Marlin_main.cpp 282 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  202. // M907 - Set digital trimpot motor current using axis codes.
  203. // M908 - Control digital trimpot directly.
  204. // M350 - Set microstepping mode.
  205. // M351 - Toggle MS1 MS2 pins directly.
  206. // M928 - Start SD logging (M928 filename.g) - ended by M29
  207. // M999 - Restart after being stopped by error
  208. //Stepper Movement Variables
  209. //===========================================================================
  210. //=============================imported variables============================
  211. //===========================================================================
  212. //===========================================================================
  213. //=============================public variables=============================
  214. //===========================================================================
  215. #ifdef SDSUPPORT
  216. CardReader card;
  217. #endif
  218. unsigned long PingTime = millis();
  219. unsigned long NcTime;
  220. union Data
  221. {
  222. byte b[2];
  223. int value;
  224. };
  225. float homing_feedrate[] = HOMING_FEEDRATE;
  226. // Currently only the extruder axis may be switched to a relative mode.
  227. // Other axes are always absolute or relative based on the common relative_mode flag.
  228. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  229. int feedmultiply=100; //100->1 200->2
  230. int saved_feedmultiply;
  231. int extrudemultiply=100; //100->1 200->2
  232. int extruder_multiply[EXTRUDERS] = {100
  233. #if EXTRUDERS > 1
  234. , 100
  235. #if EXTRUDERS > 2
  236. , 100
  237. #endif
  238. #endif
  239. };
  240. int bowden_length[4] = {385, 385, 385, 385};
  241. bool is_usb_printing = false;
  242. bool homing_flag = false;
  243. bool temp_cal_active = false;
  244. unsigned long kicktime = millis()+100000;
  245. unsigned int usb_printing_counter;
  246. int lcd_change_fil_state = 0;
  247. int feedmultiplyBckp = 100;
  248. float HotendTempBckp = 0;
  249. int fanSpeedBckp = 0;
  250. float pause_lastpos[4];
  251. unsigned long pause_time = 0;
  252. unsigned long start_pause_print = millis();
  253. unsigned long t_fan_rising_edge = millis();
  254. //unsigned long load_filament_time;
  255. bool mesh_bed_leveling_flag = false;
  256. bool mesh_bed_run_from_menu = false;
  257. unsigned char lang_selected = 0;
  258. int8_t FarmMode = 0;
  259. bool prusa_sd_card_upload = false;
  260. unsigned int status_number = 0;
  261. unsigned long total_filament_used;
  262. unsigned int heating_status;
  263. unsigned int heating_status_counter;
  264. bool custom_message;
  265. bool loading_flag = false;
  266. unsigned int custom_message_type;
  267. unsigned int custom_message_state;
  268. char snmm_filaments_used = 0;
  269. float distance_from_min[2];
  270. bool fan_state[2];
  271. int fan_edge_counter[2];
  272. int fan_speed[2];
  273. char dir_names[3][9];
  274. bool sortAlpha = false;
  275. bool volumetric_enabled = false;
  276. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  277. #if EXTRUDERS > 1
  278. , DEFAULT_NOMINAL_FILAMENT_DIA
  279. #if EXTRUDERS > 2
  280. , DEFAULT_NOMINAL_FILAMENT_DIA
  281. #endif
  282. #endif
  283. };
  284. float extruder_multiplier[EXTRUDERS] = {1.0
  285. #if EXTRUDERS > 1
  286. , 1.0
  287. #if EXTRUDERS > 2
  288. , 1.0
  289. #endif
  290. #endif
  291. };
  292. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  293. float add_homing[3]={0,0,0};
  294. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  295. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  296. bool axis_known_position[3] = {false, false, false};
  297. float zprobe_zoffset;
  298. // Extruder offset
  299. #if EXTRUDERS > 1
  300. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  301. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  302. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  303. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  304. #endif
  305. };
  306. #endif
  307. uint8_t active_extruder = 0;
  308. int fanSpeed=0;
  309. #ifdef FWRETRACT
  310. bool autoretract_enabled=false;
  311. bool retracted[EXTRUDERS]={false
  312. #if EXTRUDERS > 1
  313. , false
  314. #if EXTRUDERS > 2
  315. , false
  316. #endif
  317. #endif
  318. };
  319. bool retracted_swap[EXTRUDERS]={false
  320. #if EXTRUDERS > 1
  321. , false
  322. #if EXTRUDERS > 2
  323. , false
  324. #endif
  325. #endif
  326. };
  327. float retract_length = RETRACT_LENGTH;
  328. float retract_length_swap = RETRACT_LENGTH_SWAP;
  329. float retract_feedrate = RETRACT_FEEDRATE;
  330. float retract_zlift = RETRACT_ZLIFT;
  331. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  332. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  333. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  334. #endif
  335. #ifdef ULTIPANEL
  336. #ifdef PS_DEFAULT_OFF
  337. bool powersupply = false;
  338. #else
  339. bool powersupply = true;
  340. #endif
  341. #endif
  342. bool cancel_heatup = false ;
  343. #ifdef HOST_KEEPALIVE_FEATURE
  344. int busy_state = NOT_BUSY;
  345. static long prev_busy_signal_ms = -1;
  346. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  347. #else
  348. #define host_keepalive();
  349. #define KEEPALIVE_STATE(n);
  350. #endif
  351. const char errormagic[] PROGMEM = "Error:";
  352. const char echomagic[] PROGMEM = "echo:";
  353. bool no_response = false;
  354. uint8_t important_status;
  355. uint8_t saved_filament_type;
  356. //===========================================================================
  357. //=============================Private Variables=============================
  358. //===========================================================================
  359. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  360. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  361. static float delta[3] = {0.0, 0.0, 0.0};
  362. // For tracing an arc
  363. static float offset[3] = {0.0, 0.0, 0.0};
  364. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  365. // Determines Absolute or Relative Coordinates.
  366. // Also there is bool axis_relative_modes[] per axis flag.
  367. static bool relative_mode = false;
  368. #ifndef _DISABLE_M42_M226
  369. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  370. #endif //_DISABLE_M42_M226
  371. //static float tt = 0;
  372. //static float bt = 0;
  373. //Inactivity shutdown variables
  374. static unsigned long previous_millis_cmd = 0;
  375. unsigned long max_inactive_time = 0;
  376. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  377. unsigned long starttime=0;
  378. unsigned long stoptime=0;
  379. unsigned long _usb_timer = 0;
  380. static uint8_t tmp_extruder;
  381. bool extruder_under_pressure = true;
  382. bool Stopped=false;
  383. #if NUM_SERVOS > 0
  384. Servo servos[NUM_SERVOS];
  385. #endif
  386. bool CooldownNoWait = true;
  387. bool target_direction;
  388. //Insert variables if CHDK is defined
  389. #ifdef CHDK
  390. unsigned long chdkHigh = 0;
  391. boolean chdkActive = false;
  392. #endif
  393. //===========================================================================
  394. //=============================Routines======================================
  395. //===========================================================================
  396. void get_arc_coordinates();
  397. bool setTargetedHotend(int code);
  398. void serial_echopair_P(const char *s_P, float v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. void serial_echopair_P(const char *s_P, double v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, unsigned long v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. #ifdef SDSUPPORT
  405. #include "SdFatUtil.h"
  406. int freeMemory() { return SdFatUtil::FreeRam(); }
  407. #else
  408. extern "C" {
  409. extern unsigned int __bss_end;
  410. extern unsigned int __heap_start;
  411. extern void *__brkval;
  412. int freeMemory() {
  413. int free_memory;
  414. if ((int)__brkval == 0)
  415. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  416. else
  417. free_memory = ((int)&free_memory) - ((int)__brkval);
  418. return free_memory;
  419. }
  420. }
  421. #endif //!SDSUPPORT
  422. void setup_killpin()
  423. {
  424. #if defined(KILL_PIN) && KILL_PIN > -1
  425. SET_INPUT(KILL_PIN);
  426. WRITE(KILL_PIN,HIGH);
  427. #endif
  428. }
  429. // Set home pin
  430. void setup_homepin(void)
  431. {
  432. #if defined(HOME_PIN) && HOME_PIN > -1
  433. SET_INPUT(HOME_PIN);
  434. WRITE(HOME_PIN,HIGH);
  435. #endif
  436. }
  437. void setup_photpin()
  438. {
  439. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  440. SET_OUTPUT(PHOTOGRAPH_PIN);
  441. WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. SET_OUTPUT(SUICIDE_PIN);
  448. WRITE(SUICIDE_PIN, HIGH);
  449. #endif
  450. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  451. SET_OUTPUT(PS_ON_PIN);
  452. #if defined(PS_DEFAULT_OFF)
  453. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  454. #else
  455. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  456. #endif
  457. #endif
  458. }
  459. void suicide()
  460. {
  461. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  462. SET_OUTPUT(SUICIDE_PIN);
  463. WRITE(SUICIDE_PIN, LOW);
  464. #endif
  465. }
  466. void servo_init()
  467. {
  468. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  469. servos[0].attach(SERVO0_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  472. servos[1].attach(SERVO1_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  475. servos[2].attach(SERVO2_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  478. servos[3].attach(SERVO3_PIN);
  479. #endif
  480. #if (NUM_SERVOS >= 5)
  481. #error "TODO: enter initalisation code for more servos"
  482. #endif
  483. }
  484. static void lcd_language_menu();
  485. void stop_and_save_print_to_ram(float z_move, float e_move);
  486. void restore_print_from_ram_and_continue(float e_move);
  487. bool fans_check_enabled = true;
  488. bool filament_autoload_enabled = true;
  489. #ifdef TMC2130
  490. extern int8_t CrashDetectMenu;
  491. void crashdet_enable()
  492. {
  493. // MYSERIAL.println("crashdet_enable");
  494. tmc2130_sg_stop_on_crash = true;
  495. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  496. CrashDetectMenu = 1;
  497. }
  498. void crashdet_disable()
  499. {
  500. // MYSERIAL.println("crashdet_disable");
  501. tmc2130_sg_stop_on_crash = false;
  502. tmc2130_sg_crash = 0;
  503. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  504. CrashDetectMenu = 0;
  505. }
  506. void crashdet_stop_and_save_print()
  507. {
  508. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  509. }
  510. void crashdet_restore_print_and_continue()
  511. {
  512. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  513. // babystep_apply();
  514. }
  515. void crashdet_stop_and_save_print2()
  516. {
  517. cli();
  518. planner_abort_hard(); //abort printing
  519. cmdqueue_reset(); //empty cmdqueue
  520. card.sdprinting = false;
  521. card.closefile();
  522. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  523. st_reset_timer();
  524. sei();
  525. }
  526. void crashdet_detected(uint8_t mask)
  527. {
  528. // printf("CRASH_DETECTED");
  529. /* while (!is_buffer_empty())
  530. {
  531. process_commands();
  532. cmdqueue_pop_front();
  533. }*/
  534. st_synchronize();
  535. lcd_update_enable(true);
  536. lcd_implementation_clear();
  537. lcd_update(2);
  538. if (mask & X_AXIS_MASK)
  539. {
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  541. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  542. }
  543. if (mask & Y_AXIS_MASK)
  544. {
  545. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  546. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  547. }
  548. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  549. bool yesno = true;
  550. #else
  551. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  552. #endif
  553. lcd_update_enable(true);
  554. lcd_update(2);
  555. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  556. if (yesno)
  557. {
  558. enquecommand_P(PSTR("G28 X Y"));
  559. enquecommand_P(PSTR("CRASH_RECOVER"));
  560. }
  561. else
  562. {
  563. enquecommand_P(PSTR("CRASH_CANCEL"));
  564. }
  565. }
  566. void crashdet_recover()
  567. {
  568. crashdet_restore_print_and_continue();
  569. tmc2130_sg_stop_on_crash = true;
  570. }
  571. void crashdet_cancel()
  572. {
  573. card.sdprinting = false;
  574. card.closefile();
  575. tmc2130_sg_stop_on_crash = true;
  576. }
  577. #endif //TMC2130
  578. void failstats_reset_print()
  579. {
  580. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  584. }
  585. #ifdef MESH_BED_LEVELING
  586. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  587. #endif
  588. // Factory reset function
  589. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  590. // Level input parameter sets depth of reset
  591. // Quiet parameter masks all waitings for user interact.
  592. int er_progress = 0;
  593. void factory_reset(char level, bool quiet)
  594. {
  595. lcd_implementation_clear();
  596. int cursor_pos = 0;
  597. switch (level) {
  598. // Level 0: Language reset
  599. case 0:
  600. WRITE(BEEPER, HIGH);
  601. _delay_ms(100);
  602. WRITE(BEEPER, LOW);
  603. lcd_force_language_selection();
  604. break;
  605. //Level 1: Reset statistics
  606. case 1:
  607. WRITE(BEEPER, HIGH);
  608. _delay_ms(100);
  609. WRITE(BEEPER, LOW);
  610. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  611. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  612. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  613. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  616. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  617. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  620. lcd_menu_statistics();
  621. break;
  622. // Level 2: Prepare for shipping
  623. case 2:
  624. //lcd_printPGM(PSTR("Factory RESET"));
  625. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  626. // Force language selection at the next boot up.
  627. lcd_force_language_selection();
  628. // Force the "Follow calibration flow" message at the next boot up.
  629. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  630. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  631. farm_no = 0;
  632. farm_mode == false;
  633. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  634. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  635. WRITE(BEEPER, HIGH);
  636. _delay_ms(100);
  637. WRITE(BEEPER, LOW);
  638. //_delay_ms(2000);
  639. break;
  640. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  641. case 3:
  642. lcd_printPGM(PSTR("Factory RESET"));
  643. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  644. WRITE(BEEPER, HIGH);
  645. _delay_ms(100);
  646. WRITE(BEEPER, LOW);
  647. er_progress = 0;
  648. lcd_print_at_PGM(3, 3, PSTR(" "));
  649. lcd_implementation_print_at(3, 3, er_progress);
  650. // Erase EEPROM
  651. for (int i = 0; i < 4096; i++) {
  652. eeprom_write_byte((uint8_t*)i, 0xFF);
  653. if (i % 41 == 0) {
  654. er_progress++;
  655. lcd_print_at_PGM(3, 3, PSTR(" "));
  656. lcd_implementation_print_at(3, 3, er_progress);
  657. lcd_printPGM(PSTR("%"));
  658. }
  659. }
  660. break;
  661. case 4:
  662. bowden_menu();
  663. break;
  664. default:
  665. break;
  666. }
  667. }
  668. #include "LiquidCrystal_Prusa.h"
  669. extern LiquidCrystal_Prusa lcd;
  670. FILE _lcdout = {0};
  671. int lcd_putchar(char c, FILE *stream)
  672. {
  673. lcd.write(c);
  674. return 0;
  675. }
  676. FILE _uartout = {0};
  677. int uart_putchar(char c, FILE *stream)
  678. {
  679. MYSERIAL.write(c);
  680. return 0;
  681. }
  682. void lcd_splash()
  683. {
  684. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  685. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  686. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  687. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  688. }
  689. void factory_reset()
  690. {
  691. KEEPALIVE_STATE(PAUSED_FOR_USER);
  692. if (!READ(BTN_ENC))
  693. {
  694. _delay_ms(1000);
  695. if (!READ(BTN_ENC))
  696. {
  697. lcd_implementation_clear();
  698. lcd_printPGM(PSTR("Factory RESET"));
  699. SET_OUTPUT(BEEPER);
  700. WRITE(BEEPER, HIGH);
  701. while (!READ(BTN_ENC));
  702. WRITE(BEEPER, LOW);
  703. _delay_ms(2000);
  704. char level = reset_menu();
  705. factory_reset(level, false);
  706. switch (level) {
  707. case 0: _delay_ms(0); break;
  708. case 1: _delay_ms(0); break;
  709. case 2: _delay_ms(0); break;
  710. case 3: _delay_ms(0); break;
  711. }
  712. // _delay_ms(100);
  713. /*
  714. #ifdef MESH_BED_LEVELING
  715. _delay_ms(2000);
  716. if (!READ(BTN_ENC))
  717. {
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. _delay_ms(200);
  722. WRITE(BEEPER, HIGH);
  723. _delay_ms(100);
  724. WRITE(BEEPER, LOW);
  725. int _z = 0;
  726. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  727. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  728. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  729. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  730. }
  731. else
  732. {
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. }
  737. #endif // mesh */
  738. }
  739. }
  740. else
  741. {
  742. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  743. }
  744. KEEPALIVE_STATE(IN_HANDLER);
  745. }
  746. void show_fw_version_warnings() {
  747. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  748. switch (FW_DEV_VERSION) {
  749. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  750. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  751. case(FW_VERSION_DEVEL):
  752. case(FW_VERSION_DEBUG):
  753. lcd_update_enable(false);
  754. lcd_implementation_clear();
  755. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  756. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  757. #else
  758. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  759. #endif
  760. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  761. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  762. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  763. lcd_wait_for_click();
  764. break;
  765. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  766. }
  767. lcd_update_enable(true);
  768. }
  769. uint8_t check_printer_version()
  770. {
  771. uint8_t version_changed = 0;
  772. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  773. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  774. if (printer_type != PRINTER_TYPE) {
  775. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  776. else version_changed |= 0b10;
  777. }
  778. if (motherboard != MOTHERBOARD) {
  779. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  780. else version_changed |= 0b01;
  781. }
  782. return version_changed;
  783. }
  784. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  785. {
  786. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  787. }
  788. // "Setup" function is called by the Arduino framework on startup.
  789. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  790. // are initialized by the main() routine provided by the Arduino framework.
  791. void setup()
  792. {
  793. lcd_init();
  794. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  795. lcd_splash();
  796. setup_killpin();
  797. setup_powerhold();
  798. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  799. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  800. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  801. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  802. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  803. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  804. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  805. if (farm_mode)
  806. {
  807. no_response = true; //we need confirmation by recieving PRUSA thx
  808. important_status = 8;
  809. prusa_statistics(8);
  810. selectedSerialPort = 1;
  811. }
  812. MYSERIAL.begin(BAUDRATE);
  813. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  814. stdout = uartout;
  815. SERIAL_PROTOCOLLNPGM("start");
  816. SERIAL_ECHO_START;
  817. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  818. #if 0
  819. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  820. for (int i = 0; i < 4096; ++i) {
  821. int b = eeprom_read_byte((unsigned char*)i);
  822. if (b != 255) {
  823. SERIAL_ECHO(i);
  824. SERIAL_ECHO(":");
  825. SERIAL_ECHO(b);
  826. SERIAL_ECHOLN("");
  827. }
  828. }
  829. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  830. #endif
  831. // Check startup - does nothing if bootloader sets MCUSR to 0
  832. byte mcu = MCUSR;
  833. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  834. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  835. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  836. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  837. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  838. if (mcu & 1) puts_P(MSG_POWERUP);
  839. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  840. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  841. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  842. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  843. MCUSR = 0;
  844. //SERIAL_ECHORPGM(MSG_MARLIN);
  845. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  846. #ifdef STRING_VERSION_CONFIG_H
  847. #ifdef STRING_CONFIG_H_AUTHOR
  848. SERIAL_ECHO_START;
  849. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  850. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  851. SERIAL_ECHORPGM(MSG_AUTHOR);
  852. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  853. SERIAL_ECHOPGM("Compiled: ");
  854. SERIAL_ECHOLNPGM(__DATE__);
  855. #endif
  856. #endif
  857. SERIAL_ECHO_START;
  858. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  859. SERIAL_ECHO(freeMemory());
  860. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  861. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  862. //lcd_update_enable(false); // why do we need this?? - andre
  863. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  864. bool previous_settings_retrieved = false;
  865. uint8_t hw_changed = check_printer_version();
  866. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  867. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  868. }
  869. else { //printer version was changed so use default settings
  870. Config_ResetDefault();
  871. }
  872. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  873. tp_init(); // Initialize temperature loop
  874. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  875. plan_init(); // Initialize planner;
  876. factory_reset();
  877. #ifdef TMC2130
  878. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  879. if (silentMode == 0xff) silentMode = 0;
  880. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  881. tmc2130_mode = TMC2130_MODE_NORMAL;
  882. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  883. if (crashdet)
  884. {
  885. crashdet_enable();
  886. MYSERIAL.println("CrashDetect ENABLED!");
  887. }
  888. else
  889. {
  890. crashdet_disable();
  891. MYSERIAL.println("CrashDetect DISABLED");
  892. }
  893. #ifdef TMC2130_LINEARITY_CORRECTION
  894. #ifdef EXPERIMENTAL_FEATURES
  895. tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  896. tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  897. tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  898. #endif //EXPERIMENTAL_FEATURES
  899. tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC);
  900. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  901. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  902. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  903. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  904. #endif //TMC2130_LINEARITY_CORRECTION
  905. #ifdef TMC2130_VARIABLE_RESOLUTION
  906. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  907. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  908. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  909. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  910. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  911. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  912. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  913. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  914. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  915. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  916. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  917. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  918. #else //TMC2130_VARIABLE_RESOLUTION
  919. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  920. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  921. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  922. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  923. #endif //TMC2130_VARIABLE_RESOLUTION
  924. #endif //TMC2130
  925. #ifdef NEW_SPI
  926. spi_init();
  927. #endif //NEW_SPI
  928. st_init(); // Initialize stepper, this enables interrupts!
  929. #ifdef TMC2130
  930. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  931. tmc2130_init();
  932. #endif //TMC2130
  933. setup_photpin();
  934. servo_init();
  935. // Reset the machine correction matrix.
  936. // It does not make sense to load the correction matrix until the machine is homed.
  937. world2machine_reset();
  938. #ifdef PAT9125
  939. fsensor_init();
  940. #endif //PAT9125
  941. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  942. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  943. #endif
  944. setup_homepin();
  945. #ifdef TMC2130
  946. if (1) {
  947. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  948. // try to run to zero phase before powering the Z motor.
  949. // Move in negative direction
  950. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  951. // Round the current micro-micro steps to micro steps.
  952. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  953. // Until the phase counter is reset to zero.
  954. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  955. delay(2);
  956. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  957. delay(2);
  958. }
  959. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  960. }
  961. #endif //TMC2130
  962. #if defined(Z_AXIS_ALWAYS_ON)
  963. enable_z();
  964. #endif
  965. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  966. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  967. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  968. if (farm_no == 0xFFFF) farm_no = 0;
  969. if (farm_mode)
  970. {
  971. prusa_statistics(8);
  972. }
  973. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  974. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  975. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  976. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  977. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  978. // where all the EEPROM entries are set to 0x0ff.
  979. // Once a firmware boots up, it forces at least a language selection, which changes
  980. // EEPROM_LANG to number lower than 0x0ff.
  981. // 1) Set a high power mode.
  982. #ifdef TMC2130
  983. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  984. tmc2130_mode = TMC2130_MODE_NORMAL;
  985. #endif //TMC2130
  986. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  987. }
  988. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  989. // but this times out if a blocking dialog is shown in setup().
  990. card.initsd();
  991. #ifdef DEBUG_SD_SPEED_TEST
  992. if (card.cardOK)
  993. {
  994. uint8_t* buff = (uint8_t*)block_buffer;
  995. uint32_t block = 0;
  996. uint32_t sumr = 0;
  997. uint32_t sumw = 0;
  998. for (int i = 0; i < 1024; i++)
  999. {
  1000. uint32_t u = micros();
  1001. bool res = card.card.readBlock(i, buff);
  1002. u = micros() - u;
  1003. if (res)
  1004. {
  1005. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1006. sumr += u;
  1007. u = micros();
  1008. res = card.card.writeBlock(i, buff);
  1009. u = micros() - u;
  1010. if (res)
  1011. {
  1012. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1013. sumw += u;
  1014. }
  1015. else
  1016. {
  1017. printf_P(PSTR("writeBlock %4d error\n"), i);
  1018. break;
  1019. }
  1020. }
  1021. else
  1022. {
  1023. printf_P(PSTR("readBlock %4d error\n"), i);
  1024. break;
  1025. }
  1026. }
  1027. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1028. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1029. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1030. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1031. }
  1032. else
  1033. printf_P(PSTR("Card NG!\n"));
  1034. #endif DEBUG_SD_SPEED_TEST
  1035. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1036. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1037. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1038. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1039. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1040. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1041. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1042. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1043. #ifdef SNMM
  1044. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1045. int _z = BOWDEN_LENGTH;
  1046. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1047. }
  1048. #endif
  1049. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1050. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1051. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1052. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1053. if (lang_selected >= LANG_NUM){
  1054. lcd_mylang();
  1055. }
  1056. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1057. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1058. temp_cal_active = false;
  1059. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1060. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1061. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1062. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1063. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  1064. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  1065. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  1066. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  1067. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  1068. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  1069. temp_cal_active = true;
  1070. }
  1071. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1072. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1073. }
  1074. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1075. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1076. }
  1077. check_babystep(); //checking if Z babystep is in allowed range
  1078. #ifdef UVLO_SUPPORT
  1079. setup_uvlo_interrupt();
  1080. #endif //UVLO_SUPPORT
  1081. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1082. setup_fan_interrupt();
  1083. #endif //DEBUG_DISABLE_FANCHECK
  1084. #ifdef PAT9125
  1085. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1086. fsensor_setup_interrupt();
  1087. #endif //DEBUG_DISABLE_FSENSORCHECK
  1088. #endif //PAT9125
  1089. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1090. #ifndef DEBUG_DISABLE_STARTMSGS
  1091. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1092. show_fw_version_warnings();
  1093. switch (hw_changed) {
  1094. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1095. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1096. case(0b01):
  1097. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1098. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1099. break;
  1100. case(0b10):
  1101. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1102. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1103. break;
  1104. case(0b11):
  1105. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1106. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1107. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1108. break;
  1109. default: break; //no change, show no message
  1110. }
  1111. if (!previous_settings_retrieved) {
  1112. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1113. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1114. }
  1115. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1116. lcd_wizard(0);
  1117. }
  1118. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1119. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1120. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1121. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1122. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1123. // Show the message.
  1124. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1125. }
  1126. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1127. // Show the message.
  1128. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1129. lcd_update_enable(true);
  1130. }
  1131. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1132. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1133. lcd_update_enable(true);
  1134. }
  1135. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1136. // Show the message.
