Marlin_main.cpp 304 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "cmdqueue.h"
  106. // Macros for bit masks
  107. #define BIT(b) (1<<(b))
  108. #define TEST(n,b) (((n)&BIT(b))!=0)
  109. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  110. //Macro for print fan speed
  111. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  112. #define PRINTING_TYPE_SD 0
  113. #define PRINTING_TYPE_USB 1
  114. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  115. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  116. //Implemented Codes
  117. //-------------------
  118. // PRUSA CODES
  119. // P F - Returns FW versions
  120. // P R - Returns revision of printer
  121. // G0 -> G1
  122. // G1 - Coordinated Movement X Y Z E
  123. // G2 - CW ARC
  124. // G3 - CCW ARC
  125. // G4 - Dwell S<seconds> or P<milliseconds>
  126. // G10 - retract filament according to settings of M207
  127. // G11 - retract recover filament according to settings of M208
  128. // G28 - Home all Axis
  129. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  130. // G30 - Single Z Probe, probes bed at current XY location.
  131. // G31 - Dock sled (Z_PROBE_SLED only)
  132. // G32 - Undock sled (Z_PROBE_SLED only)
  133. // G80 - Automatic mesh bed leveling
  134. // G81 - Print bed profile
  135. // G90 - Use Absolute Coordinates
  136. // G91 - Use Relative Coordinates
  137. // G92 - Set current position to coordinates given
  138. // M Codes
  139. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  140. // M1 - Same as M0
  141. // M17 - Enable/Power all stepper motors
  142. // M18 - Disable all stepper motors; same as M84
  143. // M20 - List SD card
  144. // M21 - Init SD card
  145. // M22 - Release SD card
  146. // M23 - Select SD file (M23 filename.g)
  147. // M24 - Start/resume SD print
  148. // M25 - Pause SD print
  149. // M26 - Set SD position in bytes (M26 S12345)
  150. // M27 - Report SD print status
  151. // M28 - Start SD write (M28 filename.g)
  152. // M29 - Stop SD write
  153. // M30 - Delete file from SD (M30 filename.g)
  154. // M31 - Output time since last M109 or SD card start to serial
  155. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  156. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  157. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  158. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  159. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  160. // M73 - Show percent done and print time remaining
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  169. // M92 - Set axis_steps_per_unit - same syntax as G92
  170. // M104 - Set extruder target temp
  171. // M105 - Read current temp
  172. // M106 - Fan on
  173. // M107 - Fan off
  174. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  175. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  176. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  177. // M112 - Emergency stop
  178. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  179. // M114 - Output current position to serial port
  180. // M115 - Capabilities string
  181. // M117 - display message
  182. // M119 - Output Endstop status to serial port
  183. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  184. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  185. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M140 - Set bed target temp
  188. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  189. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  190. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  191. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  192. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  193. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  194. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  195. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  196. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  197. // M206 - set additional homing offset
  198. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  199. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  200. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  201. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  202. // M220 S<factor in percent>- set speed factor override percentage
  203. // M221 S<factor in percent>- set extrude factor override percentage
  204. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  205. // M240 - Trigger a camera to take a photograph
  206. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  207. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  208. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  209. // M301 - Set PID parameters P I and D
  210. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  211. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  212. // M304 - Set bed PID parameters P I and D
  213. // M400 - Finish all moves
  214. // M401 - Lower z-probe if present
  215. // M402 - Raise z-probe if present
  216. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  217. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  218. // M406 - Turn off Filament Sensor extrusion control
  219. // M407 - Displays measured filament diameter
  220. // M500 - stores parameters in EEPROM
  221. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. // M503 - print the current settings (from memory not from EEPROM)
  224. // M509 - force language selection on next restart
  225. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  226. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  227. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  228. // M860 - Wait for PINDA thermistor to reach target temperature.
  229. // M861 - Set / Read PINDA temperature compensation offsets
  230. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  231. // M907 - Set digital trimpot motor current using axis codes.
  232. // M908 - Control digital trimpot directly.
  233. // M350 - Set microstepping mode.
  234. // M351 - Toggle MS1 MS2 pins directly.
  235. // M928 - Start SD logging (M928 filename.g) - ended by M29
  236. // M999 - Restart after being stopped by error
  237. //Stepper Movement Variables
  238. //===========================================================================
  239. //=============================imported variables============================
  240. //===========================================================================
  241. //===========================================================================
  242. //=============================public variables=============================
  243. //===========================================================================
  244. #ifdef SDSUPPORT
  245. CardReader card;
  246. #endif
  247. unsigned long PingTime = millis();
  248. unsigned long NcTime;
  249. union Data
  250. {
  251. byte b[2];
  252. int value;
  253. };
  254. float homing_feedrate[] = HOMING_FEEDRATE;
  255. // Currently only the extruder axis may be switched to a relative mode.
  256. // Other axes are always absolute or relative based on the common relative_mode flag.
  257. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  258. int feedmultiply=100; //100->1 200->2
  259. int saved_feedmultiply;
  260. int extrudemultiply=100; //100->1 200->2
  261. int extruder_multiply[EXTRUDERS] = {100
  262. #if EXTRUDERS > 1
  263. , 100
  264. #if EXTRUDERS > 2
  265. , 100
  266. #endif
  267. #endif
  268. };
  269. int bowden_length[4] = {385, 385, 385, 385};
  270. bool is_usb_printing = false;
  271. bool homing_flag = false;
  272. bool temp_cal_active = false;
  273. unsigned long kicktime = millis()+100000;
  274. unsigned int usb_printing_counter;
  275. int lcd_change_fil_state = 0;
  276. int feedmultiplyBckp = 100;
  277. float HotendTempBckp = 0;
  278. int fanSpeedBckp = 0;
  279. float pause_lastpos[4];
  280. unsigned long pause_time = 0;
  281. unsigned long start_pause_print = millis();
  282. unsigned long t_fan_rising_edge = millis();
  283. static LongTimer safetyTimer;
  284. static LongTimer crashDetTimer;
  285. //unsigned long load_filament_time;
  286. bool mesh_bed_leveling_flag = false;
  287. bool mesh_bed_run_from_menu = false;
  288. int8_t FarmMode = 0;
  289. bool prusa_sd_card_upload = false;
  290. unsigned int status_number = 0;
  291. unsigned long total_filament_used;
  292. unsigned int heating_status;
  293. unsigned int heating_status_counter;
  294. bool custom_message;
  295. bool loading_flag = false;
  296. unsigned int custom_message_type;
  297. unsigned int custom_message_state;
  298. char snmm_filaments_used = 0;
  299. bool fan_state[2];
  300. int fan_edge_counter[2];
  301. int fan_speed[2];
  302. char dir_names[3][9];
  303. bool sortAlpha = false;
  304. bool volumetric_enabled = false;
  305. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 1
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 2
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #endif
  311. #endif
  312. };
  313. float extruder_multiplier[EXTRUDERS] = {1.0
  314. #if EXTRUDERS > 1
  315. , 1.0
  316. #if EXTRUDERS > 2
  317. , 1.0
  318. #endif
  319. #endif
  320. };
  321. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  322. //shortcuts for more readable code
  323. #define _x current_position[X_AXIS]
  324. #define _y current_position[Y_AXIS]
  325. #define _z current_position[Z_AXIS]
  326. #define _e current_position[E_AXIS]
  327. float add_homing[3]={0,0,0};
  328. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  329. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  330. bool axis_known_position[3] = {false, false, false};
  331. float zprobe_zoffset;
  332. // Extruder offset
  333. #if EXTRUDERS > 1
  334. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  335. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  336. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  337. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  338. #endif
  339. };
  340. #endif
  341. uint8_t active_extruder = 0;
  342. int fanSpeed=0;
  343. #ifdef FWRETRACT
  344. bool autoretract_enabled=false;
  345. bool retracted[EXTRUDERS]={false
  346. #if EXTRUDERS > 1
  347. , false
  348. #if EXTRUDERS > 2
  349. , false
  350. #endif
  351. #endif
  352. };
  353. bool retracted_swap[EXTRUDERS]={false
  354. #if EXTRUDERS > 1
  355. , false
  356. #if EXTRUDERS > 2
  357. , false
  358. #endif
  359. #endif
  360. };
  361. float retract_length = RETRACT_LENGTH;
  362. float retract_length_swap = RETRACT_LENGTH_SWAP;
  363. float retract_feedrate = RETRACT_FEEDRATE;
  364. float retract_zlift = RETRACT_ZLIFT;
  365. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  366. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  367. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  368. #endif
  369. #ifdef ULTIPANEL
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. #endif
  376. bool cancel_heatup = false ;
  377. #ifdef HOST_KEEPALIVE_FEATURE
  378. int busy_state = NOT_BUSY;
  379. static long prev_busy_signal_ms = -1;
  380. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  381. #else
  382. #define host_keepalive();
  383. #define KEEPALIVE_STATE(n);
  384. #endif
  385. const char errormagic[] PROGMEM = "Error:";
  386. const char echomagic[] PROGMEM = "echo:";
  387. bool no_response = false;
  388. uint8_t important_status;
  389. uint8_t saved_filament_type;
  390. // save/restore printing
  391. bool saved_printing = false;
  392. // storing estimated time to end of print counted by slicer
  393. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  396. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  397. //===========================================================================
  398. //=============================Private Variables=============================
  399. //===========================================================================
  400. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  401. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  402. static float delta[3] = {0.0, 0.0, 0.0};
  403. // For tracing an arc
  404. static float offset[3] = {0.0, 0.0, 0.0};
  405. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  406. // Determines Absolute or Relative Coordinates.
  407. // Also there is bool axis_relative_modes[] per axis flag.
  408. static bool relative_mode = false;
  409. #ifndef _DISABLE_M42_M226
  410. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  411. #endif //_DISABLE_M42_M226
  412. //static float tt = 0;
  413. //static float bt = 0;
  414. //Inactivity shutdown variables
  415. static unsigned long previous_millis_cmd = 0;
  416. unsigned long max_inactive_time = 0;
  417. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  418. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  419. unsigned long starttime=0;
  420. unsigned long stoptime=0;
  421. unsigned long _usb_timer = 0;
  422. static uint8_t tmp_extruder;
  423. bool extruder_under_pressure = true;
  424. bool Stopped=false;
  425. #if NUM_SERVOS > 0
  426. Servo servos[NUM_SERVOS];
  427. #endif
  428. bool CooldownNoWait = true;
  429. bool target_direction;
  430. //Insert variables if CHDK is defined
  431. #ifdef CHDK
  432. unsigned long chdkHigh = 0;
  433. boolean chdkActive = false;
  434. #endif
  435. // save/restore printing
  436. static uint32_t saved_sdpos = 0;
  437. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  438. static float saved_pos[4] = { 0, 0, 0, 0 };
  439. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  440. static float saved_feedrate2 = 0;
  441. static uint8_t saved_active_extruder = 0;
  442. static bool saved_extruder_under_pressure = false;
  443. static bool saved_extruder_relative_mode = false;
  444. //===========================================================================
  445. //=============================Routines======================================
  446. //===========================================================================
  447. void get_arc_coordinates();
  448. bool setTargetedHotend(int code);
  449. void serial_echopair_P(const char *s_P, float v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. void serial_echopair_P(const char *s_P, double v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, unsigned long v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. #ifdef SDSUPPORT
  456. #include "SdFatUtil.h"
  457. int freeMemory() { return SdFatUtil::FreeRam(); }
  458. #else
  459. extern "C" {
  460. extern unsigned int __bss_end;
  461. extern unsigned int __heap_start;
  462. extern void *__brkval;
  463. int freeMemory() {
  464. int free_memory;
  465. if ((int)__brkval == 0)
  466. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  467. else
  468. free_memory = ((int)&free_memory) - ((int)__brkval);
  469. return free_memory;
  470. }
  471. }
  472. #endif //!SDSUPPORT
  473. void setup_killpin()
  474. {
  475. #if defined(KILL_PIN) && KILL_PIN > -1
  476. SET_INPUT(KILL_PIN);
  477. WRITE(KILL_PIN,HIGH);
  478. #endif
  479. }
  480. // Set home pin
  481. void setup_homepin(void)
  482. {
  483. #if defined(HOME_PIN) && HOME_PIN > -1
  484. SET_INPUT(HOME_PIN);
  485. WRITE(HOME_PIN,HIGH);
  486. #endif
  487. }
  488. void setup_photpin()
  489. {
  490. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  491. SET_OUTPUT(PHOTOGRAPH_PIN);
  492. WRITE(PHOTOGRAPH_PIN, LOW);
  493. #endif
  494. }
  495. void setup_powerhold()
  496. {
  497. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  498. SET_OUTPUT(SUICIDE_PIN);
  499. WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. SET_OUTPUT(PS_ON_PIN);
  503. #if defined(PS_DEFAULT_OFF)
  504. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  505. #else
  506. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  507. #endif
  508. #endif
  509. }
  510. void suicide()
  511. {
  512. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  513. SET_OUTPUT(SUICIDE_PIN);
  514. WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. }
  535. void stop_and_save_print_to_ram(float z_move, float e_move);
  536. void restore_print_from_ram_and_continue(float e_move);
  537. bool fans_check_enabled = true;
  538. bool filament_autoload_enabled = true;
  539. #ifdef TMC2130
  540. extern int8_t CrashDetectMenu;
  541. void crashdet_enable()
  542. {
  543. tmc2130_sg_stop_on_crash = true;
  544. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  545. CrashDetectMenu = 1;
  546. }
  547. void crashdet_disable()
  548. {
  549. tmc2130_sg_stop_on_crash = false;
  550. tmc2130_sg_crash = 0;
  551. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  552. CrashDetectMenu = 0;
  553. }
  554. void crashdet_stop_and_save_print()
  555. {
  556. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  557. }
  558. void crashdet_restore_print_and_continue()
  559. {
  560. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  561. // babystep_apply();
  562. }
  563. void crashdet_stop_and_save_print2()
  564. {
  565. cli();
  566. planner_abort_hard(); //abort printing
  567. cmdqueue_reset(); //empty cmdqueue
  568. card.sdprinting = false;
  569. card.closefile();
  570. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  571. st_reset_timer();
  572. sei();
  573. }
  574. void crashdet_detected(uint8_t mask)
  575. {
  576. // printf("CRASH_DETECTED");
  577. /* while (!is_buffer_empty())
  578. {
  579. process_commands();
  580. cmdqueue_pop_front();
  581. }*/
  582. st_synchronize();
  583. static uint8_t crashDet_counter = 0;
  584. bool automatic_recovery_after_crash = true;
  585. if (crashDet_counter++ == 0) {
  586. crashDetTimer.start();
  587. }
  588. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  589. crashDetTimer.stop();
  590. crashDet_counter = 0;
  591. }
  592. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  593. automatic_recovery_after_crash = false;
  594. crashDetTimer.stop();
  595. crashDet_counter = 0;
  596. }
  597. else {
  598. crashDetTimer.start();
  599. }
  600. lcd_update_enable(true);
  601. lcd_implementation_clear();
  602. lcd_update(2);
  603. if (mask & X_AXIS_MASK)
  604. {
  605. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  606. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  607. }
  608. if (mask & Y_AXIS_MASK)
  609. {
  610. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  611. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  612. }
  613. lcd_update_enable(true);
  614. lcd_update(2);
  615. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  616. gcode_G28(true, true, false, false); //home X and Y
  617. st_synchronize();
  618. if (automatic_recovery_after_crash) {
  619. enquecommand_P(PSTR("CRASH_RECOVER"));
  620. }else{
  621. HotendTempBckp = degTargetHotend(active_extruder);
  622. setTargetHotend(0, active_extruder);
  623. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  624. lcd_update_enable(true);
  625. if (yesno)
  626. {
  627. char cmd1[10];
  628. strcpy(cmd1, "M109 S");
  629. strcat(cmd1, ftostr3(HotendTempBckp));
  630. enquecommand(cmd1);
  631. enquecommand_P(PSTR("CRASH_RECOVER"));
  632. }
  633. else
  634. {
  635. enquecommand_P(PSTR("CRASH_CANCEL"));
  636. }
  637. }
  638. }
  639. void crashdet_recover()
  640. {
  641. crashdet_restore_print_and_continue();
  642. tmc2130_sg_stop_on_crash = true;
  643. }
  644. void crashdet_cancel()
  645. {
  646. tmc2130_sg_stop_on_crash = true;
  647. if (saved_printing_type == PRINTING_TYPE_SD) {
  648. lcd_print_stop();
  649. }else if(saved_printing_type == PRINTING_TYPE_USB){
  650. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  651. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  652. }
  653. }
  654. #endif //TMC2130
  655. void failstats_reset_print()
  656. {
  657. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  661. }
  662. #ifdef MESH_BED_LEVELING
  663. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  664. #endif
  665. // Factory reset function
  666. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  667. // Level input parameter sets depth of reset
  668. // Quiet parameter masks all waitings for user interact.
  669. int er_progress = 0;
  670. void factory_reset(char level, bool quiet)
  671. {
  672. lcd_implementation_clear();
  673. int cursor_pos = 0;
  674. switch (level) {
  675. // Level 0: Language reset
  676. case 0:
  677. WRITE(BEEPER, HIGH);
  678. _delay_ms(100);
  679. WRITE(BEEPER, LOW);
  680. lang_reset();
  681. break;
  682. //Level 1: Reset statistics
  683. case 1:
  684. WRITE(BEEPER, HIGH);
  685. _delay_ms(100);
  686. WRITE(BEEPER, LOW);
  687. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  688. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  697. lcd_menu_statistics();
  698. break;
  699. // Level 2: Prepare for shipping
  700. case 2:
  701. //lcd_printPGM(PSTR("Factory RESET"));
  702. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  703. // Force language selection at the next boot up.
  704. lang_reset();
  705. // Force the "Follow calibration flow" message at the next boot up.
  706. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  707. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  708. farm_no = 0;
  709. farm_mode = false;
  710. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  711. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  712. WRITE(BEEPER, HIGH);
  713. _delay_ms(100);
  714. WRITE(BEEPER, LOW);
  715. //_delay_ms(2000);
  716. break;
  717. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  718. case 3:
  719. lcd_printPGM(PSTR("Factory RESET"));
  720. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. er_progress = 0;
  725. lcd_print_at_PGM(3, 3, PSTR(" "));
  726. lcd_implementation_print_at(3, 3, er_progress);
  727. // Erase EEPROM
  728. for (int i = 0; i < 4096; i++) {
  729. eeprom_write_byte((uint8_t*)i, 0xFF);
  730. if (i % 41 == 0) {
  731. er_progress++;
  732. lcd_print_at_PGM(3, 3, PSTR(" "));
  733. lcd_implementation_print_at(3, 3, er_progress);
  734. lcd_printPGM(PSTR("%"));
  735. }
  736. }
  737. break;
  738. case 4:
  739. bowden_menu();
  740. break;
  741. default:
  742. break;
  743. }
  744. }
  745. #include "LiquidCrystal_Prusa.h"
  746. extern LiquidCrystal_Prusa lcd;
  747. FILE _lcdout = {0};
  748. int lcd_putchar(char c, FILE *stream)
  749. {
  750. lcd.write(c);
  751. return 0;
  752. }
  753. FILE _uartout = {0};
  754. int uart_putchar(char c, FILE *stream)
  755. {
  756. MYSERIAL.write(c);
  757. return 0;
  758. }
  759. void lcd_splash()
  760. {
  761. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  762. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  763. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  764. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  765. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  766. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  767. }
  768. void factory_reset()
  769. {
  770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  771. if (!READ(BTN_ENC))
  772. {
  773. _delay_ms(1000);
  774. if (!READ(BTN_ENC))
  775. {
  776. lcd_implementation_clear();
  777. lcd_printPGM(PSTR("Factory RESET"));
  778. SET_OUTPUT(BEEPER);
  779. WRITE(BEEPER, HIGH);
  780. while (!READ(BTN_ENC));
  781. WRITE(BEEPER, LOW);
  782. _delay_ms(2000);
  783. char level = reset_menu();
  784. factory_reset(level, false);
  785. switch (level) {
  786. case 0: _delay_ms(0); break;
  787. case 1: _delay_ms(0); break;
  788. case 2: _delay_ms(0); break;
  789. case 3: _delay_ms(0); break;
  790. }
  791. // _delay_ms(100);
  792. /*
  793. #ifdef MESH_BED_LEVELING
  794. _delay_ms(2000);
  795. if (!READ(BTN_ENC))
  796. {
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. _delay_ms(200);
  801. WRITE(BEEPER, HIGH);
  802. _delay_ms(100);
  803. WRITE(BEEPER, LOW);
  804. int _z = 0;
  805. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  806. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  807. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  809. }
  810. else
  811. {
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. }
  816. #endif // mesh */
  817. }
  818. }
  819. else
  820. {
  821. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  822. }
  823. KEEPALIVE_STATE(IN_HANDLER);
  824. }
  825. void show_fw_version_warnings() {
  826. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  827. switch (FW_DEV_VERSION) {
  828. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  829. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  830. case(FW_VERSION_DEVEL):
  831. case(FW_VERSION_DEBUG):
  832. lcd_update_enable(false);
  833. lcd_implementation_clear();
  834. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  835. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  836. #else
  837. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  838. #endif
  839. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  840. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  841. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  842. lcd_wait_for_click();
  843. break;
  844. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  845. }
  846. lcd_update_enable(true);
  847. }
  848. uint8_t check_printer_version()
  849. {
  850. uint8_t version_changed = 0;
  851. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  852. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  853. if (printer_type != PRINTER_TYPE) {
  854. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  855. else version_changed |= 0b10;
  856. }
  857. if (motherboard != MOTHERBOARD) {
  858. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  859. else version_changed |= 0b01;
  860. }
  861. return version_changed;
  862. }
  863. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  864. {
  865. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  866. }
  867. #if (LANG_MODE != 0) //secondary language support
  868. #ifdef W25X20CL
  869. #include "bootapp.h" //bootloader support
  870. // language update from external flash
  871. #define LANGBOOT_BLOCKSIZE 0x1000
  872. #define LANGBOOT_RAMBUFFER 0x0800
  873. void update_sec_lang_from_external_flash()
  874. {
  875. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  876. {
  877. uint8_t lang = boot_reserved >> 4;
  878. uint8_t state = boot_reserved & 0xf;
  879. lang_table_header_t header;
  880. uint32_t src_addr;
  881. if (lang_get_header(lang, &header, &src_addr))
  882. {
  883. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  884. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  885. delay(100);
  886. boot_reserved = (state + 1) | (lang << 4);
  887. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  888. {
  889. cli();
  890. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  891. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  892. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  893. if (state == 0)
  894. {
  895. //TODO - check header integrity
  896. }
  897. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  898. }
  899. else
  900. {
  901. //TODO - check sec lang data integrity
  902. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  903. }
  904. }
  905. }
  906. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  907. }
  908. #ifdef DEBUG_W25X20CL
  909. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  910. {
  911. lang_table_header_t header;
  912. uint8_t count = 0;
  913. uint32_t addr = 0x00000;
  914. while (1)
  915. {
  916. printf_P(_n("LANGTABLE%d:"), count);
  917. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  918. if (header.magic != LANG_MAGIC)
  919. {
  920. printf_P(_n("NG!\n"));
  921. break;
  922. }
  923. printf_P(_n("OK\n"));
  924. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  925. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  926. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  927. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  928. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  929. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  930. addr += header.size;
  931. codes[count] = header.code;
  932. count ++;
  933. }
  934. return count;
  935. }
  936. void list_sec_lang_from_external_flash()
  937. {
  938. uint16_t codes[8];
  939. uint8_t count = lang_xflash_enum_codes(codes);
  940. printf_P(_n("XFlash lang count = %hhd\n"), count);
  941. }
  942. #endif //DEBUG_W25X20CL
  943. #endif //W25X20CL
  944. #endif //(LANG_MODE != 0)
  945. // "Setup" function is called by the Arduino framework on startup.
  946. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  947. // are initialized by the main() routine provided by the Arduino framework.
