planner.cpp 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "fancheck.h"
  41. #include "ultralcd.h"
  42. #include "language.h"
  43. #include "ConfigurationStore.h"
  44. #ifdef MESH_BED_LEVELING
  45. #include "mesh_bed_leveling.h"
  46. #include "mesh_bed_calibration.h"
  47. #endif
  48. #ifdef TMC2130
  49. #include "tmc2130.h"
  50. #endif //TMC2130
  51. #include <util/atomic.h>
  52. //===========================================================================
  53. //=============================public variables ============================
  54. //===========================================================================
  55. // Use M203 to override by software
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  84. volatile uint8_t block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. int extrude_min_temp = EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LA_K_DEF;
  97. float position_float[NUM_AXIS];
  98. #endif
  99. // Request the next block to start at zero E count
  100. static bool plan_reset_next_e_queue;
  101. static bool plan_reset_next_e_sched;
  102. // Returns the index of the next block in the ring buffer
  103. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  104. static inline uint8_t next_block_index(uint8_t block_index) {
  105. if (++ block_index == BLOCK_BUFFER_SIZE)
  106. block_index = 0;
  107. return block_index;
  108. }
  109. // Returns the index of the previous block in the ring buffer
  110. static inline uint8_t prev_block_index(uint8_t block_index) {
  111. if (block_index == 0)
  112. block_index = BLOCK_BUFFER_SIZE;
  113. -- block_index;
  114. return block_index;
  115. }
  116. //===========================================================================
  117. //=============================functions ============================
  118. //===========================================================================
  119. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  120. // given acceleration:
  121. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  122. {
  123. if (acceleration!=0) {
  124. return((target_rate*target_rate-initial_rate*initial_rate)/
  125. (2.0*acceleration));
  126. }
  127. else {
  128. return 0.0; // acceleration was 0, set acceleration distance to 0
  129. }
  130. }
  131. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  132. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  133. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  134. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  135. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  136. {
  137. if (acceleration!=0) {
  138. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  139. (4.0*acceleration) );
  140. }
  141. else {
  142. return 0.0; // acceleration was 0, set intersection distance to 0
  143. }
  144. }
  145. // Minimum stepper rate 120Hz.
  146. #define MINIMAL_STEP_RATE 120
  147. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  148. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  149. {
  150. // These two lines are the only floating point calculations performed in this routine.
  151. // initial_rate, final_rate in Hz.
  152. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  153. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  154. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  155. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  156. // Limit minimal step rate (Otherwise the timer will overflow.)
  157. if (initial_rate < MINIMAL_STEP_RATE)
  158. initial_rate = MINIMAL_STEP_RATE;
  159. if (initial_rate > block->nominal_rate)
  160. initial_rate = block->nominal_rate;
  161. if (final_rate < MINIMAL_STEP_RATE)
  162. final_rate = MINIMAL_STEP_RATE;
  163. if (final_rate > block->nominal_rate)
  164. final_rate = block->nominal_rate;
  165. uint32_t acceleration = block->acceleration_st;
  166. if (acceleration == 0)
  167. // Don't allow zero acceleration.
  168. acceleration = 1;
  169. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  170. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  171. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  172. //FIXME assert that this result fits a 64bit unsigned int.
  173. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  174. uint32_t final_rate_sqr = final_rate*final_rate;
  175. uint32_t acceleration_x2 = acceleration << 1;
  176. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  177. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  178. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  179. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  180. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  181. // Size of Plateau of Nominal Rate.
  182. uint32_t plateau_steps = 0;
  183. #ifdef LIN_ADVANCE
  184. uint16_t final_adv_steps = 0;
  185. uint16_t max_adv_steps = 0;
  186. if (block->use_advance_lead) {
  187. final_adv_steps = final_rate * block->adv_comp;
  188. }
  189. #endif
  190. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  191. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  192. // in order to reach the final_rate exactly at the end of this block.
  193. if (accel_decel_steps < block->step_event_count.wide) {
  194. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  195. #ifdef LIN_ADVANCE
  196. if (block->use_advance_lead)
  197. max_adv_steps = block->nominal_rate * block->adv_comp;
  198. #endif
  199. } else {
  200. uint32_t acceleration_x4 = acceleration << 2;
  201. // Avoid negative numbers
  202. if (final_rate_sqr >= initial_rate_sqr) {
  203. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  204. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  205. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  206. #if 0
  207. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  208. #else
  209. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  210. if (block->step_event_count.wide & 1)
  211. accelerate_steps += acceleration_x2;
  212. accelerate_steps /= acceleration_x4;
  213. accelerate_steps += (block->step_event_count.wide >> 1);
  214. #endif
  215. if (accelerate_steps > block->step_event_count.wide)
  216. accelerate_steps = block->step_event_count.wide;
  217. } else {
  218. #if 0
  219. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  220. #else
  221. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  222. if (block->step_event_count.wide & 1)
  223. decelerate_steps += acceleration_x2;
  224. decelerate_steps /= acceleration_x4;
  225. decelerate_steps += (block->step_event_count.wide >> 1);
  226. #endif
  227. if (decelerate_steps > block->step_event_count.wide)
  228. decelerate_steps = block->step_event_count.wide;
  229. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  230. }
  231. #ifdef LIN_ADVANCE
  232. if (block->use_advance_lead) {
  233. if(!accelerate_steps || !decelerate_steps) {
  234. // accelerate_steps=0: deceleration-only ramp, max_rate is effectively unused
  235. // decelerate_steps=0: acceleration-only ramp, max_rate _is_ final_rate
  236. max_adv_steps = final_adv_steps;
  237. } else {
  238. float max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
  239. max_adv_steps = max_rate * block->adv_comp;
  240. }
  241. }
  242. #endif
  243. }
  244. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  245. // This block locks the interrupts globally for 4.38 us,
  246. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  247. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  248. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  249. if (! block->busy) { // Don't update variables if block is busy.
