Marlin_main.cpp 334 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. #ifdef SDSUPPORT
  320. #include "SdFatUtil.h"
  321. int freeMemory() { return SdFatUtil::FreeRam(); }
  322. #else
  323. extern "C" {
  324. extern unsigned int __bss_end;
  325. extern unsigned int __heap_start;
  326. extern void *__brkval;
  327. int freeMemory() {
  328. int free_memory;
  329. if ((int)__brkval == 0)
  330. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  331. else
  332. free_memory = ((int)&free_memory) - ((int)__brkval);
  333. return free_memory;
  334. }
  335. }
  336. #endif //!SDSUPPORT
  337. void setup_killpin()
  338. {
  339. #if defined(KILL_PIN) && KILL_PIN > -1
  340. SET_INPUT(KILL_PIN);
  341. WRITE(KILL_PIN,HIGH);
  342. #endif
  343. }
  344. // Set home pin
  345. void setup_homepin(void)
  346. {
  347. #if defined(HOME_PIN) && HOME_PIN > -1
  348. SET_INPUT(HOME_PIN);
  349. WRITE(HOME_PIN,HIGH);
  350. #endif
  351. }
  352. void setup_photpin()
  353. {
  354. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  355. SET_OUTPUT(PHOTOGRAPH_PIN);
  356. WRITE(PHOTOGRAPH_PIN, LOW);
  357. #endif
  358. }
  359. void setup_powerhold()
  360. {
  361. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  362. SET_OUTPUT(SUICIDE_PIN);
  363. WRITE(SUICIDE_PIN, HIGH);
  364. #endif
  365. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  366. SET_OUTPUT(PS_ON_PIN);
  367. #if defined(PS_DEFAULT_OFF)
  368. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  369. #else
  370. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  371. #endif
  372. #endif
  373. }
  374. void suicide()
  375. {
  376. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  377. SET_OUTPUT(SUICIDE_PIN);
  378. WRITE(SUICIDE_PIN, LOW);
  379. #endif
  380. }
  381. void servo_init()
  382. {
  383. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  384. servos[0].attach(SERVO0_PIN);
  385. #endif
  386. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  387. servos[1].attach(SERVO1_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  390. servos[2].attach(SERVO2_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  393. servos[3].attach(SERVO3_PIN);
  394. #endif
  395. #if (NUM_SERVOS >= 5)
  396. #error "TODO: enter initalisation code for more servos"
  397. #endif
  398. }
  399. bool fans_check_enabled = true;
  400. #ifdef TMC2130
  401. extern int8_t CrashDetectMenu;
  402. void crashdet_enable()
  403. {
  404. tmc2130_sg_stop_on_crash = true;
  405. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  406. CrashDetectMenu = 1;
  407. }
  408. void crashdet_disable()
  409. {
  410. tmc2130_sg_stop_on_crash = false;
  411. tmc2130_sg_crash = 0;
  412. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  413. CrashDetectMenu = 0;
  414. }
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. lcd_encoder_diff=0;
  1022. #ifdef TMC2130
  1023. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1024. if (silentMode == 0xff) silentMode = 0;
  1025. tmc2130_mode = TMC2130_MODE_NORMAL;
  1026. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1027. if (crashdet && !farm_mode)
  1028. {
  1029. crashdet_enable();
  1030. puts_P(_N("CrashDetect ENABLED!"));
  1031. }
  1032. else
  1033. {
  1034. crashdet_disable();
  1035. puts_P(_N("CrashDetect DISABLED"));
  1036. }
  1037. #ifdef TMC2130_LINEARITY_CORRECTION
  1038. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1039. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1040. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1041. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1042. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1043. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1044. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1045. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1046. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1047. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1048. #endif //TMC2130_LINEARITY_CORRECTION
  1049. #ifdef TMC2130_VARIABLE_RESOLUTION
  1050. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1051. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1052. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1053. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1054. #else //TMC2130_VARIABLE_RESOLUTION
  1055. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1056. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1057. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1058. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1059. #endif //TMC2130_VARIABLE_RESOLUTION
  1060. #endif //TMC2130
  1061. st_init(); // Initialize stepper, this enables interrupts!
  1062. #ifdef UVLO_SUPPORT
  1063. setup_uvlo_interrupt();
  1064. #endif //UVLO_SUPPORT
  1065. #ifdef TMC2130
  1066. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1067. update_mode_profile();
  1068. tmc2130_init();
  1069. #endif //TMC2130
  1070. setup_photpin();
  1071. servo_init();
  1072. // Reset the machine correction matrix.
  1073. // It does not make sense to load the correction matrix until the machine is homed.
  1074. world2machine_reset();
  1075. #ifdef FILAMENT_SENSOR
  1076. fsensor_init();
  1077. #endif //FILAMENT_SENSOR
  1078. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1079. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1080. #endif
  1081. setup_homepin();
  1082. #ifdef TMC2130
  1083. if (1) {
  1084. // try to run to zero phase before powering the Z motor.
  1085. // Move in negative direction
  1086. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1087. // Round the current micro-micro steps to micro steps.
  1088. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1089. // Until the phase counter is reset to zero.
  1090. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1091. _delay(2);
  1092. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1093. _delay(2);
  1094. }
  1095. }
  1096. #endif //TMC2130
  1097. #if defined(Z_AXIS_ALWAYS_ON)
  1098. enable_z();
  1099. #endif
  1100. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1101. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1102. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1103. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1104. if (farm_mode)
  1105. {
  1106. prusa_statistics(8);
  1107. }
  1108. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1109. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1110. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1111. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1112. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1113. // where all the EEPROM entries are set to 0x0ff.
  1114. // Once a firmware boots up, it forces at least a language selection, which changes
  1115. // EEPROM_LANG to number lower than 0x0ff.
  1116. // 1) Set a high power mode.
  1117. #ifdef TMC2130
  1118. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1119. tmc2130_mode = TMC2130_MODE_NORMAL;
  1120. #endif //TMC2130
  1121. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1122. }
  1123. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1124. // but this times out if a blocking dialog is shown in setup().
  1125. card.initsd();
  1126. #ifdef DEBUG_SD_SPEED_TEST
  1127. if (card.cardOK)
  1128. {
  1129. uint8_t* buff = (uint8_t*)block_buffer;
  1130. uint32_t block = 0;
  1131. uint32_t sumr = 0;
  1132. uint32_t sumw = 0;
  1133. for (int i = 0; i < 1024; i++)
  1134. {
  1135. uint32_t u = _micros();
  1136. bool res = card.card.readBlock(i, buff);
  1137. u = _micros() - u;
  1138. if (res)
  1139. {
  1140. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1141. sumr += u;
  1142. u = _micros();
  1143. res = card.card.writeBlock(i, buff);
  1144. u = _micros() - u;
  1145. if (res)
  1146. {
  1147. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1148. sumw += u;
  1149. }
  1150. else
  1151. {
  1152. printf_P(PSTR("writeBlock %4d error\n"), i);
  1153. break;
  1154. }
  1155. }
  1156. else
  1157. {
  1158. printf_P(PSTR("readBlock %4d error\n"), i);
  1159. break;
  1160. }
  1161. }
  1162. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1163. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1164. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1165. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1166. }
  1167. else
  1168. printf_P(PSTR("Card NG!\n"));
  1169. #endif //DEBUG_SD_SPEED_TEST
  1170. eeprom_init();
  1171. #ifdef SNMM
  1172. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1173. int _z = BOWDEN_LENGTH;
  1174. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1175. }
  1176. #endif
  1177. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1178. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1179. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1180. #if (LANG_MODE != 0) //secondary language support
  1181. #ifdef DEBUG_W25X20CL
  1182. W25X20CL_SPI_ENTER();
  1183. uint8_t uid[8]; // 64bit unique id
  1184. w25x20cl_rd_uid(uid);
  1185. puts_P(_n("W25X20CL UID="));
  1186. for (uint8_t i = 0; i < 8; i ++)
  1187. printf_P(PSTR("%02hhx"), uid[i]);
  1188. putchar('\n');
  1189. list_sec_lang_from_external_flash();
  1190. #endif //DEBUG_W25X20CL
  1191. // lang_reset();
  1192. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1193. lcd_language();
  1194. #ifdef DEBUG_SEC_LANG
  1195. uint16_t sec_lang_code = lang_get_code(1);
  1196. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1197. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1198. lang_print_sec_lang(uartout);
  1199. #endif //DEBUG_SEC_LANG
  1200. #endif //(LANG_MODE != 0)
  1201. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1202. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1203. temp_cal_active = false;
  1204. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1205. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1206. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1207. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1208. int16_t z_shift = 0;
  1209. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1210. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1211. temp_cal_active = false;
  1212. }
  1213. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1214. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1215. }
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1218. }
  1219. //mbl_mode_init();
  1220. mbl_settings_init();
  1221. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1222. if (SilentModeMenu_MMU == 255) {
  1223. SilentModeMenu_MMU = 1;
  1224. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1225. }
  1226. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1227. setup_fan_interrupt();
  1228. #endif //DEBUG_DISABLE_FANCHECK
  1229. #ifdef PAT9125
  1230. fsensor_setup_interrupt();
  1231. #endif //PAT9125
  1232. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1233. #ifndef DEBUG_DISABLE_STARTMSGS
  1234. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1235. check_if_fw_is_on_right_printer();
  1236. show_fw_version_warnings();
  1237. switch (hw_changed) {
  1238. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1239. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1240. case(0b01):
  1241. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1242. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1243. break;
  1244. case(0b10):
  1245. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1246. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1247. break;
  1248. case(0b11):
  1249. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1250. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1251. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1252. break;
  1253. default: break; //no change, show no message
  1254. }
  1255. if (!previous_settings_retrieved) {
  1256. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1257. Config_StoreSettings();
  1258. }
  1259. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1260. lcd_wizard(WizState::Run);
  1261. }
  1262. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1263. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1264. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1265. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1266. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1267. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1268. // Show the message.
  1269. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1270. }
  1271. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1272. // Show the message.
  1273. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1274. lcd_update_enable(true);
  1275. }
  1276. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1277. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1278. lcd_update_enable(true);
  1279. }
  1280. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1281. // Show the message.
  1282. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1283. }
  1284. }
  1285. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1286. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1287. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1288. update_current_firmware_version_to_eeprom();
  1289. lcd_selftest();
  1290. }
  1291. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1292. KEEPALIVE_STATE(IN_PROCESS);
  1293. #endif //DEBUG_DISABLE_STARTMSGS
  1294. lcd_update_enable(true);
  1295. lcd_clear();
  1296. lcd_update(2);
  1297. // Store the currently running firmware into an eeprom,
  1298. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1299. update_current_firmware_version_to_eeprom();
  1300. #ifdef TMC2130
  1301. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1302. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1303. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1304. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1305. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1306. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1307. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1308. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1309. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1310. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1311. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1312. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1313. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1314. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1315. #endif //TMC2130
  1316. #ifdef UVLO_SUPPORT
  1317. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1318. /*
  1319. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1320. else {
  1321. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1322. lcd_update_enable(true);
  1323. lcd_update(2);
  1324. lcd_setstatuspgm(_T(WELCOME_MSG));
  1325. }
  1326. */
  1327. manage_heater(); // Update temperatures
  1328. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1329. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1330. #endif
  1331. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1332. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1333. puts_P(_N("Automatic recovery!"));
  1334. #endif
  1335. recover_print(1);
  1336. }
  1337. else{
  1338. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1339. puts_P(_N("Normal recovery!"));
  1340. #endif
  1341. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1342. else {
  1343. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1344. lcd_update_enable(true);
  1345. lcd_update(2);
  1346. lcd_setstatuspgm(_T(WELCOME_MSG));
  1347. }
  1348. }
  1349. }
  1350. #endif //UVLO_SUPPORT
  1351. fCheckModeInit();
  1352. fSetMmuMode(mmu_enabled);
  1353. KEEPALIVE_STATE(NOT_BUSY);
  1354. #ifdef WATCHDOG
  1355. wdt_enable(WDTO_4S);
  1356. #endif //WATCHDOG
  1357. }
  1358. void trace();
  1359. #define CHUNK_SIZE 64 // bytes
  1360. #define SAFETY_MARGIN 1
  1361. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1362. int chunkHead = 0;
  1363. void serial_read_stream() {
  1364. setAllTargetHotends(0);
  1365. setTargetBed(0);
  1366. lcd_clear();
  1367. lcd_puts_P(PSTR(" Upload in progress"));
  1368. // first wait for how many bytes we will receive
  1369. uint32_t bytesToReceive;
  1370. // receive the four bytes
  1371. char bytesToReceiveBuffer[4];
  1372. for (int i=0; i<4; i++) {
  1373. int data;
  1374. while ((data = MYSERIAL.read()) == -1) {};
  1375. bytesToReceiveBuffer[i] = data;
  1376. }
  1377. // make it a uint32
  1378. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1379. // we're ready, notify the sender
  1380. MYSERIAL.write('+');
  1381. // lock in the routine
  1382. uint32_t receivedBytes = 0;
  1383. while (prusa_sd_card_upload) {
  1384. int i;
  1385. for (i=0; i<CHUNK_SIZE; i++) {
  1386. int data;
  1387. // check if we're not done
  1388. if (receivedBytes == bytesToReceive) {
  1389. break;
  1390. }
  1391. // read the next byte
  1392. while ((data = MYSERIAL.read()) == -1) {};
  1393. receivedBytes++;
  1394. // save it to the chunk
  1395. chunk[i] = data;
  1396. }
  1397. // write the chunk to SD
  1398. card.write_command_no_newline(&chunk[0]);
  1399. // notify the sender we're ready for more data
  1400. MYSERIAL.write('+');
  1401. // for safety
  1402. manage_heater();
  1403. // check if we're done
  1404. if(receivedBytes == bytesToReceive) {
  1405. trace(); // beep
  1406. card.closefile();
  1407. prusa_sd_card_upload = false;
  1408. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1409. }
  1410. }
  1411. }
  1412. /**
  1413. * Output a "busy" message at regular intervals
  1414. * while the machine is not accepting commands.
  1415. */
  1416. void host_keepalive() {
  1417. #ifndef HOST_KEEPALIVE_FEATURE
  1418. return;
  1419. #endif //HOST_KEEPALIVE_FEATURE
  1420. if (farm_mode) return;
  1421. long ms = _millis();
  1422. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1423. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1424. switch (busy_state) {
  1425. case IN_HANDLER:
  1426. case IN_PROCESS:
  1427. SERIAL_ECHO_START;
  1428. SERIAL_ECHOLNPGM("busy: processing");
  1429. break;
  1430. case PAUSED_FOR_USER:
  1431. SERIAL_ECHO_START;
  1432. SERIAL_ECHOLNPGM("busy: paused for user");
  1433. break;
  1434. case PAUSED_FOR_INPUT:
  1435. SERIAL_ECHO_START;
  1436. SERIAL_ECHOLNPGM("busy: paused for input");
  1437. break;
  1438. default:
  1439. break;
  1440. }
  1441. }
  1442. prev_busy_signal_ms = ms;
  1443. }
  1444. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1445. // Before loop(), the setup() function is called by the main() routine.
  1446. void loop()
  1447. {
  1448. KEEPALIVE_STATE(NOT_BUSY);
  1449. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1450. {
  1451. is_usb_printing = true;
  1452. usb_printing_counter--;
  1453. _usb_timer = _millis();
  1454. }
  1455. if (usb_printing_counter == 0)
  1456. {
  1457. is_usb_printing = false;
  1458. }
  1459. if (prusa_sd_card_upload)
  1460. {
  1461. //we read byte-by byte
  1462. serial_read_stream();
  1463. } else
  1464. {
  1465. get_command();
  1466. #ifdef SDSUPPORT
  1467. card.checkautostart(false);
  1468. #endif
  1469. if(buflen)
  1470. {
  1471. cmdbuffer_front_already_processed = false;
  1472. #ifdef SDSUPPORT
  1473. if(card.saving)
  1474. {
  1475. // Saving a G-code file onto an SD-card is in progress.
  1476. // Saving starts with M28, saving until M29 is seen.
  1477. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1478. card.write_command(CMDBUFFER_CURRENT_STRING);
  1479. if(card.logging)
  1480. process_commands();
  1481. else
  1482. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1483. } else {
  1484. card.closefile();
  1485. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1486. }
  1487. } else {
  1488. process_commands();
  1489. }
  1490. #else
  1491. process_commands();
  1492. #endif //SDSUPPORT
  1493. if (! cmdbuffer_front_already_processed && buflen)
  1494. {
  1495. // ptr points to the start of the block currently being processed.
  1496. // The first character in the block is the block type.
  1497. char *ptr = cmdbuffer + bufindr;
  1498. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1499. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1500. union {
  1501. struct {
  1502. char lo;
  1503. char hi;
  1504. } lohi;
  1505. uint16_t value;
  1506. } sdlen;
  1507. sdlen.value = 0;
  1508. {
  1509. // This block locks the interrupts globally for 3.25 us,
  1510. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1511. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1512. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1513. cli();
  1514. // Reset the command to something, which will be ignored by the power panic routine,
  1515. // so this buffer length will not be counted twice.
  1516. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1517. // Extract the current buffer length.
  1518. sdlen.lohi.lo = *ptr ++;
  1519. sdlen.lohi.hi = *ptr;
  1520. // and pass it to the planner queue.
  1521. planner_add_sd_length(sdlen.value);
  1522. sei();
  1523. }
  1524. }
  1525. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1526. cli();
  1527. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1528. // and one for each command to previous block in the planner queue.
  1529. planner_add_sd_length(1);
  1530. sei();
  1531. }
  1532. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1533. // this block's SD card length will not be counted twice as its command type has been replaced
  1534. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1535. cmdqueue_pop_front();
  1536. }
  1537. host_keepalive();
  1538. }
  1539. }
  1540. //check heater every n milliseconds
  1541. manage_heater();
  1542. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1543. checkHitEndstops();
  1544. lcd_update(0);
  1545. #ifdef TMC2130
  1546. tmc2130_check_overtemp();
  1547. if (tmc2130_sg_crash)
  1548. {
  1549. uint8_t crash = tmc2130_sg_crash;
  1550. tmc2130_sg_crash = 0;
  1551. // crashdet_stop_and_save_print();
  1552. switch (crash)
  1553. {
  1554. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1555. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1556. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1557. }
  1558. }
  1559. #endif //TMC2130
  1560. mmu_loop();
  1561. }
  1562. #define DEFINE_PGM_READ_ANY(type, reader) \
  1563. static inline type pgm_read_any(const type *p) \
  1564. { return pgm_read_##reader##_near(p); }
  1565. DEFINE_PGM_READ_ANY(float, float);
  1566. DEFINE_PGM_READ_ANY(signed char, byte);
  1567. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1568. static const PROGMEM type array##_P[3] = \
  1569. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1570. static inline type array(int axis) \
  1571. { return pgm_read_any(&array##_P[axis]); } \
  1572. type array##_ext(int axis) \
  1573. { return pgm_read_any(&array##_P[axis]); }
  1574. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1575. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1576. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1577. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1578. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1579. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1580. static void axis_is_at_home(int axis) {
  1581. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1582. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1583. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1584. }
  1585. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1586. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1587. //! @return original feedmultiply
  1588. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1589. saved_feedrate = feedrate;
  1590. int l_feedmultiply = feedmultiply;
  1591. feedmultiply = 100;
  1592. previous_millis_cmd = _millis();
  1593. enable_endstops(enable_endstops_now);
  1594. return l_feedmultiply;
  1595. }
  1596. //! @param original_feedmultiply feedmultiply to restore
  1597. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1598. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1599. enable_endstops(false);
  1600. #endif
  1601. feedrate = saved_feedrate;
  1602. feedmultiply = original_feedmultiply;
  1603. previous_millis_cmd = _millis();
  1604. }
  1605. #ifdef ENABLE_AUTO_BED_LEVELING
  1606. #ifdef AUTO_BED_LEVELING_GRID
  1607. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1608. {
  1609. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1610. planeNormal.debug("planeNormal");
  1611. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1612. //bedLevel.debug("bedLevel");
  1613. //plan_bed_level_matrix.debug("bed level before");
  1614. //vector_3 uncorrected_position = plan_get_position_mm();
  1615. //uncorrected_position.debug("position before");
  1616. vector_3 corrected_position = plan_get_position();
  1617. // corrected_position.debug("position after");
  1618. current_position[X_AXIS] = corrected_position.x;
  1619. current_position[Y_AXIS] = corrected_position.y;
  1620. current_position[Z_AXIS] = corrected_position.z;
  1621. // put the bed at 0 so we don't go below it.
  1622. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1623. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1624. }
  1625. #else // not AUTO_BED_LEVELING_GRID
  1626. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1627. plan_bed_level_matrix.set_to_identity();
  1628. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1629. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1630. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1631. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1632. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1633. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1634. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1635. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1636. vector_3 corrected_position = plan_get_position();
  1637. current_position[X_AXIS] = corrected_position.x;
  1638. current_position[Y_AXIS] = corrected_position.y;
  1639. current_position[Z_AXIS] = corrected_position.z;
  1640. // put the bed at 0 so we don't go below it.
  1641. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. }
  1644. #endif // AUTO_BED_LEVELING_GRID
  1645. static void run_z_probe() {
  1646. plan_bed_level_matrix.set_to_identity();
  1647. feedrate = homing_feedrate[Z_AXIS];
  1648. // move down until you find the bed
  1649. float zPosition = -10;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1651. st_synchronize();
  1652. // we have to let the planner know where we are right now as it is not where we said to go.
  1653. zPosition = st_get_position_mm(Z_AXIS);
  1654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1655. // move up the retract distance
  1656. zPosition += home_retract_mm(Z_AXIS);
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1658. st_synchronize();
  1659. // move back down slowly to find bed
  1660. feedrate = homing_feedrate[Z_AXIS]/4;
  1661. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1663. st_synchronize();
  1664. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1665. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. }
  1668. static void do_blocking_move_to(float x, float y, float z) {
  1669. float oldFeedRate = feedrate;
  1670. feedrate = homing_feedrate[Z_AXIS];
  1671. current_position[Z_AXIS] = z;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. feedrate = XY_TRAVEL_SPEED;
  1675. current_position[X_AXIS] = x;
  1676. current_position[Y_AXIS] = y;
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. feedrate = oldFeedRate;
  1680. }
  1681. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1682. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1683. }
  1684. /// Probe bed height at position (x,y), returns the measured z value
  1685. static float probe_pt(float x, float y, float z_before) {
  1686. // move to right place
  1687. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1688. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1689. run_z_probe();
  1690. float measured_z = current_position[Z_AXIS];
  1691. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1692. SERIAL_PROTOCOLPGM(" x: ");
  1693. SERIAL_PROTOCOL(x);
  1694. SERIAL_PROTOCOLPGM(" y: ");
  1695. SERIAL_PROTOCOL(y);
  1696. SERIAL_PROTOCOLPGM(" z: ");
  1697. SERIAL_PROTOCOL(measured_z);
  1698. SERIAL_PROTOCOLPGM("\n");
  1699. return measured_z;
  1700. }
  1701. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1702. #ifdef LIN_ADVANCE
  1703. /**
  1704. * M900: Set and/or Get advance K factor and WH/D ratio
  1705. *
  1706. * K<factor> Set advance K factor
  1707. * R<ratio> Set ratio directly (overrides WH/D)
  1708. * W<width> H<height> D<diam> Set ratio from WH/D
  1709. */
  1710. inline void gcode_M900() {
  1711. st_synchronize();
  1712. const float newK = code_seen('K') ? code_value_float() : -1;
  1713. if (newK >= 0) extruder_advance_k = newK;
  1714. float newR = code_seen('R') ? code_value_float() : -1;
  1715. if (newR < 0) {
  1716. const float newD = code_seen('D') ? code_value_float() : -1,
  1717. newW = code_seen('W') ? code_value_float() : -1,
  1718. newH = code_seen('H') ? code_value_float() : -1;
  1719. if (newD >= 0 && newW >= 0 && newH >= 0)
  1720. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1721. }
  1722. if (newR >= 0) advance_ed_ratio = newR;
  1723. SERIAL_ECHO_START;
  1724. SERIAL_ECHOPGM("Advance K=");
  1725. SERIAL_ECHOLN(extruder_advance_k);
  1726. SERIAL_ECHOPGM(" E/D=");
  1727. const float ratio = advance_ed_ratio;
  1728. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1729. }
  1730. #endif // LIN_ADVANCE
  1731. bool check_commands() {
  1732. bool end_command_found = false;
  1733. while (buflen)
  1734. {
  1735. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1736. if (!cmdbuffer_front_already_processed)
  1737. cmdqueue_pop_front();
  1738. cmdbuffer_front_already_processed = false;
  1739. }
  1740. return end_command_found;
  1741. }
  1742. #ifdef TMC2130
  1743. bool calibrate_z_auto()
  1744. {
  1745. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1746. lcd_clear();
  1747. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1748. bool endstops_enabled = enable_endstops(true);
  1749. int axis_up_dir = -home_dir(Z_AXIS);
  1750. tmc2130_home_enter(Z_AXIS_MASK);
  1751. current_position[Z_AXIS] = 0;
  1752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1753. set_destination_to_current();
  1754. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1755. feedrate = homing_feedrate[Z_AXIS];
  1756. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1757. st_synchronize();
  1758. // current_position[axis] = 0;
  1759. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1760. tmc2130_home_exit();
  1761. enable_endstops(false);
  1762. current_position[Z_AXIS] = 0;
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. set_destination_to_current();
  1765. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1766. feedrate = homing_feedrate[Z_AXIS] / 2;
  1767. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1768. st_synchronize();
  1769. enable_endstops(endstops_enabled);
  1770. if (PRINTER_TYPE == PRINTER_MK3) {
  1771. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1772. }
  1773. else {
  1774. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1775. }
  1776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. return true;
  1778. }
  1779. #endif //TMC2130
  1780. #ifdef TMC2130
  1781. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1782. #else
  1783. void homeaxis(int axis, uint8_t cnt)
  1784. #endif //TMC2130
  1785. {
  1786. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1787. #define HOMEAXIS_DO(LETTER) \
  1788. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1789. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1790. {
  1791. int axis_home_dir = home_dir(axis);
  1792. feedrate = homing_feedrate[axis];
  1793. #ifdef TMC2130
  1794. tmc2130_home_enter(X_AXIS_MASK << axis);
  1795. #endif //TMC2130
  1796. // Move away a bit, so that the print head does not touch the end position,
  1797. // and the following movement to endstop has a chance to achieve the required velocity
  1798. // for the stall guard to work.
  1799. current_position[axis] = 0;
  1800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1801. set_destination_to_current();
  1802. // destination[axis] = 11.f;
  1803. destination[axis] = -3.f * axis_home_dir;
  1804. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1805. st_synchronize();
  1806. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1807. endstops_hit_on_purpose();
  1808. enable_endstops(false);
  1809. current_position[axis] = 0;
  1810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1811. destination[axis] = 1. * axis_home_dir;
  1812. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. // Now continue to move up to the left end stop with the collision detection enabled.
  1815. enable_endstops(true);
  1816. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1817. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1818. st_synchronize();
  1819. for (uint8_t i = 0; i < cnt; i++)
  1820. {
  1821. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1822. endstops_hit_on_purpose();
  1823. enable_endstops(false);
  1824. current_position[axis] = 0;
  1825. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1826. destination[axis] = -10.f * axis_home_dir;
  1827. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1828. st_synchronize();
  1829. endstops_hit_on_purpose();
  1830. // Now move left up to the collision, this time with a repeatable velocity.