  948. void setup()
  949. {
  950. lcd_init();
  951. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  952. spi_init();
  953. lcd_splash();
  954. #ifdef W25X20CL
  955. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  956. optiboot_w25x20cl_enter();
  957. #endif
  958. #if (LANG_MODE != 0) //secondary language support
  959. #ifdef W25X20CL
  960. if (w25x20cl_init())
  961. update_sec_lang_from_external_flash();
  962. else
  963. kill(_i("External SPI flash W25X20CL not responding."));
  964. #endif //W25X20CL
  965. #endif //(LANG_MODE != 0)
  966. setup_killpin();
  967. setup_powerhold();
  968. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  969. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  970. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  971. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  972. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  973. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  974. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  975. if (farm_mode)
  976. {
  977. no_response = true; //we need confirmation by recieving PRUSA thx
  978. important_status = 8;
  979. prusa_statistics(8);
  980. selectedSerialPort = 1;
  981. #ifdef TMC2130
  982. //increased extruder current (PFW363)
  983. tmc2130_current_h[E_AXIS] = 36;
  984. tmc2130_current_r[E_AXIS] = 36;
  985. #endif //TMC2130
  986. //disabled filament autoload (PFW360)
  987. filament_autoload_enabled = false;
  988. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  989. }
  990. MYSERIAL.begin(BAUDRATE);
  991. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  992. stdout = uartout;
  993. SERIAL_PROTOCOLLNPGM("start");
  994. SERIAL_ECHO_START;
  995. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  996. #ifdef DEBUG_SEC_LANG
  997. lang_table_header_t header;
  998. uint32_t src_addr = 0x00000;
  999. if (lang_get_header(1, &header, &src_addr))
  1000. {
  1001. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1002. #define LT_PRINT_TEST 2
  1003. // flash usage
  1004. // total p.test
  1005. //0 252718 t+c text code
  1006. //1 253142 424 170 254
  1007. //2 253040 322 164 158
  1008. //3 253248 530 135 395
  1009. #if (LT_PRINT_TEST==1) //not optimized printf
  1010. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1011. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1012. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1013. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1014. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1015. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1016. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1017. #elif (LT_PRINT_TEST==2) //optimized printf
  1018. printf_P(
  1019. _n(
  1020. " _src_addr = 0x%08lx\n"
  1021. " _lt_magic = 0x%08lx %S\n"
  1022. " _lt_size = 0x%04x (%d)\n"
  1023. " _lt_count = 0x%04x (%d)\n"
  1024. " _lt_chsum = 0x%04x\n"
  1025. " _lt_code = 0x%04x (%c%c)\n"
  1026. " _lt_resv1 = 0x%08lx\n"
  1027. ),
  1028. src_addr,
  1029. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1030. header.size, header.size,
  1031. header.count, header.count,
  1032. header.checksum,
  1033. header.code, header.code >> 8, header.code & 0xff,
  1034. header.signature
  1035. );
  1036. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1037. MYSERIAL.print(" _src_addr = 0x");
  1038. MYSERIAL.println(src_addr, 16);
  1039. MYSERIAL.print(" _lt_magic = 0x");
  1040. MYSERIAL.print(header.magic, 16);
  1041. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1042. MYSERIAL.print(" _lt_size = 0x");
  1043. MYSERIAL.print(header.size, 16);
  1044. MYSERIAL.print(" (");
  1045. MYSERIAL.print(header.size, 10);
  1046. MYSERIAL.println(")");
  1047. MYSERIAL.print(" _lt_count = 0x");
  1048. MYSERIAL.print(header.count, 16);
  1049. MYSERIAL.print(" (");
  1050. MYSERIAL.print(header.count, 10);
  1051. MYSERIAL.println(")");
  1052. MYSERIAL.print(" _lt_chsum = 0x");
  1053. MYSERIAL.println(header.checksum, 16);
  1054. MYSERIAL.print(" _lt_code = 0x");
  1055. MYSERIAL.print(header.code, 16);
  1056. MYSERIAL.print(" (");
  1057. MYSERIAL.print((char)(header.code >> 8), 0);
  1058. MYSERIAL.print((char)(header.code & 0xff), 0);
  1059. MYSERIAL.println(")");
  1060. MYSERIAL.print(" _lt_resv1 = 0x");
  1061. MYSERIAL.println(header.signature, 16);
  1062. #endif //(LT_PRINT_TEST==)
  1063. #undef LT_PRINT_TEST
  1064. #if 0
  1065. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1066. for (uint16_t i = 0; i < 1024; i++)
  1067. {
  1068. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1069. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1070. if ((i % 16) == 15) putchar('\n');
  1071. }
  1072. #endif
  1073. uint16_t sum = 0;
  1074. for (uint16_t i = 0; i < header.size; i++)
  1075. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1076. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1077. sum -= header.checksum; //subtract checksum
  1078. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1079. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1080. if (sum == header.checksum)
  1081. printf_P(_n("Checksum OK\n"), sum);
  1082. else
  1083. printf_P(_n("Checksum NG\n"), sum);
  1084. }
  1085. else
  1086. printf_P(_n("lang_get_header failed!\n"));
  1087. #if 0
  1088. for (uint16_t i = 0; i < 1024*10; i++)
  1089. {
  1090. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1091. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1092. if ((i % 16) == 15) putchar('\n');
  1093. }
  1094. #endif
  1095. #if 0
  1096. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1097. for (int i = 0; i < 4096; ++i) {
  1098. int b = eeprom_read_byte((unsigned char*)i);
  1099. if (b != 255) {
  1100. SERIAL_ECHO(i);
  1101. SERIAL_ECHO(":");
  1102. SERIAL_ECHO(b);
  1103. SERIAL_ECHOLN("");
  1104. }
  1105. }
  1106. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1107. #endif
  1108. #endif //DEBUG_SEC_LANG
  1109. // Check startup - does nothing if bootloader sets MCUSR to 0
  1110. byte mcu = MCUSR;
  1111. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1112. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1113. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1114. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1115. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1116. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1117. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1118. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1119. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1120. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1121. MCUSR = 0;
  1122. //SERIAL_ECHORPGM(MSG_MARLIN);
  1123. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1124. #ifdef STRING_VERSION_CONFIG_H
  1125. #ifdef STRING_CONFIG_H_AUTHOR
  1126. SERIAL_ECHO_START;
  1127. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1128. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1129. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1130. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1131. SERIAL_ECHOPGM("Compiled: ");
  1132. SERIAL_ECHOLNPGM(__DATE__);
  1133. #endif
  1134. #endif
  1135. SERIAL_ECHO_START;
  1136. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1137. SERIAL_ECHO(freeMemory());
  1138. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1139. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1140. //lcd_update_enable(false); // why do we need this?? - andre
  1141. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1142. bool previous_settings_retrieved = false;
  1143. uint8_t hw_changed = check_printer_version();
  1144. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1145. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1146. }
  1147. else { //printer version was changed so use default settings
  1148. Config_ResetDefault();
  1149. }
  1150. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1151. tp_init(); // Initialize temperature loop
  1152. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1153. plan_init(); // Initialize planner;
  1154. factory_reset();
  1155. #ifdef TMC2130
  1156. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1157. if (silentMode == 0xff) silentMode = 0;
  1158. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1159. tmc2130_mode = TMC2130_MODE_NORMAL;
  1160. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1161. if (crashdet && !farm_mode)
  1162. {
  1163. crashdet_enable();
  1164. puts_P(_N("CrashDetect ENABLED!"));
  1165. }
  1166. else
  1167. {
  1168. crashdet_disable();
  1169. puts_P(_N("CrashDetect DISABLED"));
  1170. }
  1171. #ifdef TMC2130_LINEARITY_CORRECTION
  1172. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1173. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1174. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1175. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1176. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1177. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1178. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1179. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1180. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1181. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1182. #endif //TMC2130_LINEARITY_CORRECTION
  1183. #ifdef TMC2130_VARIABLE_RESOLUTION
  1184. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1185. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1186. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1187. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1188. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1189. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1191. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1192. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1193. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1194. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1196. #else //TMC2130_VARIABLE_RESOLUTION
  1197. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1198. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1200. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1201. #endif //TMC2130_VARIABLE_RESOLUTION
  1202. #endif //TMC2130
  1203. st_init(); // Initialize stepper, this enables interrupts!
  1204. #ifdef TMC2130
  1205. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1206. tmc2130_init();
  1207. #endif //TMC2130
  1208. setup_photpin();
  1209. servo_init();
  1210. // Reset the machine correction matrix.
  1211. // It does not make sense to load the correction matrix until the machine is homed.
  1212. world2machine_reset();
  1213. #ifdef PAT9125
  1214. fsensor_init();
  1215. #endif //PAT9125
  1216. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1217. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1218. #endif
  1219. setup_homepin();
  1220. #ifdef TMC2130
  1221. if (1) {
  1222. // try to run to zero phase before powering the Z motor.
  1223. // Move in negative direction
  1224. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1225. // Round the current micro-micro steps to micro steps.
  1226. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1227. // Until the phase counter is reset to zero.
  1228. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1229. delay(2);
  1230. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1231. delay(2);
  1232. }
  1233. }
  1234. #endif //TMC2130
  1235. #if defined(Z_AXIS_ALWAYS_ON)
  1236. enable_z();
  1237. #endif
  1238. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1239. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1240. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1241. if (farm_no == 0xFFFF) farm_no = 0;
  1242. if (farm_mode)
  1243. {
  1244. prusa_statistics(8);
  1245. }
  1246. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1247. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1248. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1249. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1250. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1251. // where all the EEPROM entries are set to 0x0ff.
  1252. // Once a firmware boots up, it forces at least a language selection, which changes
  1253. // EEPROM_LANG to number lower than 0x0ff.
  1254. // 1) Set a high power mode.
  1255. #ifdef TMC2130
  1256. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1257. tmc2130_mode = TMC2130_MODE_NORMAL;
  1258. #endif //TMC2130
  1259. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1260. }
  1261. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1262. // but this times out if a blocking dialog is shown in setup().
  1263. card.initsd();
  1264. #ifdef DEBUG_SD_SPEED_TEST
  1265. if (card.cardOK)
  1266. {
  1267. uint8_t* buff = (uint8_t*)block_buffer;
  1268. uint32_t block = 0;
  1269. uint32_t sumr = 0;
  1270. uint32_t sumw = 0;
  1271. for (int i = 0; i < 1024; i++)
  1272. {
  1273. uint32_t u = micros();
  1274. bool res = card.card.readBlock(i, buff);
  1275. u = micros() - u;
  1276. if (res)
  1277. {
  1278. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1279. sumr += u;
  1280. u = micros();
  1281. res = card.card.writeBlock(i, buff);
  1282. u = micros() - u;
  1283. if (res)
  1284. {
  1285. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1286. sumw += u;
  1287. }
  1288. else
  1289. {
  1290. printf_P(PSTR("writeBlock %4d error\n"), i);
  1291. break;
  1292. }
  1293. }
  1294. else
  1295. {
  1296. printf_P(PSTR("readBlock %4d error\n"), i);
  1297. break;
  1298. }
  1299. }
  1300. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1301. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1302. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1303. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1304. }
  1305. else
  1306. printf_P(PSTR("Card NG!\n"));
  1307. #endif //DEBUG_SD_SPEED_TEST
  1308. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1312. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1313. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1314. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1316. #ifdef SNMM
  1317. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1318. int _z = BOWDEN_LENGTH;
  1319. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1320. }
  1321. #endif
  1322. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1323. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1324. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1325. #if (LANG_MODE != 0) //secondary language support
  1326. #ifdef DEBUG_W25X20CL
  1327. W25X20CL_SPI_ENTER();
  1328. uint8_t uid[8]; // 64bit unique id
  1329. w25x20cl_rd_uid(uid);
  1330. puts_P(_n("W25X20CL UID="));
  1331. for (uint8_t i = 0; i < 8; i ++)
  1332. printf_P(PSTR("%02hhx"), uid[i]);
  1333. putchar('\n');
  1334. list_sec_lang_from_external_flash();
  1335. #endif //DEBUG_W25X20CL
  1336. // lang_reset();
  1337. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1338. lcd_language();
  1339. #ifdef DEBUG_SEC_LANG
  1340. uint16_t sec_lang_code = lang_get_code(1);
  1341. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1342. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1343. // lang_print_sec_lang(uartout);
  1344. #endif //DEBUG_SEC_LANG
  1345. #endif //(LANG_MODE != 0)
  1346. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1347. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1348. temp_cal_active = false;
  1349. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1350. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1351. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1352. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1353. int16_t z_shift = 0;
  1354. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1355. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1356. temp_cal_active = false;
  1357. }
  1358. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1359. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1360. }
  1361. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1362. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1363. }
  1364. check_babystep(); //checking if Z babystep is in allowed range
  1365. #ifdef UVLO_SUPPORT
  1366. setup_uvlo_interrupt();
  1367. #endif //UVLO_SUPPORT
  1368. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1369. setup_fan_interrupt();
  1370. #endif //DEBUG_DISABLE_FANCHECK
  1371. #ifdef PAT9125
  1372. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1373. fsensor_setup_interrupt();
  1374. #endif //DEBUG_DISABLE_FSENSORCHECK
  1375. #endif //PAT9125
  1376. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1377. #ifndef DEBUG_DISABLE_STARTMSGS
  1378. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1379. show_fw_version_warnings();
  1380. switch (hw_changed) {
  1381. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1382. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1383. case(0b01):
  1384. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1385. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1386. break;
  1387. case(0b10):
  1388. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1389. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1390. break;
  1391. case(0b11):
  1392. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1393. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1394. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1395. break;
  1396. default: break; //no change, show no message
  1397. }
  1398. if (!previous_settings_retrieved) {
  1399. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1400. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1401. }
  1402. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1403. lcd_wizard(0);
  1404. }
  1405. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1406. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1407. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1408. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1409. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1410. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1411. // Show the message.
  1412. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1413. }
  1414. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1415. // Show the message.
  1416. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1417. lcd_update_enable(true);
  1418. }
  1419. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1420. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1421. lcd_update_enable(true);
  1422. }
  1423. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1424. // Show the message.
  1425. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1426. }
  1427. }
  1428. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1429. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1430. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1431. update_current_firmware_version_to_eeprom();
  1432. lcd_selftest();
  1433. }
  1434. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1435. KEEPALIVE_STATE(IN_PROCESS);
  1436. #endif //DEBUG_DISABLE_STARTMSGS
  1437. lcd_update_enable(true);
  1438. lcd_implementation_clear();
  1439. lcd_update(2);
  1440. // Store the currently running firmware into an eeprom,
  1441. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1442. update_current_firmware_version_to_eeprom();
  1443. #ifdef TMC2130
  1444. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1445. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1446. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1447. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1448. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1449. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1450. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1451. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1452. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1453. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1454. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1455. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1456. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1457. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1458. #endif //TMC2130
  1459. #ifdef UVLO_SUPPORT
  1460. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1461. /*
  1462. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1463. else {
  1464. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1465. lcd_update_enable(true);
  1466. lcd_update(2);
  1467. lcd_setstatuspgm(_T(WELCOME_MSG));
  1468. }
  1469. */
  1470. manage_heater(); // Update temperatures
  1471. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1472. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1473. #endif
  1474. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1475. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1476. puts_P(_N("Automatic recovery!"));
  1477. #endif
  1478. recover_print(1);
  1479. }
  1480. else{
  1481. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1482. puts_P(_N("Normal recovery!"));
  1483. #endif
  1484. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1485. else {
  1486. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1487. lcd_update_enable(true);
  1488. lcd_update(2);
  1489. lcd_setstatuspgm(_T(WELCOME_MSG));
  1490. }
  1491. }
  1492. }
  1493. #endif //UVLO_SUPPORT
  1494. KEEPALIVE_STATE(NOT_BUSY);
  1495. #ifdef WATCHDOG
  1496. wdt_enable(WDTO_4S);
  1497. #endif //WATCHDOG
  1498. }
  1499. #ifdef PAT9125
  1500. void fsensor_init() {
  1501. int pat9125 = pat9125_init();
  1502. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1503. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1504. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1505. if (!pat9125)
  1506. {
  1507. fsensor = 0; //disable sensor
  1508. fsensor_not_responding = true;
  1509. }
  1510. else {
  1511. fsensor_not_responding = false;
  1512. }
  1513. puts_P(PSTR("FSensor "));
  1514. if (fsensor)
  1515. {
  1516. puts_P(PSTR("ENABLED\n"));
  1517. fsensor_enable();
  1518. }
  1519. else
  1520. {
  1521. puts_P(PSTR("DISABLED\n"));
  1522. fsensor_disable();
  1523. }
  1524. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1525. filament_autoload_enabled = false;
  1526. fsensor_disable();
  1527. #endif //DEBUG_DISABLE_FSENSORCHECK
  1528. }
  1529. #endif //PAT9125
  1530. void trace();
  1531. #define CHUNK_SIZE 64 // bytes
  1532. #define SAFETY_MARGIN 1
  1533. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1534. int chunkHead = 0;
  1535. int serial_read_stream() {
  1536. setTargetHotend(0, 0);
  1537. setTargetBed(0);
  1538. lcd_implementation_clear();
  1539. lcd_printPGM(PSTR(" Upload in progress"));
  1540. // first wait for how many bytes we will receive
  1541. uint32_t bytesToReceive;
  1542. // receive the four bytes
  1543. char bytesToReceiveBuffer[4];
  1544. for (int i=0; i<4; i++) {
  1545. int data;
  1546. while ((data = MYSERIAL.read()) == -1) {};
  1547. bytesToReceiveBuffer[i] = data;
  1548. }
  1549. // make it a uint32
  1550. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1551. // we're ready, notify the sender
  1552. MYSERIAL.write('+');
  1553. // lock in the routine
  1554. uint32_t receivedBytes = 0;
  1555. while (prusa_sd_card_upload) {
  1556. int i;
  1557. for (i=0; i<CHUNK_SIZE; i++) {
  1558. int data;
  1559. // check if we're not done
  1560. if (receivedBytes == bytesToReceive) {
  1561. break;
  1562. }
  1563. // read the next byte
  1564. while ((data = MYSERIAL.read()) == -1) {};
  1565. receivedBytes++;
  1566. // save it to the chunk
  1567. chunk[i] = data;
  1568. }
  1569. // write the chunk to SD
  1570. card.write_command_no_newline(&chunk[0]);
  1571. // notify the sender we're ready for more data
  1572. MYSERIAL.write('+');
  1573. // for safety
  1574. manage_heater();
  1575. // check if we're done
  1576. if(receivedBytes == bytesToReceive) {
  1577. trace(); // beep
  1578. card.closefile();
  1579. prusa_sd_card_upload = false;
  1580. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1581. return 0;
  1582. }
  1583. }
  1584. }
  1585. #ifdef HOST_KEEPALIVE_FEATURE
  1586. /**
  1587. * Output a "busy" message at regular intervals
  1588. * while the machine is not accepting commands.
  1589. */
  1590. void host_keepalive() {
  1591. if (farm_mode) return;
  1592. long ms = millis();
  1593. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1594. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1595. switch (busy_state) {
  1596. case IN_HANDLER:
  1597. case IN_PROCESS:
  1598. SERIAL_ECHO_START;
  1599. SERIAL_ECHOLNPGM("busy: processing");
  1600. break;
  1601. case PAUSED_FOR_USER:
  1602. SERIAL_ECHO_START;
  1603. SERIAL_ECHOLNPGM("busy: paused for user");
  1604. break;
  1605. case PAUSED_FOR_INPUT:
  1606. SERIAL_ECHO_START;
  1607. SERIAL_ECHOLNPGM("busy: paused for input");
  1608. break;
  1609. default:
  1610. break;
  1611. }
  1612. }
  1613. prev_busy_signal_ms = ms;
  1614. }
  1615. #endif
  1616. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1617. // Before loop(), the setup() function is called by the main() routine.
  1618. void loop()
  1619. {
  1620. KEEPALIVE_STATE(NOT_BUSY);
  1621. bool stack_integrity = true;
  1622. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1623. {
  1624. is_usb_printing = true;
  1625. usb_printing_counter--;
  1626. _usb_timer = millis();
  1627. }
  1628. if (usb_printing_counter == 0)
  1629. {
  1630. is_usb_printing = false;
  1631. }
  1632. if (prusa_sd_card_upload)
  1633. {
  1634. //we read byte-by byte
  1635. serial_read_stream();
  1636. } else
  1637. {
  1638. get_command();
  1639. #ifdef SDSUPPORT
  1640. card.checkautostart(false);
  1641. #endif
  1642. if(buflen)
  1643. {
  1644. cmdbuffer_front_already_processed = false;
  1645. #ifdef SDSUPPORT
  1646. if(card.saving)
  1647. {
  1648. // Saving a G-code file onto an SD-card is in progress.
  1649. // Saving starts with M28, saving until M29 is seen.
  1650. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1651. card.write_command(CMDBUFFER_CURRENT_STRING);
  1652. if(card.logging)
  1653. process_commands();
  1654. else
  1655. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1656. } else {
  1657. card.closefile();
  1658. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1659. }
  1660. } else {
  1661. process_commands();
  1662. }
  1663. #else
  1664. process_commands();
  1665. #endif //SDSUPPORT
  1666. if (! cmdbuffer_front_already_processed && buflen)
  1667. {
  1668. // ptr points to the start of the block currently being processed.
  1669. // The first character in the block is the block type.
  1670. char *ptr = cmdbuffer + bufindr;
  1671. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1672. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1673. union {
  1674. struct {
  1675. char lo;
  1676. char hi;
  1677. } lohi;
  1678. uint16_t value;
  1679. } sdlen;
  1680. sdlen.value = 0;
  1681. {
  1682. // This block locks the interrupts globally for 3.25 us,
  1683. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1684. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1685. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1686. cli();
  1687. // Reset the command to something, which will be ignored by the power panic routine,
  1688. // so this buffer length will not be counted twice.
  1689. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1690. // Extract the current buffer length.
  1691. sdlen.lohi.lo = *ptr ++;
  1692. sdlen.lohi.hi = *ptr;
  1693. // and pass it to the planner queue.
  1694. planner_add_sd_length(sdlen.value);
  1695. sei();
  1696. }
  1697. }
  1698. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1699. cli();
  1700. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1701. // and one for each command to previous block in the planner queue.
  1702. planner_add_sd_length(1);
  1703. sei();
  1704. }
  1705. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1706. // this block's SD card length will not be counted twice as its command type has been replaced
  1707. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1708. cmdqueue_pop_front();
  1709. }
  1710. host_keepalive();
  1711. }
  1712. }
  1713. //check heater every n milliseconds
  1714. manage_heater();
  1715. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1716. checkHitEndstops();
  1717. lcd_update();
  1718. #ifdef PAT9125
  1719. fsensor_update();
  1720. #endif //PAT9125
  1721. #ifdef TMC2130
  1722. tmc2130_check_overtemp();
  1723. if (tmc2130_sg_crash)
  1724. {
  1725. uint8_t crash = tmc2130_sg_crash;
  1726. tmc2130_sg_crash = 0;
  1727. // crashdet_stop_and_save_print();
  1728. switch (crash)
  1729. {
  1730. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1731. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1732. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1733. }
  1734. }
  1735. #endif //TMC2130
  1736. }
  1737. #define DEFINE_PGM_READ_ANY(type, reader) \
  1738. static inline type pgm_read_any(const type *p) \
  1739. { return pgm_read_##reader##_near(p); }
  1740. DEFINE_PGM_READ_ANY(float, float);
  1741. DEFINE_PGM_READ_ANY(signed char, byte);
  1742. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1743. static const PROGMEM type array##_P[3] = \
  1744. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1745. static inline type array(int axis) \
  1746. { return pgm_read_any(&array##_P[axis]); } \
  1747. type array##_ext(int axis) \
  1748. { return pgm_read_any(&array##_P[axis]); }
  1749. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1750. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1751. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1752. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1753. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1754. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1755. static void axis_is_at_home(int axis) {
  1756. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1757. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1758. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1759. }
  1760. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1761. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1762. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1763. saved_feedrate = feedrate;
  1764. saved_feedmultiply = feedmultiply;
  1765. feedmultiply = 100;
  1766. previous_millis_cmd = millis();
  1767. enable_endstops(enable_endstops_now);
  1768. }
  1769. static void clean_up_after_endstop_move() {
  1770. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1771. enable_endstops(false);
  1772. #endif
  1773. feedrate = saved_feedrate;
  1774. feedmultiply = saved_feedmultiply;
  1775. previous_millis_cmd = millis();
  1776. }
  1777. #ifdef ENABLE_AUTO_BED_LEVELING
  1778. #ifdef AUTO_BED_LEVELING_GRID
  1779. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1780. {
  1781. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1782. planeNormal.debug("planeNormal");
  1783. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1784. //bedLevel.debug("bedLevel");
  1785. //plan_bed_level_matrix.debug("bed level before");
  1786. //vector_3 uncorrected_position = plan_get_position_mm();
  1787. //uncorrected_position.debug("position before");
  1788. vector_3 corrected_position = plan_get_position();
  1789. // corrected_position.debug("position after");
  1790. current_position[X_AXIS] = corrected_position.x;
  1791. current_position[Y_AXIS] = corrected_position.y;
  1792. current_position[Z_AXIS] = corrected_position.z;
  1793. // put the bed at 0 so we don't go below it.
  1794. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1796. }
  1797. #else // not AUTO_BED_LEVELING_GRID
  1798. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1799. plan_bed_level_matrix.set_to_identity();
  1800. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1801. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1802. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1803. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1804. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1805. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1806. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1807. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1808. vector_3 corrected_position = plan_get_position();
  1809. current_position[X_AXIS] = corrected_position.x;
  1810. current_position[Y_AXIS] = corrected_position.y;
  1811. current_position[Z_AXIS] = corrected_position.z;
  1812. // put the bed at 0 so we don't go below it.
  1813. current_position[Z_AXIS] = zprobe_zoffset;
  1814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1815. }
  1816. #endif // AUTO_BED_LEVELING_GRID
  1817. static void run_z_probe() {
  1818. plan_bed_level_matrix.set_to_identity();
  1819. feedrate = homing_feedrate[Z_AXIS];
  1820. // move down until you find the bed
  1821. float zPosition = -10;
  1822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1823. st_synchronize();
  1824. // we have to let the planner know where we are right now as it is not where we said to go.
  1825. zPosition = st_get_position_mm(Z_AXIS);
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1827. // move up the retract distance
  1828. zPosition += home_retract_mm(Z_AXIS);
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1830. st_synchronize();
  1831. // move back down slowly to find bed
  1832. feedrate = homing_feedrate[Z_AXIS]/4;
  1833. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1837. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1838. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1839. }
  1840. static void do_blocking_move_to(float x, float y, float z) {
  1841. float oldFeedRate = feedrate;
  1842. feedrate = homing_feedrate[Z_AXIS];
  1843. current_position[Z_AXIS] = z;
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. feedrate = XY_TRAVEL_SPEED;
  1847. current_position[X_AXIS] = x;
  1848. current_position[Y_AXIS] = y;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1850. st_synchronize();
  1851. feedrate = oldFeedRate;
  1852. }
  1853. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1854. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1855. }
  1856. /// Probe bed height at position (x,y), returns the measured z value
  1857. static float probe_pt(float x, float y, float z_before) {
  1858. // move to right place
  1859. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1860. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1861. run_z_probe();
  1862. float measured_z = current_position[Z_AXIS];
  1863. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1864. SERIAL_PROTOCOLPGM(" x: ");
  1865. SERIAL_PROTOCOL(x);
  1866. SERIAL_PROTOCOLPGM(" y: ");
  1867. SERIAL_PROTOCOL(y);
  1868. SERIAL_PROTOCOLPGM(" z: ");
  1869. SERIAL_PROTOCOL(measured_z);
  1870. SERIAL_PROTOCOLPGM("\n");
  1871. return measured_z;
  1872. }
  1873. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1874. #ifdef LIN_ADVANCE
  1875. /**
  1876. * M900: Set and/or Get advance K factor and WH/D ratio
  1877. *
  1878. * K<factor> Set advance K factor
  1879. * R<ratio> Set ratio directly (overrides WH/D)
  1880. * W<width> H<height> D<diam> Set ratio from WH/D
  1881. */
  1882. inline void gcode_M900() {
  1883. st_synchronize();
  1884. const float newK = code_seen('K') ? code_value_float() : -1;
  1885. if (newK >= 0) extruder_advance_k = newK;
  1886. float newR = code_seen('R') ? code_value_float() : -1;
  1887. if (newR < 0) {
  1888. const float newD = code_seen('D') ? code_value_float() : -1,
  1889. newW = code_seen('W') ? code_value_float() : -1,
  1890. newH = code_seen('H') ? code_value_float() : -1;
  1891. if (newD >= 0 && newW >= 0 && newH >= 0)
  1892. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1893. }
  1894. if (newR >= 0) advance_ed_ratio = newR;
  1895. SERIAL_ECHO_START;
  1896. SERIAL_ECHOPGM("Advance K=");
  1897. SERIAL_ECHOLN(extruder_advance_k);
  1898. SERIAL_ECHOPGM(" E/D=");
  1899. const float ratio = advance_ed_ratio;
  1900. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1901. }
  1902. #endif // LIN_ADVANCE
  1903. bool check_commands() {
  1904. bool end_command_found = false;
  1905. while (buflen)
  1906. {
  1907. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1908. if (!cmdbuffer_front_already_processed)
  1909. cmdqueue_pop_front();
  1910. cmdbuffer_front_already_processed = false;
  1911. }
  1912. return end_command_found;
  1913. }
  1914. #ifdef TMC2130
  1915. bool calibrate_z_auto()
  1916. {
  1917. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1918. lcd_implementation_clear();
  1919. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1920. bool endstops_enabled = enable_endstops(true);
  1921. int axis_up_dir = -home_dir(Z_AXIS);
  1922. tmc2130_home_enter(Z_AXIS_MASK);
  1923. current_position[Z_AXIS] = 0;
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. set_destination_to_current();
  1926. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1927. feedrate = homing_feedrate[Z_AXIS];
  1928. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1929. st_synchronize();
  1930. // current_position[axis] = 0;
  1931. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1932. tmc2130_home_exit();
  1933. enable_endstops(false);
  1934. current_position[Z_AXIS] = 0;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. set_destination_to_current();
  1937. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1938. feedrate = homing_feedrate[Z_AXIS] / 2;
  1939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1940. st_synchronize();
  1941. enable_endstops(endstops_enabled);
  1942. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1943. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1944. return true;
  1945. }
  1946. #endif //TMC2130
  1947. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1948. {
  1949. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1950. #define HOMEAXIS_DO(LETTER) \
  1951. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1952. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1953. {
  1954. int axis_home_dir = home_dir(axis);
  1955. feedrate = homing_feedrate[axis];
  1956. #ifdef TMC2130
  1957. tmc2130_home_enter(X_AXIS_MASK << axis);
  1958. #endif //TMC2130
  1959. // Move right a bit, so that the print head does not touch the left end position,
  1960. // and the following left movement has a chance to achieve the required velocity
  1961. // for the stall guard to work.
  1962. current_position[axis] = 0;
  1963. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1964. set_destination_to_current();
  1965. // destination[axis] = 11.f;
  1966. destination[axis] = 3.f;
  1967. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1968. st_synchronize();
  1969. // Move left away from the possible collision with the collision detection disabled.