  250. block->accelerate_until = accelerate_steps;
  251. block->decelerate_after = accelerate_steps+plateau_steps;
  252. block->initial_rate = initial_rate;
  253. block->final_rate = final_rate;
  254. #ifdef LIN_ADVANCE
  255. block->final_adv_steps = final_adv_steps;
  256. block->max_adv_steps = max_adv_steps;
  257. #endif
  258. }
  259. CRITICAL_SECTION_END;
  260. }
  261. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  262. // decceleration within the allotted distance.
  263. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  264. {
  265. // assert(decceleration < 0);
  266. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  267. }
  268. // Recalculates the motion plan according to the following algorithm:
  269. //
  270. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  271. // so that:
  272. // a. The junction jerk is within the set limit
  273. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  274. // acceleration.
  275. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  276. // a. The speed increase within one block would require faster accelleration than the one, true
  277. // constant acceleration.
  278. //
  279. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  280. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  281. // the set limit. Finally it will:
  282. //
  283. // 3. Recalculate trapezoids for all blocks.
  284. //
  285. //FIXME This routine is called 15x every time a new line is added to the planner,
  286. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  287. // if the CPU is found lacking computational power.
  288. //
  289. // Following sources may be used to optimize the 8-bit AVR code:
  290. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  291. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  292. //
  293. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  294. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  295. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  296. //
  297. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  298. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  299. // https://github.com/rekka/avrmultiplication
  300. //
  301. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  302. // https://courses.cit.cornell.edu/ee476/Math/
  303. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  304. //
  305. void planner_recalculate(const float &safe_final_speed)
  306. {
  307. // Reverse pass
  308. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  309. // by consuming the blocks, therefore shortening the queue.
  310. uint8_t tail = block_buffer_tail;
  311. uint8_t block_index;
  312. block_t *prev, *current, *next;
  313. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  314. // At least three blocks are in the queue?
  315. uint8_t n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  316. if (n_blocks >= 3) {
  317. // Initialize the last tripple of blocks.
  318. block_index = prev_block_index(block_buffer_head);
  319. next = block_buffer + block_index;
  320. current = block_buffer + (block_index = prev_block_index(block_index));
  321. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  322. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  323. // 1) it may already be running at the stepper interrupt,
  324. // 2) there is no way to limit it when going in the forward direction.
  325. while (block_index != tail) {
  326. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  327. // Don't modify the entry velocity of the starting block.
  328. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  329. // for the stepper interrupt routine to use them.
  330. tail = block_index;
  331. // Update the number of blocks to process.
  332. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  333. // SERIAL_ECHOLNPGM("START");
  334. break;
  335. }
  336. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  337. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  338. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  339. if (current->entry_speed != current->max_entry_speed) {
  340. // assert(current->entry_speed < current->max_entry_speed);
  341. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  342. // segment and the maximum acceleration allowed for this segment.
  343. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  344. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  345. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  346. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  347. // together with an assembly 32bit->16bit sqrt function.
  348. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  349. current->max_entry_speed :
  350. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  351. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  352. current->flag |= BLOCK_FLAG_RECALCULATE;
  353. }
  354. next = current;
  355. current = block_buffer + (block_index = prev_block_index(block_index));
  356. }
  357. }
  358. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  359. // Forward pass and recalculate the trapezoids.
  360. if (n_blocks >= 2) {
  361. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  362. block_index = tail;
  363. prev = block_buffer + block_index;
  364. current = block_buffer + (block_index = next_block_index(block_index));
  365. do {
  366. // If the previous block is an acceleration block, but it is not long enough to complete the
  367. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  368. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  369. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  370. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  371. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  372. // Check for junction speed change
  373. if (current->entry_speed != entry_speed) {
  374. current->entry_speed = entry_speed;
  375. current->flag |= BLOCK_FLAG_RECALCULATE;
  376. }
  377. }
  378. // Recalculate if current block entry or exit junction speed has changed.
  379. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  380. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  381. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  382. // Reset current only to ensure next trapezoid is computed.