  1831. enable_endstops(true);
  1832. destination[axis] = 11.f * axis_home_dir;
  1833. #ifdef TMC2130
  1834. feedrate = homing_feedrate[axis];
  1835. #else //TMC2130
  1836. feedrate = homing_feedrate[axis] / 2;
  1837. #endif //TMC2130
  1838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1839. st_synchronize();
  1840. #ifdef TMC2130
  1841. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1842. if (pstep) pstep[i] = mscnt >> 4;
  1843. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1844. #endif //TMC2130
  1845. }
  1846. endstops_hit_on_purpose();
  1847. enable_endstops(false);
  1848. #ifdef TMC2130
  1849. uint8_t orig = tmc2130_home_origin[axis];
  1850. uint8_t back = tmc2130_home_bsteps[axis];
  1851. if (tmc2130_home_enabled && (orig <= 63))
  1852. {
  1853. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1854. if (back > 0)
  1855. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1856. }
  1857. else
  1858. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1859. tmc2130_home_exit();
  1860. #endif //TMC2130
  1861. axis_is_at_home(axis);
  1862. axis_known_position[axis] = true;
  1863. // Move from minimum
  1864. #ifdef TMC2130
  1865. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1866. #else //TMC2130
  1867. float dist = - axis_home_dir * 0.01f * 64;
  1868. #endif //TMC2130
  1869. current_position[axis] -= dist;
  1870. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1871. current_position[axis] += dist;
  1872. destination[axis] = current_position[axis];
  1873. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1874. st_synchronize();
  1875. feedrate = 0.0;
  1876. }
  1877. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1878. {
  1879. #ifdef TMC2130
  1880. FORCE_HIGH_POWER_START;
  1881. #endif
  1882. int axis_home_dir = home_dir(axis);
  1883. current_position[axis] = 0;
  1884. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1885. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1886. feedrate = homing_feedrate[axis];
  1887. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1888. st_synchronize();
  1889. #ifdef TMC2130
  1890. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1891. FORCE_HIGH_POWER_END;
  1892. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1893. return;
  1894. }
  1895. #endif //TMC2130
  1896. current_position[axis] = 0;
  1897. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1898. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1899. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1900. st_synchronize();
  1901. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1902. feedrate = homing_feedrate[axis]/2 ;
  1903. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1904. st_synchronize();
  1905. #ifdef TMC2130
  1906. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1907. FORCE_HIGH_POWER_END;
  1908. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1909. return;
  1910. }
  1911. #endif //TMC2130
  1912. axis_is_at_home(axis);
  1913. destination[axis] = current_position[axis];
  1914. feedrate = 0.0;
  1915. endstops_hit_on_purpose();
  1916. axis_known_position[axis] = true;
  1917. #ifdef TMC2130
  1918. FORCE_HIGH_POWER_END;
  1919. #endif
  1920. }
  1921. enable_endstops(endstops_enabled);
  1922. }
  1923. /**/
  1924. void home_xy()
  1925. {
  1926. set_destination_to_current();
  1927. homeaxis(X_AXIS);
  1928. homeaxis(Y_AXIS);
  1929. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1930. endstops_hit_on_purpose();
  1931. }
  1932. void refresh_cmd_timeout(void)
  1933. {
  1934. previous_millis_cmd = _millis();
  1935. }
  1936. #ifdef FWRETRACT
  1937. void retract(bool retracting, bool swapretract = false) {
  1938. if(retracting && !retracted[active_extruder]) {
  1939. destination[X_AXIS]=current_position[X_AXIS];
  1940. destination[Y_AXIS]=current_position[Y_AXIS];
  1941. destination[Z_AXIS]=current_position[Z_AXIS];
  1942. destination[E_AXIS]=current_position[E_AXIS];
  1943. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1944. plan_set_e_position(current_position[E_AXIS]);
  1945. float oldFeedrate = feedrate;
  1946. feedrate=cs.retract_feedrate*60;
  1947. retracted[active_extruder]=true;
  1948. prepare_move();
  1949. current_position[Z_AXIS]-=cs.retract_zlift;
  1950. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1951. prepare_move();
  1952. feedrate = oldFeedrate;
  1953. } else if(!retracting && retracted[active_extruder]) {
  1954. destination[X_AXIS]=current_position[X_AXIS];
  1955. destination[Y_AXIS]=current_position[Y_AXIS];
  1956. destination[Z_AXIS]=current_position[Z_AXIS];
  1957. destination[E_AXIS]=current_position[E_AXIS];
  1958. current_position[Z_AXIS]+=cs.retract_zlift;
  1959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1960. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1961. plan_set_e_position(current_position[E_AXIS]);
  1962. float oldFeedrate = feedrate;
  1963. feedrate=cs.retract_recover_feedrate*60;
  1964. retracted[active_extruder]=false;
  1965. prepare_move();
  1966. feedrate = oldFeedrate;
  1967. }
  1968. } //retract
  1969. #endif //FWRETRACT
  1970. void trace() {
  1971. Sound_MakeCustom(25,440,true);
  1972. }
  1973. /*
  1974. void ramming() {
  1975. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1976. if (current_temperature[0] < 230) {
  1977. //PLA
  1978. max_feedrate[E_AXIS] = 50;
  1979. //current_position[E_AXIS] -= 8;
  1980. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1981. //current_position[E_AXIS] += 8;
  1982. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1983. current_position[E_AXIS] += 5.4;
  1984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1985. current_position[E_AXIS] += 3.2;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1987. current_position[E_AXIS] += 3;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1989. st_synchronize();
  1990. max_feedrate[E_AXIS] = 80;
  1991. current_position[E_AXIS] -= 82;
  1992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1993. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1994. current_position[E_AXIS] -= 20;
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1996. current_position[E_AXIS] += 5;
  1997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1998. current_position[E_AXIS] += 5;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2000. current_position[E_AXIS] -= 10;
  2001. st_synchronize();
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2003. current_position[E_AXIS] += 10;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2005. current_position[E_AXIS] -= 10;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2007. current_position[E_AXIS] += 10;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2009. current_position[E_AXIS] -= 10;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2011. st_synchronize();
  2012. }
  2013. else {
  2014. //ABS
  2015. max_feedrate[E_AXIS] = 50;
  2016. //current_position[E_AXIS] -= 8;
  2017. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2018. //current_position[E_AXIS] += 8;
  2019. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2020. current_position[E_AXIS] += 3.1;
  2021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2022. current_position[E_AXIS] += 3.1;
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2024. current_position[E_AXIS] += 4;
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2026. st_synchronize();
  2027. //current_position[X_AXIS] += 23; //delay
  2028. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2029. //current_position[X_AXIS] -= 23; //delay
  2030. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2031. _delay(4700);
  2032. max_feedrate[E_AXIS] = 80;
  2033. current_position[E_AXIS] -= 92;
  2034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2035. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2036. current_position[E_AXIS] -= 5;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2038. current_position[E_AXIS] += 5;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2040. current_position[E_AXIS] -= 5;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2042. st_synchronize();
  2043. current_position[E_AXIS] += 5;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2045. current_position[E_AXIS] -= 5;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2047. current_position[E_AXIS] += 5;
  2048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2049. current_position[E_AXIS] -= 5;
  2050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2051. st_synchronize();
  2052. }
  2053. }
  2054. */
  2055. #ifdef TMC2130
  2056. void force_high_power_mode(bool start_high_power_section) {
  2057. uint8_t silent;
  2058. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2059. if (silent == 1) {
  2060. //we are in silent mode, set to normal mode to enable crash detection
  2061. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2062. st_synchronize();
  2063. cli();
  2064. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2065. update_mode_profile();
  2066. tmc2130_init();
  2067. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2068. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2069. st_reset_timer();
  2070. sei();
  2071. }
  2072. }
  2073. #endif //TMC2130
  2074. #ifdef TMC2130
  2075. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2076. #else
  2077. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2078. #endif //TMC2130
  2079. {
  2080. st_synchronize();
  2081. #if 0
  2082. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2083. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2084. #endif
  2085. // Flag for the display update routine and to disable the print cancelation during homing.
  2086. homing_flag = true;
  2087. // Which axes should be homed?
  2088. bool home_x = home_x_axis;
  2089. bool home_y = home_y_axis;
  2090. bool home_z = home_z_axis;
  2091. // Either all X,Y,Z codes are present, or none of them.
  2092. bool home_all_axes = home_x == home_y && home_x == home_z;
  2093. if (home_all_axes)
  2094. // No X/Y/Z code provided means to home all axes.
  2095. home_x = home_y = home_z = true;
  2096. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2097. if (home_all_axes) {
  2098. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2099. feedrate = homing_feedrate[Z_AXIS];
  2100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2101. st_synchronize();
  2102. }
  2103. #ifdef ENABLE_AUTO_BED_LEVELING
  2104. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2105. #endif //ENABLE_AUTO_BED_LEVELING
  2106. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2107. // the planner will not perform any adjustments in the XY plane.
  2108. // Wait for the motors to stop and update the current position with the absolute values.
  2109. world2machine_revert_to_uncorrected();
  2110. // For mesh bed leveling deactivate the matrix temporarily.
  2111. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2112. // in a single axis only.
  2113. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2114. #ifdef MESH_BED_LEVELING
  2115. uint8_t mbl_was_active = mbl.active;
  2116. mbl.active = 0;
  2117. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2118. #endif
  2119. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2120. // consumed during the first movements following this statement.
  2121. if (home_z)
  2122. babystep_undo();
  2123. saved_feedrate = feedrate;
  2124. int l_feedmultiply = feedmultiply;
  2125. feedmultiply = 100;
  2126. previous_millis_cmd = _millis();
  2127. enable_endstops(true);
  2128. memcpy(destination, current_position, sizeof(destination));
  2129. feedrate = 0.0;
  2130. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2131. if(home_z)
  2132. homeaxis(Z_AXIS);
  2133. #endif
  2134. #ifdef QUICK_HOME
  2135. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2136. if(home_x && home_y) //first diagonal move
  2137. {
  2138. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2139. int x_axis_home_dir = home_dir(X_AXIS);
  2140. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2141. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2142. feedrate = homing_feedrate[X_AXIS];
  2143. if(homing_feedrate[Y_AXIS]<feedrate)
  2144. feedrate = homing_feedrate[Y_AXIS];
  2145. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2146. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2147. } else {
  2148. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2149. }
  2150. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2151. st_synchronize();
  2152. axis_is_at_home(X_AXIS);
  2153. axis_is_at_home(Y_AXIS);
  2154. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2155. destination[X_AXIS] = current_position[X_AXIS];
  2156. destination[Y_AXIS] = current_position[Y_AXIS];
  2157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2158. feedrate = 0.0;
  2159. st_synchronize();
  2160. endstops_hit_on_purpose();
  2161. current_position[X_AXIS] = destination[X_AXIS];
  2162. current_position[Y_AXIS] = destination[Y_AXIS];
  2163. current_position[Z_AXIS] = destination[Z_AXIS];
  2164. }
  2165. #endif /* QUICK_HOME */
  2166. #ifdef TMC2130
  2167. if(home_x)
  2168. {
  2169. if (!calib)
  2170. homeaxis(X_AXIS);
  2171. else
  2172. tmc2130_home_calibrate(X_AXIS);
  2173. }
  2174. if(home_y)
  2175. {
  2176. if (!calib)
  2177. homeaxis(Y_AXIS);
  2178. else
  2179. tmc2130_home_calibrate(Y_AXIS);
  2180. }
  2181. #else //TMC2130
  2182. if(home_x) homeaxis(X_AXIS);
  2183. if(home_y) homeaxis(Y_AXIS);
  2184. #endif //TMC2130
  2185. if(home_x_axis && home_x_value != 0)
  2186. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2187. if(home_y_axis && home_y_value != 0)
  2188. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2189. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2190. #ifndef Z_SAFE_HOMING
  2191. if(home_z) {
  2192. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2193. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2194. feedrate = max_feedrate[Z_AXIS];
  2195. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2196. st_synchronize();
  2197. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2198. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2199. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2200. {
  2201. homeaxis(X_AXIS);
  2202. homeaxis(Y_AXIS);
  2203. }
  2204. // 1st mesh bed leveling measurement point, corrected.
  2205. world2machine_initialize();
  2206. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2207. world2machine_reset();
  2208. if (destination[Y_AXIS] < Y_MIN_POS)
  2209. destination[Y_AXIS] = Y_MIN_POS;
  2210. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2211. feedrate = homing_feedrate[Z_AXIS]/10;
  2212. current_position[Z_AXIS] = 0;
  2213. enable_endstops(false);
  2214. #ifdef DEBUG_BUILD
  2215. SERIAL_ECHOLNPGM("plan_set_position()");
  2216. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2217. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2218. #endif
  2219. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2220. #ifdef DEBUG_BUILD
  2221. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2222. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2223. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2224. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2225. #endif
  2226. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2227. st_synchronize();
  2228. current_position[X_AXIS] = destination[X_AXIS];
  2229. current_position[Y_AXIS] = destination[Y_AXIS];
  2230. enable_endstops(true);
  2231. endstops_hit_on_purpose();
  2232. homeaxis(Z_AXIS);
  2233. #else // MESH_BED_LEVELING
  2234. homeaxis(Z_AXIS);
  2235. #endif // MESH_BED_LEVELING
  2236. }
  2237. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2238. if(home_all_axes) {
  2239. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2240. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2241. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2242. feedrate = XY_TRAVEL_SPEED/60;
  2243. current_position[Z_AXIS] = 0;
  2244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2245. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2246. st_synchronize();
  2247. current_position[X_AXIS] = destination[X_AXIS];
  2248. current_position[Y_AXIS] = destination[Y_AXIS];
  2249. homeaxis(Z_AXIS);
  2250. }
  2251. // Let's see if X and Y are homed and probe is inside bed area.
  2252. if(home_z) {
  2253. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2254. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2255. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2256. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2257. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2258. current_position[Z_AXIS] = 0;
  2259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2260. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2261. feedrate = max_feedrate[Z_AXIS];
  2262. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2263. st_synchronize();
  2264. homeaxis(Z_AXIS);
  2265. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2266. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2267. SERIAL_ECHO_START;
  2268. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2269. } else {
  2270. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2271. SERIAL_ECHO_START;
  2272. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2273. }
  2274. }
  2275. #endif // Z_SAFE_HOMING
  2276. #endif // Z_HOME_DIR < 0
  2277. if(home_z_axis && home_z_value != 0)
  2278. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2279. #ifdef ENABLE_AUTO_BED_LEVELING
  2280. if(home_z)
  2281. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2282. #endif
  2283. // Set the planner and stepper routine positions.
  2284. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2285. // contains the machine coordinates.
  2286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2287. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2288. enable_endstops(false);
  2289. #endif
  2290. feedrate = saved_feedrate;
  2291. feedmultiply = l_feedmultiply;
  2292. previous_millis_cmd = _millis();
  2293. endstops_hit_on_purpose();
  2294. #ifndef MESH_BED_LEVELING
  2295. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2296. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2297. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2298. lcd_adjust_z();
  2299. #endif
  2300. // Load the machine correction matrix
  2301. world2machine_initialize();
  2302. // and correct the current_position XY axes to match the transformed coordinate system.
  2303. world2machine_update_current();
  2304. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2305. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2306. {
  2307. if (! home_z && mbl_was_active) {
  2308. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2309. mbl.active = true;
  2310. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2311. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2312. }
  2313. }
  2314. else
  2315. {
  2316. st_synchronize();
  2317. homing_flag = false;
  2318. }
  2319. #endif
  2320. if (farm_mode) { prusa_statistics(20); };
  2321. homing_flag = false;
  2322. #if 0
  2323. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2324. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2325. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2326. #endif
  2327. }
  2328. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2329. {
  2330. #ifdef TMC2130
  2331. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2332. #else
  2333. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2334. #endif //TMC2130
  2335. }
  2336. void adjust_bed_reset()
  2337. {
  2338. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2339. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2340. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2341. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2342. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2343. }
  2344. //! @brief Calibrate XYZ
  2345. //! @param onlyZ if true, calibrate only Z axis
  2346. //! @param verbosity_level
  2347. //! @retval true Succeeded
  2348. //! @retval false Failed
  2349. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2350. {
  2351. bool final_result = false;
  2352. #ifdef TMC2130
  2353. FORCE_HIGH_POWER_START;
  2354. #endif // TMC2130
  2355. // Only Z calibration?
  2356. if (!onlyZ)
  2357. {
  2358. setTargetBed(0);
  2359. setAllTargetHotends(0);
  2360. adjust_bed_reset(); //reset bed level correction
  2361. }
  2362. // Disable the default update procedure of the display. We will do a modal dialog.
  2363. lcd_update_enable(false);
  2364. // Let the planner use the uncorrected coordinates.
  2365. mbl.reset();
  2366. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2367. // the planner will not perform any adjustments in the XY plane.
  2368. // Wait for the motors to stop and update the current position with the absolute values.
  2369. world2machine_revert_to_uncorrected();
  2370. // Reset the baby step value applied without moving the axes.
  2371. babystep_reset();
  2372. // Mark all axes as in a need for homing.
  2373. memset(axis_known_position, 0, sizeof(axis_known_position));
  2374. // Home in the XY plane.
  2375. //set_destination_to_current();
  2376. int l_feedmultiply = setup_for_endstop_move();
  2377. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2378. home_xy();
  2379. enable_endstops(false);
  2380. current_position[X_AXIS] += 5;
  2381. current_position[Y_AXIS] += 5;
  2382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2383. st_synchronize();
  2384. // Let the user move the Z axes up to the end stoppers.
  2385. #ifdef TMC2130
  2386. if (calibrate_z_auto())
  2387. {
  2388. #else //TMC2130
  2389. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2390. {
  2391. #endif //TMC2130
  2392. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2393. if(onlyZ){
  2394. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2395. lcd_set_cursor(0, 3);
  2396. lcd_print(1);
  2397. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2398. }else{
  2399. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2400. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2401. lcd_set_cursor(0, 2);
  2402. lcd_print(1);
  2403. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2404. }
  2405. refresh_cmd_timeout();
  2406. #ifndef STEEL_SHEET
  2407. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2408. {
  2409. lcd_wait_for_cool_down();
  2410. }
  2411. #endif //STEEL_SHEET
  2412. if(!onlyZ)
  2413. {
  2414. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2415. #ifdef STEEL_SHEET
  2416. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2417. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2418. #endif //STEEL_SHEET
  2419. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2420. KEEPALIVE_STATE(IN_HANDLER);
  2421. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2422. lcd_set_cursor(0, 2);
  2423. lcd_print(1);
  2424. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2425. }
  2426. bool endstops_enabled = enable_endstops(false);
  2427. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2429. st_synchronize();
  2430. // Move the print head close to the bed.
  2431. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2432. enable_endstops(true);
  2433. #ifdef TMC2130
  2434. tmc2130_home_enter(Z_AXIS_MASK);
  2435. #endif //TMC2130
  2436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2437. st_synchronize();
  2438. #ifdef TMC2130
  2439. tmc2130_home_exit();
  2440. #endif //TMC2130
  2441. enable_endstops(endstops_enabled);
  2442. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2443. {
  2444. if (onlyZ)
  2445. {
  2446. clean_up_after_endstop_move(l_feedmultiply);
  2447. // Z only calibration.
  2448. // Load the machine correction matrix
  2449. world2machine_initialize();
  2450. // and correct the current_position to match the transformed coordinate system.
  2451. world2machine_update_current();
  2452. //FIXME
  2453. bool result = sample_mesh_and_store_reference();
  2454. if (result)
  2455. {
  2456. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2457. // Shipped, the nozzle height has been set already. The user can start printing now.
  2458. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2459. final_result = true;
  2460. // babystep_apply();
  2461. }
  2462. }
  2463. else
  2464. {
  2465. // Reset the baby step value and the baby step applied flag.
  2466. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2467. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2468. // Complete XYZ calibration.
  2469. uint8_t point_too_far_mask = 0;
  2470. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2471. clean_up_after_endstop_move(l_feedmultiply);
  2472. // Print head up.
  2473. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2475. st_synchronize();
  2476. //#ifndef NEW_XYZCAL
  2477. if (result >= 0)
  2478. {
  2479. #ifdef HEATBED_V2
  2480. sample_z();
  2481. #else //HEATBED_V2
  2482. point_too_far_mask = 0;
  2483. // Second half: The fine adjustment.
  2484. // Let the planner use the uncorrected coordinates.
  2485. mbl.reset();
  2486. world2machine_reset();
  2487. // Home in the XY plane.
  2488. int l_feedmultiply = setup_for_endstop_move();
  2489. home_xy();
  2490. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2491. clean_up_after_endstop_move(l_feedmultiply);
  2492. // Print head up.
  2493. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2495. st_synchronize();
  2496. // if (result >= 0) babystep_apply();
  2497. #endif //HEATBED_V2
  2498. }
  2499. //#endif //NEW_XYZCAL
  2500. lcd_update_enable(true);
  2501. lcd_update(2);
  2502. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2503. if (result >= 0)
  2504. {
  2505. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2506. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2507. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2508. final_result = true;
  2509. }
  2510. }
  2511. #ifdef TMC2130
  2512. tmc2130_home_exit();
  2513. #endif
  2514. }
  2515. else
  2516. {
  2517. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2518. final_result = false;
  2519. }
  2520. }
  2521. else
  2522. {
  2523. // Timeouted.
  2524. }
  2525. lcd_update_enable(true);
  2526. #ifdef TMC2130
  2527. FORCE_HIGH_POWER_END;
  2528. #endif // TMC2130
  2529. return final_result;
  2530. }
  2531. void gcode_M114()
  2532. {
  2533. SERIAL_PROTOCOLPGM("X:");
  2534. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2535. SERIAL_PROTOCOLPGM(" Y:");
  2536. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2537. SERIAL_PROTOCOLPGM(" Z:");
  2538. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2539. SERIAL_PROTOCOLPGM(" E:");
  2540. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2541. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2542. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2543. SERIAL_PROTOCOLPGM(" Y:");
  2544. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2545. SERIAL_PROTOCOLPGM(" Z:");
  2546. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2547. SERIAL_PROTOCOLPGM(" E:");
  2548. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2549. SERIAL_PROTOCOLLN("");
  2550. }
  2551. //! extracted code to compute z_shift for M600 in case of filament change operation
  2552. //! requested from fsensors.
  2553. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2554. //! unlike the previous implementation, which was adding 25mm even when the head was
  2555. //! printing at e.g. 24mm height.
  2556. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2557. //! the printout.
  2558. //! This function is templated to enable fast change of computation data type.
  2559. //! @return new z_shift value
  2560. template<typename T>
  2561. static T gcode_M600_filament_change_z_shift()
  2562. {
  2563. #ifdef FILAMENTCHANGE_ZADD
  2564. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2565. // avoid floating point arithmetics when not necessary - results in shorter code
  2566. T ztmp = T( current_position[Z_AXIS] );
  2567. T z_shift = 0;
  2568. if(ztmp < T(25)){
  2569. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2570. }
  2571. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2572. #else
  2573. return T(0);
  2574. #endif
  2575. }
  2576. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2577. {
  2578. st_synchronize();
  2579. float lastpos[4];
  2580. if (farm_mode)
  2581. {
  2582. prusa_statistics(22);
  2583. }
  2584. //First backup current position and settings
  2585. int feedmultiplyBckp = feedmultiply;
  2586. float HotendTempBckp = degTargetHotend(active_extruder);
  2587. int fanSpeedBckp = fanSpeed;
  2588. lastpos[X_AXIS] = current_position[X_AXIS];
  2589. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2590. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2591. lastpos[E_AXIS] = current_position[E_AXIS];
  2592. //Retract E
  2593. current_position[E_AXIS] += e_shift;
  2594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2595. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2596. st_synchronize();
  2597. //Lift Z
  2598. current_position[Z_AXIS] += z_shift;
  2599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2600. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2601. st_synchronize();
  2602. //Move XY to side
  2603. current_position[X_AXIS] = x_position;
  2604. current_position[Y_AXIS] = y_position;
  2605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2606. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2607. st_synchronize();
  2608. //Beep, manage nozzle heater and wait for user to start unload filament
  2609. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2610. lcd_change_fil_state = 0;
  2611. // Unload filament
  2612. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2613. else unload_filament(); //unload filament for single material (used also in M702)
  2614. //finish moves
  2615. st_synchronize();
  2616. if (!mmu_enabled)
  2617. {
  2618. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2619. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2620. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2621. if (lcd_change_fil_state == 0)
  2622. {
  2623. lcd_clear();
  2624. lcd_set_cursor(0, 2);
  2625. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2626. current_position[X_AXIS] -= 100;
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2628. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2629. st_synchronize();
  2630. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2631. }
  2632. }
  2633. if (mmu_enabled)
  2634. {
  2635. if (!automatic) {
  2636. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2637. mmu_M600_wait_and_beep();
  2638. if (saved_printing) {
  2639. lcd_clear();
  2640. lcd_set_cursor(0, 2);
  2641. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2642. mmu_command(MmuCmd::R0);
  2643. manage_response(false, false);
  2644. }
  2645. }
  2646. mmu_M600_load_filament(automatic, HotendTempBckp);
  2647. }
  2648. else
  2649. M600_load_filament();
  2650. if (!automatic) M600_check_state(HotendTempBckp);
  2651. lcd_update_enable(true);
  2652. //Not let's go back to print
  2653. fanSpeed = fanSpeedBckp;
  2654. //Feed a little of filament to stabilize pressure
  2655. if (!automatic)
  2656. {
  2657. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2659. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2660. }
  2661. //Move XY back
  2662. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2663. FILAMENTCHANGE_XYFEED, active_extruder);
  2664. st_synchronize();
  2665. //Move Z back
  2666. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2667. FILAMENTCHANGE_ZFEED, active_extruder);
  2668. st_synchronize();
  2669. //Set E position to original
  2670. plan_set_e_position(lastpos[E_AXIS]);
  2671. memcpy(current_position, lastpos, sizeof(lastpos));
  2672. memcpy(destination, current_position, sizeof(current_position));
  2673. //Recover feed rate
  2674. feedmultiply = feedmultiplyBckp;
  2675. char cmd[9];
  2676. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2677. enquecommand(cmd);
  2678. #ifdef IR_SENSOR
  2679. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2680. fsensor_check_autoload();
  2681. #endif //IR_SENSOR
  2682. lcd_setstatuspgm(_T(WELCOME_MSG));
  2683. custom_message_type = CustomMsg::Status;
  2684. }
  2685. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2686. //!
  2687. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2688. //! during extruding (loading) filament.
  2689. void marlin_rise_z(void)
  2690. {
  2691. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2692. }
  2693. void gcode_M701()
  2694. {
  2695. printf_P(PSTR("gcode_M701 begin\n"));
  2696. if (farm_mode)
  2697. {
  2698. prusa_statistics(22);
  2699. }
  2700. if (mmu_enabled)
  2701. {
  2702. extr_adj(tmp_extruder);//loads current extruder
  2703. mmu_extruder = tmp_extruder;
  2704. }
  2705. else
  2706. {
  2707. enable_z();
  2708. custom_message_type = CustomMsg::FilamentLoading;
  2709. #ifdef FSENSOR_QUALITY
  2710. fsensor_oq_meassure_start(40);
  2711. #endif //FSENSOR_QUALITY
  2712. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2713. current_position[E_AXIS] += 40;
  2714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2715. st_synchronize();
  2716. marlin_rise_z();
  2717. current_position[E_AXIS] += 30;
  2718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2719. load_filament_final_feed(); //slow sequence
  2720. st_synchronize();
  2721. Sound_MakeCustom(50,500,false);
  2722. if (!farm_mode && loading_flag) {
  2723. lcd_load_filament_color_check();
  2724. }
  2725. lcd_update_enable(true);
  2726. lcd_update(2);
  2727. lcd_setstatuspgm(_T(WELCOME_MSG));
  2728. disable_z();
  2729. loading_flag = false;
  2730. custom_message_type = CustomMsg::Status;
  2731. #ifdef FSENSOR_QUALITY
  2732. fsensor_oq_meassure_stop();
  2733. if (!fsensor_oq_result())
  2734. {
  2735. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2736. lcd_update_enable(true);
  2737. lcd_update(2);
  2738. if (disable)
  2739. fsensor_disable();
  2740. }
  2741. #endif //FSENSOR_QUALITY
  2742. }
  2743. }
  2744. /**
  2745. * @brief Get serial number from 32U2 processor
  2746. *
  2747. * Typical format of S/N is:CZPX0917X003XC13518
  2748. *
  2749. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2750. *
  2751. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2752. * reply is transmitted to serial port 1 character by character.
  2753. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2754. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2755. * in any case.
  2756. */
  2757. static void gcode_PRUSA_SN()
  2758. {
  2759. if (farm_mode) {
  2760. selectedSerialPort = 0;
  2761. putchar(';');
  2762. putchar('S');
  2763. int numbersRead = 0;
  2764. ShortTimer timeout;
  2765. timeout.start();
  2766. while (numbersRead < 19) {
  2767. while (MSerial.available() > 0) {
  2768. uint8_t serial_char = MSerial.read();
  2769. selectedSerialPort = 1;
  2770. putchar(serial_char);
  2771. numbersRead++;
  2772. selectedSerialPort = 0;
  2773. }
  2774. if (timeout.expired(100u)) break;
  2775. }
  2776. selectedSerialPort = 1;
  2777. putchar('\n');
  2778. #if 0
  2779. for (int b = 0; b < 3; b++) {
  2780. _tone(BEEPER, 110);
  2781. _delay(50);
  2782. _noTone(BEEPER);
  2783. _delay(50);
  2784. }
  2785. #endif
  2786. } else {
  2787. puts_P(_N("Not in farm mode."));
  2788. }
  2789. }
  2790. #ifdef BACKLASH_X
  2791. extern uint8_t st_backlash_x;
  2792. #endif //BACKLASH_X
  2793. #ifdef BACKLASH_Y
  2794. extern uint8_t st_backlash_y;
  2795. #endif //BACKLASH_Y
  2796. //! @brief Parse and process commands
  2797. //!
  2798. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2799. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2800. //!
  2801. //! Implemented Codes
  2802. //! -------------------
  2803. //!
  2804. //!@n PRUSA CODES
  2805. //!@n P F - Returns FW versions
  2806. //!@n P R - Returns revision of printer
  2807. //!
  2808. //!@n G0 -> G1
  2809. //!@n G1 - Coordinated Movement X Y Z E
  2810. //!@n G2 - CW ARC
  2811. //!@n G3 - CCW ARC
  2812. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2813. //!@n G10 - retract filament according to settings of M207
  2814. //!@n G11 - retract recover filament according to settings of M208
  2815. //!@n G28 - Home all Axis
  2816. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2817. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2818. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2819. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2820. //!@n G80 - Automatic mesh bed leveling
  2821. //!@n G81 - Print bed profile
  2822. //!@n G90 - Use Absolute Coordinates
  2823. //!@n G91 - Use Relative Coordinates
  2824. //!@n G92 - Set current position to coordinates given
  2825. //!