  1137. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1138. }
  1139. }
  1140. #ifndef DEBUG_DISABLE_FORCE_SELFTEST
  1141. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1142. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1143. update_current_firmware_version_to_eeprom();
  1144. lcd_selftest();
  1145. }
  1146. #endif //DEBUG_DISABLE_FORCE_SELFTEST
  1147. KEEPALIVE_STATE(IN_PROCESS);
  1148. #endif //DEBUG_DISABLE_STARTMSGS
  1149. lcd_update_enable(true);
  1150. lcd_implementation_clear();
  1151. lcd_update(2);
  1152. // Store the currently running firmware into an eeprom,
  1153. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1154. update_current_firmware_version_to_eeprom();
  1155. #ifdef TMC2130
  1156. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1157. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1158. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1159. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1160. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1161. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1162. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1163. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1164. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1165. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1166. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1167. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1168. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1169. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1170. #endif //TMC2130
  1171. #ifdef UVLO_SUPPORT
  1172. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1173. /*
  1174. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1175. else {
  1176. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1177. lcd_update_enable(true);
  1178. lcd_update(2);
  1179. lcd_setstatuspgm(WELCOME_MSG);
  1180. }
  1181. */
  1182. manage_heater(); // Update temperatures
  1183. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1184. MYSERIAL.println("Power panic detected!");
  1185. MYSERIAL.print("Current bed temp:");
  1186. MYSERIAL.println(degBed());
  1187. MYSERIAL.print("Saved bed temp:");
  1188. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1189. #endif
  1190. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1191. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1192. MYSERIAL.println("Automatic recovery!");
  1193. #endif
  1194. recover_print(1);
  1195. }
  1196. else{
  1197. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1198. MYSERIAL.println("Normal recovery!");
  1199. #endif
  1200. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1201. else {
  1202. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1203. lcd_update_enable(true);
  1204. lcd_update(2);
  1205. lcd_setstatuspgm(WELCOME_MSG);
  1206. }
  1207. }
  1208. }
  1209. #endif //UVLO_SUPPORT
  1210. KEEPALIVE_STATE(NOT_BUSY);
  1211. #ifdef WATCHDOG
  1212. wdt_enable(WDTO_4S);
  1213. #endif //WATCHDOG
  1214. }
  1215. #ifdef PAT9125
  1216. void fsensor_init() {
  1217. int pat9125 = pat9125_init();
  1218. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1219. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1220. if (!pat9125)
  1221. {
  1222. fsensor = 0; //disable sensor
  1223. fsensor_not_responding = true;
  1224. }
  1225. else {
  1226. fsensor_not_responding = false;
  1227. }
  1228. puts_P(PSTR("FSensor "));
  1229. if (fsensor)
  1230. {
  1231. puts_P(PSTR("ENABLED\n"));
  1232. fsensor_enable();
  1233. }
  1234. else
  1235. {
  1236. puts_P(PSTR("DISABLED\n"));
  1237. fsensor_disable();
  1238. }
  1239. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1240. filament_autoload_enabled = false;
  1241. fsensor_disable();
  1242. #endif //DEBUG_DISABLE_FSENSORCHECK
  1243. }
  1244. #endif //PAT9125
  1245. void trace();
  1246. #define CHUNK_SIZE 64 // bytes
  1247. #define SAFETY_MARGIN 1
  1248. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1249. int chunkHead = 0;
  1250. int serial_read_stream() {
  1251. setTargetHotend(0, 0);
  1252. setTargetBed(0);
  1253. lcd_implementation_clear();
  1254. lcd_printPGM(PSTR(" Upload in progress"));
  1255. // first wait for how many bytes we will receive
  1256. uint32_t bytesToReceive;
  1257. // receive the four bytes
  1258. char bytesToReceiveBuffer[4];
  1259. for (int i=0; i<4; i++) {
  1260. int data;
  1261. while ((data = MYSERIAL.read()) == -1) {};
  1262. bytesToReceiveBuffer[i] = data;
  1263. }
  1264. // make it a uint32
  1265. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1266. // we're ready, notify the sender
  1267. MYSERIAL.write('+');
  1268. // lock in the routine
  1269. uint32_t receivedBytes = 0;
  1270. while (prusa_sd_card_upload) {
  1271. int i;
  1272. for (i=0; i<CHUNK_SIZE; i++) {
  1273. int data;
  1274. // check if we're not done
  1275. if (receivedBytes == bytesToReceive) {
  1276. break;
  1277. }
  1278. // read the next byte
  1279. while ((data = MYSERIAL.read()) == -1) {};
  1280. receivedBytes++;
  1281. // save it to the chunk
  1282. chunk[i] = data;
  1283. }
  1284. // write the chunk to SD
  1285. card.write_command_no_newline(&chunk[0]);
  1286. // notify the sender we're ready for more data
  1287. MYSERIAL.write('+');
  1288. // for safety
  1289. manage_heater();
  1290. // check if we're done
  1291. if(receivedBytes == bytesToReceive) {
  1292. trace(); // beep
  1293. card.closefile();
  1294. prusa_sd_card_upload = false;
  1295. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1296. return 0;
  1297. }
  1298. }
  1299. }
  1300. #ifdef HOST_KEEPALIVE_FEATURE
  1301. /**
  1302. * Output a "busy" message at regular intervals
  1303. * while the machine is not accepting commands.
  1304. */
  1305. void host_keepalive() {
  1306. if (farm_mode) return;
  1307. long ms = millis();
  1308. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1309. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1310. switch (busy_state) {
  1311. case IN_HANDLER:
  1312. case IN_PROCESS:
  1313. SERIAL_ECHO_START;
  1314. SERIAL_ECHOLNPGM("busy: processing");
  1315. break;
  1316. case PAUSED_FOR_USER:
  1317. SERIAL_ECHO_START;
  1318. SERIAL_ECHOLNPGM("busy: paused for user");
  1319. break;
  1320. case PAUSED_FOR_INPUT:
  1321. SERIAL_ECHO_START;
  1322. SERIAL_ECHOLNPGM("busy: paused for input");
  1323. break;
  1324. default:
  1325. break;
  1326. }
  1327. }
  1328. prev_busy_signal_ms = ms;
  1329. }
  1330. #endif
  1331. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1332. // Before loop(), the setup() function is called by the main() routine.
  1333. void loop()
  1334. {
  1335. KEEPALIVE_STATE(NOT_BUSY);
  1336. bool stack_integrity = true;
  1337. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1338. {
  1339. is_usb_printing = true;
  1340. usb_printing_counter--;
  1341. _usb_timer = millis();
  1342. }
  1343. if (usb_printing_counter == 0)
  1344. {
  1345. is_usb_printing = false;
  1346. }
  1347. if (prusa_sd_card_upload)
  1348. {
  1349. //we read byte-by byte
  1350. serial_read_stream();
  1351. } else
  1352. {
  1353. get_command();
  1354. #ifdef SDSUPPORT
  1355. card.checkautostart(false);
  1356. #endif
  1357. if(buflen)
  1358. {
  1359. cmdbuffer_front_already_processed = false;
  1360. #ifdef SDSUPPORT
  1361. if(card.saving)
  1362. {
  1363. // Saving a G-code file onto an SD-card is in progress.
  1364. // Saving starts with M28, saving until M29 is seen.
  1365. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1366. card.write_command(CMDBUFFER_CURRENT_STRING);
  1367. if(card.logging)
  1368. process_commands();
  1369. else
  1370. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1371. } else {
  1372. card.closefile();
  1373. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1374. }
  1375. } else {
  1376. process_commands();
  1377. }
  1378. #else
  1379. process_commands();
  1380. #endif //SDSUPPORT
  1381. if (! cmdbuffer_front_already_processed && buflen)
  1382. {
  1383. // ptr points to the start of the block currently being processed.
  1384. // The first character in the block is the block type.
  1385. char *ptr = cmdbuffer + bufindr;
  1386. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1387. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1388. union {
  1389. struct {
  1390. char lo;
  1391. char hi;
  1392. } lohi;
  1393. uint16_t value;
  1394. } sdlen;
  1395. sdlen.value = 0;
  1396. {
  1397. // This block locks the interrupts globally for 3.25 us,
  1398. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1399. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1400. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1401. cli();
  1402. // Reset the command to something, which will be ignored by the power panic routine,
  1403. // so this buffer length will not be counted twice.
  1404. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1405. // Extract the current buffer length.
  1406. sdlen.lohi.lo = *ptr ++;
  1407. sdlen.lohi.hi = *ptr;
  1408. // and pass it to the planner queue.
  1409. planner_add_sd_length(sdlen.value);
  1410. sei();
  1411. }
  1412. }
  1413. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1414. // this block's SD card length will not be counted twice as its command type has been replaced
  1415. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1416. cmdqueue_pop_front();
  1417. }
  1418. host_keepalive();
  1419. }
  1420. }
  1421. //check heater every n milliseconds
  1422. manage_heater();
  1423. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1424. checkHitEndstops();
  1425. lcd_update();
  1426. #ifdef PAT9125
  1427. fsensor_update();
  1428. #endif //PAT9125
  1429. #ifdef TMC2130
  1430. tmc2130_check_overtemp();
  1431. if (tmc2130_sg_crash)
  1432. {
  1433. uint8_t crash = tmc2130_sg_crash;
  1434. tmc2130_sg_crash = 0;
  1435. // crashdet_stop_and_save_print();
  1436. switch (crash)
  1437. {
  1438. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1439. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1440. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1441. }
  1442. }
  1443. #endif //TMC2130
  1444. }
  1445. #define DEFINE_PGM_READ_ANY(type, reader) \
  1446. static inline type pgm_read_any(const type *p) \
  1447. { return pgm_read_##reader##_near(p); }
  1448. DEFINE_PGM_READ_ANY(float, float);
  1449. DEFINE_PGM_READ_ANY(signed char, byte);
  1450. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1451. static const PROGMEM type array##_P[3] = \
  1452. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1453. static inline type array(int axis) \
  1454. { return pgm_read_any(&array##_P[axis]); } \
  1455. type array##_ext(int axis) \
  1456. { return pgm_read_any(&array##_P[axis]); }
  1457. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1458. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1459. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1460. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1461. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1462. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1463. static void axis_is_at_home(int axis) {
  1464. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1465. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1466. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1467. }
  1468. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1469. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1470. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1471. saved_feedrate = feedrate;
  1472. saved_feedmultiply = feedmultiply;
  1473. feedmultiply = 100;
  1474. previous_millis_cmd = millis();
  1475. enable_endstops(enable_endstops_now);
  1476. }
  1477. static void clean_up_after_endstop_move() {
  1478. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1479. enable_endstops(false);
  1480. #endif
  1481. feedrate = saved_feedrate;
  1482. feedmultiply = saved_feedmultiply;
  1483. previous_millis_cmd = millis();
  1484. }
  1485. #ifdef ENABLE_AUTO_BED_LEVELING
  1486. #ifdef AUTO_BED_LEVELING_GRID
  1487. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1488. {
  1489. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1490. planeNormal.debug("planeNormal");
  1491. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1492. //bedLevel.debug("bedLevel");
  1493. //plan_bed_level_matrix.debug("bed level before");
  1494. //vector_3 uncorrected_position = plan_get_position_mm();
  1495. //uncorrected_position.debug("position before");
  1496. vector_3 corrected_position = plan_get_position();
  1497. // corrected_position.debug("position after");
  1498. current_position[X_AXIS] = corrected_position.x;
  1499. current_position[Y_AXIS] = corrected_position.y;
  1500. current_position[Z_AXIS] = corrected_position.z;
  1501. // put the bed at 0 so we don't go below it.
  1502. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1504. }
  1505. #else // not AUTO_BED_LEVELING_GRID
  1506. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1507. plan_bed_level_matrix.set_to_identity();
  1508. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1509. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1510. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1511. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1512. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1513. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1514. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1515. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1516. vector_3 corrected_position = plan_get_position();
  1517. current_position[X_AXIS] = corrected_position.x;
  1518. current_position[Y_AXIS] = corrected_position.y;
  1519. current_position[Z_AXIS] = corrected_position.z;
  1520. // put the bed at 0 so we don't go below it.
  1521. current_position[Z_AXIS] = zprobe_zoffset;
  1522. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1523. }
  1524. #endif // AUTO_BED_LEVELING_GRID
  1525. static void run_z_probe() {
  1526. plan_bed_level_matrix.set_to_identity();
  1527. feedrate = homing_feedrate[Z_AXIS];
  1528. // move down until you find the bed
  1529. float zPosition = -10;
  1530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1531. st_synchronize();
  1532. // we have to let the planner know where we are right now as it is not where we said to go.
  1533. zPosition = st_get_position_mm(Z_AXIS);
  1534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1535. // move up the retract distance
  1536. zPosition += home_retract_mm(Z_AXIS);
  1537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1538. st_synchronize();
  1539. // move back down slowly to find bed
  1540. feedrate = homing_feedrate[Z_AXIS]/4;
  1541. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1543. st_synchronize();
  1544. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1545. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1546. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1547. }
  1548. static void do_blocking_move_to(float x, float y, float z) {
  1549. float oldFeedRate = feedrate;
  1550. feedrate = homing_feedrate[Z_AXIS];
  1551. current_position[Z_AXIS] = z;
  1552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1553. st_synchronize();
  1554. feedrate = XY_TRAVEL_SPEED;
  1555. current_position[X_AXIS] = x;
  1556. current_position[Y_AXIS] = y;
  1557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1558. st_synchronize();
  1559. feedrate = oldFeedRate;
  1560. }
  1561. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1562. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1563. }
  1564. /// Probe bed height at position (x,y), returns the measured z value
  1565. static float probe_pt(float x, float y, float z_before) {
  1566. // move to right place
  1567. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1568. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1569. run_z_probe();
  1570. float measured_z = current_position[Z_AXIS];
  1571. SERIAL_PROTOCOLRPGM(MSG_BED);
  1572. SERIAL_PROTOCOLPGM(" x: ");
  1573. SERIAL_PROTOCOL(x);
  1574. SERIAL_PROTOCOLPGM(" y: ");
  1575. SERIAL_PROTOCOL(y);
  1576. SERIAL_PROTOCOLPGM(" z: ");
  1577. SERIAL_PROTOCOL(measured_z);
  1578. SERIAL_PROTOCOLPGM("\n");
  1579. return measured_z;
  1580. }
  1581. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1582. #ifdef LIN_ADVANCE
  1583. /**
  1584. * M900: Set and/or Get advance K factor and WH/D ratio
  1585. *
  1586. * K<factor> Set advance K factor
  1587. * R<ratio> Set ratio directly (overrides WH/D)
  1588. * W<width> H<height> D<diam> Set ratio from WH/D
  1589. */
  1590. inline void gcode_M900() {
  1591. st_synchronize();
  1592. const float newK = code_seen('K') ? code_value_float() : -1;
  1593. if (newK >= 0) extruder_advance_k = newK;
  1594. float newR = code_seen('R') ? code_value_float() : -1;
  1595. if (newR < 0) {
  1596. const float newD = code_seen('D') ? code_value_float() : -1,
  1597. newW = code_seen('W') ? code_value_float() : -1,
  1598. newH = code_seen('H') ? code_value_float() : -1;
  1599. if (newD >= 0 && newW >= 0 && newH >= 0)
  1600. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1601. }
  1602. if (newR >= 0) advance_ed_ratio = newR;
  1603. SERIAL_ECHO_START;
  1604. SERIAL_ECHOPGM("Advance K=");
  1605. SERIAL_ECHOLN(extruder_advance_k);
  1606. SERIAL_ECHOPGM(" E/D=");
  1607. const float ratio = advance_ed_ratio;
  1608. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1609. }
  1610. #endif // LIN_ADVANCE
  1611. bool check_commands() {
  1612. bool end_command_found = false;
  1613. while (buflen)
  1614. {
  1615. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1616. if (!cmdbuffer_front_already_processed)
  1617. cmdqueue_pop_front();
  1618. cmdbuffer_front_already_processed = false;
  1619. }
  1620. return end_command_found;
  1621. }
  1622. #ifdef TMC2130
  1623. bool calibrate_z_auto()
  1624. {
  1625. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1626. lcd_implementation_clear();
  1627. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1628. bool endstops_enabled = enable_endstops(true);
  1629. int axis_up_dir = -home_dir(Z_AXIS);
  1630. tmc2130_home_enter(Z_AXIS_MASK);
  1631. current_position[Z_AXIS] = 0;
  1632. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1633. set_destination_to_current();
  1634. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1635. feedrate = homing_feedrate[Z_AXIS];
  1636. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1637. st_synchronize();
  1638. // current_position[axis] = 0;
  1639. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1640. tmc2130_home_exit();
  1641. enable_endstops(false);
  1642. current_position[Z_AXIS] = 0;
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1644. set_destination_to_current();
  1645. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1646. feedrate = homing_feedrate[Z_AXIS] / 2;
  1647. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1648. st_synchronize();
  1649. enable_endstops(endstops_enabled);
  1650. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1651. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1652. return true;
  1653. }
  1654. #endif //TMC2130
  1655. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1656. {
  1657. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1658. #define HOMEAXIS_DO(LETTER) \
  1659. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1660. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1661. {
  1662. int axis_home_dir = home_dir(axis);
  1663. feedrate = homing_feedrate[axis];
  1664. #ifdef TMC2130
  1665. tmc2130_home_enter(X_AXIS_MASK << axis);
  1666. #endif //TMC2130
  1667. // Move right a bit, so that the print head does not touch the left end position,
  1668. // and the following left movement has a chance to achieve the required velocity
  1669. // for the stall guard to work.
  1670. current_position[axis] = 0;
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1672. set_destination_to_current();
  1673. // destination[axis] = 11.f;
  1674. destination[axis] = 3.f;
  1675. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1676. st_synchronize();
  1677. // Move left away from the possible collision with the collision detection disabled.
  1678. endstops_hit_on_purpose();
  1679. enable_endstops(false);
  1680. current_position[axis] = 0;
  1681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1682. destination[axis] = - 1.;
  1683. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1684. st_synchronize();
  1685. // Now continue to move up to the left end stop with the collision detection enabled.
  1686. enable_endstops(true);
  1687. destination[axis] = - 1.1 * max_length(axis);
  1688. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1689. st_synchronize();
  1690. for (uint8_t i = 0; i < cnt; i++)
  1691. {
  1692. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1693. endstops_hit_on_purpose();
  1694. enable_endstops(false);
  1695. current_position[axis] = 0;
  1696. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1697. destination[axis] = 10.f;
  1698. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1699. st_synchronize();
  1700. endstops_hit_on_purpose();
  1701. // Now move left up to the collision, this time with a repeatable velocity.
  1702. enable_endstops(true);
  1703. destination[axis] = - 11.f;
  1704. #ifdef TMC2130
  1705. feedrate = homing_feedrate[axis];
  1706. #else //TMC2130
  1707. feedrate = homing_feedrate[axis] / 2;
  1708. #endif //TMC2130
  1709. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1710. st_synchronize();
  1711. #ifdef TMC2130
  1712. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1713. if (pstep) pstep[i] = mscnt >> 4;
  1714. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1715. #endif //TMC2130
  1716. }
  1717. endstops_hit_on_purpose();
  1718. enable_endstops(false);
  1719. #ifdef TMC2130
  1720. uint8_t orig = tmc2130_home_origin[axis];
  1721. uint8_t back = tmc2130_home_bsteps[axis];
  1722. if (tmc2130_home_enabled && (orig <= 63))
  1723. {
  1724. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1725. if (back > 0)
  1726. tmc2130_do_steps(axis, back, 1, 1000);
  1727. }
  1728. else
  1729. tmc2130_do_steps(axis, 8, 2, 1000);
  1730. tmc2130_home_exit();
  1731. #endif //TMC2130
  1732. axis_is_at_home(axis);
  1733. axis_known_position[axis] = true;
  1734. // Move from minimum
  1735. #ifdef TMC2130
  1736. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1737. #else //TMC2130
  1738. float dist = 0.01f * 64;
  1739. #endif //TMC2130
  1740. current_position[axis] -= dist;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. current_position[axis] += dist;
  1743. destination[axis] = current_position[axis];
  1744. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1745. st_synchronize();
  1746. feedrate = 0.0;
  1747. }
  1748. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1749. {
  1750. int axis_home_dir = home_dir(axis);
  1751. current_position[axis] = 0;
  1752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1753. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1754. feedrate = homing_feedrate[axis];
  1755. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1756. st_synchronize();
  1757. current_position[axis] = 0;
  1758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1759. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1761. st_synchronize();
  1762. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1763. feedrate = homing_feedrate[axis]/2 ;
  1764. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1765. st_synchronize();
  1766. axis_is_at_home(axis);
  1767. destination[axis] = current_position[axis];
  1768. feedrate = 0.0;
  1769. endstops_hit_on_purpose();
  1770. axis_known_position[axis] = true;
  1771. }
  1772. enable_endstops(endstops_enabled);
  1773. }
  1774. /**/
  1775. void home_xy()
  1776. {
  1777. set_destination_to_current();
  1778. homeaxis(X_AXIS);
  1779. homeaxis(Y_AXIS);
  1780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. endstops_hit_on_purpose();
  1782. }
  1783. void refresh_cmd_timeout(void)
  1784. {
  1785. previous_millis_cmd = millis();
  1786. }
  1787. #ifdef FWRETRACT
  1788. void retract(bool retracting, bool swapretract = false) {
  1789. if(retracting && !retracted[active_extruder]) {
  1790. destination[X_AXIS]=current_position[X_AXIS];
  1791. destination[Y_AXIS]=current_position[Y_AXIS];
  1792. destination[Z_AXIS]=current_position[Z_AXIS];
  1793. destination[E_AXIS]=current_position[E_AXIS];
  1794. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1795. plan_set_e_position(current_position[E_AXIS]);
  1796. float oldFeedrate = feedrate;
  1797. feedrate=retract_feedrate*60;
  1798. retracted[active_extruder]=true;
  1799. prepare_move();
  1800. current_position[Z_AXIS]-=retract_zlift;
  1801. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1802. prepare_move();
  1803. feedrate = oldFeedrate;
  1804. } else if(!retracting && retracted[active_extruder]) {
  1805. destination[X_AXIS]=current_position[X_AXIS];
  1806. destination[Y_AXIS]=current_position[Y_AXIS];
  1807. destination[Z_AXIS]=current_position[Z_AXIS];
  1808. destination[E_AXIS]=current_position[E_AXIS];
  1809. current_position[Z_AXIS]+=retract_zlift;
  1810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1811. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1812. plan_set_e_position(current_position[E_AXIS]);
  1813. float oldFeedrate = feedrate;
  1814. feedrate=retract_recover_feedrate*60;
  1815. retracted[active_extruder]=false;
  1816. prepare_move();
  1817. feedrate = oldFeedrate;
  1818. }
  1819. } //retract
  1820. #endif //FWRETRACT
  1821. void trace() {
  1822. tone(BEEPER, 440);
  1823. delay(25);
  1824. noTone(BEEPER);
  1825. delay(20);
  1826. }
  1827. /*
  1828. void ramming() {
  1829. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1830. if (current_temperature[0] < 230) {
  1831. //PLA
  1832. max_feedrate[E_AXIS] = 50;
  1833. //current_position[E_AXIS] -= 8;
  1834. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1835. //current_position[E_AXIS] += 8;
  1836. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1837. current_position[E_AXIS] += 5.4;
  1838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1839. current_position[E_AXIS] += 3.2;
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1841. current_position[E_AXIS] += 3;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1843. st_synchronize();
  1844. max_feedrate[E_AXIS] = 80;
  1845. current_position[E_AXIS] -= 82;
  1846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1847. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1848. current_position[E_AXIS] -= 20;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1850. current_position[E_AXIS] += 5;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1852. current_position[E_AXIS] += 5;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1854. current_position[E_AXIS] -= 10;
  1855. st_synchronize();
  1856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1857. current_position[E_AXIS] += 10;
  1858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1859. current_position[E_AXIS] -= 10;
  1860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1861. current_position[E_AXIS] += 10;
  1862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1863. current_position[E_AXIS] -= 10;
  1864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1865. st_synchronize();
  1866. }
  1867. else {
  1868. //ABS
  1869. max_feedrate[E_AXIS] = 50;
  1870. //current_position[E_AXIS] -= 8;
  1871. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1872. //current_position[E_AXIS] += 8;
  1873. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1874. current_position[E_AXIS] += 3.1;
  1875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1876. current_position[E_AXIS] += 3.1;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1878. current_position[E_AXIS] += 4;
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1880. st_synchronize();
  1881. //current_position[X_AXIS] += 23; //delay
  1882. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1883. //current_position[X_AXIS] -= 23; //delay
  1884. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1885. delay(4700);
  1886. max_feedrate[E_AXIS] = 80;
  1887. current_position[E_AXIS] -= 92;
  1888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1889. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1890. current_position[E_AXIS] -= 5;
  1891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1892. current_position[E_AXIS] += 5;
  1893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1894. current_position[E_AXIS] -= 5;
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1896. st_synchronize();
  1897. current_position[E_AXIS] += 5;
  1898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1899. current_position[E_AXIS] -= 5;
  1900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1901. current_position[E_AXIS] += 5;
  1902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1903. current_position[E_AXIS] -= 5;
  1904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1905. st_synchronize();
  1906. }
  1907. }
  1908. */
  1909. #ifdef TMC2130
  1910. void force_high_power_mode(bool start_high_power_section) {
  1911. uint8_t silent;
  1912. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1913. if (silent == 1) {
  1914. //we are in silent mode, set to normal mode to enable crash detection
  1915. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1916. st_synchronize();
  1917. cli();
  1918. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1919. tmc2130_init();
  1920. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1921. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1922. st_reset_timer();
  1923. sei();
  1924. }
  1925. }
  1926. #endif //TMC2130
  1927. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1928. {
  1929. bool final_result = false;
  1930. #ifdef TMC2130
  1931. FORCE_HIGH_POWER_START;
  1932. #endif // TMC2130
  1933. // Only Z calibration?
  1934. if (!onlyZ)
  1935. {
  1936. setTargetBed(0);
  1937. setTargetHotend(0, 0);
  1938. setTargetHotend(0, 1);
  1939. setTargetHotend(0, 2);
  1940. adjust_bed_reset(); //reset bed level correction
  1941. }
  1942. // Disable the default update procedure of the display. We will do a modal dialog.
  1943. lcd_update_enable(false);
  1944. // Let the planner use the uncorrected coordinates.
  1945. mbl.reset();
  1946. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1947. // the planner will not perform any adjustments in the XY plane.
  1948. // Wait for the motors to stop and update the current position with the absolute values.
  1949. world2machine_revert_to_uncorrected();
  1950. // Reset the baby step value applied without moving the axes.
  1951. babystep_reset();
  1952. // Mark all axes as in a need for homing.
  1953. memset(axis_known_position, 0, sizeof(axis_known_position));
  1954. // Home in the XY plane.
  1955. //set_destination_to_current();
  1956. setup_for_endstop_move();
  1957. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1958. home_xy();
  1959. enable_endstops(false);
  1960. current_position[X_AXIS] += 5;
  1961. current_position[Y_AXIS] += 5;
  1962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1963. st_synchronize();
  1964. // Let the user move the Z axes up to the end stoppers.
  1965. #ifdef TMC2130
  1966. if (calibrate_z_auto())
  1967. {
  1968. #else //TMC2130
  1969. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1970. {
  1971. #endif //TMC2130
  1972. refresh_cmd_timeout();
  1973. #ifndef STEEL_SHEET
  1974. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1975. {
  1976. lcd_wait_for_cool_down();
  1977. }
  1978. #endif //STEEL_SHEET
  1979. if(!onlyZ)
  1980. {
  1981. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1982. #ifdef STEEL_SHEET
  1983. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1984. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1985. #endif //STEEL_SHEET
  1986. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1987. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1988. KEEPALIVE_STATE(IN_HANDLER);
  1989. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1990. lcd_implementation_print_at(0, 2, 1);
  1991. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1992. }
  1993. // Move the print head close to the bed.
  1994. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1995. bool endstops_enabled = enable_endstops(true);
  1996. #ifdef TMC2130
  1997. tmc2130_home_enter(Z_AXIS_MASK);
  1998. #endif //TMC2130
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2000. st_synchronize();
  2001. #ifdef TMC2130
  2002. tmc2130_home_exit();
  2003. #endif //TMC2130
  2004. enable_endstops(endstops_enabled);
  2005. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2006. {
  2007. int8_t verbosity_level = 0;
  2008. if (code_seen('V'))
  2009. {
  2010. // Just 'V' without a number counts as V1.
  2011. char c = strchr_pointer[1];
  2012. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2013. }
  2014. if (onlyZ)
  2015. {
  2016. clean_up_after_endstop_move();
  2017. // Z only calibration.
  2018. // Load the machine correction matrix
  2019. world2machine_initialize();
  2020. // and correct the current_position to match the transformed coordinate system.
  2021. world2machine_update_current();
  2022. //FIXME
  2023. bool result = sample_mesh_and_store_reference();
  2024. if (result)
  2025. {
  2026. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2027. // Shipped, the nozzle height has been set already. The user can start printing now.
  2028. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2029. final_result = true;
  2030. // babystep_apply();
  2031. }
  2032. }
  2033. else
  2034. {
  2035. // Reset the baby step value and the baby step applied flag.
  2036. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2037. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2038. // Complete XYZ calibration.
  2039. uint8_t point_too_far_mask = 0;
  2040. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2041. clean_up_after_endstop_move();
  2042. // Print head up.
  2043. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2045. st_synchronize();
  2046. //#ifndef NEW_XYZCAL
  2047. if (result >= 0)
  2048. {
  2049. #ifdef HEATBED_V2
  2050. sample_z();
  2051. #else //HEATBED_V2
  2052. point_too_far_mask = 0;
  2053. // Second half: The fine adjustment.
  2054. // Let the planner use the uncorrected coordinates.