  383. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  384. }
  385. prev = current;
  386. current = block_buffer + (block_index = next_block_index(block_index));
  387. } while (block_index != block_buffer_head);
  388. }
  389. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  390. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  391. current = block_buffer + prev_block_index(block_buffer_head);
  392. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  393. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  394. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  395. }
  396. void plan_init() {
  397. block_buffer_head = 0;
  398. block_buffer_tail = 0;
  399. memset(position, 0, sizeof(position)); // clear position
  400. #ifdef LIN_ADVANCE
  401. memset(position_float, 0, sizeof(position_float)); // clear position
  402. #endif
  403. memset(previous_speed, 0, sizeof(previous_speed));
  404. previous_nominal_speed = 0.0;
  405. plan_reset_next_e_queue = false;
  406. plan_reset_next_e_sched = false;
  407. }
  408. #ifdef AUTOTEMP
  409. void getHighESpeed()
  410. {
  411. static float oldt=0;
  412. if(!autotemp_enabled){
  413. return;
  414. }
  415. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  416. return; //do nothing
  417. }
  418. float high=0.0;
  419. uint8_t block_index = block_buffer_tail;
  420. while(block_index != block_buffer_head) {
  421. if((block_buffer[block_index].steps_x.wide != 0) ||
  422. (block_buffer[block_index].steps_y.wide != 0) ||
  423. (block_buffer[block_index].steps_z.wide != 0)) {
  424. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  425. //se; mm/sec;
  426. if(se>high)
  427. {
  428. high=se;
  429. }
  430. }
  431. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  432. }
  433. float g=autotemp_min+high*autotemp_factor;
  434. float t=g;
  435. if(t<autotemp_min)
  436. t=autotemp_min;
  437. if(t>autotemp_max)
  438. t=autotemp_max;
  439. if(oldt>t)
  440. {
  441. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  442. }
  443. oldt=t;
  444. setTargetHotend0(t);
  445. }
  446. #endif
  447. bool e_active()
  448. {
  449. unsigned char e_active = 0;
  450. block_t *block;
  451. if(block_buffer_tail != block_buffer_head)
  452. {
  453. uint8_t block_index = block_buffer_tail;
  454. while(block_index != block_buffer_head)
  455. {
  456. block = &block_buffer[block_index];
  457. if(block->steps_e.wide != 0) e_active++;
  458. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  459. }
  460. }
  461. return (e_active > 0) ? true : false ;
  462. }
  463. void check_axes_activity()
  464. {
  465. unsigned char x_active = 0;
  466. unsigned char y_active = 0;
  467. unsigned char z_active = 0;
  468. unsigned char e_active = 0;
  469. unsigned char tail_fan_speed = fanSpeed;
  470. block_t *block;
  471. if(block_buffer_tail != block_buffer_head)
  472. {
  473. uint8_t block_index = block_buffer_tail;
  474. tail_fan_speed = block_buffer[block_index].fan_speed;
  475. while(block_index != block_buffer_head)
  476. {
  477. block = &block_buffer[block_index];
  478. if(block->steps_x.wide != 0) x_active++;
  479. if(block->steps_y.wide != 0) y_active++;
  480. if(block->steps_z.wide != 0) z_active++;
  481. if(block->steps_e.wide != 0) e_active++;
  482. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  483. }
  484. }
  485. if((DISABLE_X) && (x_active == 0)) disable_x();
  486. if((DISABLE_Y) && (y_active == 0)) disable_y();
  487. if((DISABLE_Z) && (z_active == 0)) disable_z();
  488. if((DISABLE_E) && (e_active == 0))
  489. {
  490. disable_e0();
  491. disable_e1();
  492. disable_e2();
  493. }
  494. #if defined(FAN_PIN) && FAN_PIN > -1
  495. #ifdef FAN_KICKSTART_TIME
  496. static unsigned long fan_kick_end;
  497. if (tail_fan_speed) {
  498. if (fan_kick_end == 0) {
  499. // Just starting up fan - run at full power.
  500. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  501. tail_fan_speed = 255;
  502. } else if (fan_kick_end > _millis())
  503. // Fan still spinning up.
  504. tail_fan_speed = 255;
  505. } else {
  506. fan_kick_end = 0;
  507. }
  508. #endif//FAN_KICKSTART_TIME
  509. #ifdef FAN_SOFT_PWM
  510. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  511. fanSpeedBckp = tail_fan_speed;
  512. }
  513. else {
  514. fanSpeedSoftPwm = tail_fan_speed;
  515. }
  516. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  517. #else
  518. analogWrite(FAN_PIN,tail_fan_speed);
  519. #endif//!FAN_SOFT_PWM
  520. #endif//FAN_PIN > -1
  521. #ifdef AUTOTEMP
  522. getHighESpeed();
  523. #endif
  524. }
  525. bool planner_aborted = false;
  526. #ifdef PLANNER_DIAGNOSTICS
  527. static inline void planner_update_queue_min_counter()
  528. {
  529. uint8_t new_counter = moves_planned();
  530. if (new_counter < g_cntr_planner_queue_min)
  531. g_cntr_planner_queue_min = new_counter;
  532. }
  533. #endif /* PLANNER_DIAGNOSTICS */
  534. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  535. void planner_reset_position()
  536. {
  537. // First update the planner's current position in the physical motor steps.
  538. position[X_AXIS] = st_get_position(X_AXIS);
  539. position[Y_AXIS] = st_get_position(Y_AXIS);
  540. position[Z_AXIS] = st_get_position(Z_AXIS);
  541. position[E_AXIS] = st_get_position(E_AXIS);
  542. // Second update the current position of the front end.