  2826. //!@n M Codes
  2827. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2828. //!@n M1 - Same as M0
  2829. //!@n M17 - Enable/Power all stepper motors
  2830. //!@n M18 - Disable all stepper motors; same as M84
  2831. //!@n M20 - List SD card
  2832. //!@n M21 - Init SD card
  2833. //!@n M22 - Release SD card
  2834. //!@n M23 - Select SD file (M23 filename.g)
  2835. //!@n M24 - Start/resume SD print
  2836. //!@n M25 - Pause SD print
  2837. //!@n M26 - Set SD position in bytes (M26 S12345)
  2838. //!@n M27 - Report SD print status
  2839. //!@n M28 - Start SD write (M28 filename.g)
  2840. //!@n M29 - Stop SD write
  2841. //!@n M30 - Delete file from SD (M30 filename.g)
  2842. //!@n M31 - Output time since last M109 or SD card start to serial
  2843. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2844. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2845. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2846. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2847. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2848. //!@n M73 - Show percent done and print time remaining
  2849. //!@n M80 - Turn on Power Supply
  2850. //!@n M81 - Turn off Power Supply
  2851. //!@n M82 - Set E codes absolute (default)
  2852. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2853. //!@n M84 - Disable steppers until next move,
  2854. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2855. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2856. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2857. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2858. //!@n M104 - Set extruder target temp
  2859. //!@n M105 - Read current temp
  2860. //!@n M106 - Fan on
  2861. //!@n M107 - Fan off
  2862. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2863. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2864. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2865. //!@n M112 - Emergency stop
  2866. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2867. //!@n M114 - Output current position to serial port
  2868. //!@n M115 - Capabilities string
  2869. //!@n M117 - display message
  2870. //!@n M119 - Output Endstop status to serial port
  2871. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2872. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2873. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2874. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2875. //!@n M140 - Set bed target temp
  2876. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2877. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2878. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2879. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2880. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2881. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2882. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2883. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2884. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2885. //!@n M206 - set additional homing offset
  2886. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2887. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2888. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2889. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2890. //!@n M220 S<factor in percent>- set speed factor override percentage
  2891. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2892. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2893. //!@n M240 - Trigger a camera to take a photograph
  2894. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2895. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2896. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2897. //!@n M301 - Set PID parameters P I and D
  2898. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2899. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2900. //!@n M304 - Set bed PID parameters P I and D
  2901. //!@n M400 - Finish all moves
  2902. //!@n M401 - Lower z-probe if present
  2903. //!@n M402 - Raise z-probe if present
  2904. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2905. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2906. //!@n M406 - Turn off Filament Sensor extrusion control
  2907. //!@n M407 - Displays measured filament diameter
  2908. //!@n M500 - stores parameters in EEPROM
  2909. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2910. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2911. //!@n M503 - print the current settings (from memory not from EEPROM)
  2912. //!@n M509 - force language selection on next restart
  2913. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2914. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2915. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2916. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2917. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2918. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2919. //!@n M907 - Set digital trimpot motor current using axis codes.
  2920. //!@n M908 - Control digital trimpot directly.
  2921. //!@n M350 - Set microstepping mode.
  2922. //!@n M351 - Toggle MS1 MS2 pins directly.
  2923. //!
  2924. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2925. //!@n M999 - Restart after being stopped by error
  2926. void process_commands()
  2927. {
  2928. #ifdef FANCHECK
  2929. if (fan_check_error){
  2930. if( fan_check_error == EFCE_DETECTED ){
  2931. fan_check_error = EFCE_REPORTED;
  2932. lcd_pause_print();
  2933. } // otherwise it has already been reported, so just ignore further processing
  2934. return;
  2935. }
  2936. #endif
  2937. if (!buflen) return; //empty command
  2938. #ifdef FILAMENT_RUNOUT_SUPPORT
  2939. SET_INPUT(FR_SENS);
  2940. #endif
  2941. #ifdef CMDBUFFER_DEBUG
  2942. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2943. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2944. SERIAL_ECHOLNPGM("");
  2945. SERIAL_ECHOPGM("In cmdqueue: ");
  2946. SERIAL_ECHO(buflen);
  2947. SERIAL_ECHOLNPGM("");
  2948. #endif /* CMDBUFFER_DEBUG */
  2949. unsigned long codenum; //throw away variable
  2950. char *starpos = NULL;
  2951. #ifdef ENABLE_AUTO_BED_LEVELING
  2952. float x_tmp, y_tmp, z_tmp, real_z;
  2953. #endif
  2954. // PRUSA GCODES
  2955. KEEPALIVE_STATE(IN_HANDLER);
  2956. #ifdef SNMM
  2957. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2958. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2959. int8_t SilentMode;
  2960. #endif
  2961. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2962. starpos = (strchr(strchr_pointer + 5, '*'));
  2963. if (starpos != NULL)
  2964. *(starpos) = '\0';
  2965. lcd_setstatus(strchr_pointer + 5);
  2966. }
  2967. #ifdef TMC2130
  2968. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2969. {
  2970. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2971. {
  2972. uint8_t mask = 0;
  2973. if (code_seen('X')) mask |= X_AXIS_MASK;
  2974. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2975. crashdet_detected(mask);
  2976. }
  2977. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2978. crashdet_recover();
  2979. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2980. crashdet_cancel();
  2981. }
  2982. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2983. {
  2984. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2985. {
  2986. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2987. axis = (axis == 'E')?3:(axis - 'X');
  2988. if (axis < 4)
  2989. {
  2990. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2991. tmc2130_set_wave(axis, 247, fac);
  2992. }
  2993. }
  2994. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2995. {
  2996. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2997. axis = (axis == 'E')?3:(axis - 'X');
  2998. if (axis < 4)
  2999. {
  3000. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3001. uint16_t res = tmc2130_get_res(axis);
  3002. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3003. }
  3004. }
  3005. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3006. {
  3007. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3008. axis = (axis == 'E')?3:(axis - 'X');
  3009. if (axis < 4)
  3010. {
  3011. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3012. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3013. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3014. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3015. char* str_end = 0;
  3016. if (CMDBUFFER_CURRENT_STRING[14])
  3017. {
  3018. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3019. if (str_end && *str_end)
  3020. {
  3021. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3022. if (str_end && *str_end)
  3023. {
  3024. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3025. if (str_end && *str_end)
  3026. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3027. }
  3028. }
  3029. }
  3030. tmc2130_chopper_config[axis].toff = chop0;
  3031. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3032. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3033. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3034. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3035. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3036. }
  3037. }
  3038. }
  3039. #ifdef BACKLASH_X
  3040. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3041. {
  3042. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3043. st_backlash_x = bl;
  3044. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3045. }
  3046. #endif //BACKLASH_X
  3047. #ifdef BACKLASH_Y
  3048. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3049. {
  3050. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3051. st_backlash_y = bl;
  3052. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3053. }
  3054. #endif //BACKLASH_Y
  3055. #endif //TMC2130
  3056. else if(code_seen("PRUSA")){
  3057. if (code_seen("Ping")) { //! PRUSA Ping
  3058. if (farm_mode) {
  3059. PingTime = _millis();
  3060. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3061. }
  3062. }
  3063. else if (code_seen("PRN")) { //! PRUSA PRN
  3064. printf_P(_N("%d"), status_number);
  3065. }else if (code_seen("FAN")) { //! PRUSA FAN
  3066. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3067. }else if (code_seen("fn")) { //! PRUSA fn
  3068. if (farm_mode) {
  3069. printf_P(_N("%d"), farm_no);
  3070. }
  3071. else {
  3072. puts_P(_N("Not in farm mode."));
  3073. }
  3074. }
  3075. else if (code_seen("thx")) //! PRUSA thx
  3076. {
  3077. no_response = false;
  3078. }
  3079. else if (code_seen("uvlo")) //! PRUSA uvlo
  3080. {
  3081. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3082. enquecommand_P(PSTR("M24"));
  3083. }
  3084. #ifdef FILAMENT_SENSOR
  3085. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3086. {
  3087. fsensor_restore_print_and_continue();
  3088. }
  3089. #endif //FILAMENT_SENSOR
  3090. else if (code_seen("MMURES")) //! PRUSA MMURES
  3091. {
  3092. mmu_reset();
  3093. }
  3094. else if (code_seen("RESET")) { //! PRUSA RESET
  3095. // careful!
  3096. if (farm_mode) {
  3097. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3098. boot_app_magic = BOOT_APP_MAGIC;
  3099. boot_app_flags = BOOT_APP_FLG_RUN;
  3100. wdt_enable(WDTO_15MS);
  3101. cli();
  3102. while(1);
  3103. #else //WATCHDOG
  3104. asm volatile("jmp 0x3E000");
  3105. #endif //WATCHDOG
  3106. }
  3107. else {
  3108. MYSERIAL.println("Not in farm mode.");
  3109. }
  3110. }else if (code_seen("fv")) { //! PRUSA fv
  3111. // get file version
  3112. #ifdef SDSUPPORT
  3113. card.openFile(strchr_pointer + 3,true);
  3114. while (true) {
  3115. uint16_t readByte = card.get();
  3116. MYSERIAL.write(readByte);
  3117. if (readByte=='\n') {
  3118. break;
  3119. }
  3120. }
  3121. card.closefile();
  3122. #endif // SDSUPPORT
  3123. } else if (code_seen("M28")) { //! PRUSA M28
  3124. trace();
  3125. prusa_sd_card_upload = true;
  3126. card.openFile(strchr_pointer+4,false);
  3127. } else if (code_seen("SN")) { //! PRUSA SN
  3128. gcode_PRUSA_SN();
  3129. } else if(code_seen("Fir")){ //! PRUSA Fir
  3130. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3131. } else if(code_seen("Rev")){ //! PRUSA Rev
  3132. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3133. } else if(code_seen("Lang")) { //! PRUSA Lang
  3134. lang_reset();
  3135. } else if(code_seen("Lz")) { //! PRUSA Lz
  3136. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3137. } else if(code_seen("Beat")) { //! PRUSA Beat
  3138. // Kick farm link timer
  3139. kicktime = _millis();
  3140. } else if(code_seen("FR")) { //! PRUSA FR
  3141. // Factory full reset
  3142. factory_reset(0);
  3143. //-//
  3144. /*
  3145. } else if(code_seen("rrr")) {
  3146. MYSERIAL.println("=== checking ===");
  3147. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3148. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3149. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3150. MYSERIAL.println(farm_mode,DEC);
  3151. MYSERIAL.println(eCheckMode,DEC);
  3152. } else if(code_seen("www")) {
  3153. MYSERIAL.println("=== @ FF ===");
  3154. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3155. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3156. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3157. */
  3158. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3159. uint16_t nDiameter;
  3160. if(code_seen('D'))
  3161. {
  3162. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3163. nozzle_diameter_check(nDiameter);
  3164. }
  3165. else if(code_seen("set") && farm_mode)
  3166. {
  3167. strchr_pointer++; // skip 1st char (~ 's')
  3168. strchr_pointer++; // skip 2nd char (~ 'e')
  3169. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3170. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3171. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3172. }
  3173. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3174. //-// !!! SupportMenu
  3175. /*
  3176. // musi byt PRED "PRUSA model"
  3177. } else if (code_seen("smodel")) { //! PRUSA smodel
  3178. size_t nOffset;
  3179. // ! -> "l"
  3180. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3181. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3182. if(*(strchr_pointer+1+nOffset))
  3183. printer_smodel_check(strchr_pointer);
  3184. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3185. } else if (code_seen("model")) { //! PRUSA model
  3186. uint16_t nPrinterModel;
  3187. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3188. nPrinterModel=(uint16_t)code_value_long();
  3189. if(nPrinterModel!=0)
  3190. printer_model_check(nPrinterModel);
  3191. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3192. } else if (code_seen("version")) { //! PRUSA version
  3193. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3194. while(*strchr_pointer==' ') // skip leading spaces
  3195. strchr_pointer++;
  3196. if(*strchr_pointer!=0)
  3197. fw_version_check(strchr_pointer);
  3198. else SERIAL_PROTOCOLLN(FW_VERSION);
  3199. } else if (code_seen("gcode")) { //! PRUSA gcode
  3200. uint16_t nGcodeLevel;
  3201. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3202. nGcodeLevel=(uint16_t)code_value_long();
  3203. if(nGcodeLevel!=0)
  3204. gcode_level_check(nGcodeLevel);
  3205. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3206. */
  3207. }
  3208. //else if (code_seen('Cal')) {
  3209. // lcd_calibration();
  3210. // }
  3211. }
  3212. else if (code_seen('^')) {
  3213. // nothing, this is a version line
  3214. } else if(code_seen('G'))
  3215. {
  3216. gcode_in_progress = (int)code_value();
  3217. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3218. switch (gcode_in_progress)
  3219. {
  3220. case 0: // G0 -> G1
  3221. case 1: // G1
  3222. if(Stopped == false) {
  3223. #ifdef FILAMENT_RUNOUT_SUPPORT
  3224. if(READ(FR_SENS)){
  3225. int feedmultiplyBckp=feedmultiply;
  3226. float target[4];
  3227. float lastpos[4];
  3228. target[X_AXIS]=current_position[X_AXIS];
  3229. target[Y_AXIS]=current_position[Y_AXIS];
  3230. target[Z_AXIS]=current_position[Z_AXIS];
  3231. target[E_AXIS]=current_position[E_AXIS];
  3232. lastpos[X_AXIS]=current_position[X_AXIS];
  3233. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3234. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3235. lastpos[E_AXIS]=current_position[E_AXIS];
  3236. //retract by E
  3237. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3238. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3239. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3240. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3241. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3242. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3243. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3244. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3245. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3246. //finish moves
  3247. st_synchronize();
  3248. //disable extruder steppers so filament can be removed
  3249. disable_e0();
  3250. disable_e1();
  3251. disable_e2();
  3252. _delay(100);
  3253. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3254. uint8_t cnt=0;
  3255. int counterBeep = 0;
  3256. lcd_wait_interact();
  3257. while(!lcd_clicked()){
  3258. cnt++;
  3259. manage_heater();
  3260. manage_inactivity(true);
  3261. //lcd_update(0);
  3262. if(cnt==0)
  3263. {
  3264. #if BEEPER > 0
  3265. if (counterBeep== 500){
  3266. counterBeep = 0;
  3267. }
  3268. SET_OUTPUT(BEEPER);
  3269. if (counterBeep== 0){
  3270. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3271. WRITE(BEEPER,HIGH);
  3272. }
  3273. if (counterBeep== 20){
  3274. WRITE(BEEPER,LOW);
  3275. }
  3276. counterBeep++;
  3277. #else
  3278. #endif
  3279. }
  3280. }
  3281. WRITE(BEEPER,LOW);
  3282. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3283. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3284. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3285. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3286. lcd_change_fil_state = 0;
  3287. lcd_loading_filament();
  3288. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3289. lcd_change_fil_state = 0;
  3290. lcd_alright();
  3291. switch(lcd_change_fil_state){
  3292. case 2:
  3293. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3294. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3295. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3297. lcd_loading_filament();
  3298. break;
  3299. case 3:
  3300. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3301. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3302. lcd_loading_color();
  3303. break;
  3304. default:
  3305. lcd_change_success();
  3306. break;
  3307. }
  3308. }
  3309. target[E_AXIS]+= 5;
  3310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3311. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3313. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3314. //plan_set_e_position(current_position[E_AXIS]);
  3315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3316. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3317. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3318. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3319. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3320. plan_set_e_position(lastpos[E_AXIS]);
  3321. feedmultiply=feedmultiplyBckp;
  3322. char cmd[9];
  3323. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3324. enquecommand(cmd);
  3325. }
  3326. #endif
  3327. get_coordinates(); // For X Y Z E F
  3328. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3329. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3330. }
  3331. #ifdef FWRETRACT
  3332. if(cs.autoretract_enabled)
  3333. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3334. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3335. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3336. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3337. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3338. retract(!retracted[active_extruder]);
  3339. return;
  3340. }
  3341. }
  3342. #endif //FWRETRACT
  3343. prepare_move();
  3344. //ClearToSend();
  3345. }
  3346. break;
  3347. case 2: // G2 - CW ARC
  3348. if(Stopped == false) {
  3349. get_arc_coordinates();
  3350. prepare_arc_move(true);
  3351. }
  3352. break;
  3353. case 3: // G3 - CCW ARC
  3354. if(Stopped == false) {
  3355. get_arc_coordinates();
  3356. prepare_arc_move(false);
  3357. }
  3358. break;
  3359. case 4: // G4 dwell
  3360. codenum = 0;
  3361. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3362. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3363. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3364. st_synchronize();
  3365. codenum += _millis(); // keep track of when we started waiting
  3366. previous_millis_cmd = _millis();
  3367. while(_millis() < codenum) {
  3368. manage_heater();
  3369. manage_inactivity();
  3370. lcd_update(0);
  3371. }
  3372. break;
  3373. #ifdef FWRETRACT
  3374. case 10: // G10 retract
  3375. #if EXTRUDERS > 1
  3376. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3377. retract(true,retracted_swap[active_extruder]);
  3378. #else
  3379. retract(true);
  3380. #endif
  3381. break;
  3382. case 11: // G11 retract_recover
  3383. #if EXTRUDERS > 1
  3384. retract(false,retracted_swap[active_extruder]);
  3385. #else
  3386. retract(false);
  3387. #endif
  3388. break;
  3389. #endif //FWRETRACT
  3390. case 28: //G28 Home all Axis one at a time
  3391. {
  3392. long home_x_value = 0;
  3393. long home_y_value = 0;
  3394. long home_z_value = 0;
  3395. // Which axes should be homed?
  3396. bool home_x = code_seen(axis_codes[X_AXIS]);
  3397. home_x_value = code_value_long();
  3398. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3399. home_y_value = code_value_long();
  3400. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3401. home_z_value = code_value_long();
  3402. bool without_mbl = code_seen('W');
  3403. // calibrate?
  3404. #ifdef TMC2130
  3405. bool calib = code_seen('C');
  3406. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3407. #else
  3408. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3409. #endif //TMC2130
  3410. if ((home_x || home_y || without_mbl || home_z) == false) {
  3411. // Push the commands to the front of the message queue in the reverse order!
  3412. // There shall be always enough space reserved for these commands.
  3413. goto case_G80;
  3414. }
  3415. break;
  3416. }
  3417. #ifdef ENABLE_AUTO_BED_LEVELING
  3418. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3419. {
  3420. #if Z_MIN_PIN == -1
  3421. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3422. #endif
  3423. // Prevent user from running a G29 without first homing in X and Y
  3424. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3425. {
  3426. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3427. SERIAL_ECHO_START;
  3428. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3429. break; // abort G29, since we don't know where we are
  3430. }
  3431. st_synchronize();
  3432. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3433. //vector_3 corrected_position = plan_get_position_mm();
  3434. //corrected_position.debug("position before G29");
  3435. plan_bed_level_matrix.set_to_identity();
  3436. vector_3 uncorrected_position = plan_get_position();
  3437. //uncorrected_position.debug("position durring G29");
  3438. current_position[X_AXIS] = uncorrected_position.x;
  3439. current_position[Y_AXIS] = uncorrected_position.y;
  3440. current_position[Z_AXIS] = uncorrected_position.z;
  3441. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3442. int l_feedmultiply = setup_for_endstop_move();
  3443. feedrate = homing_feedrate[Z_AXIS];
  3444. #ifdef AUTO_BED_LEVELING_GRID
  3445. // probe at the points of a lattice grid
  3446. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3447. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3448. // solve the plane equation ax + by + d = z
  3449. // A is the matrix with rows [x y 1] for all the probed points
  3450. // B is the vector of the Z positions
  3451. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3452. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3453. // "A" matrix of the linear system of equations
  3454. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3455. // "B" vector of Z points
  3456. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3457. int probePointCounter = 0;
  3458. bool zig = true;
  3459. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3460. {
  3461. int xProbe, xInc;
  3462. if (zig)
  3463. {
  3464. xProbe = LEFT_PROBE_BED_POSITION;
  3465. //xEnd = RIGHT_PROBE_BED_POSITION;
  3466. xInc = xGridSpacing;
  3467. zig = false;
  3468. } else // zag
  3469. {
  3470. xProbe = RIGHT_PROBE_BED_POSITION;
  3471. //xEnd = LEFT_PROBE_BED_POSITION;
  3472. xInc = -xGridSpacing;
  3473. zig = true;
  3474. }
  3475. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3476. {
  3477. float z_before;
  3478. if (probePointCounter == 0)
  3479. {
  3480. // raise before probing
  3481. z_before = Z_RAISE_BEFORE_PROBING;
  3482. } else
  3483. {
  3484. // raise extruder
  3485. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3486. }
  3487. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3488. eqnBVector[probePointCounter] = measured_z;
  3489. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3490. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3491. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3492. probePointCounter++;
  3493. xProbe += xInc;
  3494. }
  3495. }
  3496. clean_up_after_endstop_move(l_feedmultiply);
  3497. // solve lsq problem
  3498. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3499. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3500. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3501. SERIAL_PROTOCOLPGM(" b: ");
  3502. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3503. SERIAL_PROTOCOLPGM(" d: ");
  3504. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3505. set_bed_level_equation_lsq(plane_equation_coefficients);
  3506. free(plane_equation_coefficients);
  3507. #else // AUTO_BED_LEVELING_GRID not defined
  3508. // Probe at 3 arbitrary points
  3509. // probe 1
  3510. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3511. // probe 2
  3512. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3513. // probe 3
  3514. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3515. clean_up_after_endstop_move(l_feedmultiply);
  3516. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3517. #endif // AUTO_BED_LEVELING_GRID
  3518. st_synchronize();
  3519. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3520. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3521. // When the bed is uneven, this height must be corrected.
  3522. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3523. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3524. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3525. z_tmp = current_position[Z_AXIS];
  3526. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3527. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3529. }
  3530. break;
  3531. #ifndef Z_PROBE_SLED
  3532. case 30: // G30 Single Z Probe
  3533. {
  3534. st_synchronize();
  3535. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3536. int l_feedmultiply = setup_for_endstop_move();
  3537. feedrate = homing_feedrate[Z_AXIS];
  3538. run_z_probe();
  3539. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3540. SERIAL_PROTOCOLPGM(" X: ");
  3541. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3542. SERIAL_PROTOCOLPGM(" Y: ");
  3543. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3544. SERIAL_PROTOCOLPGM(" Z: ");
  3545. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3546. SERIAL_PROTOCOLPGM("\n");
  3547. clean_up_after_endstop_move(l_feedmultiply);
  3548. }
  3549. break;
  3550. #else
  3551. case 31: // dock the sled
  3552. dock_sled(true);
  3553. break;
  3554. case 32: // undock the sled
  3555. dock_sled(false);
  3556. break;
  3557. #endif // Z_PROBE_SLED
  3558. #endif // ENABLE_AUTO_BED_LEVELING
  3559. #ifdef MESH_BED_LEVELING
  3560. case 30: // G30 Single Z Probe
  3561. {
  3562. st_synchronize();
  3563. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3564. int l_feedmultiply = setup_for_endstop_move();
  3565. feedrate = homing_feedrate[Z_AXIS];
  3566. find_bed_induction_sensor_point_z(-10.f, 3);
  3567. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3568. clean_up_after_endstop_move(l_feedmultiply);
  3569. }
  3570. break;
  3571. case 75:
  3572. {
  3573. for (int i = 40; i <= 110; i++)
  3574. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3575. }
  3576. break;
  3577. case 76: //! G76 - PINDA probe temperature calibration
  3578. {
  3579. #ifdef PINDA_THERMISTOR
  3580. if (true)
  3581. {
  3582. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3583. //we need to know accurate position of first calibration point
  3584. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3585. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3586. break;
  3587. }
  3588. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3589. {
  3590. // We don't know where we are! HOME!
  3591. // Push the commands to the front of the message queue in the reverse order!
  3592. // There shall be always enough space reserved for these commands.
  3593. repeatcommand_front(); // repeat G76 with all its parameters
  3594. enquecommand_front_P((PSTR("G28 W0")));
  3595. break;
  3596. }
  3597. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3598. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3599. if (result)
  3600. {
  3601. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. current_position[Z_AXIS] = 50;
  3604. current_position[Y_AXIS] = 180;
  3605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3606. st_synchronize();
  3607. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3608. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3609. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3611. st_synchronize();
  3612. gcode_G28(false, false, true);
  3613. }
  3614. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3615. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3616. current_position[Z_AXIS] = 100;
  3617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3618. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3619. lcd_temp_cal_show_result(false);
  3620. break;
  3621. }
  3622. }
  3623. lcd_update_enable(true);
  3624. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3625. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3626. float zero_z;
  3627. int z_shift = 0; //unit: steps
  3628. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3629. if (start_temp < 35) start_temp = 35;
  3630. if (start_temp < current_temperature_pinda) start_temp += 5;
  3631. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3632. // setTargetHotend(200, 0);
  3633. setTargetBed(70 + (start_temp - 30));
  3634. custom_message_type = CustomMsg::TempCal;
  3635. custom_message_state = 1;
  3636. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3637. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3639. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3640. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3642. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3644. st_synchronize();
  3645. while (current_temperature_pinda < start_temp)
  3646. {
  3647. delay_keep_alive(1000);
  3648. serialecho_temperatures();
  3649. }
  3650. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3651. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3653. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3654. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3656. st_synchronize();
  3657. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3658. if (find_z_result == false) {
  3659. lcd_temp_cal_show_result(find_z_result);
  3660. break;
  3661. }
  3662. zero_z = current_position[Z_AXIS];
  3663. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3664. int i = -1; for (; i < 5; i++)
  3665. {
  3666. float temp = (40 + i * 5);
  3667. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3668. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3669. if (start_temp <= temp) break;
  3670. }
  3671. for (i++; i < 5; i++)
  3672. {
  3673. float temp = (40 + i * 5);
  3674. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3675. custom_message_state = i + 2;
  3676. setTargetBed(50 + 10 * (temp - 30) / 5);
  3677. // setTargetHotend(255, 0);
  3678. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3680. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3681. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3683. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3685. st_synchronize();
  3686. while (current_temperature_pinda < temp)
  3687. {
  3688. delay_keep_alive(1000);
  3689. serialecho_temperatures();
  3690. }
  3691. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3693. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3694. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3696. st_synchronize();
  3697. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3698. if (find_z_result == false) {
  3699. lcd_temp_cal_show_result(find_z_result);
  3700. break;
  3701. }
  3702. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3703. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3704. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3705. }
  3706. lcd_temp_cal_show_result(true);
  3707. break;
  3708. }
  3709. #endif //PINDA_THERMISTOR
  3710. setTargetBed(PINDA_MIN_T);
  3711. float zero_z;
  3712. int z_shift = 0; //unit: steps
  3713. int t_c; // temperature
  3714. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3715. // We don't know where we are! HOME!
  3716. // Push the commands to the front of the message queue in the reverse order!
  3717. // There shall be always enough space reserved for these commands.
  3718. repeatcommand_front(); // repeat G76 with all its parameters
  3719. enquecommand_front_P((PSTR("G28 W0")));
  3720. break;
  3721. }
  3722. puts_P(_N("PINDA probe calibration start"));
  3723. custom_message_type = CustomMsg::TempCal;
  3724. custom_message_state = 1;
  3725. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3726. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3727. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3728. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3730. st_synchronize();
  3731. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3732. delay_keep_alive(1000);
  3733. serialecho_temperatures();
  3734. }
  3735. //enquecommand_P(PSTR("M190 S50"));
  3736. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3737. delay_keep_alive(1000);
  3738. serialecho_temperatures();
  3739. }
  3740. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3741. current_position[Z_AXIS] = 5;
  3742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3743. current_position[X_AXIS] = BED_X0;
  3744. current_position[Y_AXIS] = BED_Y0;
  3745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3746. st_synchronize();
  3747. find_bed_induction_sensor_point_z(-1.f);
  3748. zero_z = current_position[Z_AXIS];
  3749. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3750. for (int i = 0; i<5; i++) {
  3751. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3752. custom_message_state = i + 2;
  3753. t_c = 60 + i * 10;
  3754. setTargetBed(t_c);
  3755. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3756. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3757. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3759. st_synchronize();
  3760. while (degBed() < t_c) {
  3761. delay_keep_alive(1000);
  3762. serialecho_temperatures();
  3763. }
  3764. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3765. delay_keep_alive(1000);
  3766. serialecho_temperatures();
  3767. }
  3768. current_position[Z_AXIS] = 5;
  3769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3770. current_position[X_AXIS] = BED_X0;
  3771. current_position[Y_AXIS] = BED_Y0;
  3772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3773. st_synchronize();
  3774. find_bed_induction_sensor_point_z(-1.f);
  3775. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3776. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3777. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3778. }
  3779. custom_message_type = CustomMsg::Status;
  3780. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3781. puts_P(_N("Temperature calibration done."));
  3782. disable_x();
  3783. disable_y();
  3784. disable_z();
  3785. disable_e0();
  3786. disable_e1();
  3787. disable_e2();
  3788. setTargetBed(0); //set bed target temperature back to 0
  3789. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3790. temp_cal_active = true;
  3791. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3792. lcd_update_enable(true);
  3793. lcd_update(2);
  3794. }
  3795. break;
  3796. /**
  3797. * G80: Mesh-based Z probe, probes a grid and produces a
  3798. * mesh to compensate for variable bed height
  3799. *
  3800. * The S0 report the points as below
  3801. * @code{.unparsed}
  3802. * +----> X-axis
  3803. * |
  3804. * |
  3805. * v Y-axis
  3806. * @endcode
  3807. */
  3808. case 80:
  3809. #ifdef MK1BP
  3810. break;
  3811. #endif //MK1BP
  3812. case_G80:
  3813. {
  3814. mesh_bed_leveling_flag = true;
  3815. static bool run = false;
  3816. #ifdef SUPPORT_VERBOSITY
  3817. int8_t verbosity_level = 0;
  3818. if (code_seen('V')) {
  3819. // Just 'V' without a number counts as V1.
  3820. char c = strchr_pointer[1];
  3821. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3822. }
  3823. #endif //SUPPORT_VERBOSITY
  3824. // Firstly check if we know where we are
  3825. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3826. // We don't know where we are! HOME!
  3827. // Push the commands to the front of the message queue in the reverse order!
  3828. // There shall be always enough space reserved for these commands.