  1970. endstops_hit_on_purpose();
  1971. enable_endstops(false);
  1972. current_position[axis] = 0;
  1973. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1974. destination[axis] = - 1.;
  1975. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1976. st_synchronize();
  1977. // Now continue to move up to the left end stop with the collision detection enabled.
  1978. enable_endstops(true);
  1979. destination[axis] = - 1.1 * max_length(axis);
  1980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1981. st_synchronize();
  1982. for (uint8_t i = 0; i < cnt; i++)
  1983. {
  1984. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1985. endstops_hit_on_purpose();
  1986. enable_endstops(false);
  1987. current_position[axis] = 0;
  1988. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1989. destination[axis] = 10.f;
  1990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1991. st_synchronize();
  1992. endstops_hit_on_purpose();
  1993. // Now move left up to the collision, this time with a repeatable velocity.
  1994. enable_endstops(true);
  1995. destination[axis] = - 11.f;
  1996. #ifdef TMC2130
  1997. feedrate = homing_feedrate[axis];
  1998. #else //TMC2130
  1999. feedrate = homing_feedrate[axis] / 2;
  2000. #endif //TMC2130
  2001. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2002. st_synchronize();
  2003. #ifdef TMC2130
  2004. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2005. if (pstep) pstep[i] = mscnt >> 4;
  2006. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2007. #endif //TMC2130
  2008. }
  2009. endstops_hit_on_purpose();
  2010. enable_endstops(false);
  2011. #ifdef TMC2130
  2012. uint8_t orig = tmc2130_home_origin[axis];
  2013. uint8_t back = tmc2130_home_bsteps[axis];
  2014. if (tmc2130_home_enabled && (orig <= 63))
  2015. {
  2016. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2017. if (back > 0)
  2018. tmc2130_do_steps(axis, back, 1, 1000);
  2019. }
  2020. else
  2021. tmc2130_do_steps(axis, 8, 2, 1000);
  2022. tmc2130_home_exit();
  2023. #endif //TMC2130
  2024. axis_is_at_home(axis);
  2025. axis_known_position[axis] = true;
  2026. // Move from minimum
  2027. #ifdef TMC2130
  2028. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2029. #else //TMC2130
  2030. float dist = 0.01f * 64;
  2031. #endif //TMC2130
  2032. current_position[axis] -= dist;
  2033. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2034. current_position[axis] += dist;
  2035. destination[axis] = current_position[axis];
  2036. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2037. st_synchronize();
  2038. feedrate = 0.0;
  2039. }
  2040. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2041. {
  2042. #ifdef TMC2130
  2043. FORCE_HIGH_POWER_START;
  2044. #endif
  2045. int axis_home_dir = home_dir(axis);
  2046. current_position[axis] = 0;
  2047. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2048. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2049. feedrate = homing_feedrate[axis];
  2050. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2051. st_synchronize();
  2052. #ifdef TMC2130
  2053. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2054. FORCE_HIGH_POWER_END;
  2055. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2056. return;
  2057. }
  2058. #endif //TMC2130
  2059. current_position[axis] = 0;
  2060. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2061. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2062. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2063. st_synchronize();
  2064. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2065. feedrate = homing_feedrate[axis]/2 ;
  2066. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2067. st_synchronize();
  2068. #ifdef TMC2130
  2069. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2070. FORCE_HIGH_POWER_END;
  2071. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2072. return;
  2073. }
  2074. #endif //TMC2130
  2075. axis_is_at_home(axis);
  2076. destination[axis] = current_position[axis];
  2077. feedrate = 0.0;
  2078. endstops_hit_on_purpose();
  2079. axis_known_position[axis] = true;
  2080. #ifdef TMC2130
  2081. FORCE_HIGH_POWER_END;
  2082. #endif
  2083. }
  2084. enable_endstops(endstops_enabled);
  2085. }
  2086. /**/
  2087. void home_xy()
  2088. {
  2089. set_destination_to_current();
  2090. homeaxis(X_AXIS);
  2091. homeaxis(Y_AXIS);
  2092. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2093. endstops_hit_on_purpose();
  2094. }
  2095. void refresh_cmd_timeout(void)
  2096. {
  2097. previous_millis_cmd = millis();
  2098. }
  2099. #ifdef FWRETRACT
  2100. void retract(bool retracting, bool swapretract = false) {
  2101. if(retracting && !retracted[active_extruder]) {
  2102. destination[X_AXIS]=current_position[X_AXIS];
  2103. destination[Y_AXIS]=current_position[Y_AXIS];
  2104. destination[Z_AXIS]=current_position[Z_AXIS];
  2105. destination[E_AXIS]=current_position[E_AXIS];
  2106. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2107. plan_set_e_position(current_position[E_AXIS]);
  2108. float oldFeedrate = feedrate;
  2109. feedrate=retract_feedrate*60;
  2110. retracted[active_extruder]=true;
  2111. prepare_move();
  2112. current_position[Z_AXIS]-=retract_zlift;
  2113. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2114. prepare_move();
  2115. feedrate = oldFeedrate;
  2116. } else if(!retracting && retracted[active_extruder]) {
  2117. destination[X_AXIS]=current_position[X_AXIS];
  2118. destination[Y_AXIS]=current_position[Y_AXIS];
  2119. destination[Z_AXIS]=current_position[Z_AXIS];
  2120. destination[E_AXIS]=current_position[E_AXIS];
  2121. current_position[Z_AXIS]+=retract_zlift;
  2122. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2123. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2124. plan_set_e_position(current_position[E_AXIS]);
  2125. float oldFeedrate = feedrate;
  2126. feedrate=retract_recover_feedrate*60;
  2127. retracted[active_extruder]=false;
  2128. prepare_move();
  2129. feedrate = oldFeedrate;
  2130. }
  2131. } //retract
  2132. #endif //FWRETRACT
  2133. void trace() {
  2134. tone(BEEPER, 440);
  2135. delay(25);
  2136. noTone(BEEPER);
  2137. delay(20);
  2138. }
  2139. /*
  2140. void ramming() {
  2141. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2142. if (current_temperature[0] < 230) {
  2143. //PLA
  2144. max_feedrate[E_AXIS] = 50;
  2145. //current_position[E_AXIS] -= 8;
  2146. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2147. //current_position[E_AXIS] += 8;
  2148. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2149. current_position[E_AXIS] += 5.4;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2151. current_position[E_AXIS] += 3.2;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2153. current_position[E_AXIS] += 3;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2155. st_synchronize();
  2156. max_feedrate[E_AXIS] = 80;
  2157. current_position[E_AXIS] -= 82;
  2158. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2159. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2160. current_position[E_AXIS] -= 20;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2162. current_position[E_AXIS] += 5;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2164. current_position[E_AXIS] += 5;
  2165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2166. current_position[E_AXIS] -= 10;
  2167. st_synchronize();
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2169. current_position[E_AXIS] += 10;
  2170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2171. current_position[E_AXIS] -= 10;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2173. current_position[E_AXIS] += 10;
  2174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2175. current_position[E_AXIS] -= 10;
  2176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2177. st_synchronize();
  2178. }
  2179. else {
  2180. //ABS
  2181. max_feedrate[E_AXIS] = 50;
  2182. //current_position[E_AXIS] -= 8;
  2183. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2184. //current_position[E_AXIS] += 8;
  2185. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2186. current_position[E_AXIS] += 3.1;
  2187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2188. current_position[E_AXIS] += 3.1;
  2189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2190. current_position[E_AXIS] += 4;
  2191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2192. st_synchronize();
  2193. //current_position[X_AXIS] += 23; //delay
  2194. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2195. //current_position[X_AXIS] -= 23; //delay
  2196. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2197. delay(4700);
  2198. max_feedrate[E_AXIS] = 80;
  2199. current_position[E_AXIS] -= 92;
  2200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2201. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2202. current_position[E_AXIS] -= 5;
  2203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2204. current_position[E_AXIS] += 5;
  2205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2206. current_position[E_AXIS] -= 5;
  2207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2208. st_synchronize();
  2209. current_position[E_AXIS] += 5;
  2210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2211. current_position[E_AXIS] -= 5;
  2212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2213. current_position[E_AXIS] += 5;
  2214. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2215. current_position[E_AXIS] -= 5;
  2216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2217. st_synchronize();
  2218. }
  2219. }
  2220. */
  2221. #ifdef TMC2130
  2222. void force_high_power_mode(bool start_high_power_section) {
  2223. uint8_t silent;
  2224. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2225. if (silent == 1) {
  2226. //we are in silent mode, set to normal mode to enable crash detection
  2227. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2228. st_synchronize();
  2229. cli();
  2230. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2231. tmc2130_init();
  2232. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2233. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2234. st_reset_timer();
  2235. sei();
  2236. }
  2237. }
  2238. #endif //TMC2130
  2239. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2240. st_synchronize();
  2241. #if 0
  2242. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2243. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2244. #endif
  2245. // Flag for the display update routine and to disable the print cancelation during homing.
  2246. homing_flag = true;
  2247. // Either all X,Y,Z codes are present, or none of them.
  2248. bool home_all_axes = home_x == home_y && home_x == home_z;
  2249. if (home_all_axes)
  2250. // No X/Y/Z code provided means to home all axes.
  2251. home_x = home_y = home_z = true;
  2252. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2253. if (home_all_axes) {
  2254. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2255. feedrate = homing_feedrate[Z_AXIS];
  2256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2257. st_synchronize();
  2258. }
  2259. #ifdef ENABLE_AUTO_BED_LEVELING
  2260. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2261. #endif //ENABLE_AUTO_BED_LEVELING
  2262. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2263. // the planner will not perform any adjustments in the XY plane.
  2264. // Wait for the motors to stop and update the current position with the absolute values.
  2265. world2machine_revert_to_uncorrected();
  2266. // For mesh bed leveling deactivate the matrix temporarily.
  2267. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2268. // in a single axis only.
  2269. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2270. #ifdef MESH_BED_LEVELING
  2271. uint8_t mbl_was_active = mbl.active;
  2272. mbl.active = 0;
  2273. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2274. #endif
  2275. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2276. // consumed during the first movements following this statement.
  2277. if (home_z)
  2278. babystep_undo();
  2279. saved_feedrate = feedrate;
  2280. saved_feedmultiply = feedmultiply;
  2281. feedmultiply = 100;
  2282. previous_millis_cmd = millis();
  2283. enable_endstops(true);
  2284. memcpy(destination, current_position, sizeof(destination));
  2285. feedrate = 0.0;
  2286. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2287. if(home_z)
  2288. homeaxis(Z_AXIS);
  2289. #endif
  2290. #ifdef QUICK_HOME
  2291. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2292. if(home_x && home_y) //first diagonal move
  2293. {
  2294. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2295. int x_axis_home_dir = home_dir(X_AXIS);
  2296. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2297. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2298. feedrate = homing_feedrate[X_AXIS];
  2299. if(homing_feedrate[Y_AXIS]<feedrate)
  2300. feedrate = homing_feedrate[Y_AXIS];
  2301. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2302. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2303. } else {
  2304. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2305. }
  2306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2307. st_synchronize();
  2308. axis_is_at_home(X_AXIS);
  2309. axis_is_at_home(Y_AXIS);
  2310. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2311. destination[X_AXIS] = current_position[X_AXIS];
  2312. destination[Y_AXIS] = current_position[Y_AXIS];
  2313. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2314. feedrate = 0.0;
  2315. st_synchronize();
  2316. endstops_hit_on_purpose();
  2317. current_position[X_AXIS] = destination[X_AXIS];
  2318. current_position[Y_AXIS] = destination[Y_AXIS];
  2319. current_position[Z_AXIS] = destination[Z_AXIS];
  2320. }
  2321. #endif /* QUICK_HOME */
  2322. #ifdef TMC2130
  2323. if(home_x)
  2324. {
  2325. if (!calib)
  2326. homeaxis(X_AXIS);
  2327. else
  2328. tmc2130_home_calibrate(X_AXIS);
  2329. }
  2330. if(home_y)
  2331. {
  2332. if (!calib)
  2333. homeaxis(Y_AXIS);
  2334. else
  2335. tmc2130_home_calibrate(Y_AXIS);
  2336. }
  2337. #endif //TMC2130
  2338. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2339. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2340. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2341. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2342. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2343. #ifndef Z_SAFE_HOMING
  2344. if(home_z) {
  2345. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2346. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2347. feedrate = max_feedrate[Z_AXIS];
  2348. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2349. st_synchronize();
  2350. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2351. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2352. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2353. {
  2354. homeaxis(X_AXIS);
  2355. homeaxis(Y_AXIS);
  2356. }
  2357. // 1st mesh bed leveling measurement point, corrected.
  2358. world2machine_initialize();
  2359. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2360. world2machine_reset();
  2361. if (destination[Y_AXIS] < Y_MIN_POS)
  2362. destination[Y_AXIS] = Y_MIN_POS;
  2363. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2364. feedrate = homing_feedrate[Z_AXIS]/10;
  2365. current_position[Z_AXIS] = 0;
  2366. enable_endstops(false);
  2367. #ifdef DEBUG_BUILD
  2368. SERIAL_ECHOLNPGM("plan_set_position()");
  2369. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2370. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2371. #endif
  2372. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2373. #ifdef DEBUG_BUILD
  2374. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2375. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2376. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2377. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2378. #endif
  2379. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2380. st_synchronize();
  2381. current_position[X_AXIS] = destination[X_AXIS];
  2382. current_position[Y_AXIS] = destination[Y_AXIS];
  2383. enable_endstops(true);
  2384. endstops_hit_on_purpose();
  2385. homeaxis(Z_AXIS);
  2386. #else // MESH_BED_LEVELING
  2387. homeaxis(Z_AXIS);
  2388. #endif // MESH_BED_LEVELING
  2389. }
  2390. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2391. if(home_all_axes) {
  2392. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2393. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2394. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2395. feedrate = XY_TRAVEL_SPEED/60;
  2396. current_position[Z_AXIS] = 0;
  2397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2398. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2399. st_synchronize();
  2400. current_position[X_AXIS] = destination[X_AXIS];
  2401. current_position[Y_AXIS] = destination[Y_AXIS];
  2402. homeaxis(Z_AXIS);
  2403. }
  2404. // Let's see if X and Y are homed and probe is inside bed area.
  2405. if(home_z) {
  2406. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2407. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2408. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2409. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2410. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2411. current_position[Z_AXIS] = 0;
  2412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2413. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2414. feedrate = max_feedrate[Z_AXIS];
  2415. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2416. st_synchronize();
  2417. homeaxis(Z_AXIS);
  2418. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2419. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2420. SERIAL_ECHO_START;
  2421. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2422. } else {
  2423. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2424. SERIAL_ECHO_START;
  2425. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2426. }
  2427. }
  2428. #endif // Z_SAFE_HOMING
  2429. #endif // Z_HOME_DIR < 0
  2430. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2431. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2432. #ifdef ENABLE_AUTO_BED_LEVELING
  2433. if(home_z)
  2434. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2435. #endif
  2436. // Set the planner and stepper routine positions.
  2437. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2438. // contains the machine coordinates.
  2439. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2440. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2441. enable_endstops(false);
  2442. #endif
  2443. feedrate = saved_feedrate;
  2444. feedmultiply = saved_feedmultiply;
  2445. previous_millis_cmd = millis();
  2446. endstops_hit_on_purpose();
  2447. #ifndef MESH_BED_LEVELING
  2448. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2449. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2450. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2451. lcd_adjust_z();
  2452. #endif
  2453. // Load the machine correction matrix
  2454. world2machine_initialize();
  2455. // and correct the current_position XY axes to match the transformed coordinate system.
  2456. world2machine_update_current();
  2457. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2458. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2459. {
  2460. if (! home_z && mbl_was_active) {
  2461. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2462. mbl.active = true;
  2463. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2464. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2465. }
  2466. }
  2467. else
  2468. {
  2469. st_synchronize();
  2470. homing_flag = false;
  2471. // Push the commands to the front of the message queue in the reverse order!
  2472. // There shall be always enough space reserved for these commands.
  2473. enquecommand_front_P((PSTR("G80")));
  2474. //goto case_G80;
  2475. }
  2476. #endif
  2477. if (farm_mode) { prusa_statistics(20); };
  2478. homing_flag = false;
  2479. #if 0
  2480. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2481. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2482. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2483. #endif
  2484. }
  2485. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2486. {
  2487. bool final_result = false;
  2488. #ifdef TMC2130
  2489. FORCE_HIGH_POWER_START;
  2490. #endif // TMC2130
  2491. // Only Z calibration?
  2492. if (!onlyZ)
  2493. {
  2494. setTargetBed(0);
  2495. setTargetHotend(0, 0);
  2496. setTargetHotend(0, 1);
  2497. setTargetHotend(0, 2);
  2498. adjust_bed_reset(); //reset bed level correction
  2499. }
  2500. // Disable the default update procedure of the display. We will do a modal dialog.
  2501. lcd_update_enable(false);
  2502. // Let the planner use the uncorrected coordinates.
  2503. mbl.reset();
  2504. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2505. // the planner will not perform any adjustments in the XY plane.
  2506. // Wait for the motors to stop and update the current position with the absolute values.
  2507. world2machine_revert_to_uncorrected();
  2508. // Reset the baby step value applied without moving the axes.
  2509. babystep_reset();
  2510. // Mark all axes as in a need for homing.
  2511. memset(axis_known_position, 0, sizeof(axis_known_position));
  2512. // Home in the XY plane.
  2513. //set_destination_to_current();
  2514. setup_for_endstop_move();
  2515. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2516. home_xy();
  2517. enable_endstops(false);
  2518. current_position[X_AXIS] += 5;
  2519. current_position[Y_AXIS] += 5;
  2520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2521. st_synchronize();
  2522. // Let the user move the Z axes up to the end stoppers.
  2523. #ifdef TMC2130
  2524. if (calibrate_z_auto())
  2525. {
  2526. #else //TMC2130
  2527. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2528. {
  2529. #endif //TMC2130
  2530. refresh_cmd_timeout();
  2531. #ifndef STEEL_SHEET
  2532. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2533. {
  2534. lcd_wait_for_cool_down();
  2535. }
  2536. #endif //STEEL_SHEET
  2537. if(!onlyZ)
  2538. {
  2539. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2540. #ifdef STEEL_SHEET
  2541. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2542. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2543. #endif //STEEL_SHEET
  2544. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2545. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2546. KEEPALIVE_STATE(IN_HANDLER);
  2547. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2548. lcd_implementation_print_at(0, 2, 1);
  2549. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2550. }
  2551. // Move the print head close to the bed.
  2552. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2553. bool endstops_enabled = enable_endstops(true);
  2554. #ifdef TMC2130
  2555. tmc2130_home_enter(Z_AXIS_MASK);
  2556. #endif //TMC2130
  2557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2558. st_synchronize();
  2559. #ifdef TMC2130
  2560. tmc2130_home_exit();
  2561. #endif //TMC2130
  2562. enable_endstops(endstops_enabled);
  2563. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2564. {
  2565. int8_t verbosity_level = 0;
  2566. if (code_seen('V'))
  2567. {
  2568. // Just 'V' without a number counts as V1.
  2569. char c = strchr_pointer[1];
  2570. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2571. }
  2572. if (onlyZ)
  2573. {
  2574. clean_up_after_endstop_move();
  2575. // Z only calibration.
  2576. // Load the machine correction matrix
  2577. world2machine_initialize();
  2578. // and correct the current_position to match the transformed coordinate system.
  2579. world2machine_update_current();
  2580. //FIXME
  2581. bool result = sample_mesh_and_store_reference();
  2582. if (result)
  2583. {
  2584. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2585. // Shipped, the nozzle height has been set already. The user can start printing now.
  2586. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2587. final_result = true;
  2588. // babystep_apply();
  2589. }
  2590. }
  2591. else
  2592. {
  2593. // Reset the baby step value and the baby step applied flag.
  2594. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2595. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2596. // Complete XYZ calibration.
  2597. uint8_t point_too_far_mask = 0;
  2598. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2599. clean_up_after_endstop_move();
  2600. // Print head up.
  2601. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2603. st_synchronize();
  2604. //#ifndef NEW_XYZCAL
  2605. if (result >= 0)
  2606. {
  2607. #ifdef HEATBED_V2
  2608. sample_z();
  2609. #else //HEATBED_V2
  2610. point_too_far_mask = 0;
  2611. // Second half: The fine adjustment.
  2612. // Let the planner use the uncorrected coordinates.
  2613. mbl.reset();
  2614. world2machine_reset();
  2615. // Home in the XY plane.
  2616. setup_for_endstop_move();
  2617. home_xy();
  2618. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2619. clean_up_after_endstop_move();
  2620. // Print head up.
  2621. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2623. st_synchronize();
  2624. // if (result >= 0) babystep_apply();
  2625. #endif //HEATBED_V2
  2626. }
  2627. //#endif //NEW_XYZCAL
  2628. lcd_update_enable(true);
  2629. lcd_update(2);
  2630. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2631. if (result >= 0)
  2632. {
  2633. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2634. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2635. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2636. final_result = true;
  2637. }
  2638. }
  2639. #ifdef TMC2130
  2640. tmc2130_home_exit();
  2641. #endif
  2642. }
  2643. else
  2644. {
  2645. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2646. final_result = false;
  2647. }
  2648. }
  2649. else
  2650. {
  2651. // Timeouted.
  2652. }
  2653. lcd_update_enable(true);
  2654. #ifdef TMC2130
  2655. FORCE_HIGH_POWER_END;
  2656. #endif // TMC2130
  2657. return final_result;
  2658. }
  2659. void gcode_M114()
  2660. {
  2661. SERIAL_PROTOCOLPGM("X:");
  2662. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2663. SERIAL_PROTOCOLPGM(" Y:");
  2664. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2665. SERIAL_PROTOCOLPGM(" Z:");
  2666. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2667. SERIAL_PROTOCOLPGM(" E:");
  2668. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2669. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2670. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2671. SERIAL_PROTOCOLPGM(" Y:");
  2672. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2673. SERIAL_PROTOCOLPGM(" Z:");
  2674. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2675. SERIAL_PROTOCOLPGM(" E:");
  2676. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2677. SERIAL_PROTOCOLLN("");
  2678. }
  2679. void gcode_M701()
  2680. {
  2681. #ifdef SNMM
  2682. extr_adj(snmm_extruder);//loads current extruder
  2683. #else
  2684. enable_z();
  2685. custom_message = true;
  2686. custom_message_type = 2;
  2687. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2688. current_position[E_AXIS] += 70;
  2689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2690. current_position[E_AXIS] += 25;
  2691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2692. st_synchronize();
  2693. tone(BEEPER, 500);
  2694. delay_keep_alive(50);
  2695. noTone(BEEPER);
  2696. if (!farm_mode && loading_flag) {
  2697. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2698. while (!clean) {
  2699. lcd_update_enable(true);
  2700. lcd_update(2);
  2701. current_position[E_AXIS] += 25;
  2702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2703. st_synchronize();
  2704. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2705. }
  2706. }
  2707. lcd_update_enable(true);
  2708. lcd_update(2);
  2709. lcd_setstatuspgm(_T(WELCOME_MSG));
  2710. disable_z();
  2711. loading_flag = false;
  2712. custom_message = false;
  2713. custom_message_type = 0;
  2714. #endif
  2715. }
  2716. /**
  2717. * @brief Get serial number from 32U2 processor
  2718. *
  2719. * Typical format of S/N is:CZPX0917X003XC13518
  2720. *
  2721. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2722. *
  2723. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2724. * reply is transmitted to serial port 1 character by character.
  2725. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2726. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2727. * in any case.
  2728. */
  2729. static void gcode_PRUSA_SN()
  2730. {
  2731. if (farm_mode) {
  2732. selectedSerialPort = 0;
  2733. putchar(';');
  2734. putchar('S');
  2735. int numbersRead = 0;
  2736. ShortTimer timeout;
  2737. timeout.start();
  2738. while (numbersRead < 19) {
  2739. while (MSerial.available() > 0) {
  2740. uint8_t serial_char = MSerial.read();
  2741. selectedSerialPort = 1;
  2742. putchar(serial_char);
  2743. numbersRead++;
  2744. selectedSerialPort = 0;
  2745. }
  2746. if (timeout.expired(100u)) break;
  2747. }
  2748. selectedSerialPort = 1;
  2749. putchar('\n');
  2750. #if 0
  2751. for (int b = 0; b < 3; b++) {
  2752. tone(BEEPER, 110);
  2753. delay(50);
  2754. noTone(BEEPER);
  2755. delay(50);
  2756. }
  2757. #endif
  2758. } else {
  2759. puts_P(_N("Not in farm mode."));
  2760. }
  2761. }
  2762. #ifdef BACKLASH_X
  2763. extern uint8_t st_backlash_x;
  2764. #endif //BACKLASH_X
  2765. #ifdef BACKLASH_Y
  2766. extern uint8_t st_backlash_y;
  2767. #endif //BACKLASH_Y
  2768. void process_commands()
  2769. {
  2770. if (!buflen) return; //empty command
  2771. #ifdef FILAMENT_RUNOUT_SUPPORT
  2772. SET_INPUT(FR_SENS);
  2773. #endif
  2774. #ifdef CMDBUFFER_DEBUG
  2775. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2776. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2777. SERIAL_ECHOLNPGM("");
  2778. SERIAL_ECHOPGM("In cmdqueue: ");
  2779. SERIAL_ECHO(buflen);
  2780. SERIAL_ECHOLNPGM("");
  2781. #endif /* CMDBUFFER_DEBUG */
  2782. unsigned long codenum; //throw away variable
  2783. char *starpos = NULL;
  2784. #ifdef ENABLE_AUTO_BED_LEVELING
  2785. float x_tmp, y_tmp, z_tmp, real_z;
  2786. #endif
  2787. // PRUSA GCODES
  2788. KEEPALIVE_STATE(IN_HANDLER);
  2789. #ifdef SNMM
  2790. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2791. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2792. int8_t SilentMode;
  2793. #endif
  2794. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2795. starpos = (strchr(strchr_pointer + 5, '*'));
  2796. if (starpos != NULL)
  2797. *(starpos) = '\0';
  2798. lcd_setstatus(strchr_pointer + 5);
  2799. }
  2800. #ifdef TMC2130
  2801. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2802. {
  2803. if(code_seen("CRASH_DETECTED"))
  2804. {
  2805. uint8_t mask = 0;
  2806. if (code_seen("X")) mask |= X_AXIS_MASK;
  2807. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2808. crashdet_detected(mask);
  2809. }
  2810. else if(code_seen("CRASH_RECOVER"))
  2811. crashdet_recover();
  2812. else if(code_seen("CRASH_CANCEL"))
  2813. crashdet_cancel();
  2814. }
  2815. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2816. {
  2817. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2818. {
  2819. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2820. axis = (axis == 'E')?3:(axis - 'X');
  2821. if (axis < 4)
  2822. {
  2823. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2824. tmc2130_set_wave(axis, 247, fac);
  2825. }
  2826. }
  2827. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2828. {
  2829. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2830. axis = (axis == 'E')?3:(axis - 'X');
  2831. if (axis < 4)
  2832. {
  2833. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2834. uint16_t res = tmc2130_get_res(axis);
  2835. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2836. }
  2837. }
  2838. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2839. {
  2840. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2841. axis = (axis == 'E')?3:(axis - 'X');
  2842. if (axis < 4)
  2843. {
  2844. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2845. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2846. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2847. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2848. char* str_end = 0;
  2849. if (CMDBUFFER_CURRENT_STRING[14])
  2850. {
  2851. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2852. if (str_end && *str_end)
  2853. {
  2854. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2855. if (str_end && *str_end)
  2856. {
  2857. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2858. if (str_end && *str_end)
  2859. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2860. }
  2861. }
  2862. }
  2863. tmc2130_chopper_config[axis].toff = chop0;
  2864. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2865. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2866. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2867. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2868. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2869. }
  2870. }
  2871. }
  2872. #ifdef BACKLASH_X
  2873. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2874. {
  2875. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2876. st_backlash_x = bl;
  2877. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2878. }
  2879. #endif //BACKLASH_X
  2880. #ifdef BACKLASH_Y
  2881. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2882. {
  2883. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2884. st_backlash_y = bl;
  2885. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2886. }
  2887. #endif //BACKLASH_Y
  2888. #endif //TMC2130
  2889. else if(code_seen("PRUSA")){
  2890. if (code_seen("Ping")) { //PRUSA Ping
  2891. if (farm_mode) {
  2892. PingTime = millis();
  2893. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2894. }
  2895. }
  2896. else if (code_seen("PRN")) {
  2897. printf_P(_N("%d"), status_number);
  2898. }else if (code_seen("FAN")) {
  2899. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2900. }else if (code_seen("fn")) {
  2901. if (farm_mode) {
  2902. printf_P(_N("%d"), farm_no);
  2903. }
  2904. else {
  2905. puts_P(_N("Not in farm mode."));
  2906. }
  2907. }
  2908. else if (code_seen("thx")) {
  2909. no_response = false;
  2910. } else if (code_seen("RESET")) {
  2911. // careful!