  543. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  544. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  545. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  546. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  547. // Apply the mesh bed leveling correction to the Z axis.
  548. #ifdef MESH_BED_LEVELING
  549. if (mbl.active) {
  550. #if 1
  551. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  552. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  553. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  554. #else
  555. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  556. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  557. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  558. else {
  559. float t = float(step_events_completed) / float(current_block->step_event_count);
  560. float vec[3] = {
  561. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  562. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  563. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  564. };
  565. float pos1[3], pos2[3];
  566. for (int8_t i = 0; i < 3; ++ i) {
  567. if (current_block->direction_bits & (1<<i))
  568. vec[i] = - vec[i];
  569. pos1[i] = current_position[i] - vec[i] * t;
  570. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  571. }
  572. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  573. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  574. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  575. }
  576. #endif
  577. }
  578. #endif
  579. // Apply inverse world correction matrix.
  580. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  581. set_destination_to_current();
  582. #ifdef LIN_ADVANCE
  583. memcpy(position_float, current_position, sizeof(position_float));
  584. #endif
  585. }
  586. void planner_abort_hard()
  587. {
  588. // Abort the stepper routine and flush the planner queue.
  589. DISABLE_STEPPER_DRIVER_INTERRUPT();
  590. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  591. planner_reset_position();
  592. // Relay to planner wait routine that the current line shall be canceled.
  593. planner_aborted = true;
  594. // Clear the planner queue, reset and re-enable the stepper timer.
  595. quickStop();
  596. // Resets planner junction speeds. Assumes start from rest.
  597. previous_nominal_speed = 0.0;
  598. memset(previous_speed, 0, sizeof(previous_speed));
  599. // Reset position sync requests
  600. plan_reset_next_e_queue = false;
  601. plan_reset_next_e_sched = false;
  602. }
  603. void plan_buffer_line_curposXYZE(float feed_rate) {
  604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate);
  605. }
  606. void plan_buffer_line_destinationXYZE(float feed_rate) {
  607. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate);
  608. }
  609. void plan_set_position_curposXYZE(){
  610. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  611. }
  612. float junction_deviation = 0.1;
  613. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  614. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  615. // calculation the caller must also provide the physical length of the line in millimeters.
  616. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const float* gcode_start_position, uint16_t segment_idx)
  617. {
  618. // CRITICAL_SECTION_START; //prevent stack overflow in ISR
  619. // printf_P(PSTR("plan_buffer_line(%f, %f, %f, %f, %f, %u, [%f,%f,%f,%f], %u)\n"), x, y, z, e, feed_rate, extruder, gcode_start_position[0], gcode_start_position[1], gcode_start_position[2], gcode_start_position[3], segment_idx);
  620. // CRITICAL_SECTION_END;
  621. // Calculate the buffer head after we push this byte
  622. uint8_t next_buffer_head = next_block_index(block_buffer_head);
  623. // If the buffer is full: good! That means we are well ahead of the robot.
  624. // Rest here until there is room in the buffer.
  625. if (block_buffer_tail == next_buffer_head) {
  626. do {
  627. manage_heater();
  628. // Vojtech: Don't disable motors inside the planner!
  629. manage_inactivity(false);
  630. lcd_update(0);
  631. } while (block_buffer_tail == next_buffer_head);
  632. }
  633. #ifdef PLANNER_DIAGNOSTICS
  634. planner_update_queue_min_counter();
  635. #endif /* PLANNER_DIAGNOSTICS */
  636. if(planner_aborted) {
  637. // avoid planning the block early if aborted
  638. return;
  639. }
  640. // Prepare to set up new block
  641. block_t *block = &block_buffer[block_buffer_head];
  642. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  643. block->busy = false;
  644. // Set sdlen for calculating sd position
  645. block->sdlen = 0;
  646. // Save original start position of the move
  647. if (gcode_start_position)
  648. memcpy(block->gcode_start_position, gcode_start_position, sizeof(block_t::gcode_start_position));
  649. else
  650. memcpy(block->gcode_start_position, current_position, sizeof(block_t::gcode_start_position));
  651. // Save the index of this segment (when a single G0/1/2/3 command plans multiple segments)
  652. block->segment_idx = segment_idx;
  653. // Save the global feedrate at scheduling time
  654. block->gcode_feedrate = feedrate;
  655. // Reset the starting E position when requested
  656. if (plan_reset_next_e_queue)
  657. {
  658. position[E_AXIS] = 0;
  659. #ifdef LIN_ADVANCE
  660. position_float[E_AXIS] = 0;
  661. #endif
  662. // the block might still be discarded later, but we need to ensure the lower-level
  663. // count_position is also reset correctly for consistent results!
  664. plan_reset_next_e_queue = false;
  665. plan_reset_next_e_sched = true;
  666. }
  667. #ifdef ENABLE_AUTO_BED_LEVELING
  668. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  669. #endif // ENABLE_AUTO_BED_LEVELING
  670. // Apply the machine correction matrix.