  3829. if (lcd_commands_type != LcdCommands::StopPrint) {
  3830. repeatcommand_front(); // repeat G80 with all its parameters
  3831. enquecommand_front_P((PSTR("G28 W0")));
  3832. }
  3833. else {
  3834. mesh_bed_leveling_flag = false;
  3835. }
  3836. break;
  3837. }
  3838. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3839. if (code_seen('N')) {
  3840. nMeasPoints = code_value_uint8();
  3841. if (nMeasPoints != 7) {
  3842. nMeasPoints = 3;
  3843. }
  3844. }
  3845. else {
  3846. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3847. }
  3848. uint8_t nProbeRetry = 3;
  3849. if (code_seen('R')) {
  3850. nProbeRetry = code_value_uint8();
  3851. if (nProbeRetry > 10) {
  3852. nProbeRetry = 10;
  3853. }
  3854. }
  3855. else {
  3856. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3857. }
  3858. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3859. bool temp_comp_start = true;
  3860. #ifdef PINDA_THERMISTOR
  3861. temp_comp_start = false;
  3862. #endif //PINDA_THERMISTOR
  3863. if (temp_comp_start)
  3864. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3865. if (lcd_commands_type != LcdCommands::StopPrint) {
  3866. temp_compensation_start();
  3867. run = true;
  3868. repeatcommand_front(); // repeat G80 with all its parameters
  3869. enquecommand_front_P((PSTR("G28 W0")));
  3870. }
  3871. else {
  3872. mesh_bed_leveling_flag = false;
  3873. }
  3874. break;
  3875. }
  3876. run = false;
  3877. if (lcd_commands_type == LcdCommands::StopPrint) {
  3878. mesh_bed_leveling_flag = false;
  3879. break;
  3880. }
  3881. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3882. CustomMsg custom_message_type_old = custom_message_type;
  3883. unsigned int custom_message_state_old = custom_message_state;
  3884. custom_message_type = CustomMsg::MeshBedLeveling;
  3885. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3886. lcd_update(1);
  3887. mbl.reset(); //reset mesh bed leveling
  3888. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3889. // consumed during the first movements following this statement.
  3890. babystep_undo();
  3891. // Cycle through all points and probe them
  3892. // First move up. During this first movement, the babystepping will be reverted.
  3893. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3895. // The move to the first calibration point.
  3896. current_position[X_AXIS] = BED_X0;
  3897. current_position[Y_AXIS] = BED_Y0;
  3898. #ifdef SUPPORT_VERBOSITY
  3899. if (verbosity_level >= 1)
  3900. {
  3901. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3902. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3903. }
  3904. #else //SUPPORT_VERBOSITY
  3905. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3906. #endif //SUPPORT_VERBOSITY
  3907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3908. // Wait until the move is finished.
  3909. st_synchronize();
  3910. uint8_t mesh_point = 0; //index number of calibration point
  3911. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3912. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3913. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3914. #ifdef SUPPORT_VERBOSITY
  3915. if (verbosity_level >= 1) {
  3916. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3917. }
  3918. #endif // SUPPORT_VERBOSITY
  3919. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3920. const char *kill_message = NULL;
  3921. while (mesh_point != nMeasPoints * nMeasPoints) {
  3922. // Get coords of a measuring point.
  3923. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3924. uint8_t iy = mesh_point / nMeasPoints;
  3925. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3926. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3927. custom_message_state--;
  3928. mesh_point++;
  3929. continue; //skip
  3930. }*/
  3931. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3932. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3933. {
  3934. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3935. }
  3936. float z0 = 0.f;
  3937. if (has_z && (mesh_point > 0)) {
  3938. uint16_t z_offset_u = 0;
  3939. if (nMeasPoints == 7) {
  3940. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3941. }
  3942. else {
  3943. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3944. }
  3945. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3946. #ifdef SUPPORT_VERBOSITY
  3947. if (verbosity_level >= 1) {
  3948. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3949. }
  3950. #endif // SUPPORT_VERBOSITY
  3951. }
  3952. // Move Z up to MESH_HOME_Z_SEARCH.
  3953. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3954. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3955. float init_z_bckp = current_position[Z_AXIS];
  3956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3957. st_synchronize();
  3958. // Move to XY position of the sensor point.
  3959. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3960. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3961. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3962. #ifdef SUPPORT_VERBOSITY
  3963. if (verbosity_level >= 1) {
  3964. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3965. SERIAL_PROTOCOL(mesh_point);
  3966. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3967. }
  3968. #else //SUPPORT_VERBOSITY
  3969. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3970. #endif // SUPPORT_VERBOSITY
  3971. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3973. st_synchronize();
  3974. // Go down until endstop is hit
  3975. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3976. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3977. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3978. break;
  3979. }
  3980. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3981. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3982. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3984. st_synchronize();
  3985. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3986. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3987. break;
  3988. }
  3989. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3990. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3991. break;
  3992. }
  3993. }
  3994. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3995. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3996. break;
  3997. }
  3998. #ifdef SUPPORT_VERBOSITY
  3999. if (verbosity_level >= 10) {
  4000. SERIAL_ECHOPGM("X: ");
  4001. MYSERIAL.print(current_position[X_AXIS], 5);
  4002. SERIAL_ECHOLNPGM("");
  4003. SERIAL_ECHOPGM("Y: ");
  4004. MYSERIAL.print(current_position[Y_AXIS], 5);
  4005. SERIAL_PROTOCOLPGM("\n");
  4006. }
  4007. #endif // SUPPORT_VERBOSITY
  4008. float offset_z = 0;
  4009. #ifdef PINDA_THERMISTOR
  4010. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4011. #endif //PINDA_THERMISTOR
  4012. // #ifdef SUPPORT_VERBOSITY
  4013. /* if (verbosity_level >= 1)
  4014. {
  4015. SERIAL_ECHOPGM("mesh bed leveling: ");
  4016. MYSERIAL.print(current_position[Z_AXIS], 5);
  4017. SERIAL_ECHOPGM(" offset: ");
  4018. MYSERIAL.print(offset_z, 5);
  4019. SERIAL_ECHOLNPGM("");
  4020. }*/
  4021. // #endif // SUPPORT_VERBOSITY
  4022. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4023. custom_message_state--;
  4024. mesh_point++;
  4025. lcd_update(1);
  4026. }
  4027. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4028. #ifdef SUPPORT_VERBOSITY
  4029. if (verbosity_level >= 20) {
  4030. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4031. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4032. MYSERIAL.print(current_position[Z_AXIS], 5);
  4033. }
  4034. #endif // SUPPORT_VERBOSITY
  4035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4036. st_synchronize();
  4037. if (mesh_point != nMeasPoints * nMeasPoints) {
  4038. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4039. bool bState;
  4040. do { // repeat until Z-leveling o.k.
  4041. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4042. #ifdef TMC2130
  4043. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4044. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4045. #else // TMC2130
  4046. lcd_wait_for_click_delay(0); // ~ no timeout
  4047. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4048. #endif // TMC2130
  4049. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4050. bState=enable_z_endstop(false);
  4051. current_position[Z_AXIS] -= 1;
  4052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4053. st_synchronize();
  4054. enable_z_endstop(true);
  4055. #ifdef TMC2130
  4056. tmc2130_home_enter(Z_AXIS_MASK);
  4057. #endif // TMC2130
  4058. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4060. st_synchronize();
  4061. #ifdef TMC2130
  4062. tmc2130_home_exit();
  4063. #endif // TMC2130
  4064. enable_z_endstop(bState);
  4065. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4066. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4067. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4068. lcd_update_enable(true); // display / status-line recovery
  4069. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4070. repeatcommand_front(); // re-run (i.e. of "G80")
  4071. break;
  4072. }
  4073. clean_up_after_endstop_move(l_feedmultiply);
  4074. // SERIAL_ECHOLNPGM("clean up finished ");
  4075. bool apply_temp_comp = true;
  4076. #ifdef PINDA_THERMISTOR
  4077. apply_temp_comp = false;
  4078. #endif
  4079. if (apply_temp_comp)
  4080. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4081. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4082. // SERIAL_ECHOLNPGM("babystep applied");
  4083. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4084. #ifdef SUPPORT_VERBOSITY
  4085. if (verbosity_level >= 1) {
  4086. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4087. }
  4088. #endif // SUPPORT_VERBOSITY
  4089. for (uint8_t i = 0; i < 4; ++i) {
  4090. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4091. long correction = 0;
  4092. if (code_seen(codes[i]))
  4093. correction = code_value_long();
  4094. else if (eeprom_bed_correction_valid) {
  4095. unsigned char *addr = (i < 2) ?
  4096. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4097. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4098. correction = eeprom_read_int8(addr);
  4099. }
  4100. if (correction == 0)
  4101. continue;
  4102. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4103. SERIAL_ERROR_START;
  4104. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4105. SERIAL_ECHO(correction);
  4106. SERIAL_ECHOLNPGM(" microns");
  4107. }
  4108. else {
  4109. float offset = float(correction) * 0.001f;
  4110. switch (i) {
  4111. case 0:
  4112. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4113. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4114. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4115. }
  4116. }
  4117. break;
  4118. case 1:
  4119. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4120. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4121. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4122. }
  4123. }
  4124. break;
  4125. case 2:
  4126. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4127. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4128. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4129. }
  4130. }
  4131. break;
  4132. case 3:
  4133. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4134. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4135. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4136. }
  4137. }
  4138. break;
  4139. }
  4140. }
  4141. }
  4142. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4143. if (nMeasPoints == 3) {
  4144. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4145. }
  4146. /*
  4147. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4148. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4149. SERIAL_PROTOCOLPGM(",");
  4150. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4151. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4152. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4153. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4154. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4155. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4156. SERIAL_PROTOCOLPGM(" ");
  4157. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4158. }
  4159. SERIAL_PROTOCOLPGM("\n");
  4160. }
  4161. */
  4162. if (nMeasPoints == 7 && magnet_elimination) {
  4163. mbl_interpolation(nMeasPoints);
  4164. }
  4165. /*
  4166. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4167. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4168. SERIAL_PROTOCOLPGM(",");
  4169. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4170. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4171. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4172. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4173. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4174. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4175. SERIAL_PROTOCOLPGM(" ");
  4176. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4177. }
  4178. SERIAL_PROTOCOLPGM("\n");
  4179. }
  4180. */
  4181. // SERIAL_ECHOLNPGM("Upsample finished");
  4182. mbl.active = 1; //activate mesh bed leveling
  4183. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4184. go_home_with_z_lift();
  4185. // SERIAL_ECHOLNPGM("Go home finished");
  4186. //unretract (after PINDA preheat retraction)
  4187. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4188. current_position[E_AXIS] += default_retraction;
  4189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4190. }
  4191. KEEPALIVE_STATE(NOT_BUSY);
  4192. // Restore custom message state
  4193. lcd_setstatuspgm(_T(WELCOME_MSG));
  4194. custom_message_type = custom_message_type_old;
  4195. custom_message_state = custom_message_state_old;
  4196. mesh_bed_leveling_flag = false;
  4197. mesh_bed_run_from_menu = false;
  4198. lcd_update(2);
  4199. }
  4200. break;
  4201. /**
  4202. * G81: Print mesh bed leveling status and bed profile if activated
  4203. */
  4204. case 81:
  4205. if (mbl.active) {
  4206. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4207. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4208. SERIAL_PROTOCOLPGM(",");
  4209. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4210. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4211. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4212. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4213. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4214. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4215. SERIAL_PROTOCOLPGM(" ");
  4216. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4217. }
  4218. SERIAL_PROTOCOLPGM("\n");
  4219. }
  4220. }
  4221. else
  4222. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4223. break;
  4224. #if 0
  4225. /**
  4226. * G82: Single Z probe at current location
  4227. *
  4228. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4229. *
  4230. */
  4231. case 82:
  4232. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4233. int l_feedmultiply = setup_for_endstop_move();
  4234. find_bed_induction_sensor_point_z();
  4235. clean_up_after_endstop_move(l_feedmultiply);
  4236. SERIAL_PROTOCOLPGM("Bed found at: ");
  4237. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4238. SERIAL_PROTOCOLPGM("\n");
  4239. break;
  4240. /**
  4241. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4242. */
  4243. case 83:
  4244. {
  4245. int babystepz = code_seen('S') ? code_value() : 0;
  4246. int BabyPosition = code_seen('P') ? code_value() : 0;
  4247. if (babystepz != 0) {
  4248. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4249. // Is the axis indexed starting with zero or one?
  4250. if (BabyPosition > 4) {
  4251. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4252. }else{
  4253. // Save it to the eeprom
  4254. babystepLoadZ = babystepz;
  4255. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4256. // adjust the Z
  4257. babystepsTodoZadd(babystepLoadZ);
  4258. }
  4259. }
  4260. }
  4261. break;
  4262. /**
  4263. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4264. */
  4265. case 84:
  4266. babystepsTodoZsubtract(babystepLoadZ);
  4267. // babystepLoadZ = 0;
  4268. break;
  4269. /**
  4270. * G85: Prusa3D specific: Pick best babystep
  4271. */
  4272. case 85:
  4273. lcd_pick_babystep();
  4274. break;
  4275. #endif
  4276. /**
  4277. * G86: Prusa3D specific: Disable babystep correction after home.
  4278. * This G-code will be performed at the start of a calibration script.
  4279. */
  4280. case 86:
  4281. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4282. break;
  4283. /**
  4284. * G87: Prusa3D specific: Enable babystep correction after home
  4285. * This G-code will be performed at the end of a calibration script.
  4286. */
  4287. case 87:
  4288. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4289. break;
  4290. /**
  4291. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4292. */
  4293. case 88:
  4294. break;
  4295. #endif // ENABLE_MESH_BED_LEVELING
  4296. case 90: // G90
  4297. relative_mode = false;
  4298. break;
  4299. case 91: // G91
  4300. relative_mode = true;
  4301. break;
  4302. case 92: // G92
  4303. if(!code_seen(axis_codes[E_AXIS]))
  4304. st_synchronize();
  4305. for(int8_t i=0; i < NUM_AXIS; i++) {
  4306. if(code_seen(axis_codes[i])) {
  4307. if(i == E_AXIS) {
  4308. current_position[i] = code_value();
  4309. plan_set_e_position(current_position[E_AXIS]);
  4310. }
  4311. else {
  4312. current_position[i] = code_value()+cs.add_homing[i];
  4313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4314. }
  4315. }
  4316. }
  4317. break;
  4318. case 98: //! G98 (activate farm mode)
  4319. farm_mode = 1;
  4320. PingTime = _millis();
  4321. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4322. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4323. SilentModeMenu = SILENT_MODE_OFF;
  4324. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4325. fCheckModeInit(); // alternatively invoke printer reset
  4326. break;
  4327. case 99: //! G99 (deactivate farm mode)
  4328. farm_mode = 0;
  4329. lcd_printer_connected();
  4330. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4331. lcd_update(2);
  4332. fCheckModeInit(); // alternatively invoke printer reset
  4333. break;
  4334. default:
  4335. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4336. }
  4337. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4338. gcode_in_progress = 0;
  4339. } // end if(code_seen('G'))
  4340. else if(code_seen('M'))
  4341. {
  4342. int index;
  4343. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4344. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4345. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4346. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4347. } else
  4348. {
  4349. mcode_in_progress = (int)code_value();
  4350. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4351. switch(mcode_in_progress)
  4352. {
  4353. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4354. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4355. {
  4356. char *src = strchr_pointer + 2;
  4357. codenum = 0;
  4358. bool hasP = false, hasS = false;
  4359. if (code_seen('P')) {
  4360. codenum = code_value(); // milliseconds to wait
  4361. hasP = codenum > 0;
  4362. }
  4363. if (code_seen('S')) {
  4364. codenum = code_value() * 1000; // seconds to wait
  4365. hasS = codenum > 0;
  4366. }
  4367. starpos = strchr(src, '*');
  4368. if (starpos != NULL) *(starpos) = '\0';
  4369. while (*src == ' ') ++src;
  4370. if (!hasP && !hasS && *src != '\0') {
  4371. lcd_setstatus(src);
  4372. } else {
  4373. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4374. }
  4375. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4376. st_synchronize();
  4377. previous_millis_cmd = _millis();
  4378. if (codenum > 0){
  4379. codenum += _millis(); // keep track of when we started waiting
  4380. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4381. while(_millis() < codenum && !lcd_clicked()){
  4382. manage_heater();
  4383. manage_inactivity(true);
  4384. lcd_update(0);
  4385. }
  4386. KEEPALIVE_STATE(IN_HANDLER);
  4387. lcd_ignore_click(false);
  4388. }else{
  4389. marlin_wait_for_click();
  4390. }
  4391. if (IS_SD_PRINTING)
  4392. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4393. else
  4394. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4395. }
  4396. break;
  4397. case 17:
  4398. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4399. enable_x();
  4400. enable_y();
  4401. enable_z();
  4402. enable_e0();
  4403. enable_e1();
  4404. enable_e2();
  4405. break;
  4406. #ifdef SDSUPPORT
  4407. case 20: // M20 - list SD card
  4408. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4409. card.ls();
  4410. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4411. break;
  4412. case 21: // M21 - init SD card
  4413. card.initsd();
  4414. break;
  4415. case 22: //M22 - release SD card
  4416. card.release();
  4417. break;
  4418. case 23: //M23 - Select file
  4419. starpos = (strchr(strchr_pointer + 4,'*'));
  4420. if(starpos!=NULL)
  4421. *(starpos)='\0';
  4422. card.openFile(strchr_pointer + 4,true);
  4423. break;
  4424. case 24: //M24 - Start SD print
  4425. if (!card.paused)
  4426. failstats_reset_print();
  4427. card.startFileprint();
  4428. starttime=_millis();
  4429. break;
  4430. case 25: //M25 - Pause SD print
  4431. card.pauseSDPrint();
  4432. break;
  4433. case 26: //M26 - Set SD index
  4434. if(card.cardOK && code_seen('S')) {
  4435. card.setIndex(code_value_long());
  4436. }
  4437. break;
  4438. case 27: //M27 - Get SD status
  4439. card.getStatus();
  4440. break;
  4441. case 28: //M28 - Start SD write
  4442. starpos = (strchr(strchr_pointer + 4,'*'));
  4443. if(starpos != NULL){
  4444. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4445. strchr_pointer = strchr(npos,' ') + 1;
  4446. *(starpos) = '\0';
  4447. }
  4448. card.openFile(strchr_pointer+4,false);
  4449. break;
  4450. case 29: //M29 - Stop SD write
  4451. //processed in write to file routine above
  4452. //card,saving = false;
  4453. break;
  4454. case 30: //M30 <filename> Delete File
  4455. if (card.cardOK){
  4456. card.closefile();
  4457. starpos = (strchr(strchr_pointer + 4,'*'));
  4458. if(starpos != NULL){
  4459. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4460. strchr_pointer = strchr(npos,' ') + 1;
  4461. *(starpos) = '\0';
  4462. }
  4463. card.removeFile(strchr_pointer + 4);
  4464. }
  4465. break;
  4466. case 32: //M32 - Select file and start SD print
  4467. {
  4468. if(card.sdprinting) {
  4469. st_synchronize();
  4470. }
  4471. starpos = (strchr(strchr_pointer + 4,'*'));
  4472. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4473. if(namestartpos==NULL)
  4474. {
  4475. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4476. }
  4477. else
  4478. namestartpos++; //to skip the '!'
  4479. if(starpos!=NULL)
  4480. *(starpos)='\0';
  4481. bool call_procedure=(code_seen('P'));
  4482. if(strchr_pointer>namestartpos)
  4483. call_procedure=false; //false alert, 'P' found within filename
  4484. if( card.cardOK )
  4485. {
  4486. card.openFile(namestartpos,true,!call_procedure);
  4487. if(code_seen('S'))
  4488. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4489. card.setIndex(code_value_long());
  4490. card.startFileprint();
  4491. if(!call_procedure)
  4492. starttime=_millis(); //procedure calls count as normal print time.
  4493. }
  4494. } break;
  4495. case 928: //M928 - Start SD write
  4496. starpos = (strchr(strchr_pointer + 5,'*'));
  4497. if(starpos != NULL){
  4498. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4499. strchr_pointer = strchr(npos,' ') + 1;
  4500. *(starpos) = '\0';
  4501. }
  4502. card.openLogFile(strchr_pointer+5);
  4503. break;
  4504. #endif //SDSUPPORT
  4505. case 31: //M31 take time since the start of the SD print or an M109 command
  4506. {
  4507. stoptime=_millis();
  4508. char time[30];
  4509. unsigned long t=(stoptime-starttime)/1000;
  4510. int sec,min;
  4511. min=t/60;
  4512. sec=t%60;
  4513. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4514. SERIAL_ECHO_START;
  4515. SERIAL_ECHOLN(time);
  4516. lcd_setstatus(time);
  4517. autotempShutdown();
  4518. }
  4519. break;
  4520. case 42: //M42 -Change pin status via gcode
  4521. if (code_seen('S'))
  4522. {
  4523. int pin_status = code_value();
  4524. int pin_number = LED_PIN;
  4525. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4526. pin_number = code_value();
  4527. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4528. {
  4529. if (sensitive_pins[i] == pin_number)
  4530. {
  4531. pin_number = -1;
  4532. break;
  4533. }
  4534. }
  4535. #if defined(FAN_PIN) && FAN_PIN > -1
  4536. if (pin_number == FAN_PIN)
  4537. fanSpeed = pin_status;
  4538. #endif
  4539. if (pin_number > -1)
  4540. {
  4541. pinMode(pin_number, OUTPUT);
  4542. digitalWrite(pin_number, pin_status);
  4543. analogWrite(pin_number, pin_status);
  4544. }
  4545. }
  4546. break;
  4547. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4548. // Reset the baby step value and the baby step applied flag.
  4549. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4550. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4551. // Reset the skew and offset in both RAM and EEPROM.
  4552. reset_bed_offset_and_skew();
  4553. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4554. // the planner will not perform any adjustments in the XY plane.
  4555. // Wait for the motors to stop and update the current position with the absolute values.
  4556. world2machine_revert_to_uncorrected();
  4557. break;
  4558. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4559. {
  4560. int8_t verbosity_level = 0;
  4561. bool only_Z = code_seen('Z');
  4562. #ifdef SUPPORT_VERBOSITY
  4563. if (code_seen('V'))
  4564. {
  4565. // Just 'V' without a number counts as V1.
  4566. char c = strchr_pointer[1];
  4567. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4568. }
  4569. #endif //SUPPORT_VERBOSITY
  4570. gcode_M45(only_Z, verbosity_level);
  4571. }
  4572. break;
  4573. /*
  4574. case 46:
  4575. {
  4576. // M46: Prusa3D: Show the assigned IP address.
  4577. uint8_t ip[4];
  4578. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4579. if (hasIP) {
  4580. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4581. SERIAL_ECHO(int(ip[0]));
  4582. SERIAL_ECHOPGM(".");
  4583. SERIAL_ECHO(int(ip[1]));
  4584. SERIAL_ECHOPGM(".");
  4585. SERIAL_ECHO(int(ip[2]));
  4586. SERIAL_ECHOPGM(".");
  4587. SERIAL_ECHO(int(ip[3]));
  4588. SERIAL_ECHOLNPGM("");
  4589. } else {
  4590. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4591. }
  4592. break;
  4593. }
  4594. */
  4595. case 47:
  4596. //! M47: Prusa3D: Show end stops dialog on the display.
  4597. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4598. lcd_diag_show_end_stops();
  4599. KEEPALIVE_STATE(IN_HANDLER);
  4600. break;
  4601. #if 0
  4602. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4603. {
  4604. // Disable the default update procedure of the display. We will do a modal dialog.
  4605. lcd_update_enable(false);
  4606. // Let the planner use the uncorrected coordinates.
  4607. mbl.reset();
  4608. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4609. // the planner will not perform any adjustments in the XY plane.
  4610. // Wait for the motors to stop and update the current position with the absolute values.
  4611. world2machine_revert_to_uncorrected();
  4612. // Move the print head close to the bed.
  4613. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4615. st_synchronize();
  4616. // Home in the XY plane.
  4617. set_destination_to_current();
  4618. int l_feedmultiply = setup_for_endstop_move();
  4619. home_xy();
  4620. int8_t verbosity_level = 0;
  4621. if (code_seen('V')) {
  4622. // Just 'V' without a number counts as V1.
  4623. char c = strchr_pointer[1];
  4624. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4625. }
  4626. bool success = scan_bed_induction_points(verbosity_level);
  4627. clean_up_after_endstop_move(l_feedmultiply);
  4628. // Print head up.
  4629. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4631. st_synchronize();
  4632. lcd_update_enable(true);
  4633. break;
  4634. }
  4635. #endif
  4636. #ifdef ENABLE_AUTO_BED_LEVELING
  4637. #ifdef Z_PROBE_REPEATABILITY_TEST
  4638. //! M48 Z-Probe repeatability measurement function.
  4639. //!
  4640. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4641. //!
  4642. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4643. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4644. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4645. //! regenerated.
  4646. //!
  4647. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4648. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4649. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4650. //!
  4651. case 48: // M48 Z-Probe repeatability
  4652. {
  4653. #if Z_MIN_PIN == -1
  4654. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4655. #endif
  4656. double sum=0.0;
  4657. double mean=0.0;
  4658. double sigma=0.0;
  4659. double sample_set[50];
  4660. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4661. double X_current, Y_current, Z_current;
  4662. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4663. if (code_seen('V') || code_seen('v')) {
  4664. verbose_level = code_value();
  4665. if (verbose_level<0 || verbose_level>4 ) {
  4666. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4667. goto Sigma_Exit;
  4668. }
  4669. }
  4670. if (verbose_level > 0) {
  4671. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4672. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4673. }
  4674. if (code_seen('n')) {
  4675. n_samples = code_value();
  4676. if (n_samples<4 || n_samples>50 ) {
  4677. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4678. goto Sigma_Exit;
  4679. }
  4680. }
  4681. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4682. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4683. Z_current = st_get_position_mm(Z_AXIS);
  4684. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4685. ext_position = st_get_position_mm(E_AXIS);
  4686. if (code_seen('X') || code_seen('x') ) {
  4687. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4688. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4689. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4690. goto Sigma_Exit;
  4691. }
  4692. }
  4693. if (code_seen('Y') || code_seen('y') ) {
  4694. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4695. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4696. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4697. goto Sigma_Exit;
  4698. }
  4699. }
  4700. if (code_seen('L') || code_seen('l') ) {
  4701. n_legs = code_value();
  4702. if ( n_legs==1 )
  4703. n_legs = 2;
  4704. if ( n_legs<0 || n_legs>15 ) {
  4705. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4706. goto Sigma_Exit;
  4707. }
  4708. }
  4709. //
  4710. // Do all the preliminary setup work. First raise the probe.
  4711. //
  4712. st_synchronize();
  4713. plan_bed_level_matrix.set_to_identity();
  4714. plan_buffer_line( X_current, Y_current, Z_start_location,
  4715. ext_position,
  4716. homing_feedrate[Z_AXIS]/60,
  4717. active_extruder);
  4718. st_synchronize();
  4719. //
  4720. // Now get everything to the specified probe point So we can safely do a probe to
  4721. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4722. // use that as a starting point for each probe.
  4723. //
  4724. if (verbose_level > 2)
  4725. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4726. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4727. ext_position,
  4728. homing_feedrate[X_AXIS]/60,
  4729. active_extruder);
  4730. st_synchronize();
  4731. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4732. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4733. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4734. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4735. //
  4736. // OK, do the inital probe to get us close to the bed.