  2912. if (farm_mode) {
  2913. #ifdef WATCHDOG
  2914. wdt_enable(WDTO_15MS);
  2915. cli();
  2916. while(1);
  2917. #else //WATCHDOG
  2918. asm volatile("jmp 0x3E000");
  2919. #endif //WATCHDOG
  2920. }
  2921. else {
  2922. MYSERIAL.println("Not in farm mode.");
  2923. }
  2924. }else if (code_seen("fv")) {
  2925. // get file version
  2926. #ifdef SDSUPPORT
  2927. card.openFile(strchr_pointer + 3,true);
  2928. while (true) {
  2929. uint16_t readByte = card.get();
  2930. MYSERIAL.write(readByte);
  2931. if (readByte=='\n') {
  2932. break;
  2933. }
  2934. }
  2935. card.closefile();
  2936. #endif // SDSUPPORT
  2937. } else if (code_seen("M28")) {
  2938. trace();
  2939. prusa_sd_card_upload = true;
  2940. card.openFile(strchr_pointer+4,false);
  2941. } else if (code_seen("SN")) {
  2942. gcode_PRUSA_SN();
  2943. } else if(code_seen("Fir")){
  2944. SERIAL_PROTOCOLLN(FW_VERSION);
  2945. } else if(code_seen("Rev")){
  2946. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2947. } else if(code_seen("Lang")) {
  2948. lang_reset();
  2949. } else if(code_seen("Lz")) {
  2950. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2951. } else if(code_seen("Beat")) {
  2952. // Kick farm link timer
  2953. kicktime = millis();
  2954. } else if(code_seen("FR")) {
  2955. // Factory full reset
  2956. factory_reset(0,true);
  2957. }
  2958. //else if (code_seen('Cal')) {
  2959. // lcd_calibration();
  2960. // }
  2961. }
  2962. else if (code_seen('^')) {
  2963. // nothing, this is a version line
  2964. } else if(code_seen('G'))
  2965. {
  2966. switch((int)code_value())
  2967. {
  2968. case 0: // G0 -> G1
  2969. case 1: // G1
  2970. if(Stopped == false) {
  2971. #ifdef FILAMENT_RUNOUT_SUPPORT
  2972. if(READ(FR_SENS)){
  2973. feedmultiplyBckp=feedmultiply;
  2974. float target[4];
  2975. float lastpos[4];
  2976. target[X_AXIS]=current_position[X_AXIS];
  2977. target[Y_AXIS]=current_position[Y_AXIS];
  2978. target[Z_AXIS]=current_position[Z_AXIS];
  2979. target[E_AXIS]=current_position[E_AXIS];
  2980. lastpos[X_AXIS]=current_position[X_AXIS];
  2981. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2982. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2983. lastpos[E_AXIS]=current_position[E_AXIS];
  2984. //retract by E
  2985. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2986. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2987. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2988. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2989. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2990. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2992. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2993. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2994. //finish moves
  2995. st_synchronize();
  2996. //disable extruder steppers so filament can be removed
  2997. disable_e0();
  2998. disable_e1();
  2999. disable_e2();
  3000. delay(100);
  3001. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3002. uint8_t cnt=0;
  3003. int counterBeep = 0;
  3004. lcd_wait_interact();
  3005. while(!lcd_clicked()){
  3006. cnt++;
  3007. manage_heater();
  3008. manage_inactivity(true);
  3009. //lcd_update();
  3010. if(cnt==0)
  3011. {
  3012. #if BEEPER > 0
  3013. if (counterBeep== 500){
  3014. counterBeep = 0;
  3015. }
  3016. SET_OUTPUT(BEEPER);
  3017. if (counterBeep== 0){
  3018. WRITE(BEEPER,HIGH);
  3019. }
  3020. if (counterBeep== 20){
  3021. WRITE(BEEPER,LOW);
  3022. }
  3023. counterBeep++;
  3024. #else
  3025. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3026. lcd_buzz(1000/6,100);
  3027. #else
  3028. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3029. #endif
  3030. #endif
  3031. }
  3032. }
  3033. WRITE(BEEPER,LOW);
  3034. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3036. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3037. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3038. lcd_change_fil_state = 0;
  3039. lcd_loading_filament();
  3040. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3041. lcd_change_fil_state = 0;
  3042. lcd_alright();
  3043. switch(lcd_change_fil_state){
  3044. case 2:
  3045. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3047. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3049. lcd_loading_filament();
  3050. break;
  3051. case 3:
  3052. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3054. lcd_loading_color();
  3055. break;
  3056. default:
  3057. lcd_change_success();
  3058. break;
  3059. }
  3060. }
  3061. target[E_AXIS]+= 5;
  3062. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3063. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3064. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3065. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3066. //plan_set_e_position(current_position[E_AXIS]);
  3067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3068. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3069. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3070. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3071. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3072. plan_set_e_position(lastpos[E_AXIS]);
  3073. feedmultiply=feedmultiplyBckp;
  3074. char cmd[9];
  3075. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3076. enquecommand(cmd);
  3077. }
  3078. #endif
  3079. get_coordinates(); // For X Y Z E F
  3080. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3081. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3082. }
  3083. #ifdef FWRETRACT
  3084. if(autoretract_enabled)
  3085. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3086. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3087. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3088. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3089. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3090. retract(!retracted[active_extruder]);
  3091. return;
  3092. }
  3093. }
  3094. #endif //FWRETRACT
  3095. prepare_move();
  3096. //ClearToSend();
  3097. }
  3098. break;
  3099. case 2: // G2 - CW ARC
  3100. if(Stopped == false) {
  3101. get_arc_coordinates();
  3102. prepare_arc_move(true);
  3103. }
  3104. break;
  3105. case 3: // G3 - CCW ARC
  3106. if(Stopped == false) {
  3107. get_arc_coordinates();
  3108. prepare_arc_move(false);
  3109. }
  3110. break;
  3111. case 4: // G4 dwell
  3112. codenum = 0;
  3113. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3114. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3115. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3116. st_synchronize();
  3117. codenum += millis(); // keep track of when we started waiting
  3118. previous_millis_cmd = millis();
  3119. while(millis() < codenum) {
  3120. manage_heater();
  3121. manage_inactivity();
  3122. lcd_update();
  3123. }
  3124. break;
  3125. #ifdef FWRETRACT
  3126. case 10: // G10 retract
  3127. #if EXTRUDERS > 1
  3128. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3129. retract(true,retracted_swap[active_extruder]);
  3130. #else
  3131. retract(true);
  3132. #endif
  3133. break;
  3134. case 11: // G11 retract_recover
  3135. #if EXTRUDERS > 1
  3136. retract(false,retracted_swap[active_extruder]);
  3137. #else
  3138. retract(false);
  3139. #endif
  3140. break;
  3141. #endif //FWRETRACT
  3142. case 28: //G28 Home all Axis one at a time
  3143. {
  3144. // Which axes should be homed?
  3145. bool home_x = code_seen(axis_codes[X_AXIS]);
  3146. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3147. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3148. // calibrate?
  3149. bool calib = code_seen('C');
  3150. gcode_G28(home_x, home_y, home_z, calib);
  3151. break;
  3152. }
  3153. #ifdef ENABLE_AUTO_BED_LEVELING
  3154. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3155. {
  3156. #if Z_MIN_PIN == -1
  3157. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3158. #endif
  3159. // Prevent user from running a G29 without first homing in X and Y
  3160. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3161. {
  3162. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3163. SERIAL_ECHO_START;
  3164. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3165. break; // abort G29, since we don't know where we are
  3166. }
  3167. st_synchronize();
  3168. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3169. //vector_3 corrected_position = plan_get_position_mm();
  3170. //corrected_position.debug("position before G29");
  3171. plan_bed_level_matrix.set_to_identity();
  3172. vector_3 uncorrected_position = plan_get_position();
  3173. //uncorrected_position.debug("position durring G29");
  3174. current_position[X_AXIS] = uncorrected_position.x;
  3175. current_position[Y_AXIS] = uncorrected_position.y;
  3176. current_position[Z_AXIS] = uncorrected_position.z;
  3177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3178. setup_for_endstop_move();
  3179. feedrate = homing_feedrate[Z_AXIS];
  3180. #ifdef AUTO_BED_LEVELING_GRID
  3181. // probe at the points of a lattice grid
  3182. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3183. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3184. // solve the plane equation ax + by + d = z
  3185. // A is the matrix with rows [x y 1] for all the probed points
  3186. // B is the vector of the Z positions
  3187. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3188. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3189. // "A" matrix of the linear system of equations
  3190. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3191. // "B" vector of Z points
  3192. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3193. int probePointCounter = 0;
  3194. bool zig = true;
  3195. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3196. {
  3197. int xProbe, xInc;
  3198. if (zig)
  3199. {
  3200. xProbe = LEFT_PROBE_BED_POSITION;
  3201. //xEnd = RIGHT_PROBE_BED_POSITION;
  3202. xInc = xGridSpacing;
  3203. zig = false;
  3204. } else // zag
  3205. {
  3206. xProbe = RIGHT_PROBE_BED_POSITION;
  3207. //xEnd = LEFT_PROBE_BED_POSITION;
  3208. xInc = -xGridSpacing;
  3209. zig = true;
  3210. }
  3211. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3212. {
  3213. float z_before;
  3214. if (probePointCounter == 0)
  3215. {
  3216. // raise before probing
  3217. z_before = Z_RAISE_BEFORE_PROBING;
  3218. } else
  3219. {
  3220. // raise extruder
  3221. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3222. }
  3223. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3224. eqnBVector[probePointCounter] = measured_z;
  3225. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3226. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3227. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3228. probePointCounter++;
  3229. xProbe += xInc;
  3230. }
  3231. }
  3232. clean_up_after_endstop_move();
  3233. // solve lsq problem
  3234. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3235. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3236. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3237. SERIAL_PROTOCOLPGM(" b: ");
  3238. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3239. SERIAL_PROTOCOLPGM(" d: ");
  3240. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3241. set_bed_level_equation_lsq(plane_equation_coefficients);
  3242. free(plane_equation_coefficients);
  3243. #else // AUTO_BED_LEVELING_GRID not defined
  3244. // Probe at 3 arbitrary points
  3245. // probe 1
  3246. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3247. // probe 2
  3248. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3249. // probe 3
  3250. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3251. clean_up_after_endstop_move();
  3252. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3253. #endif // AUTO_BED_LEVELING_GRID
  3254. st_synchronize();
  3255. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3256. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3257. // When the bed is uneven, this height must be corrected.
  3258. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3259. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3260. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3261. z_tmp = current_position[Z_AXIS];
  3262. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3263. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3265. }
  3266. break;
  3267. #ifndef Z_PROBE_SLED
  3268. case 30: // G30 Single Z Probe
  3269. {
  3270. st_synchronize();
  3271. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3272. setup_for_endstop_move();
  3273. feedrate = homing_feedrate[Z_AXIS];
  3274. run_z_probe();
  3275. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3276. SERIAL_PROTOCOLPGM(" X: ");
  3277. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3278. SERIAL_PROTOCOLPGM(" Y: ");
  3279. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3280. SERIAL_PROTOCOLPGM(" Z: ");
  3281. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3282. SERIAL_PROTOCOLPGM("\n");
  3283. clean_up_after_endstop_move();
  3284. }
  3285. break;
  3286. #else
  3287. case 31: // dock the sled
  3288. dock_sled(true);
  3289. break;
  3290. case 32: // undock the sled
  3291. dock_sled(false);
  3292. break;
  3293. #endif // Z_PROBE_SLED
  3294. #endif // ENABLE_AUTO_BED_LEVELING
  3295. #ifdef MESH_BED_LEVELING
  3296. case 30: // G30 Single Z Probe
  3297. {
  3298. st_synchronize();
  3299. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3300. setup_for_endstop_move();
  3301. feedrate = homing_feedrate[Z_AXIS];
  3302. find_bed_induction_sensor_point_z(-10.f, 3);
  3303. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3304. clean_up_after_endstop_move();
  3305. }
  3306. break;
  3307. case 75:
  3308. {
  3309. for (int i = 40; i <= 110; i++)
  3310. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3311. }
  3312. break;
  3313. case 76: //PINDA probe temperature calibration
  3314. {
  3315. #ifdef PINDA_THERMISTOR
  3316. if (true)
  3317. {
  3318. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3319. //we need to know accurate position of first calibration point
  3320. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3321. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3322. break;
  3323. }
  3324. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3325. {
  3326. // We don't know where we are! HOME!
  3327. // Push the commands to the front of the message queue in the reverse order!
  3328. // There shall be always enough space reserved for these commands.
  3329. repeatcommand_front(); // repeat G76 with all its parameters
  3330. enquecommand_front_P((PSTR("G28 W0")));
  3331. break;
  3332. }
  3333. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3334. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3335. if (result)
  3336. {
  3337. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3339. current_position[Z_AXIS] = 50;
  3340. current_position[Y_AXIS] = 180;
  3341. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3342. st_synchronize();
  3343. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3344. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3345. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3347. st_synchronize();
  3348. gcode_G28(false, false, true, false);
  3349. }
  3350. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3351. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3352. current_position[Z_AXIS] = 100;
  3353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3354. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3355. lcd_temp_cal_show_result(false);
  3356. break;
  3357. }
  3358. }
  3359. lcd_update_enable(true);
  3360. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3361. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3362. float zero_z;
  3363. int z_shift = 0; //unit: steps
  3364. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3365. if (start_temp < 35) start_temp = 35;
  3366. if (start_temp < current_temperature_pinda) start_temp += 5;
  3367. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3368. // setTargetHotend(200, 0);
  3369. setTargetBed(70 + (start_temp - 30));
  3370. custom_message = true;
  3371. custom_message_type = 4;
  3372. custom_message_state = 1;
  3373. custom_message = _T(MSG_TEMP_CALIBRATION);
  3374. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3376. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3377. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3378. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3379. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3381. st_synchronize();
  3382. while (current_temperature_pinda < start_temp)
  3383. {
  3384. delay_keep_alive(1000);
  3385. serialecho_temperatures();
  3386. }
  3387. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3388. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3390. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3391. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3393. st_synchronize();
  3394. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3395. if (find_z_result == false) {
  3396. lcd_temp_cal_show_result(find_z_result);
  3397. break;
  3398. }
  3399. zero_z = current_position[Z_AXIS];
  3400. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3401. int i = -1; for (; i < 5; i++)
  3402. {
  3403. float temp = (40 + i * 5);
  3404. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3405. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3406. if (start_temp <= temp) break;
  3407. }
  3408. for (i++; i < 5; i++)
  3409. {
  3410. float temp = (40 + i * 5);
  3411. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3412. custom_message_state = i + 2;
  3413. setTargetBed(50 + 10 * (temp - 30) / 5);
  3414. // setTargetHotend(255, 0);
  3415. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3417. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3418. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3420. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3422. st_synchronize();
  3423. while (current_temperature_pinda < temp)
  3424. {
  3425. delay_keep_alive(1000);
  3426. serialecho_temperatures();
  3427. }
  3428. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3429. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3430. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3431. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3432. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3433. st_synchronize();
  3434. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3435. if (find_z_result == false) {
  3436. lcd_temp_cal_show_result(find_z_result);
  3437. break;
  3438. }
  3439. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3440. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3441. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3442. }
  3443. lcd_temp_cal_show_result(true);
  3444. break;
  3445. }
  3446. #endif //PINDA_THERMISTOR
  3447. setTargetBed(PINDA_MIN_T);
  3448. float zero_z;
  3449. int z_shift = 0; //unit: steps
  3450. int t_c; // temperature
  3451. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3452. // We don't know where we are! HOME!
  3453. // Push the commands to the front of the message queue in the reverse order!
  3454. // There shall be always enough space reserved for these commands.
  3455. repeatcommand_front(); // repeat G76 with all its parameters
  3456. enquecommand_front_P((PSTR("G28 W0")));
  3457. break;
  3458. }
  3459. puts_P(_N("PINDA probe calibration start"));
  3460. custom_message = true;
  3461. custom_message_type = 4;
  3462. custom_message_state = 1;
  3463. custom_message = _T(MSG_TEMP_CALIBRATION);
  3464. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3465. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3466. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3468. st_synchronize();
  3469. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3470. delay_keep_alive(1000);
  3471. serialecho_temperatures();
  3472. }
  3473. //enquecommand_P(PSTR("M190 S50"));
  3474. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3475. delay_keep_alive(1000);
  3476. serialecho_temperatures();
  3477. }
  3478. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3479. current_position[Z_AXIS] = 5;
  3480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3481. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3482. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3484. st_synchronize();
  3485. find_bed_induction_sensor_point_z(-1.f);
  3486. zero_z = current_position[Z_AXIS];
  3487. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3488. for (int i = 0; i<5; i++) {
  3489. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3490. custom_message_state = i + 2;
  3491. t_c = 60 + i * 10;
  3492. setTargetBed(t_c);
  3493. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3494. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3495. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3497. st_synchronize();
  3498. while (degBed() < t_c) {
  3499. delay_keep_alive(1000);
  3500. serialecho_temperatures();
  3501. }
  3502. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3503. delay_keep_alive(1000);
  3504. serialecho_temperatures();
  3505. }
  3506. current_position[Z_AXIS] = 5;
  3507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3508. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3509. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3511. st_synchronize();
  3512. find_bed_induction_sensor_point_z(-1.f);
  3513. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3514. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3515. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3516. }
  3517. custom_message_type = 0;
  3518. custom_message = false;
  3519. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3520. puts_P(_N("Temperature calibration done."));
  3521. disable_x();
  3522. disable_y();
  3523. disable_z();
  3524. disable_e0();
  3525. disable_e1();
  3526. disable_e2();
  3527. setTargetBed(0); //set bed target temperature back to 0
  3528. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3529. temp_cal_active = true;
  3530. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3531. lcd_update_enable(true);
  3532. lcd_update(2);
  3533. }
  3534. break;
  3535. #ifdef DIS
  3536. case 77:
  3537. {
  3538. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3539. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3540. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3541. float dimension_x = 40;
  3542. float dimension_y = 40;
  3543. int points_x = 40;
  3544. int points_y = 40;
  3545. float offset_x = 74;
  3546. float offset_y = 33;
  3547. if (code_seen('X')) dimension_x = code_value();
  3548. if (code_seen('Y')) dimension_y = code_value();
  3549. if (code_seen('XP')) points_x = code_value();
  3550. if (code_seen('YP')) points_y = code_value();
  3551. if (code_seen('XO')) offset_x = code_value();
  3552. if (code_seen('YO')) offset_y = code_value();
  3553. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3554. } break;
  3555. #endif
  3556. case 79: {
  3557. for (int i = 255; i > 0; i = i - 5) {
  3558. fanSpeed = i;
  3559. //delay_keep_alive(2000);
  3560. for (int j = 0; j < 100; j++) {
  3561. delay_keep_alive(100);
  3562. }
  3563. fan_speed[1];
  3564. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3565. }
  3566. }break;
  3567. /**
  3568. * G80: Mesh-based Z probe, probes a grid and produces a
  3569. * mesh to compensate for variable bed height
  3570. *
  3571. * The S0 report the points as below
  3572. *
  3573. * +----> X-axis
  3574. * |
  3575. * |
  3576. * v Y-axis
  3577. *
  3578. */
  3579. case 80:
  3580. #ifdef MK1BP
  3581. break;
  3582. #endif //MK1BP
  3583. case_G80:
  3584. {
  3585. mesh_bed_leveling_flag = true;
  3586. int8_t verbosity_level = 0;
  3587. static bool run = false;
  3588. if (code_seen('V')) {
  3589. // Just 'V' without a number counts as V1.
  3590. char c = strchr_pointer[1];
  3591. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3592. }
  3593. // Firstly check if we know where we are
  3594. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3595. // We don't know where we are! HOME!
  3596. // Push the commands to the front of the message queue in the reverse order!
  3597. // There shall be always enough space reserved for these commands.
  3598. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3599. repeatcommand_front(); // repeat G80 with all its parameters
  3600. enquecommand_front_P((PSTR("G28 W0")));
  3601. }
  3602. else {
  3603. mesh_bed_leveling_flag = false;
  3604. }
  3605. break;
  3606. }
  3607. bool temp_comp_start = true;
  3608. #ifdef PINDA_THERMISTOR
  3609. temp_comp_start = false;
  3610. #endif //PINDA_THERMISTOR
  3611. if (temp_comp_start)
  3612. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3613. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3614. temp_compensation_start();
  3615. run = true;
  3616. repeatcommand_front(); // repeat G80 with all its parameters
  3617. enquecommand_front_P((PSTR("G28 W0")));
  3618. }
  3619. else {
  3620. mesh_bed_leveling_flag = false;
  3621. }
  3622. break;
  3623. }
  3624. run = false;
  3625. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3626. mesh_bed_leveling_flag = false;
  3627. break;
  3628. }
  3629. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3630. bool custom_message_old = custom_message;
  3631. unsigned int custom_message_type_old = custom_message_type;
  3632. unsigned int custom_message_state_old = custom_message_state;
  3633. custom_message = true;
  3634. custom_message_type = 1;
  3635. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3636. lcd_update(1);
  3637. mbl.reset(); //reset mesh bed leveling
  3638. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3639. // consumed during the first movements following this statement.
  3640. babystep_undo();
  3641. // Cycle through all points and probe them
  3642. // First move up. During this first movement, the babystepping will be reverted.
  3643. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3645. // The move to the first calibration point.
  3646. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3647. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3648. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3649. #ifdef SUPPORT_VERBOSITY
  3650. if (verbosity_level >= 1) {
  3651. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3652. }
  3653. #endif //SUPPORT_VERBOSITY
  3654. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3656. // Wait until the move is finished.
  3657. st_synchronize();
  3658. int mesh_point = 0; //index number of calibration point
  3659. int ix = 0;
  3660. int iy = 0;
  3661. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3662. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3663. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3664. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3665. #ifdef SUPPORT_VERBOSITY
  3666. if (verbosity_level >= 1) {
  3667. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3668. }
  3669. #endif // SUPPORT_VERBOSITY
  3670. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3671. const char *kill_message = NULL;
  3672. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3673. // Get coords of a measuring point.
  3674. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3675. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3676. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3677. float z0 = 0.f;
  3678. if (has_z && mesh_point > 0) {
  3679. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3680. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3681. //#if 0
  3682. #ifdef SUPPORT_VERBOSITY
  3683. if (verbosity_level >= 1) {
  3684. SERIAL_ECHOLNPGM("");
  3685. SERIAL_ECHOPGM("Bed leveling, point: ");
  3686. MYSERIAL.print(mesh_point);
  3687. SERIAL_ECHOPGM(", calibration z: ");
  3688. MYSERIAL.print(z0, 5);
  3689. SERIAL_ECHOLNPGM("");
  3690. }
  3691. #endif // SUPPORT_VERBOSITY
  3692. //#endif
  3693. }
  3694. // Move Z up to MESH_HOME_Z_SEARCH.
  3695. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3697. st_synchronize();
  3698. // Move to XY position of the sensor point.
  3699. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3700. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3701. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3702. #ifdef SUPPORT_VERBOSITY
  3703. if (verbosity_level >= 1) {
  3704. SERIAL_PROTOCOL(mesh_point);
  3705. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3706. }
  3707. #endif // SUPPORT_VERBOSITY
  3708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3709. st_synchronize();
  3710. // Go down until endstop is hit
  3711. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3712. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3713. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3714. break;
  3715. }
  3716. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3717. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3718. break;
  3719. }
  3720. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3721. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3722. break;
  3723. }
  3724. #ifdef SUPPORT_VERBOSITY
  3725. if (verbosity_level >= 10) {
  3726. SERIAL_ECHOPGM("X: ");
  3727. MYSERIAL.print(current_position[X_AXIS], 5);
  3728. SERIAL_ECHOLNPGM("");
  3729. SERIAL_ECHOPGM("Y: ");
  3730. MYSERIAL.print(current_position[Y_AXIS], 5);
  3731. SERIAL_PROTOCOLPGM("\n");
  3732. }
  3733. #endif // SUPPORT_VERBOSITY
  3734. float offset_z = 0;
  3735. #ifdef PINDA_THERMISTOR
  3736. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3737. #endif //PINDA_THERMISTOR
  3738. // #ifdef SUPPORT_VERBOSITY
  3739. /* if (verbosity_level >= 1)
  3740. {
  3741. SERIAL_ECHOPGM("mesh bed leveling: ");
  3742. MYSERIAL.print(current_position[Z_AXIS], 5);
  3743. SERIAL_ECHOPGM(" offset: ");
  3744. MYSERIAL.print(offset_z, 5);
  3745. SERIAL_ECHOLNPGM("");
  3746. }*/
  3747. // #endif // SUPPORT_VERBOSITY
  3748. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3749. custom_message_state--;
  3750. mesh_point++;
  3751. lcd_update(1);
  3752. }
  3753. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3754. #ifdef SUPPORT_VERBOSITY
  3755. if (verbosity_level >= 20) {
  3756. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3757. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3758. MYSERIAL.print(current_position[Z_AXIS], 5);
  3759. }
  3760. #endif // SUPPORT_VERBOSITY
  3761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3762. st_synchronize();
  3763. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3764. kill(kill_message);
  3765. SERIAL_ECHOLNPGM("killed");
  3766. }
  3767. clean_up_after_endstop_move();
  3768. // SERIAL_ECHOLNPGM("clean up finished ");
  3769. bool apply_temp_comp = true;
  3770. #ifdef PINDA_THERMISTOR
  3771. apply_temp_comp = false;
  3772. #endif
  3773. if (apply_temp_comp)
  3774. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3775. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3776. // SERIAL_ECHOLNPGM("babystep applied");
  3777. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3778. #ifdef SUPPORT_VERBOSITY
  3779. if (verbosity_level >= 1) {
  3780. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3781. }
  3782. #endif // SUPPORT_VERBOSITY
  3783. for (uint8_t i = 0; i < 4; ++i) {
  3784. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3785. long correction = 0;
  3786. if (code_seen(codes[i]))
  3787. correction = code_value_long();
  3788. else if (eeprom_bed_correction_valid) {
  3789. unsigned char *addr = (i < 2) ?