  671. {
  672. #if 0
  673. SERIAL_ECHOPGM("Planner, current position - servos: ");
  674. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  675. SERIAL_ECHOPGM(", ");
  676. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  677. SERIAL_ECHOPGM(", ");
  678. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  679. SERIAL_ECHOLNPGM("");
  680. SERIAL_ECHOPGM("Planner, target position, initial: ");
  681. MYSERIAL.print(x, 5);
  682. SERIAL_ECHOPGM(", ");
  683. MYSERIAL.print(y, 5);
  684. SERIAL_ECHOLNPGM("");
  685. SERIAL_ECHOPGM("Planner, world2machine: ");
  686. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  687. SERIAL_ECHOPGM(", ");
  688. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  689. SERIAL_ECHOPGM(", ");
  690. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  691. SERIAL_ECHOPGM(", ");
  692. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  693. SERIAL_ECHOLNPGM("");
  694. SERIAL_ECHOPGM("Planner, offset: ");
  695. MYSERIAL.print(world2machine_shift[0], 5);
  696. SERIAL_ECHOPGM(", ");
  697. MYSERIAL.print(world2machine_shift[1], 5);
  698. SERIAL_ECHOLNPGM("");
  699. #endif
  700. world2machine(x, y);
  701. #if 0
  702. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  703. MYSERIAL.print(x, 5);
  704. SERIAL_ECHOPGM(", ");
  705. MYSERIAL.print(y, 5);
  706. SERIAL_ECHOLNPGM("");
  707. #endif
  708. }
  709. // The target position of the tool in absolute steps
  710. // Calculate target position in absolute steps
  711. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  712. long target[4];
  713. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  714. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  715. #ifdef MESH_BED_LEVELING
  716. if (mbl.active){
  717. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  718. }else{
  719. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  720. }
  721. #else
  722. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  723. #endif // ENABLE_MESH_BED_LEVELING
  724. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  725. #ifdef PREVENT_DANGEROUS_EXTRUDE
  726. if(target[E_AXIS]!=position[E_AXIS])
  727. {
  728. if((int)degHotend(active_extruder)<extrude_min_temp)
  729. {
  730. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  731. #ifdef LIN_ADVANCE
  732. position_float[E_AXIS] = e;
  733. #endif
  734. SERIAL_ECHO_START;
  735. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  736. }
  737. #ifdef PREVENT_LENGTHY_EXTRUDE
  738. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  739. {
  740. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  741. #ifdef LIN_ADVANCE
  742. position_float[E_AXIS] = e;
  743. #endif
  744. SERIAL_ECHO_START;
  745. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  746. }
  747. #endif
  748. }
  749. #endif
  750. // Number of steps for each axis
  751. #ifndef COREXY
  752. // default non-h-bot planning
  753. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  754. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  755. #else
  756. // corexy planning
  757. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  758. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  759. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  760. #endif
  761. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  762. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  763. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  764. // Bail if this is a zero-length block
  765. if (block->step_event_count.wide <= dropsegments)
  766. {
  767. #ifdef PLANNER_DIAGNOSTICS
  768. planner_update_queue_min_counter();
  769. #endif /* PLANNER_DIAGNOSTICS */
  770. return;
  771. }
  772. block->fan_speed = fanSpeed;
  773. // Compute direction bits for this block
  774. block->direction_bits = 0;
  775. #ifndef COREXY
  776. if (target[X_AXIS] < position[X_AXIS])
  777. {
  778. block->direction_bits |= (1<<X_AXIS);
  779. }
  780. if (target[Y_AXIS] < position[Y_AXIS])
  781. {
  782. block->direction_bits |= (1<<Y_AXIS);
  783. }
  784. #else
  785. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  786. {
  787. block->direction_bits |= (1<<X_AXIS);
  788. }
  789. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  790. {
  791. block->direction_bits |= (1<<Y_AXIS);
  792. }
  793. #endif
  794. if (target[Z_AXIS] < position[Z_AXIS])
  795. {
  796. block->direction_bits |= (1<<Z_AXIS);
  797. }
  798. if (target[E_AXIS] < position[E_AXIS])
  799. {
  800. block->direction_bits |= (1<<E_AXIS);
  801. }
  802. //enable active axes
  803. #ifdef COREXY
  804. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  805. {
  806. enable_x();
  807. enable_y();
  808. }
  809. #else
  810. if(block->steps_x.wide != 0) enable_x();
  811. if(block->steps_y.wide != 0) enable_y();
  812. #endif
  813. if(block->steps_z.wide != 0) enable_z();
  814. // Enable extruder
  815. if(block->steps_e.wide != 0)
  816. {
  817. enable_e0();
  818. }
  819. if (block->steps_e.wide == 0)
  820. {
  821. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  822. }
  823. else
  824. {
  825. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  826. }
  827. /* This part of the code calculates the total length of the movement.