  4737. // Then retrace the right amount and use that in subsequent probes
  4738. //
  4739. int l_feedmultiply = setup_for_endstop_move();
  4740. run_z_probe();
  4741. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4742. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4743. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4744. ext_position,
  4745. homing_feedrate[X_AXIS]/60,
  4746. active_extruder);
  4747. st_synchronize();
  4748. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4749. for( n=0; n<n_samples; n++) {
  4750. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4751. if ( n_legs) {
  4752. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4753. int rotational_direction, l;
  4754. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4755. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4756. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4757. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4758. //SERIAL_ECHOPAIR(" theta: ",theta);
  4759. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4760. //SERIAL_PROTOCOLLNPGM("");
  4761. for( l=0; l<n_legs-1; l++) {
  4762. if (rotational_direction==1)
  4763. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4764. else
  4765. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4766. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4767. if ( radius<0.0 )
  4768. radius = -radius;
  4769. X_current = X_probe_location + cos(theta) * radius;
  4770. Y_current = Y_probe_location + sin(theta) * radius;
  4771. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4772. X_current = X_MIN_POS;
  4773. if ( X_current>X_MAX_POS)
  4774. X_current = X_MAX_POS;
  4775. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4776. Y_current = Y_MIN_POS;
  4777. if ( Y_current>Y_MAX_POS)
  4778. Y_current = Y_MAX_POS;
  4779. if (verbose_level>3 ) {
  4780. SERIAL_ECHOPAIR("x: ", X_current);
  4781. SERIAL_ECHOPAIR("y: ", Y_current);
  4782. SERIAL_PROTOCOLLNPGM("");
  4783. }
  4784. do_blocking_move_to( X_current, Y_current, Z_current );
  4785. }
  4786. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4787. }
  4788. int l_feedmultiply = setup_for_endstop_move();
  4789. run_z_probe();
  4790. sample_set[n] = current_position[Z_AXIS];
  4791. //
  4792. // Get the current mean for the data points we have so far
  4793. //
  4794. sum=0.0;
  4795. for( j=0; j<=n; j++) {
  4796. sum = sum + sample_set[j];
  4797. }
  4798. mean = sum / (double (n+1));
  4799. //
  4800. // Now, use that mean to calculate the standard deviation for the
  4801. // data points we have so far
  4802. //
  4803. sum=0.0;
  4804. for( j=0; j<=n; j++) {
  4805. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4806. }
  4807. sigma = sqrt( sum / (double (n+1)) );
  4808. if (verbose_level > 1) {
  4809. SERIAL_PROTOCOL(n+1);
  4810. SERIAL_PROTOCOL(" of ");
  4811. SERIAL_PROTOCOL(n_samples);
  4812. SERIAL_PROTOCOLPGM(" z: ");
  4813. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4814. }
  4815. if (verbose_level > 2) {
  4816. SERIAL_PROTOCOL(" mean: ");
  4817. SERIAL_PROTOCOL_F(mean,6);
  4818. SERIAL_PROTOCOL(" sigma: ");
  4819. SERIAL_PROTOCOL_F(sigma,6);
  4820. }
  4821. if (verbose_level > 0)
  4822. SERIAL_PROTOCOLPGM("\n");
  4823. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4824. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4825. st_synchronize();
  4826. }
  4827. _delay(1000);
  4828. clean_up_after_endstop_move(l_feedmultiply);
  4829. // enable_endstops(true);
  4830. if (verbose_level > 0) {
  4831. SERIAL_PROTOCOLPGM("Mean: ");
  4832. SERIAL_PROTOCOL_F(mean, 6);
  4833. SERIAL_PROTOCOLPGM("\n");
  4834. }
  4835. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4836. SERIAL_PROTOCOL_F(sigma, 6);
  4837. SERIAL_PROTOCOLPGM("\n\n");
  4838. Sigma_Exit:
  4839. break;
  4840. }
  4841. #endif // Z_PROBE_REPEATABILITY_TEST
  4842. #endif // ENABLE_AUTO_BED_LEVELING
  4843. case 73: //M73 show percent done and time remaining
  4844. if(code_seen('P')) print_percent_done_normal = code_value();
  4845. if(code_seen('R')) print_time_remaining_normal = code_value();
  4846. if(code_seen('Q')) print_percent_done_silent = code_value();
  4847. if(code_seen('S')) print_time_remaining_silent = code_value();
  4848. {
  4849. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4850. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4851. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4852. }
  4853. break;
  4854. case 104: // M104
  4855. {
  4856. uint8_t extruder;
  4857. if(setTargetedHotend(104,extruder)){
  4858. break;
  4859. }
  4860. if (code_seen('S'))
  4861. {
  4862. setTargetHotendSafe(code_value(), extruder);
  4863. }
  4864. setWatch();
  4865. break;
  4866. }
  4867. case 112: // M112 -Emergency Stop
  4868. kill(_n(""), 3);
  4869. break;
  4870. case 140: // M140 set bed temp
  4871. if (code_seen('S')) setTargetBed(code_value());
  4872. break;
  4873. case 105 : // M105
  4874. {
  4875. uint8_t extruder;
  4876. if(setTargetedHotend(105, extruder)){
  4877. break;
  4878. }
  4879. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4880. SERIAL_PROTOCOLPGM("ok T:");
  4881. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4882. SERIAL_PROTOCOLPGM(" /");
  4883. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4884. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4885. SERIAL_PROTOCOLPGM(" B:");
  4886. SERIAL_PROTOCOL_F(degBed(),1);
  4887. SERIAL_PROTOCOLPGM(" /");
  4888. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4889. #endif //TEMP_BED_PIN
  4890. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4891. SERIAL_PROTOCOLPGM(" T");
  4892. SERIAL_PROTOCOL(cur_extruder);
  4893. SERIAL_PROTOCOLPGM(":");
  4894. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4895. SERIAL_PROTOCOLPGM(" /");
  4896. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4897. }
  4898. #else
  4899. SERIAL_ERROR_START;
  4900. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4901. #endif
  4902. SERIAL_PROTOCOLPGM(" @:");
  4903. #ifdef EXTRUDER_WATTS
  4904. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4905. SERIAL_PROTOCOLPGM("W");
  4906. #else
  4907. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4908. #endif
  4909. SERIAL_PROTOCOLPGM(" B@:");
  4910. #ifdef BED_WATTS
  4911. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4912. SERIAL_PROTOCOLPGM("W");
  4913. #else
  4914. SERIAL_PROTOCOL(getHeaterPower(-1));
  4915. #endif
  4916. #ifdef PINDA_THERMISTOR
  4917. SERIAL_PROTOCOLPGM(" P:");
  4918. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4919. #endif //PINDA_THERMISTOR
  4920. #ifdef AMBIENT_THERMISTOR
  4921. SERIAL_PROTOCOLPGM(" A:");
  4922. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4923. #endif //AMBIENT_THERMISTOR
  4924. #ifdef SHOW_TEMP_ADC_VALUES
  4925. {float raw = 0.0;
  4926. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4927. SERIAL_PROTOCOLPGM(" ADC B:");
  4928. SERIAL_PROTOCOL_F(degBed(),1);
  4929. SERIAL_PROTOCOLPGM("C->");
  4930. raw = rawBedTemp();
  4931. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4932. SERIAL_PROTOCOLPGM(" Rb->");
  4933. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4934. SERIAL_PROTOCOLPGM(" Rxb->");
  4935. SERIAL_PROTOCOL_F(raw, 5);
  4936. #endif
  4937. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4938. SERIAL_PROTOCOLPGM(" T");
  4939. SERIAL_PROTOCOL(cur_extruder);
  4940. SERIAL_PROTOCOLPGM(":");
  4941. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4942. SERIAL_PROTOCOLPGM("C->");
  4943. raw = rawHotendTemp(cur_extruder);
  4944. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4945. SERIAL_PROTOCOLPGM(" Rt");
  4946. SERIAL_PROTOCOL(cur_extruder);
  4947. SERIAL_PROTOCOLPGM("->");
  4948. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4949. SERIAL_PROTOCOLPGM(" Rx");
  4950. SERIAL_PROTOCOL(cur_extruder);
  4951. SERIAL_PROTOCOLPGM("->");
  4952. SERIAL_PROTOCOL_F(raw, 5);
  4953. }}
  4954. #endif
  4955. SERIAL_PROTOCOLLN("");
  4956. KEEPALIVE_STATE(NOT_BUSY);
  4957. return;
  4958. break;
  4959. }
  4960. case 109:
  4961. {// M109 - Wait for extruder heater to reach target.
  4962. uint8_t extruder;
  4963. if(setTargetedHotend(109, extruder)){
  4964. break;
  4965. }
  4966. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4967. heating_status = 1;
  4968. if (farm_mode) { prusa_statistics(1); };
  4969. #ifdef AUTOTEMP
  4970. autotemp_enabled=false;
  4971. #endif
  4972. if (code_seen('S')) {
  4973. setTargetHotendSafe(code_value(), extruder);
  4974. CooldownNoWait = true;
  4975. } else if (code_seen('R')) {
  4976. setTargetHotendSafe(code_value(), extruder);
  4977. CooldownNoWait = false;
  4978. }
  4979. #ifdef AUTOTEMP
  4980. if (code_seen('S')) autotemp_min=code_value();
  4981. if (code_seen('B')) autotemp_max=code_value();
  4982. if (code_seen('F'))
  4983. {
  4984. autotemp_factor=code_value();
  4985. autotemp_enabled=true;
  4986. }
  4987. #endif
  4988. setWatch();
  4989. codenum = _millis();
  4990. /* See if we are heating up or cooling down */
  4991. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4992. KEEPALIVE_STATE(NOT_BUSY);
  4993. cancel_heatup = false;
  4994. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4995. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4996. KEEPALIVE_STATE(IN_HANDLER);
  4997. heating_status = 2;
  4998. if (farm_mode) { prusa_statistics(2); };
  4999. //starttime=_millis();
  5000. previous_millis_cmd = _millis();
  5001. }
  5002. break;
  5003. case 190: // M190 - Wait for bed heater to reach target.
  5004. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5005. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5006. heating_status = 3;
  5007. if (farm_mode) { prusa_statistics(1); };
  5008. if (code_seen('S'))
  5009. {
  5010. setTargetBed(code_value());
  5011. CooldownNoWait = true;
  5012. }
  5013. else if (code_seen('R'))
  5014. {
  5015. setTargetBed(code_value());
  5016. CooldownNoWait = false;
  5017. }
  5018. codenum = _millis();
  5019. cancel_heatup = false;
  5020. target_direction = isHeatingBed(); // true if heating, false if cooling
  5021. KEEPALIVE_STATE(NOT_BUSY);
  5022. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5023. {
  5024. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5025. {
  5026. if (!farm_mode) {
  5027. float tt = degHotend(active_extruder);
  5028. SERIAL_PROTOCOLPGM("T:");
  5029. SERIAL_PROTOCOL(tt);
  5030. SERIAL_PROTOCOLPGM(" E:");
  5031. SERIAL_PROTOCOL((int)active_extruder);
  5032. SERIAL_PROTOCOLPGM(" B:");
  5033. SERIAL_PROTOCOL_F(degBed(), 1);
  5034. SERIAL_PROTOCOLLN("");
  5035. }
  5036. codenum = _millis();
  5037. }
  5038. manage_heater();
  5039. manage_inactivity();
  5040. lcd_update(0);
  5041. }
  5042. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5043. KEEPALIVE_STATE(IN_HANDLER);
  5044. heating_status = 4;
  5045. previous_millis_cmd = _millis();
  5046. #endif
  5047. break;
  5048. #if defined(FAN_PIN) && FAN_PIN > -1
  5049. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5050. if (code_seen('S')){
  5051. fanSpeed=constrain(code_value(),0,255);
  5052. }
  5053. else {
  5054. fanSpeed=255;
  5055. }
  5056. break;
  5057. case 107: //M107 Fan Off
  5058. fanSpeed = 0;
  5059. break;
  5060. #endif //FAN_PIN
  5061. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5062. case 80: // M80 - Turn on Power Supply
  5063. SET_OUTPUT(PS_ON_PIN); //GND
  5064. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5065. // If you have a switch on suicide pin, this is useful
  5066. // if you want to start another print with suicide feature after
  5067. // a print without suicide...
  5068. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5069. SET_OUTPUT(SUICIDE_PIN);
  5070. WRITE(SUICIDE_PIN, HIGH);
  5071. #endif
  5072. powersupply = true;
  5073. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5074. lcd_update(0);
  5075. break;
  5076. #endif
  5077. case 81: // M81 - Turn off Power Supply
  5078. disable_heater();
  5079. st_synchronize();
  5080. disable_e0();
  5081. disable_e1();
  5082. disable_e2();
  5083. finishAndDisableSteppers();
  5084. fanSpeed = 0;
  5085. _delay(1000); // Wait a little before to switch off
  5086. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5087. st_synchronize();
  5088. suicide();
  5089. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5090. SET_OUTPUT(PS_ON_PIN);
  5091. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5092. #endif
  5093. powersupply = false;
  5094. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5095. lcd_update(0);
  5096. break;
  5097. case 82:
  5098. axis_relative_modes[3] = false;
  5099. break;
  5100. case 83:
  5101. axis_relative_modes[3] = true;
  5102. break;
  5103. case 18: //compatibility
  5104. case 84: // M84
  5105. if(code_seen('S')){
  5106. stepper_inactive_time = code_value() * 1000;
  5107. }
  5108. else
  5109. {
  5110. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5111. if(all_axis)
  5112. {
  5113. st_synchronize();
  5114. disable_e0();
  5115. disable_e1();
  5116. disable_e2();
  5117. finishAndDisableSteppers();
  5118. }
  5119. else
  5120. {
  5121. st_synchronize();
  5122. if (code_seen('X')) disable_x();
  5123. if (code_seen('Y')) disable_y();
  5124. if (code_seen('Z')) disable_z();
  5125. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5126. if (code_seen('E')) {
  5127. disable_e0();
  5128. disable_e1();
  5129. disable_e2();
  5130. }
  5131. #endif
  5132. }
  5133. }
  5134. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5135. print_time_remaining_init();
  5136. snmm_filaments_used = 0;
  5137. break;
  5138. case 85: // M85
  5139. if(code_seen('S')) {
  5140. max_inactive_time = code_value() * 1000;
  5141. }
  5142. break;
  5143. #ifdef SAFETYTIMER
  5144. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5145. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5146. if (code_seen('S')) {
  5147. safetytimer_inactive_time = code_value() * 1000;
  5148. safetyTimer.start();
  5149. }
  5150. break;
  5151. #endif
  5152. case 92: // M92
  5153. for(int8_t i=0; i < NUM_AXIS; i++)
  5154. {
  5155. if(code_seen(axis_codes[i]))
  5156. {
  5157. if(i == 3) { // E
  5158. float value = code_value();
  5159. if(value < 20.0) {
  5160. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5161. cs.max_jerk[E_AXIS] *= factor;
  5162. max_feedrate[i] *= factor;
  5163. axis_steps_per_sqr_second[i] *= factor;
  5164. }
  5165. cs.axis_steps_per_unit[i] = value;
  5166. }
  5167. else {
  5168. cs.axis_steps_per_unit[i] = code_value();
  5169. }
  5170. }
  5171. }
  5172. break;
  5173. case 110: //! M110 N<line number> - reset line pos
  5174. if (code_seen('N'))
  5175. gcode_LastN = code_value_long();
  5176. break;
  5177. case 113: // M113 - Get or set Host Keepalive interval
  5178. if (code_seen('S')) {
  5179. host_keepalive_interval = (uint8_t)code_value_short();
  5180. // NOMORE(host_keepalive_interval, 60);
  5181. }
  5182. else {
  5183. SERIAL_ECHO_START;
  5184. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5185. SERIAL_PROTOCOLLN("");
  5186. }
  5187. break;
  5188. case 115: // M115
  5189. if (code_seen('V')) {
  5190. // Report the Prusa version number.
  5191. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5192. } else if (code_seen('U')) {
  5193. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5194. // pause the print for 30s and ask the user to upgrade the firmware.
  5195. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5196. } else {
  5197. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5198. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5199. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5200. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5201. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5202. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5203. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5204. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5205. SERIAL_ECHOPGM(" UUID:");
  5206. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5207. }
  5208. break;
  5209. /* case 117: // M117 display message
  5210. starpos = (strchr(strchr_pointer + 5,'*'));
  5211. if(starpos!=NULL)
  5212. *(starpos)='\0';
  5213. lcd_setstatus(strchr_pointer + 5);
  5214. break;*/
  5215. case 114: // M114
  5216. gcode_M114();
  5217. break;
  5218. case 120: //! M120 - Disable endstops
  5219. enable_endstops(false) ;
  5220. break;
  5221. case 121: //! M121 - Enable endstops
  5222. enable_endstops(true) ;
  5223. break;
  5224. case 119: // M119
  5225. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5226. SERIAL_PROTOCOLLN("");
  5227. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5228. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5229. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5230. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5231. }else{
  5232. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5233. }
  5234. SERIAL_PROTOCOLLN("");
  5235. #endif
  5236. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5237. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5238. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5239. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5240. }else{
  5241. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5242. }
  5243. SERIAL_PROTOCOLLN("");
  5244. #endif
  5245. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5246. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5247. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5248. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5249. }else{
  5250. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5251. }
  5252. SERIAL_PROTOCOLLN("");
  5253. #endif
  5254. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5255. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5256. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5257. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5258. }else{
  5259. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5260. }
  5261. SERIAL_PROTOCOLLN("");
  5262. #endif
  5263. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5264. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5265. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5266. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5267. }else{
  5268. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5269. }
  5270. SERIAL_PROTOCOLLN("");
  5271. #endif
  5272. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5273. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5274. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5275. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5276. }else{
  5277. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5278. }
  5279. SERIAL_PROTOCOLLN("");
  5280. #endif
  5281. break;
  5282. //TODO: update for all axis, use for loop
  5283. #ifdef BLINKM
  5284. case 150: // M150
  5285. {
  5286. byte red;
  5287. byte grn;
  5288. byte blu;
  5289. if(code_seen('R')) red = code_value();
  5290. if(code_seen('U')) grn = code_value();
  5291. if(code_seen('B')) blu = code_value();
  5292. SendColors(red,grn,blu);
  5293. }
  5294. break;
  5295. #endif //BLINKM
  5296. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5297. {
  5298. uint8_t extruder = active_extruder;
  5299. if(code_seen('T')) {
  5300. extruder = code_value();
  5301. if(extruder >= EXTRUDERS) {
  5302. SERIAL_ECHO_START;
  5303. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5304. break;
  5305. }
  5306. }
  5307. if(code_seen('D')) {
  5308. float diameter = (float)code_value();
  5309. if (diameter == 0.0) {
  5310. // setting any extruder filament size disables volumetric on the assumption that
  5311. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5312. // for all extruders
  5313. cs.volumetric_enabled = false;
  5314. } else {
  5315. cs.filament_size[extruder] = (float)code_value();
  5316. // make sure all extruders have some sane value for the filament size
  5317. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5318. #if EXTRUDERS > 1
  5319. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5320. #if EXTRUDERS > 2
  5321. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5322. #endif
  5323. #endif
  5324. cs.volumetric_enabled = true;
  5325. }
  5326. } else {
  5327. //reserved for setting filament diameter via UFID or filament measuring device
  5328. break;
  5329. }
  5330. calculate_extruder_multipliers();
  5331. }
  5332. break;
  5333. case 201: // M201
  5334. for (int8_t i = 0; i < NUM_AXIS; i++)
  5335. {
  5336. if (code_seen(axis_codes[i]))
  5337. {
  5338. unsigned long val = code_value();
  5339. #ifdef TMC2130
  5340. unsigned long val_silent = val;
  5341. if ((i == X_AXIS) || (i == Y_AXIS))
  5342. {
  5343. if (val > NORMAL_MAX_ACCEL_XY)
  5344. val = NORMAL_MAX_ACCEL_XY;
  5345. if (val_silent > SILENT_MAX_ACCEL_XY)
  5346. val_silent = SILENT_MAX_ACCEL_XY;
  5347. }
  5348. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5349. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5350. #else //TMC2130
  5351. max_acceleration_units_per_sq_second[i] = val;
  5352. #endif //TMC2130
  5353. }
  5354. }
  5355. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5356. reset_acceleration_rates();
  5357. break;
  5358. #if 0 // Not used for Sprinter/grbl gen6
  5359. case 202: // M202
  5360. for(int8_t i=0; i < NUM_AXIS; i++) {
  5361. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5362. }
  5363. break;
  5364. #endif
  5365. case 203: // M203 max feedrate mm/sec
  5366. for (int8_t i = 0; i < NUM_AXIS; i++)
  5367. {
  5368. if (code_seen(axis_codes[i]))
  5369. {
  5370. float val = code_value();
  5371. #ifdef TMC2130
  5372. float val_silent = val;
  5373. if ((i == X_AXIS) || (i == Y_AXIS))
  5374. {
  5375. if (val > NORMAL_MAX_FEEDRATE_XY)
  5376. val = NORMAL_MAX_FEEDRATE_XY;
  5377. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5378. val_silent = SILENT_MAX_FEEDRATE_XY;
  5379. }
  5380. cs.max_feedrate_normal[i] = val;
  5381. cs.max_feedrate_silent[i] = val_silent;
  5382. #else //TMC2130
  5383. max_feedrate[i] = val;
  5384. #endif //TMC2130
  5385. }
  5386. }
  5387. break;
  5388. case 204:
  5389. //! M204 acclereration settings.
  5390. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5391. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5392. {
  5393. if(code_seen('S')) {
  5394. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5395. // and it is also generated by Slic3r to control acceleration per extrusion type
  5396. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5397. cs.acceleration = code_value();
  5398. // Interpret the T value as retract acceleration in the old Marlin format.
  5399. if(code_seen('T'))
  5400. cs.retract_acceleration = code_value();
  5401. } else {
  5402. // New acceleration format, compatible with the upstream Marlin.
  5403. if(code_seen('P'))
  5404. cs.acceleration = code_value();
  5405. if(code_seen('R'))
  5406. cs.retract_acceleration = code_value();
  5407. if(code_seen('T')) {
  5408. // Interpret the T value as the travel acceleration in the new Marlin format.
  5409. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5410. // travel_acceleration = code_value();
  5411. }
  5412. }
  5413. }
  5414. break;
  5415. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5416. {
  5417. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5418. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5419. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5420. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5421. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5422. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5423. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5424. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5425. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5426. }
  5427. break;
  5428. case 206: // M206 additional homing offset
  5429. for(int8_t i=0; i < 3; i++)
  5430. {
  5431. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5432. }
  5433. break;
  5434. #ifdef FWRETRACT
  5435. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5436. {
  5437. if(code_seen('S'))
  5438. {
  5439. cs.retract_length = code_value() ;
  5440. }
  5441. if(code_seen('F'))
  5442. {
  5443. cs.retract_feedrate = code_value()/60 ;
  5444. }
  5445. if(code_seen('Z'))
  5446. {
  5447. cs.retract_zlift = code_value() ;
  5448. }
  5449. }break;
  5450. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5451. {
  5452. if(code_seen('S'))
  5453. {
  5454. cs.retract_recover_length = code_value() ;
  5455. }
  5456. if(code_seen('F'))
  5457. {
  5458. cs.retract_recover_feedrate = code_value()/60 ;
  5459. }
  5460. }break;
  5461. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5462. {
  5463. if(code_seen('S'))
  5464. {
  5465. int t= code_value() ;
  5466. switch(t)
  5467. {
  5468. case 0:
  5469. {
  5470. cs.autoretract_enabled=false;
  5471. retracted[0]=false;
  5472. #if EXTRUDERS > 1
  5473. retracted[1]=false;
  5474. #endif
  5475. #if EXTRUDERS > 2
  5476. retracted[2]=false;
  5477. #endif
  5478. }break;
  5479. case 1:
  5480. {
  5481. cs.autoretract_enabled=true;
  5482. retracted[0]=false;
  5483. #if EXTRUDERS > 1
  5484. retracted[1]=false;
  5485. #endif
  5486. #if EXTRUDERS > 2
  5487. retracted[2]=false;
  5488. #endif
  5489. }break;
  5490. default:
  5491. SERIAL_ECHO_START;
  5492. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5493. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5494. SERIAL_ECHOLNPGM("\"(1)");
  5495. }
  5496. }
  5497. }break;
  5498. #endif // FWRETRACT
  5499. #if EXTRUDERS > 1
  5500. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5501. {
  5502. uint8_t extruder;
  5503. if(setTargetedHotend(218, extruder)){
  5504. break;
  5505. }
  5506. if(code_seen('X'))
  5507. {
  5508. extruder_offset[X_AXIS][extruder] = code_value();
  5509. }
  5510. if(code_seen('Y'))
  5511. {
  5512. extruder_offset[Y_AXIS][extruder] = code_value();
  5513. }
  5514. SERIAL_ECHO_START;
  5515. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5516. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5517. {
  5518. SERIAL_ECHO(" ");
  5519. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5520. SERIAL_ECHO(",");
  5521. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5522. }
  5523. SERIAL_ECHOLN("");
  5524. }break;
  5525. #endif
  5526. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5527. {
  5528. if (code_seen('B')) //backup current speed factor
  5529. {
  5530. saved_feedmultiply_mm = feedmultiply;
  5531. }
  5532. if(code_seen('S'))
  5533. {
  5534. feedmultiply = code_value() ;
  5535. }
  5536. if (code_seen('R')) { //restore previous feedmultiply
  5537. feedmultiply = saved_feedmultiply_mm;
  5538. }
  5539. }
  5540. break;
  5541. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5542. {
  5543. if(code_seen('S'))
  5544. {
  5545. int tmp_code = code_value();
  5546. if (code_seen('T'))
  5547. {
  5548. uint8_t extruder;
  5549. if(setTargetedHotend(221, extruder)){
  5550. break;
  5551. }
  5552. extruder_multiply[extruder] = tmp_code;
  5553. }
  5554. else
  5555. {
  5556. extrudemultiply = tmp_code ;
  5557. }
  5558. }
  5559. calculate_extruder_multipliers();
  5560. }
  5561. break;
  5562. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5563. {
  5564. if(code_seen('P')){
  5565. int pin_number = code_value(); // pin number
  5566. int pin_state = -1; // required pin state - default is inverted
  5567. if(code_seen('S')) pin_state = code_value(); // required pin state
  5568. if(pin_state >= -1 && pin_state <= 1){
  5569. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5570. {
  5571. if (sensitive_pins[i] == pin_number)
  5572. {
  5573. pin_number = -1;
  5574. break;
  5575. }
  5576. }
  5577. if (pin_number > -1)
  5578. {
  5579. int target = LOW;
  5580. st_synchronize();
  5581. pinMode(pin_number, INPUT);
  5582. switch(pin_state){
  5583. case 1:
  5584. target = HIGH;
  5585. break;
  5586. case 0:
  5587. target = LOW;
  5588. break;
  5589. case -1:
  5590. target = !digitalRead(pin_number);
  5591. break;
  5592. }
  5593. while(digitalRead(pin_number) != target){
  5594. manage_heater();
  5595. manage_inactivity();
  5596. lcd_update(0);
  5597. }
  5598. }
  5599. }
  5600. }
  5601. }
  5602. break;
  5603. #if NUM_SERVOS > 0
  5604. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5605. {
  5606. int servo_index = -1;
  5607. int servo_position = 0;
  5608. if (code_seen('P'))
  5609. servo_index = code_value();
  5610. if (code_seen('S')) {
  5611. servo_position = code_value();
  5612. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5613. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5614. servos[servo_index].attach(0);
  5615. #endif
  5616. servos[servo_index].write(servo_position);
  5617. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5618. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5619. servos[servo_index].detach();
  5620. #endif
  5621. }
  5622. else {
  5623. SERIAL_ECHO_START;
  5624. SERIAL_ECHO("Servo ");
  5625. SERIAL_ECHO(servo_index);
  5626. SERIAL_ECHOLN(" out of range");
  5627. }
  5628. }
  5629. else if (servo_index >= 0) {
  5630. SERIAL_PROTOCOL(MSG_OK);
  5631. SERIAL_PROTOCOL(" Servo ");
  5632. SERIAL_PROTOCOL(servo_index);
  5633. SERIAL_PROTOCOL(": ");
  5634. SERIAL_PROTOCOL(servos[servo_index].read());
  5635. SERIAL_PROTOCOLLN("");
  5636. }
  5637. }
  5638. break;
  5639. #endif // NUM_SERVOS > 0
  5640. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5641. case 300: // M300
  5642. {
  5643. int beepS = code_seen('S') ? code_value() : 110;
  5644. int beepP = code_seen('P') ? code_value() : 1000;
  5645. if (beepS > 0)
  5646. {
  5647. #if BEEPER > 0
  5648. Sound_MakeCustom(beepP,beepS,false);
  5649. #endif
  5650. }
  5651. else
  5652. {
  5653. _delay(beepP);
  5654. }
  5655. }
  5656. break;
  5657. #endif // M300
  5658. #ifdef PIDTEMP
  5659. case 301: // M301
  5660. {
  5661. if(code_seen('P')) cs.Kp = code_value();
  5662. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5663. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5664. #ifdef PID_ADD_EXTRUSION_RATE
  5665. if(code_seen('C')) Kc = code_value();
  5666. #endif
  5667. updatePID();
  5668. SERIAL_PROTOCOLRPGM(MSG_OK);
  5669. SERIAL_PROTOCOL(" p:");
  5670. SERIAL_PROTOCOL(cs.Kp);
  5671. SERIAL_PROTOCOL(" i:");
  5672. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5673. SERIAL_PROTOCOL(" d:");
  5674. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5675. #ifdef PID_ADD_EXTRUSION_RATE
  5676. SERIAL_PROTOCOL(" c:");
  5677. //Kc does not have scaling applied above, or in resetting defaults
  5678. SERIAL_PROTOCOL(Kc);
  5679. #endif
  5680. SERIAL_PROTOCOLLN("");
  5681. }
  5682. break;
  5683. #endif //PIDTEMP
  5684. #ifdef PIDTEMPBED
  5685. case 304: // M304
  5686. {
  5687. if(code_seen('P')) cs.bedKp = code_value();
  5688. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5689. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5690. updatePID();
  5691. SERIAL_PROTOCOLRPGM(MSG_OK);
  5692. SERIAL_PROTOCOL(" p:");
  5693. SERIAL_PROTOCOL(cs.bedKp);
  5694. SERIAL_PROTOCOL(" i:");
  5695. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5696. SERIAL_PROTOCOL(" d:");
  5697. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5698. SERIAL_PROTOCOLLN("");
  5699. }
  5700. break;
  5701. #endif //PIDTEMP
  5702. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5703. {
  5704. #ifdef CHDK
  5705. SET_OUTPUT(CHDK);
  5706. WRITE(CHDK, HIGH);
  5707. chdkHigh = _millis();
  5708. chdkActive = true;
  5709. #else
  5710. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5711. const uint8_t NUM_PULSES=16;
  5712. const float PULSE_LENGTH=0.01524;
  5713. for(int i=0; i < NUM_PULSES; i++) {
  5714. WRITE(PHOTOGRAPH_PIN, HIGH);
  5715. _delay_ms(PULSE_LENGTH);
  5716. WRITE(PHOTOGRAPH_PIN, LOW);
  5717. _delay_ms(PULSE_LENGTH);
  5718. }
  5719. _delay(7.33);
  5720. for(int i=0; i < NUM_PULSES; i++) {
  5721. WRITE(PHOTOGRAPH_PIN, HIGH);
  5722. _delay_ms(PULSE_LENGTH);
  5723. WRITE(PHOTOGRAPH_PIN, LOW);
  5724. _delay_ms(PULSE_LENGTH);
  5725. }
  5726. #endif
  5727. #endif //chdk end if
  5728. }
  5729. break;
  5730. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5731. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5732. {
  5733. float temp = .0;
  5734. if (code_seen('S')) temp=code_value();
  5735. set_extrude_min_temp(temp);
  5736. }
  5737. break;
  5738. #endif
  5739. case 303: // M303 PID autotune
  5740. {
  5741. float temp = 150.0;
  5742. int e=0;
  5743. int c=5;
  5744. if (code_seen('E')) e=code_value();
  5745. if (e<0)
  5746. temp=70;
  5747. if (code_seen('S')) temp=code_value();
  5748. if (code_seen('C')) c=code_value();
  5749. PID_autotune(temp, e, c);
  5750. }
  5751. break;
  5752. case 400: // M400 finish all moves
  5753. {
  5754. st_synchronize();
  5755. }
  5756. break;
  5757. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5758. {
  5759. //! currently three different materials are needed (default, flex and PVA)
  5760. //! add storing this information for different load/unload profiles etc. in the future
  5761. //!firmware does not wait for "ok" from mmu
  5762. if (mmu_enabled)
  5763. {
  5764. uint8_t extruder = 255;
  5765. uint8_t filament = FILAMENT_UNDEFINED;
  5766. if(code_seen('E')) extruder = code_value();
  5767. if(code_seen('F')) filament = code_value();
  5768. mmu_set_filament_type(extruder, filament);
  5769. }
  5770. }
  5771. break;
  5772. case 500: // M500 Store settings in EEPROM
  5773. {
  5774. Config_StoreSettings();
  5775. }
  5776. break;
  5777. case 501: // M501 Read settings from EEPROM
  5778. {
  5779. Config_RetrieveSettings();
  5780. }
  5781. break;
  5782. case 502: // M502 Revert to default settings
  5783. {
  5784. Config_ResetDefault();
  5785. }
  5786. break;
  5787. case 503: // M503 print settings currently in memory
  5788. {
  5789. Config_PrintSettings();
  5790. }
  5791. break;
  5792. case 509: //M509 Force language selection
  5793. {
  5794. lang_reset();
  5795. SERIAL_ECHO_START;
  5796. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5797. }
  5798. break;
  5799. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5800. case 540:
  5801. {
  5802. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5803. }
  5804. break;
  5805. #endif
  5806. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5807. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5808. {
  5809. float value;
  5810. if (code_seen('Z'))
  5811. {
  5812. value = code_value();
  5813. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5814. {
  5815. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5816. SERIAL_ECHO_START;
  5817. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5818. SERIAL_PROTOCOLLN("");
  5819. }
  5820. else
  5821. {
  5822. SERIAL_ECHO_START;
  5823. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5824. SERIAL_ECHORPGM(MSG_Z_MIN);
  5825. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5826. SERIAL_ECHORPGM(MSG_Z_MAX);
  5827. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5828. SERIAL_PROTOCOLLN("");
  5829. }
  5830. }
  5831. else
  5832. {
  5833. SERIAL_ECHO_START;
  5834. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5835. SERIAL_ECHO(-cs.zprobe_zoffset);
  5836. SERIAL_PROTOCOLLN("");
  5837. }
  5838. break;
  5839. }
  5840. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5841. #ifdef FILAMENTCHANGEENABLE
  5842. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5843. {
  5844. st_synchronize();
  5845. float x_position = current_position[X_AXIS];
  5846. float y_position = current_position[Y_AXIS];
  5847. float z_shift = 0; // is it necessary to be a float?