  3790. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3791. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3792. correction = eeprom_read_int8(addr);
  3793. }
  3794. if (correction == 0)
  3795. continue;
  3796. float offset = float(correction) * 0.001f;
  3797. if (fabs(offset) > 0.101f) {
  3798. SERIAL_ERROR_START;
  3799. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3800. SERIAL_ECHO(offset);
  3801. SERIAL_ECHOLNPGM(" microns");
  3802. }
  3803. else {
  3804. switch (i) {
  3805. case 0:
  3806. for (uint8_t row = 0; row < 3; ++row) {
  3807. mbl.z_values[row][1] += 0.5f * offset;
  3808. mbl.z_values[row][0] += offset;
  3809. }
  3810. break;
  3811. case 1:
  3812. for (uint8_t row = 0; row < 3; ++row) {
  3813. mbl.z_values[row][1] += 0.5f * offset;
  3814. mbl.z_values[row][2] += offset;
  3815. }
  3816. break;
  3817. case 2:
  3818. for (uint8_t col = 0; col < 3; ++col) {
  3819. mbl.z_values[1][col] += 0.5f * offset;
  3820. mbl.z_values[0][col] += offset;
  3821. }
  3822. break;
  3823. case 3:
  3824. for (uint8_t col = 0; col < 3; ++col) {
  3825. mbl.z_values[1][col] += 0.5f * offset;
  3826. mbl.z_values[2][col] += offset;
  3827. }
  3828. break;
  3829. }
  3830. }
  3831. }
  3832. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3833. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3834. // SERIAL_ECHOLNPGM("Upsample finished");
  3835. mbl.active = 1; //activate mesh bed leveling
  3836. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3837. go_home_with_z_lift();
  3838. // SERIAL_ECHOLNPGM("Go home finished");
  3839. //unretract (after PINDA preheat retraction)
  3840. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3841. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3843. }
  3844. KEEPALIVE_STATE(NOT_BUSY);
  3845. // Restore custom message state
  3846. lcd_setstatuspgm(_T(WELCOME_MSG));
  3847. custom_message = custom_message_old;
  3848. custom_message_type = custom_message_type_old;
  3849. custom_message_state = custom_message_state_old;
  3850. mesh_bed_leveling_flag = false;
  3851. mesh_bed_run_from_menu = false;
  3852. lcd_update(2);
  3853. }
  3854. break;
  3855. /**
  3856. * G81: Print mesh bed leveling status and bed profile if activated
  3857. */
  3858. case 81:
  3859. if (mbl.active) {
  3860. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3861. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3862. SERIAL_PROTOCOLPGM(",");
  3863. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3864. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3865. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3866. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3867. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3868. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3869. SERIAL_PROTOCOLPGM(" ");
  3870. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3871. }
  3872. SERIAL_PROTOCOLPGM("\n");
  3873. }
  3874. }
  3875. else
  3876. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3877. break;
  3878. #if 0
  3879. /**
  3880. * G82: Single Z probe at current location
  3881. *
  3882. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3883. *
  3884. */
  3885. case 82:
  3886. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3887. setup_for_endstop_move();
  3888. find_bed_induction_sensor_point_z();
  3889. clean_up_after_endstop_move();
  3890. SERIAL_PROTOCOLPGM("Bed found at: ");
  3891. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3892. SERIAL_PROTOCOLPGM("\n");
  3893. break;
  3894. /**
  3895. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3896. */
  3897. case 83:
  3898. {
  3899. int babystepz = code_seen('S') ? code_value() : 0;
  3900. int BabyPosition = code_seen('P') ? code_value() : 0;
  3901. if (babystepz != 0) {
  3902. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3903. // Is the axis indexed starting with zero or one?
  3904. if (BabyPosition > 4) {
  3905. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3906. }else{
  3907. // Save it to the eeprom
  3908. babystepLoadZ = babystepz;
  3909. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3910. // adjust the Z
  3911. babystepsTodoZadd(babystepLoadZ);
  3912. }
  3913. }
  3914. }
  3915. break;
  3916. /**
  3917. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3918. */
  3919. case 84:
  3920. babystepsTodoZsubtract(babystepLoadZ);
  3921. // babystepLoadZ = 0;
  3922. break;
  3923. /**
  3924. * G85: Prusa3D specific: Pick best babystep
  3925. */
  3926. case 85:
  3927. lcd_pick_babystep();
  3928. break;
  3929. #endif
  3930. /**
  3931. * G86: Prusa3D specific: Disable babystep correction after home.
  3932. * This G-code will be performed at the start of a calibration script.
  3933. */
  3934. case 86:
  3935. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3936. break;
  3937. /**
  3938. * G87: Prusa3D specific: Enable babystep correction after home
  3939. * This G-code will be performed at the end of a calibration script.
  3940. */
  3941. case 87:
  3942. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3943. break;
  3944. /**
  3945. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3946. */
  3947. case 88:
  3948. break;
  3949. #endif // ENABLE_MESH_BED_LEVELING
  3950. case 90: // G90
  3951. relative_mode = false;
  3952. break;
  3953. case 91: // G91
  3954. relative_mode = true;
  3955. break;
  3956. case 92: // G92
  3957. if(!code_seen(axis_codes[E_AXIS]))
  3958. st_synchronize();
  3959. for(int8_t i=0; i < NUM_AXIS; i++) {
  3960. if(code_seen(axis_codes[i])) {
  3961. if(i == E_AXIS) {
  3962. current_position[i] = code_value();
  3963. plan_set_e_position(current_position[E_AXIS]);
  3964. }
  3965. else {
  3966. current_position[i] = code_value()+add_homing[i];
  3967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3968. }
  3969. }
  3970. }
  3971. break;
  3972. case 98: // G98 (activate farm mode)
  3973. farm_mode = 1;
  3974. PingTime = millis();
  3975. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3976. SilentModeMenu = SILENT_MODE_OFF;
  3977. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3978. break;
  3979. case 99: // G99 (deactivate farm mode)
  3980. farm_mode = 0;
  3981. lcd_printer_connected();
  3982. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3983. lcd_update(2);
  3984. break;
  3985. default:
  3986. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3987. }
  3988. } // end if(code_seen('G'))
  3989. else if(code_seen('M'))
  3990. {
  3991. int index;
  3992. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3993. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3994. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3995. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3996. } else
  3997. switch((int)code_value())
  3998. {
  3999. #ifdef ULTIPANEL
  4000. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4001. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4002. {
  4003. char *src = strchr_pointer + 2;
  4004. codenum = 0;
  4005. bool hasP = false, hasS = false;
  4006. if (code_seen('P')) {
  4007. codenum = code_value(); // milliseconds to wait
  4008. hasP = codenum > 0;
  4009. }
  4010. if (code_seen('S')) {
  4011. codenum = code_value() * 1000; // seconds to wait
  4012. hasS = codenum > 0;
  4013. }
  4014. starpos = strchr(src, '*');
  4015. if (starpos != NULL) *(starpos) = '\0';
  4016. while (*src == ' ') ++src;
  4017. if (!hasP && !hasS && *src != '\0') {
  4018. lcd_setstatus(src);
  4019. } else {
  4020. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4021. }
  4022. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4023. st_synchronize();
  4024. previous_millis_cmd = millis();
  4025. if (codenum > 0){
  4026. codenum += millis(); // keep track of when we started waiting
  4027. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4028. while(millis() < codenum && !lcd_clicked()){
  4029. manage_heater();
  4030. manage_inactivity(true);
  4031. lcd_update();
  4032. }
  4033. KEEPALIVE_STATE(IN_HANDLER);
  4034. lcd_ignore_click(false);
  4035. }else{
  4036. if (!lcd_detected())
  4037. break;
  4038. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4039. while(!lcd_clicked()){
  4040. manage_heater();
  4041. manage_inactivity(true);
  4042. lcd_update();
  4043. }
  4044. KEEPALIVE_STATE(IN_HANDLER);
  4045. }
  4046. if (IS_SD_PRINTING)
  4047. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4048. else
  4049. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4050. }
  4051. break;
  4052. #endif
  4053. case 17:
  4054. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4055. enable_x();
  4056. enable_y();
  4057. enable_z();
  4058. enable_e0();
  4059. enable_e1();
  4060. enable_e2();
  4061. break;
  4062. #ifdef SDSUPPORT
  4063. case 20: // M20 - list SD card
  4064. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4065. card.ls();
  4066. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4067. break;
  4068. case 21: // M21 - init SD card
  4069. card.initsd();
  4070. break;
  4071. case 22: //M22 - release SD card
  4072. card.release();
  4073. break;
  4074. case 23: //M23 - Select file
  4075. starpos = (strchr(strchr_pointer + 4,'*'));
  4076. if(starpos!=NULL)
  4077. *(starpos)='\0';
  4078. card.openFile(strchr_pointer + 4,true);
  4079. break;
  4080. case 24: //M24 - Start SD print
  4081. if (!card.paused)
  4082. failstats_reset_print();
  4083. card.startFileprint();
  4084. starttime=millis();
  4085. break;
  4086. case 25: //M25 - Pause SD print
  4087. card.pauseSDPrint();
  4088. break;
  4089. case 26: //M26 - Set SD index
  4090. if(card.cardOK && code_seen('S')) {
  4091. card.setIndex(code_value_long());
  4092. }
  4093. break;
  4094. case 27: //M27 - Get SD status
  4095. card.getStatus();
  4096. break;
  4097. case 28: //M28 - Start SD write
  4098. starpos = (strchr(strchr_pointer + 4,'*'));
  4099. if(starpos != NULL){
  4100. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4101. strchr_pointer = strchr(npos,' ') + 1;
  4102. *(starpos) = '\0';
  4103. }
  4104. card.openFile(strchr_pointer+4,false);
  4105. break;
  4106. case 29: //M29 - Stop SD write
  4107. //processed in write to file routine above
  4108. //card,saving = false;
  4109. break;
  4110. case 30: //M30 <filename> Delete File
  4111. if (card.cardOK){
  4112. card.closefile();
  4113. starpos = (strchr(strchr_pointer + 4,'*'));
  4114. if(starpos != NULL){
  4115. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4116. strchr_pointer = strchr(npos,' ') + 1;
  4117. *(starpos) = '\0';
  4118. }
  4119. card.removeFile(strchr_pointer + 4);
  4120. }
  4121. break;
  4122. case 32: //M32 - Select file and start SD print
  4123. {
  4124. if(card.sdprinting) {
  4125. st_synchronize();
  4126. }
  4127. starpos = (strchr(strchr_pointer + 4,'*'));
  4128. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4129. if(namestartpos==NULL)
  4130. {
  4131. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4132. }
  4133. else
  4134. namestartpos++; //to skip the '!'
  4135. if(starpos!=NULL)
  4136. *(starpos)='\0';
  4137. bool call_procedure=(code_seen('P'));
  4138. if(strchr_pointer>namestartpos)
  4139. call_procedure=false; //false alert, 'P' found within filename
  4140. if( card.cardOK )
  4141. {
  4142. card.openFile(namestartpos,true,!call_procedure);
  4143. if(code_seen('S'))
  4144. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4145. card.setIndex(code_value_long());
  4146. card.startFileprint();
  4147. if(!call_procedure)
  4148. starttime=millis(); //procedure calls count as normal print time.
  4149. }
  4150. } break;
  4151. case 928: //M928 - Start SD write
  4152. starpos = (strchr(strchr_pointer + 5,'*'));
  4153. if(starpos != NULL){
  4154. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4155. strchr_pointer = strchr(npos,' ') + 1;
  4156. *(starpos) = '\0';
  4157. }
  4158. card.openLogFile(strchr_pointer+5);
  4159. break;
  4160. #endif //SDSUPPORT
  4161. case 31: //M31 take time since the start of the SD print or an M109 command
  4162. {
  4163. stoptime=millis();
  4164. char time[30];
  4165. unsigned long t=(stoptime-starttime)/1000;
  4166. int sec,min;
  4167. min=t/60;
  4168. sec=t%60;
  4169. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4170. SERIAL_ECHO_START;
  4171. SERIAL_ECHOLN(time);
  4172. lcd_setstatus(time);
  4173. autotempShutdown();
  4174. }
  4175. break;
  4176. #ifndef _DISABLE_M42_M226
  4177. case 42: //M42 -Change pin status via gcode
  4178. if (code_seen('S'))
  4179. {
  4180. int pin_status = code_value();
  4181. int pin_number = LED_PIN;
  4182. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4183. pin_number = code_value();
  4184. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4185. {
  4186. if (sensitive_pins[i] == pin_number)
  4187. {
  4188. pin_number = -1;
  4189. break;
  4190. }
  4191. }
  4192. #if defined(FAN_PIN) && FAN_PIN > -1
  4193. if (pin_number == FAN_PIN)
  4194. fanSpeed = pin_status;
  4195. #endif
  4196. if (pin_number > -1)
  4197. {
  4198. pinMode(pin_number, OUTPUT);
  4199. digitalWrite(pin_number, pin_status);
  4200. analogWrite(pin_number, pin_status);
  4201. }
  4202. }
  4203. break;
  4204. #endif //_DISABLE_M42_M226
  4205. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4206. // Reset the baby step value and the baby step applied flag.
  4207. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4208. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4209. // Reset the skew and offset in both RAM and EEPROM.
  4210. reset_bed_offset_and_skew();
  4211. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4212. // the planner will not perform any adjustments in the XY plane.
  4213. // Wait for the motors to stop and update the current position with the absolute values.
  4214. world2machine_revert_to_uncorrected();
  4215. break;
  4216. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4217. {
  4218. int8_t verbosity_level = 0;
  4219. bool only_Z = code_seen('Z');
  4220. #ifdef SUPPORT_VERBOSITY
  4221. if (code_seen('V'))
  4222. {
  4223. // Just 'V' without a number counts as V1.
  4224. char c = strchr_pointer[1];
  4225. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4226. }
  4227. #endif //SUPPORT_VERBOSITY
  4228. gcode_M45(only_Z, verbosity_level);
  4229. }
  4230. break;
  4231. /*
  4232. case 46:
  4233. {
  4234. // M46: Prusa3D: Show the assigned IP address.
  4235. uint8_t ip[4];
  4236. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4237. if (hasIP) {
  4238. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4239. SERIAL_ECHO(int(ip[0]));
  4240. SERIAL_ECHOPGM(".");
  4241. SERIAL_ECHO(int(ip[1]));
  4242. SERIAL_ECHOPGM(".");
  4243. SERIAL_ECHO(int(ip[2]));
  4244. SERIAL_ECHOPGM(".");
  4245. SERIAL_ECHO(int(ip[3]));
  4246. SERIAL_ECHOLNPGM("");
  4247. } else {
  4248. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4249. }
  4250. break;
  4251. }
  4252. */
  4253. case 47:
  4254. // M47: Prusa3D: Show end stops dialog on the display.
  4255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4256. lcd_diag_show_end_stops();
  4257. KEEPALIVE_STATE(IN_HANDLER);
  4258. break;
  4259. #if 0
  4260. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4261. {
  4262. // Disable the default update procedure of the display. We will do a modal dialog.
  4263. lcd_update_enable(false);
  4264. // Let the planner use the uncorrected coordinates.
  4265. mbl.reset();
  4266. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4267. // the planner will not perform any adjustments in the XY plane.
  4268. // Wait for the motors to stop and update the current position with the absolute values.
  4269. world2machine_revert_to_uncorrected();
  4270. // Move the print head close to the bed.
  4271. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4273. st_synchronize();
  4274. // Home in the XY plane.
  4275. set_destination_to_current();
  4276. setup_for_endstop_move();
  4277. home_xy();
  4278. int8_t verbosity_level = 0;
  4279. if (code_seen('V')) {
  4280. // Just 'V' without a number counts as V1.
  4281. char c = strchr_pointer[1];
  4282. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4283. }
  4284. bool success = scan_bed_induction_points(verbosity_level);
  4285. clean_up_after_endstop_move();
  4286. // Print head up.
  4287. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4289. st_synchronize();
  4290. lcd_update_enable(true);
  4291. break;
  4292. }
  4293. #endif
  4294. // M48 Z-Probe repeatability measurement function.
  4295. //
  4296. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4297. //
  4298. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4299. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4300. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4301. // regenerated.
  4302. //
  4303. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4304. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4305. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4306. //
  4307. #ifdef ENABLE_AUTO_BED_LEVELING
  4308. #ifdef Z_PROBE_REPEATABILITY_TEST
  4309. case 48: // M48 Z-Probe repeatability
  4310. {
  4311. #if Z_MIN_PIN == -1
  4312. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4313. #endif
  4314. double sum=0.0;
  4315. double mean=0.0;
  4316. double sigma=0.0;
  4317. double sample_set[50];
  4318. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4319. double X_current, Y_current, Z_current;
  4320. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4321. if (code_seen('V') || code_seen('v')) {
  4322. verbose_level = code_value();
  4323. if (verbose_level<0 || verbose_level>4 ) {
  4324. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4325. goto Sigma_Exit;
  4326. }
  4327. }
  4328. if (verbose_level > 0) {
  4329. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4330. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4331. }
  4332. if (code_seen('n')) {
  4333. n_samples = code_value();
  4334. if (n_samples<4 || n_samples>50 ) {
  4335. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4336. goto Sigma_Exit;
  4337. }
  4338. }
  4339. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4340. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4341. Z_current = st_get_position_mm(Z_AXIS);
  4342. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4343. ext_position = st_get_position_mm(E_AXIS);
  4344. if (code_seen('X') || code_seen('x') ) {
  4345. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4346. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4347. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4348. goto Sigma_Exit;
  4349. }
  4350. }
  4351. if (code_seen('Y') || code_seen('y') ) {
  4352. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4353. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4354. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4355. goto Sigma_Exit;
  4356. }
  4357. }
  4358. if (code_seen('L') || code_seen('l') ) {
  4359. n_legs = code_value();
  4360. if ( n_legs==1 )
  4361. n_legs = 2;
  4362. if ( n_legs<0 || n_legs>15 ) {
  4363. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4364. goto Sigma_Exit;
  4365. }
  4366. }
  4367. //
  4368. // Do all the preliminary setup work. First raise the probe.
  4369. //
  4370. st_synchronize();
  4371. plan_bed_level_matrix.set_to_identity();
  4372. plan_buffer_line( X_current, Y_current, Z_start_location,
  4373. ext_position,
  4374. homing_feedrate[Z_AXIS]/60,
  4375. active_extruder);
  4376. st_synchronize();
  4377. //
  4378. // Now get everything to the specified probe point So we can safely do a probe to
  4379. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4380. // use that as a starting point for each probe.
  4381. //
  4382. if (verbose_level > 2)
  4383. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4384. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4385. ext_position,
  4386. homing_feedrate[X_AXIS]/60,
  4387. active_extruder);
  4388. st_synchronize();
  4389. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4390. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4391. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4392. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4393. //
  4394. // OK, do the inital probe to get us close to the bed.
  4395. // Then retrace the right amount and use that in subsequent probes
  4396. //
  4397. setup_for_endstop_move();
  4398. run_z_probe();
  4399. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4400. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4401. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4402. ext_position,
  4403. homing_feedrate[X_AXIS]/60,
  4404. active_extruder);
  4405. st_synchronize();
  4406. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4407. for( n=0; n<n_samples; n++) {
  4408. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4409. if ( n_legs) {
  4410. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4411. int rotational_direction, l;
  4412. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4413. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4414. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4415. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4416. //SERIAL_ECHOPAIR(" theta: ",theta);
  4417. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4418. //SERIAL_PROTOCOLLNPGM("");
  4419. for( l=0; l<n_legs-1; l++) {
  4420. if (rotational_direction==1)
  4421. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4422. else
  4423. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4424. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4425. if ( radius<0.0 )
  4426. radius = -radius;
  4427. X_current = X_probe_location + cos(theta) * radius;
  4428. Y_current = Y_probe_location + sin(theta) * radius;
  4429. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4430. X_current = X_MIN_POS;
  4431. if ( X_current>X_MAX_POS)
  4432. X_current = X_MAX_POS;
  4433. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4434. Y_current = Y_MIN_POS;
  4435. if ( Y_current>Y_MAX_POS)
  4436. Y_current = Y_MAX_POS;
  4437. if (verbose_level>3 ) {
  4438. SERIAL_ECHOPAIR("x: ", X_current);
  4439. SERIAL_ECHOPAIR("y: ", Y_current);
  4440. SERIAL_PROTOCOLLNPGM("");
  4441. }
  4442. do_blocking_move_to( X_current, Y_current, Z_current );
  4443. }
  4444. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4445. }
  4446. setup_for_endstop_move();
  4447. run_z_probe();
  4448. sample_set[n] = current_position[Z_AXIS];
  4449. //
  4450. // Get the current mean for the data points we have so far
  4451. //
  4452. sum=0.0;
  4453. for( j=0; j<=n; j++) {
  4454. sum = sum + sample_set[j];
  4455. }
  4456. mean = sum / (double (n+1));
  4457. //
  4458. // Now, use that mean to calculate the standard deviation for the
  4459. // data points we have so far
  4460. //
  4461. sum=0.0;
  4462. for( j=0; j<=n; j++) {
  4463. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4464. }
  4465. sigma = sqrt( sum / (double (n+1)) );
  4466. if (verbose_level > 1) {
  4467. SERIAL_PROTOCOL(n+1);
  4468. SERIAL_PROTOCOL(" of ");
  4469. SERIAL_PROTOCOL(n_samples);
  4470. SERIAL_PROTOCOLPGM(" z: ");
  4471. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4472. }
  4473. if (verbose_level > 2) {
  4474. SERIAL_PROTOCOL(" mean: ");
  4475. SERIAL_PROTOCOL_F(mean,6);
  4476. SERIAL_PROTOCOL(" sigma: ");
  4477. SERIAL_PROTOCOL_F(sigma,6);
  4478. }
  4479. if (verbose_level > 0)
  4480. SERIAL_PROTOCOLPGM("\n");
  4481. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4482. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4483. st_synchronize();
  4484. }
  4485. delay(1000);
  4486. clean_up_after_endstop_move();
  4487. // enable_endstops(true);
  4488. if (verbose_level > 0) {
  4489. SERIAL_PROTOCOLPGM("Mean: ");
  4490. SERIAL_PROTOCOL_F(mean, 6);
  4491. SERIAL_PROTOCOLPGM("\n");
  4492. }
  4493. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4494. SERIAL_PROTOCOL_F(sigma, 6);
  4495. SERIAL_PROTOCOLPGM("\n\n");
  4496. Sigma_Exit:
  4497. break;
  4498. }
  4499. #endif // Z_PROBE_REPEATABILITY_TEST
  4500. #endif // ENABLE_AUTO_BED_LEVELING
  4501. case 73: //M73 show percent done and time remaining
  4502. if(code_seen('P')) print_percent_done_normal = code_value();
  4503. if(code_seen('R')) print_time_remaining_normal = code_value();
  4504. if(code_seen('Q')) print_percent_done_silent = code_value();
  4505. if(code_seen('S')) print_time_remaining_silent = code_value();
  4506. {
  4507. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4508. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4509. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4510. }
  4511. break;
  4512. case 104: // M104
  4513. if(setTargetedHotend(104)){
  4514. break;
  4515. }
  4516. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4517. setWatch();
  4518. break;
  4519. case 112: // M112 -Emergency Stop
  4520. kill(_n(""), 3);
  4521. break;
  4522. case 140: // M140 set bed temp
  4523. if (code_seen('S')) setTargetBed(code_value());
  4524. break;
  4525. case 105 : // M105
  4526. if(setTargetedHotend(105)){
  4527. break;
  4528. }
  4529. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4530. SERIAL_PROTOCOLPGM("ok T:");
  4531. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4532. SERIAL_PROTOCOLPGM(" /");
  4533. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4534. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4535. SERIAL_PROTOCOLPGM(" B:");
  4536. SERIAL_PROTOCOL_F(degBed(),1);
  4537. SERIAL_PROTOCOLPGM(" /");
  4538. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4539. #endif //TEMP_BED_PIN
  4540. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4541. SERIAL_PROTOCOLPGM(" T");
  4542. SERIAL_PROTOCOL(cur_extruder);
  4543. SERIAL_PROTOCOLPGM(":");
  4544. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4545. SERIAL_PROTOCOLPGM(" /");
  4546. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4547. }
  4548. #else
  4549. SERIAL_ERROR_START;
  4550. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4551. #endif
  4552. SERIAL_PROTOCOLPGM(" @:");
  4553. #ifdef EXTRUDER_WATTS
  4554. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4555. SERIAL_PROTOCOLPGM("W");
  4556. #else
  4557. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4558. #endif
  4559. SERIAL_PROTOCOLPGM(" B@:");
  4560. #ifdef BED_WATTS
  4561. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4562. SERIAL_PROTOCOLPGM("W");
  4563. #else
  4564. SERIAL_PROTOCOL(getHeaterPower(-1));
  4565. #endif
  4566. #ifdef PINDA_THERMISTOR
  4567. SERIAL_PROTOCOLPGM(" P:");
  4568. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4569. #endif //PINDA_THERMISTOR
  4570. #ifdef AMBIENT_THERMISTOR
  4571. SERIAL_PROTOCOLPGM(" A:");
  4572. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4573. #endif //AMBIENT_THERMISTOR
  4574. #ifdef SHOW_TEMP_ADC_VALUES
  4575. {float raw = 0.0;
  4576. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4577. SERIAL_PROTOCOLPGM(" ADC B:");
  4578. SERIAL_PROTOCOL_F(degBed(),1);
  4579. SERIAL_PROTOCOLPGM("C->");
  4580. raw = rawBedTemp();
  4581. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4582. SERIAL_PROTOCOLPGM(" Rb->");
  4583. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4584. SERIAL_PROTOCOLPGM(" Rxb->");
  4585. SERIAL_PROTOCOL_F(raw, 5);
  4586. #endif
  4587. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4588. SERIAL_PROTOCOLPGM(" T");
  4589. SERIAL_PROTOCOL(cur_extruder);
  4590. SERIAL_PROTOCOLPGM(":");
  4591. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4592. SERIAL_PROTOCOLPGM("C->");
  4593. raw = rawHotendTemp(cur_extruder);
  4594. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4595. SERIAL_PROTOCOLPGM(" Rt");
  4596. SERIAL_PROTOCOL(cur_extruder);
  4597. SERIAL_PROTOCOLPGM("->");
  4598. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4599. SERIAL_PROTOCOLPGM(" Rx");
  4600. SERIAL_PROTOCOL(cur_extruder);
  4601. SERIAL_PROTOCOLPGM("->");
  4602. SERIAL_PROTOCOL_F(raw, 5);
  4603. }}
  4604. #endif
  4605. SERIAL_PROTOCOLLN("");
  4606. KEEPALIVE_STATE(NOT_BUSY);
  4607. return;
  4608. break;
  4609. case 109:
  4610. {// M109 - Wait for extruder heater to reach target.