  2055. mbl.reset();
  2056. world2machine_reset();
  2057. // Home in the XY plane.
  2058. setup_for_endstop_move();
  2059. home_xy();
  2060. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2061. clean_up_after_endstop_move();
  2062. // Print head up.
  2063. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2065. st_synchronize();
  2066. // if (result >= 0) babystep_apply();
  2067. #endif //HEATBED_V2
  2068. }
  2069. //#endif //NEW_XYZCAL
  2070. lcd_update_enable(true);
  2071. lcd_update(2);
  2072. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2073. if (result >= 0)
  2074. {
  2075. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2076. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2077. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2078. final_result = true;
  2079. }
  2080. }
  2081. #ifdef TMC2130
  2082. tmc2130_home_exit();
  2083. #endif
  2084. }
  2085. else
  2086. {
  2087. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2088. final_result = false;
  2089. }
  2090. }
  2091. else
  2092. {
  2093. // Timeouted.
  2094. }
  2095. lcd_update_enable(true);
  2096. #ifdef TMC2130
  2097. FORCE_HIGH_POWER_END;
  2098. #endif // TMC2130
  2099. return final_result;
  2100. }
  2101. void gcode_M114()
  2102. {
  2103. SERIAL_PROTOCOLPGM("X:");
  2104. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2105. SERIAL_PROTOCOLPGM(" Y:");
  2106. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2107. SERIAL_PROTOCOLPGM(" Z:");
  2108. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2109. SERIAL_PROTOCOLPGM(" E:");
  2110. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2111. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2112. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2113. SERIAL_PROTOCOLPGM(" Y:");
  2114. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2115. SERIAL_PROTOCOLPGM(" Z:");
  2116. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2117. SERIAL_PROTOCOLPGM(" E:");
  2118. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2119. SERIAL_PROTOCOLLN("");
  2120. }
  2121. void gcode_M701()
  2122. {
  2123. #ifdef SNMM
  2124. extr_adj(snmm_extruder);//loads current extruder
  2125. #else
  2126. enable_z();
  2127. custom_message = true;
  2128. custom_message_type = 2;
  2129. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2130. current_position[E_AXIS] += 70;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2132. current_position[E_AXIS] += 25;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2134. st_synchronize();
  2135. tone(BEEPER, 500);
  2136. delay_keep_alive(50);
  2137. noTone(BEEPER);
  2138. if (!farm_mode && loading_flag) {
  2139. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2140. while (!clean) {
  2141. lcd_update_enable(true);
  2142. lcd_update(2);
  2143. current_position[E_AXIS] += 25;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2145. st_synchronize();
  2146. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2147. }
  2148. }
  2149. lcd_update_enable(true);
  2150. lcd_update(2);
  2151. lcd_setstatuspgm(WELCOME_MSG);
  2152. disable_z();
  2153. loading_flag = false;
  2154. custom_message = false;
  2155. custom_message_type = 0;
  2156. #endif
  2157. }
  2158. void process_commands()
  2159. {
  2160. if (!buflen) return; //empty command
  2161. #ifdef FILAMENT_RUNOUT_SUPPORT
  2162. SET_INPUT(FR_SENS);
  2163. #endif
  2164. #ifdef CMDBUFFER_DEBUG
  2165. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2166. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2167. SERIAL_ECHOLNPGM("");
  2168. SERIAL_ECHOPGM("In cmdqueue: ");
  2169. SERIAL_ECHO(buflen);
  2170. SERIAL_ECHOLNPGM("");
  2171. #endif /* CMDBUFFER_DEBUG */
  2172. unsigned long codenum; //throw away variable
  2173. char *starpos = NULL;
  2174. #ifdef ENABLE_AUTO_BED_LEVELING
  2175. float x_tmp, y_tmp, z_tmp, real_z;
  2176. #endif
  2177. // PRUSA GCODES
  2178. KEEPALIVE_STATE(IN_HANDLER);
  2179. #ifdef SNMM
  2180. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2181. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2182. int8_t SilentMode;
  2183. #endif
  2184. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2185. starpos = (strchr(strchr_pointer + 5, '*'));
  2186. if (starpos != NULL)
  2187. *(starpos) = '\0';
  2188. lcd_setstatus(strchr_pointer + 5);
  2189. }
  2190. #ifdef TMC2130
  2191. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2192. {
  2193. if(code_seen("CRASH_DETECTED"))
  2194. {
  2195. uint8_t mask = 0;
  2196. if (code_seen("X")) mask |= X_AXIS_MASK;
  2197. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2198. crashdet_detected(mask);
  2199. }
  2200. else if(code_seen("CRASH_RECOVER"))
  2201. crashdet_recover();
  2202. else if(code_seen("CRASH_CANCEL"))
  2203. crashdet_cancel();
  2204. }
  2205. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2206. {
  2207. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2208. {
  2209. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2210. tmc2130_set_wave(E_AXIS, 247, fac);
  2211. }
  2212. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2213. {
  2214. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2215. uint16_t res = tmc2130_get_res(E_AXIS);
  2216. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2217. }
  2218. }
  2219. #endif //TMC2130
  2220. else if(code_seen("PRUSA")){
  2221. if (code_seen("Ping")) { //PRUSA Ping
  2222. if (farm_mode) {
  2223. PingTime = millis();
  2224. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2225. }
  2226. }
  2227. else if (code_seen("PRN")) {
  2228. MYSERIAL.println(status_number);
  2229. }else if (code_seen("FAN")) {
  2230. MYSERIAL.print("E0:");
  2231. MYSERIAL.print(60*fan_speed[0]);
  2232. MYSERIAL.println(" RPM");
  2233. MYSERIAL.print("PRN0:");
  2234. MYSERIAL.print(60*fan_speed[1]);
  2235. MYSERIAL.println(" RPM");
  2236. }else if (code_seen("fn")) {
  2237. if (farm_mode) {
  2238. MYSERIAL.println(farm_no);
  2239. }
  2240. else {
  2241. MYSERIAL.println("Not in farm mode.");
  2242. }
  2243. }
  2244. else if (code_seen("thx")) {
  2245. no_response = false;
  2246. }else if (code_seen("fv")) {
  2247. // get file version
  2248. #ifdef SDSUPPORT
  2249. card.openFile(strchr_pointer + 3,true);
  2250. while (true) {
  2251. uint16_t readByte = card.get();
  2252. MYSERIAL.write(readByte);
  2253. if (readByte=='\n') {
  2254. break;
  2255. }
  2256. }
  2257. card.closefile();
  2258. #endif // SDSUPPORT
  2259. } else if (code_seen("M28")) {
  2260. trace();
  2261. prusa_sd_card_upload = true;
  2262. card.openFile(strchr_pointer+4,false);
  2263. } else if (code_seen("SN")) {
  2264. if (farm_mode) {
  2265. selectedSerialPort = 0;
  2266. MSerial.write(";S");
  2267. // S/N is:CZPX0917X003XC13518
  2268. int numbersRead = 0;
  2269. while (numbersRead < 19) {
  2270. while (MSerial.available() > 0) {
  2271. uint8_t serial_char = MSerial.read();
  2272. selectedSerialPort = 1;
  2273. MSerial.write(serial_char);
  2274. numbersRead++;
  2275. selectedSerialPort = 0;
  2276. }
  2277. }
  2278. selectedSerialPort = 1;
  2279. MSerial.write('\n');
  2280. /*for (int b = 0; b < 3; b++) {
  2281. tone(BEEPER, 110);
  2282. delay(50);
  2283. noTone(BEEPER);
  2284. delay(50);
  2285. }*/
  2286. } else {
  2287. MYSERIAL.println("Not in farm mode.");
  2288. }
  2289. } else if(code_seen("Fir")){
  2290. SERIAL_PROTOCOLLN(FW_VERSION);
  2291. } else if(code_seen("Rev")){
  2292. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2293. } else if(code_seen("Lang")) {
  2294. lcd_force_language_selection();
  2295. } else if(code_seen("Lz")) {
  2296. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2297. } else if (code_seen("SERIAL LOW")) {
  2298. MYSERIAL.println("SERIAL LOW");
  2299. MYSERIAL.begin(BAUDRATE);
  2300. return;
  2301. } else if (code_seen("SERIAL HIGH")) {
  2302. MYSERIAL.println("SERIAL HIGH");
  2303. MYSERIAL.begin(1152000);
  2304. return;
  2305. } else if(code_seen("Beat")) {
  2306. // Kick farm link timer
  2307. kicktime = millis();
  2308. } else if(code_seen("FR")) {
  2309. // Factory full reset
  2310. factory_reset(0,true);
  2311. }
  2312. //else if (code_seen('Cal')) {
  2313. // lcd_calibration();
  2314. // }
  2315. }
  2316. else if (code_seen('^')) {
  2317. // nothing, this is a version line
  2318. } else if(code_seen('G'))
  2319. {
  2320. switch((int)code_value())
  2321. {
  2322. case 0: // G0 -> G1
  2323. case 1: // G1
  2324. if(Stopped == false) {
  2325. #ifdef FILAMENT_RUNOUT_SUPPORT
  2326. if(READ(FR_SENS)){
  2327. feedmultiplyBckp=feedmultiply;
  2328. float target[4];
  2329. float lastpos[4];
  2330. target[X_AXIS]=current_position[X_AXIS];
  2331. target[Y_AXIS]=current_position[Y_AXIS];
  2332. target[Z_AXIS]=current_position[Z_AXIS];
  2333. target[E_AXIS]=current_position[E_AXIS];
  2334. lastpos[X_AXIS]=current_position[X_AXIS];
  2335. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2336. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2337. lastpos[E_AXIS]=current_position[E_AXIS];
  2338. //retract by E
  2339. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2340. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2341. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2342. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2343. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2344. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2345. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2346. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2347. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2348. //finish moves
  2349. st_synchronize();
  2350. //disable extruder steppers so filament can be removed
  2351. disable_e0();
  2352. disable_e1();
  2353. disable_e2();
  2354. delay(100);
  2355. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2356. uint8_t cnt=0;
  2357. int counterBeep = 0;
  2358. lcd_wait_interact();
  2359. while(!lcd_clicked()){
  2360. cnt++;
  2361. manage_heater();
  2362. manage_inactivity(true);
  2363. //lcd_update();
  2364. if(cnt==0)
  2365. {
  2366. #if BEEPER > 0
  2367. if (counterBeep== 500){
  2368. counterBeep = 0;
  2369. }
  2370. SET_OUTPUT(BEEPER);
  2371. if (counterBeep== 0){
  2372. WRITE(BEEPER,HIGH);
  2373. }
  2374. if (counterBeep== 20){
  2375. WRITE(BEEPER,LOW);
  2376. }
  2377. counterBeep++;
  2378. #else
  2379. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2380. lcd_buzz(1000/6,100);
  2381. #else
  2382. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2383. #endif
  2384. #endif
  2385. }
  2386. }
  2387. WRITE(BEEPER,LOW);
  2388. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2389. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2390. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2391. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2392. lcd_change_fil_state = 0;
  2393. lcd_loading_filament();
  2394. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2395. lcd_change_fil_state = 0;
  2396. lcd_alright();
  2397. switch(lcd_change_fil_state){
  2398. case 2:
  2399. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2400. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2401. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2403. lcd_loading_filament();
  2404. break;
  2405. case 3:
  2406. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2407. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2408. lcd_loading_color();
  2409. break;
  2410. default:
  2411. lcd_change_success();
  2412. break;
  2413. }
  2414. }
  2415. target[E_AXIS]+= 5;
  2416. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2417. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2419. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2420. //plan_set_e_position(current_position[E_AXIS]);
  2421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2422. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2423. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2424. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2425. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2426. plan_set_e_position(lastpos[E_AXIS]);
  2427. feedmultiply=feedmultiplyBckp;
  2428. char cmd[9];
  2429. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2430. enquecommand(cmd);
  2431. }
  2432. #endif
  2433. get_coordinates(); // For X Y Z E F
  2434. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2435. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2436. }
  2437. #ifdef FWRETRACT
  2438. if(autoretract_enabled)
  2439. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2440. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2441. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2442. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2443. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2444. retract(!retracted);
  2445. return;
  2446. }
  2447. }
  2448. #endif //FWRETRACT
  2449. prepare_move();
  2450. //ClearToSend();
  2451. }
  2452. break;
  2453. case 2: // G2 - CW ARC
  2454. if(Stopped == false) {
  2455. get_arc_coordinates();
  2456. prepare_arc_move(true);
  2457. }
  2458. break;
  2459. case 3: // G3 - CCW ARC
  2460. if(Stopped == false) {
  2461. get_arc_coordinates();
  2462. prepare_arc_move(false);
  2463. }
  2464. break;
  2465. case 4: // G4 dwell
  2466. codenum = 0;
  2467. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2468. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2469. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2470. st_synchronize();
  2471. codenum += millis(); // keep track of when we started waiting
  2472. previous_millis_cmd = millis();
  2473. while(millis() < codenum) {
  2474. manage_heater();
  2475. manage_inactivity();
  2476. lcd_update();
  2477. }
  2478. break;
  2479. #ifdef FWRETRACT
  2480. case 10: // G10 retract
  2481. #if EXTRUDERS > 1
  2482. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2483. retract(true,retracted_swap[active_extruder]);
  2484. #else
  2485. retract(true);
  2486. #endif
  2487. break;
  2488. case 11: // G11 retract_recover
  2489. #if EXTRUDERS > 1
  2490. retract(false,retracted_swap[active_extruder]);
  2491. #else
  2492. retract(false);
  2493. #endif
  2494. break;
  2495. #endif //FWRETRACT
  2496. case 28: //G28 Home all Axis one at a time
  2497. {
  2498. st_synchronize();
  2499. #if 0
  2500. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2501. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2502. #endif
  2503. // Flag for the display update routine and to disable the print cancelation during homing.
  2504. homing_flag = true;
  2505. // Which axes should be homed?
  2506. bool home_x = code_seen(axis_codes[X_AXIS]);
  2507. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2508. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2509. // calibrate?
  2510. bool calib = code_seen('C');
  2511. // Either all X,Y,Z codes are present, or none of them.
  2512. bool home_all_axes = home_x == home_y && home_x == home_z;
  2513. if (home_all_axes)
  2514. // No X/Y/Z code provided means to home all axes.
  2515. home_x = home_y = home_z = true;
  2516. #ifdef ENABLE_AUTO_BED_LEVELING
  2517. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2518. #endif //ENABLE_AUTO_BED_LEVELING
  2519. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2520. // the planner will not perform any adjustments in the XY plane.
  2521. // Wait for the motors to stop and update the current position with the absolute values.
  2522. world2machine_revert_to_uncorrected();
  2523. // For mesh bed leveling deactivate the matrix temporarily.
  2524. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2525. // in a single axis only.
  2526. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2527. #ifdef MESH_BED_LEVELING
  2528. uint8_t mbl_was_active = mbl.active;
  2529. mbl.active = 0;
  2530. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2531. #endif
  2532. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2533. // consumed during the first movements following this statement.
  2534. if (home_z)
  2535. babystep_undo();
  2536. saved_feedrate = feedrate;
  2537. saved_feedmultiply = feedmultiply;
  2538. feedmultiply = 100;
  2539. previous_millis_cmd = millis();
  2540. enable_endstops(true);
  2541. memcpy(destination, current_position, sizeof(destination));
  2542. feedrate = 0.0;
  2543. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2544. if(home_z)
  2545. homeaxis(Z_AXIS);
  2546. #endif
  2547. #ifdef QUICK_HOME
  2548. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2549. if(home_x && home_y) //first diagonal move
  2550. {
  2551. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2552. int x_axis_home_dir = home_dir(X_AXIS);
  2553. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2554. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2555. feedrate = homing_feedrate[X_AXIS];
  2556. if(homing_feedrate[Y_AXIS]<feedrate)
  2557. feedrate = homing_feedrate[Y_AXIS];
  2558. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2559. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2560. } else {
  2561. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2562. }
  2563. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2564. st_synchronize();
  2565. axis_is_at_home(X_AXIS);
  2566. axis_is_at_home(Y_AXIS);
  2567. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2568. destination[X_AXIS] = current_position[X_AXIS];
  2569. destination[Y_AXIS] = current_position[Y_AXIS];
  2570. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2571. feedrate = 0.0;
  2572. st_synchronize();
  2573. endstops_hit_on_purpose();
  2574. current_position[X_AXIS] = destination[X_AXIS];
  2575. current_position[Y_AXIS] = destination[Y_AXIS];
  2576. current_position[Z_AXIS] = destination[Z_AXIS];
  2577. }
  2578. #endif /* QUICK_HOME */
  2579. #ifdef TMC2130
  2580. if(home_x)
  2581. {
  2582. if (!calib)
  2583. homeaxis(X_AXIS);
  2584. else
  2585. tmc2130_home_calibrate(X_AXIS);
  2586. }
  2587. if(home_y)
  2588. {
  2589. if (!calib)
  2590. homeaxis(Y_AXIS);
  2591. else
  2592. tmc2130_home_calibrate(Y_AXIS);
  2593. }
  2594. #endif //TMC2130
  2595. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2596. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2597. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2598. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2599. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2600. #ifndef Z_SAFE_HOMING
  2601. if(home_z) {
  2602. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2603. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2604. feedrate = max_feedrate[Z_AXIS];
  2605. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2606. st_synchronize();
  2607. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2608. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2609. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2610. {
  2611. homeaxis(X_AXIS);
  2612. homeaxis(Y_AXIS);
  2613. }
  2614. // 1st mesh bed leveling measurement point, corrected.
  2615. world2machine_initialize();
  2616. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2617. world2machine_reset();
  2618. if (destination[Y_AXIS] < Y_MIN_POS)
  2619. destination[Y_AXIS] = Y_MIN_POS;
  2620. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2621. feedrate = homing_feedrate[Z_AXIS]/10;
  2622. current_position[Z_AXIS] = 0;
  2623. enable_endstops(false);
  2624. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2626. st_synchronize();
  2627. current_position[X_AXIS] = destination[X_AXIS];
  2628. current_position[Y_AXIS] = destination[Y_AXIS];
  2629. enable_endstops(true);
  2630. endstops_hit_on_purpose();
  2631. homeaxis(Z_AXIS);
  2632. #else // MESH_BED_LEVELING
  2633. homeaxis(Z_AXIS);
  2634. #endif // MESH_BED_LEVELING
  2635. }
  2636. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2637. if(home_all_axes) {
  2638. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2639. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2640. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2641. feedrate = XY_TRAVEL_SPEED/60;
  2642. current_position[Z_AXIS] = 0;
  2643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2644. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2645. st_synchronize();
  2646. current_position[X_AXIS] = destination[X_AXIS];
  2647. current_position[Y_AXIS] = destination[Y_AXIS];
  2648. homeaxis(Z_AXIS);
  2649. }
  2650. // Let's see if X and Y are homed and probe is inside bed area.
  2651. if(home_z) {
  2652. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2653. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2654. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2655. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2656. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2657. current_position[Z_AXIS] = 0;
  2658. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2659. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2660. feedrate = max_feedrate[Z_AXIS];
  2661. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2662. st_synchronize();
  2663. homeaxis(Z_AXIS);
  2664. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2665. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2666. SERIAL_ECHO_START;
  2667. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2668. } else {
  2669. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2670. SERIAL_ECHO_START;
  2671. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2672. }
  2673. }
  2674. #endif // Z_SAFE_HOMING
  2675. #endif // Z_HOME_DIR < 0
  2676. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2677. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2678. #ifdef ENABLE_AUTO_BED_LEVELING
  2679. if(home_z)
  2680. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2681. #endif
  2682. // Set the planner and stepper routine positions.
  2683. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2684. // contains the machine coordinates.
  2685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2686. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2687. enable_endstops(false);
  2688. #endif
  2689. feedrate = saved_feedrate;
  2690. feedmultiply = saved_feedmultiply;
  2691. previous_millis_cmd = millis();
  2692. endstops_hit_on_purpose();
  2693. #ifndef MESH_BED_LEVELING
  2694. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2695. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2696. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2697. lcd_adjust_z();
  2698. #endif
  2699. // Load the machine correction matrix
  2700. world2machine_initialize();
  2701. // and correct the current_position XY axes to match the transformed coordinate system.
  2702. world2machine_update_current();
  2703. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2704. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2705. {
  2706. if (! home_z && mbl_was_active) {
  2707. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2708. mbl.active = true;
  2709. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2710. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2711. }
  2712. }
  2713. else
  2714. {
  2715. st_synchronize();
  2716. homing_flag = false;
  2717. // Push the commands to the front of the message queue in the reverse order!
  2718. // There shall be always enough space reserved for these commands.
  2719. // enquecommand_front_P((PSTR("G80")));
  2720. goto case_G80;
  2721. }
  2722. #endif
  2723. if (farm_mode) { prusa_statistics(20); };
  2724. homing_flag = false;
  2725. #if 0
  2726. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2727. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2728. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2729. #endif
  2730. break;
  2731. }
  2732. #ifdef ENABLE_AUTO_BED_LEVELING
  2733. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2734. {
  2735. #if Z_MIN_PIN == -1
  2736. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2737. #endif
  2738. // Prevent user from running a G29 without first homing in X and Y
  2739. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2740. {
  2741. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2742. SERIAL_ECHO_START;
  2743. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2744. break; // abort G29, since we don't know where we are
  2745. }
  2746. st_synchronize();
  2747. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2748. //vector_3 corrected_position = plan_get_position_mm();
  2749. //corrected_position.debug("position before G29");
  2750. plan_bed_level_matrix.set_to_identity();
  2751. vector_3 uncorrected_position = plan_get_position();
  2752. //uncorrected_position.debug("position durring G29");
  2753. current_position[X_AXIS] = uncorrected_position.x;
  2754. current_position[Y_AXIS] = uncorrected_position.y;
  2755. current_position[Z_AXIS] = uncorrected_position.z;
  2756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2757. setup_for_endstop_move();
  2758. feedrate = homing_feedrate[Z_AXIS];
  2759. #ifdef AUTO_BED_LEVELING_GRID
  2760. // probe at the points of a lattice grid
  2761. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2762. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2763. // solve the plane equation ax + by + d = z
  2764. // A is the matrix with rows [x y 1] for all the probed points
  2765. // B is the vector of the Z positions
  2766. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2767. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2768. // "A" matrix of the linear system of equations
  2769. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2770. // "B" vector of Z points
  2771. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2772. int probePointCounter = 0;
  2773. bool zig = true;
  2774. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2775. {
  2776. int xProbe, xInc;
  2777. if (zig)
  2778. {
  2779. xProbe = LEFT_PROBE_BED_POSITION;
  2780. //xEnd = RIGHT_PROBE_BED_POSITION;
  2781. xInc = xGridSpacing;
  2782. zig = false;
  2783. } else // zag
  2784. {
  2785. xProbe = RIGHT_PROBE_BED_POSITION;
  2786. //xEnd = LEFT_PROBE_BED_POSITION;
  2787. xInc = -xGridSpacing;
  2788. zig = true;
  2789. }
  2790. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2791. {
  2792. float z_before;
  2793. if (probePointCounter == 0)
  2794. {
  2795. // raise before probing
  2796. z_before = Z_RAISE_BEFORE_PROBING;
  2797. } else
  2798. {
  2799. // raise extruder
  2800. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2801. }
  2802. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2803. eqnBVector[probePointCounter] = measured_z;
  2804. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2805. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2806. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2807. probePointCounter++;
  2808. xProbe += xInc;
  2809. }
  2810. }
  2811. clean_up_after_endstop_move();
  2812. // solve lsq problem
  2813. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2814. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2815. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2816. SERIAL_PROTOCOLPGM(" b: ");
  2817. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2818. SERIAL_PROTOCOLPGM(" d: ");
  2819. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2820. set_bed_level_equation_lsq(plane_equation_coefficients);
  2821. free(plane_equation_coefficients);
  2822. #else // AUTO_BED_LEVELING_GRID not defined
  2823. // Probe at 3 arbitrary points
  2824. // probe 1
  2825. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2826. // probe 2
  2827. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2828. // probe 3
  2829. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2830. clean_up_after_endstop_move();
  2831. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2832. #endif // AUTO_BED_LEVELING_GRID
  2833. st_synchronize();
  2834. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2835. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2836. // When the bed is uneven, this height must be corrected.
  2837. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2838. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2839. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2840. z_tmp = current_position[Z_AXIS];
  2841. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2842. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2843. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2844. }
  2845. break;
  2846. #ifndef Z_PROBE_SLED
  2847. case 30: // G30 Single Z Probe
  2848. {
  2849. st_synchronize();
  2850. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2851. setup_for_endstop_move();
  2852. feedrate = homing_feedrate[Z_AXIS];
  2853. run_z_probe();
  2854. SERIAL_PROTOCOLPGM(MSG_BED);
  2855. SERIAL_PROTOCOLPGM(" X: ");
  2856. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2857. SERIAL_PROTOCOLPGM(" Y: ");
  2858. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2859. SERIAL_PROTOCOLPGM(" Z: ");
  2860. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2861. SERIAL_PROTOCOLPGM("\n");
  2862. clean_up_after_endstop_move();
  2863. }
  2864. break;
  2865. #else
  2866. case 31: // dock the sled
  2867. dock_sled(true);
  2868. break;
  2869. case 32: // undock the sled
  2870. dock_sled(false);
  2871. break;
  2872. #endif // Z_PROBE_SLED
  2873. #endif // ENABLE_AUTO_BED_LEVELING
  2874. #ifdef MESH_BED_LEVELING
  2875. case 30: // G30 Single Z Probe
  2876. {
  2877. st_synchronize();
  2878. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2879. setup_for_endstop_move();
  2880. feedrate = homing_feedrate[Z_AXIS];
  2881. find_bed_induction_sensor_point_z(-10.f, 3);
  2882. SERIAL_PROTOCOLRPGM(MSG_BED);
  2883. SERIAL_PROTOCOLPGM(" X: ");
  2884. MYSERIAL.print(current_position[X_AXIS], 5);
  2885. SERIAL_PROTOCOLPGM(" Y: ");
  2886. MYSERIAL.print(current_position[Y_AXIS], 5);
  2887. SERIAL_PROTOCOLPGM(" Z: ");
  2888. MYSERIAL.print(current_position[Z_AXIS], 5);
  2889. SERIAL_PROTOCOLPGM("\n");
  2890. clean_up_after_endstop_move();
  2891. }
  2892. break;
  2893. case 75:
  2894. {
  2895. for (int i = 40; i <= 110; i++) {
  2896. MYSERIAL.print(i);
  2897. MYSERIAL.print(" ");
  2898. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2899. }
  2900. }
  2901. break;
  2902. case 76: //PINDA probe temperature calibration
  2903. {
  2904. #ifdef PINDA_THERMISTOR
  2905. if (true)
  2906. {
  2907. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2908. {
  2909. // We don't know where we are! HOME!
  2910. // Push the commands to the front of the message queue in the reverse order!
  2911. // There shall be always enough space reserved for these commands.