  5848. float e_shift_init = 0;
  5849. float e_shift_late = 0;
  5850. bool automatic = false;
  5851. //Retract extruder
  5852. if(code_seen('E'))
  5853. {
  5854. e_shift_init = code_value();
  5855. }
  5856. else
  5857. {
  5858. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5859. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5860. #endif
  5861. }
  5862. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5863. if (code_seen('L'))
  5864. {
  5865. e_shift_late = code_value();
  5866. }
  5867. else
  5868. {
  5869. #ifdef FILAMENTCHANGE_FINALRETRACT
  5870. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5871. #endif
  5872. }
  5873. //Lift Z
  5874. if(code_seen('Z'))
  5875. {
  5876. z_shift = code_value();
  5877. }
  5878. else
  5879. {
  5880. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5881. }
  5882. //Move XY to side
  5883. if(code_seen('X'))
  5884. {
  5885. x_position = code_value();
  5886. }
  5887. else
  5888. {
  5889. #ifdef FILAMENTCHANGE_XPOS
  5890. x_position = FILAMENTCHANGE_XPOS;
  5891. #endif
  5892. }
  5893. if(code_seen('Y'))
  5894. {
  5895. y_position = code_value();
  5896. }
  5897. else
  5898. {
  5899. #ifdef FILAMENTCHANGE_YPOS
  5900. y_position = FILAMENTCHANGE_YPOS ;
  5901. #endif
  5902. }
  5903. if (mmu_enabled && code_seen("AUTO"))
  5904. automatic = true;
  5905. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5906. }
  5907. break;
  5908. #endif //FILAMENTCHANGEENABLE
  5909. case 601: //! M601 - Pause print
  5910. {
  5911. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5912. lcd_pause_print();
  5913. }
  5914. break;
  5915. case 602: { //! M602 - Resume print
  5916. lcd_resume_print();
  5917. }
  5918. break;
  5919. #ifdef PINDA_THERMISTOR
  5920. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5921. {
  5922. int set_target_pinda = 0;
  5923. if (code_seen('S')) {
  5924. set_target_pinda = code_value();
  5925. }
  5926. else {
  5927. break;
  5928. }
  5929. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5930. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5931. SERIAL_PROTOCOL(set_target_pinda);
  5932. SERIAL_PROTOCOLLN("");
  5933. codenum = _millis();
  5934. cancel_heatup = false;
  5935. bool is_pinda_cooling = false;
  5936. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5937. is_pinda_cooling = true;
  5938. }
  5939. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5940. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5941. {
  5942. SERIAL_PROTOCOLPGM("P:");
  5943. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5944. SERIAL_PROTOCOLPGM("/");
  5945. SERIAL_PROTOCOL(set_target_pinda);
  5946. SERIAL_PROTOCOLLN("");
  5947. codenum = _millis();
  5948. }
  5949. manage_heater();
  5950. manage_inactivity();
  5951. lcd_update(0);
  5952. }
  5953. LCD_MESSAGERPGM(MSG_OK);
  5954. break;
  5955. }
  5956. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5957. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5958. uint8_t cal_status = calibration_status_pinda();
  5959. int16_t usteps = 0;
  5960. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5961. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5962. for (uint8_t i = 0; i < 6; i++)
  5963. {
  5964. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5965. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5966. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5967. SERIAL_PROTOCOLPGM(", ");
  5968. SERIAL_PROTOCOL(35 + (i * 5));
  5969. SERIAL_PROTOCOLPGM(", ");
  5970. SERIAL_PROTOCOL(usteps);
  5971. SERIAL_PROTOCOLPGM(", ");
  5972. SERIAL_PROTOCOL(mm * 1000);
  5973. SERIAL_PROTOCOLLN("");
  5974. }
  5975. }
  5976. else if (code_seen('!')) { // ! - Set factory default values
  5977. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5978. int16_t z_shift = 8; //40C - 20um - 8usteps
  5979. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5980. z_shift = 24; //45C - 60um - 24usteps
  5981. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5982. z_shift = 48; //50C - 120um - 48usteps
  5983. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5984. z_shift = 80; //55C - 200um - 80usteps
  5985. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5986. z_shift = 120; //60C - 300um - 120usteps
  5987. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5988. SERIAL_PROTOCOLLN("factory restored");
  5989. }
  5990. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5991. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5992. int16_t z_shift = 0;
  5993. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5994. SERIAL_PROTOCOLLN("zerorized");
  5995. }
  5996. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5997. int16_t usteps = code_value();
  5998. if (code_seen('I')) {
  5999. uint8_t index = code_value();
  6000. if (index < 5) {
  6001. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6002. SERIAL_PROTOCOLLN("OK");
  6003. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6004. for (uint8_t i = 0; i < 6; i++)
  6005. {
  6006. usteps = 0;
  6007. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6008. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6009. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6010. SERIAL_PROTOCOLPGM(", ");
  6011. SERIAL_PROTOCOL(35 + (i * 5));
  6012. SERIAL_PROTOCOLPGM(", ");
  6013. SERIAL_PROTOCOL(usteps);
  6014. SERIAL_PROTOCOLPGM(", ");
  6015. SERIAL_PROTOCOL(mm * 1000);
  6016. SERIAL_PROTOCOLLN("");
  6017. }
  6018. }
  6019. }
  6020. }
  6021. else {
  6022. SERIAL_PROTOCOLPGM("no valid command");
  6023. }
  6024. break;
  6025. #endif //PINDA_THERMISTOR
  6026. case 862: // M862: print checking
  6027. float nDummy;
  6028. uint8_t nCommand;
  6029. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6030. switch((ClPrintChecking)nCommand)
  6031. {
  6032. case ClPrintChecking::_Nozzle: // ~ .1
  6033. uint16_t nDiameter;
  6034. if(code_seen('P'))
  6035. {
  6036. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6037. nozzle_diameter_check(nDiameter);
  6038. }
  6039. /*
  6040. else if(code_seen('S')&&farm_mode)
  6041. {
  6042. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6043. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6044. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6045. }
  6046. */
  6047. else if(code_seen('Q'))
  6048. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6049. break;
  6050. case ClPrintChecking::_Model: // ~ .2
  6051. if(code_seen('P'))
  6052. {
  6053. uint16_t nPrinterModel;
  6054. nPrinterModel=(uint16_t)code_value_long();
  6055. printer_model_check(nPrinterModel);
  6056. }
  6057. else if(code_seen('Q'))
  6058. SERIAL_PROTOCOLLN(nPrinterType);
  6059. break;
  6060. case ClPrintChecking::_Smodel: // ~ .3
  6061. if(code_seen('P'))
  6062. printer_smodel_check(strchr_pointer);
  6063. else if(code_seen('Q'))
  6064. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6065. break;
  6066. case ClPrintChecking::_Version: // ~ .4
  6067. if(code_seen('P'))
  6068. fw_version_check(++strchr_pointer);
  6069. else if(code_seen('Q'))
  6070. SERIAL_PROTOCOLLN(FW_VERSION);
  6071. break;
  6072. case ClPrintChecking::_Gcode: // ~ .5
  6073. if(code_seen('P'))
  6074. {
  6075. uint16_t nGcodeLevel;
  6076. nGcodeLevel=(uint16_t)code_value_long();
  6077. gcode_level_check(nGcodeLevel);
  6078. }
  6079. else if(code_seen('Q'))
  6080. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6081. break;
  6082. }
  6083. break;
  6084. #ifdef LIN_ADVANCE
  6085. case 900: // M900: Set LIN_ADVANCE options.
  6086. gcode_M900();
  6087. break;
  6088. #endif
  6089. case 907: // M907 Set digital trimpot motor current using axis codes.
  6090. {
  6091. #ifdef TMC2130
  6092. for (int i = 0; i < NUM_AXIS; i++)
  6093. if(code_seen(axis_codes[i]))
  6094. {
  6095. long cur_mA = code_value_long();
  6096. uint8_t val = tmc2130_cur2val(cur_mA);
  6097. tmc2130_set_current_h(i, val);
  6098. tmc2130_set_current_r(i, val);
  6099. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6100. }
  6101. #else //TMC2130
  6102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6103. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6104. if(code_seen('B')) st_current_set(4,code_value());
  6105. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6106. #endif
  6107. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6108. if(code_seen('X')) st_current_set(0, code_value());
  6109. #endif
  6110. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6111. if(code_seen('Z')) st_current_set(1, code_value());
  6112. #endif
  6113. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6114. if(code_seen('E')) st_current_set(2, code_value());
  6115. #endif
  6116. #endif //TMC2130
  6117. }
  6118. break;
  6119. case 908: // M908 Control digital trimpot directly.
  6120. {
  6121. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6122. uint8_t channel,current;
  6123. if(code_seen('P')) channel=code_value();
  6124. if(code_seen('S')) current=code_value();
  6125. digitalPotWrite(channel, current);
  6126. #endif
  6127. }
  6128. break;
  6129. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6130. case 910: //! M910 - TMC2130 init
  6131. {
  6132. tmc2130_init();
  6133. }
  6134. break;
  6135. case 911: //! M911 - Set TMC2130 holding currents
  6136. {
  6137. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6138. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6139. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6140. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6141. }
  6142. break;
  6143. case 912: //! M912 - Set TMC2130 running currents
  6144. {
  6145. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6146. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6147. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6148. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6149. }
  6150. break;
  6151. case 913: //! M913 - Print TMC2130 currents
  6152. {
  6153. tmc2130_print_currents();
  6154. }
  6155. break;
  6156. case 914: //! M914 - Set normal mode
  6157. {
  6158. tmc2130_mode = TMC2130_MODE_NORMAL;
  6159. update_mode_profile();
  6160. tmc2130_init();
  6161. }
  6162. break;
  6163. case 915: //! M915 - Set silent mode
  6164. {
  6165. tmc2130_mode = TMC2130_MODE_SILENT;
  6166. update_mode_profile();
  6167. tmc2130_init();
  6168. }
  6169. break;
  6170. case 916: //! M916 - Set sg_thrs
  6171. {
  6172. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6173. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6174. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6175. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6176. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6177. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6178. }
  6179. break;
  6180. case 917: //! M917 - Set TMC2130 pwm_ampl
  6181. {
  6182. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6183. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6184. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6185. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6186. }
  6187. break;
  6188. case 918: //! M918 - Set TMC2130 pwm_grad
  6189. {
  6190. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6191. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6192. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6193. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6194. }
  6195. break;
  6196. #endif //TMC2130_SERVICE_CODES_M910_M918
  6197. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6198. {
  6199. #ifdef TMC2130
  6200. if(code_seen('E'))
  6201. {
  6202. uint16_t res_new = code_value();
  6203. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6204. {
  6205. st_synchronize();
  6206. uint8_t axis = E_AXIS;
  6207. uint16_t res = tmc2130_get_res(axis);
  6208. tmc2130_set_res(axis, res_new);
  6209. cs.axis_ustep_resolution[axis] = res_new;
  6210. if (res_new > res)
  6211. {
  6212. uint16_t fac = (res_new / res);
  6213. cs.axis_steps_per_unit[axis] *= fac;
  6214. position[E_AXIS] *= fac;
  6215. }
  6216. else
  6217. {
  6218. uint16_t fac = (res / res_new);
  6219. cs.axis_steps_per_unit[axis] /= fac;
  6220. position[E_AXIS] /= fac;
  6221. }
  6222. }
  6223. }
  6224. #else //TMC2130
  6225. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6226. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6227. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6228. if(code_seen('B')) microstep_mode(4,code_value());
  6229. microstep_readings();
  6230. #endif
  6231. #endif //TMC2130
  6232. }
  6233. break;
  6234. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6235. {
  6236. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6237. if(code_seen('S')) switch((int)code_value())
  6238. {
  6239. case 1:
  6240. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6241. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6242. break;
  6243. case 2:
  6244. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6245. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6246. break;
  6247. }
  6248. microstep_readings();
  6249. #endif
  6250. }
  6251. break;
  6252. case 701: //! M701 - load filament
  6253. {
  6254. if (mmu_enabled && code_seen('E'))
  6255. tmp_extruder = code_value();
  6256. gcode_M701();
  6257. }
  6258. break;
  6259. case 702: //! M702 [U C] -
  6260. {
  6261. #ifdef SNMM
  6262. if (code_seen('U'))
  6263. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6264. else if (code_seen('C'))
  6265. extr_unload(); //! if "C" unload just current filament
  6266. else
  6267. extr_unload_all(); //! otherwise unload all filaments
  6268. #else
  6269. if (code_seen('C')) {
  6270. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6271. }
  6272. else {
  6273. if(mmu_enabled) extr_unload(); //! unload current filament
  6274. else unload_filament();
  6275. }
  6276. #endif //SNMM
  6277. }
  6278. break;
  6279. case 999: // M999: Restart after being stopped
  6280. Stopped = false;
  6281. lcd_reset_alert_level();
  6282. gcode_LastN = Stopped_gcode_LastN;
  6283. FlushSerialRequestResend();
  6284. break;
  6285. default:
  6286. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6287. }
  6288. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6289. mcode_in_progress = 0;
  6290. }
  6291. }
  6292. // end if(code_seen('M')) (end of M codes)
  6293. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6294. //! select filament in case of MMU_V2
  6295. //! if extruder is "?", open menu to let the user select extruder/filament
  6296. //!
  6297. //! For MMU_V2:
  6298. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6299. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6300. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6301. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6302. else if(code_seen('T'))
  6303. {
  6304. int index;
  6305. bool load_to_nozzle = false;
  6306. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6307. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6308. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6309. SERIAL_ECHOLNPGM("Invalid T code.");
  6310. }
  6311. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6312. if (mmu_enabled)
  6313. {
  6314. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6315. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6316. {
  6317. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6318. }
  6319. else
  6320. {
  6321. st_synchronize();
  6322. mmu_command(MmuCmd::T0 + tmp_extruder);
  6323. manage_response(true, true, MMU_TCODE_MOVE);
  6324. }
  6325. }
  6326. }
  6327. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6328. if (mmu_enabled)
  6329. {
  6330. st_synchronize();
  6331. mmu_continue_loading(is_usb_printing);
  6332. mmu_extruder = tmp_extruder; //filament change is finished
  6333. mmu_load_to_nozzle();
  6334. }
  6335. }
  6336. else {
  6337. if (*(strchr_pointer + index) == '?')
  6338. {
  6339. if(mmu_enabled)
  6340. {
  6341. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6342. load_to_nozzle = true;
  6343. } else
  6344. {
  6345. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6346. }
  6347. }
  6348. else {
  6349. tmp_extruder = code_value();
  6350. if (mmu_enabled && lcd_autoDepleteEnabled())
  6351. {
  6352. tmp_extruder = ad_getAlternative(tmp_extruder);
  6353. }
  6354. }
  6355. st_synchronize();
  6356. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6357. if (mmu_enabled)
  6358. {
  6359. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6360. {
  6361. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6362. }
  6363. else
  6364. {
  6365. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6366. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6367. {
  6368. mmu_command(MmuCmd::K0 + tmp_extruder);
  6369. manage_response(true, true, MMU_UNLOAD_MOVE);
  6370. }
  6371. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6372. mmu_command(MmuCmd::T0 + tmp_extruder);
  6373. manage_response(true, true, MMU_TCODE_MOVE);
  6374. mmu_continue_loading(is_usb_printing);
  6375. mmu_extruder = tmp_extruder; //filament change is finished
  6376. if (load_to_nozzle)// for single material usage with mmu
  6377. {
  6378. mmu_load_to_nozzle();
  6379. }
  6380. }
  6381. }
  6382. else
  6383. {
  6384. #ifdef SNMM
  6385. #ifdef LIN_ADVANCE
  6386. if (mmu_extruder != tmp_extruder)
  6387. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6388. #endif
  6389. mmu_extruder = tmp_extruder;
  6390. _delay(100);
  6391. disable_e0();
  6392. disable_e1();
  6393. disable_e2();
  6394. pinMode(E_MUX0_PIN, OUTPUT);
  6395. pinMode(E_MUX1_PIN, OUTPUT);
  6396. _delay(100);
  6397. SERIAL_ECHO_START;
  6398. SERIAL_ECHO("T:");
  6399. SERIAL_ECHOLN((int)tmp_extruder);
  6400. switch (tmp_extruder) {
  6401. case 1:
  6402. WRITE(E_MUX0_PIN, HIGH);
  6403. WRITE(E_MUX1_PIN, LOW);
  6404. break;
  6405. case 2:
  6406. WRITE(E_MUX0_PIN, LOW);
  6407. WRITE(E_MUX1_PIN, HIGH);
  6408. break;
  6409. case 3:
  6410. WRITE(E_MUX0_PIN, HIGH);
  6411. WRITE(E_MUX1_PIN, HIGH);
  6412. break;
  6413. default:
  6414. WRITE(E_MUX0_PIN, LOW);
  6415. WRITE(E_MUX1_PIN, LOW);
  6416. break;
  6417. }
  6418. _delay(100);
  6419. #else //SNMM
  6420. if (tmp_extruder >= EXTRUDERS) {
  6421. SERIAL_ECHO_START;
  6422. SERIAL_ECHOPGM("T");
  6423. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6424. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6425. }
  6426. else {
  6427. #if EXTRUDERS > 1
  6428. boolean make_move = false;
  6429. #endif
  6430. if (code_seen('F')) {
  6431. #if EXTRUDERS > 1
  6432. make_move = true;
  6433. #endif
  6434. next_feedrate = code_value();
  6435. if (next_feedrate > 0.0) {
  6436. feedrate = next_feedrate;
  6437. }
  6438. }
  6439. #if EXTRUDERS > 1
  6440. if (tmp_extruder != active_extruder) {
  6441. // Save current position to return to after applying extruder offset
  6442. memcpy(destination, current_position, sizeof(destination));
  6443. // Offset extruder (only by XY)
  6444. int i;
  6445. for (i = 0; i < 2; i++) {
  6446. current_position[i] = current_position[i] -
  6447. extruder_offset[i][active_extruder] +
  6448. extruder_offset[i][tmp_extruder];
  6449. }
  6450. // Set the new active extruder and position
  6451. active_extruder = tmp_extruder;
  6452. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6453. // Move to the old position if 'F' was in the parameters
  6454. if (make_move && Stopped == false) {
  6455. prepare_move();
  6456. }
  6457. }
  6458. #endif
  6459. SERIAL_ECHO_START;
  6460. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6461. SERIAL_PROTOCOLLN((int)active_extruder);
  6462. }
  6463. #endif //SNMM
  6464. }
  6465. }
  6466. } // end if(code_seen('T')) (end of T codes)
  6467. else if (code_seen('D')) // D codes (debug)
  6468. {
  6469. switch((int)code_value())
  6470. {
  6471. case -1: //! D-1 - Endless loop
  6472. dcode__1(); break;
  6473. #ifdef DEBUG_DCODES
  6474. case 0: //! D0 - Reset
  6475. dcode_0(); break;
  6476. case 1: //! D1 - Clear EEPROM
  6477. dcode_1(); break;
  6478. case 2: //! D2 - Read/Write RAM
  6479. dcode_2(); break;
  6480. #endif //DEBUG_DCODES
  6481. #ifdef DEBUG_DCODE3
  6482. case 3: //! D3 - Read/Write EEPROM
  6483. dcode_3(); break;
  6484. #endif //DEBUG_DCODE3
  6485. #ifdef DEBUG_DCODES
  6486. case 4: //! D4 - Read/Write PIN
  6487. dcode_4(); break;
  6488. #endif //DEBUG_DCODES
  6489. #ifdef DEBUG_DCODE5
  6490. case 5: // D5 - Read/Write FLASH
  6491. dcode_5(); break;
  6492. break;
  6493. #endif //DEBUG_DCODE5
  6494. #ifdef DEBUG_DCODES
  6495. case 6: // D6 - Read/Write external FLASH
  6496. dcode_6(); break;
  6497. case 7: //! D7 - Read/Write Bootloader
  6498. dcode_7(); break;
  6499. case 8: //! D8 - Read/Write PINDA
  6500. dcode_8(); break;
  6501. case 9: //! D9 - Read/Write ADC
  6502. dcode_9(); break;
  6503. case 10: //! D10 - XYZ calibration = OK
  6504. dcode_10(); break;
  6505. #endif //DEBUG_DCODES
  6506. #ifdef HEATBED_ANALYSIS
  6507. case 80:
  6508. {
  6509. float dimension_x = 40;
  6510. float dimension_y = 40;
  6511. int points_x = 40;
  6512. int points_y = 40;
  6513. float offset_x = 74;
  6514. float offset_y = 33;
  6515. if (code_seen('E')) dimension_x = code_value();
  6516. if (code_seen('F')) dimension_y = code_value();
  6517. if (code_seen('G')) {points_x = code_value(); }
  6518. if (code_seen('H')) {points_y = code_value(); }
  6519. if (code_seen('I')) {offset_x = code_value(); }
  6520. if (code_seen('J')) {offset_y = code_value(); }
  6521. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6522. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6523. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6524. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6525. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6526. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6527. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6528. }break;
  6529. case 81:
  6530. {
  6531. float dimension_x = 40;
  6532. float dimension_y = 40;
  6533. int points_x = 40;
  6534. int points_y = 40;
  6535. float offset_x = 74;
  6536. float offset_y = 33;
  6537. if (code_seen('E')) dimension_x = code_value();
  6538. if (code_seen('F')) dimension_y = code_value();
  6539. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6540. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6541. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6542. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6543. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6544. } break;
  6545. #endif //HEATBED_ANALYSIS
  6546. #ifdef DEBUG_DCODES
  6547. case 106: //D106 print measured fan speed for different pwm values
  6548. {
  6549. for (int i = 255; i > 0; i = i - 5) {
  6550. fanSpeed = i;
  6551. //delay_keep_alive(2000);
  6552. for (int j = 0; j < 100; j++) {
  6553. delay_keep_alive(100);
  6554. }
  6555. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6556. }
  6557. }break;
  6558. #ifdef TMC2130
  6559. case 2130: //! D2130 - TMC2130
  6560. dcode_2130(); break;
  6561. #endif //TMC2130
  6562. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6563. case 9125: //! D9125 - FILAMENT_SENSOR
  6564. dcode_9125(); break;
  6565. #endif //FILAMENT_SENSOR
  6566. #endif //DEBUG_DCODES
  6567. }
  6568. }
  6569. else
  6570. {
  6571. SERIAL_ECHO_START;
  6572. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6573. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6574. SERIAL_ECHOLNPGM("\"(2)");
  6575. }
  6576. KEEPALIVE_STATE(NOT_BUSY);
  6577. ClearToSend();
  6578. }
  6579. void FlushSerialRequestResend()
  6580. {
  6581. //char cmdbuffer[bufindr][100]="Resend:";
  6582. MYSERIAL.flush();
  6583. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6584. }
  6585. // Confirm the execution of a command, if sent from a serial line.
  6586. // Execution of a command from a SD card will not be confirmed.
  6587. void ClearToSend()
  6588. {
  6589. previous_millis_cmd = _millis();
  6590. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6591. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6592. }
  6593. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6594. void update_currents() {
  6595. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6596. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6597. float tmp_motor[3];
  6598. //SERIAL_ECHOLNPGM("Currents updated: ");
  6599. if (destination[Z_AXIS] < Z_SILENT) {
  6600. //SERIAL_ECHOLNPGM("LOW");
  6601. for (uint8_t i = 0; i < 3; i++) {
  6602. st_current_set(i, current_low[i]);
  6603. /*MYSERIAL.print(int(i));
  6604. SERIAL_ECHOPGM(": ");
  6605. MYSERIAL.println(current_low[i]);*/
  6606. }
  6607. }
  6608. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6609. //SERIAL_ECHOLNPGM("HIGH");
  6610. for (uint8_t i = 0; i < 3; i++) {
  6611. st_current_set(i, current_high[i]);
  6612. /*MYSERIAL.print(int(i));
  6613. SERIAL_ECHOPGM(": ");
  6614. MYSERIAL.println(current_high[i]);*/
  6615. }
  6616. }
  6617. else {
  6618. for (uint8_t i = 0; i < 3; i++) {
  6619. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6620. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6621. st_current_set(i, tmp_motor[i]);
  6622. /*MYSERIAL.print(int(i));
  6623. SERIAL_ECHOPGM(": ");
  6624. MYSERIAL.println(tmp_motor[i]);*/
  6625. }
  6626. }
  6627. }
  6628. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6629. void get_coordinates()
  6630. {
  6631. bool seen[4]={false,false,false,false};
  6632. for(int8_t i=0; i < NUM_AXIS; i++) {
  6633. if(code_seen(axis_codes[i]))
  6634. {
  6635. bool relative = axis_relative_modes[i] || relative_mode;
  6636. destination[i] = (float)code_value();
  6637. if (i == E_AXIS) {
  6638. float emult = extruder_multiplier[active_extruder];
  6639. if (emult != 1.) {
  6640. if (! relative) {
  6641. destination[i] -= current_position[i];
  6642. relative = true;
  6643. }
  6644. destination[i] *= emult;
  6645. }
  6646. }
  6647. if (relative)
  6648. destination[i] += current_position[i];
  6649. seen[i]=true;
  6650. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6651. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6652. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6653. }
  6654. else destination[i] = current_position[i]; //Are these else lines really needed?
  6655. }
  6656. if(code_seen('F')) {
  6657. next_feedrate = code_value();
  6658. #ifdef MAX_SILENT_FEEDRATE
  6659. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6660. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6661. #endif //MAX_SILENT_FEEDRATE
  6662. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6663. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6664. {
  6665. // float e_max_speed =
  6666. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6667. }
  6668. }
  6669. }
  6670. void get_arc_coordinates()
  6671. {
  6672. #ifdef SF_ARC_FIX
  6673. bool relative_mode_backup = relative_mode;
  6674. relative_mode = true;
  6675. #endif
  6676. get_coordinates();
  6677. #ifdef SF_ARC_FIX
  6678. relative_mode=relative_mode_backup;
  6679. #endif
  6680. if(code_seen('I')) {
  6681. offset[0] = code_value();
  6682. }
  6683. else {
  6684. offset[0] = 0.0;
  6685. }
  6686. if(code_seen('J')) {
  6687. offset[1] = code_value();
  6688. }
  6689. else {
  6690. offset[1] = 0.0;
  6691. }
  6692. }
  6693. void clamp_to_software_endstops(float target[3])
  6694. {
  6695. #ifdef DEBUG_DISABLE_SWLIMITS
  6696. return;
  6697. #endif //DEBUG_DISABLE_SWLIMITS
  6698. world2machine_clamp(target[0], target[1]);
  6699. // Clamp the Z coordinate.
  6700. if (min_software_endstops) {
  6701. float negative_z_offset = 0;
  6702. #ifdef ENABLE_AUTO_BED_LEVELING
  6703. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6704. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6705. #endif
  6706. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6707. }
  6708. if (max_software_endstops) {
  6709. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6710. }
  6711. }
  6712. #ifdef MESH_BED_LEVELING
  6713. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6714. float dx = x - current_position[X_AXIS];
  6715. float dy = y - current_position[Y_AXIS];
  6716. float dz = z - current_position[Z_AXIS];
  6717. int n_segments = 0;
  6718. if (mbl.active) {
  6719. float len = abs(dx) + abs(dy);
  6720. if (len > 0)
  6721. // Split to 3cm segments or shorter.