  4611. if(setTargetedHotend(109)){
  4612. break;
  4613. }
  4614. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4615. heating_status = 1;
  4616. if (farm_mode) { prusa_statistics(1); };
  4617. #ifdef AUTOTEMP
  4618. autotemp_enabled=false;
  4619. #endif
  4620. if (code_seen('S')) {
  4621. setTargetHotend(code_value(), tmp_extruder);
  4622. CooldownNoWait = true;
  4623. } else if (code_seen('R')) {
  4624. setTargetHotend(code_value(), tmp_extruder);
  4625. CooldownNoWait = false;
  4626. }
  4627. #ifdef AUTOTEMP
  4628. if (code_seen('S')) autotemp_min=code_value();
  4629. if (code_seen('B')) autotemp_max=code_value();
  4630. if (code_seen('F'))
  4631. {
  4632. autotemp_factor=code_value();
  4633. autotemp_enabled=true;
  4634. }
  4635. #endif
  4636. setWatch();
  4637. codenum = millis();
  4638. /* See if we are heating up or cooling down */
  4639. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4640. KEEPALIVE_STATE(NOT_BUSY);
  4641. cancel_heatup = false;
  4642. wait_for_heater(codenum); //loops until target temperature is reached
  4643. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4644. KEEPALIVE_STATE(IN_HANDLER);
  4645. heating_status = 2;
  4646. if (farm_mode) { prusa_statistics(2); };
  4647. //starttime=millis();
  4648. previous_millis_cmd = millis();
  4649. }
  4650. break;
  4651. case 190: // M190 - Wait for bed heater to reach target.
  4652. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4653. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4654. heating_status = 3;
  4655. if (farm_mode) { prusa_statistics(1); };
  4656. if (code_seen('S'))
  4657. {
  4658. setTargetBed(code_value());
  4659. CooldownNoWait = true;
  4660. }
  4661. else if (code_seen('R'))
  4662. {
  4663. setTargetBed(code_value());
  4664. CooldownNoWait = false;
  4665. }
  4666. codenum = millis();
  4667. cancel_heatup = false;
  4668. target_direction = isHeatingBed(); // true if heating, false if cooling
  4669. KEEPALIVE_STATE(NOT_BUSY);
  4670. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4671. {
  4672. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4673. {
  4674. if (!farm_mode) {
  4675. float tt = degHotend(active_extruder);
  4676. SERIAL_PROTOCOLPGM("T:");
  4677. SERIAL_PROTOCOL(tt);
  4678. SERIAL_PROTOCOLPGM(" E:");
  4679. SERIAL_PROTOCOL((int)active_extruder);
  4680. SERIAL_PROTOCOLPGM(" B:");
  4681. SERIAL_PROTOCOL_F(degBed(), 1);
  4682. SERIAL_PROTOCOLLN("");
  4683. }
  4684. codenum = millis();
  4685. }
  4686. manage_heater();
  4687. manage_inactivity();
  4688. lcd_update();
  4689. }
  4690. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4691. KEEPALIVE_STATE(IN_HANDLER);
  4692. heating_status = 4;
  4693. previous_millis_cmd = millis();
  4694. #endif
  4695. break;
  4696. #if defined(FAN_PIN) && FAN_PIN > -1
  4697. case 106: //M106 Fan On
  4698. if (code_seen('S')){
  4699. fanSpeed=constrain(code_value(),0,255);
  4700. }
  4701. else {
  4702. fanSpeed=255;
  4703. }
  4704. break;
  4705. case 107: //M107 Fan Off
  4706. fanSpeed = 0;
  4707. break;
  4708. #endif //FAN_PIN
  4709. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4710. case 80: // M80 - Turn on Power Supply
  4711. SET_OUTPUT(PS_ON_PIN); //GND
  4712. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4713. // If you have a switch on suicide pin, this is useful
  4714. // if you want to start another print with suicide feature after
  4715. // a print without suicide...
  4716. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4717. SET_OUTPUT(SUICIDE_PIN);
  4718. WRITE(SUICIDE_PIN, HIGH);
  4719. #endif
  4720. #ifdef ULTIPANEL
  4721. powersupply = true;
  4722. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4723. lcd_update();
  4724. #endif
  4725. break;
  4726. #endif
  4727. case 81: // M81 - Turn off Power Supply
  4728. disable_heater();
  4729. st_synchronize();
  4730. disable_e0();
  4731. disable_e1();
  4732. disable_e2();
  4733. finishAndDisableSteppers();
  4734. fanSpeed = 0;
  4735. delay(1000); // Wait a little before to switch off
  4736. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4737. st_synchronize();
  4738. suicide();
  4739. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4740. SET_OUTPUT(PS_ON_PIN);
  4741. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4742. #endif
  4743. #ifdef ULTIPANEL
  4744. powersupply = false;
  4745. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4746. lcd_update();
  4747. #endif
  4748. break;
  4749. case 82:
  4750. axis_relative_modes[3] = false;
  4751. break;
  4752. case 83:
  4753. axis_relative_modes[3] = true;
  4754. break;
  4755. case 18: //compatibility
  4756. case 84: // M84
  4757. if(code_seen('S')){
  4758. stepper_inactive_time = code_value() * 1000;
  4759. }
  4760. else
  4761. {
  4762. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4763. if(all_axis)
  4764. {
  4765. st_synchronize();
  4766. disable_e0();
  4767. disable_e1();
  4768. disable_e2();
  4769. finishAndDisableSteppers();
  4770. }
  4771. else
  4772. {
  4773. st_synchronize();
  4774. if (code_seen('X')) disable_x();
  4775. if (code_seen('Y')) disable_y();
  4776. if (code_seen('Z')) disable_z();
  4777. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4778. if (code_seen('E')) {
  4779. disable_e0();
  4780. disable_e1();
  4781. disable_e2();
  4782. }
  4783. #endif
  4784. }
  4785. }
  4786. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4787. print_time_remaining_init();
  4788. snmm_filaments_used = 0;
  4789. break;
  4790. case 85: // M85
  4791. if(code_seen('S')) {
  4792. max_inactive_time = code_value() * 1000;
  4793. }
  4794. break;
  4795. #ifdef SAFETYTIMER
  4796. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4797. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4798. if (code_seen('S')) {
  4799. safetytimer_inactive_time = code_value() * 1000;
  4800. safetyTimer.start();
  4801. }
  4802. break;
  4803. #endif
  4804. case 92: // M92
  4805. for(int8_t i=0; i < NUM_AXIS; i++)
  4806. {
  4807. if(code_seen(axis_codes[i]))
  4808. {
  4809. if(i == 3) { // E
  4810. float value = code_value();
  4811. if(value < 20.0) {
  4812. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4813. max_jerk[E_AXIS] *= factor;
  4814. max_feedrate[i] *= factor;
  4815. axis_steps_per_sqr_second[i] *= factor;
  4816. }
  4817. axis_steps_per_unit[i] = value;
  4818. }
  4819. else {
  4820. axis_steps_per_unit[i] = code_value();
  4821. }
  4822. }
  4823. }
  4824. break;
  4825. case 110: // M110 - reset line pos
  4826. if (code_seen('N'))
  4827. gcode_LastN = code_value_long();
  4828. break;
  4829. #ifdef HOST_KEEPALIVE_FEATURE
  4830. case 113: // M113 - Get or set Host Keepalive interval
  4831. if (code_seen('S')) {
  4832. host_keepalive_interval = (uint8_t)code_value_short();
  4833. // NOMORE(host_keepalive_interval, 60);
  4834. }
  4835. else {
  4836. SERIAL_ECHO_START;
  4837. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4838. SERIAL_PROTOCOLLN("");
  4839. }
  4840. break;
  4841. #endif
  4842. case 115: // M115
  4843. if (code_seen('V')) {
  4844. // Report the Prusa version number.
  4845. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4846. } else if (code_seen('U')) {
  4847. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4848. // pause the print and ask the user to upgrade the firmware.
  4849. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4850. } else {
  4851. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4852. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4853. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4854. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4855. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4856. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4857. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4858. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4859. SERIAL_ECHOPGM(" UUID:");
  4860. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4861. }
  4862. break;
  4863. /* case 117: // M117 display message
  4864. starpos = (strchr(strchr_pointer + 5,'*'));
  4865. if(starpos!=NULL)
  4866. *(starpos)='\0';
  4867. lcd_setstatus(strchr_pointer + 5);
  4868. break;*/
  4869. case 114: // M114
  4870. gcode_M114();
  4871. break;
  4872. case 120: // M120
  4873. enable_endstops(false) ;
  4874. break;
  4875. case 121: // M121
  4876. enable_endstops(true) ;
  4877. break;
  4878. case 119: // M119
  4879. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4880. SERIAL_PROTOCOLLN("");
  4881. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4882. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4883. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4884. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4885. }else{
  4886. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4887. }
  4888. SERIAL_PROTOCOLLN("");
  4889. #endif
  4890. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4891. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4892. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4893. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4894. }else{
  4895. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4896. }
  4897. SERIAL_PROTOCOLLN("");
  4898. #endif
  4899. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4900. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4901. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4902. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4903. }else{
  4904. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4905. }
  4906. SERIAL_PROTOCOLLN("");
  4907. #endif
  4908. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4909. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4910. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4911. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4912. }else{
  4913. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4914. }
  4915. SERIAL_PROTOCOLLN("");
  4916. #endif
  4917. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4918. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4919. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4920. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4921. }else{
  4922. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4923. }
  4924. SERIAL_PROTOCOLLN("");
  4925. #endif
  4926. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4927. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4928. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4929. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4930. }else{
  4931. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4932. }
  4933. SERIAL_PROTOCOLLN("");
  4934. #endif
  4935. break;
  4936. //TODO: update for all axis, use for loop
  4937. #ifdef BLINKM
  4938. case 150: // M150
  4939. {
  4940. byte red;
  4941. byte grn;
  4942. byte blu;
  4943. if(code_seen('R')) red = code_value();
  4944. if(code_seen('U')) grn = code_value();
  4945. if(code_seen('B')) blu = code_value();
  4946. SendColors(red,grn,blu);
  4947. }
  4948. break;
  4949. #endif //BLINKM
  4950. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4951. {
  4952. tmp_extruder = active_extruder;
  4953. if(code_seen('T')) {
  4954. tmp_extruder = code_value();
  4955. if(tmp_extruder >= EXTRUDERS) {
  4956. SERIAL_ECHO_START;
  4957. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4958. break;
  4959. }
  4960. }
  4961. float area = .0;
  4962. if(code_seen('D')) {
  4963. float diameter = (float)code_value();
  4964. if (diameter == 0.0) {
  4965. // setting any extruder filament size disables volumetric on the assumption that
  4966. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4967. // for all extruders
  4968. volumetric_enabled = false;
  4969. } else {
  4970. filament_size[tmp_extruder] = (float)code_value();
  4971. // make sure all extruders have some sane value for the filament size
  4972. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4973. #if EXTRUDERS > 1
  4974. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4975. #if EXTRUDERS > 2
  4976. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4977. #endif
  4978. #endif
  4979. volumetric_enabled = true;
  4980. }
  4981. } else {
  4982. //reserved for setting filament diameter via UFID or filament measuring device
  4983. break;
  4984. }
  4985. calculate_extruder_multipliers();
  4986. }
  4987. break;
  4988. case 201: // M201
  4989. for(int8_t i=0; i < NUM_AXIS; i++)
  4990. {
  4991. if(code_seen(axis_codes[i]))
  4992. {
  4993. max_acceleration_units_per_sq_second[i] = code_value();
  4994. }
  4995. }
  4996. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4997. reset_acceleration_rates();
  4998. break;
  4999. #if 0 // Not used for Sprinter/grbl gen6
  5000. case 202: // M202
  5001. for(int8_t i=0; i < NUM_AXIS; i++) {
  5002. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5003. }
  5004. break;
  5005. #endif
  5006. case 203: // M203 max feedrate mm/sec
  5007. for(int8_t i=0; i < NUM_AXIS; i++) {
  5008. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  5009. }
  5010. break;
  5011. case 204: // M204 acclereration S normal moves T filmanent only moves
  5012. {
  5013. if(code_seen('S')) acceleration = code_value() ;
  5014. if(code_seen('T')) retract_acceleration = code_value() ;
  5015. }
  5016. break;
  5017. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5018. {
  5019. if(code_seen('S')) minimumfeedrate = code_value();
  5020. if(code_seen('T')) mintravelfeedrate = code_value();
  5021. if(code_seen('B')) minsegmenttime = code_value() ;
  5022. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5023. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5024. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5025. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5026. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5027. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5028. }
  5029. break;
  5030. case 206: // M206 additional homing offset
  5031. for(int8_t i=0; i < 3; i++)
  5032. {
  5033. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5034. }
  5035. break;
  5036. #ifdef FWRETRACT
  5037. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5038. {
  5039. if(code_seen('S'))
  5040. {
  5041. retract_length = code_value() ;
  5042. }
  5043. if(code_seen('F'))
  5044. {
  5045. retract_feedrate = code_value()/60 ;
  5046. }
  5047. if(code_seen('Z'))
  5048. {
  5049. retract_zlift = code_value() ;
  5050. }
  5051. }break;
  5052. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5053. {
  5054. if(code_seen('S'))
  5055. {
  5056. retract_recover_length = code_value() ;
  5057. }
  5058. if(code_seen('F'))
  5059. {
  5060. retract_recover_feedrate = code_value()/60 ;
  5061. }
  5062. }break;
  5063. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5064. {
  5065. if(code_seen('S'))
  5066. {
  5067. int t= code_value() ;
  5068. switch(t)
  5069. {
  5070. case 0:
  5071. {
  5072. autoretract_enabled=false;
  5073. retracted[0]=false;
  5074. #if EXTRUDERS > 1
  5075. retracted[1]=false;
  5076. #endif
  5077. #if EXTRUDERS > 2
  5078. retracted[2]=false;
  5079. #endif
  5080. }break;
  5081. case 1:
  5082. {
  5083. autoretract_enabled=true;
  5084. retracted[0]=false;
  5085. #if EXTRUDERS > 1
  5086. retracted[1]=false;
  5087. #endif
  5088. #if EXTRUDERS > 2
  5089. retracted[2]=false;
  5090. #endif
  5091. }break;
  5092. default:
  5093. SERIAL_ECHO_START;
  5094. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5095. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5096. SERIAL_ECHOLNPGM("\"(1)");
  5097. }
  5098. }
  5099. }break;
  5100. #endif // FWRETRACT
  5101. #if EXTRUDERS > 1
  5102. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5103. {
  5104. if(setTargetedHotend(218)){
  5105. break;
  5106. }
  5107. if(code_seen('X'))
  5108. {
  5109. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5110. }
  5111. if(code_seen('Y'))
  5112. {
  5113. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5114. }
  5115. SERIAL_ECHO_START;
  5116. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5117. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5118. {
  5119. SERIAL_ECHO(" ");
  5120. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5121. SERIAL_ECHO(",");
  5122. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5123. }
  5124. SERIAL_ECHOLN("");
  5125. }break;
  5126. #endif
  5127. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5128. {
  5129. if(code_seen('S'))
  5130. {
  5131. feedmultiply = code_value() ;
  5132. }
  5133. }
  5134. break;
  5135. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5136. {
  5137. if(code_seen('S'))
  5138. {
  5139. int tmp_code = code_value();
  5140. if (code_seen('T'))
  5141. {
  5142. if(setTargetedHotend(221)){
  5143. break;
  5144. }
  5145. extruder_multiply[tmp_extruder] = tmp_code;
  5146. }
  5147. else
  5148. {
  5149. extrudemultiply = tmp_code ;
  5150. }
  5151. }
  5152. calculate_extruder_multipliers();
  5153. }
  5154. break;
  5155. #ifndef _DISABLE_M42_M226
  5156. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5157. {
  5158. if(code_seen('P')){
  5159. int pin_number = code_value(); // pin number
  5160. int pin_state = -1; // required pin state - default is inverted
  5161. if(code_seen('S')) pin_state = code_value(); // required pin state
  5162. if(pin_state >= -1 && pin_state <= 1){
  5163. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5164. {
  5165. if (sensitive_pins[i] == pin_number)
  5166. {
  5167. pin_number = -1;
  5168. break;
  5169. }
  5170. }
  5171. if (pin_number > -1)
  5172. {
  5173. int target = LOW;
  5174. st_synchronize();
  5175. pinMode(pin_number, INPUT);
  5176. switch(pin_state){
  5177. case 1:
  5178. target = HIGH;
  5179. break;
  5180. case 0:
  5181. target = LOW;
  5182. break;
  5183. case -1:
  5184. target = !digitalRead(pin_number);
  5185. break;
  5186. }
  5187. while(digitalRead(pin_number) != target){
  5188. manage_heater();
  5189. manage_inactivity();
  5190. lcd_update();
  5191. }
  5192. }
  5193. }
  5194. }
  5195. }
  5196. break;
  5197. #endif //_DISABLE_M42_M226
  5198. #if NUM_SERVOS > 0
  5199. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5200. {
  5201. int servo_index = -1;
  5202. int servo_position = 0;
  5203. if (code_seen('P'))
  5204. servo_index = code_value();
  5205. if (code_seen('S')) {
  5206. servo_position = code_value();
  5207. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5208. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5209. servos[servo_index].attach(0);
  5210. #endif
  5211. servos[servo_index].write(servo_position);
  5212. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5213. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5214. servos[servo_index].detach();
  5215. #endif
  5216. }
  5217. else {
  5218. SERIAL_ECHO_START;
  5219. SERIAL_ECHO("Servo ");
  5220. SERIAL_ECHO(servo_index);
  5221. SERIAL_ECHOLN(" out of range");
  5222. }
  5223. }
  5224. else if (servo_index >= 0) {
  5225. SERIAL_PROTOCOL(_T(MSG_OK));
  5226. SERIAL_PROTOCOL(" Servo ");
  5227. SERIAL_PROTOCOL(servo_index);
  5228. SERIAL_PROTOCOL(": ");
  5229. SERIAL_PROTOCOL(servos[servo_index].read());
  5230. SERIAL_PROTOCOLLN("");
  5231. }
  5232. }
  5233. break;
  5234. #endif // NUM_SERVOS > 0
  5235. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5236. case 300: // M300
  5237. {
  5238. int beepS = code_seen('S') ? code_value() : 110;
  5239. int beepP = code_seen('P') ? code_value() : 1000;
  5240. if (beepS > 0)
  5241. {
  5242. #if BEEPER > 0
  5243. tone(BEEPER, beepS);
  5244. delay(beepP);
  5245. noTone(BEEPER);
  5246. #elif defined(ULTRALCD)
  5247. lcd_buzz(beepS, beepP);
  5248. #elif defined(LCD_USE_I2C_BUZZER)
  5249. lcd_buzz(beepP, beepS);
  5250. #endif
  5251. }
  5252. else
  5253. {
  5254. delay(beepP);
  5255. }
  5256. }
  5257. break;
  5258. #endif // M300
  5259. #ifdef PIDTEMP
  5260. case 301: // M301
  5261. {
  5262. if(code_seen('P')) Kp = code_value();
  5263. if(code_seen('I')) Ki = scalePID_i(code_value());
  5264. if(code_seen('D')) Kd = scalePID_d(code_value());
  5265. #ifdef PID_ADD_EXTRUSION_RATE
  5266. if(code_seen('C')) Kc = code_value();
  5267. #endif
  5268. updatePID();
  5269. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5270. SERIAL_PROTOCOL(" p:");
  5271. SERIAL_PROTOCOL(Kp);
  5272. SERIAL_PROTOCOL(" i:");
  5273. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5274. SERIAL_PROTOCOL(" d:");
  5275. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5276. #ifdef PID_ADD_EXTRUSION_RATE
  5277. SERIAL_PROTOCOL(" c:");
  5278. //Kc does not have scaling applied above, or in resetting defaults
  5279. SERIAL_PROTOCOL(Kc);
  5280. #endif
  5281. SERIAL_PROTOCOLLN("");
  5282. }
  5283. break;
  5284. #endif //PIDTEMP
  5285. #ifdef PIDTEMPBED
  5286. case 304: // M304
  5287. {
  5288. if(code_seen('P')) bedKp = code_value();
  5289. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5290. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5291. updatePID();
  5292. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5293. SERIAL_PROTOCOL(" p:");
  5294. SERIAL_PROTOCOL(bedKp);
  5295. SERIAL_PROTOCOL(" i:");
  5296. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5297. SERIAL_PROTOCOL(" d:");
  5298. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5299. SERIAL_PROTOCOLLN("");
  5300. }
  5301. break;
  5302. #endif //PIDTEMP
  5303. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5304. {
  5305. #ifdef CHDK
  5306. SET_OUTPUT(CHDK);
  5307. WRITE(CHDK, HIGH);
  5308. chdkHigh = millis();
  5309. chdkActive = true;
  5310. #else
  5311. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5312. const uint8_t NUM_PULSES=16;
  5313. const float PULSE_LENGTH=0.01524;
  5314. for(int i=0; i < NUM_PULSES; i++) {
  5315. WRITE(PHOTOGRAPH_PIN, HIGH);
  5316. _delay_ms(PULSE_LENGTH);
  5317. WRITE(PHOTOGRAPH_PIN, LOW);
  5318. _delay_ms(PULSE_LENGTH);
  5319. }
  5320. delay(7.33);
  5321. for(int i=0; i < NUM_PULSES; i++) {
  5322. WRITE(PHOTOGRAPH_PIN, HIGH);
  5323. _delay_ms(PULSE_LENGTH);
  5324. WRITE(PHOTOGRAPH_PIN, LOW);
  5325. _delay_ms(PULSE_LENGTH);
  5326. }
  5327. #endif
  5328. #endif //chdk end if
  5329. }
  5330. break;
  5331. #ifdef DOGLCD
  5332. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5333. {
  5334. if (code_seen('C')) {
  5335. lcd_setcontrast( ((int)code_value())&63 );
  5336. }
  5337. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5338. SERIAL_PROTOCOL(lcd_contrast);
  5339. SERIAL_PROTOCOLLN("");
  5340. }
  5341. break;
  5342. #endif
  5343. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5344. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5345. {
  5346. float temp = .0;
  5347. if (code_seen('S')) temp=code_value();
  5348. set_extrude_min_temp(temp);
  5349. }
  5350. break;
  5351. #endif
  5352. case 303: // M303 PID autotune
  5353. {
  5354. float temp = 150.0;
  5355. int e=0;
  5356. int c=5;
  5357. if (code_seen('E')) e=code_value();
  5358. if (e<0)
  5359. temp=70;
  5360. if (code_seen('S')) temp=code_value();
  5361. if (code_seen('C')) c=code_value();
  5362. PID_autotune(temp, e, c);
  5363. }
  5364. break;
  5365. case 400: // M400 finish all moves
  5366. {
  5367. st_synchronize();
  5368. }
  5369. break;
  5370. case 500: // M500 Store settings in EEPROM
  5371. {
  5372. Config_StoreSettings(EEPROM_OFFSET);
  5373. }
  5374. break;
  5375. case 501: // M501 Read settings from EEPROM
  5376. {
  5377. Config_RetrieveSettings(EEPROM_OFFSET);
  5378. }
  5379. break;
  5380. case 502: // M502 Revert to default settings
  5381. {
  5382. Config_ResetDefault();
  5383. }
  5384. break;
  5385. case 503: // M503 print settings currently in memory
  5386. {
  5387. Config_PrintSettings();
  5388. }
  5389. break;
  5390. case 509: //M509 Force language selection
  5391. {
  5392. lang_reset();
  5393. SERIAL_ECHO_START;
  5394. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5395. }
  5396. break;
  5397. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5398. case 540:
  5399. {
  5400. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5401. }
  5402. break;
  5403. #endif
  5404. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5405. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5406. {
  5407. float value;
  5408. if (code_seen('Z'))
  5409. {
  5410. value = code_value();
  5411. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5412. {
  5413. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5414. SERIAL_ECHO_START;
  5415. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5416. SERIAL_PROTOCOLLN("");
  5417. }
  5418. else
  5419. {
  5420. SERIAL_ECHO_START;
  5421. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5422. SERIAL_ECHORPGM(MSG_Z_MIN);
  5423. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5424. SERIAL_ECHORPGM(MSG_Z_MAX);
  5425. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5426. SERIAL_PROTOCOLLN("");
  5427. }
  5428. }
  5429. else
  5430. {
  5431. SERIAL_ECHO_START;
  5432. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5433. SERIAL_ECHO(-zprobe_zoffset);
  5434. SERIAL_PROTOCOLLN("");
  5435. }
  5436. break;
  5437. }
  5438. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5439. #ifdef FILAMENTCHANGEENABLE
  5440. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5441. {
  5442. #ifdef PAT9125
  5443. bool old_fsensor_enabled = fsensor_enabled;
  5444. fsensor_enabled = false; //temporary solution for unexpected restarting
  5445. #endif //PAT9125
  5446. st_synchronize();
  5447. float target[4];
  5448. float lastpos[4];
  5449. if (farm_mode)
  5450. {
  5451. prusa_statistics(22);
  5452. }
  5453. feedmultiplyBckp=feedmultiply;
  5454. int8_t TooLowZ = 0;
  5455. float HotendTempBckp = degTargetHotend(active_extruder);
  5456. int fanSpeedBckp = fanSpeed;
  5457. target[X_AXIS]=current_position[X_AXIS];
  5458. target[Y_AXIS]=current_position[Y_AXIS];
  5459. target[Z_AXIS]=current_position[Z_AXIS];
  5460. target[E_AXIS]=current_position[E_AXIS];
  5461. lastpos[X_AXIS]=current_position[X_AXIS];
  5462. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5463. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5464. lastpos[E_AXIS]=current_position[E_AXIS];
  5465. //Restract extruder
  5466. if(code_seen('E'))
  5467. {
  5468. target[E_AXIS]+= code_value();
  5469. }
  5470. else
  5471. {
  5472. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5473. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5474. #endif
  5475. }
  5476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5477. //Lift Z
  5478. if(code_seen('Z'))
  5479. {
  5480. target[Z_AXIS]+= code_value();
  5481. }
  5482. else
  5483. {
  5484. #ifdef FILAMENTCHANGE_ZADD
  5485. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5486. if(target[Z_AXIS] < 10){
  5487. target[Z_AXIS]+= 10 ;
  5488. TooLowZ = 1;
  5489. }else{
  5490. TooLowZ = 0;
  5491. }
  5492. #endif
  5493. }
  5494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5495. //Move XY to side
  5496. if(code_seen('X'))
  5497. {
  5498. target[X_AXIS]+= code_value();
  5499. }
  5500. else
  5501. {
  5502. #ifdef FILAMENTCHANGE_XPOS
  5503. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5504. #endif
  5505. }
  5506. if(code_seen('Y'))
  5507. {
  5508. target[Y_AXIS]= code_value();
  5509. }
  5510. else
  5511. {
  5512. #ifdef FILAMENTCHANGE_YPOS
  5513. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5514. #endif
  5515. }
  5516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5517. st_synchronize();
  5518. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5519. uint8_t cnt = 0;
  5520. int counterBeep = 0;
  5521. fanSpeed = 0;
  5522. unsigned long waiting_start_time = millis();
  5523. uint8_t wait_for_user_state = 0;
  5524. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5525. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5526. //cnt++;
  5527. manage_heater();
  5528. manage_inactivity(true);
  5529. /*#ifdef SNMM
  5530. target[E_AXIS] += 0.002;
  5531. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5532. #endif // SNMM*/
  5533. //if (cnt == 0)
  5534. {
  5535. #if BEEPER > 0
  5536. if (counterBeep == 500) {
  5537. counterBeep = 0;
  5538. }
  5539. SET_OUTPUT(BEEPER);
  5540. if (counterBeep == 0) {
  5541. WRITE(BEEPER, HIGH);
  5542. }
  5543. if (counterBeep == 20) {
  5544. WRITE(BEEPER, LOW);
  5545. }
  5546. counterBeep++;
  5547. #else
  5548. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5549. lcd_buzz(1000 / 6, 100);
  5550. #else
  5551. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5552. #endif
  5553. #endif
  5554. }
  5555. switch (wait_for_user_state) {
  5556. case 0:
  5557. delay_keep_alive(4);
  5558. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5559. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5560. wait_for_user_state = 1;
  5561. setTargetHotend(0, 0);
  5562. setTargetHotend(0, 1);
  5563. setTargetHotend(0, 2);
  5564. st_synchronize();
  5565. disable_e0();
  5566. disable_e1();
  5567. disable_e2();
  5568. }
  5569. break;
  5570. case 1:
  5571. delay_keep_alive(4);
  5572. if (lcd_clicked()) {
  5573. setTargetHotend(HotendTempBckp, active_extruder);
  5574. lcd_wait_for_heater();
  5575. wait_for_user_state = 2;
  5576. }
  5577. break;
  5578. case 2:
  5579. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5580. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5581. waiting_start_time = millis();
  5582. wait_for_user_state = 0;
  5583. }