  2912. repeatcommand_front(); // repeat G76 with all its parameters
  2913. enquecommand_front_P((PSTR("G28 W0")));
  2914. break;
  2915. }
  2916. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2917. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2918. if (result)
  2919. {
  2920. current_position[Z_AXIS] = 50;
  2921. current_position[Y_AXIS] = 190;
  2922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2923. st_synchronize();
  2924. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2925. }
  2926. lcd_update_enable(true);
  2927. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2928. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2929. float zero_z;
  2930. int z_shift = 0; //unit: steps
  2931. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2932. if (start_temp < 35) start_temp = 35;
  2933. if (start_temp < current_temperature_pinda) start_temp += 5;
  2934. SERIAL_ECHOPGM("start temperature: ");
  2935. MYSERIAL.println(start_temp);
  2936. // setTargetHotend(200, 0);
  2937. setTargetBed(70 + (start_temp - 30));
  2938. custom_message = true;
  2939. custom_message_type = 4;
  2940. custom_message_state = 1;
  2941. custom_message = MSG_TEMP_CALIBRATION;
  2942. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2943. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2944. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2946. st_synchronize();
  2947. while (current_temperature_pinda < start_temp)
  2948. {
  2949. delay_keep_alive(1000);
  2950. serialecho_temperatures();
  2951. }
  2952. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2953. current_position[Z_AXIS] = 5;
  2954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2955. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2956. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2958. st_synchronize();
  2959. find_bed_induction_sensor_point_z(-1.f);
  2960. zero_z = current_position[Z_AXIS];
  2961. //current_position[Z_AXIS]
  2962. SERIAL_ECHOLNPGM("");
  2963. SERIAL_ECHOPGM("ZERO: ");
  2964. MYSERIAL.print(current_position[Z_AXIS]);
  2965. SERIAL_ECHOLNPGM("");
  2966. int i = -1; for (; i < 5; i++)
  2967. {
  2968. float temp = (40 + i * 5);
  2969. SERIAL_ECHOPGM("Step: ");
  2970. MYSERIAL.print(i + 2);
  2971. SERIAL_ECHOLNPGM("/6 (skipped)");
  2972. SERIAL_ECHOPGM("PINDA temperature: ");
  2973. MYSERIAL.print((40 + i*5));
  2974. SERIAL_ECHOPGM(" Z shift (mm):");
  2975. MYSERIAL.print(0);
  2976. SERIAL_ECHOLNPGM("");
  2977. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2978. if (start_temp <= temp) break;
  2979. }
  2980. for (i++; i < 5; i++)
  2981. {
  2982. float temp = (40 + i * 5);
  2983. SERIAL_ECHOPGM("Step: ");
  2984. MYSERIAL.print(i + 2);
  2985. SERIAL_ECHOLNPGM("/6");
  2986. custom_message_state = i + 2;
  2987. setTargetBed(50 + 10 * (temp - 30) / 5);
  2988. // setTargetHotend(255, 0);
  2989. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2990. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2991. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2993. st_synchronize();
  2994. while (current_temperature_pinda < temp)
  2995. {
  2996. delay_keep_alive(1000);
  2997. serialecho_temperatures();
  2998. }
  2999. current_position[Z_AXIS] = 5;
  3000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3001. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3002. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3004. st_synchronize();
  3005. find_bed_induction_sensor_point_z(-1.f);
  3006. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3007. SERIAL_ECHOLNPGM("");
  3008. SERIAL_ECHOPGM("PINDA temperature: ");
  3009. MYSERIAL.print(current_temperature_pinda);
  3010. SERIAL_ECHOPGM(" Z shift (mm):");
  3011. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3012. SERIAL_ECHOLNPGM("");
  3013. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3014. }
  3015. custom_message_type = 0;
  3016. custom_message = false;
  3017. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3018. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3019. disable_x();
  3020. disable_y();
  3021. disable_z();
  3022. disable_e0();
  3023. disable_e1();
  3024. disable_e2();
  3025. setTargetBed(0); //set bed target temperature back to 0
  3026. // setTargetHotend(0,0); //set hotend target temperature back to 0
  3027. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3028. lcd_update_enable(true);
  3029. lcd_update(2);
  3030. break;
  3031. }
  3032. #endif //PINDA_THERMISTOR
  3033. setTargetBed(PINDA_MIN_T);
  3034. float zero_z;
  3035. int z_shift = 0; //unit: steps
  3036. int t_c; // temperature
  3037. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3038. // We don't know where we are! HOME!
  3039. // Push the commands to the front of the message queue in the reverse order!
  3040. // There shall be always enough space reserved for these commands.
  3041. repeatcommand_front(); // repeat G76 with all its parameters
  3042. enquecommand_front_P((PSTR("G28 W0")));
  3043. break;
  3044. }
  3045. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3046. custom_message = true;
  3047. custom_message_type = 4;
  3048. custom_message_state = 1;
  3049. custom_message = MSG_TEMP_CALIBRATION;
  3050. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3051. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3052. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3054. st_synchronize();
  3055. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3056. delay_keep_alive(1000);
  3057. serialecho_temperatures();
  3058. }
  3059. //enquecommand_P(PSTR("M190 S50"));
  3060. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3061. delay_keep_alive(1000);
  3062. serialecho_temperatures();
  3063. }
  3064. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3065. current_position[Z_AXIS] = 5;
  3066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3067. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3068. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3070. st_synchronize();
  3071. find_bed_induction_sensor_point_z(-1.f);
  3072. zero_z = current_position[Z_AXIS];
  3073. //current_position[Z_AXIS]
  3074. SERIAL_ECHOLNPGM("");
  3075. SERIAL_ECHOPGM("ZERO: ");
  3076. MYSERIAL.print(current_position[Z_AXIS]);
  3077. SERIAL_ECHOLNPGM("");
  3078. for (int i = 0; i<5; i++) {
  3079. SERIAL_ECHOPGM("Step: ");
  3080. MYSERIAL.print(i+2);
  3081. SERIAL_ECHOLNPGM("/6");
  3082. custom_message_state = i + 2;
  3083. t_c = 60 + i * 10;
  3084. setTargetBed(t_c);
  3085. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3086. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3087. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3089. st_synchronize();
  3090. while (degBed() < t_c) {
  3091. delay_keep_alive(1000);
  3092. serialecho_temperatures();
  3093. }
  3094. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3095. delay_keep_alive(1000);
  3096. serialecho_temperatures();
  3097. }
  3098. current_position[Z_AXIS] = 5;
  3099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3100. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3101. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3103. st_synchronize();
  3104. find_bed_induction_sensor_point_z(-1.f);
  3105. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3106. SERIAL_ECHOLNPGM("");
  3107. SERIAL_ECHOPGM("Temperature: ");
  3108. MYSERIAL.print(t_c);
  3109. SERIAL_ECHOPGM(" Z shift (mm):");
  3110. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3111. SERIAL_ECHOLNPGM("");
  3112. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3113. }
  3114. custom_message_type = 0;
  3115. custom_message = false;
  3116. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3117. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3118. disable_x();
  3119. disable_y();
  3120. disable_z();
  3121. disable_e0();
  3122. disable_e1();
  3123. disable_e2();
  3124. setTargetBed(0); //set bed target temperature back to 0
  3125. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3126. lcd_update_enable(true);
  3127. lcd_update(2);
  3128. }
  3129. break;
  3130. #ifdef DIS
  3131. case 77:
  3132. {
  3133. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3134. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3135. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3136. float dimension_x = 40;
  3137. float dimension_y = 40;
  3138. int points_x = 40;
  3139. int points_y = 40;
  3140. float offset_x = 74;
  3141. float offset_y = 33;
  3142. if (code_seen('X')) dimension_x = code_value();
  3143. if (code_seen('Y')) dimension_y = code_value();
  3144. if (code_seen('XP')) points_x = code_value();
  3145. if (code_seen('YP')) points_y = code_value();
  3146. if (code_seen('XO')) offset_x = code_value();
  3147. if (code_seen('YO')) offset_y = code_value();
  3148. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3149. } break;
  3150. #endif
  3151. case 79: {
  3152. for (int i = 255; i > 0; i = i - 5) {
  3153. fanSpeed = i;
  3154. //delay_keep_alive(2000);
  3155. for (int j = 0; j < 100; j++) {
  3156. delay_keep_alive(100);
  3157. }
  3158. fan_speed[1];
  3159. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3160. }
  3161. }break;
  3162. /**
  3163. * G80: Mesh-based Z probe, probes a grid and produces a
  3164. * mesh to compensate for variable bed height
  3165. *
  3166. * The S0 report the points as below
  3167. *
  3168. * +----> X-axis
  3169. * |
  3170. * |
  3171. * v Y-axis
  3172. *
  3173. */
  3174. case 80:
  3175. #ifdef MK1BP
  3176. break;
  3177. #endif //MK1BP
  3178. case_G80:
  3179. {
  3180. mesh_bed_leveling_flag = true;
  3181. int8_t verbosity_level = 0;
  3182. static bool run = false;
  3183. if (code_seen('V')) {
  3184. // Just 'V' without a number counts as V1.
  3185. char c = strchr_pointer[1];
  3186. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3187. }
  3188. // Firstly check if we know where we are
  3189. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3190. // We don't know where we are! HOME!
  3191. // Push the commands to the front of the message queue in the reverse order!
  3192. // There shall be always enough space reserved for these commands.
  3193. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3194. repeatcommand_front(); // repeat G80 with all its parameters
  3195. enquecommand_front_P((PSTR("G28 W0")));
  3196. }
  3197. else {
  3198. mesh_bed_leveling_flag = false;
  3199. }
  3200. break;
  3201. }
  3202. bool temp_comp_start = true;
  3203. #ifdef PINDA_THERMISTOR
  3204. temp_comp_start = false;
  3205. #endif //PINDA_THERMISTOR
  3206. if (temp_comp_start)
  3207. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3208. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3209. temp_compensation_start();
  3210. run = true;
  3211. repeatcommand_front(); // repeat G80 with all its parameters
  3212. enquecommand_front_P((PSTR("G28 W0")));
  3213. }
  3214. else {
  3215. mesh_bed_leveling_flag = false;
  3216. }
  3217. break;
  3218. }
  3219. run = false;
  3220. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3221. mesh_bed_leveling_flag = false;
  3222. break;
  3223. }
  3224. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3225. bool custom_message_old = custom_message;
  3226. unsigned int custom_message_type_old = custom_message_type;
  3227. unsigned int custom_message_state_old = custom_message_state;
  3228. custom_message = true;
  3229. custom_message_type = 1;
  3230. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3231. lcd_update(1);
  3232. mbl.reset(); //reset mesh bed leveling
  3233. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3234. // consumed during the first movements following this statement.
  3235. babystep_undo();
  3236. // Cycle through all points and probe them
  3237. // First move up. During this first movement, the babystepping will be reverted.
  3238. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3240. // The move to the first calibration point.
  3241. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3242. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3243. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3244. #ifdef SUPPORT_VERBOSITY
  3245. if (verbosity_level >= 1) {
  3246. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3247. }
  3248. #endif //SUPPORT_VERBOSITY
  3249. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3251. // Wait until the move is finished.
  3252. st_synchronize();
  3253. int mesh_point = 0; //index number of calibration point
  3254. int ix = 0;
  3255. int iy = 0;
  3256. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3257. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3258. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3259. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3260. #ifdef SUPPORT_VERBOSITY
  3261. if (verbosity_level >= 1) {
  3262. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3263. }
  3264. #endif // SUPPORT_VERBOSITY
  3265. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3266. const char *kill_message = NULL;
  3267. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3268. // Get coords of a measuring point.
  3269. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3270. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3271. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3272. float z0 = 0.f;
  3273. if (has_z && mesh_point > 0) {
  3274. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3275. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3276. //#if 0
  3277. #ifdef SUPPORT_VERBOSITY
  3278. if (verbosity_level >= 1) {
  3279. SERIAL_ECHOLNPGM("");
  3280. SERIAL_ECHOPGM("Bed leveling, point: ");
  3281. MYSERIAL.print(mesh_point);
  3282. SERIAL_ECHOPGM(", calibration z: ");
  3283. MYSERIAL.print(z0, 5);
  3284. SERIAL_ECHOLNPGM("");
  3285. }
  3286. #endif // SUPPORT_VERBOSITY
  3287. //#endif
  3288. }
  3289. // Move Z up to MESH_HOME_Z_SEARCH.
  3290. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3291. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3292. st_synchronize();
  3293. // Move to XY position of the sensor point.
  3294. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3295. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3296. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3297. #ifdef SUPPORT_VERBOSITY
  3298. if (verbosity_level >= 1) {
  3299. SERIAL_PROTOCOL(mesh_point);
  3300. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3301. }
  3302. #endif // SUPPORT_VERBOSITY
  3303. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3304. st_synchronize();
  3305. // Go down until endstop is hit
  3306. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3307. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3308. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3309. break;
  3310. }
  3311. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3312. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3313. break;
  3314. }
  3315. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3316. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3317. break;
  3318. }
  3319. #ifdef SUPPORT_VERBOSITY
  3320. if (verbosity_level >= 10) {
  3321. SERIAL_ECHOPGM("X: ");
  3322. MYSERIAL.print(current_position[X_AXIS], 5);
  3323. SERIAL_ECHOLNPGM("");
  3324. SERIAL_ECHOPGM("Y: ");
  3325. MYSERIAL.print(current_position[Y_AXIS], 5);
  3326. SERIAL_PROTOCOLPGM("\n");
  3327. }
  3328. #endif // SUPPORT_VERBOSITY
  3329. float offset_z = 0;
  3330. #ifdef PINDA_THERMISTOR
  3331. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3332. #endif //PINDA_THERMISTOR
  3333. // #ifdef SUPPORT_VERBOSITY
  3334. /* if (verbosity_level >= 1)
  3335. {
  3336. SERIAL_ECHOPGM("mesh bed leveling: ");
  3337. MYSERIAL.print(current_position[Z_AXIS], 5);
  3338. SERIAL_ECHOPGM(" offset: ");
  3339. MYSERIAL.print(offset_z, 5);
  3340. SERIAL_ECHOLNPGM("");
  3341. }*/
  3342. // #endif // SUPPORT_VERBOSITY
  3343. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3344. custom_message_state--;
  3345. mesh_point++;
  3346. lcd_update(1);
  3347. }
  3348. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3349. #ifdef SUPPORT_VERBOSITY
  3350. if (verbosity_level >= 20) {
  3351. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3352. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3353. MYSERIAL.print(current_position[Z_AXIS], 5);
  3354. }
  3355. #endif // SUPPORT_VERBOSITY
  3356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3357. st_synchronize();
  3358. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3359. kill(kill_message);
  3360. SERIAL_ECHOLNPGM("killed");
  3361. }
  3362. clean_up_after_endstop_move();
  3363. // SERIAL_ECHOLNPGM("clean up finished ");
  3364. bool apply_temp_comp = true;
  3365. #ifdef PINDA_THERMISTOR
  3366. apply_temp_comp = false;
  3367. #endif
  3368. if (apply_temp_comp)
  3369. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3370. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3371. // SERIAL_ECHOLNPGM("babystep applied");
  3372. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3373. #ifdef SUPPORT_VERBOSITY
  3374. if (verbosity_level >= 1) {
  3375. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3376. }
  3377. #endif // SUPPORT_VERBOSITY
  3378. for (uint8_t i = 0; i < 4; ++i) {
  3379. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3380. long correction = 0;
  3381. if (code_seen(codes[i]))
  3382. correction = code_value_long();
  3383. else if (eeprom_bed_correction_valid) {
  3384. unsigned char *addr = (i < 2) ?
  3385. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3386. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3387. correction = eeprom_read_int8(addr);
  3388. }
  3389. if (correction == 0)
  3390. continue;
  3391. float offset = float(correction) * 0.001f;
  3392. if (fabs(offset) > 0.101f) {
  3393. SERIAL_ERROR_START;
  3394. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3395. SERIAL_ECHO(offset);
  3396. SERIAL_ECHOLNPGM(" microns");
  3397. }
  3398. else {
  3399. switch (i) {
  3400. case 0:
  3401. for (uint8_t row = 0; row < 3; ++row) {
  3402. mbl.z_values[row][1] += 0.5f * offset;
  3403. mbl.z_values[row][0] += offset;
  3404. }
  3405. break;
  3406. case 1:
  3407. for (uint8_t row = 0; row < 3; ++row) {
  3408. mbl.z_values[row][1] += 0.5f * offset;
  3409. mbl.z_values[row][2] += offset;
  3410. }
  3411. break;
  3412. case 2:
  3413. for (uint8_t col = 0; col < 3; ++col) {
  3414. mbl.z_values[1][col] += 0.5f * offset;
  3415. mbl.z_values[0][col] += offset;
  3416. }
  3417. break;
  3418. case 3:
  3419. for (uint8_t col = 0; col < 3; ++col) {
  3420. mbl.z_values[1][col] += 0.5f * offset;
  3421. mbl.z_values[2][col] += offset;
  3422. }
  3423. break;
  3424. }
  3425. }
  3426. }
  3427. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3428. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3429. // SERIAL_ECHOLNPGM("Upsample finished");
  3430. mbl.active = 1; //activate mesh bed leveling
  3431. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3432. go_home_with_z_lift();
  3433. // SERIAL_ECHOLNPGM("Go home finished");
  3434. //unretract (after PINDA preheat retraction)
  3435. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3436. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3438. }
  3439. KEEPALIVE_STATE(NOT_BUSY);
  3440. // Restore custom message state
  3441. custom_message = custom_message_old;
  3442. custom_message_type = custom_message_type_old;
  3443. custom_message_state = custom_message_state_old;
  3444. mesh_bed_leveling_flag = false;
  3445. mesh_bed_run_from_menu = false;
  3446. lcd_update(2);
  3447. }
  3448. break;
  3449. /**
  3450. * G81: Print mesh bed leveling status and bed profile if activated
  3451. */
  3452. case 81:
  3453. if (mbl.active) {
  3454. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3455. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3456. SERIAL_PROTOCOLPGM(",");
  3457. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3458. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3459. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3460. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3461. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3462. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3463. SERIAL_PROTOCOLPGM(" ");
  3464. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3465. }
  3466. SERIAL_PROTOCOLPGM("\n");
  3467. }
  3468. }
  3469. else
  3470. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3471. break;
  3472. #if 0
  3473. /**
  3474. * G82: Single Z probe at current location
  3475. *
  3476. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3477. *
  3478. */
  3479. case 82:
  3480. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3481. setup_for_endstop_move();
  3482. find_bed_induction_sensor_point_z();
  3483. clean_up_after_endstop_move();
  3484. SERIAL_PROTOCOLPGM("Bed found at: ");
  3485. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3486. SERIAL_PROTOCOLPGM("\n");
  3487. break;
  3488. /**
  3489. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3490. */
  3491. case 83:
  3492. {
  3493. int babystepz = code_seen('S') ? code_value() : 0;
  3494. int BabyPosition = code_seen('P') ? code_value() : 0;
  3495. if (babystepz != 0) {
  3496. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3497. // Is the axis indexed starting with zero or one?
  3498. if (BabyPosition > 4) {
  3499. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3500. }else{
  3501. // Save it to the eeprom
  3502. babystepLoadZ = babystepz;
  3503. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3504. // adjust the Z
  3505. babystepsTodoZadd(babystepLoadZ);
  3506. }
  3507. }
  3508. }
  3509. break;
  3510. /**
  3511. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3512. */
  3513. case 84:
  3514. babystepsTodoZsubtract(babystepLoadZ);
  3515. // babystepLoadZ = 0;
  3516. break;
  3517. /**
  3518. * G85: Prusa3D specific: Pick best babystep
  3519. */
  3520. case 85:
  3521. lcd_pick_babystep();
  3522. break;
  3523. #endif
  3524. /**
  3525. * G86: Prusa3D specific: Disable babystep correction after home.
  3526. * This G-code will be performed at the start of a calibration script.
  3527. */
  3528. case 86:
  3529. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3530. break;
  3531. /**
  3532. * G87: Prusa3D specific: Enable babystep correction after home
  3533. * This G-code will be performed at the end of a calibration script.
  3534. */
  3535. case 87:
  3536. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3537. break;
  3538. /**
  3539. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3540. */
  3541. case 88:
  3542. break;
  3543. #endif // ENABLE_MESH_BED_LEVELING
  3544. case 90: // G90
  3545. relative_mode = false;
  3546. break;
  3547. case 91: // G91
  3548. relative_mode = true;
  3549. break;
  3550. case 92: // G92
  3551. if(!code_seen(axis_codes[E_AXIS]))
  3552. st_synchronize();
  3553. for(int8_t i=0; i < NUM_AXIS; i++) {
  3554. if(code_seen(axis_codes[i])) {
  3555. if(i == E_AXIS) {
  3556. current_position[i] = code_value();
  3557. plan_set_e_position(current_position[E_AXIS]);
  3558. }
  3559. else {
  3560. current_position[i] = code_value()+add_homing[i];
  3561. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3562. }
  3563. }
  3564. }
  3565. break;
  3566. case 98: //activate farm mode
  3567. farm_mode = 1;
  3568. PingTime = millis();
  3569. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3570. break;
  3571. case 99: //deactivate farm mode
  3572. farm_mode = 0;
  3573. lcd_printer_connected();
  3574. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3575. lcd_update(2);
  3576. break;
  3577. default:
  3578. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3579. }
  3580. } // end if(code_seen('G'))
  3581. else if(code_seen('M'))
  3582. {
  3583. int index;
  3584. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3585. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3586. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3587. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3588. } else
  3589. switch((int)code_value())
  3590. {
  3591. #ifdef ULTIPANEL
  3592. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3593. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3594. {
  3595. char *src = strchr_pointer + 2;
  3596. codenum = 0;
  3597. bool hasP = false, hasS = false;
  3598. if (code_seen('P')) {
  3599. codenum = code_value(); // milliseconds to wait
  3600. hasP = codenum > 0;
  3601. }
  3602. if (code_seen('S')) {
  3603. codenum = code_value() * 1000; // seconds to wait
  3604. hasS = codenum > 0;
  3605. }
  3606. starpos = strchr(src, '*');
  3607. if (starpos != NULL) *(starpos) = '\0';
  3608. while (*src == ' ') ++src;
  3609. if (!hasP && !hasS && *src != '\0') {
  3610. lcd_setstatus(src);
  3611. } else {
  3612. LCD_MESSAGERPGM(MSG_USERWAIT);
  3613. }
  3614. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3615. st_synchronize();
  3616. previous_millis_cmd = millis();
  3617. if (codenum > 0){
  3618. codenum += millis(); // keep track of when we started waiting
  3619. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3620. while(millis() < codenum && !lcd_clicked()){
  3621. manage_heater();
  3622. manage_inactivity(true);
  3623. lcd_update();
  3624. }
  3625. KEEPALIVE_STATE(IN_HANDLER);
  3626. lcd_ignore_click(false);
  3627. }else{
  3628. if (!lcd_detected())
  3629. break;
  3630. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3631. while(!lcd_clicked()){
  3632. manage_heater();
  3633. manage_inactivity(true);
  3634. lcd_update();
  3635. }
  3636. KEEPALIVE_STATE(IN_HANDLER);
  3637. }
  3638. if (IS_SD_PRINTING)
  3639. LCD_MESSAGERPGM(MSG_RESUMING);
  3640. else
  3641. LCD_MESSAGERPGM(WELCOME_MSG);
  3642. }
  3643. break;
  3644. #endif
  3645. case 17:
  3646. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3647. enable_x();
  3648. enable_y();
  3649. enable_z();
  3650. enable_e0();
  3651. enable_e1();
  3652. enable_e2();
  3653. break;
  3654. #ifdef SDSUPPORT
  3655. case 20: // M20 - list SD card
  3656. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3657. card.ls();
  3658. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3659. break;
  3660. case 21: // M21 - init SD card
  3661. card.initsd();
  3662. break;
  3663. case 22: //M22 - release SD card
  3664. card.release();
  3665. break;
  3666. case 23: //M23 - Select file
  3667. starpos = (strchr(strchr_pointer + 4,'*'));
  3668. if(starpos!=NULL)
  3669. *(starpos)='\0';
  3670. card.openFile(strchr_pointer + 4,true);
  3671. break;
  3672. case 24: //M24 - Start SD print
  3673. if (!card.paused)
  3674. failstats_reset_print();
  3675. card.startFileprint();
  3676. starttime=millis();
  3677. break;
  3678. case 25: //M25 - Pause SD print
  3679. card.pauseSDPrint();
  3680. break;
  3681. case 26: //M26 - Set SD index
  3682. if(card.cardOK && code_seen('S')) {
  3683. card.setIndex(code_value_long());
  3684. }
  3685. break;
  3686. case 27: //M27 - Get SD status
  3687. card.getStatus();
  3688. break;
  3689. case 28: //M28 - Start SD write
  3690. starpos = (strchr(strchr_pointer + 4,'*'));
  3691. if(starpos != NULL){
  3692. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3693. strchr_pointer = strchr(npos,' ') + 1;
  3694. *(starpos) = '\0';
  3695. }
  3696. card.openFile(strchr_pointer+4,false);
  3697. break;
  3698. case 29: //M29 - Stop SD write
  3699. //processed in write to file routine above
  3700. //card,saving = false;
  3701. break;
  3702. case 30: //M30 <filename> Delete File
  3703. if (card.cardOK){
  3704. card.closefile();
  3705. starpos = (strchr(strchr_pointer + 4,'*'));
  3706. if(starpos != NULL){
  3707. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3708. strchr_pointer = strchr(npos,' ') + 1;
  3709. *(starpos) = '\0';
  3710. }
  3711. card.removeFile(strchr_pointer + 4);
  3712. }
  3713. break;
  3714. case 32: //M32 - Select file and start SD print
  3715. {
  3716. if(card.sdprinting) {
  3717. st_synchronize();
  3718. }
  3719. starpos = (strchr(strchr_pointer + 4,'*'));
  3720. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3721. if(namestartpos==NULL)
  3722. {
  3723. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3724. }
  3725. else
  3726. namestartpos++; //to skip the '!'
  3727. if(starpos!=NULL)
  3728. *(starpos)='\0';
  3729. bool call_procedure=(code_seen('P'));
  3730. if(strchr_pointer>namestartpos)
  3731. call_procedure=false; //false alert, 'P' found within filename
  3732. if( card.cardOK )
  3733. {
  3734. card.openFile(namestartpos,true,!call_procedure);
  3735. if(code_seen('S'))
  3736. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3737. card.setIndex(code_value_long());
  3738. card.startFileprint();
  3739. if(!call_procedure)
  3740. starttime=millis(); //procedure calls count as normal print time.
  3741. }
  3742. } break;
  3743. case 928: //M928 - Start SD write
  3744. starpos = (strchr(strchr_pointer + 5,'*'));
  3745. if(starpos != NULL){
  3746. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3747. strchr_pointer = strchr(npos,' ') + 1;
  3748. *(starpos) = '\0';
  3749. }
  3750. card.openLogFile(strchr_pointer+5);
  3751. break;
  3752. #endif //SDSUPPORT
  3753. case 31: //M31 take time since the start of the SD print or an M109 command
  3754. {
  3755. stoptime=millis();
  3756. char time[30];
  3757. unsigned long t=(stoptime-starttime)/1000;
  3758. int sec,min;
  3759. min=t/60;
  3760. sec=t%60;
  3761. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3762. SERIAL_ECHO_START;
  3763. SERIAL_ECHOLN(time);
  3764. lcd_setstatus(time);
  3765. autotempShutdown();
  3766. }
  3767. break;
  3768. #ifndef _DISABLE_M42_M226
  3769. case 42: //M42 -Change pin status via gcode
  3770. if (code_seen('S'))
  3771. {
  3772. int pin_status = code_value();
  3773. int pin_number = LED_PIN;
  3774. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3775. pin_number = code_value();
  3776. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3777. {
  3778. if (sensitive_pins[i] == pin_number)
  3779. {
  3780. pin_number = -1;
  3781. break;
  3782. }
  3783. }
  3784. #if defined(FAN_PIN) && FAN_PIN > -1
  3785. if (pin_number == FAN_PIN)
  3786. fanSpeed = pin_status;
  3787. #endif
  3788. if (pin_number > -1)
  3789. {
  3790. pinMode(pin_number, OUTPUT);
  3791. digitalWrite(pin_number, pin_status);
  3792. analogWrite(pin_number, pin_status);
  3793. }
  3794. }
  3795. break;
  3796. #endif //_DISABLE_M42_M226
  3797. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3798. // Reset the baby step value and the baby step applied flag.
  3799. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3800. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3801. // Reset the skew and offset in both RAM and EEPROM.
  3802. reset_bed_offset_and_skew();
  3803. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3804. // the planner will not perform any adjustments in the XY plane.
  3805. // Wait for the motors to stop and update the current position with the absolute values.
  3806. world2machine_revert_to_uncorrected();
  3807. break;
  3808. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3809. {
  3810. int8_t verbosity_level = 0;
  3811. bool only_Z = code_seen('Z');
  3812. #ifdef SUPPORT_VERBOSITY
  3813. if (code_seen('V'))
  3814. {
  3815. // Just 'V' without a number counts as V1.