  6722. n_segments = int(ceil(len / 30.f));
  6723. }
  6724. if (n_segments > 1) {
  6725. float de = e - current_position[E_AXIS];
  6726. for (int i = 1; i < n_segments; ++ i) {
  6727. float t = float(i) / float(n_segments);
  6728. if (saved_printing || (mbl.active == false)) return;
  6729. plan_buffer_line(
  6730. current_position[X_AXIS] + t * dx,
  6731. current_position[Y_AXIS] + t * dy,
  6732. current_position[Z_AXIS] + t * dz,
  6733. current_position[E_AXIS] + t * de,
  6734. feed_rate, extruder);
  6735. }
  6736. }
  6737. // The rest of the path.
  6738. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6739. current_position[X_AXIS] = x;
  6740. current_position[Y_AXIS] = y;
  6741. current_position[Z_AXIS] = z;
  6742. current_position[E_AXIS] = e;
  6743. }
  6744. #endif // MESH_BED_LEVELING
  6745. void prepare_move()
  6746. {
  6747. clamp_to_software_endstops(destination);
  6748. previous_millis_cmd = _millis();
  6749. // Do not use feedmultiply for E or Z only moves
  6750. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6751. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6752. }
  6753. else {
  6754. #ifdef MESH_BED_LEVELING
  6755. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6756. #else
  6757. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6758. #endif
  6759. }
  6760. for(int8_t i=0; i < NUM_AXIS; i++) {
  6761. current_position[i] = destination[i];
  6762. }
  6763. }
  6764. void prepare_arc_move(char isclockwise) {
  6765. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6766. // Trace the arc
  6767. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6768. // As far as the parser is concerned, the position is now == target. In reality the
  6769. // motion control system might still be processing the action and the real tool position
  6770. // in any intermediate location.
  6771. for(int8_t i=0; i < NUM_AXIS; i++) {
  6772. current_position[i] = destination[i];
  6773. }
  6774. previous_millis_cmd = _millis();
  6775. }
  6776. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6777. #if defined(FAN_PIN)
  6778. #if CONTROLLERFAN_PIN == FAN_PIN
  6779. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6780. #endif
  6781. #endif
  6782. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6783. unsigned long lastMotorCheck = 0;
  6784. void controllerFan()
  6785. {
  6786. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6787. {
  6788. lastMotorCheck = _millis();
  6789. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6790. #if EXTRUDERS > 2
  6791. || !READ(E2_ENABLE_PIN)
  6792. #endif
  6793. #if EXTRUDER > 1
  6794. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6795. || !READ(X2_ENABLE_PIN)
  6796. #endif
  6797. || !READ(E1_ENABLE_PIN)
  6798. #endif
  6799. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6800. {
  6801. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6802. }
  6803. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6804. {
  6805. digitalWrite(CONTROLLERFAN_PIN, 0);
  6806. analogWrite(CONTROLLERFAN_PIN, 0);
  6807. }
  6808. else
  6809. {
  6810. // allows digital or PWM fan output to be used (see M42 handling)
  6811. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6812. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6813. }
  6814. }
  6815. }
  6816. #endif
  6817. #ifdef TEMP_STAT_LEDS
  6818. static bool blue_led = false;
  6819. static bool red_led = false;
  6820. static uint32_t stat_update = 0;
  6821. void handle_status_leds(void) {
  6822. float max_temp = 0.0;
  6823. if(_millis() > stat_update) {
  6824. stat_update += 500; // Update every 0.5s
  6825. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6826. max_temp = max(max_temp, degHotend(cur_extruder));
  6827. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6828. }
  6829. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6830. max_temp = max(max_temp, degTargetBed());
  6831. max_temp = max(max_temp, degBed());
  6832. #endif
  6833. if((max_temp > 55.0) && (red_led == false)) {
  6834. digitalWrite(STAT_LED_RED, 1);
  6835. digitalWrite(STAT_LED_BLUE, 0);
  6836. red_led = true;
  6837. blue_led = false;
  6838. }
  6839. if((max_temp < 54.0) && (blue_led == false)) {
  6840. digitalWrite(STAT_LED_RED, 0);
  6841. digitalWrite(STAT_LED_BLUE, 1);
  6842. red_led = false;
  6843. blue_led = true;
  6844. }
  6845. }
  6846. }
  6847. #endif
  6848. #ifdef SAFETYTIMER
  6849. /**
  6850. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6851. *
  6852. * Full screen blocking notification message is shown after heater turning off.
  6853. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6854. * damage print.
  6855. *
  6856. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6857. */
  6858. static void handleSafetyTimer()
  6859. {
  6860. #if (EXTRUDERS > 1)
  6861. #error Implemented only for one extruder.
  6862. #endif //(EXTRUDERS > 1)
  6863. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6864. {
  6865. safetyTimer.stop();
  6866. }
  6867. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6868. {
  6869. safetyTimer.start();
  6870. }
  6871. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6872. {
  6873. setTargetBed(0);
  6874. setAllTargetHotends(0);
  6875. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6876. }
  6877. }
  6878. #endif //SAFETYTIMER
  6879. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6880. {
  6881. bool bInhibitFlag;
  6882. #ifdef FILAMENT_SENSOR
  6883. if (mmu_enabled == false)
  6884. {
  6885. //-// if (mcode_in_progress != 600) //M600 not in progress
  6886. #ifdef PAT9125
  6887. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6888. #endif // PAT9125
  6889. #ifdef IR_SENSOR
  6890. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6891. #endif // IR_SENSOR
  6892. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6893. {
  6894. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  6895. {
  6896. if (fsensor_check_autoload())
  6897. {
  6898. #ifdef PAT9125
  6899. fsensor_autoload_check_stop();
  6900. #endif //PAT9125
  6901. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6902. if(0)
  6903. {
  6904. Sound_MakeCustom(50,1000,false);
  6905. loading_flag = true;
  6906. enquecommand_front_P((PSTR("M701")));
  6907. }
  6908. else
  6909. {
  6910. /*
  6911. lcd_update_enable(false);
  6912. show_preheat_nozzle_warning();
  6913. lcd_update_enable(true);
  6914. */
  6915. eFilamentAction=FilamentAction::AutoLoad;
  6916. bFilamentFirstRun=false;
  6917. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6918. {
  6919. bFilamentPreheatState=true;
  6920. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6921. menu_submenu(mFilamentItemForce);
  6922. }
  6923. else
  6924. {
  6925. menu_submenu(mFilamentMenu);
  6926. lcd_timeoutToStatus.start();
  6927. }
  6928. }
  6929. }
  6930. }
  6931. else
  6932. {
  6933. #ifdef PAT9125
  6934. fsensor_autoload_check_stop();
  6935. #endif //PAT9125
  6936. fsensor_update();
  6937. }
  6938. }
  6939. }
  6940. #endif //FILAMENT_SENSOR
  6941. #ifdef SAFETYTIMER
  6942. handleSafetyTimer();
  6943. #endif //SAFETYTIMER
  6944. #if defined(KILL_PIN) && KILL_PIN > -1
  6945. static int killCount = 0; // make the inactivity button a bit less responsive
  6946. const int KILL_DELAY = 10000;
  6947. #endif
  6948. if(buflen < (BUFSIZE-1)){
  6949. get_command();
  6950. }
  6951. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6952. if(max_inactive_time)
  6953. kill(_n(""), 4);
  6954. if(stepper_inactive_time) {
  6955. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6956. {
  6957. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6958. disable_x();
  6959. disable_y();
  6960. disable_z();
  6961. disable_e0();
  6962. disable_e1();
  6963. disable_e2();
  6964. }
  6965. }
  6966. }
  6967. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6968. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6969. {
  6970. chdkActive = false;
  6971. WRITE(CHDK, LOW);
  6972. }
  6973. #endif
  6974. #if defined(KILL_PIN) && KILL_PIN > -1
  6975. // Check if the kill button was pressed and wait just in case it was an accidental
  6976. // key kill key press
  6977. // -------------------------------------------------------------------------------
  6978. if( 0 == READ(KILL_PIN) )
  6979. {
  6980. killCount++;
  6981. }
  6982. else if (killCount > 0)
  6983. {
  6984. killCount--;
  6985. }
  6986. // Exceeded threshold and we can confirm that it was not accidental
  6987. // KILL the machine
  6988. // ----------------------------------------------------------------
  6989. if ( killCount >= KILL_DELAY)
  6990. {
  6991. kill("", 5);
  6992. }
  6993. #endif
  6994. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6995. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6996. #endif
  6997. #ifdef EXTRUDER_RUNOUT_PREVENT
  6998. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6999. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7000. {
  7001. bool oldstatus=READ(E0_ENABLE_PIN);
  7002. enable_e0();
  7003. float oldepos=current_position[E_AXIS];
  7004. float oldedes=destination[E_AXIS];
  7005. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7006. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7007. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7008. current_position[E_AXIS]=oldepos;
  7009. destination[E_AXIS]=oldedes;
  7010. plan_set_e_position(oldepos);
  7011. previous_millis_cmd=_millis();
  7012. st_synchronize();
  7013. WRITE(E0_ENABLE_PIN,oldstatus);
  7014. }
  7015. #endif
  7016. #ifdef TEMP_STAT_LEDS
  7017. handle_status_leds();
  7018. #endif
  7019. check_axes_activity();
  7020. mmu_loop();
  7021. }
  7022. void kill(const char *full_screen_message, unsigned char id)
  7023. {
  7024. printf_P(_N("KILL: %d\n"), id);
  7025. //return;
  7026. cli(); // Stop interrupts
  7027. disable_heater();
  7028. disable_x();
  7029. // SERIAL_ECHOLNPGM("kill - disable Y");
  7030. disable_y();
  7031. disable_z();
  7032. disable_e0();
  7033. disable_e1();
  7034. disable_e2();
  7035. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7036. pinMode(PS_ON_PIN,INPUT);
  7037. #endif
  7038. SERIAL_ERROR_START;
  7039. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7040. if (full_screen_message != NULL) {
  7041. SERIAL_ERRORLNRPGM(full_screen_message);
  7042. lcd_display_message_fullscreen_P(full_screen_message);
  7043. } else {
  7044. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7045. }
  7046. // FMC small patch to update the LCD before ending
  7047. sei(); // enable interrupts
  7048. for ( int i=5; i--; lcd_update(0))
  7049. {
  7050. _delay(200);
  7051. }
  7052. cli(); // disable interrupts
  7053. suicide();
  7054. while(1)
  7055. {
  7056. #ifdef WATCHDOG
  7057. wdt_reset();
  7058. #endif //WATCHDOG
  7059. /* Intentionally left empty */
  7060. } // Wait for reset
  7061. }
  7062. void Stop()
  7063. {
  7064. disable_heater();
  7065. if(Stopped == false) {
  7066. Stopped = true;
  7067. lcd_print_stop();
  7068. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7069. SERIAL_ERROR_START;
  7070. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7071. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7072. }
  7073. }
  7074. bool IsStopped() { return Stopped; };
  7075. #ifdef FAST_PWM_FAN
  7076. void setPwmFrequency(uint8_t pin, int val)
  7077. {
  7078. val &= 0x07;
  7079. switch(digitalPinToTimer(pin))
  7080. {
  7081. #if defined(TCCR0A)
  7082. case TIMER0A:
  7083. case TIMER0B:
  7084. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7085. // TCCR0B |= val;
  7086. break;
  7087. #endif
  7088. #if defined(TCCR1A)
  7089. case TIMER1A:
  7090. case TIMER1B:
  7091. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7092. // TCCR1B |= val;
  7093. break;
  7094. #endif
  7095. #if defined(TCCR2)
  7096. case TIMER2:
  7097. case TIMER2:
  7098. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7099. TCCR2 |= val;
  7100. break;
  7101. #endif
  7102. #if defined(TCCR2A)
  7103. case TIMER2A:
  7104. case TIMER2B:
  7105. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7106. TCCR2B |= val;
  7107. break;
  7108. #endif
  7109. #if defined(TCCR3A)
  7110. case TIMER3A:
  7111. case TIMER3B:
  7112. case TIMER3C:
  7113. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7114. TCCR3B |= val;
  7115. break;
  7116. #endif
  7117. #if defined(TCCR4A)
  7118. case TIMER4A:
  7119. case TIMER4B:
  7120. case TIMER4C:
  7121. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7122. TCCR4B |= val;
  7123. break;
  7124. #endif
  7125. #if defined(TCCR5A)
  7126. case TIMER5A:
  7127. case TIMER5B:
  7128. case TIMER5C:
  7129. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7130. TCCR5B |= val;
  7131. break;
  7132. #endif
  7133. }
  7134. }
  7135. #endif //FAST_PWM_FAN
  7136. //! @brief Get and validate extruder number
  7137. //!
  7138. //! If it is not specified, active_extruder is returned in parameter extruder.
  7139. //! @param [in] code M code number
  7140. //! @param [out] extruder
  7141. //! @return error
  7142. //! @retval true Invalid extruder specified in T code
  7143. //! @retval false Valid extruder specified in T code, or not specifiead
  7144. bool setTargetedHotend(int code, uint8_t &extruder)
  7145. {
  7146. extruder = active_extruder;
  7147. if(code_seen('T')) {
  7148. extruder = code_value();
  7149. if(extruder >= EXTRUDERS) {
  7150. SERIAL_ECHO_START;
  7151. switch(code){
  7152. case 104:
  7153. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7154. break;
  7155. case 105:
  7156. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7157. break;
  7158. case 109:
  7159. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7160. break;
  7161. case 218:
  7162. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7163. break;
  7164. case 221:
  7165. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7166. break;
  7167. }
  7168. SERIAL_PROTOCOLLN((int)extruder);
  7169. return true;
  7170. }
  7171. }
  7172. return false;
  7173. }
  7174. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7175. {
  7176. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7177. {
  7178. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7179. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7180. }
  7181. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7182. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7183. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7184. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7185. total_filament_used = 0;
  7186. }
  7187. float calculate_extruder_multiplier(float diameter) {
  7188. float out = 1.f;
  7189. if (cs.volumetric_enabled && diameter > 0.f) {
  7190. float area = M_PI * diameter * diameter * 0.25;
  7191. out = 1.f / area;
  7192. }
  7193. if (extrudemultiply != 100)
  7194. out *= float(extrudemultiply) * 0.01f;
  7195. return out;
  7196. }
  7197. void calculate_extruder_multipliers() {
  7198. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7199. #if EXTRUDERS > 1
  7200. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7201. #if EXTRUDERS > 2
  7202. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7203. #endif
  7204. #endif
  7205. }
  7206. void delay_keep_alive(unsigned int ms)
  7207. {
  7208. for (;;) {
  7209. manage_heater();
  7210. // Manage inactivity, but don't disable steppers on timeout.
  7211. manage_inactivity(true);
  7212. lcd_update(0);
  7213. if (ms == 0)
  7214. break;
  7215. else if (ms >= 50) {
  7216. _delay(50);
  7217. ms -= 50;
  7218. } else {
  7219. _delay(ms);
  7220. ms = 0;
  7221. }
  7222. }
  7223. }
  7224. static void wait_for_heater(long codenum, uint8_t extruder) {
  7225. #ifdef TEMP_RESIDENCY_TIME
  7226. long residencyStart;
  7227. residencyStart = -1;
  7228. /* continue to loop until we have reached the target temp
  7229. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7230. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7231. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7232. #else
  7233. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7234. #endif //TEMP_RESIDENCY_TIME
  7235. if ((_millis() - codenum) > 1000UL)
  7236. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7237. if (!farm_mode) {
  7238. SERIAL_PROTOCOLPGM("T:");
  7239. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7240. SERIAL_PROTOCOLPGM(" E:");
  7241. SERIAL_PROTOCOL((int)extruder);
  7242. #ifdef TEMP_RESIDENCY_TIME
  7243. SERIAL_PROTOCOLPGM(" W:");
  7244. if (residencyStart > -1)
  7245. {
  7246. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7247. SERIAL_PROTOCOLLN(codenum);
  7248. }
  7249. else
  7250. {
  7251. SERIAL_PROTOCOLLN("?");
  7252. }
  7253. }
  7254. #else
  7255. SERIAL_PROTOCOLLN("");
  7256. #endif
  7257. codenum = _millis();
  7258. }
  7259. manage_heater();
  7260. manage_inactivity(true); //do not disable steppers
  7261. lcd_update(0);
  7262. #ifdef TEMP_RESIDENCY_TIME
  7263. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7264. or when current temp falls outside the hysteresis after target temp was reached */
  7265. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7266. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7267. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7268. {
  7269. residencyStart = _millis();
  7270. }
  7271. #endif //TEMP_RESIDENCY_TIME
  7272. }
  7273. }
  7274. void check_babystep()
  7275. {
  7276. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7277. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7278. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7279. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7280. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7281. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7282. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7283. babystep_z);
  7284. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7285. lcd_update_enable(true);
  7286. }
  7287. }
  7288. #ifdef HEATBED_ANALYSIS
  7289. void d_setup()
  7290. {
  7291. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7292. pinMode(D_DATA, INPUT_PULLUP);
  7293. pinMode(D_REQUIRE, OUTPUT);
  7294. digitalWrite(D_REQUIRE, HIGH);
  7295. }
  7296. float d_ReadData()
  7297. {
  7298. int digit[13];
  7299. String mergeOutput;
  7300. float output;
  7301. digitalWrite(D_REQUIRE, HIGH);
  7302. for (int i = 0; i<13; i++)
  7303. {
  7304. for (int j = 0; j < 4; j++)
  7305. {
  7306. while (digitalRead(D_DATACLOCK) == LOW) {}
  7307. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7308. bitWrite(digit[i], j, digitalRead(D_DATA));
  7309. }
  7310. }
  7311. digitalWrite(D_REQUIRE, LOW);
  7312. mergeOutput = "";
  7313. output = 0;
  7314. for (int r = 5; r <= 10; r++) //Merge digits
  7315. {
  7316. mergeOutput += digit[r];
  7317. }
  7318. output = mergeOutput.toFloat();
  7319. if (digit[4] == 8) //Handle sign
  7320. {
  7321. output *= -1;
  7322. }
  7323. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7324. {
  7325. output /= 10;
  7326. }
  7327. return output;
  7328. }
  7329. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7330. int t1 = 0;
  7331. int t_delay = 0;
  7332. int digit[13];
  7333. int m;
  7334. char str[3];
  7335. //String mergeOutput;
  7336. char mergeOutput[15];
  7337. float output;
  7338. int mesh_point = 0; //index number of calibration point
  7339. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7340. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7341. float mesh_home_z_search = 4;
  7342. float measure_z_height = 0.2f;
  7343. float row[x_points_num];
  7344. int ix = 0;
  7345. int iy = 0;
  7346. const char* filename_wldsd = "mesh.txt";
  7347. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7348. char numb_wldsd[8]; // (" -A.BCD" + null)
  7349. #ifdef MICROMETER_LOGGING
  7350. d_setup();
  7351. #endif //MICROMETER_LOGGING
  7352. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7353. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7354. unsigned int custom_message_type_old = custom_message_type;
  7355. unsigned int custom_message_state_old = custom_message_state;
  7356. custom_message_type = CustomMsg::MeshBedLeveling;
  7357. custom_message_state = (x_points_num * y_points_num) + 10;
  7358. lcd_update(1);
  7359. //mbl.reset();
  7360. babystep_undo();
  7361. card.openFile(filename_wldsd, false);
  7362. /*destination[Z_AXIS] = mesh_home_z_search;
  7363. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7365. for(int8_t i=0; i < NUM_AXIS; i++) {
  7366. current_position[i] = destination[i];
  7367. }
  7368. st_synchronize();
  7369. */
  7370. destination[Z_AXIS] = measure_z_height;
  7371. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7372. for(int8_t i=0; i < NUM_AXIS; i++) {
  7373. current_position[i] = destination[i];
  7374. }
  7375. st_synchronize();
  7376. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7377. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7378. SERIAL_PROTOCOL(x_points_num);
  7379. SERIAL_PROTOCOLPGM(",");
  7380. SERIAL_PROTOCOL(y_points_num);
  7381. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7382. SERIAL_PROTOCOL(mesh_home_z_search);
  7383. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7384. SERIAL_PROTOCOL(x_dimension);
  7385. SERIAL_PROTOCOLPGM(",");
  7386. SERIAL_PROTOCOL(y_dimension);
  7387. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7388. while (mesh_point != x_points_num * y_points_num) {
  7389. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7390. iy = mesh_point / x_points_num;
  7391. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7392. float z0 = 0.f;
  7393. /*destination[Z_AXIS] = mesh_home_z_search;
  7394. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7396. for(int8_t i=0; i < NUM_AXIS; i++) {
  7397. current_position[i] = destination[i];
  7398. }
  7399. st_synchronize();*/
  7400. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7401. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7402. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7403. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7404. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7405. for(int8_t i=0; i < NUM_AXIS; i++) {
  7406. current_position[i] = destination[i];
  7407. }
  7408. st_synchronize();
  7409. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7410. delay_keep_alive(1000);
  7411. #ifdef MICROMETER_LOGGING
  7412. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7413. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7414. //strcat(data_wldsd, numb_wldsd);
  7415. //MYSERIAL.println(data_wldsd);
  7416. //delay(1000);
  7417. //delay(3000);
  7418. //t1 = millis();
  7419. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7420. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7421. memset(digit, 0, sizeof(digit));
  7422. //cli();
  7423. digitalWrite(D_REQUIRE, LOW);
  7424. for (int i = 0; i<13; i++)
  7425. {
  7426. //t1 = millis();
  7427. for (int j = 0; j < 4; j++)
  7428. {
  7429. while (digitalRead(D_DATACLOCK) == LOW) {}
  7430. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7431. //printf_P(PSTR("Done %d\n"), j);
  7432. bitWrite(digit[i], j, digitalRead(D_DATA));
  7433. }
  7434. //t_delay = (millis() - t1);
  7435. //SERIAL_PROTOCOLPGM(" ");
  7436. //SERIAL_PROTOCOL_F(t_delay, 5);
  7437. //SERIAL_PROTOCOLPGM(" ");
  7438. }
  7439. //sei();
  7440. digitalWrite(D_REQUIRE, HIGH);
  7441. mergeOutput[0] = '\0';
  7442. output = 0;
  7443. for (int r = 5; r <= 10; r++) //Merge digits
  7444. {
  7445. sprintf(str, "%d", digit[r]);
  7446. strcat(mergeOutput, str);
  7447. }
  7448. output = atof(mergeOutput);
  7449. if (digit[4] == 8) //Handle sign
  7450. {
  7451. output *= -1;
  7452. }
  7453. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7454. {
  7455. output *= 0.1;
  7456. }
  7457. //output = d_ReadData();
  7458. //row[ix] = current_position[Z_AXIS];
  7459. //row[ix] = d_ReadData();
  7460. row[ix] = output;
  7461. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7462. memset(data_wldsd, 0, sizeof(data_wldsd));
  7463. for (int i = 0; i < x_points_num; i++) {
  7464. SERIAL_PROTOCOLPGM(" ");
  7465. SERIAL_PROTOCOL_F(row[i], 5);
  7466. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7467. dtostrf(row[i], 7, 3, numb_wldsd);
  7468. strcat(data_wldsd, numb_wldsd);
  7469. }
  7470. card.write_command(data_wldsd);
  7471. SERIAL_PROTOCOLPGM("\n");
  7472. }
  7473. custom_message_state--;
  7474. mesh_point++;
  7475. lcd_update(1);
  7476. }
  7477. #endif //MICROMETER_LOGGING
  7478. card.closefile();
  7479. //clean_up_after_endstop_move(l_feedmultiply);
  7480. }
  7481. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7482. int t1 = 0;
  7483. int t_delay = 0;
  7484. int digit[13];
  7485. int m;
  7486. char str[3];
  7487. //String mergeOutput;
  7488. char mergeOutput[15];
  7489. float output;
  7490. int mesh_point = 0; //index number of calibration point
  7491. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7492. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7493. float mesh_home_z_search = 4;
  7494. float row[x_points_num];
  7495. int ix = 0;
  7496. int iy = 0;
  7497. const char* filename_wldsd = "wldsd.txt";
  7498. char data_wldsd[70];
  7499. char numb_wldsd[10];
  7500. d_setup();
  7501. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7502. // We don't know where we are! HOME!
  7503. // Push the commands to the front of the message queue in the reverse order!
  7504. // There shall be always enough space reserved for these commands.
  7505. repeatcommand_front(); // repeat G80 with all its parameters
  7506. enquecommand_front_P((PSTR("G28 W0")));
  7507. enquecommand_front_P((PSTR("G1 Z5")));
  7508. return;
  7509. }
  7510. unsigned int custom_message_type_old = custom_message_type;
  7511. unsigned int custom_message_state_old = custom_message_state;
  7512. custom_message_type = CustomMsg::MeshBedLeveling;
  7513. custom_message_state = (x_points_num * y_points_num) + 10;
  7514. lcd_update(1);
  7515. mbl.reset();
  7516. babystep_undo();
  7517. card.openFile(filename_wldsd, false);
  7518. current_position[Z_AXIS] = mesh_home_z_search;
  7519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7520. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7521. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7522. int l_feedmultiply = setup_for_endstop_move(false);
  7523. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7524. SERIAL_PROTOCOL(x_points_num);
  7525. SERIAL_PROTOCOLPGM(",");
  7526. SERIAL_PROTOCOL(y_points_num);
  7527. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7528. SERIAL_PROTOCOL(mesh_home_z_search);
  7529. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7530. SERIAL_PROTOCOL(x_dimension);
  7531. SERIAL_PROTOCOLPGM(",");
  7532. SERIAL_PROTOCOL(y_dimension);
  7533. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7534. while (mesh_point != x_points_num * y_points_num) {
  7535. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7536. iy = mesh_point / x_points_num;
  7537. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7538. float z0 = 0.f;
  7539. current_position[Z_AXIS] = mesh_home_z_search;
  7540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7541. st_synchronize();
  7542. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7543. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7545. st_synchronize();
  7546. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7547. break;
  7548. card.closefile();
  7549. }
  7550. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7551. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7552. //strcat(data_wldsd, numb_wldsd);
  7553. //MYSERIAL.println(data_wldsd);
  7554. //_delay(1000);
  7555. //_delay(3000);
  7556. //t1 = _millis();
  7557. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7558. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7559. memset(digit, 0, sizeof(digit));
  7560. //cli();
  7561. digitalWrite(D_REQUIRE, LOW);
  7562. for (int i = 0; i<13; i++)
  7563. {
  7564. //t1 = _millis();
  7565. for (int j = 0; j < 4; j++)
  7566. {
  7567. while (digitalRead(D_DATACLOCK) == LOW) {}
  7568. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7569. bitWrite(digit[i], j, digitalRead(D_DATA));
  7570. }
  7571. //t_delay = (_millis() - t1);
  7572. //SERIAL_PROTOCOLPGM(" ");
  7573. //SERIAL_PROTOCOL_F(t_delay, 5);
  7574. //SERIAL_PROTOCOLPGM(" ");
  7575. }
  7576. //sei();
  7577. digitalWrite(D_REQUIRE, HIGH);
  7578. mergeOutput[0] = '\0';
  7579. output = 0;
  7580. for (int r = 5; r <= 10; r++) //Merge digits
  7581. {
  7582. sprintf(str, "%d", digit[r]);
  7583. strcat(mergeOutput, str);
  7584. }
  7585. output = atof(mergeOutput);
  7586. if (digit[4] == 8) //Handle sign
  7587. {
  7588. output *= -1;
  7589. }
  7590. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7591. {
  7592. output *= 0.1;
  7593. }
  7594. //output = d_ReadData();
  7595. //row[ix] = current_position[Z_AXIS];
  7596. memset(data_wldsd, 0, sizeof(data_wldsd));
  7597. for (int i = 0; i <3; i++) {
  7598. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7599. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7600. strcat(data_wldsd, numb_wldsd);
  7601. strcat(data_wldsd, ";");
  7602. }
  7603. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7604. dtostrf(output, 8, 5, numb_wldsd);
  7605. strcat(data_wldsd, numb_wldsd);
  7606. //strcat(data_wldsd, ";");
  7607. card.write_command(data_wldsd);
  7608. //row[ix] = d_ReadData();
  7609. row[ix] = output; // current_position[Z_AXIS];
  7610. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7611. for (int i = 0; i < x_points_num; i++) {
  7612. SERIAL_PROTOCOLPGM(" ");
  7613. SERIAL_PROTOCOL_F(row[i], 5);
  7614. }
  7615. SERIAL_PROTOCOLPGM("\n");
  7616. }
  7617. custom_message_state--;
  7618. mesh_point++;
  7619. lcd_update(1);
  7620. }
  7621. card.closefile();
  7622. clean_up_after_endstop_move(l_feedmultiply);
  7623. }
  7624. #endif //HEATBED_ANALYSIS
  7625. void temp_compensation_start() {
  7626. custom_message_type = CustomMsg::TempCompPreheat;
  7627. custom_message_state = PINDA_HEAT_T + 1;
  7628. lcd_update(2);
  7629. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7630. current_position[E_AXIS] -= default_retraction;
  7631. }
  7632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7633. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7634. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7635. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7637. st_synchronize();
  7638. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7639. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7640. delay_keep_alive(1000);
  7641. custom_message_state = PINDA_HEAT_T - i;
  7642. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7643. else lcd_update(1);
  7644. }
  7645. custom_message_type = CustomMsg::Status;
  7646. custom_message_state = 0;
  7647. }
  7648. void temp_compensation_apply() {
  7649. int i_add;
  7650. int z_shift = 0;
  7651. float z_shift_mm;
  7652. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7653. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7654. i_add = (target_temperature_bed - 60) / 10;
  7655. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7656. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7657. }else {
  7658. //interpolation
  7659. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7660. }
  7661. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7663. st_synchronize();
  7664. plan_set_z_position(current_position[Z_AXIS]);
  7665. }
  7666. else {
  7667. //we have no temp compensation data
  7668. }
  7669. }
  7670. float temp_comp_interpolation(float inp_temperature) {
  7671. //cubic spline interpolation
  7672. int n, i, j;
  7673. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7674. int shift[10];
  7675. int temp_C[10];
  7676. n = 6; //number of measured points
  7677. shift[0] = 0;
  7678. for (i = 0; i < n; i++) {
  7679. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7680. temp_C[i] = 50 + i * 10; //temperature in C
  7681. #ifdef PINDA_THERMISTOR
  7682. temp_C[i] = 35 + i * 5; //temperature in C
  7683. #else
  7684. temp_C[i] = 50 + i * 10; //temperature in C
  7685. #endif
  7686. x[i] = (float)temp_C[i];
  7687. f[i] = (float)shift[i];
  7688. }
  7689. if (inp_temperature < x[0]) return 0;
  7690. for (i = n - 1; i>0; i--) {
  7691. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7692. h[i - 1] = x[i] - x[i - 1];
  7693. }
  7694. //*********** formation of h, s , f matrix **************
  7695. for (i = 1; i<n - 1; i++) {
  7696. m[i][i] = 2 * (h[i - 1] + h[i]);
  7697. if (i != 1) {
  7698. m[i][i - 1] = h[i - 1];
  7699. m[i - 1][i] = h[i - 1];
  7700. }
  7701. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7702. }
  7703. //*********** forward elimination **************
  7704. for (i = 1; i<n - 2; i++) {
  7705. temp = (m[i + 1][i] / m[i][i]);
  7706. for (j = 1; j <= n - 1; j++)
  7707. m[i + 1][j] -= temp*m[i][j];
  7708. }
  7709. //*********** backward substitution *********
  7710. for (i = n - 2; i>0; i--) {
  7711. sum = 0;
  7712. for (j = i; j <= n - 2; j++)
  7713. sum += m[i][j] * s[j];
  7714. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7715. }
  7716. for (i = 0; i<n - 1; i++)
  7717. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7718. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7719. b = s[i] / 2;
  7720. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7721. d = f[i];
  7722. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7723. }
  7724. return sum;
  7725. }
  7726. #ifdef PINDA_THERMISTOR
  7727. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7728. {
  7729. if (!temp_cal_active) return 0;
  7730. if (!calibration_status_pinda()) return 0;
  7731. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7732. }
  7733. #endif //PINDA_THERMISTOR
  7734. void long_pause() //long pause print
  7735. {
  7736. st_synchronize();
  7737. start_pause_print = _millis();
  7738. //retract
  7739. current_position[E_AXIS] -= default_retraction;
  7740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7741. //lift z
  7742. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7743. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7745. //Move XY to side
  7746. current_position[X_AXIS] = X_PAUSE_POS;
  7747. current_position[Y_AXIS] = Y_PAUSE_POS;
  7748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7749. // Turn off the print fan
  7750. fanSpeed = 0;
  7751. st_synchronize();
  7752. }
  7753. void serialecho_temperatures() {
  7754. float tt = degHotend(active_extruder);
  7755. SERIAL_PROTOCOLPGM("T:");
  7756. SERIAL_PROTOCOL(tt);
  7757. SERIAL_PROTOCOLPGM(" E:");
  7758. SERIAL_PROTOCOL((int)active_extruder);
  7759. SERIAL_PROTOCOLPGM(" B:");
  7760. SERIAL_PROTOCOL_F(degBed(), 1);
  7761. SERIAL_PROTOCOLLN("");
  7762. }
  7763. extern uint32_t sdpos_atomic;
  7764. #ifdef UVLO_SUPPORT
  7765. void uvlo_()
  7766. {
  7767. unsigned long time_start = _millis();
  7768. bool sd_print = card.sdprinting;
  7769. // Conserve power as soon as possible.