  5584. else {
  5585. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5586. lcd.setCursor(1, 4);
  5587. lcd.print(ftostr3(degHotend(active_extruder)));
  5588. }
  5589. break;
  5590. }
  5591. }
  5592. WRITE(BEEPER, LOW);
  5593. lcd_change_fil_state = 0;
  5594. // Unload filament
  5595. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5596. KEEPALIVE_STATE(IN_HANDLER);
  5597. custom_message = true;
  5598. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5599. if (code_seen('L'))
  5600. {
  5601. target[E_AXIS] += code_value();
  5602. }
  5603. else
  5604. {
  5605. #ifdef SNMM
  5606. #else
  5607. #ifdef FILAMENTCHANGE_FINALRETRACT
  5608. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5609. #endif
  5610. #endif // SNMM
  5611. }
  5612. #ifdef SNMM
  5613. target[E_AXIS] += 12;
  5614. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5615. target[E_AXIS] += 6;
  5616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5617. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5618. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5619. st_synchronize();
  5620. target[E_AXIS] += (FIL_COOLING);
  5621. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5622. target[E_AXIS] += (FIL_COOLING*-1);
  5623. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5624. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5625. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5626. st_synchronize();
  5627. #else
  5628. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5629. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5630. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5631. st_synchronize();
  5632. #ifdef TMC2130
  5633. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5634. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5635. #else
  5636. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5637. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5638. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5639. #endif //TMC2130
  5640. target[E_AXIS] -= 45;
  5641. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5642. st_synchronize();
  5643. target[E_AXIS] -= 15;
  5644. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5645. st_synchronize();
  5646. target[E_AXIS] -= 20;
  5647. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5648. st_synchronize();
  5649. #ifdef TMC2130
  5650. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5651. #else
  5652. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5653. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5654. else st_current_set(2, tmp_motor_loud[2]);
  5655. #endif //TMC2130
  5656. #endif // SNMM
  5657. //finish moves
  5658. st_synchronize();
  5659. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5660. //disable extruder steppers so filament can be removed
  5661. disable_e0();
  5662. disable_e1();
  5663. disable_e2();
  5664. delay(100);
  5665. WRITE(BEEPER, HIGH);
  5666. counterBeep = 0;
  5667. while(!lcd_clicked() && (counterBeep < 50)) {
  5668. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5669. delay_keep_alive(100);
  5670. counterBeep++;
  5671. }
  5672. WRITE(BEEPER, LOW);
  5673. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5674. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5675. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5676. //lcd_return_to_status();
  5677. lcd_update_enable(true);
  5678. //Wait for user to insert filament
  5679. lcd_wait_interact();
  5680. //load_filament_time = millis();
  5681. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5682. #ifdef PAT9125
  5683. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5684. #endif //PAT9125
  5685. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5686. while(!lcd_clicked())
  5687. {
  5688. manage_heater();
  5689. manage_inactivity(true);
  5690. #ifdef PAT9125
  5691. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5692. {
  5693. tone(BEEPER, 1000);
  5694. delay_keep_alive(50);
  5695. noTone(BEEPER);
  5696. break;
  5697. }
  5698. #endif //PAT9125
  5699. /*#ifdef SNMM
  5700. target[E_AXIS] += 0.002;
  5701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5702. #endif // SNMM*/
  5703. }
  5704. #ifdef PAT9125
  5705. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5706. #endif //PAT9125
  5707. //WRITE(BEEPER, LOW);
  5708. KEEPALIVE_STATE(IN_HANDLER);
  5709. #ifdef SNMM
  5710. display_loading();
  5711. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5712. do {
  5713. target[E_AXIS] += 0.002;
  5714. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5715. delay_keep_alive(2);
  5716. } while (!lcd_clicked());
  5717. KEEPALIVE_STATE(IN_HANDLER);
  5718. /*if (millis() - load_filament_time > 2) {
  5719. load_filament_time = millis();
  5720. target[E_AXIS] += 0.001;
  5721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5722. }*/
  5723. //Filament inserted
  5724. //Feed the filament to the end of nozzle quickly
  5725. st_synchronize();
  5726. target[E_AXIS] += bowden_length[snmm_extruder];
  5727. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5728. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5729. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5730. target[E_AXIS] += 40;
  5731. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5732. target[E_AXIS] += 10;
  5733. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5734. #else
  5735. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5736. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5737. #endif // SNMM
  5738. //Extrude some filament
  5739. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5740. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5741. //Wait for user to check the state
  5742. lcd_change_fil_state = 0;
  5743. lcd_loading_filament();
  5744. tone(BEEPER, 500);
  5745. delay_keep_alive(50);
  5746. noTone(BEEPER);
  5747. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5748. lcd_change_fil_state = 0;
  5749. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5750. lcd_alright();
  5751. KEEPALIVE_STATE(IN_HANDLER);
  5752. switch(lcd_change_fil_state){
  5753. // Filament failed to load so load it again
  5754. case 2:
  5755. #ifdef SNMM
  5756. display_loading();
  5757. do {
  5758. target[E_AXIS] += 0.002;
  5759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5760. delay_keep_alive(2);
  5761. } while (!lcd_clicked());
  5762. st_synchronize();
  5763. target[E_AXIS] += bowden_length[snmm_extruder];
  5764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5765. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5766. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5767. target[E_AXIS] += 40;
  5768. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5769. target[E_AXIS] += 10;
  5770. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5771. #else
  5772. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5774. #endif
  5775. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5777. lcd_loading_filament();
  5778. break;
  5779. // Filament loaded properly but color is not clear
  5780. case 3:
  5781. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5782. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5783. lcd_loading_color();
  5784. break;
  5785. // Everything good
  5786. default:
  5787. lcd_change_success();
  5788. lcd_update_enable(true);
  5789. break;
  5790. }
  5791. }
  5792. //Not let's go back to print
  5793. fanSpeed = fanSpeedBckp;
  5794. //Feed a little of filament to stabilize pressure
  5795. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5796. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5797. //Retract
  5798. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5799. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5800. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5801. //Move XY back
  5802. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5803. //Move Z back
  5804. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5805. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5806. //Unretract
  5807. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5808. //Set E position to original
  5809. plan_set_e_position(lastpos[E_AXIS]);
  5810. //Recover feed rate
  5811. feedmultiply=feedmultiplyBckp;
  5812. char cmd[9];
  5813. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5814. enquecommand(cmd);
  5815. lcd_setstatuspgm(_T(WELCOME_MSG));
  5816. custom_message = false;
  5817. custom_message_type = 0;
  5818. #ifdef PAT9125
  5819. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5820. if (fsensor_M600)
  5821. {
  5822. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5823. st_synchronize();
  5824. while (!is_buffer_empty())
  5825. {
  5826. process_commands();
  5827. cmdqueue_pop_front();
  5828. }
  5829. KEEPALIVE_STATE(IN_HANDLER);
  5830. fsensor_enable();
  5831. fsensor_restore_print_and_continue();
  5832. }
  5833. #endif //PAT9125
  5834. }
  5835. break;
  5836. #endif //FILAMENTCHANGEENABLE
  5837. case 601: {
  5838. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5839. }
  5840. break;
  5841. case 602: {
  5842. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5843. }
  5844. break;
  5845. #ifdef PINDA_THERMISTOR
  5846. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5847. {
  5848. int set_target_pinda = 0;
  5849. if (code_seen('S')) {
  5850. set_target_pinda = code_value();
  5851. }
  5852. else {
  5853. break;
  5854. }
  5855. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5856. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5857. SERIAL_PROTOCOL(set_target_pinda);
  5858. SERIAL_PROTOCOLLN("");
  5859. codenum = millis();
  5860. cancel_heatup = false;
  5861. bool is_pinda_cooling = false;
  5862. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5863. is_pinda_cooling = true;
  5864. }
  5865. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5866. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5867. {
  5868. SERIAL_PROTOCOLPGM("P:");
  5869. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5870. SERIAL_PROTOCOLPGM("/");
  5871. SERIAL_PROTOCOL(set_target_pinda);
  5872. SERIAL_PROTOCOLLN("");
  5873. codenum = millis();
  5874. }
  5875. manage_heater();
  5876. manage_inactivity();
  5877. lcd_update();
  5878. }
  5879. LCD_MESSAGERPGM(_T(MSG_OK));
  5880. break;
  5881. }
  5882. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5883. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5884. uint8_t cal_status = calibration_status_pinda();
  5885. int16_t usteps = 0;
  5886. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5887. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5888. for (uint8_t i = 0; i < 6; i++)
  5889. {
  5890. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5891. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5892. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5893. SERIAL_PROTOCOLPGM(", ");
  5894. SERIAL_PROTOCOL(35 + (i * 5));
  5895. SERIAL_PROTOCOLPGM(", ");
  5896. SERIAL_PROTOCOL(usteps);
  5897. SERIAL_PROTOCOLPGM(", ");
  5898. SERIAL_PROTOCOL(mm * 1000);
  5899. SERIAL_PROTOCOLLN("");
  5900. }
  5901. }
  5902. else if (code_seen('!')) { // ! - Set factory default values
  5903. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5904. int16_t z_shift = 8; //40C - 20um - 8usteps
  5905. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5906. z_shift = 24; //45C - 60um - 24usteps
  5907. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5908. z_shift = 48; //50C - 120um - 48usteps
  5909. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5910. z_shift = 80; //55C - 200um - 80usteps
  5911. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5912. z_shift = 120; //60C - 300um - 120usteps
  5913. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5914. SERIAL_PROTOCOLLN("factory restored");
  5915. }
  5916. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5917. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5918. int16_t z_shift = 0;
  5919. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5920. SERIAL_PROTOCOLLN("zerorized");
  5921. }
  5922. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5923. int16_t usteps = code_value();
  5924. if (code_seen('I')) {
  5925. byte index = code_value();
  5926. if ((index >= 0) && (index < 5)) {
  5927. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5928. SERIAL_PROTOCOLLN("OK");
  5929. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5930. for (uint8_t i = 0; i < 6; i++)
  5931. {
  5932. usteps = 0;
  5933. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5934. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5935. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5936. SERIAL_PROTOCOLPGM(", ");
  5937. SERIAL_PROTOCOL(35 + (i * 5));
  5938. SERIAL_PROTOCOLPGM(", ");
  5939. SERIAL_PROTOCOL(usteps);
  5940. SERIAL_PROTOCOLPGM(", ");
  5941. SERIAL_PROTOCOL(mm * 1000);
  5942. SERIAL_PROTOCOLLN("");
  5943. }
  5944. }
  5945. }
  5946. }
  5947. else {
  5948. SERIAL_PROTOCOLPGM("no valid command");
  5949. }
  5950. break;
  5951. #endif //PINDA_THERMISTOR
  5952. #ifdef LIN_ADVANCE
  5953. case 900: // M900: Set LIN_ADVANCE options.
  5954. gcode_M900();
  5955. break;
  5956. #endif
  5957. case 907: // M907 Set digital trimpot motor current using axis codes.
  5958. {
  5959. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5960. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5961. if(code_seen('B')) st_current_set(4,code_value());
  5962. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5963. #endif
  5964. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5965. if(code_seen('X')) st_current_set(0, code_value());
  5966. #endif
  5967. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5968. if(code_seen('Z')) st_current_set(1, code_value());
  5969. #endif
  5970. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5971. if(code_seen('E')) st_current_set(2, code_value());
  5972. #endif
  5973. }
  5974. break;
  5975. case 908: // M908 Control digital trimpot directly.
  5976. {
  5977. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5978. uint8_t channel,current;
  5979. if(code_seen('P')) channel=code_value();
  5980. if(code_seen('S')) current=code_value();
  5981. digitalPotWrite(channel, current);
  5982. #endif
  5983. }
  5984. break;
  5985. #ifdef TMC2130
  5986. case 910: // M910 TMC2130 init
  5987. {
  5988. tmc2130_init();
  5989. }
  5990. break;
  5991. case 911: // M911 Set TMC2130 holding currents
  5992. {
  5993. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5994. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5995. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5996. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5997. }
  5998. break;
  5999. case 912: // M912 Set TMC2130 running currents
  6000. {
  6001. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6002. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6003. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6004. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6005. }
  6006. break;
  6007. case 913: // M913 Print TMC2130 currents
  6008. {
  6009. tmc2130_print_currents();
  6010. }
  6011. break;
  6012. case 914: // M914 Set normal mode
  6013. {
  6014. tmc2130_mode = TMC2130_MODE_NORMAL;
  6015. tmc2130_init();
  6016. }
  6017. break;
  6018. case 915: // M915 Set silent mode
  6019. {
  6020. tmc2130_mode = TMC2130_MODE_SILENT;
  6021. tmc2130_init();
  6022. }
  6023. break;
  6024. case 916: // M916 Set sg_thrs
  6025. {
  6026. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6027. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6028. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6029. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6030. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6031. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6032. }
  6033. break;
  6034. case 917: // M917 Set TMC2130 pwm_ampl
  6035. {
  6036. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6037. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6038. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6039. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6040. }
  6041. break;
  6042. case 918: // M918 Set TMC2130 pwm_grad
  6043. {
  6044. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6045. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6046. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6047. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6048. }
  6049. break;
  6050. #endif //TMC2130
  6051. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6052. {
  6053. #ifdef TMC2130
  6054. if(code_seen('E'))
  6055. {
  6056. uint16_t res_new = code_value();
  6057. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6058. {
  6059. st_synchronize();
  6060. uint8_t axis = E_AXIS;
  6061. uint16_t res = tmc2130_get_res(axis);
  6062. tmc2130_set_res(axis, res_new);
  6063. if (res_new > res)
  6064. {
  6065. uint16_t fac = (res_new / res);
  6066. axis_steps_per_unit[axis] *= fac;
  6067. position[E_AXIS] *= fac;
  6068. }
  6069. else
  6070. {
  6071. uint16_t fac = (res / res_new);
  6072. axis_steps_per_unit[axis] /= fac;
  6073. position[E_AXIS] /= fac;
  6074. }
  6075. }
  6076. }
  6077. #else //TMC2130
  6078. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6079. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6080. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6081. if(code_seen('B')) microstep_mode(4,code_value());
  6082. microstep_readings();
  6083. #endif
  6084. #endif //TMC2130
  6085. }
  6086. break;
  6087. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6088. {
  6089. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6090. if(code_seen('S')) switch((int)code_value())
  6091. {
  6092. case 1:
  6093. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6094. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6095. break;
  6096. case 2:
  6097. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6098. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6099. break;
  6100. }
  6101. microstep_readings();
  6102. #endif
  6103. }
  6104. break;
  6105. case 701: //M701: load filament
  6106. {
  6107. gcode_M701();
  6108. }
  6109. break;
  6110. case 702:
  6111. {
  6112. #ifdef SNMM
  6113. if (code_seen('U')) {
  6114. extr_unload_used(); //unload all filaments which were used in current print
  6115. }
  6116. else if (code_seen('C')) {
  6117. extr_unload(); //unload just current filament
  6118. }
  6119. else {
  6120. extr_unload_all(); //unload all filaments
  6121. }
  6122. #else
  6123. #ifdef PAT9125
  6124. bool old_fsensor_enabled = fsensor_enabled;
  6125. fsensor_enabled = false;
  6126. #endif //PAT9125
  6127. custom_message = true;
  6128. custom_message_type = 2;
  6129. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6130. // extr_unload2();
  6131. current_position[E_AXIS] -= 45;
  6132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6133. st_synchronize();
  6134. current_position[E_AXIS] -= 15;
  6135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6136. st_synchronize();
  6137. current_position[E_AXIS] -= 20;
  6138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6139. st_synchronize();
  6140. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6141. //disable extruder steppers so filament can be removed
  6142. disable_e0();
  6143. disable_e1();
  6144. disable_e2();
  6145. delay(100);
  6146. WRITE(BEEPER, HIGH);
  6147. uint8_t counterBeep = 0;
  6148. while (!lcd_clicked() && (counterBeep < 50)) {
  6149. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6150. delay_keep_alive(100);
  6151. counterBeep++;
  6152. }
  6153. WRITE(BEEPER, LOW);
  6154. st_synchronize();
  6155. while (lcd_clicked()) delay_keep_alive(100);
  6156. lcd_update_enable(true);
  6157. lcd_setstatuspgm(_T(WELCOME_MSG));
  6158. custom_message = false;
  6159. custom_message_type = 0;
  6160. #ifdef PAT9125
  6161. fsensor_enabled = old_fsensor_enabled;
  6162. #endif //PAT9125
  6163. #endif
  6164. }
  6165. break;
  6166. case 999: // M999: Restart after being stopped
  6167. Stopped = false;
  6168. lcd_reset_alert_level();
  6169. gcode_LastN = Stopped_gcode_LastN;
  6170. FlushSerialRequestResend();
  6171. break;
  6172. default:
  6173. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6174. }
  6175. } // end if(code_seen('M')) (end of M codes)
  6176. else if(code_seen('T'))
  6177. {
  6178. int index;
  6179. st_synchronize();
  6180. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6181. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6182. SERIAL_ECHOLNPGM("Invalid T code.");
  6183. }
  6184. else {
  6185. if (*(strchr_pointer + index) == '?') {
  6186. tmp_extruder = choose_extruder_menu();
  6187. }
  6188. else {
  6189. tmp_extruder = code_value();
  6190. }
  6191. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6192. #ifdef SNMM
  6193. #ifdef LIN_ADVANCE
  6194. if (snmm_extruder != tmp_extruder)
  6195. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6196. #endif
  6197. snmm_extruder = tmp_extruder;
  6198. delay(100);
  6199. disable_e0();
  6200. disable_e1();
  6201. disable_e2();
  6202. pinMode(E_MUX0_PIN, OUTPUT);
  6203. pinMode(E_MUX1_PIN, OUTPUT);
  6204. delay(100);
  6205. SERIAL_ECHO_START;
  6206. SERIAL_ECHO("T:");
  6207. SERIAL_ECHOLN((int)tmp_extruder);
  6208. switch (tmp_extruder) {
  6209. case 1:
  6210. WRITE(E_MUX0_PIN, HIGH);
  6211. WRITE(E_MUX1_PIN, LOW);
  6212. break;
  6213. case 2:
  6214. WRITE(E_MUX0_PIN, LOW);
  6215. WRITE(E_MUX1_PIN, HIGH);
  6216. break;
  6217. case 3:
  6218. WRITE(E_MUX0_PIN, HIGH);
  6219. WRITE(E_MUX1_PIN, HIGH);
  6220. break;
  6221. default:
  6222. WRITE(E_MUX0_PIN, LOW);
  6223. WRITE(E_MUX1_PIN, LOW);
  6224. break;
  6225. }
  6226. delay(100);
  6227. #else
  6228. if (tmp_extruder >= EXTRUDERS) {
  6229. SERIAL_ECHO_START;
  6230. SERIAL_ECHOPGM("T");
  6231. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6232. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6233. }
  6234. else {
  6235. boolean make_move = false;
  6236. if (code_seen('F')) {
  6237. make_move = true;
  6238. next_feedrate = code_value();
  6239. if (next_feedrate > 0.0) {
  6240. feedrate = next_feedrate;
  6241. }
  6242. }
  6243. #if EXTRUDERS > 1
  6244. if (tmp_extruder != active_extruder) {
  6245. // Save current position to return to after applying extruder offset
  6246. memcpy(destination, current_position, sizeof(destination));
  6247. // Offset extruder (only by XY)
  6248. int i;
  6249. for (i = 0; i < 2; i++) {
  6250. current_position[i] = current_position[i] -
  6251. extruder_offset[i][active_extruder] +
  6252. extruder_offset[i][tmp_extruder];
  6253. }
  6254. // Set the new active extruder and position
  6255. active_extruder = tmp_extruder;
  6256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6257. // Move to the old position if 'F' was in the parameters
  6258. if (make_move && Stopped == false) {
  6259. prepare_move();
  6260. }
  6261. }
  6262. #endif
  6263. SERIAL_ECHO_START;
  6264. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6265. SERIAL_PROTOCOLLN((int)active_extruder);
  6266. }
  6267. #endif
  6268. }
  6269. } // end if(code_seen('T')) (end of T codes)
  6270. #ifdef DEBUG_DCODES
  6271. else if (code_seen('D')) // D codes (debug)
  6272. {
  6273. switch((int)code_value())
  6274. {
  6275. case -1: // D-1 - Endless loop
  6276. dcode__1(); break;
  6277. case 0: // D0 - Reset
  6278. dcode_0(); break;
  6279. case 1: // D1 - Clear EEPROM
  6280. dcode_1(); break;
  6281. case 2: // D2 - Read/Write RAM
  6282. dcode_2(); break;
  6283. case 3: // D3 - Read/Write EEPROM
  6284. dcode_3(); break;
  6285. case 4: // D4 - Read/Write PIN
  6286. dcode_4(); break;
  6287. case 5: // D5 - Read/Write FLASH
  6288. // dcode_5(); break;
  6289. break;
  6290. case 6: // D6 - Read/Write external FLASH
  6291. dcode_6(); break;
  6292. case 7: // D7 - Read/Write Bootloader
  6293. dcode_7(); break;
  6294. case 8: // D8 - Read/Write PINDA
  6295. dcode_8(); break;
  6296. case 9: // D9 - Read/Write ADC
  6297. dcode_9(); break;
  6298. case 10: // D10 - XYZ calibration = OK
  6299. dcode_10(); break;
  6300. #ifdef TMC2130
  6301. case 2130: // D9125 - TMC2130
  6302. dcode_2130(); break;
  6303. #endif //TMC2130
  6304. #ifdef PAT9125
  6305. case 9125: // D9125 - PAT9125
  6306. dcode_9125(); break;
  6307. #endif //PAT9125
  6308. }
  6309. }
  6310. #endif //DEBUG_DCODES
  6311. else
  6312. {
  6313. SERIAL_ECHO_START;
  6314. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6315. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6316. SERIAL_ECHOLNPGM("\"(2)");
  6317. }
  6318. KEEPALIVE_STATE(NOT_BUSY);
  6319. ClearToSend();
  6320. }
  6321. void FlushSerialRequestResend()
  6322. {
  6323. //char cmdbuffer[bufindr][100]="Resend:";
  6324. MYSERIAL.flush();
  6325. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6326. }
  6327. // Confirm the execution of a command, if sent from a serial line.
  6328. // Execution of a command from a SD card will not be confirmed.
  6329. void ClearToSend()
  6330. {
  6331. previous_millis_cmd = millis();
  6332. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6333. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6334. }
  6335. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6336. void update_currents() {
  6337. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6338. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6339. float tmp_motor[3];
  6340. //SERIAL_ECHOLNPGM("Currents updated: ");
  6341. if (destination[Z_AXIS] < Z_SILENT) {
  6342. //SERIAL_ECHOLNPGM("LOW");
  6343. for (uint8_t i = 0; i < 3; i++) {
  6344. st_current_set(i, current_low[i]);
  6345. /*MYSERIAL.print(int(i));
  6346. SERIAL_ECHOPGM(": ");
  6347. MYSERIAL.println(current_low[i]);*/
  6348. }
  6349. }
  6350. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6351. //SERIAL_ECHOLNPGM("HIGH");
  6352. for (uint8_t i = 0; i < 3; i++) {
  6353. st_current_set(i, current_high[i]);
  6354. /*MYSERIAL.print(int(i));
  6355. SERIAL_ECHOPGM(": ");
  6356. MYSERIAL.println(current_high[i]);*/
  6357. }
  6358. }
  6359. else {
  6360. for (uint8_t i = 0; i < 3; i++) {
  6361. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6362. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6363. st_current_set(i, tmp_motor[i]);
  6364. /*MYSERIAL.print(int(i));
  6365. SERIAL_ECHOPGM(": ");
  6366. MYSERIAL.println(tmp_motor[i]);*/
  6367. }
  6368. }
  6369. }
  6370. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6371. void get_coordinates()
  6372. {
  6373. bool seen[4]={false,false,false,false};
  6374. for(int8_t i=0; i < NUM_AXIS; i++) {
  6375. if(code_seen(axis_codes[i]))
  6376. {
  6377. bool relative = axis_relative_modes[i] || relative_mode;
  6378. destination[i] = (float)code_value();
  6379. if (i == E_AXIS) {
  6380. float emult = extruder_multiplier[active_extruder];
  6381. if (emult != 1.) {
  6382. if (! relative) {
  6383. destination[i] -= current_position[i];
  6384. relative = true;
  6385. }
  6386. destination[i] *= emult;
  6387. }
  6388. }
  6389. if (relative)
  6390. destination[i] += current_position[i];
  6391. seen[i]=true;
  6392. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6393. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6394. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6395. }
  6396. else destination[i] = current_position[i]; //Are these else lines really needed?
  6397. }
  6398. if(code_seen('F')) {
  6399. next_feedrate = code_value();
  6400. #ifdef MAX_SILENT_FEEDRATE
  6401. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6402. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6403. #endif //MAX_SILENT_FEEDRATE
  6404. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6405. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6406. {
  6407. // float e_max_speed =
  6408. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6409. }
  6410. }
  6411. }
  6412. void get_arc_coordinates()
  6413. {
  6414. #ifdef SF_ARC_FIX
  6415. bool relative_mode_backup = relative_mode;
  6416. relative_mode = true;
  6417. #endif
  6418. get_coordinates();
  6419. #ifdef SF_ARC_FIX
  6420. relative_mode=relative_mode_backup;
  6421. #endif
  6422. if(code_seen('I')) {
  6423. offset[0] = code_value();
  6424. }
  6425. else {
  6426. offset[0] = 0.0;
  6427. }
  6428. if(code_seen('J')) {
  6429. offset[1] = code_value();
  6430. }
  6431. else {
  6432. offset[1] = 0.0;
  6433. }
  6434. }
  6435. void clamp_to_software_endstops(float target[3])
  6436. {
  6437. #ifdef DEBUG_DISABLE_SWLIMITS
  6438. return;
  6439. #endif //DEBUG_DISABLE_SWLIMITS
  6440. world2machine_clamp(target[0], target[1]);
  6441. // Clamp the Z coordinate.
  6442. if (min_software_endstops) {
  6443. float negative_z_offset = 0;
  6444. #ifdef ENABLE_AUTO_BED_LEVELING
  6445. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6446. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6447. #endif
  6448. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6449. }
  6450. if (max_software_endstops) {
  6451. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6452. }
  6453. }
  6454. #ifdef MESH_BED_LEVELING
  6455. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6456. float dx = x - current_position[X_AXIS];
  6457. float dy = y - current_position[Y_AXIS];
  6458. float dz = z - current_position[Z_AXIS];
  6459. int n_segments = 0;
  6460. if (mbl.active) {
  6461. float len = abs(dx) + abs(dy);
  6462. if (len > 0)
  6463. // Split to 3cm segments or shorter.