  3816. char c = strchr_pointer[1];
  3817. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3818. }
  3819. #endif //SUPPORT_VERBOSITY
  3820. gcode_M45(only_Z, verbosity_level);
  3821. }
  3822. break;
  3823. /*
  3824. case 46:
  3825. {
  3826. // M46: Prusa3D: Show the assigned IP address.
  3827. uint8_t ip[4];
  3828. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3829. if (hasIP) {
  3830. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3831. SERIAL_ECHO(int(ip[0]));
  3832. SERIAL_ECHOPGM(".");
  3833. SERIAL_ECHO(int(ip[1]));
  3834. SERIAL_ECHOPGM(".");
  3835. SERIAL_ECHO(int(ip[2]));
  3836. SERIAL_ECHOPGM(".");
  3837. SERIAL_ECHO(int(ip[3]));
  3838. SERIAL_ECHOLNPGM("");
  3839. } else {
  3840. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3841. }
  3842. break;
  3843. }
  3844. */
  3845. case 47:
  3846. // M47: Prusa3D: Show end stops dialog on the display.
  3847. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3848. lcd_diag_show_end_stops();
  3849. KEEPALIVE_STATE(IN_HANDLER);
  3850. break;
  3851. #if 0
  3852. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3853. {
  3854. // Disable the default update procedure of the display. We will do a modal dialog.
  3855. lcd_update_enable(false);
  3856. // Let the planner use the uncorrected coordinates.
  3857. mbl.reset();
  3858. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3859. // the planner will not perform any adjustments in the XY plane.
  3860. // Wait for the motors to stop and update the current position with the absolute values.
  3861. world2machine_revert_to_uncorrected();
  3862. // Move the print head close to the bed.
  3863. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3865. st_synchronize();
  3866. // Home in the XY plane.
  3867. set_destination_to_current();
  3868. setup_for_endstop_move();
  3869. home_xy();
  3870. int8_t verbosity_level = 0;
  3871. if (code_seen('V')) {
  3872. // Just 'V' without a number counts as V1.
  3873. char c = strchr_pointer[1];
  3874. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3875. }
  3876. bool success = scan_bed_induction_points(verbosity_level);
  3877. clean_up_after_endstop_move();
  3878. // Print head up.
  3879. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3881. st_synchronize();
  3882. lcd_update_enable(true);
  3883. break;
  3884. }
  3885. #endif
  3886. // M48 Z-Probe repeatability measurement function.
  3887. //
  3888. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3889. //
  3890. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3891. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3892. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3893. // regenerated.
  3894. //
  3895. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3896. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3897. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3898. //
  3899. #ifdef ENABLE_AUTO_BED_LEVELING
  3900. #ifdef Z_PROBE_REPEATABILITY_TEST
  3901. case 48: // M48 Z-Probe repeatability
  3902. {
  3903. #if Z_MIN_PIN == -1
  3904. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3905. #endif
  3906. double sum=0.0;
  3907. double mean=0.0;
  3908. double sigma=0.0;
  3909. double sample_set[50];
  3910. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3911. double X_current, Y_current, Z_current;
  3912. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3913. if (code_seen('V') || code_seen('v')) {
  3914. verbose_level = code_value();
  3915. if (verbose_level<0 || verbose_level>4 ) {
  3916. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3917. goto Sigma_Exit;
  3918. }
  3919. }
  3920. if (verbose_level > 0) {
  3921. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3922. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3923. }
  3924. if (code_seen('n')) {
  3925. n_samples = code_value();
  3926. if (n_samples<4 || n_samples>50 ) {
  3927. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3928. goto Sigma_Exit;
  3929. }
  3930. }
  3931. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3932. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3933. Z_current = st_get_position_mm(Z_AXIS);
  3934. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3935. ext_position = st_get_position_mm(E_AXIS);
  3936. if (code_seen('X') || code_seen('x') ) {
  3937. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3938. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3939. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3940. goto Sigma_Exit;
  3941. }
  3942. }
  3943. if (code_seen('Y') || code_seen('y') ) {
  3944. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3945. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3946. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3947. goto Sigma_Exit;
  3948. }
  3949. }
  3950. if (code_seen('L') || code_seen('l') ) {
  3951. n_legs = code_value();
  3952. if ( n_legs==1 )
  3953. n_legs = 2;
  3954. if ( n_legs<0 || n_legs>15 ) {
  3955. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3956. goto Sigma_Exit;
  3957. }
  3958. }
  3959. //
  3960. // Do all the preliminary setup work. First raise the probe.
  3961. //
  3962. st_synchronize();
  3963. plan_bed_level_matrix.set_to_identity();
  3964. plan_buffer_line( X_current, Y_current, Z_start_location,
  3965. ext_position,
  3966. homing_feedrate[Z_AXIS]/60,
  3967. active_extruder);
  3968. st_synchronize();
  3969. //
  3970. // Now get everything to the specified probe point So we can safely do a probe to
  3971. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3972. // use that as a starting point for each probe.
  3973. //
  3974. if (verbose_level > 2)
  3975. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3976. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3977. ext_position,
  3978. homing_feedrate[X_AXIS]/60,
  3979. active_extruder);
  3980. st_synchronize();
  3981. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3982. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3983. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3984. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3985. //
  3986. // OK, do the inital probe to get us close to the bed.
  3987. // Then retrace the right amount and use that in subsequent probes
  3988. //
  3989. setup_for_endstop_move();
  3990. run_z_probe();
  3991. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3992. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3993. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3994. ext_position,
  3995. homing_feedrate[X_AXIS]/60,
  3996. active_extruder);
  3997. st_synchronize();
  3998. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3999. for( n=0; n<n_samples; n++) {
  4000. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4001. if ( n_legs) {
  4002. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4003. int rotational_direction, l;
  4004. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4005. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4006. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4007. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4008. //SERIAL_ECHOPAIR(" theta: ",theta);
  4009. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4010. //SERIAL_PROTOCOLLNPGM("");
  4011. for( l=0; l<n_legs-1; l++) {
  4012. if (rotational_direction==1)
  4013. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4014. else
  4015. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4016. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4017. if ( radius<0.0 )
  4018. radius = -radius;
  4019. X_current = X_probe_location + cos(theta) * radius;
  4020. Y_current = Y_probe_location + sin(theta) * radius;
  4021. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4022. X_current = X_MIN_POS;
  4023. if ( X_current>X_MAX_POS)
  4024. X_current = X_MAX_POS;
  4025. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4026. Y_current = Y_MIN_POS;
  4027. if ( Y_current>Y_MAX_POS)
  4028. Y_current = Y_MAX_POS;
  4029. if (verbose_level>3 ) {
  4030. SERIAL_ECHOPAIR("x: ", X_current);
  4031. SERIAL_ECHOPAIR("y: ", Y_current);
  4032. SERIAL_PROTOCOLLNPGM("");
  4033. }
  4034. do_blocking_move_to( X_current, Y_current, Z_current );
  4035. }
  4036. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4037. }
  4038. setup_for_endstop_move();
  4039. run_z_probe();
  4040. sample_set[n] = current_position[Z_AXIS];
  4041. //
  4042. // Get the current mean for the data points we have so far
  4043. //
  4044. sum=0.0;
  4045. for( j=0; j<=n; j++) {
  4046. sum = sum + sample_set[j];
  4047. }
  4048. mean = sum / (double (n+1));
  4049. //
  4050. // Now, use that mean to calculate the standard deviation for the
  4051. // data points we have so far
  4052. //
  4053. sum=0.0;
  4054. for( j=0; j<=n; j++) {
  4055. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4056. }
  4057. sigma = sqrt( sum / (double (n+1)) );
  4058. if (verbose_level > 1) {
  4059. SERIAL_PROTOCOL(n+1);
  4060. SERIAL_PROTOCOL(" of ");
  4061. SERIAL_PROTOCOL(n_samples);
  4062. SERIAL_PROTOCOLPGM(" z: ");
  4063. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4064. }
  4065. if (verbose_level > 2) {
  4066. SERIAL_PROTOCOL(" mean: ");
  4067. SERIAL_PROTOCOL_F(mean,6);
  4068. SERIAL_PROTOCOL(" sigma: ");
  4069. SERIAL_PROTOCOL_F(sigma,6);
  4070. }
  4071. if (verbose_level > 0)
  4072. SERIAL_PROTOCOLPGM("\n");
  4073. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4074. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4075. st_synchronize();
  4076. }
  4077. delay(1000);
  4078. clean_up_after_endstop_move();
  4079. // enable_endstops(true);
  4080. if (verbose_level > 0) {
  4081. SERIAL_PROTOCOLPGM("Mean: ");
  4082. SERIAL_PROTOCOL_F(mean, 6);
  4083. SERIAL_PROTOCOLPGM("\n");
  4084. }
  4085. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4086. SERIAL_PROTOCOL_F(sigma, 6);
  4087. SERIAL_PROTOCOLPGM("\n\n");
  4088. Sigma_Exit:
  4089. break;
  4090. }
  4091. #endif // Z_PROBE_REPEATABILITY_TEST
  4092. #endif // ENABLE_AUTO_BED_LEVELING
  4093. case 104: // M104
  4094. if(setTargetedHotend(104)){
  4095. break;
  4096. }
  4097. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4098. setWatch();
  4099. break;
  4100. case 112: // M112 -Emergency Stop
  4101. kill("", 3);
  4102. break;
  4103. case 140: // M140 set bed temp
  4104. if (code_seen('S')) setTargetBed(code_value());
  4105. break;
  4106. case 105 : // M105
  4107. if(setTargetedHotend(105)){
  4108. break;
  4109. }
  4110. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4111. SERIAL_PROTOCOLPGM("ok T:");
  4112. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4113. SERIAL_PROTOCOLPGM(" /");
  4114. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4115. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4116. SERIAL_PROTOCOLPGM(" B:");
  4117. SERIAL_PROTOCOL_F(degBed(),1);
  4118. SERIAL_PROTOCOLPGM(" /");
  4119. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4120. #endif //TEMP_BED_PIN
  4121. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4122. SERIAL_PROTOCOLPGM(" T");
  4123. SERIAL_PROTOCOL(cur_extruder);
  4124. SERIAL_PROTOCOLPGM(":");
  4125. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4126. SERIAL_PROTOCOLPGM(" /");
  4127. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4128. }
  4129. #else
  4130. SERIAL_ERROR_START;
  4131. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4132. #endif
  4133. SERIAL_PROTOCOLPGM(" @:");
  4134. #ifdef EXTRUDER_WATTS
  4135. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4136. SERIAL_PROTOCOLPGM("W");
  4137. #else
  4138. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4139. #endif
  4140. SERIAL_PROTOCOLPGM(" B@:");
  4141. #ifdef BED_WATTS
  4142. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4143. SERIAL_PROTOCOLPGM("W");
  4144. #else
  4145. SERIAL_PROTOCOL(getHeaterPower(-1));
  4146. #endif
  4147. #ifdef PINDA_THERMISTOR
  4148. SERIAL_PROTOCOLPGM(" P:");
  4149. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4150. #endif //PINDA_THERMISTOR
  4151. #ifdef AMBIENT_THERMISTOR
  4152. SERIAL_PROTOCOLPGM(" A:");
  4153. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4154. #endif //AMBIENT_THERMISTOR
  4155. #ifdef SHOW_TEMP_ADC_VALUES
  4156. {float raw = 0.0;
  4157. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4158. SERIAL_PROTOCOLPGM(" ADC B:");
  4159. SERIAL_PROTOCOL_F(degBed(),1);
  4160. SERIAL_PROTOCOLPGM("C->");
  4161. raw = rawBedTemp();
  4162. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4163. SERIAL_PROTOCOLPGM(" Rb->");
  4164. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4165. SERIAL_PROTOCOLPGM(" Rxb->");
  4166. SERIAL_PROTOCOL_F(raw, 5);
  4167. #endif
  4168. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4169. SERIAL_PROTOCOLPGM(" T");
  4170. SERIAL_PROTOCOL(cur_extruder);
  4171. SERIAL_PROTOCOLPGM(":");
  4172. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4173. SERIAL_PROTOCOLPGM("C->");
  4174. raw = rawHotendTemp(cur_extruder);
  4175. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4176. SERIAL_PROTOCOLPGM(" Rt");
  4177. SERIAL_PROTOCOL(cur_extruder);
  4178. SERIAL_PROTOCOLPGM("->");
  4179. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4180. SERIAL_PROTOCOLPGM(" Rx");
  4181. SERIAL_PROTOCOL(cur_extruder);
  4182. SERIAL_PROTOCOLPGM("->");
  4183. SERIAL_PROTOCOL_F(raw, 5);
  4184. }}
  4185. #endif
  4186. SERIAL_PROTOCOLLN("");
  4187. KEEPALIVE_STATE(NOT_BUSY);
  4188. return;
  4189. break;
  4190. case 109:
  4191. {// M109 - Wait for extruder heater to reach target.
  4192. if(setTargetedHotend(109)){
  4193. break;
  4194. }
  4195. LCD_MESSAGERPGM(MSG_HEATING);
  4196. heating_status = 1;
  4197. if (farm_mode) { prusa_statistics(1); };
  4198. #ifdef AUTOTEMP
  4199. autotemp_enabled=false;
  4200. #endif
  4201. if (code_seen('S')) {
  4202. setTargetHotend(code_value(), tmp_extruder);
  4203. CooldownNoWait = true;
  4204. } else if (code_seen('R')) {
  4205. setTargetHotend(code_value(), tmp_extruder);
  4206. CooldownNoWait = false;
  4207. }
  4208. #ifdef AUTOTEMP
  4209. if (code_seen('S')) autotemp_min=code_value();
  4210. if (code_seen('B')) autotemp_max=code_value();
  4211. if (code_seen('F'))
  4212. {
  4213. autotemp_factor=code_value();
  4214. autotemp_enabled=true;
  4215. }
  4216. #endif
  4217. setWatch();
  4218. codenum = millis();
  4219. /* See if we are heating up or cooling down */
  4220. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4221. KEEPALIVE_STATE(NOT_BUSY);
  4222. cancel_heatup = false;
  4223. wait_for_heater(codenum); //loops until target temperature is reached
  4224. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4225. KEEPALIVE_STATE(IN_HANDLER);
  4226. heating_status = 2;
  4227. if (farm_mode) { prusa_statistics(2); };
  4228. //starttime=millis();
  4229. previous_millis_cmd = millis();
  4230. }
  4231. break;
  4232. case 190: // M190 - Wait for bed heater to reach target.
  4233. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4234. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4235. heating_status = 3;
  4236. if (farm_mode) { prusa_statistics(1); };
  4237. if (code_seen('S'))
  4238. {
  4239. setTargetBed(code_value());
  4240. CooldownNoWait = true;
  4241. }
  4242. else if (code_seen('R'))
  4243. {
  4244. setTargetBed(code_value());
  4245. CooldownNoWait = false;
  4246. }
  4247. codenum = millis();
  4248. cancel_heatup = false;
  4249. target_direction = isHeatingBed(); // true if heating, false if cooling
  4250. KEEPALIVE_STATE(NOT_BUSY);
  4251. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4252. {
  4253. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4254. {
  4255. if (!farm_mode) {
  4256. float tt = degHotend(active_extruder);
  4257. SERIAL_PROTOCOLPGM("T:");
  4258. SERIAL_PROTOCOL(tt);
  4259. SERIAL_PROTOCOLPGM(" E:");
  4260. SERIAL_PROTOCOL((int)active_extruder);
  4261. SERIAL_PROTOCOLPGM(" B:");
  4262. SERIAL_PROTOCOL_F(degBed(), 1);
  4263. SERIAL_PROTOCOLLN("");
  4264. }
  4265. codenum = millis();
  4266. }
  4267. manage_heater();
  4268. manage_inactivity();
  4269. lcd_update();
  4270. }
  4271. LCD_MESSAGERPGM(MSG_BED_DONE);
  4272. KEEPALIVE_STATE(IN_HANDLER);
  4273. heating_status = 4;
  4274. previous_millis_cmd = millis();
  4275. #endif
  4276. break;
  4277. #if defined(FAN_PIN) && FAN_PIN > -1
  4278. case 106: //M106 Fan On
  4279. if (code_seen('S')){
  4280. fanSpeed=constrain(code_value(),0,255);
  4281. }
  4282. else {
  4283. fanSpeed=255;
  4284. }
  4285. break;
  4286. case 107: //M107 Fan Off
  4287. fanSpeed = 0;
  4288. break;
  4289. #endif //FAN_PIN
  4290. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4291. case 80: // M80 - Turn on Power Supply
  4292. SET_OUTPUT(PS_ON_PIN); //GND
  4293. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4294. // If you have a switch on suicide pin, this is useful
  4295. // if you want to start another print with suicide feature after
  4296. // a print without suicide...
  4297. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4298. SET_OUTPUT(SUICIDE_PIN);
  4299. WRITE(SUICIDE_PIN, HIGH);
  4300. #endif
  4301. #ifdef ULTIPANEL
  4302. powersupply = true;
  4303. LCD_MESSAGERPGM(WELCOME_MSG);
  4304. lcd_update();
  4305. #endif
  4306. break;
  4307. #endif
  4308. case 81: // M81 - Turn off Power Supply
  4309. disable_heater();
  4310. st_synchronize();
  4311. disable_e0();
  4312. disable_e1();
  4313. disable_e2();
  4314. finishAndDisableSteppers();
  4315. fanSpeed = 0;
  4316. delay(1000); // Wait a little before to switch off
  4317. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4318. st_synchronize();
  4319. suicide();
  4320. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4321. SET_OUTPUT(PS_ON_PIN);
  4322. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4323. #endif
  4324. #ifdef ULTIPANEL
  4325. powersupply = false;
  4326. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4327. /*
  4328. MACHNAME = "Prusa i3"
  4329. MSGOFF = "Vypnuto"
  4330. "Prusai3"" ""vypnuto""."
  4331. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4332. */
  4333. lcd_update();
  4334. #endif
  4335. break;
  4336. case 82:
  4337. axis_relative_modes[3] = false;
  4338. break;
  4339. case 83:
  4340. axis_relative_modes[3] = true;
  4341. break;
  4342. case 18: //compatibility
  4343. case 84: // M84
  4344. if(code_seen('S')){
  4345. stepper_inactive_time = code_value() * 1000;
  4346. }
  4347. else
  4348. {
  4349. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4350. if(all_axis)
  4351. {
  4352. st_synchronize();
  4353. disable_e0();
  4354. disable_e1();
  4355. disable_e2();
  4356. finishAndDisableSteppers();
  4357. }
  4358. else
  4359. {
  4360. st_synchronize();
  4361. if (code_seen('X')) disable_x();
  4362. if (code_seen('Y')) disable_y();
  4363. if (code_seen('Z')) disable_z();
  4364. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4365. if (code_seen('E')) {
  4366. disable_e0();
  4367. disable_e1();
  4368. disable_e2();
  4369. }
  4370. #endif
  4371. }
  4372. }
  4373. snmm_filaments_used = 0;
  4374. break;
  4375. case 85: // M85
  4376. if(code_seen('S')) {
  4377. max_inactive_time = code_value() * 1000;
  4378. }
  4379. break;
  4380. case 92: // M92
  4381. for(int8_t i=0; i < NUM_AXIS; i++)
  4382. {
  4383. if(code_seen(axis_codes[i]))
  4384. {
  4385. if(i == 3) { // E
  4386. float value = code_value();
  4387. if(value < 20.0) {
  4388. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4389. max_jerk[E_AXIS] *= factor;
  4390. max_feedrate[i] *= factor;
  4391. axis_steps_per_sqr_second[i] *= factor;
  4392. }
  4393. axis_steps_per_unit[i] = value;
  4394. }
  4395. else {
  4396. axis_steps_per_unit[i] = code_value();
  4397. }
  4398. }
  4399. }
  4400. break;
  4401. case 110: // M110 - reset line pos
  4402. if (code_seen('N'))
  4403. gcode_LastN = code_value_long();
  4404. break;
  4405. #ifdef HOST_KEEPALIVE_FEATURE
  4406. case 113: // M113 - Get or set Host Keepalive interval
  4407. if (code_seen('S')) {
  4408. host_keepalive_interval = (uint8_t)code_value_short();
  4409. // NOMORE(host_keepalive_interval, 60);
  4410. }
  4411. else {
  4412. SERIAL_ECHO_START;
  4413. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4414. SERIAL_PROTOCOLLN("");
  4415. }
  4416. break;
  4417. #endif
  4418. case 115: // M115
  4419. if (code_seen('V')) {
  4420. // Report the Prusa version number.
  4421. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4422. } else if (code_seen('U')) {
  4423. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4424. // pause the print and ask the user to upgrade the firmware.