  7770. disable_x();
  7771. disable_y();
  7772. #ifdef TMC2130
  7773. tmc2130_set_current_h(Z_AXIS, 20);
  7774. tmc2130_set_current_r(Z_AXIS, 20);
  7775. tmc2130_set_current_h(E_AXIS, 20);
  7776. tmc2130_set_current_r(E_AXIS, 20);
  7777. #endif //TMC2130
  7778. // Indicate that the interrupt has been triggered.
  7779. // SERIAL_ECHOLNPGM("UVLO");
  7780. // Read out the current Z motor microstep counter. This will be later used
  7781. // for reaching the zero full step before powering off.
  7782. uint16_t z_microsteps = 0;
  7783. #ifdef TMC2130
  7784. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7785. #endif //TMC2130
  7786. // Calculate the file position, from which to resume this print.
  7787. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7788. {
  7789. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7790. sd_position -= sdlen_planner;
  7791. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7792. sd_position -= sdlen_cmdqueue;
  7793. if (sd_position < 0) sd_position = 0;
  7794. }
  7795. // Backup the feedrate in mm/min.
  7796. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7797. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7798. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7799. // are in action.
  7800. planner_abort_hard();
  7801. // Store the current extruder position.
  7802. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7803. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7804. // Clean the input command queue.
  7805. cmdqueue_reset();
  7806. card.sdprinting = false;
  7807. // card.closefile();
  7808. // Enable stepper driver interrupt to move Z axis.
  7809. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7810. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7811. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7812. sei();
  7813. plan_buffer_line(
  7814. current_position[X_AXIS],
  7815. current_position[Y_AXIS],
  7816. current_position[Z_AXIS],
  7817. current_position[E_AXIS] - default_retraction,
  7818. 95, active_extruder);
  7819. st_synchronize();
  7820. disable_e0();
  7821. plan_buffer_line(
  7822. current_position[X_AXIS],
  7823. current_position[Y_AXIS],
  7824. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7825. current_position[E_AXIS] - default_retraction,
  7826. 40, active_extruder);
  7827. st_synchronize();
  7828. disable_e0();
  7829. plan_buffer_line(
  7830. current_position[X_AXIS],
  7831. current_position[Y_AXIS],
  7832. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7833. current_position[E_AXIS] - default_retraction,
  7834. 40, active_extruder);
  7835. st_synchronize();
  7836. disable_e0();
  7837. disable_z();
  7838. // Move Z up to the next 0th full step.
  7839. // Write the file position.
  7840. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7841. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7842. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7843. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7844. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7845. // Scale the z value to 1u resolution.
  7846. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7847. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7848. }
  7849. // Read out the current Z motor microstep counter. This will be later used
  7850. // for reaching the zero full step before powering off.
  7851. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7852. // Store the current position.
  7853. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7854. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7855. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7856. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7857. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7858. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7859. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7860. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7861. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7862. #if EXTRUDERS > 1
  7863. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7864. #if EXTRUDERS > 2
  7865. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7866. #endif
  7867. #endif
  7868. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7869. // Finaly store the "power outage" flag.
  7870. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7871. st_synchronize();
  7872. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7873. disable_z();
  7874. // Increment power failure counter
  7875. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7876. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7877. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7878. #if 0
  7879. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7880. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7882. st_synchronize();
  7883. #endif
  7884. wdt_enable(WDTO_500MS);
  7885. WRITE(BEEPER,HIGH);
  7886. while(1)
  7887. ;
  7888. }
  7889. void uvlo_tiny()
  7890. {
  7891. uint16_t z_microsteps=0;
  7892. // Conserve power as soon as possible.
  7893. disable_x();
  7894. disable_y();
  7895. disable_e0();
  7896. #ifdef TMC2130
  7897. tmc2130_set_current_h(Z_AXIS, 20);
  7898. tmc2130_set_current_r(Z_AXIS, 20);
  7899. #endif //TMC2130
  7900. // Read out the current Z motor microstep counter
  7901. #ifdef TMC2130
  7902. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7903. #endif //TMC2130
  7904. planner_abort_hard();
  7905. disable_z();
  7906. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7907. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7908. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7909. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7910. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7911. }
  7912. //after multiple power panics current Z axis is unknow
  7913. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7914. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7915. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7916. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7917. }
  7918. // Finaly store the "power outage" flag.
  7919. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7920. // Increment power failure counter
  7921. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7922. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7923. wdt_enable(WDTO_500MS);
  7924. WRITE(BEEPER,HIGH);
  7925. while(1)
  7926. ;
  7927. }
  7928. #endif //UVLO_SUPPORT
  7929. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7930. void setup_fan_interrupt() {
  7931. //INT7
  7932. DDRE &= ~(1 << 7); //input pin
  7933. PORTE &= ~(1 << 7); //no internal pull-up
  7934. //start with sensing rising edge
  7935. EICRB &= ~(1 << 6);
  7936. EICRB |= (1 << 7);
  7937. //enable INT7 interrupt
  7938. EIMSK |= (1 << 7);
  7939. }
  7940. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7941. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7942. ISR(INT7_vect) {
  7943. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7944. #ifdef FAN_SOFT_PWM
  7945. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7946. #else //FAN_SOFT_PWM
  7947. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7948. #endif //FAN_SOFT_PWM
  7949. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7950. t_fan_rising_edge = millis_nc();
  7951. }
  7952. else { //interrupt was triggered by falling edge
  7953. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7954. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7955. }
  7956. }
  7957. EICRB ^= (1 << 6); //change edge
  7958. }
  7959. #endif
  7960. #ifdef UVLO_SUPPORT
  7961. void setup_uvlo_interrupt() {
  7962. DDRE &= ~(1 << 4); //input pin
  7963. PORTE &= ~(1 << 4); //no internal pull-up
  7964. //sensing falling edge
  7965. EICRB |= (1 << 0);
  7966. EICRB &= ~(1 << 1);
  7967. //enable INT4 interrupt
  7968. EIMSK |= (1 << 4);
  7969. }
  7970. ISR(INT4_vect) {
  7971. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7972. SERIAL_ECHOLNPGM("INT4");
  7973. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  7974. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  7975. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7976. }
  7977. void recover_print(uint8_t automatic) {
  7978. char cmd[30];
  7979. lcd_update_enable(true);
  7980. lcd_update(2);
  7981. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7982. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7983. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7984. // Lift the print head, so one may remove the excess priming material.
  7985. if(!bTiny&&(current_position[Z_AXIS]<25))
  7986. enquecommand_P(PSTR("G1 Z25 F800"));
  7987. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7988. enquecommand_P(PSTR("G28 X Y"));
  7989. // Set the target bed and nozzle temperatures and wait.
  7990. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7991. enquecommand(cmd);
  7992. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7993. enquecommand(cmd);
  7994. enquecommand_P(PSTR("M83")); //E axis relative mode
  7995. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7996. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7997. if(automatic == 0){
  7998. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7999. }
  8000. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8001. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8002. // Restart the print.
  8003. restore_print_from_eeprom();
  8004. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8005. }
  8006. void recover_machine_state_after_power_panic(bool bTiny)
  8007. {
  8008. char cmd[30];
  8009. // 1) Recover the logical cordinates at the time of the power panic.
  8010. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8011. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8012. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8013. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8014. mbl.active = false;
  8015. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8016. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8017. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8018. // Scale the z value to 10u resolution.
  8019. int16_t v;
  8020. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8021. if (v != 0)
  8022. mbl.active = true;
  8023. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8024. }
  8025. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8026. // The current position after power panic is moved to the next closest 0th full step.
  8027. if(bTiny){
  8028. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8029. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8030. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8031. //after multiple power panics the print is slightly in the air so get it little bit down.
  8032. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8033. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8034. }
  8035. else{
  8036. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8037. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8038. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8039. }
  8040. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8041. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8042. sprintf_P(cmd, PSTR("G92 E"));
  8043. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8044. enquecommand(cmd);
  8045. }
  8046. memcpy(destination, current_position, sizeof(destination));
  8047. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8048. print_world_coordinates();
  8049. // 3) Initialize the logical to physical coordinate system transformation.
  8050. world2machine_initialize();
  8051. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8052. // print_mesh_bed_leveling_table();
  8053. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8054. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8055. babystep_load();
  8056. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8058. // 6) Power up the motors, mark their positions as known.
  8059. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8060. axis_known_position[X_AXIS] = true; enable_x();
  8061. axis_known_position[Y_AXIS] = true; enable_y();
  8062. axis_known_position[Z_AXIS] = true; enable_z();
  8063. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8064. print_physical_coordinates();
  8065. // 7) Recover the target temperatures.
  8066. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8067. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8068. // 8) Recover extruder multipilers
  8069. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8070. #if EXTRUDERS > 1
  8071. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8072. #if EXTRUDERS > 2
  8073. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8074. #endif
  8075. #endif
  8076. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8077. }
  8078. void restore_print_from_eeprom() {
  8079. int feedrate_rec;
  8080. uint8_t fan_speed_rec;
  8081. char cmd[30];
  8082. char filename[13];
  8083. uint8_t depth = 0;
  8084. char dir_name[9];
  8085. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8086. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8087. SERIAL_ECHOPGM("Feedrate:");
  8088. MYSERIAL.println(feedrate_rec);
  8089. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8090. MYSERIAL.println(int(depth));
  8091. for (int i = 0; i < depth; i++) {
  8092. for (int j = 0; j < 8; j++) {
  8093. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8094. }
  8095. dir_name[8] = '\0';
  8096. MYSERIAL.println(dir_name);
  8097. strcpy(dir_names[i], dir_name);
  8098. card.chdir(dir_name);
  8099. }
  8100. for (int i = 0; i < 8; i++) {
  8101. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8102. }
  8103. filename[8] = '\0';
  8104. MYSERIAL.print(filename);
  8105. strcat_P(filename, PSTR(".gco"));
  8106. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8107. enquecommand(cmd);
  8108. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8109. SERIAL_ECHOPGM("Position read from eeprom:");
  8110. MYSERIAL.println(position);
  8111. // E axis relative mode.
  8112. enquecommand_P(PSTR("M83"));
  8113. // Move to the XY print position in logical coordinates, where the print has been killed.
  8114. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8115. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8116. strcat_P(cmd, PSTR(" F2000"));
  8117. enquecommand(cmd);
  8118. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8119. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8120. // Move the Z axis down to the print, in logical coordinates.
  8121. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8122. enquecommand(cmd);
  8123. // Unretract.
  8124. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8125. // Set the feedrate saved at the power panic.
  8126. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8127. enquecommand(cmd);
  8128. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8129. {
  8130. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8131. }
  8132. // Set the fan speed saved at the power panic.
  8133. strcpy_P(cmd, PSTR("M106 S"));
  8134. strcat(cmd, itostr3(int(fan_speed_rec)));
  8135. enquecommand(cmd);
  8136. // Set a position in the file.
  8137. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8138. enquecommand(cmd);
  8139. enquecommand_P(PSTR("G4 S0"));
  8140. enquecommand_P(PSTR("PRUSA uvlo"));
  8141. }
  8142. #endif //UVLO_SUPPORT
  8143. //! @brief Immediately stop print moves
  8144. //!
  8145. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8146. //! If printing from sd card, position in file is saved.
  8147. //! If printing from USB, line number is saved.
  8148. //!
  8149. //! @param z_move
  8150. //! @param e_move
  8151. void stop_and_save_print_to_ram(float z_move, float e_move)
  8152. {
  8153. if (saved_printing) return;
  8154. #if 0
  8155. unsigned char nplanner_blocks;
  8156. #endif
  8157. unsigned char nlines;
  8158. uint16_t sdlen_planner;
  8159. uint16_t sdlen_cmdqueue;
  8160. cli();
  8161. if (card.sdprinting) {
  8162. #if 0
  8163. nplanner_blocks = number_of_blocks();
  8164. #endif
  8165. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8166. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8167. saved_sdpos -= sdlen_planner;
  8168. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8169. saved_sdpos -= sdlen_cmdqueue;
  8170. saved_printing_type = PRINTING_TYPE_SD;
  8171. }
  8172. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8173. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8174. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8175. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8176. saved_sdpos -= nlines;
  8177. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8178. saved_printing_type = PRINTING_TYPE_USB;
  8179. }
  8180. else {
  8181. saved_printing_type = PRINTING_TYPE_NONE;
  8182. //not sd printing nor usb printing
  8183. }
  8184. #if 0
  8185. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8186. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8187. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8188. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8189. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8190. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8191. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8192. {
  8193. card.setIndex(saved_sdpos);
  8194. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8195. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8196. MYSERIAL.print(char(card.get()));
  8197. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8198. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8199. MYSERIAL.print(char(card.get()));
  8200. SERIAL_ECHOLNPGM("End of command buffer");
  8201. }
  8202. {
  8203. // Print the content of the planner buffer, line by line:
  8204. card.setIndex(saved_sdpos);
  8205. int8_t iline = 0;
  8206. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8207. SERIAL_ECHOPGM("Planner line (from file): ");
  8208. MYSERIAL.print(int(iline), DEC);
  8209. SERIAL_ECHOPGM(", length: ");
  8210. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8211. SERIAL_ECHOPGM(", steps: (");
  8212. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8213. SERIAL_ECHOPGM(",");
  8214. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8215. SERIAL_ECHOPGM(",");
  8216. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8217. SERIAL_ECHOPGM(",");
  8218. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8219. SERIAL_ECHOPGM("), events: ");
  8220. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8221. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8222. MYSERIAL.print(char(card.get()));
  8223. }
  8224. }
  8225. {
  8226. // Print the content of the command buffer, line by line:
  8227. int8_t iline = 0;
  8228. union {
  8229. struct {
  8230. char lo;
  8231. char hi;
  8232. } lohi;
  8233. uint16_t value;
  8234. } sdlen_single;
  8235. int _bufindr = bufindr;
  8236. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8237. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8238. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8239. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8240. }
  8241. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8242. MYSERIAL.print(int(iline), DEC);
  8243. SERIAL_ECHOPGM(", type: ");
  8244. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8245. SERIAL_ECHOPGM(", len: ");
  8246. MYSERIAL.println(sdlen_single.value, DEC);
  8247. // Print the content of the buffer line.
  8248. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8249. SERIAL_ECHOPGM("Buffer line (from file): ");
  8250. MYSERIAL.println(int(iline), DEC);
  8251. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8252. MYSERIAL.print(char(card.get()));
  8253. if (-- _buflen == 0)
  8254. break;
  8255. // First skip the current command ID and iterate up to the end of the string.
  8256. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8257. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8258. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8259. // If the end of the buffer was empty,
  8260. if (_bufindr == sizeof(cmdbuffer)) {
  8261. // skip to the start and find the nonzero command.
  8262. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8263. }
  8264. }
  8265. }
  8266. #endif
  8267. #if 0
  8268. saved_feedrate2 = feedrate; //save feedrate
  8269. #else
  8270. // Try to deduce the feedrate from the first block of the planner.
  8271. // Speed is in mm/min.
  8272. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8273. #endif
  8274. planner_abort_hard(); //abort printing
  8275. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8276. saved_active_extruder = active_extruder; //save active_extruder
  8277. saved_extruder_temperature = degTargetHotend(active_extruder);
  8278. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8279. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8280. saved_fanSpeed = fanSpeed;
  8281. cmdqueue_reset(); //empty cmdqueue
  8282. card.sdprinting = false;
  8283. // card.closefile();
  8284. saved_printing = true;
  8285. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8286. st_reset_timer();
  8287. sei();
  8288. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8289. #if 1
  8290. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8291. char buf[48];
  8292. // First unretract (relative extrusion)
  8293. if(!saved_extruder_relative_mode){
  8294. enquecommand(PSTR("M83"), true);
  8295. }
  8296. //retract 45mm/s
  8297. // A single sprintf may not be faster, but is definitely 20B shorter
  8298. // than a sequence of commands building the string piece by piece
  8299. // A snprintf would have been a safer call, but since it is not used
  8300. // in the whole program, its implementation would bring more bytes to the total size
  8301. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8302. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8303. enquecommand(buf, false);
  8304. // Then lift Z axis
  8305. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8306. // At this point the command queue is empty.
  8307. enquecommand(buf, false);
  8308. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8309. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8310. repeatcommand_front();
  8311. #else
  8312. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8313. st_synchronize(); //wait moving
  8314. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8315. memcpy(destination, current_position, sizeof(destination));
  8316. #endif
  8317. }
  8318. }
  8319. //! @brief Restore print from ram
  8320. //!
  8321. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8322. //! waits for extruder temperature restore, then restores position and continues
  8323. //! print moves.
  8324. //! Internaly lcd_update() is called by wait_for_heater().
  8325. //!
  8326. //! @param e_move
  8327. void restore_print_from_ram_and_continue(float e_move)
  8328. {
  8329. if (!saved_printing) return;
  8330. #ifdef FANCHECK
  8331. // Do not allow resume printing if fans are still not ok
  8332. if( fan_check_error != EFCE_OK )return;
  8333. #endif
  8334. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8335. // current_position[axis] = st_get_position_mm(axis);
  8336. active_extruder = saved_active_extruder; //restore active_extruder
  8337. if (saved_extruder_temperature) {
  8338. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8339. heating_status = 1;
  8340. wait_for_heater(_millis(), saved_active_extruder);
  8341. heating_status = 2;
  8342. }
  8343. feedrate = saved_feedrate2; //restore feedrate
  8344. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8345. fanSpeed = saved_fanSpeed;
  8346. float e = saved_pos[E_AXIS] - e_move;
  8347. plan_set_e_position(e);
  8348. //first move print head in XY to the saved position:
  8349. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8350. st_synchronize();
  8351. //then move Z
  8352. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8353. st_synchronize();
  8354. //and finaly unretract (35mm/s)
  8355. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8356. st_synchronize();
  8357. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8358. memcpy(destination, current_position, sizeof(destination));
  8359. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8360. card.setIndex(saved_sdpos);
  8361. sdpos_atomic = saved_sdpos;
  8362. card.sdprinting = true;
  8363. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8364. }
  8365. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8366. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8367. serial_count = 0;
  8368. FlushSerialRequestResend();
  8369. }
  8370. else {
  8371. //not sd printing nor usb printing
  8372. }
  8373. lcd_setstatuspgm(_T(WELCOME_MSG));
  8374. saved_printing = false;
  8375. }
  8376. void print_world_coordinates()
  8377. {
  8378. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8379. }
  8380. void print_physical_coordinates()
  8381. {
  8382. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8383. }
  8384. void print_mesh_bed_leveling_table()
  8385. {
  8386. SERIAL_ECHOPGM("mesh bed leveling: ");
  8387. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8388. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8389. MYSERIAL.print(mbl.z_values[y][x], 3);
  8390. SERIAL_ECHOPGM(" ");
  8391. }
  8392. SERIAL_ECHOLNPGM("");
  8393. }
  8394. uint16_t print_time_remaining() {
  8395. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8396. #ifdef TMC2130
  8397. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8398. else print_t = print_time_remaining_silent;
  8399. #else
  8400. print_t = print_time_remaining_normal;
  8401. #endif //TMC2130
  8402. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8403. return print_t;
  8404. }
  8405. uint8_t calc_percent_done()
  8406. {
  8407. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8408. uint8_t percent_done = 0;
  8409. #ifdef TMC2130
  8410. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8411. percent_done = print_percent_done_normal;
  8412. }
  8413. else if (print_percent_done_silent <= 100) {
  8414. percent_done = print_percent_done_silent;
  8415. }
  8416. #else
  8417. if (print_percent_done_normal <= 100) {
  8418. percent_done = print_percent_done_normal;
  8419. }
  8420. #endif //TMC2130
  8421. else {
  8422. percent_done = card.percentDone();
  8423. }
  8424. return percent_done;
  8425. }
  8426. static void print_time_remaining_init()
  8427. {
  8428. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8429. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8430. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8431. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8432. }
  8433. void load_filament_final_feed()
  8434. {
  8435. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8437. }
  8438. //! @brief Wait for user to check the state
  8439. //! @par nozzle_temp nozzle temperature to load filament
  8440. void M600_check_state(float nozzle_temp)
  8441. {
  8442. lcd_change_fil_state = 0;
  8443. while (lcd_change_fil_state != 1)
  8444. {
  8445. lcd_change_fil_state = 0;
  8446. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8447. lcd_alright();
  8448. KEEPALIVE_STATE(IN_HANDLER);
  8449. switch(lcd_change_fil_state)
  8450. {
  8451. // Filament failed to load so load it again
  8452. case 2:
  8453. if (mmu_enabled)
  8454. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8455. else
  8456. M600_load_filament_movements();
  8457. break;
  8458. // Filament loaded properly but color is not clear
  8459. case 3:
  8460. st_synchronize();
  8461. load_filament_final_feed();
  8462. lcd_loading_color();
  8463. st_synchronize();
  8464. break;
  8465. // Everything good
  8466. default:
  8467. lcd_change_success();
  8468. break;
  8469. }
  8470. }
  8471. }
  8472. //! @brief Wait for user action
  8473. //!
  8474. //! Beep, manage nozzle heater and wait for user to start unload filament
  8475. //! If times out, active extruder temperature is set to 0.
  8476. //!
  8477. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8478. void M600_wait_for_user(float HotendTempBckp) {
  8479. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8480. int counterBeep = 0;
  8481. unsigned long waiting_start_time = _millis();
  8482. uint8_t wait_for_user_state = 0;
  8483. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8484. bool bFirst=true;
  8485. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8486. manage_heater();
  8487. manage_inactivity(true);
  8488. #if BEEPER > 0
  8489. if (counterBeep == 500) {
  8490. counterBeep = 0;
  8491. }
  8492. SET_OUTPUT(BEEPER);
  8493. if (counterBeep == 0) {
  8494. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8495. {
  8496. bFirst=false;
  8497. WRITE(BEEPER, HIGH);
  8498. }
  8499. }
  8500. if (counterBeep == 20) {
  8501. WRITE(BEEPER, LOW);
  8502. }
  8503. counterBeep++;
  8504. #endif //BEEPER > 0
  8505. switch (wait_for_user_state) {
  8506. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8507. delay_keep_alive(4);
  8508. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8509. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8510. wait_for_user_state = 1;
  8511. setAllTargetHotends(0);
  8512. st_synchronize();
  8513. disable_e0();
  8514. disable_e1();
  8515. disable_e2();
  8516. }
  8517. break;
  8518. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8519. delay_keep_alive(4);
  8520. if (lcd_clicked()) {
  8521. setTargetHotend(HotendTempBckp, active_extruder);
  8522. lcd_wait_for_heater();
  8523. wait_for_user_state = 2;
  8524. }
  8525. break;
  8526. case 2: //waiting for nozzle to reach target temperature
  8527. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8528. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8529. waiting_start_time = _millis();
  8530. wait_for_user_state = 0;
  8531. }
  8532. else {
  8533. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8534. lcd_set_cursor(1, 4);
  8535. lcd_print(ftostr3(degHotend(active_extruder)));
  8536. }
  8537. break;
  8538. }
  8539. }
  8540. WRITE(BEEPER, LOW);
  8541. }
  8542. void M600_load_filament_movements()
  8543. {
  8544. #ifdef SNMM
  8545. display_loading();
  8546. do
  8547. {
  8548. current_position[E_AXIS] += 0.002;
  8549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8550. delay_keep_alive(2);
  8551. }
  8552. while (!lcd_clicked());
  8553. st_synchronize();
  8554. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8556. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8558. current_position[E_AXIS] += 40;
  8559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8560. current_position[E_AXIS] += 10;
  8561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8562. #else
  8563. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8565. #endif
  8566. load_filament_final_feed();
  8567. lcd_loading_filament();
  8568. st_synchronize();
  8569. }
  8570. void M600_load_filament() {
  8571. //load filament for single material and SNMM
  8572. lcd_wait_interact();
  8573. //load_filament_time = _millis();
  8574. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8575. #ifdef PAT9125
  8576. fsensor_autoload_check_start();
  8577. #endif //PAT9125
  8578. while(!lcd_clicked())
  8579. {
  8580. manage_heater();
  8581. manage_inactivity(true);
  8582. #ifdef FILAMENT_SENSOR
  8583. if (fsensor_check_autoload())
  8584. {
  8585. Sound_MakeCustom(50,1000,false);
  8586. break;
  8587. }
  8588. #endif //FILAMENT_SENSOR
  8589. }
  8590. #ifdef PAT9125
  8591. fsensor_autoload_check_stop();
  8592. #endif //PAT9125
  8593. KEEPALIVE_STATE(IN_HANDLER);
  8594. #ifdef FSENSOR_QUALITY
  8595. fsensor_oq_meassure_start(70);
  8596. #endif //FSENSOR_QUALITY
  8597. M600_load_filament_movements();
  8598. Sound_MakeCustom(50,1000,false);
  8599. #ifdef FSENSOR_QUALITY
  8600. fsensor_oq_meassure_stop();
  8601. if (!fsensor_oq_result())
  8602. {
  8603. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8604. lcd_update_enable(true);
  8605. lcd_update(2);
  8606. if (disable)
  8607. fsensor_disable();
  8608. }
  8609. #endif //FSENSOR_QUALITY
  8610. lcd_update_enable(false);
  8611. }
  8612. //! @brief Wait for click
  8613. //!
  8614. //! Set
  8615. void marlin_wait_for_click()
  8616. {
  8617. int8_t busy_state_backup = busy_state;
  8618. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8619. lcd_consume_click();
  8620. while(!lcd_clicked())
  8621. {
  8622. manage_heater();
  8623. manage_inactivity(true);
  8624. lcd_update(0);
  8625. }
  8626. KEEPALIVE_STATE(busy_state_backup);
  8627. }
  8628. #define FIL_LOAD_LENGTH 60