  828. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  829. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  830. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  831. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  832. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  833. */
  834. #ifndef COREXY
  835. float delta_mm[4];
  836. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  837. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  838. #else
  839. float delta_mm[6];
  840. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  841. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  842. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  843. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  844. #endif
  845. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  846. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  847. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  848. {
  849. block->millimeters = fabs(delta_mm[E_AXIS]);
  850. }
  851. else
  852. {
  853. #ifndef COREXY
  854. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  855. #else
  856. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  857. #endif
  858. }
  859. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  860. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  861. float inverse_second = feed_rate * inverse_millimeters;
  862. uint8_t moves_queued = moves_planned();
  863. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  864. #ifdef SLOWDOWN
  865. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  866. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  867. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  868. // segment time in micro seconds
  869. unsigned long segment_time = lround(1000000.0/inverse_second);
  870. if (segment_time < cs.minsegmenttime)
  871. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  872. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  873. }
  874. #endif // SLOWDOWN
  875. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  876. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  877. // Calculate and limit speed in mm/sec for each axis
  878. float current_speed[4];
  879. float speed_factor = 1.0; //factor <=1 do decrease speed
  880. for(int i=0; i < 4; i++)
  881. {
  882. current_speed[i] = delta_mm[i] * inverse_second;
  883. if(fabs(current_speed[i]) > max_feedrate[i])
  884. {
  885. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  886. }
  887. }
  888. // Correct the speed
  889. if( speed_factor < 1.0)
  890. {
  891. for(unsigned char i=0; i < 4; i++)
  892. {
  893. current_speed[i] *= speed_factor;
  894. }
  895. block->nominal_speed *= speed_factor;
  896. block->nominal_rate *= speed_factor;
  897. }
  898. #ifdef LIN_ADVANCE
  899. float e_D_ratio = 0;
  900. #endif
  901. // Compute and limit the acceleration rate for the trapezoid generator.
  902. // block->step_event_count ... event count of the fastest axis
  903. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  904. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  905. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  906. {
  907. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  908. #ifdef LIN_ADVANCE
  909. block->use_advance_lead = false;
  910. #endif
  911. }
  912. else
  913. {
  914. float acceleration = (block->steps_e.wide == 0? cs.travel_acceleration: cs.acceleration);
  915. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  916. #ifdef LIN_ADVANCE
  917. /**
  918. * Use LIN_ADVANCE within this block if all these are true:
  919. *
  920. * extruder_advance_K : There is an advance factor set.
  921. * delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
  922. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  923. */
  924. block->use_advance_lead = extruder_advance_K > 0
  925. && delta_mm[E_AXIS] >= 0
  926. && fabs(delta_mm[Z_AXIS]) < 0.5;
  927. if (block->use_advance_lead) {
  928. #ifdef LA_FLOWADJ
  929. // M221/FLOW should change uniformly the extrusion thickness
  930. float delta_e = (e - position_float[E_AXIS]) / extruder_multiplier[extruder];
  931. #else
  932. // M221/FLOW only adjusts for an incorrect source diameter
  933. float delta_e = (e - position_float[E_AXIS]);
  934. #endif
  935. float delta_D = sqrt(sq(x - position_float[X_AXIS])
  936. + sq(y - position_float[Y_AXIS])
  937. + sq(z - position_float[Z_AXIS]));
  938. // all extrusion moves with LA require a compression which is proportional to the
  939. // extrusion_length to distance ratio (e/D)
  940. e_D_ratio = delta_e / delta_D;
  941. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  942. // print move due to min. steps per segment. Never execute this with advance! This assumes
  943. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  944. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  945. if (e_D_ratio > 3.0)
  946. block->use_advance_lead = false;
  947. else if (e_D_ratio > 0) {
  948. const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
  949. if (cs.acceleration > max_accel_per_s2) {
  950. block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
  951. #ifdef LA_DEBUG
  952. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  953. #endif
  954. }
  955. }
  956. }
  957. #endif
  958. // Limit acceleration per axis
  959. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  960. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  961. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; }
  962. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  963. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; }
  964. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  965. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; }
  966. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  967. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; }
  968. }
  969. // Acceleration of the segment, in mm/sec^2
  970. block->acceleration = block->acceleration_st / steps_per_mm;
  971. #if 0
  972. // Oversample diagonal movements by a power of 2 up to 8x
  973. // to achieve more accurate diagonal movements.
  974. uint8_t bresenham_oversample = 1;
  975. for (uint8_t i = 0; i < 3; ++ i) {
  976. if (block->nominal_rate >= 5000) // 5kHz
  977. break;
  978. block->nominal_rate << 1;
  979. bresenham_oversample << 1;
  980. block->step_event_count << 1;
  981. }
  982. if (bresenham_oversample > 1)
  983. // Lower the acceleration steps/sec^2 to account for the oversampling.
  984. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  985. #endif
  986. block->acceleration_rate = ((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  987. // Start with a safe speed.
  988. // Safe speed is the speed, from which the machine may halt to stop immediately.
  989. float safe_speed = block->nominal_speed;
  990. bool limited = false;
  991. for (uint8_t axis = 0; axis < 4; ++ axis) {
  992. float jerk = fabs(current_speed[axis]);
  993. if (jerk > cs.max_jerk[axis]) {
  994. // The actual jerk is lower, if it has been limited by the XY jerk.