  4425. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4426. } else {
  4427. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4428. }
  4429. break;
  4430. /* case 117: // M117 display message
  4431. starpos = (strchr(strchr_pointer + 5,'*'));
  4432. if(starpos!=NULL)
  4433. *(starpos)='\0';
  4434. lcd_setstatus(strchr_pointer + 5);
  4435. break;*/
  4436. case 114: // M114
  4437. gcode_M114();
  4438. break;
  4439. case 120: // M120
  4440. enable_endstops(false) ;
  4441. break;
  4442. case 121: // M121
  4443. enable_endstops(true) ;
  4444. break;
  4445. case 119: // M119
  4446. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4447. SERIAL_PROTOCOLLN("");
  4448. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4449. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4450. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4451. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4452. }else{
  4453. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4454. }
  4455. SERIAL_PROTOCOLLN("");
  4456. #endif
  4457. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4458. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4459. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4460. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4461. }else{
  4462. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4463. }
  4464. SERIAL_PROTOCOLLN("");
  4465. #endif
  4466. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4467. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4468. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4469. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4470. }else{
  4471. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4472. }
  4473. SERIAL_PROTOCOLLN("");
  4474. #endif
  4475. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4476. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4477. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4478. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4479. }else{
  4480. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4481. }
  4482. SERIAL_PROTOCOLLN("");
  4483. #endif
  4484. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4485. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4486. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4487. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4488. }else{
  4489. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4490. }
  4491. SERIAL_PROTOCOLLN("");
  4492. #endif
  4493. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4494. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4495. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4496. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4497. }else{
  4498. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4499. }
  4500. SERIAL_PROTOCOLLN("");
  4501. #endif
  4502. break;
  4503. //TODO: update for all axis, use for loop
  4504. #ifdef BLINKM
  4505. case 150: // M150
  4506. {
  4507. byte red;
  4508. byte grn;
  4509. byte blu;
  4510. if(code_seen('R')) red = code_value();
  4511. if(code_seen('U')) grn = code_value();
  4512. if(code_seen('B')) blu = code_value();
  4513. SendColors(red,grn,blu);
  4514. }
  4515. break;
  4516. #endif //BLINKM
  4517. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4518. {
  4519. tmp_extruder = active_extruder;
  4520. if(code_seen('T')) {
  4521. tmp_extruder = code_value();
  4522. if(tmp_extruder >= EXTRUDERS) {
  4523. SERIAL_ECHO_START;
  4524. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4525. break;
  4526. }
  4527. }
  4528. float area = .0;
  4529. if(code_seen('D')) {
  4530. float diameter = (float)code_value();
  4531. if (diameter == 0.0) {
  4532. // setting any extruder filament size disables volumetric on the assumption that
  4533. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4534. // for all extruders
  4535. volumetric_enabled = false;
  4536. } else {
  4537. filament_size[tmp_extruder] = (float)code_value();
  4538. // make sure all extruders have some sane value for the filament size
  4539. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4540. #if EXTRUDERS > 1
  4541. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4542. #if EXTRUDERS > 2
  4543. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4544. #endif
  4545. #endif
  4546. volumetric_enabled = true;
  4547. }
  4548. } else {
  4549. //reserved for setting filament diameter via UFID or filament measuring device
  4550. break;
  4551. }
  4552. calculate_extruder_multipliers();
  4553. }
  4554. break;
  4555. case 201: // M201
  4556. for(int8_t i=0; i < NUM_AXIS; i++)
  4557. {
  4558. if(code_seen(axis_codes[i]))
  4559. {
  4560. max_acceleration_units_per_sq_second[i] = code_value();
  4561. }
  4562. }
  4563. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4564. reset_acceleration_rates();
  4565. break;
  4566. #if 0 // Not used for Sprinter/grbl gen6
  4567. case 202: // M202
  4568. for(int8_t i=0; i < NUM_AXIS; i++) {
  4569. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4570. }
  4571. break;
  4572. #endif
  4573. case 203: // M203 max feedrate mm/sec
  4574. for(int8_t i=0; i < NUM_AXIS; i++) {
  4575. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4576. }
  4577. break;
  4578. case 204: // M204 acclereration S normal moves T filmanent only moves
  4579. {
  4580. if(code_seen('S')) acceleration = code_value() ;
  4581. if(code_seen('T')) retract_acceleration = code_value() ;
  4582. }
  4583. break;
  4584. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4585. {
  4586. if(code_seen('S')) minimumfeedrate = code_value();
  4587. if(code_seen('T')) mintravelfeedrate = code_value();
  4588. if(code_seen('B')) minsegmenttime = code_value() ;
  4589. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4590. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4591. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4592. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4593. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4594. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4595. }
  4596. break;
  4597. case 206: // M206 additional homing offset
  4598. for(int8_t i=0; i < 3; i++)
  4599. {
  4600. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4601. }
  4602. break;
  4603. #ifdef FWRETRACT
  4604. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4605. {
  4606. if(code_seen('S'))
  4607. {
  4608. retract_length = code_value() ;
  4609. }
  4610. if(code_seen('F'))
  4611. {
  4612. retract_feedrate = code_value()/60 ;
  4613. }
  4614. if(code_seen('Z'))
  4615. {
  4616. retract_zlift = code_value() ;
  4617. }
  4618. }break;
  4619. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4620. {
  4621. if(code_seen('S'))
  4622. {
  4623. retract_recover_length = code_value() ;
  4624. }
  4625. if(code_seen('F'))
  4626. {
  4627. retract_recover_feedrate = code_value()/60 ;
  4628. }
  4629. }break;
  4630. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4631. {
  4632. if(code_seen('S'))
  4633. {
  4634. int t= code_value() ;
  4635. switch(t)
  4636. {
  4637. case 0:
  4638. {
  4639. autoretract_enabled=false;
  4640. retracted[0]=false;
  4641. #if EXTRUDERS > 1
  4642. retracted[1]=false;
  4643. #endif
  4644. #if EXTRUDERS > 2
  4645. retracted[2]=false;
  4646. #endif
  4647. }break;
  4648. case 1:
  4649. {
  4650. autoretract_enabled=true;
  4651. retracted[0]=false;
  4652. #if EXTRUDERS > 1
  4653. retracted[1]=false;
  4654. #endif
  4655. #if EXTRUDERS > 2
  4656. retracted[2]=false;
  4657. #endif
  4658. }break;
  4659. default:
  4660. SERIAL_ECHO_START;
  4661. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4662. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4663. SERIAL_ECHOLNPGM("\"(1)");
  4664. }
  4665. }
  4666. }break;
  4667. #endif // FWRETRACT
  4668. #if EXTRUDERS > 1
  4669. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4670. {
  4671. if(setTargetedHotend(218)){
  4672. break;
  4673. }
  4674. if(code_seen('X'))
  4675. {
  4676. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4677. }
  4678. if(code_seen('Y'))
  4679. {
  4680. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4681. }
  4682. SERIAL_ECHO_START;
  4683. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4684. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4685. {
  4686. SERIAL_ECHO(" ");
  4687. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4688. SERIAL_ECHO(",");
  4689. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4690. }
  4691. SERIAL_ECHOLN("");
  4692. }break;
  4693. #endif
  4694. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4695. {
  4696. if(code_seen('S'))
  4697. {
  4698. feedmultiply = code_value() ;
  4699. }
  4700. }
  4701. break;
  4702. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4703. {
  4704. if(code_seen('S'))
  4705. {
  4706. int tmp_code = code_value();
  4707. if (code_seen('T'))
  4708. {
  4709. if(setTargetedHotend(221)){
  4710. break;
  4711. }
  4712. extruder_multiply[tmp_extruder] = tmp_code;
  4713. }
  4714. else
  4715. {
  4716. extrudemultiply = tmp_code ;
  4717. }
  4718. }
  4719. calculate_extruder_multipliers();
  4720. }
  4721. break;
  4722. #ifndef _DISABLE_M42_M226
  4723. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4724. {
  4725. if(code_seen('P')){
  4726. int pin_number = code_value(); // pin number
  4727. int pin_state = -1; // required pin state - default is inverted
  4728. if(code_seen('S')) pin_state = code_value(); // required pin state
  4729. if(pin_state >= -1 && pin_state <= 1){
  4730. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4731. {
  4732. if (sensitive_pins[i] == pin_number)
  4733. {
  4734. pin_number = -1;
  4735. break;
  4736. }
  4737. }
  4738. if (pin_number > -1)
  4739. {
  4740. int target = LOW;
  4741. st_synchronize();
  4742. pinMode(pin_number, INPUT);
  4743. switch(pin_state){
  4744. case 1:
  4745. target = HIGH;
  4746. break;
  4747. case 0:
  4748. target = LOW;
  4749. break;
  4750. case -1:
  4751. target = !digitalRead(pin_number);
  4752. break;
  4753. }
  4754. while(digitalRead(pin_number) != target){
  4755. manage_heater();
  4756. manage_inactivity();
  4757. lcd_update();
  4758. }
  4759. }
  4760. }
  4761. }
  4762. }
  4763. break;
  4764. #endif //_DISABLE_M42_M226
  4765. #if NUM_SERVOS > 0
  4766. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4767. {
  4768. int servo_index = -1;
  4769. int servo_position = 0;
  4770. if (code_seen('P'))
  4771. servo_index = code_value();
  4772. if (code_seen('S')) {
  4773. servo_position = code_value();
  4774. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4775. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4776. servos[servo_index].attach(0);
  4777. #endif
  4778. servos[servo_index].write(servo_position);
  4779. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4780. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4781. servos[servo_index].detach();
  4782. #endif
  4783. }
  4784. else {
  4785. SERIAL_ECHO_START;
  4786. SERIAL_ECHO("Servo ");
  4787. SERIAL_ECHO(servo_index);
  4788. SERIAL_ECHOLN(" out of range");
  4789. }
  4790. }
  4791. else if (servo_index >= 0) {
  4792. SERIAL_PROTOCOL(MSG_OK);
  4793. SERIAL_PROTOCOL(" Servo ");
  4794. SERIAL_PROTOCOL(servo_index);
  4795. SERIAL_PROTOCOL(": ");
  4796. SERIAL_PROTOCOL(servos[servo_index].read());
  4797. SERIAL_PROTOCOLLN("");
  4798. }
  4799. }
  4800. break;
  4801. #endif // NUM_SERVOS > 0
  4802. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4803. case 300: // M300
  4804. {
  4805. int beepS = code_seen('S') ? code_value() : 110;
  4806. int beepP = code_seen('P') ? code_value() : 1000;
  4807. if (beepS > 0)
  4808. {
  4809. #if BEEPER > 0
  4810. tone(BEEPER, beepS);
  4811. delay(beepP);
  4812. noTone(BEEPER);
  4813. #elif defined(ULTRALCD)
  4814. lcd_buzz(beepS, beepP);
  4815. #elif defined(LCD_USE_I2C_BUZZER)
  4816. lcd_buzz(beepP, beepS);
  4817. #endif
  4818. }
  4819. else
  4820. {
  4821. delay(beepP);
  4822. }
  4823. }
  4824. break;
  4825. #endif // M300
  4826. #ifdef PIDTEMP
  4827. case 301: // M301
  4828. {
  4829. if(code_seen('P')) Kp = code_value();
  4830. if(code_seen('I')) Ki = scalePID_i(code_value());
  4831. if(code_seen('D')) Kd = scalePID_d(code_value());
  4832. #ifdef PID_ADD_EXTRUSION_RATE
  4833. if(code_seen('C')) Kc = code_value();
  4834. #endif
  4835. updatePID();
  4836. SERIAL_PROTOCOLRPGM(MSG_OK);
  4837. SERIAL_PROTOCOL(" p:");
  4838. SERIAL_PROTOCOL(Kp);
  4839. SERIAL_PROTOCOL(" i:");
  4840. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4841. SERIAL_PROTOCOL(" d:");
  4842. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4843. #ifdef PID_ADD_EXTRUSION_RATE
  4844. SERIAL_PROTOCOL(" c:");
  4845. //Kc does not have scaling applied above, or in resetting defaults
  4846. SERIAL_PROTOCOL(Kc);
  4847. #endif
  4848. SERIAL_PROTOCOLLN("");
  4849. }
  4850. break;
  4851. #endif //PIDTEMP
  4852. #ifdef PIDTEMPBED
  4853. case 304: // M304
  4854. {
  4855. if(code_seen('P')) bedKp = code_value();
  4856. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4857. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4858. updatePID();
  4859. SERIAL_PROTOCOLRPGM(MSG_OK);
  4860. SERIAL_PROTOCOL(" p:");
  4861. SERIAL_PROTOCOL(bedKp);
  4862. SERIAL_PROTOCOL(" i:");
  4863. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4864. SERIAL_PROTOCOL(" d:");
  4865. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4866. SERIAL_PROTOCOLLN("");
  4867. }
  4868. break;
  4869. #endif //PIDTEMP
  4870. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4871. {
  4872. #ifdef CHDK
  4873. SET_OUTPUT(CHDK);
  4874. WRITE(CHDK, HIGH);
  4875. chdkHigh = millis();
  4876. chdkActive = true;
  4877. #else
  4878. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4879. const uint8_t NUM_PULSES=16;
  4880. const float PULSE_LENGTH=0.01524;
  4881. for(int i=0; i < NUM_PULSES; i++) {
  4882. WRITE(PHOTOGRAPH_PIN, HIGH);
  4883. _delay_ms(PULSE_LENGTH);
  4884. WRITE(PHOTOGRAPH_PIN, LOW);
  4885. _delay_ms(PULSE_LENGTH);
  4886. }
  4887. delay(7.33);
  4888. for(int i=0; i < NUM_PULSES; i++) {
  4889. WRITE(PHOTOGRAPH_PIN, HIGH);
  4890. _delay_ms(PULSE_LENGTH);
  4891. WRITE(PHOTOGRAPH_PIN, LOW);
  4892. _delay_ms(PULSE_LENGTH);
  4893. }
  4894. #endif
  4895. #endif //chdk end if
  4896. }
  4897. break;
  4898. #ifdef DOGLCD
  4899. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4900. {
  4901. if (code_seen('C')) {
  4902. lcd_setcontrast( ((int)code_value())&63 );
  4903. }
  4904. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4905. SERIAL_PROTOCOL(lcd_contrast);
  4906. SERIAL_PROTOCOLLN("");
  4907. }
  4908. break;
  4909. #endif
  4910. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4911. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4912. {
  4913. float temp = .0;
  4914. if (code_seen('S')) temp=code_value();
  4915. set_extrude_min_temp(temp);
  4916. }
  4917. break;
  4918. #endif
  4919. case 303: // M303 PID autotune
  4920. {
  4921. float temp = 150.0;
  4922. int e=0;
  4923. int c=5;
  4924. if (code_seen('E')) e=code_value();
  4925. if (e<0)
  4926. temp=70;
  4927. if (code_seen('S')) temp=code_value();
  4928. if (code_seen('C')) c=code_value();
  4929. PID_autotune(temp, e, c);
  4930. }
  4931. break;
  4932. case 400: // M400 finish all moves
  4933. {
  4934. st_synchronize();
  4935. }
  4936. break;
  4937. case 500: // M500 Store settings in EEPROM
  4938. {
  4939. Config_StoreSettings(EEPROM_OFFSET);
  4940. }
  4941. break;
  4942. case 501: // M501 Read settings from EEPROM
  4943. {
  4944. Config_RetrieveSettings(EEPROM_OFFSET);
  4945. }
  4946. break;
  4947. case 502: // M502 Revert to default settings
  4948. {
  4949. Config_ResetDefault();
  4950. }
  4951. break;
  4952. case 503: // M503 print settings currently in memory
  4953. {
  4954. Config_PrintSettings();
  4955. }
  4956. break;
  4957. case 509: //M509 Force language selection
  4958. {
  4959. lcd_force_language_selection();
  4960. SERIAL_ECHO_START;
  4961. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4962. }
  4963. break;
  4964. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4965. case 540:
  4966. {
  4967. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4968. }
  4969. break;
  4970. #endif
  4971. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4972. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4973. {
  4974. float value;
  4975. if (code_seen('Z'))
  4976. {
  4977. value = code_value();
  4978. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4979. {
  4980. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4981. SERIAL_ECHO_START;
  4982. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4983. SERIAL_PROTOCOLLN("");
  4984. }
  4985. else
  4986. {
  4987. SERIAL_ECHO_START;
  4988. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4989. SERIAL_ECHORPGM(MSG_Z_MIN);
  4990. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4991. SERIAL_ECHORPGM(MSG_Z_MAX);
  4992. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4993. SERIAL_PROTOCOLLN("");
  4994. }
  4995. }
  4996. else
  4997. {
  4998. SERIAL_ECHO_START;
  4999. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5000. SERIAL_ECHO(-zprobe_zoffset);
  5001. SERIAL_PROTOCOLLN("");
  5002. }
  5003. break;
  5004. }
  5005. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5006. #ifdef FILAMENTCHANGEENABLE
  5007. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5008. {
  5009. #ifdef PAT9125
  5010. bool old_fsensor_enabled = fsensor_enabled;
  5011. fsensor_enabled = false; //temporary solution for unexpected restarting
  5012. #endif //PAT9125
  5013. st_synchronize();
  5014. float target[4];
  5015. float lastpos[4];
  5016. if (farm_mode)
  5017. {
  5018. prusa_statistics(22);
  5019. }
  5020. feedmultiplyBckp=feedmultiply;
  5021. int8_t TooLowZ = 0;
  5022. float HotendTempBckp = degTargetHotend(active_extruder);
  5023. int fanSpeedBckp = fanSpeed;
  5024. target[X_AXIS]=current_position[X_AXIS];
  5025. target[Y_AXIS]=current_position[Y_AXIS];
  5026. target[Z_AXIS]=current_position[Z_AXIS];
  5027. target[E_AXIS]=current_position[E_AXIS];
  5028. lastpos[X_AXIS]=current_position[X_AXIS];
  5029. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5030. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5031. lastpos[E_AXIS]=current_position[E_AXIS];
  5032. //Restract extruder
  5033. if(code_seen('E'))
  5034. {
  5035. target[E_AXIS]+= code_value();
  5036. }
  5037. else
  5038. {
  5039. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5040. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5041. #endif
  5042. }
  5043. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5044. //Lift Z
  5045. if(code_seen('Z'))
  5046. {
  5047. target[Z_AXIS]+= code_value();
  5048. }
  5049. else
  5050. {
  5051. #ifdef FILAMENTCHANGE_ZADD
  5052. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5053. if(target[Z_AXIS] < 10){
  5054. target[Z_AXIS]+= 10 ;
  5055. TooLowZ = 1;
  5056. }else{
  5057. TooLowZ = 0;
  5058. }
  5059. #endif
  5060. }
  5061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5062. //Move XY to side
  5063. if(code_seen('X'))
  5064. {
  5065. target[X_AXIS]+= code_value();
  5066. }
  5067. else
  5068. {
  5069. #ifdef FILAMENTCHANGE_XPOS
  5070. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5071. #endif
  5072. }
  5073. if(code_seen('Y'))
  5074. {
  5075. target[Y_AXIS]= code_value();
  5076. }
  5077. else
  5078. {
  5079. #ifdef FILAMENTCHANGE_YPOS
  5080. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5081. #endif
  5082. }
  5083. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5084. st_synchronize();
  5085. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5086. uint8_t cnt = 0;
  5087. int counterBeep = 0;
  5088. fanSpeed = 0;
  5089. unsigned long waiting_start_time = millis();
  5090. uint8_t wait_for_user_state = 0;
  5091. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5092. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5093. //cnt++;
  5094. manage_heater();
  5095. manage_inactivity(true);
  5096. /*#ifdef SNMM
  5097. target[E_AXIS] += 0.002;
  5098. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5099. #endif // SNMM*/
  5100. //if (cnt == 0)
  5101. {
  5102. #if BEEPER > 0
  5103. if (counterBeep == 500) {
  5104. counterBeep = 0;
  5105. }
  5106. SET_OUTPUT(BEEPER);
  5107. if (counterBeep == 0) {
  5108. WRITE(BEEPER, HIGH);
  5109. }
  5110. if (counterBeep == 20) {
  5111. WRITE(BEEPER, LOW);
  5112. }
  5113. counterBeep++;
  5114. #else
  5115. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5116. lcd_buzz(1000 / 6, 100);
  5117. #else
  5118. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5119. #endif
  5120. #endif
  5121. }
  5122. switch (wait_for_user_state) {
  5123. case 0:
  5124. delay_keep_alive(4);
  5125. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5126. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5127. wait_for_user_state = 1;
  5128. setTargetHotend(0, 0);
  5129. setTargetHotend(0, 1);
  5130. setTargetHotend(0, 2);
  5131. st_synchronize();
  5132. disable_e0();
  5133. disable_e1();
  5134. disable_e2();
  5135. }
  5136. break;
  5137. case 1:
  5138. delay_keep_alive(4);
  5139. if (lcd_clicked()) {
  5140. setTargetHotend(HotendTempBckp, active_extruder);
  5141. lcd_wait_for_heater();
  5142. wait_for_user_state = 2;
  5143. }
  5144. break;
  5145. case 2:
  5146. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5147. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5148. waiting_start_time = millis();
  5149. wait_for_user_state = 0;
  5150. }
  5151. else {
  5152. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5153. lcd.setCursor(1, 4);
  5154. lcd.print(ftostr3(degHotend(active_extruder)));
  5155. }
  5156. break;
  5157. }
  5158. }
  5159. WRITE(BEEPER, LOW);
  5160. lcd_change_fil_state = 0;
  5161. // Unload filament
  5162. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5163. KEEPALIVE_STATE(IN_HANDLER);
  5164. custom_message = true;
  5165. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5166. if (code_seen('L'))
  5167. {
  5168. target[E_AXIS] += code_value();
  5169. }
  5170. else
  5171. {
  5172. #ifdef SNMM
  5173. #else
  5174. #ifdef FILAMENTCHANGE_FINALRETRACT
  5175. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5176. #endif
  5177. #endif // SNMM
  5178. }
  5179. #ifdef SNMM
  5180. target[E_AXIS] += 12;
  5181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5182. target[E_AXIS] += 6;
  5183. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5184. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5185. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5186. st_synchronize();
  5187. target[E_AXIS] += (FIL_COOLING);
  5188. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5189. target[E_AXIS] += (FIL_COOLING*-1);
  5190. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5191. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5192. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5193. st_synchronize();
  5194. #else
  5195. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5196. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5197. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5198. st_synchronize();
  5199. #ifdef TMC2130
  5200. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5201. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5202. #else
  5203. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5204. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5205. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5206. #endif //TMC2130
  5207. target[E_AXIS] -= 45;
  5208. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5209. st_synchronize();
  5210. target[E_AXIS] -= 15;
  5211. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5212. st_synchronize();
  5213. target[E_AXIS] -= 20;
  5214. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5215. st_synchronize();
  5216. #ifdef TMC2130
  5217. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5218. #else
  5219. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5220. if(silentMode) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5221. else st_current_set(2, tmp_motor_loud[2]);
  5222. #endif //TMC2130
  5223. #endif // SNMM
  5224. //finish moves
  5225. st_synchronize();
  5226. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5227. //disable extruder steppers so filament can be removed
  5228. disable_e0();
  5229. disable_e1();
  5230. disable_e2();
  5231. delay(100);
  5232. WRITE(BEEPER, HIGH);
  5233. counterBeep = 0;
  5234. while(!lcd_clicked() && (counterBeep < 50)) {
  5235. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5236. delay_keep_alive(100);
  5237. counterBeep++;
  5238. }
  5239. WRITE(BEEPER, LOW);
  5240. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5241. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5242. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5243. //lcd_return_to_status();
  5244. lcd_update_enable(true);
  5245. //Wait for user to insert filament
  5246. lcd_wait_interact();
  5247. //load_filament_time = millis();
  5248. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5249. #ifdef PAT9125
  5250. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5251. #endif //PAT9125
  5252. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5253. while(!lcd_clicked())
  5254. {
  5255. manage_heater();
  5256. manage_inactivity(true);
  5257. #ifdef PAT9125
  5258. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5259. {
  5260. tone(BEEPER, 1000);
  5261. delay_keep_alive(50);
  5262. noTone(BEEPER);
  5263. break;
  5264. }
  5265. #endif //PAT9125
  5266. /*#ifdef SNMM
  5267. target[E_AXIS] += 0.002;
  5268. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5269. #endif // SNMM*/
  5270. }
  5271. #ifdef PAT9125
  5272. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5273. #endif //PAT9125
  5274. //WRITE(BEEPER, LOW);
  5275. KEEPALIVE_STATE(IN_HANDLER);
  5276. #ifdef SNMM
  5277. display_loading();
  5278. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5279. do {
  5280. target[E_AXIS] += 0.002;
  5281. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5282. delay_keep_alive(2);
  5283. } while (!lcd_clicked());
  5284. KEEPALIVE_STATE(IN_HANDLER);
  5285. /*if (millis() - load_filament_time > 2) {
  5286. load_filament_time = millis();
  5287. target[E_AXIS] += 0.001;
  5288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5289. }*/
  5290. //Filament inserted
  5291. //Feed the filament to the end of nozzle quickly
  5292. st_synchronize();
  5293. target[E_AXIS] += bowden_length[snmm_extruder];
  5294. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5295. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5297. target[E_AXIS] += 40;
  5298. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5299. target[E_AXIS] += 10;
  5300. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5301. #else
  5302. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5303. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5304. #endif // SNMM
  5305. //Extrude some filament
  5306. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5308. //Wait for user to check the state
  5309. lcd_change_fil_state = 0;
  5310. lcd_loading_filament();
  5311. tone(BEEPER, 500);
  5312. delay_keep_alive(50);
  5313. noTone(BEEPER);
  5314. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5315. lcd_change_fil_state = 0;
  5316. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5317. lcd_alright();
  5318. KEEPALIVE_STATE(IN_HANDLER);
  5319. switch(lcd_change_fil_state){
  5320. // Filament failed to load so load it again
  5321. case 2:
  5322. #ifdef SNMM
  5323. display_loading();
  5324. do {
  5325. target[E_AXIS] += 0.002;
  5326. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5327. delay_keep_alive(2);
  5328. } while (!lcd_clicked());
  5329. st_synchronize();
  5330. target[E_AXIS] += bowden_length[snmm_extruder];
  5331. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5332. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5333. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5334. target[E_AXIS] += 40;
  5335. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5336. target[E_AXIS] += 10;
  5337. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5338. #else
  5339. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5340. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5341. #endif
  5342. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5343. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5344. lcd_loading_filament();
  5345. break;
  5346. // Filament loaded properly but color is not clear
  5347. case 3:
  5348. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5350. lcd_loading_color();
  5351. break;
  5352. // Everything good
  5353. default:
  5354. lcd_change_success();
  5355. lcd_update_enable(true);
  5356. break;
  5357. }
  5358. }
  5359. //Not let's go back to print
  5360. fanSpeed = fanSpeedBckp;
  5361. //Feed a little of filament to stabilize pressure
  5362. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5364. //Retract
  5365. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5366. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5367. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5368. //Move XY back
  5369. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5370. //Move Z back
  5371. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5372. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5373. //Unretract
  5374. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5375. //Set E position to original
  5376. plan_set_e_position(lastpos[E_AXIS]);
  5377. //Recover feed rate
  5378. feedmultiply=feedmultiplyBckp;
  5379. char cmd[9];
  5380. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5381. enquecommand(cmd);
  5382. lcd_setstatuspgm(WELCOME_MSG);
  5383. custom_message = false;
  5384. custom_message_type = 0;
  5385. #ifdef PAT9125
  5386. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5387. if (fsensor_M600)
  5388. {
  5389. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5390. st_synchronize();
  5391. while (!is_buffer_empty())
  5392. {
  5393. process_commands();
  5394. cmdqueue_pop_front();
  5395. }
  5396. fsensor_enable();
  5397. fsensor_restore_print_and_continue();
  5398. }
  5399. #endif //PAT9125
  5400. }
  5401. break;
  5402. #endif //FILAMENTCHANGEENABLE
  5403. case 601: {
  5404. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5405. }
  5406. break;
  5407. case 602: {
  5408. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5409. }
  5410. break;
  5411. #ifdef LIN_ADVANCE
  5412. case 900: // M900: Set LIN_ADVANCE options.
  5413. gcode_M900();
  5414. break;
  5415. #endif
  5416. case 907: // M907 Set digital trimpot motor current using axis codes.
  5417. {
  5418. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5419. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5420. if(code_seen('B')) st_current_set(4,code_value());
  5421. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5422. #endif
  5423. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5424. if(code_seen('X')) st_current_set(0, code_value());
  5425. #endif
  5426. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5427. if(code_seen('Z')) st_current_set(1, code_value());
  5428. #endif
  5429. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5430. if(code_seen('E')) st_current_set(2, code_value());
  5431. #endif
  5432. }
  5433. break;
  5434. case 908: // M908 Control digital trimpot directly.
  5435. {
  5436. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5437. uint8_t channel,current;
  5438. if(code_seen('P')) channel=code_value();
  5439. if(code_seen('S')) current=code_value();
  5440. digitalPotWrite(channel, current);
  5441. #endif
  5442. }
  5443. break;
  5444. #ifdef TMC2130
  5445. case 910: // M910 TMC2130 init
  5446. {
  5447. tmc2130_init();
  5448. }
  5449. break;
  5450. case 911: // M911 Set TMC2130 holding currents
  5451. {
  5452. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5453. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5454. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5455. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5456. }
  5457. break;
  5458. case 912: // M912 Set TMC2130 running currents
  5459. {
  5460. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5461. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5462. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5463. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5464. }
  5465. break;
  5466. case 913: // M913 Print TMC2130 currents
  5467. {
  5468. tmc2130_print_currents();
  5469. }
  5470. break;
  5471. case 914: // M914 Set normal mode
  5472. {
  5473. tmc2130_mode = TMC2130_MODE_NORMAL;
  5474. tmc2130_init();
  5475. }
  5476. break;
  5477. case 915: // M915 Set silent mode
  5478. {
  5479. tmc2130_mode = TMC2130_MODE_SILENT;
  5480. tmc2130_init();
  5481. }
  5482. break;
  5483. case 916: // M916 Set sg_thrs
  5484. {
  5485. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5486. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5487. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5488. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5489. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5490. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5491. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5492. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5493. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5494. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5495. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5496. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5497. }
  5498. break;
  5499. case 917: // M917 Set TMC2130 pwm_ampl
  5500. {
  5501. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5502. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5503. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5504. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5505. }
  5506. break;
  5507. case 918: // M918 Set TMC2130 pwm_grad
  5508. {
  5509. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5510. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5511. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5512. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5513. }
  5514. break;
  5515. #endif //TMC2130
  5516. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5517. {
  5518. #ifdef TMC2130
  5519. if(code_seen('E'))
  5520. {
  5521. uint16_t res_new = code_value();
  5522. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5523. {
  5524. st_synchronize();
  5525. uint8_t axis = E_AXIS;
  5526. uint16_t res = tmc2130_get_res(axis);
  5527. tmc2130_set_res(axis, res_new);
  5528. if (res_new > res)
  5529. {
  5530. uint16_t fac = (res_new / res);
  5531. axis_steps_per_unit[axis] *= fac;
  5532. position[E_AXIS] *= fac;
  5533. }
  5534. else
  5535. {
  5536. uint16_t fac = (res / res_new);
  5537. axis_steps_per_unit[axis] /= fac;
  5538. position[E_AXIS] /= fac;
  5539. }
  5540. }
  5541. }
  5542. #else //TMC2130
  5543. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5544. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5545. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5546. if(code_seen('B')) microstep_mode(4,code_value());
  5547. microstep_readings();
  5548. #endif
  5549. #endif //TMC2130
  5550. }
  5551. break;
  5552. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5553. {
  5554. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5555. if(code_seen('S')) switch((int)code_value())
  5556. {
  5557. case 1:
  5558. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5559. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5560. break;
  5561. case 2:
  5562. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5563. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5564. break;
  5565. }
  5566. microstep_readings();
  5567. #endif
  5568. }
  5569. break;
  5570. case 701: //M701: load filament
  5571. {
  5572. gcode_M701();
  5573. }
  5574. break;
  5575. case 702:
  5576. {
  5577. #ifdef SNMM
  5578. if (code_seen('U')) {
  5579. extr_unload_used(); //unload all filaments which were used in current print
  5580. }
  5581. else if (code_seen('C')) {
  5582. extr_unload(); //unload just current filament
  5583. }
  5584. else {
  5585. extr_unload_all(); //unload all filaments
  5586. }
  5587. #else
  5588. #ifdef PAT9125
  5589. bool old_fsensor_enabled = fsensor_enabled;
  5590. fsensor_enabled = false;
  5591. #endif //PAT9125
  5592. custom_message = true;
  5593. custom_message_type = 2;
  5594. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5595. // extr_unload2();
  5596. current_position[E_AXIS] -= 45;
  5597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5598. st_synchronize();
  5599. current_position[E_AXIS] -= 15;
  5600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5601. st_synchronize();
  5602. current_position[E_AXIS] -= 20;
  5603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5604. st_synchronize();
  5605. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5606. //disable extruder steppers so filament can be removed
  5607. disable_e0();
  5608. disable_e1();
  5609. disable_e2();
  5610. delay(100);
  5611. WRITE(BEEPER, HIGH);
  5612. uint8_t counterBeep = 0;
  5613. while (!lcd_clicked() && (counterBeep < 50)) {
  5614. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5615. delay_keep_alive(100);
  5616. counterBeep++;
  5617. }
  5618. WRITE(BEEPER, LOW);
  5619. st_synchronize();
  5620. while (lcd_clicked()) delay_keep_alive(100);
  5621. lcd_update_enable(true);
  5622. lcd_setstatuspgm(WELCOME_MSG);
  5623. custom_message = false;
  5624. custom_message_type = 0;
  5625. #ifdef PAT9125
  5626. fsensor_enabled = old_fsensor_enabled;
  5627. #endif //PAT9125
  5628. #endif
  5629. }
  5630. break;
  5631. case 999: // M999: Restart after being stopped
  5632. Stopped = false;
  5633. lcd_reset_alert_level();
  5634. gcode_LastN = Stopped_gcode_LastN;
  5635. FlushSerialRequestResend();
  5636. break;
  5637. default:
  5638. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5639. }
  5640. } // end if(code_seen('M')) (end of M codes)
  5641. else if(code_seen('T'))
  5642. {
  5643. int index;
  5644. st_synchronize();
  5645. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5646. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5647. SERIAL_ECHOLNPGM("Invalid T code.");
  5648. }
  5649. else {
  5650. if (*(strchr_pointer + index) == '?') {
  5651. tmp_extruder = choose_extruder_menu();
  5652. }
  5653. else {
  5654. tmp_extruder = code_value();
  5655. }
  5656. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5657. #ifdef SNMM
  5658. #ifdef LIN_ADVANCE
  5659. if (snmm_extruder != tmp_extruder)
  5660. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5661. #endif
  5662. snmm_extruder = tmp_extruder;
  5663. delay(100);
  5664. disable_e0();
  5665. disable_e1();
  5666. disable_e2();
  5667. pinMode(E_MUX0_PIN, OUTPUT);
  5668. pinMode(E_MUX1_PIN, OUTPUT);
  5669. pinMode(E_MUX2_PIN, OUTPUT);
  5670. delay(100);
  5671. SERIAL_ECHO_START;
  5672. SERIAL_ECHO("T:");
  5673. SERIAL_ECHOLN((int)tmp_extruder);
  5674. switch (tmp_extruder) {
  5675. case 1:
  5676. WRITE(E_MUX0_PIN, HIGH);
  5677. WRITE(E_MUX1_PIN, LOW);
  5678. WRITE(E_MUX2_PIN, LOW);
  5679. break;
  5680. case 2:
  5681. WRITE(E_MUX0_PIN, LOW);
  5682. WRITE(E_MUX1_PIN, HIGH);
  5683. WRITE(E_MUX2_PIN, LOW);
  5684. break;
  5685. case 3:
  5686. WRITE(E_MUX0_PIN, HIGH);
  5687. WRITE(E_MUX1_PIN, HIGH);
  5688. WRITE(E_MUX2_PIN, LOW);
  5689. break;
  5690. default:
  5691. WRITE(E_MUX0_PIN, LOW);
  5692. WRITE(E_MUX1_PIN, LOW);
  5693. WRITE(E_MUX2_PIN, LOW);
  5694. break;
  5695. }
  5696. delay(100);
  5697. #else
  5698. if (tmp_extruder >= EXTRUDERS) {
  5699. SERIAL_ECHO_START;
  5700. SERIAL_ECHOPGM("T");
  5701. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5702. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5703. }
  5704. else {
  5705. boolean make_move = false;
  5706. if (code_seen('F')) {
  5707. make_move = true;
  5708. next_feedrate = code_value();
  5709. if (next_feedrate > 0.0) {
  5710. feedrate = next_feedrate;
  5711. }
  5712. }
  5713. #if EXTRUDERS > 1
  5714. if (tmp_extruder != active_extruder) {
  5715. // Save current position to return to after applying extruder offset
  5716. memcpy(destination, current_position, sizeof(destination));
  5717. // Offset extruder (only by XY)
  5718. int i;
  5719. for (i = 0; i < 2; i++) {
  5720. current_position[i] = current_position[i] -
  5721. extruder_offset[i][active_extruder] +
  5722. extruder_offset[i][tmp_extruder];
  5723. }
  5724. // Set the new active extruder and position
  5725. active_extruder = tmp_extruder;
  5726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5727. // Move to the old position if 'F' was in the parameters
  5728. if (make_move && Stopped == false) {
  5729. prepare_move();
  5730. }
  5731. }
  5732. #endif
  5733. SERIAL_ECHO_START;
  5734. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5735. SERIAL_PROTOCOLLN((int)active_extruder);
  5736. }
  5737. #endif
  5738. }
  5739. } // end if(code_seen('T')) (end of T codes)
  5740. #ifdef DEBUG_DCODES
  5741. else if (code_seen('D')) // D codes (debug)
  5742. {
  5743. switch((int)code_value())
  5744. {
  5745. case -1: // D-1 - Endless loop
  5746. dcode__1(); break;
  5747. case 0: // D0 - Reset
  5748. dcode_0(); break;
  5749. case 1: // D1 - Clear EEPROM
  5750. dcode_1(); break;
  5751. case 2: // D2 - Read/Write RAM
  5752. dcode_2(); break;
  5753. case 3: // D3 - Read/Write EEPROM
  5754. dcode_3(); break;
  5755. case 4: // D4 - Read/Write PIN
  5756. dcode_4(); break;
  5757. case 5: // D5 - Read/Write FLASH
  5758. // dcode_5(); break;
  5759. break;
  5760. case 6: // D6 - Read/Write external FLASH
  5761. dcode_6(); break;
  5762. case 7: // D7 - Read/Write Bootloader
  5763. dcode_7(); break;
  5764. case 8: // D8 - Read/Write PINDA
  5765. dcode_8(); break;
  5766. case 9: // D9 - Read/Write ADC
  5767. dcode_9(); break;
  5768. case 10: // D10 - XYZ calibration = OK
  5769. dcode_10(); break;
  5770. #ifdef TMC2130
  5771. case 2130: // D9125 - TMC2130
  5772. dcode_2130(); break;
  5773. #endif //TMC2130
  5774. #ifdef PAT9125
  5775. case 9125: // D9125 - PAT9125
  5776. dcode_9125(); break;
  5777. #endif //PAT9125
  5778. }
  5779. }
  5780. #endif //DEBUG_DCODES
  5781. else
  5782. {
  5783. SERIAL_ECHO_START;
  5784. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5785. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5786. SERIAL_ECHOLNPGM("\"(2)");
  5787. }
  5788. KEEPALIVE_STATE(NOT_BUSY);
  5789. ClearToSend();
  5790. }
  5791. void FlushSerialRequestResend()
  5792. {
  5793. //char cmdbuffer[bufindr][100]="Resend:";
  5794. MYSERIAL.flush();
  5795. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5796. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5797. previous_millis_cmd = millis();
  5798. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5799. }
  5800. // Confirm the execution of a command, if sent from a serial line.
