _lock = true;
  1838. sei();
  1839. temperature_isr();
  1840. cli();
  1841. _lock = false;
  1842. }
  1843. }
  1844. void check_max_temp()
  1845. {
  1846. //heater
  1847. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1848. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1849. #else
  1850. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1851. #endif
  1852. max_temp_error(0);
  1853. }
  1854. //bed
  1855. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1856. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1857. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1858. #else
  1859. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1860. #endif
  1861. bed_max_temp_error();
  1862. }
  1863. #endif
  1864. //ambient
  1865. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1866. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1867. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1868. #else
  1869. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1870. #endif
  1871. ambient_max_temp_error();
  1872. }
  1873. #endif
  1874. }
  1875. //! number of repeating the same state with consecutive step() calls
  1876. //! used to slow down text switching
  1877. struct alert_automaton_mintemp {
  1878. const char *m2;
  1879. alert_automaton_mintemp(const char *m2):m2(m2){}
  1880. private:
  1881. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1882. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1883. States state = States::Init;
  1884. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1885. void substep(States next_state){
  1886. if( repeat == 0 ){
  1887. state = next_state; // advance to the next state
  1888. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1889. } else {
  1890. --repeat;
  1891. }
  1892. }
  1893. public:
  1894. //! brief state automaton step routine
  1895. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1896. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1897. void step(float current_temp, float mintemp){
  1898. static const char m1[] PROGMEM = "Please restart";
  1899. switch(state){
  1900. case States::Init: // initial state - check hysteresis
  1901. if( current_temp > mintemp ){
  1902. state = States::TempAboveMintemp;
  1903. }
  1904. // otherwise keep the Err MINTEMP alert message on the display,
  1905. // i.e. do not transfer to state 1
  1906. break;
  1907. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1908. lcd_setalertstatuspgm(m2);
  1909. substep(States::ShowMintemp);
  1910. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1911. break;
  1912. case States::ShowPleaseRestart: // displaying "Please restart"
  1913. lcd_updatestatuspgm(m1);
  1914. substep(States::ShowMintemp);
  1915. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1916. break;
  1917. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1918. lcd_updatestatuspgm(m2);
  1919. substep(States::ShowPleaseRestart);
  1920. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1921. break;
  1922. }
  1923. }
  1924. };
  1925. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1926. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1927. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1928. void check_min_temp_heater0()
  1929. {
  1930. //heater
  1931. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1932. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1933. #else
  1934. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1935. #endif
  1936. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1937. min_temp_error(0);
  1938. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1939. // no recovery, just force the user to restart the printer
  1940. // which is a safer variant than just continuing printing
  1941. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1942. // we shall signalize, that MINTEMP has been fixed
  1943. // Code notice: normally the alert_automaton instance would have been placed here
  1944. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1945. // due to stupid compiler that takes 16 more bytes.
  1946. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1947. }
  1948. }
  1949. void check_min_temp_bed()
  1950. {
  1951. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1952. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1953. #else
  1954. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1955. #endif
  1956. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1957. bed_min_temp_error();
  1958. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1959. // no recovery, just force the user to restart the printer
  1960. // which is a safer variant than just continuing printing
  1961. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1962. }
  1963. }
  1964. #ifdef AMBIENT_MINTEMP
  1965. void check_min_temp_ambient()
  1966. {
  1967. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1968. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1969. #else
  1970. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1971. #endif
  1972. ambient_min_temp_error();
  1973. }
  1974. }
  1975. #endif
  1976. void check_min_temp()
  1977. {
  1978. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1979. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1980. #ifdef AMBIENT_THERMISTOR
  1981. #ifdef AMBIENT_MINTEMP
  1982. check_min_temp_ambient();
  1983. #endif
  1984. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1985. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1986. #else
  1987. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1988. #endif
  1989. { // ambient temperature is low
  1990. #endif //AMBIENT_THERMISTOR
  1991. // *** 'common' part of code for MK2.5 & MK3
  1992. // * nozzle checking
  1993. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1994. { // ~ nozzle heating is on
  1995. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1996. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1997. {
  1998. bCheckingOnHeater=true; // not necessary
  1999. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2000. }
  2001. }
  2002. else { // ~ nozzle heating is off
  2003. oTimer4minTempHeater.start();
  2004. bCheckingOnHeater=false;
  2005. }
  2006. // * bed checking
  2007. if(target_temperature_bed>BED_MINTEMP)
  2008. { // ~ bed heating is on
  2009. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  2010. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  2011. {
  2012. bCheckingOnBed=true; // not necessary
  2013. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2014. }
  2015. }
  2016. else { // ~ bed heating is off
  2017. oTimer4minTempBed.start();
  2018. bCheckingOnBed=false;
  2019. }
  2020. // *** end of 'common' part
  2021. #ifdef AMBIENT_THERMISTOR
  2022. }
  2023. else { // ambient temperature is standard
  2024. check_min_temp_heater0();
  2025. check_min_temp_bed();
  2026. }
  2027. #endif //AMBIENT_THERMISTOR
  2028. }
  2029. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2030. void check_fans() {
  2031. #ifdef FAN_SOFT_PWM
  2032. if (READ(TACH_0) != fan_state[0]) {
  2033. if(fan_measuring) fan_edge_counter[0] ++;
  2034. fan_state[0] = !fan_state[0];
  2035. }
  2036. #else //FAN_SOFT_PWM
  2037. if (READ(TACH_0) != fan_state[0]) {
  2038. fan_edge_counter[0] ++;
  2039. fan_state[0] = !fan_state[0];
  2040. }
  2041. #endif
  2042. //if (READ(TACH_1) != fan_state[1]) {
  2043. // fan_edge_counter[1] ++;
  2044. // fan_state[1] = !fan_state[1];
  2045. //}
  2046. }
  2047. #endif //TACH_0
  2048. #ifdef PIDTEMP
  2049. // Apply the scale factors to the PID values
  2050. float scalePID_i(float i)
  2051. {
  2052. return i*PID_dT;
  2053. }
  2054. float unscalePID_i(float i)
  2055. {
  2056. return i/PID_dT;
  2057. }
  2058. float scalePID_d(float d)
  2059. {
  2060. return d/PID_dT;
  2061. }
  2062. float unscalePID_d(float d)
  2063. {
  2064. return d*PID_dT;
  2065. }
  2066. #endif //PIDTEMP
  2067. #ifdef PINDA_THERMISTOR
  2068. //! @brief PINDA thermistor detected
  2069. //!
  2070. //! @retval true firmware should do temperature compensation and allow calibration
  2071. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2072. //!
  2073. bool has_temperature_compensation()
  2074. {
  2075. #ifdef DETECT_SUPERPINDA
  2076. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2077. #else
  2078. return true;
  2079. #endif
  2080. }
  2081. #endif //PINDA_THERMISTOR