  995. if (limited) {
  996. // Spare one division by a following gymnastics:
  997. // Instead of jerk *= safe_speed / block->nominal_speed,
  998. // multiply max_jerk[axis] by the divisor.
  999. jerk *= safe_speed;
  1000. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1001. if (jerk > mjerk) {
  1002. safe_speed *= mjerk / jerk;
  1003. limited = true;
  1004. }
  1005. } else {
  1006. safe_speed = cs.max_jerk[axis];
  1007. limited = true;
  1008. }
  1009. }
  1010. }
  1011. // Reset the block flag.
  1012. block->flag = 0;
  1013. if (plan_reset_next_e_sched)
  1014. {
  1015. // finally propagate a pending reset
  1016. block->flag |= BLOCK_FLAG_E_RESET;
  1017. plan_reset_next_e_sched = false;
  1018. }
  1019. // Initial limit on the segment entry velocity.
  1020. float vmax_junction;
  1021. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1022. // Is it because we don't want to tinker with the first buffer line, which
  1023. // is likely to be executed by the stepper interrupt routine soon?
  1024. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1025. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1026. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1027. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1028. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1029. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1030. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1031. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1032. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1033. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1034. float v_factor = 1.f;
  1035. limited = false;
  1036. // Now limit the jerk in all axes.
  1037. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1038. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1039. float v_exit = previous_speed[axis];
  1040. float v_entry = current_speed [axis];
  1041. if (prev_speed_larger)
  1042. v_exit *= smaller_speed_factor;
  1043. if (limited) {
  1044. v_exit *= v_factor;
  1045. v_entry *= v_factor;
  1046. }
  1047. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1048. float jerk =
  1049. (v_exit > v_entry) ?
  1050. ((v_entry > 0.f || v_exit < 0.f) ?
  1051. // coasting
  1052. (v_exit - v_entry) :
  1053. // axis reversal
  1054. max(v_exit, - v_entry)) :
  1055. // v_exit <= v_entry
  1056. ((v_entry < 0.f || v_exit > 0.f) ?
  1057. // coasting
  1058. (v_entry - v_exit) :
  1059. // axis reversal
  1060. max(- v_exit, v_entry));
  1061. if (jerk > cs.max_jerk[axis]) {
  1062. v_factor *= cs.max_jerk[axis] / jerk;
  1063. limited = true;
  1064. }
  1065. }
  1066. if (limited)
  1067. vmax_junction *= v_factor;
  1068. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1069. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1070. float vmax_junction_threshold = vmax_junction * 0.99f;
  1071. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1072. // Not coasting. The machine will stop and start the movements anyway,
  1073. // better to start the segment from start.
  1074. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1075. vmax_junction = safe_speed;
  1076. }
  1077. } else {
  1078. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1079. vmax_junction = safe_speed;
  1080. }
  1081. // Max entry speed of this block equals the max exit speed of the previous block.
  1082. block->max_entry_speed = vmax_junction;
  1083. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1084. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1085. block->entry_speed = min(vmax_junction, v_allowable);
  1086. // Initialize planner efficiency flags
  1087. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1088. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1089. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1090. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1091. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1092. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1093. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1094. // Always calculate trapezoid for new block
  1095. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1096. // Update previous path unit_vector and nominal speed
  1097. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1098. previous_nominal_speed = block->nominal_speed;
  1099. previous_safe_speed = safe_speed;
  1100. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1101. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1102. #ifdef LIN_ADVANCE
  1103. if (block->use_advance_lead) {
  1104. // calculate the compression ratio for the segment (the required advance steps are computed
  1105. // during trapezoid planning)
  1106. float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
  1107. block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
  1108. float advance_speed;
  1109. if (e_D_ratio > 0)
  1110. advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1111. else
  1112. advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
  1113. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1114. // still need to replicate the *exact* same step grouping policy (see below)
  1115. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1116. float advance_rate = (F_CPU / 8.0) / advance_speed;
  1117. if (advance_speed > 20000) {
  1118. block->advance_rate = advance_rate * 4;
  1119. block->advance_step_loops = 4;
  1120. }
  1121. else if (advance_speed > 10000) {
  1122. block->advance_rate = advance_rate * 2;
  1123. block->advance_step_loops = 2;
  1124. }
  1125. else
  1126. {
  1127. // never overflow the internal accumulator with very low rates
  1128. if (advance_rate < UINT16_MAX)
  1129. block->advance_rate = advance_rate;
  1130. else
  1131. block->advance_rate = UINT16_MAX;
  1132. block->advance_step_loops = 1;
  1133. }
  1134. #ifdef LA_DEBUG
  1135. if (block->advance_step_loops > 2)
  1136. // @wavexx: we should really check for the difference between step_loops and
  1137. // advance_step_loops instead. A difference of more than 1 will lead
  1138. // to uneven speed and *should* be adjusted here by furthermore
  1139. // reducing the speed.