  5801. // Execution of a command from a SD card will not be confirmed.
  5802. void ClearToSend()
  5803. {
  5804. previous_millis_cmd = millis();
  5805. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5806. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5807. }
  5808. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5809. void update_currents() {
  5810. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5811. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5812. float tmp_motor[3];
  5813. //SERIAL_ECHOLNPGM("Currents updated: ");
  5814. if (destination[Z_AXIS] < Z_SILENT) {
  5815. //SERIAL_ECHOLNPGM("LOW");
  5816. for (uint8_t i = 0; i < 3; i++) {
  5817. st_current_set(i, current_low[i]);
  5818. /*MYSERIAL.print(int(i));
  5819. SERIAL_ECHOPGM(": ");
  5820. MYSERIAL.println(current_low[i]);*/
  5821. }
  5822. }
  5823. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5824. //SERIAL_ECHOLNPGM("HIGH");
  5825. for (uint8_t i = 0; i < 3; i++) {
  5826. st_current_set(i, current_high[i]);
  5827. /*MYSERIAL.print(int(i));
  5828. SERIAL_ECHOPGM(": ");
  5829. MYSERIAL.println(current_high[i]);*/
  5830. }
  5831. }
  5832. else {
  5833. for (uint8_t i = 0; i < 3; i++) {
  5834. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5835. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5836. st_current_set(i, tmp_motor[i]);
  5837. /*MYSERIAL.print(int(i));
  5838. SERIAL_ECHOPGM(": ");
  5839. MYSERIAL.println(tmp_motor[i]);*/
  5840. }
  5841. }
  5842. }
  5843. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5844. void get_coordinates()
  5845. {
  5846. bool seen[4]={false,false,false,false};
  5847. for(int8_t i=0; i < NUM_AXIS; i++) {
  5848. if(code_seen(axis_codes[i]))
  5849. {
  5850. bool relative = axis_relative_modes[i] || relative_mode;
  5851. destination[i] = (float)code_value();
  5852. if (i == E_AXIS) {
  5853. float emult = extruder_multiplier[active_extruder];
  5854. if (emult != 1.) {
  5855. if (! relative) {
  5856. destination[i] -= current_position[i];
  5857. relative = true;
  5858. }
  5859. destination[i] *= emult;
  5860. }
  5861. }
  5862. if (relative)
  5863. destination[i] += current_position[i];
  5864. seen[i]=true;
  5865. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5866. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5867. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5868. }
  5869. else destination[i] = current_position[i]; //Are these else lines really needed?
  5870. }
  5871. if(code_seen('F')) {
  5872. next_feedrate = code_value();
  5873. #ifdef MAX_SILENT_FEEDRATE
  5874. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5875. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5876. #endif //MAX_SILENT_FEEDRATE
  5877. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5878. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  5879. {
  5880. // float e_max_speed =
  5881. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  5882. }
  5883. }
  5884. }
  5885. void get_arc_coordinates()
  5886. {
  5887. #ifdef SF_ARC_FIX
  5888. bool relative_mode_backup = relative_mode;
  5889. relative_mode = true;
  5890. #endif
  5891. get_coordinates();
  5892. #ifdef SF_ARC_FIX
  5893. relative_mode=relative_mode_backup;
  5894. #endif
  5895. if(code_seen('I')) {
  5896. offset[0] = code_value();
  5897. }
  5898. else {
  5899. offset[0] = 0.0;
  5900. }
  5901. if(code_seen('J')) {
  5902. offset[1] = code_value();
  5903. }
  5904. else {
  5905. offset[1] = 0.0;
  5906. }
  5907. }
  5908. void clamp_to_software_endstops(float target[3])
  5909. {
  5910. #ifdef DEBUG_DISABLE_SWLIMITS
  5911. return;
  5912. #endif //DEBUG_DISABLE_SWLIMITS
  5913. world2machine_clamp(target[0], target[1]);
  5914. // Clamp the Z coordinate.
  5915. if (min_software_endstops) {
  5916. float negative_z_offset = 0;
  5917. #ifdef ENABLE_AUTO_BED_LEVELING
  5918. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5919. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5920. #endif
  5921. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5922. }
  5923. if (max_software_endstops) {
  5924. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5925. }
  5926. }
  5927. #ifdef MESH_BED_LEVELING
  5928. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5929. float dx = x - current_position[X_AXIS];
  5930. float dy = y - current_position[Y_AXIS];
  5931. float dz = z - current_position[Z_AXIS];
  5932. int n_segments = 0;
  5933. if (mbl.active) {
  5934. float len = abs(dx) + abs(dy);
  5935. if (len > 0)
  5936. // Split to 3cm segments or shorter.
  5937. n_segments = int(ceil(len / 30.f));
  5938. }
  5939. if (n_segments > 1) {
  5940. float de = e - current_position[E_AXIS];
  5941. for (int i = 1; i < n_segments; ++ i) {
  5942. float t = float(i) / float(n_segments);
  5943. plan_buffer_line(
  5944. current_position[X_AXIS] + t * dx,
  5945. current_position[Y_AXIS] + t * dy,
  5946. current_position[Z_AXIS] + t * dz,
  5947. current_position[E_AXIS] + t * de,
  5948. feed_rate, extruder);
  5949. }
  5950. }
  5951. // The rest of the path.
  5952. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5953. current_position[X_AXIS] = x;
  5954. current_position[Y_AXIS] = y;
  5955. current_position[Z_AXIS] = z;
  5956. current_position[E_AXIS] = e;
  5957. }
  5958. #endif // MESH_BED_LEVELING
  5959. void prepare_move()
  5960. {
  5961. clamp_to_software_endstops(destination);
  5962. previous_millis_cmd = millis();
  5963. // Do not use feedmultiply for E or Z only moves
  5964. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5965. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5966. }
  5967. else {
  5968. #ifdef MESH_BED_LEVELING
  5969. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5970. #else
  5971. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5972. #endif
  5973. }
  5974. for(int8_t i=0; i < NUM_AXIS; i++) {
  5975. current_position[i] = destination[i];
  5976. }
  5977. }
  5978. void prepare_arc_move(char isclockwise) {
  5979. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5980. // Trace the arc
  5981. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5982. // As far as the parser is concerned, the position is now == target. In reality the
  5983. // motion control system might still be processing the action and the real tool position
  5984. // in any intermediate location.
  5985. for(int8_t i=0; i < NUM_AXIS; i++) {
  5986. current_position[i] = destination[i];
  5987. }
  5988. previous_millis_cmd = millis();
  5989. }
  5990. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5991. #if defined(FAN_PIN)
  5992. #if CONTROLLERFAN_PIN == FAN_PIN
  5993. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5994. #endif
  5995. #endif
  5996. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5997. unsigned long lastMotorCheck = 0;
  5998. void controllerFan()
  5999. {
  6000. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6001. {
  6002. lastMotorCheck = millis();
  6003. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6004. #if EXTRUDERS > 2
  6005. || !READ(E2_ENABLE_PIN)
  6006. #endif
  6007. #if EXTRUDER > 1
  6008. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6009. || !READ(X2_ENABLE_PIN)
  6010. #endif
  6011. || !READ(E1_ENABLE_PIN)
  6012. #endif
  6013. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6014. {
  6015. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6016. }
  6017. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6018. {
  6019. digitalWrite(CONTROLLERFAN_PIN, 0);
  6020. analogWrite(CONTROLLERFAN_PIN, 0);
  6021. }
  6022. else
  6023. {
  6024. // allows digital or PWM fan output to be used (see M42 handling)
  6025. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6026. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6027. }
  6028. }
  6029. }
  6030. #endif
  6031. #ifdef TEMP_STAT_LEDS
  6032. static bool blue_led = false;
  6033. static bool red_led = false;
  6034. static uint32_t stat_update = 0;
  6035. void handle_status_leds(void) {
  6036. float max_temp = 0.0;
  6037. if(millis() > stat_update) {
  6038. stat_update += 500; // Update every 0.5s
  6039. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6040. max_temp = max(max_temp, degHotend(cur_extruder));
  6041. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6042. }
  6043. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6044. max_temp = max(max_temp, degTargetBed());
  6045. max_temp = max(max_temp, degBed());
  6046. #endif
  6047. if((max_temp > 55.0) && (red_led == false)) {
  6048. digitalWrite(STAT_LED_RED, 1);
  6049. digitalWrite(STAT_LED_BLUE, 0);
  6050. red_led = true;
  6051. blue_led = false;
  6052. }
  6053. if((max_temp < 54.0) && (blue_led == false)) {
  6054. digitalWrite(STAT_LED_RED, 0);
  6055. digitalWrite(STAT_LED_BLUE, 1);
  6056. red_led = false;
  6057. blue_led = true;
  6058. }
  6059. }
  6060. }
  6061. #endif
  6062. #ifdef SAFETYTIMER
  6063. /**
  6064. * @brief Turn off heating after 15 minutes of inactivity
  6065. */
  6066. static void handleSafetyTimer()
  6067. {
  6068. #if (EXTRUDERS > 1)
  6069. #error Implemented only for one extruder.
  6070. #endif //(EXTRUDERS > 1)
  6071. static Timer safetyTimer;
  6072. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  6073. (!degTargetBed() && !degTargetHotend(0)))
  6074. {
  6075. safetyTimer.stop();
  6076. }
  6077. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6078. {
  6079. safetyTimer.start();
  6080. }
  6081. else if (safetyTimer.expired(15*60*1000))
  6082. {
  6083. setTargetBed(0);
  6084. setTargetHotend(0, 0);
  6085. }
  6086. }
  6087. #endif //SAFETYTIMER
  6088. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6089. {
  6090. #ifdef PAT9125
  6091. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6092. {
  6093. if (fsensor_autoload_enabled)
  6094. {
  6095. if (fsensor_check_autoload())
  6096. {
  6097. if (degHotend0() > EXTRUDE_MINTEMP)
  6098. {
  6099. fsensor_autoload_check_stop();
  6100. tone(BEEPER, 1000);
  6101. delay_keep_alive(50);
  6102. noTone(BEEPER);
  6103. loading_flag = true;
  6104. enquecommand_front_P((PSTR("M701")));
  6105. }
  6106. else
  6107. {
  6108. lcd_update_enable(false);
  6109. lcd_implementation_clear();
  6110. lcd.setCursor(0, 0);
  6111. lcd_printPGM(MSG_ERROR);
  6112. lcd.setCursor(0, 2);
  6113. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6114. delay(2000);
  6115. lcd_implementation_clear();
  6116. lcd_update_enable(true);
  6117. }
  6118. }
  6119. }
  6120. else
  6121. fsensor_autoload_check_start();
  6122. }
  6123. else
  6124. if (fsensor_autoload_enabled)
  6125. fsensor_autoload_check_stop();
  6126. #endif //PAT9125
  6127. #ifdef SAFETYTIMER
  6128. handleSafetyTimer();
  6129. #endif //SAFETYTIMER
  6130. #ifdef SAFETYTIMER
  6131. handleSafetyTimer();
  6132. #endif //SAFETYTIMER
  6133. #if defined(KILL_PIN) && KILL_PIN > -1
  6134. static int killCount = 0; // make the inactivity button a bit less responsive
  6135. const int KILL_DELAY = 10000;
  6136. #endif
  6137. if(buflen < (BUFSIZE-1)){
  6138. get_command();
  6139. }
  6140. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6141. if(max_inactive_time)
  6142. kill("", 4);
  6143. if(stepper_inactive_time) {
  6144. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6145. {
  6146. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6147. disable_x();
  6148. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6149. disable_y();
  6150. disable_z();
  6151. disable_e0();
  6152. disable_e1();
  6153. disable_e2();
  6154. }
  6155. }
  6156. }
  6157. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6158. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6159. {
  6160. chdkActive = false;
  6161. WRITE(CHDK, LOW);
  6162. }
  6163. #endif
  6164. #if defined(KILL_PIN) && KILL_PIN > -1
  6165. // Check if the kill button was pressed and wait just in case it was an accidental
  6166. // key kill key press
  6167. // -------------------------------------------------------------------------------
  6168. if( 0 == READ(KILL_PIN) )
  6169. {
  6170. killCount++;
  6171. }
  6172. else if (killCount > 0)
  6173. {
  6174. killCount--;
  6175. }
  6176. // Exceeded threshold and we can confirm that it was not accidental
  6177. // KILL the machine
  6178. // ----------------------------------------------------------------
  6179. if ( killCount >= KILL_DELAY)
  6180. {
  6181. kill("", 5);
  6182. }
  6183. #endif
  6184. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6185. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6186. #endif
  6187. #ifdef EXTRUDER_RUNOUT_PREVENT
  6188. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6189. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6190. {
  6191. bool oldstatus=READ(E0_ENABLE_PIN);
  6192. enable_e0();
  6193. float oldepos=current_position[E_AXIS];
  6194. float oldedes=destination[E_AXIS];
  6195. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6196. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6197. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6198. current_position[E_AXIS]=oldepos;
  6199. destination[E_AXIS]=oldedes;
  6200. plan_set_e_position(oldepos);
  6201. previous_millis_cmd=millis();
  6202. st_synchronize();
  6203. WRITE(E0_ENABLE_PIN,oldstatus);
  6204. }
  6205. #endif
  6206. #ifdef TEMP_STAT_LEDS
  6207. handle_status_leds();
  6208. #endif
  6209. check_axes_activity();
  6210. }
  6211. void kill(const char *full_screen_message, unsigned char id)
  6212. {
  6213. SERIAL_ECHOPGM("KILL: ");
  6214. MYSERIAL.println(int(id));
  6215. //return;
  6216. cli(); // Stop interrupts
  6217. disable_heater();
  6218. disable_x();
  6219. // SERIAL_ECHOLNPGM("kill - disable Y");
  6220. disable_y();
  6221. disable_z();
  6222. disable_e0();
  6223. disable_e1();
  6224. disable_e2();
  6225. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6226. pinMode(PS_ON_PIN,INPUT);
  6227. #endif
  6228. SERIAL_ERROR_START;
  6229. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6230. if (full_screen_message != NULL) {
  6231. SERIAL_ERRORLNRPGM(full_screen_message);
  6232. lcd_display_message_fullscreen_P(full_screen_message);
  6233. } else {
  6234. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6235. }
  6236. // FMC small patch to update the LCD before ending
  6237. sei(); // enable interrupts
  6238. for ( int i=5; i--; lcd_update())
  6239. {
  6240. delay(200);
  6241. }
  6242. cli(); // disable interrupts
  6243. suicide();
  6244. while(1)
  6245. {
  6246. #ifdef WATCHDOG
  6247. wdt_reset();
  6248. #endif //WATCHDOG
  6249. /* Intentionally left empty */
  6250. } // Wait for reset
  6251. }
  6252. void Stop()
  6253. {
  6254. disable_heater();
  6255. if(Stopped == false) {
  6256. Stopped = true;
  6257. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6258. SERIAL_ERROR_START;
  6259. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6260. LCD_MESSAGERPGM(MSG_STOPPED);
  6261. }
  6262. }
  6263. bool IsStopped() { return Stopped; };
  6264. #ifdef FAST_PWM_FAN
  6265. void setPwmFrequency(uint8_t pin, int val)
  6266. {
  6267. val &= 0x07;
  6268. switch(digitalPinToTimer(pin))
  6269. {
  6270. #if defined(TCCR0A)
  6271. case TIMER0A:
  6272. case TIMER0B:
  6273. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6274. // TCCR0B |= val;
  6275. break;
  6276. #endif
  6277. #if defined(TCCR1A)
  6278. case TIMER1A:
  6279. case TIMER1B:
  6280. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6281. // TCCR1B |= val;
  6282. break;
  6283. #endif
  6284. #if defined(TCCR2)
  6285. case TIMER2:
  6286. case TIMER2:
  6287. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6288. TCCR2 |= val;
  6289. break;
  6290. #endif
  6291. #if defined(TCCR2A)
  6292. case TIMER2A:
  6293. case TIMER2B:
  6294. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6295. TCCR2B |= val;
  6296. break;
  6297. #endif
  6298. #if defined(TCCR3A)
  6299. case TIMER3A:
  6300. case TIMER3B:
  6301. case TIMER3C:
  6302. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6303. TCCR3B |= val;
  6304. break;
  6305. #endif
  6306. #if defined(TCCR4A)
  6307. case TIMER4A:
  6308. case TIMER4B:
  6309. case TIMER4C:
  6310. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6311. TCCR4B |= val;
  6312. break;
  6313. #endif
  6314. #if defined(TCCR5A)
  6315. case TIMER5A:
  6316. case TIMER5B:
  6317. case TIMER5C:
  6318. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6319. TCCR5B |= val;
  6320. break;
  6321. #endif
  6322. }
  6323. }
  6324. #endif //FAST_PWM_FAN
  6325. bool setTargetedHotend(int code){
  6326. tmp_extruder = active_extruder;
  6327. if(code_seen('T')) {
  6328. tmp_extruder = code_value();
  6329. if(tmp_extruder >= EXTRUDERS) {
  6330. SERIAL_ECHO_START;
  6331. switch(code){
  6332. case 104:
  6333. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6334. break;
  6335. case 105:
  6336. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6337. break;
  6338. case 109:
  6339. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6340. break;
  6341. case 218:
  6342. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6343. break;
  6344. case 221:
  6345. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6346. break;
  6347. }
  6348. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6349. return true;
  6350. }
  6351. }
  6352. return false;
  6353. }
  6354. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6355. {
  6356. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6357. {
  6358. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6359. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6360. }
  6361. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6362. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6363. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6364. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6365. total_filament_used = 0;
  6366. }
  6367. float calculate_extruder_multiplier(float diameter) {
  6368. float out = 1.f;
  6369. if (volumetric_enabled && diameter > 0.f) {
  6370. float area = M_PI * diameter * diameter * 0.25;
  6371. out = 1.f / area;
  6372. }
  6373. if (extrudemultiply != 100)
  6374. out *= float(extrudemultiply) * 0.01f;
  6375. return out;
  6376. }
  6377. void calculate_extruder_multipliers() {
  6378. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6379. #if EXTRUDERS > 1
  6380. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6381. #if EXTRUDERS > 2
  6382. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6383. #endif
  6384. #endif
  6385. }
  6386. void delay_keep_alive(unsigned int ms)
  6387. {
  6388. for (;;) {
  6389. manage_heater();
  6390. // Manage inactivity, but don't disable steppers on timeout.
  6391. manage_inactivity(true);
  6392. lcd_update();
  6393. if (ms == 0)
  6394. break;
  6395. else if (ms >= 50) {
  6396. delay(50);
  6397. ms -= 50;
  6398. } else {
  6399. delay(ms);
  6400. ms = 0;
  6401. }
  6402. }
  6403. }
  6404. void wait_for_heater(long codenum) {
  6405. #ifdef TEMP_RESIDENCY_TIME
  6406. long residencyStart;
  6407. residencyStart = -1;
  6408. /* continue to loop until we have reached the target temp
  6409. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6410. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6411. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6412. #else
  6413. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6414. #endif //TEMP_RESIDENCY_TIME
  6415. if ((millis() - codenum) > 1000UL)
  6416. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6417. if (!farm_mode) {
  6418. SERIAL_PROTOCOLPGM("T:");
  6419. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6420. SERIAL_PROTOCOLPGM(" E:");
  6421. SERIAL_PROTOCOL((int)tmp_extruder);
  6422. #ifdef TEMP_RESIDENCY_TIME
  6423. SERIAL_PROTOCOLPGM(" W:");
  6424. if (residencyStart > -1)
  6425. {
  6426. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6427. SERIAL_PROTOCOLLN(codenum);
  6428. }
  6429. else
  6430. {
  6431. SERIAL_PROTOCOLLN("?");
  6432. }
  6433. }
  6434. #else
  6435. SERIAL_PROTOCOLLN("");
  6436. #endif
  6437. codenum = millis();
  6438. }
  6439. manage_heater();
  6440. manage_inactivity();
  6441. lcd_update();
  6442. #ifdef TEMP_RESIDENCY_TIME
  6443. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6444. or when current temp falls outside the hysteresis after target temp was reached */
  6445. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6446. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6447. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6448. {
  6449. residencyStart = millis();
  6450. }
  6451. #endif //TEMP_RESIDENCY_TIME
  6452. }
  6453. }
  6454. void check_babystep() {
  6455. int babystep_z;
  6456. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6457. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6458. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6459. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6460. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6461. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6462. lcd_update_enable(true);
  6463. }
  6464. }
  6465. #ifdef DIS
  6466. void d_setup()
  6467. {
  6468. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6469. pinMode(D_DATA, INPUT_PULLUP);
  6470. pinMode(D_REQUIRE, OUTPUT);
  6471. digitalWrite(D_REQUIRE, HIGH);
  6472. }
  6473. float d_ReadData()
  6474. {
  6475. int digit[13];
  6476. String mergeOutput;
  6477. float output;
  6478. digitalWrite(D_REQUIRE, HIGH);
  6479. for (int i = 0; i<13; i++)
  6480. {
  6481. for (int j = 0; j < 4; j++)
  6482. {
  6483. while (digitalRead(D_DATACLOCK) == LOW) {}
  6484. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6485. bitWrite(digit[i], j, digitalRead(D_DATA));
  6486. }
  6487. }
  6488. digitalWrite(D_REQUIRE, LOW);
  6489. mergeOutput = "";
  6490. output = 0;
  6491. for (int r = 5; r <= 10; r++) //Merge digits
  6492. {
  6493. mergeOutput += digit[r];
  6494. }
  6495. output = mergeOutput.toFloat();
  6496. if (digit[4] == 8) //Handle sign
  6497. {
  6498. output *= -1;
  6499. }
  6500. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6501. {
  6502. output /= 10;
  6503. }
  6504. return output;
  6505. }
  6506. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6507. int t1 = 0;
  6508. int t_delay = 0;
  6509. int digit[13];
  6510. int m;
  6511. char str[3];
  6512. //String mergeOutput;
  6513. char mergeOutput[15];
  6514. float output;
  6515. int mesh_point = 0; //index number of calibration point
  6516. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6517. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6518. float mesh_home_z_search = 4;
  6519. float row[x_points_num];
  6520. int ix = 0;
  6521. int iy = 0;
  6522. char* filename_wldsd = "wldsd.txt";
  6523. char data_wldsd[70];
  6524. char numb_wldsd[10];
  6525. d_setup();
  6526. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6527. // We don't know where we are! HOME!
  6528. // Push the commands to the front of the message queue in the reverse order!
  6529. // There shall be always enough space reserved for these commands.
  6530. repeatcommand_front(); // repeat G80 with all its parameters
  6531. enquecommand_front_P((PSTR("G28 W0")));
  6532. enquecommand_front_P((PSTR("G1 Z5")));
  6533. return;
  6534. }
  6535. bool custom_message_old = custom_message;
  6536. unsigned int custom_message_type_old = custom_message_type;
  6537. unsigned int custom_message_state_old = custom_message_state;
  6538. custom_message = true;
  6539. custom_message_type = 1;
  6540. custom_message_state = (x_points_num * y_points_num) + 10;
  6541. lcd_update(1);
  6542. mbl.reset();
  6543. babystep_undo();
  6544. card.openFile(filename_wldsd, false);
  6545. current_position[Z_AXIS] = mesh_home_z_search;
  6546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6547. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6548. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6549. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6550. setup_for_endstop_move(false);
  6551. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6552. SERIAL_PROTOCOL(x_points_num);
  6553. SERIAL_PROTOCOLPGM(",");
  6554. SERIAL_PROTOCOL(y_points_num);
  6555. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6556. SERIAL_PROTOCOL(mesh_home_z_search);
  6557. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6558. SERIAL_PROTOCOL(x_dimension);
  6559. SERIAL_PROTOCOLPGM(",");
  6560. SERIAL_PROTOCOL(y_dimension);
  6561. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6562. while (mesh_point != x_points_num * y_points_num) {
  6563. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6564. iy = mesh_point / x_points_num;
  6565. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6566. float z0 = 0.f;
  6567. current_position[Z_AXIS] = mesh_home_z_search;
  6568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6569. st_synchronize();
  6570. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6571. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6572. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6573. st_synchronize();
  6574. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6575. break;
  6576. card.closefile();
  6577. }
  6578. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6579. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6580. //strcat(data_wldsd, numb_wldsd);
  6581. //MYSERIAL.println(data_wldsd);
  6582. //delay(1000);
  6583. //delay(3000);
  6584. //t1 = millis();
  6585. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6586. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6587. memset(digit, 0, sizeof(digit));
  6588. //cli();
  6589. digitalWrite(D_REQUIRE, LOW);
  6590. for (int i = 0; i<13; i++)
  6591. {
  6592. //t1 = millis();
  6593. for (int j = 0; j < 4; j++)
  6594. {
  6595. while (digitalRead(D_DATACLOCK) == LOW) {}
  6596. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6597. bitWrite(digit[i], j, digitalRead(D_DATA));
  6598. }
  6599. //t_delay = (millis() - t1);
  6600. //SERIAL_PROTOCOLPGM(" ");
  6601. //SERIAL_PROTOCOL_F(t_delay, 5);
  6602. //SERIAL_PROTOCOLPGM(" ");
  6603. }
  6604. //sei();
  6605. digitalWrite(D_REQUIRE, HIGH);
  6606. mergeOutput[0] = '\0';
  6607. output = 0;
  6608. for (int r = 5; r <= 10; r++) //Merge digits
  6609. {
  6610. sprintf(str, "%d", digit[r]);
  6611. strcat(mergeOutput, str);
  6612. }
  6613. output = atof(mergeOutput);
  6614. if (digit[4] == 8) //Handle sign
  6615. {
  6616. output *= -1;
  6617. }
  6618. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6619. {
  6620. output *= 0.1;
  6621. }
  6622. //output = d_ReadData();
  6623. //row[ix] = current_position[Z_AXIS];
  6624. memset(data_wldsd, 0, sizeof(data_wldsd));
  6625. for (int i = 0; i <3; i++) {
  6626. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6627. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6628. strcat(data_wldsd, numb_wldsd);
  6629. strcat(data_wldsd, ";");
  6630. }
  6631. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6632. dtostrf(output, 8, 5, numb_wldsd);
  6633. strcat(data_wldsd, numb_wldsd);
  6634. //strcat(data_wldsd, ";");
  6635. card.write_command(data_wldsd);
  6636. //row[ix] = d_ReadData();
  6637. row[ix] = output; // current_position[Z_AXIS];
  6638. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6639. for (int i = 0; i < x_points_num; i++) {
  6640. SERIAL_PROTOCOLPGM(" ");
  6641. SERIAL_PROTOCOL_F(row[i], 5);
  6642. }
  6643. SERIAL_PROTOCOLPGM("\n");
  6644. }
  6645. custom_message_state--;
  6646. mesh_point++;
  6647. lcd_update(1);
  6648. }
  6649. card.closefile();
  6650. }
  6651. #endif
  6652. void temp_compensation_start() {
  6653. custom_message = true;
  6654. custom_message_type = 5;
  6655. custom_message_state = PINDA_HEAT_T + 1;
  6656. lcd_update(2);
  6657. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6658. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6659. }
  6660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6661. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6662. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6663. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6665. st_synchronize();
  6666. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6667. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6668. delay_keep_alive(1000);
  6669. custom_message_state = PINDA_HEAT_T - i;
  6670. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6671. else lcd_update(1);
  6672. }
  6673. custom_message_type = 0;
  6674. custom_message_state = 0;
  6675. custom_message = false;
  6676. }
  6677. void temp_compensation_apply() {
  6678. int i_add;
  6679. int compensation_value;
  6680. int z_shift = 0;
  6681. float z_shift_mm;
  6682. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6683. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6684. i_add = (target_temperature_bed - 60) / 10;
  6685. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6686. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6687. }else {
  6688. //interpolation
  6689. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6690. }
  6691. SERIAL_PROTOCOLPGM("\n");
  6692. SERIAL_PROTOCOLPGM("Z shift applied:");
  6693. MYSERIAL.print(z_shift_mm);
  6694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6695. st_synchronize();
  6696. plan_set_z_position(current_position[Z_AXIS]);
  6697. }
  6698. else {
  6699. //we have no temp compensation data
  6700. }
  6701. }
  6702. float temp_comp_interpolation(float inp_temperature) {
  6703. //cubic spline interpolation
  6704. int n, i, j, k;
  6705. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6706. int shift[10];
  6707. int temp_C[10];
  6708. n = 6; //number of measured points
  6709. shift[0] = 0;
  6710. for (i = 0; i < n; i++) {
  6711. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6712. temp_C[i] = 50 + i * 10; //temperature in C
  6713. #ifdef PINDA_THERMISTOR
  6714. temp_C[i] = 35 + i * 5; //temperature in C
  6715. #else
  6716. temp_C[i] = 50 + i * 10; //temperature in C
  6717. #endif
  6718. x[i] = (float)temp_C[i];
  6719. f[i] = (float)shift[i];
  6720. }
  6721. if (inp_temperature < x[0]) return 0;
  6722. for (i = n - 1; i>0; i--) {
  6723. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6724. h[i - 1] = x[i] - x[i - 1];
  6725. }
  6726. //*********** formation of h, s , f matrix **************
  6727. for (i = 1; i<n - 1; i++) {
  6728. m[i][i] = 2 * (h[i - 1] + h[i]);
  6729. if (i != 1) {
  6730. m[i][i - 1] = h[i - 1];
  6731. m[i - 1][i] = h[i - 1];
  6732. }
  6733. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6734. }
  6735. //*********** forward elimination **************
  6736. for (i = 1; i<n - 2; i++) {
  6737. temp = (m[i + 1][i] / m[i][i]);
  6738. for (j = 1; j <= n - 1; j++)
  6739. m[i + 1][j] -= temp*m[i][j];
  6740. }
  6741. //*********** backward substitution *********
  6742. for (i = n - 2; i>0; i--) {
  6743. sum = 0;
  6744. for (j = i; j <= n - 2; j++)
  6745. sum += m[i][j] * s[j];
  6746. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6747. }
  6748. for (i = 0; i<n - 1; i++)
  6749. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6750. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6751. b = s[i] / 2;
  6752. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6753. d = f[i];
  6754. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6755. }
  6756. return sum;
  6757. }
  6758. #ifdef PINDA_THERMISTOR
  6759. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6760. {
  6761. if (!temp_cal_active) return 0;
  6762. if (!calibration_status_pinda()) return 0;
  6763. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6764. }
  6765. #endif //PINDA_THERMISTOR
  6766. void long_pause() //long pause print
  6767. {
  6768. st_synchronize();
  6769. //save currently set parameters to global variables
  6770. saved_feedmultiply = feedmultiply;
  6771. HotendTempBckp = degTargetHotend(active_extruder);
  6772. fanSpeedBckp = fanSpeed;
  6773. start_pause_print = millis();
  6774. //save position
  6775. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6776. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6777. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6778. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6779. //retract
  6780. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6782. //lift z
  6783. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6784. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6786. //set nozzle target temperature to 0
  6787. setTargetHotend(0, 0);
  6788. setTargetHotend(0, 1);
  6789. setTargetHotend(0, 2);
  6790. //Move XY to side
  6791. current_position[X_AXIS] = X_PAUSE_POS;
  6792. current_position[Y_AXIS] = Y_PAUSE_POS;
  6793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6794. // Turn off the print fan
  6795. fanSpeed = 0;
  6796. st_synchronize();
  6797. }
  6798. void serialecho_temperatures() {
  6799. float tt = degHotend(active_extruder);
  6800. SERIAL_PROTOCOLPGM("T:");
  6801. SERIAL_PROTOCOL(tt);
  6802. SERIAL_PROTOCOLPGM(" E:");
  6803. SERIAL_PROTOCOL((int)active_extruder);
  6804. SERIAL_PROTOCOLPGM(" B:");
  6805. SERIAL_PROTOCOL_F(degBed(), 1);
  6806. SERIAL_PROTOCOLLN("");
  6807. }
  6808. extern uint32_t sdpos_atomic;
  6809. #ifdef UVLO_SUPPORT
  6810. void uvlo_()
  6811. {
  6812. unsigned long time_start = millis();
  6813. bool sd_print = card.sdprinting;
  6814. // Conserve power as soon as possible.
  6815. disable_x();
  6816. disable_y();
  6817. disable_e0();
  6818. #ifdef TMC2130
  6819. tmc2130_set_current_h(Z_AXIS, 20);
  6820. tmc2130_set_current_r(Z_AXIS, 20);
  6821. tmc2130_set_current_h(E_AXIS, 20);
  6822. tmc2130_set_current_r(E_AXIS, 20);
  6823. #endif //TMC2130
  6824. // Indicate that the interrupt has been triggered.
  6825. // SERIAL_ECHOLNPGM("UVLO");
  6826. // Read out the current Z motor microstep counter. This will be later used
  6827. // for reaching the zero full step before powering off.
  6828. uint16_t z_microsteps = 0;
  6829. #ifdef TMC2130
  6830. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6831. #endif //TMC2130
  6832. // Calculate the file position, from which to resume this print.
  6833. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6834. {
  6835. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6836. sd_position -= sdlen_planner;
  6837. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6838. sd_position -= sdlen_cmdqueue;
  6839. if (sd_position < 0) sd_position = 0;
  6840. }
  6841. // Backup the feedrate in mm/min.
  6842. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6843. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6844. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6845. // are in action.
  6846. planner_abort_hard();
  6847. // Store the current extruder position.
  6848. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6849. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6850. // Clean the input command queue.
  6851. cmdqueue_reset();
  6852. card.sdprinting = false;
  6853. // card.closefile();
  6854. // Enable stepper driver interrupt to move Z axis.
  6855. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6856. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6857. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6858. sei();
  6859. plan_buffer_line(
  6860. current_position[X_AXIS],
  6861. current_position[Y_AXIS],
  6862. current_position[Z_AXIS],
  6863. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6864. 95, active_extruder);
  6865. st_synchronize();
  6866. disable_e0();
  6867. plan_buffer_line(
  6868. current_position[X_AXIS],
  6869. current_position[Y_AXIS],
  6870. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6871. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6872. 40, active_extruder);
  6873. st_synchronize();
  6874. disable_e0();
  6875. plan_buffer_line(
  6876. current_position[X_AXIS],
  6877. current_position[Y_AXIS],
  6878. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6879. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6880. 40, active_extruder);
  6881. st_synchronize();
  6882. disable_e0();
  6883. disable_z();
  6884. // Move Z up to the next 0th full step.
  6885. // Write the file position.
  6886. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6887. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6888. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6889. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6890. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6891. // Scale the z value to 1u resolution.
  6892. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6893. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6894. }
  6895. // Read out the current Z motor microstep counter. This will be later used
  6896. // for reaching the zero full step before powering off.
  6897. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6898. // Store the current position.
  6899. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6900. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6901. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6902. // Store the current feed rate, temperatures and fan speed.
  6903. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6904. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6905. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6906. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6907. // Finaly store the "power outage" flag.
  6908. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6909. st_synchronize();
  6910. SERIAL_ECHOPGM("stps");
  6911. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6912. disable_z();
  6913. // Increment power failure counter
  6914. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6915. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6916. SERIAL_ECHOLNPGM("UVLO - end");
  6917. MYSERIAL.println(millis() - time_start);
  6918. #if 0
  6919. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6920. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6922. st_synchronize();
  6923. #endif
  6924. cli();
  6925. volatile unsigned int ppcount = 0;
  6926. SET_OUTPUT(BEEPER);
  6927. WRITE(BEEPER, HIGH);
  6928. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6929. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6930. }
  6931. WRITE(BEEPER, LOW);
  6932. while(1){
  6933. #if 1
  6934. WRITE(BEEPER, LOW);
  6935. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6936. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6937. }
  6938. #endif
  6939. };
  6940. }
  6941. #endif //UVLO_SUPPORT
  6942. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6943. void setup_fan_interrupt() {
  6944. //INT7
  6945. DDRE &= ~(1 << 7); //input pin
  6946. PORTE &= ~(1 << 7); //no internal pull-up
  6947. //start with sensing rising edge
  6948. EICRB &= ~(1 << 6);
  6949. EICRB |= (1 << 7);
  6950. //enable INT7 interrupt
  6951. EIMSK |= (1 << 7);
  6952. }
  6953. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6954. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6955. ISR(INT7_vect) {
  6956. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6957. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6958. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6959. t_fan_rising_edge = millis_nc();
  6960. }
  6961. else { //interrupt was triggered by falling edge
  6962. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6963. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6964. }
  6965. }
  6966. EICRB ^= (1 << 6); //change edge
  6967. }
  6968. #endif
  6969. #ifdef UVLO_SUPPORT
  6970. void setup_uvlo_interrupt() {
  6971. DDRE &= ~(1 << 4); //input pin
  6972. PORTE &= ~(1 << 4); //no internal pull-up
  6973. //sensing falling edge
  6974. EICRB |= (1 << 0);
  6975. EICRB &= ~(1 << 1);
  6976. //enable INT4 interrupt
  6977. EIMSK |= (1 << 4);
  6978. }
  6979. ISR(INT4_vect) {
  6980. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6981. SERIAL_ECHOLNPGM("INT4");
  6982. if (IS_SD_PRINTING) uvlo_();
  6983. }
  6984. void recover_print(uint8_t automatic) {
  6985. char cmd[30];
  6986. lcd_update_enable(true);
  6987. lcd_update(2);
  6988. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6989. recover_machine_state_after_power_panic();
  6990. // Set the target bed and nozzle temperatures.
  6991. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6992. enquecommand(cmd);
  6993. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6994. enquecommand(cmd);
  6995. // Lift the print head, so one may remove the excess priming material.
  6996. if (current_position[Z_AXIS] < 25)
  6997. enquecommand_P(PSTR("G1 Z25 F800"));
  6998. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6999. enquecommand_P(PSTR("G28 X Y"));
  7000. // Set the target bed and nozzle temperatures and wait.
  7001. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7002. enquecommand(cmd);
  7003. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7004. enquecommand(cmd);
  7005. enquecommand_P(PSTR("M83")); //E axis relative mode
  7006. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7007. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7008. if(automatic == 0){
  7009. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7010. }
  7011. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7012. // Mark the power panic status as inactive.
  7013. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7014. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7015. delay_keep_alive(1000);
  7016. }*/
  7017. SERIAL_ECHOPGM("After waiting for temp:");
  7018. SERIAL_ECHOPGM("Current position X_AXIS:");
  7019. MYSERIAL.println(current_position[X_AXIS]);
  7020. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7021. MYSERIAL.println(current_position[Y_AXIS]);
  7022. // Restart the print.
  7023. restore_print_from_eeprom();
  7024. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7025. MYSERIAL.print(current_position[Z_AXIS]);
  7026. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7027. MYSERIAL.print(current_position[E_AXIS]);
  7028. }
  7029. void recover_machine_state_after_power_panic()
  7030. {
  7031. char cmd[30];
  7032. // 1) Recover the logical cordinates at the time of the power panic.
  7033. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7034. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7035. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7036. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7037. // The current position after power panic is moved to the next closest 0th full step.
  7038. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7039. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7040. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7041. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7042. sprintf_P(cmd, PSTR("G92 E"));
  7043. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7044. enquecommand(cmd);
  7045. }
  7046. memcpy(destination, current_position, sizeof(destination));
  7047. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7048. print_world_coordinates();
  7049. // 2) Initialize the logical to physical coordinate system transformation.
  7050. world2machine_initialize();
  7051. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7052. mbl.active = false;
  7053. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7054. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7055. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7056. // Scale the z value to 10u resolution.
  7057. int16_t v;
  7058. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7059. if (v != 0)
  7060. mbl.active = true;
  7061. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7062. }
  7063. if (mbl.active)
  7064. mbl.upsample_3x3();
  7065. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7066. // print_mesh_bed_leveling_table();
  7067. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7068. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7069. babystep_load();
  7070. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7072. // 6) Power up the motors, mark their positions as known.
  7073. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7074. axis_known_position[X_AXIS] = true; enable_x();
  7075. axis_known_position[Y_AXIS] = true; enable_y();
  7076. axis_known_position[Z_AXIS] = true; enable_z();
  7077. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7078. print_physical_coordinates();
  7079. // 7) Recover the target temperatures.
  7080. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7081. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7082. }
  7083. void restore_print_from_eeprom() {
  7084. float x_rec, y_rec, z_pos;
  7085. int feedrate_rec;
  7086. uint8_t fan_speed_rec;
  7087. char cmd[30];
  7088. char* c;
  7089. char filename[13];
  7090. uint8_t depth = 0;
  7091. char dir_name[9];
  7092. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7093. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7094. SERIAL_ECHOPGM("Feedrate:");
  7095. MYSERIAL.println(feedrate_rec);
  7096. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7097. MYSERIAL.println(int(depth));
  7098. for (int i = 0; i < depth; i++) {
  7099. for (int j = 0; j < 8; j++) {
  7100. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7101. }
  7102. dir_name[8] = '\0';
  7103. MYSERIAL.println(dir_name);
  7104. card.chdir(dir_name);
  7105. }
  7106. for (int i = 0; i < 8; i++) {
  7107. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7108. }
  7109. filename[8] = '\0';
  7110. MYSERIAL.print(filename);
  7111. strcat_P(filename, PSTR(".gco"));
  7112. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7113. for (c = &cmd[4]; *c; c++)
  7114. *c = tolower(*c);
  7115. enquecommand(cmd);
  7116. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7117. SERIAL_ECHOPGM("Position read from eeprom:");
  7118. MYSERIAL.println(position);
  7119. // E axis relative mode.
  7120. enquecommand_P(PSTR("M83"));
  7121. // Move to the XY print position in logical coordinates, where the print has been killed.
  7122. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7123. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7124. strcat_P(cmd, PSTR(" F2000"));
  7125. enquecommand(cmd);
  7126. // Move the Z axis down to the print, in logical coordinates.
  7127. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7128. enquecommand(cmd);
  7129. // Unretract.
  7130. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7131. // Set the feedrate saved at the power panic.
  7132. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7133. enquecommand(cmd);
  7134. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7135. {
  7136. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7137. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7138. }
  7139. // Set the fan speed saved at the power panic.
  7140. strcpy_P(cmd, PSTR("M106 S"));
  7141. strcat(cmd, itostr3(int(fan_speed_rec)));
  7142. enquecommand(cmd);
  7143. // Set a position in the file.
  7144. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7145. enquecommand(cmd);
  7146. // Start SD print.
  7147. enquecommand_P(PSTR("M24"));
  7148. }
  7149. #endif //UVLO_SUPPORT
  7150. ////////////////////////////////////////////////////////////////////////////////
  7151. // new save/restore printing
  7152. //extern uint32_t sdpos_atomic;
  7153. bool saved_printing = false;
  7154. uint32_t saved_sdpos = 0;
  7155. float saved_pos[4] = {0, 0, 0, 0};
  7156. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7157. float saved_feedrate2 = 0;
  7158. uint8_t saved_active_extruder = 0;
  7159. bool saved_extruder_under_pressure = false;
  7160. void stop_and_save_print_to_ram(float z_move, float e_move)
  7161. {
  7162. if (saved_printing) return;
  7163. cli();
  7164. unsigned char nplanner_blocks = number_of_blocks();
  7165. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7166. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7167. saved_sdpos -= sdlen_planner;
  7168. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7169. saved_sdpos -= sdlen_cmdqueue;
  7170. #if 0
  7171. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7172. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7173. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7174. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7175. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7176. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7177. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7178. {
  7179. card.setIndex(saved_sdpos);
  7180. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7181. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7182. MYSERIAL.print(char(card.get()));
  7183. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7184. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7185. MYSERIAL.print(char(card.get()));
  7186. SERIAL_ECHOLNPGM("End of command buffer");
  7187. }
  7188. {
  7189. // Print the content of the planner buffer, line by line:
  7190. card.setIndex(saved_sdpos);
  7191. int8_t iline = 0;
  7192. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7193. SERIAL_ECHOPGM("Planner line (from file): ");
  7194. MYSERIAL.print(int(iline), DEC);
  7195. SERIAL_ECHOPGM(", length: ");
  7196. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7197. SERIAL_ECHOPGM(", steps: (");
  7198. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7199. SERIAL_ECHOPGM(",");
  7200. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7201. SERIAL_ECHOPGM(",");
  7202. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7203. SERIAL_ECHOPGM(",");
  7204. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7205. SERIAL_ECHOPGM("), events: ");
  7206. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7207. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7208. MYSERIAL.print(char(card.get()));
  7209. }
  7210. }
  7211. {
  7212. // Print the content of the command buffer, line by line:
  7213. int8_t iline = 0;
  7214. union {
  7215. struct {
  7216. char lo;
  7217. char hi;
  7218. } lohi;
  7219. uint16_t value;
  7220. } sdlen_single;
  7221. int _bufindr = bufindr;
  7222. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7223. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7224. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7225. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7226. }
  7227. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7228. MYSERIAL.print(int(iline), DEC);
  7229. SERIAL_ECHOPGM(", type: ");
  7230. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7231. SERIAL_ECHOPGM(", len: ");
  7232. MYSERIAL.println(sdlen_single.value, DEC);
  7233. // Print the content of the buffer line.
  7234. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7235. SERIAL_ECHOPGM("Buffer line (from file): ");
  7236. MYSERIAL.print(int(iline), DEC);
  7237. MYSERIAL.println(int(iline), DEC);
  7238. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7239. MYSERIAL.print(char(card.get()));
  7240. if (-- _buflen == 0)
  7241. break;
  7242. // First skip the current command ID and iterate up to the end of the string.
  7243. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7244. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7245. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7246. // If the end of the buffer was empty,
  7247. if (_bufindr == sizeof(cmdbuffer)) {
  7248. // skip to the start and find the nonzero command.
  7249. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7250. }
  7251. }
  7252. }
  7253. #endif
  7254. #if 0
  7255. saved_feedrate2 = feedrate; //save feedrate
  7256. #else
  7257. // Try to deduce the feedrate from the first block of the planner.
  7258. // Speed is in mm/min.
  7259. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7260. #endif
  7261. planner_abort_hard(); //abort printing
  7262. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7263. saved_active_extruder = active_extruder; //save active_extruder
  7264. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7265. cmdqueue_reset(); //empty cmdqueue
  7266. card.sdprinting = false;
  7267. // card.closefile();
  7268. saved_printing = true;
  7269. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7270. st_reset_timer();
  7271. sei();
  7272. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7273. #if 1
  7274. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7275. char buf[48];
  7276. strcpy_P(buf, PSTR("G1 Z"));
  7277. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7278. strcat_P(buf, PSTR(" E"));
  7279. // Relative extrusion
  7280. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7281. strcat_P(buf, PSTR(" F"));
  7282. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7283. // At this point the command queue is empty.
  7284. enquecommand(buf, false);
  7285. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7286. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7287. repeatcommand_front();
  7288. #else
  7289. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7290. st_synchronize(); //wait moving
  7291. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7292. memcpy(destination, current_position, sizeof(destination));
  7293. #endif
  7294. }
  7295. }
  7296. void restore_print_from_ram_and_continue(float e_move)
  7297. {
  7298. if (!saved_printing) return;
  7299. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7300. // current_position[axis] = st_get_position_mm(axis);
  7301. active_extruder = saved_active_extruder; //restore active_extruder
  7302. feedrate = saved_feedrate2; //restore feedrate
  7303. float e = saved_pos[E_AXIS] - e_move;
  7304. plan_set_e_position(e);
  7305. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7306. st_synchronize();
  7307. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7308. memcpy(destination, current_position, sizeof(destination));
  7309. card.setIndex(saved_sdpos);
  7310. sdpos_atomic = saved_sdpos;
  7311. card.sdprinting = true;
  7312. saved_printing = false;
  7313. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7314. }
  7315. void print_world_coordinates()
  7316. {
  7317. SERIAL_ECHOPGM("world coordinates: (");
  7318. MYSERIAL.print(current_position[X_AXIS], 3);
  7319. SERIAL_ECHOPGM(", ");
  7320. MYSERIAL.print(current_position[Y_AXIS], 3);
  7321. SERIAL_ECHOPGM(", ");
  7322. MYSERIAL.print(current_position[Z_AXIS], 3);
  7323. SERIAL_ECHOLNPGM(")");
  7324. }
  7325. void print_physical_coordinates()
  7326. {
  7327. SERIAL_ECHOPGM("physical coordinates: (");
  7328. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7329. SERIAL_ECHOPGM(", ");
  7330. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7331. SERIAL_ECHOPGM(", ");
  7332. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7333. SERIAL_ECHOLNPGM(")");
  7334. }
  7335. void print_mesh_bed_leveling_table()
  7336. {
  7337. SERIAL_ECHOPGM("mesh bed leveling: ");
  7338. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7339. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7340. MYSERIAL.print(mbl.z_values[y][x], 3);
  7341. SERIAL_ECHOPGM(" ");
  7342. }
  7343. SERIAL_ECHOLNPGM("");
  7344. }
  7345. #define FIL_LOAD_LENGTH 60
  7346. void extr_unload2() { //unloads filament
  7347. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7348. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7349. // int8_t SilentMode;
  7350. uint8_t snmm_extruder = 0;
  7351. if (degHotend0() > EXTRUDE_MINTEMP) {
  7352. lcd_implementation_clear();
  7353. lcd_display_message_fullscreen_P(PSTR(""));
  7354. max_feedrate[E_AXIS] = 50;
  7355. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7356. // lcd.print(" ");
  7357. // lcd.print(snmm_extruder + 1);
  7358. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7359. if (current_position[Z_AXIS] < 15) {
  7360. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7362. }
  7363. current_position[E_AXIS] += 10; //extrusion
  7364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7365. // st_current_set(2, E_MOTOR_HIGH_CURRENT);
  7366. if (current_temperature[0] < 230) { //PLA & all other filaments
  7367. current_position[E_AXIS] += 5.4;
  7368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7369. current_position[E_AXIS] += 3.2;
  7370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7371. current_position[E_AXIS] += 3;
  7372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7373. }
  7374. else { //ABS
  7375. current_position[E_AXIS] += 3.1;
  7376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7377. current_position[E_AXIS] += 3.1;
  7378. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7379. current_position[E_AXIS] += 4;
  7380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7381. /*current_position[X_AXIS] += 23; //delay
  7382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7383. current_position[X_AXIS] -= 23; //delay
  7384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7385. delay_keep_alive(4700);
  7386. }
  7387. max_feedrate[E_AXIS] = 80;
  7388. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7390. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7392. st_synchronize();
  7393. //st_current_init();
  7394. // if (SilentMode == 1) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  7395. // else st_current_set(2, tmp_motor_loud[2]);
  7396. lcd_update_enable(true);
  7397. // lcd_return_to_status();
  7398. max_feedrate[E_AXIS] = 50;
  7399. }
  7400. else {
  7401. lcd_implementation_clear();
  7402. lcd.setCursor(0, 0);
  7403. lcd_printPGM(MSG_ERROR);
  7404. lcd.setCursor(0, 2);
  7405. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7406. delay(2000);
  7407. lcd_implementation_clear();
  7408. }
  7409. // lcd_return_to_status();
  7410. }