  1140. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1141. #endif
  1142. }
  1143. #endif
  1144. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1145. if (block->step_event_count.wide <= 32767)
  1146. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1147. ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
  1148. // Move the buffer head ensuring the current block hasn't been cancelled from an isr context
  1149. // (this is possible both during crash detection *and* uvlo, thus needing a global cli)
  1150. if(planner_aborted) return;
  1151. block_buffer_head = next_buffer_head;
  1152. }
  1153. // Update position
  1154. memcpy(position, target, sizeof(target)); // position[] = target[]
  1155. #ifdef LIN_ADVANCE
  1156. position_float[X_AXIS] = x;
  1157. position_float[Y_AXIS] = y;
  1158. position_float[Z_AXIS] = z;
  1159. position_float[E_AXIS] = e;
  1160. #endif
  1161. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1162. // the machine limits (maximum acceleration and maximum jerk).
  1163. // This runs asynchronously with the stepper interrupt controller, which may
  1164. // interfere with the process.
  1165. planner_recalculate(safe_speed);
  1166. // SERIAL_ECHOPGM("Q");
  1167. // SERIAL_ECHO(int(moves_planned()));
  1168. // SERIAL_ECHOLNPGM("");
  1169. #ifdef PLANNER_DIAGNOSTICS
  1170. planner_update_queue_min_counter();
  1171. #endif /* PLANNER_DIAGNOSTIC */
  1172. // The stepper timer interrupt will run continuously from now on.
  1173. // If there are no planner blocks to be executed by the stepper routine,
  1174. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1175. // from the planner queue if available.
  1176. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1177. }
  1178. #ifdef ENABLE_AUTO_BED_LEVELING
  1179. vector_3 plan_get_position() {
  1180. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1181. //position.debug("in plan_get position");
  1182. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1183. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1184. //inverse.debug("in plan_get inverse");
  1185. position.apply_rotation(inverse);
  1186. //position.debug("after rotation");
  1187. return position;
  1188. }
  1189. #endif // ENABLE_AUTO_BED_LEVELING
  1190. void plan_set_position(float x, float y, float z, const float &e)
  1191. {
  1192. #ifdef ENABLE_AUTO_BED_LEVELING
  1193. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1194. #endif // ENABLE_AUTO_BED_LEVELING
  1195. world2machine(x, y);
  1196. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1197. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1198. #ifdef MESH_BED_LEVELING
  1199. position[Z_AXIS] = mbl.active ?
  1200. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1201. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1202. #else
  1203. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1204. #endif // ENABLE_MESH_BED_LEVELING
  1205. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1206. #ifdef LIN_ADVANCE
  1207. position_float[X_AXIS] = x;
  1208. position_float[Y_AXIS] = y;
  1209. position_float[Z_AXIS] = z;
  1210. position_float[E_AXIS] = e;
  1211. #endif
  1212. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1213. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1214. memset(previous_speed, 0, sizeof(previous_speed));
  1215. }
  1216. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1217. void plan_set_z_position(const float &z)
  1218. {
  1219. #ifdef LIN_ADVANCE
  1220. position_float[Z_AXIS] = z;
  1221. #endif
  1222. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1223. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1224. }
  1225. void plan_set_e_position(const float &e)
  1226. {
  1227. #ifdef LIN_ADVANCE
  1228. position_float[E_AXIS] = e;
  1229. #endif
  1230. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1231. st_set_e_position(position[E_AXIS]);
  1232. }
  1233. void plan_reset_next_e()
  1234. {
  1235. plan_reset_next_e_queue = true;
  1236. }
  1237. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1238. void set_extrude_min_temp(int temp)
  1239. {
  1240. extrude_min_temp = temp;
  1241. }
  1242. #endif
  1243. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1244. void reset_acceleration_rates()
  1245. {
  1246. for(int8_t i=0; i < NUM_AXIS; i++)
  1247. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1248. }
  1249. #ifdef TMC2130
  1250. void update_mode_profile()
  1251. {
  1252. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1253. {
  1254. max_feedrate = cs.max_feedrate_normal;
  1255. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1256. }
  1257. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1258. {
  1259. max_feedrate = cs.max_feedrate_silent;
  1260. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1261. }
  1262. reset_acceleration_rates();
  1263. }
  1264. #endif //TMC2130
  1265. uint8_t number_of_blocks()
  1266. {
  1267. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1268. }
  1269. #ifdef PLANNER_DIAGNOSTICS
  1270. uint8_t planner_queue_min()
  1271. {
  1272. return g_cntr_planner_queue_min;
  1273. }
  1274. void planner_queue_min_reset()
  1275. {
  1276. g_cntr_planner_queue_min = moves_planned();
  1277. }
  1278. #endif /* PLANNER_DIAGNOSTICS */
  1279. void planner_add_sd_length(uint16_t sdlen)
  1280. {
  1281. if (block_buffer_head != block_buffer_tail) {
  1282. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1283. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1284. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1285. } else {
  1286. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1287. // at a power panic, so the length of this command may be forgotten.
  1288. }
  1289. }
  1290. uint16_t planner_calc_sd_length()
  1291. {
  1292. uint8_t _block_buffer_head = block_buffer_head;
  1293. uint8_t _block_buffer_tail = block_buffer_tail;
  1294. uint16_t sdlen = 0;
  1295. while (_block_buffer_head != _block_buffer_tail)
  1296. {
  1297. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1298. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1299. }
  1300. return sdlen;
  1301. }