  6464. n_segments = int(ceil(len / 30.f));
  6465. }
  6466. if (n_segments > 1) {
  6467. float de = e - current_position[E_AXIS];
  6468. for (int i = 1; i < n_segments; ++ i) {
  6469. float t = float(i) / float(n_segments);
  6470. if (saved_printing || (mbl.active == false)) return;
  6471. plan_buffer_line(
  6472. current_position[X_AXIS] + t * dx,
  6473. current_position[Y_AXIS] + t * dy,
  6474. current_position[Z_AXIS] + t * dz,
  6475. current_position[E_AXIS] + t * de,
  6476. feed_rate, extruder);
  6477. }
  6478. }
  6479. // The rest of the path.
  6480. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6481. current_position[X_AXIS] = x;
  6482. current_position[Y_AXIS] = y;
  6483. current_position[Z_AXIS] = z;
  6484. current_position[E_AXIS] = e;
  6485. }
  6486. #endif // MESH_BED_LEVELING
  6487. void prepare_move()
  6488. {
  6489. clamp_to_software_endstops(destination);
  6490. previous_millis_cmd = millis();
  6491. // Do not use feedmultiply for E or Z only moves
  6492. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6493. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6494. }
  6495. else {
  6496. #ifdef MESH_BED_LEVELING
  6497. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6498. #else
  6499. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6500. #endif
  6501. }
  6502. for(int8_t i=0; i < NUM_AXIS; i++) {
  6503. current_position[i] = destination[i];
  6504. }
  6505. }
  6506. void prepare_arc_move(char isclockwise) {
  6507. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6508. // Trace the arc
  6509. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6510. // As far as the parser is concerned, the position is now == target. In reality the
  6511. // motion control system might still be processing the action and the real tool position
  6512. // in any intermediate location.
  6513. for(int8_t i=0; i < NUM_AXIS; i++) {
  6514. current_position[i] = destination[i];
  6515. }
  6516. previous_millis_cmd = millis();
  6517. }
  6518. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6519. #if defined(FAN_PIN)
  6520. #if CONTROLLERFAN_PIN == FAN_PIN
  6521. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6522. #endif
  6523. #endif
  6524. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6525. unsigned long lastMotorCheck = 0;
  6526. void controllerFan()
  6527. {
  6528. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6529. {
  6530. lastMotorCheck = millis();
  6531. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6532. #if EXTRUDERS > 2
  6533. || !READ(E2_ENABLE_PIN)
  6534. #endif
  6535. #if EXTRUDER > 1
  6536. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6537. || !READ(X2_ENABLE_PIN)
  6538. #endif
  6539. || !READ(E1_ENABLE_PIN)
  6540. #endif
  6541. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6542. {
  6543. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6544. }
  6545. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6546. {
  6547. digitalWrite(CONTROLLERFAN_PIN, 0);
  6548. analogWrite(CONTROLLERFAN_PIN, 0);
  6549. }
  6550. else
  6551. {
  6552. // allows digital or PWM fan output to be used (see M42 handling)
  6553. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6554. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6555. }
  6556. }
  6557. }
  6558. #endif
  6559. #ifdef TEMP_STAT_LEDS
  6560. static bool blue_led = false;
  6561. static bool red_led = false;
  6562. static uint32_t stat_update = 0;
  6563. void handle_status_leds(void) {
  6564. float max_temp = 0.0;
  6565. if(millis() > stat_update) {
  6566. stat_update += 500; // Update every 0.5s
  6567. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6568. max_temp = max(max_temp, degHotend(cur_extruder));
  6569. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6570. }
  6571. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6572. max_temp = max(max_temp, degTargetBed());
  6573. max_temp = max(max_temp, degBed());
  6574. #endif
  6575. if((max_temp > 55.0) && (red_led == false)) {
  6576. digitalWrite(STAT_LED_RED, 1);
  6577. digitalWrite(STAT_LED_BLUE, 0);
  6578. red_led = true;
  6579. blue_led = false;
  6580. }
  6581. if((max_temp < 54.0) && (blue_led == false)) {
  6582. digitalWrite(STAT_LED_RED, 0);
  6583. digitalWrite(STAT_LED_BLUE, 1);
  6584. red_led = false;
  6585. blue_led = true;
  6586. }
  6587. }
  6588. }
  6589. #endif
  6590. #ifdef SAFETYTIMER
  6591. /**
  6592. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6593. *
  6594. * Full screen blocking notification message is shown after heater turning off.
  6595. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6596. * damage print.
  6597. *
  6598. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6599. */
  6600. static void handleSafetyTimer()
  6601. {
  6602. #if (EXTRUDERS > 1)
  6603. #error Implemented only for one extruder.
  6604. #endif //(EXTRUDERS > 1)
  6605. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6606. {
  6607. safetyTimer.stop();
  6608. }
  6609. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6610. {
  6611. safetyTimer.start();
  6612. }
  6613. else if (safetyTimer.expired(safetytimer_inactive_time))
  6614. {
  6615. setTargetBed(0);
  6616. setTargetHotend(0, 0);
  6617. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6618. }
  6619. }
  6620. #endif //SAFETYTIMER
  6621. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6622. {
  6623. #ifdef PAT9125
  6624. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6625. {
  6626. if (fsensor_autoload_enabled)
  6627. {
  6628. if (fsensor_check_autoload())
  6629. {
  6630. if (degHotend0() > EXTRUDE_MINTEMP)
  6631. {
  6632. fsensor_autoload_check_stop();
  6633. tone(BEEPER, 1000);
  6634. delay_keep_alive(50);
  6635. noTone(BEEPER);
  6636. loading_flag = true;
  6637. enquecommand_front_P((PSTR("M701")));
  6638. }
  6639. else
  6640. {
  6641. lcd_update_enable(false);
  6642. lcd_implementation_clear();
  6643. lcd.setCursor(0, 0);
  6644. lcd_printPGM(_T(MSG_ERROR));
  6645. lcd.setCursor(0, 2);
  6646. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6647. delay(2000);
  6648. lcd_implementation_clear();
  6649. lcd_update_enable(true);
  6650. }
  6651. }
  6652. }
  6653. else
  6654. fsensor_autoload_check_start();
  6655. }
  6656. else
  6657. if (fsensor_autoload_enabled)
  6658. fsensor_autoload_check_stop();
  6659. #endif //PAT9125
  6660. #ifdef SAFETYTIMER
  6661. handleSafetyTimer();
  6662. #endif //SAFETYTIMER
  6663. #if defined(KILL_PIN) && KILL_PIN > -1
  6664. static int killCount = 0; // make the inactivity button a bit less responsive
  6665. const int KILL_DELAY = 10000;
  6666. #endif
  6667. if(buflen < (BUFSIZE-1)){
  6668. get_command();
  6669. }
  6670. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6671. if(max_inactive_time)
  6672. kill(_n(""), 4);
  6673. if(stepper_inactive_time) {
  6674. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6675. {
  6676. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6677. disable_x();
  6678. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6679. disable_y();
  6680. disable_z();
  6681. disable_e0();
  6682. disable_e1();
  6683. disable_e2();
  6684. }
  6685. }
  6686. }
  6687. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6688. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6689. {
  6690. chdkActive = false;
  6691. WRITE(CHDK, LOW);
  6692. }
  6693. #endif
  6694. #if defined(KILL_PIN) && KILL_PIN > -1
  6695. // Check if the kill button was pressed and wait just in case it was an accidental
  6696. // key kill key press
  6697. // -------------------------------------------------------------------------------
  6698. if( 0 == READ(KILL_PIN) )
  6699. {
  6700. killCount++;
  6701. }
  6702. else if (killCount > 0)
  6703. {
  6704. killCount--;
  6705. }
  6706. // Exceeded threshold and we can confirm that it was not accidental
  6707. // KILL the machine
  6708. // ----------------------------------------------------------------
  6709. if ( killCount >= KILL_DELAY)
  6710. {
  6711. kill("", 5);
  6712. }
  6713. #endif
  6714. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6715. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6716. #endif
  6717. #ifdef EXTRUDER_RUNOUT_PREVENT
  6718. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6719. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6720. {
  6721. bool oldstatus=READ(E0_ENABLE_PIN);
  6722. enable_e0();
  6723. float oldepos=current_position[E_AXIS];
  6724. float oldedes=destination[E_AXIS];
  6725. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6726. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6727. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6728. current_position[E_AXIS]=oldepos;
  6729. destination[E_AXIS]=oldedes;
  6730. plan_set_e_position(oldepos);
  6731. previous_millis_cmd=millis();
  6732. st_synchronize();
  6733. WRITE(E0_ENABLE_PIN,oldstatus);
  6734. }
  6735. #endif
  6736. #ifdef TEMP_STAT_LEDS
  6737. handle_status_leds();
  6738. #endif
  6739. check_axes_activity();
  6740. }
  6741. void kill(const char *full_screen_message, unsigned char id)
  6742. {
  6743. printf_P(_N("KILL: %d\n"), id);
  6744. //return;
  6745. cli(); // Stop interrupts
  6746. disable_heater();
  6747. disable_x();
  6748. // SERIAL_ECHOLNPGM("kill - disable Y");
  6749. disable_y();
  6750. disable_z();
  6751. disable_e0();
  6752. disable_e1();
  6753. disable_e2();
  6754. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6755. pinMode(PS_ON_PIN,INPUT);
  6756. #endif
  6757. SERIAL_ERROR_START;
  6758. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6759. if (full_screen_message != NULL) {
  6760. SERIAL_ERRORLNRPGM(full_screen_message);
  6761. lcd_display_message_fullscreen_P(full_screen_message);
  6762. } else {
  6763. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6764. }
  6765. // FMC small patch to update the LCD before ending
  6766. sei(); // enable interrupts
  6767. for ( int i=5; i--; lcd_update())
  6768. {
  6769. delay(200);
  6770. }
  6771. cli(); // disable interrupts
  6772. suicide();
  6773. while(1)
  6774. {
  6775. #ifdef WATCHDOG
  6776. wdt_reset();
  6777. #endif //WATCHDOG
  6778. /* Intentionally left empty */
  6779. } // Wait for reset
  6780. }
  6781. void Stop()
  6782. {
  6783. disable_heater();
  6784. if(Stopped == false) {
  6785. Stopped = true;
  6786. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6787. SERIAL_ERROR_START;
  6788. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6789. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6790. }
  6791. }
  6792. bool IsStopped() { return Stopped; };
  6793. #ifdef FAST_PWM_FAN
  6794. void setPwmFrequency(uint8_t pin, int val)
  6795. {
  6796. val &= 0x07;
  6797. switch(digitalPinToTimer(pin))
  6798. {
  6799. #if defined(TCCR0A)
  6800. case TIMER0A:
  6801. case TIMER0B:
  6802. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6803. // TCCR0B |= val;
  6804. break;
  6805. #endif
  6806. #if defined(TCCR1A)
  6807. case TIMER1A:
  6808. case TIMER1B:
  6809. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6810. // TCCR1B |= val;
  6811. break;
  6812. #endif
  6813. #if defined(TCCR2)
  6814. case TIMER2:
  6815. case TIMER2:
  6816. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6817. TCCR2 |= val;
  6818. break;
  6819. #endif
  6820. #if defined(TCCR2A)
  6821. case TIMER2A:
  6822. case TIMER2B:
  6823. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6824. TCCR2B |= val;
  6825. break;
  6826. #endif
  6827. #if defined(TCCR3A)
  6828. case TIMER3A:
  6829. case TIMER3B:
  6830. case TIMER3C:
  6831. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6832. TCCR3B |= val;
  6833. break;
  6834. #endif
  6835. #if defined(TCCR4A)
  6836. case TIMER4A:
  6837. case TIMER4B:
  6838. case TIMER4C:
  6839. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6840. TCCR4B |= val;
  6841. break;
  6842. #endif
  6843. #if defined(TCCR5A)
  6844. case TIMER5A:
  6845. case TIMER5B:
  6846. case TIMER5C:
  6847. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6848. TCCR5B |= val;
  6849. break;
  6850. #endif
  6851. }
  6852. }
  6853. #endif //FAST_PWM_FAN
  6854. bool setTargetedHotend(int code){
  6855. tmp_extruder = active_extruder;
  6856. if(code_seen('T')) {
  6857. tmp_extruder = code_value();
  6858. if(tmp_extruder >= EXTRUDERS) {
  6859. SERIAL_ECHO_START;
  6860. switch(code){
  6861. case 104:
  6862. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6863. break;
  6864. case 105:
  6865. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6866. break;
  6867. case 109:
  6868. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6869. break;
  6870. case 218:
  6871. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6872. break;
  6873. case 221:
  6874. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6875. break;
  6876. }
  6877. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6878. return true;
  6879. }
  6880. }
  6881. return false;
  6882. }
  6883. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6884. {
  6885. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6886. {
  6887. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6888. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6889. }
  6890. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6891. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6892. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6893. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6894. total_filament_used = 0;
  6895. }
  6896. float calculate_extruder_multiplier(float diameter) {
  6897. float out = 1.f;
  6898. if (volumetric_enabled && diameter > 0.f) {
  6899. float area = M_PI * diameter * diameter * 0.25;
  6900. out = 1.f / area;
  6901. }
  6902. if (extrudemultiply != 100)
  6903. out *= float(extrudemultiply) * 0.01f;
  6904. return out;
  6905. }
  6906. void calculate_extruder_multipliers() {
  6907. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6908. #if EXTRUDERS > 1
  6909. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6910. #if EXTRUDERS > 2
  6911. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6912. #endif
  6913. #endif
  6914. }
  6915. void delay_keep_alive(unsigned int ms)
  6916. {
  6917. for (;;) {
  6918. manage_heater();
  6919. // Manage inactivity, but don't disable steppers on timeout.
  6920. manage_inactivity(true);
  6921. lcd_update();
  6922. if (ms == 0)
  6923. break;
  6924. else if (ms >= 50) {
  6925. delay(50);
  6926. ms -= 50;
  6927. } else {
  6928. delay(ms);
  6929. ms = 0;
  6930. }
  6931. }
  6932. }
  6933. void wait_for_heater(long codenum) {
  6934. #ifdef TEMP_RESIDENCY_TIME
  6935. long residencyStart;
  6936. residencyStart = -1;
  6937. /* continue to loop until we have reached the target temp
  6938. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6939. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6940. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6941. #else
  6942. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6943. #endif //TEMP_RESIDENCY_TIME
  6944. if ((millis() - codenum) > 1000UL)
  6945. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6946. if (!farm_mode) {
  6947. SERIAL_PROTOCOLPGM("T:");
  6948. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6949. SERIAL_PROTOCOLPGM(" E:");
  6950. SERIAL_PROTOCOL((int)tmp_extruder);
  6951. #ifdef TEMP_RESIDENCY_TIME
  6952. SERIAL_PROTOCOLPGM(" W:");
  6953. if (residencyStart > -1)
  6954. {
  6955. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6956. SERIAL_PROTOCOLLN(codenum);
  6957. }
  6958. else
  6959. {
  6960. SERIAL_PROTOCOLLN("?");
  6961. }
  6962. }
  6963. #else
  6964. SERIAL_PROTOCOLLN("");
  6965. #endif
  6966. codenum = millis();
  6967. }
  6968. manage_heater();
  6969. manage_inactivity();
  6970. lcd_update();
  6971. #ifdef TEMP_RESIDENCY_TIME
  6972. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6973. or when current temp falls outside the hysteresis after target temp was reached */
  6974. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6975. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6976. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6977. {
  6978. residencyStart = millis();
  6979. }
  6980. #endif //TEMP_RESIDENCY_TIME
  6981. }
  6982. }
  6983. void check_babystep() {
  6984. int babystep_z;
  6985. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6986. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6987. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6988. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6989. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6990. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6991. lcd_update_enable(true);
  6992. }
  6993. }
  6994. #ifdef DIS
  6995. void d_setup()
  6996. {
  6997. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6998. pinMode(D_DATA, INPUT_PULLUP);
  6999. pinMode(D_REQUIRE, OUTPUT);
  7000. digitalWrite(D_REQUIRE, HIGH);
  7001. }
  7002. float d_ReadData()
  7003. {
  7004. int digit[13];
  7005. String mergeOutput;
  7006. float output;
  7007. digitalWrite(D_REQUIRE, HIGH);
  7008. for (int i = 0; i<13; i++)
  7009. {
  7010. for (int j = 0; j < 4; j++)
  7011. {
  7012. while (digitalRead(D_DATACLOCK) == LOW) {}
  7013. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7014. bitWrite(digit[i], j, digitalRead(D_DATA));
  7015. }
  7016. }
  7017. digitalWrite(D_REQUIRE, LOW);
  7018. mergeOutput = "";
  7019. output = 0;
  7020. for (int r = 5; r <= 10; r++) //Merge digits
  7021. {
  7022. mergeOutput += digit[r];
  7023. }
  7024. output = mergeOutput.toFloat();
  7025. if (digit[4] == 8) //Handle sign
  7026. {
  7027. output *= -1;
  7028. }
  7029. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7030. {
  7031. output /= 10;
  7032. }
  7033. return output;
  7034. }
  7035. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7036. int t1 = 0;
  7037. int t_delay = 0;
  7038. int digit[13];
  7039. int m;
  7040. char str[3];
  7041. //String mergeOutput;
  7042. char mergeOutput[15];
  7043. float output;
  7044. int mesh_point = 0; //index number of calibration point
  7045. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7046. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7047. float mesh_home_z_search = 4;
  7048. float row[x_points_num];
  7049. int ix = 0;
  7050. int iy = 0;
  7051. char* filename_wldsd = "wldsd.txt";
  7052. char data_wldsd[70];
  7053. char numb_wldsd[10];
  7054. d_setup();
  7055. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7056. // We don't know where we are! HOME!
  7057. // Push the commands to the front of the message queue in the reverse order!
  7058. // There shall be always enough space reserved for these commands.
  7059. repeatcommand_front(); // repeat G80 with all its parameters
  7060. enquecommand_front_P((PSTR("G28 W0")));
  7061. enquecommand_front_P((PSTR("G1 Z5")));
  7062. return;
  7063. }
  7064. bool custom_message_old = custom_message;
  7065. unsigned int custom_message_type_old = custom_message_type;
  7066. unsigned int custom_message_state_old = custom_message_state;
  7067. custom_message = true;
  7068. custom_message_type = 1;
  7069. custom_message_state = (x_points_num * y_points_num) + 10;
  7070. lcd_update(1);
  7071. mbl.reset();
  7072. babystep_undo();
  7073. card.openFile(filename_wldsd, false);
  7074. current_position[Z_AXIS] = mesh_home_z_search;
  7075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7076. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7077. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7078. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7079. setup_for_endstop_move(false);
  7080. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7081. SERIAL_PROTOCOL(x_points_num);
  7082. SERIAL_PROTOCOLPGM(",");
  7083. SERIAL_PROTOCOL(y_points_num);
  7084. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7085. SERIAL_PROTOCOL(mesh_home_z_search);
  7086. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7087. SERIAL_PROTOCOL(x_dimension);
  7088. SERIAL_PROTOCOLPGM(",");
  7089. SERIAL_PROTOCOL(y_dimension);
  7090. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7091. while (mesh_point != x_points_num * y_points_num) {
  7092. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7093. iy = mesh_point / x_points_num;
  7094. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7095. float z0 = 0.f;
  7096. current_position[Z_AXIS] = mesh_home_z_search;
  7097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7098. st_synchronize();
  7099. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7100. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7102. st_synchronize();
  7103. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7104. break;
  7105. card.closefile();
  7106. }
  7107. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7108. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7109. //strcat(data_wldsd, numb_wldsd);
  7110. //MYSERIAL.println(data_wldsd);
  7111. //delay(1000);
  7112. //delay(3000);
  7113. //t1 = millis();
  7114. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7115. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7116. memset(digit, 0, sizeof(digit));
  7117. //cli();
  7118. digitalWrite(D_REQUIRE, LOW);
  7119. for (int i = 0; i<13; i++)
  7120. {
  7121. //t1 = millis();
  7122. for (int j = 0; j < 4; j++)
  7123. {
  7124. while (digitalRead(D_DATACLOCK) == LOW) {}
  7125. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7126. bitWrite(digit[i], j, digitalRead(D_DATA));
  7127. }
  7128. //t_delay = (millis() - t1);
  7129. //SERIAL_PROTOCOLPGM(" ");
  7130. //SERIAL_PROTOCOL_F(t_delay, 5);
  7131. //SERIAL_PROTOCOLPGM(" ");
  7132. }
  7133. //sei();
  7134. digitalWrite(D_REQUIRE, HIGH);
  7135. mergeOutput[0] = '\0';
  7136. output = 0;
  7137. for (int r = 5; r <= 10; r++) //Merge digits
  7138. {
  7139. sprintf(str, "%d", digit[r]);
  7140. strcat(mergeOutput, str);
  7141. }
  7142. output = atof(mergeOutput);
  7143. if (digit[4] == 8) //Handle sign
  7144. {
  7145. output *= -1;
  7146. }
  7147. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7148. {
  7149. output *= 0.1;
  7150. }
  7151. //output = d_ReadData();
  7152. //row[ix] = current_position[Z_AXIS];
  7153. memset(data_wldsd, 0, sizeof(data_wldsd));
  7154. for (int i = 0; i <3; i++) {
  7155. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7156. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7157. strcat(data_wldsd, numb_wldsd);
  7158. strcat(data_wldsd, ";");
  7159. }
  7160. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7161. dtostrf(output, 8, 5, numb_wldsd);
  7162. strcat(data_wldsd, numb_wldsd);
  7163. //strcat(data_wldsd, ";");
  7164. card.write_command(data_wldsd);
  7165. //row[ix] = d_ReadData();
  7166. row[ix] = output; // current_position[Z_AXIS];
  7167. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7168. for (int i = 0; i < x_points_num; i++) {
  7169. SERIAL_PROTOCOLPGM(" ");
  7170. SERIAL_PROTOCOL_F(row[i], 5);
  7171. }
  7172. SERIAL_PROTOCOLPGM("\n");
  7173. }
  7174. custom_message_state--;
  7175. mesh_point++;
  7176. lcd_update(1);
  7177. }
  7178. card.closefile();
  7179. }
  7180. #endif
  7181. void temp_compensation_start() {
  7182. custom_message = true;
  7183. custom_message_type = 5;
  7184. custom_message_state = PINDA_HEAT_T + 1;
  7185. lcd_update(2);
  7186. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7187. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7188. }
  7189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7190. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7191. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7192. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7194. st_synchronize();
  7195. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7196. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7197. delay_keep_alive(1000);
  7198. custom_message_state = PINDA_HEAT_T - i;
  7199. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7200. else lcd_update(1);
  7201. }
  7202. custom_message_type = 0;
  7203. custom_message_state = 0;
  7204. custom_message = false;
  7205. }
  7206. void temp_compensation_apply() {
  7207. int i_add;
  7208. int compensation_value;
  7209. int z_shift = 0;
  7210. float z_shift_mm;
  7211. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7212. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7213. i_add = (target_temperature_bed - 60) / 10;
  7214. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7215. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7216. }else {
  7217. //interpolation
  7218. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7219. }
  7220. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7221. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7222. st_synchronize();
  7223. plan_set_z_position(current_position[Z_AXIS]);
  7224. }
  7225. else {
  7226. //we have no temp compensation data
  7227. }
  7228. }
  7229. float temp_comp_interpolation(float inp_temperature) {
  7230. //cubic spline interpolation
  7231. int n, i, j, k;
  7232. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7233. int shift[10];
  7234. int temp_C[10];
  7235. n = 6; //number of measured points
  7236. shift[0] = 0;
  7237. for (i = 0; i < n; i++) {
  7238. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7239. temp_C[i] = 50 + i * 10; //temperature in C
  7240. #ifdef PINDA_THERMISTOR
  7241. temp_C[i] = 35 + i * 5; //temperature in C
  7242. #else
  7243. temp_C[i] = 50 + i * 10; //temperature in C
  7244. #endif
  7245. x[i] = (float)temp_C[i];
  7246. f[i] = (float)shift[i];
  7247. }
  7248. if (inp_temperature < x[0]) return 0;
  7249. for (i = n - 1; i>0; i--) {
  7250. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7251. h[i - 1] = x[i] - x[i - 1];
  7252. }
  7253. //*********** formation of h, s , f matrix **************
  7254. for (i = 1; i<n - 1; i++) {
  7255. m[i][i] = 2 * (h[i - 1] + h[i]);
  7256. if (i != 1) {
  7257. m[i][i - 1] = h[i - 1];
  7258. m[i - 1][i] = h[i - 1];
  7259. }
  7260. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7261. }
  7262. //*********** forward elimination **************
  7263. for (i = 1; i<n - 2; i++) {
  7264. temp = (m[i + 1][i] / m[i][i]);
  7265. for (j = 1; j <= n - 1; j++)
  7266. m[i + 1][j] -= temp*m[i][j];
  7267. }
  7268. //*********** backward substitution *********
  7269. for (i = n - 2; i>0; i--) {
  7270. sum = 0;
  7271. for (j = i; j <= n - 2; j++)
  7272. sum += m[i][j] * s[j];
  7273. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7274. }
  7275. for (i = 0; i<n - 1; i++)
  7276. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7277. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7278. b = s[i] / 2;
  7279. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7280. d = f[i];
  7281. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7282. }
  7283. return sum;
  7284. }
  7285. #ifdef PINDA_THERMISTOR
  7286. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7287. {
  7288. if (!temp_cal_active) return 0;
  7289. if (!calibration_status_pinda()) return 0;
  7290. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7291. }
  7292. #endif //PINDA_THERMISTOR
  7293. void long_pause() //long pause print
  7294. {
  7295. st_synchronize();
  7296. //save currently set parameters to global variables
  7297. saved_feedmultiply = feedmultiply;
  7298. HotendTempBckp = degTargetHotend(active_extruder);
  7299. fanSpeedBckp = fanSpeed;
  7300. start_pause_print = millis();
  7301. //save position
  7302. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7303. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7304. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7305. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7306. //retract
  7307. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7308. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7309. //lift z
  7310. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7311. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7312. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7313. //set nozzle target temperature to 0
  7314. setTargetHotend(0, 0);
  7315. setTargetHotend(0, 1);
  7316. setTargetHotend(0, 2);
  7317. //Move XY to side
  7318. current_position[X_AXIS] = X_PAUSE_POS;
  7319. current_position[Y_AXIS] = Y_PAUSE_POS;
  7320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7321. // Turn off the print fan
  7322. fanSpeed = 0;
  7323. st_synchronize();
  7324. }
  7325. void serialecho_temperatures() {
  7326. float tt = degHotend(active_extruder);
  7327. SERIAL_PROTOCOLPGM("T:");
  7328. SERIAL_PROTOCOL(tt);
  7329. SERIAL_PROTOCOLPGM(" E:");
  7330. SERIAL_PROTOCOL((int)active_extruder);
  7331. SERIAL_PROTOCOLPGM(" B:");
  7332. SERIAL_PROTOCOL_F(degBed(), 1);
  7333. SERIAL_PROTOCOLLN("");
  7334. }
  7335. extern uint32_t sdpos_atomic;
  7336. #ifdef UVLO_SUPPORT
  7337. void uvlo_()
  7338. {
  7339. unsigned long time_start = millis();
  7340. bool sd_print = card.sdprinting;
  7341. // Conserve power as soon as possible.
  7342. disable_x();
  7343. disable_y();
  7344. #ifdef TMC2130
  7345. tmc2130_set_current_h(Z_AXIS, 20);
  7346. tmc2130_set_current_r(Z_AXIS, 20);
  7347. tmc2130_set_current_h(E_AXIS, 20);
  7348. tmc2130_set_current_r(E_AXIS, 20);
  7349. #endif //TMC2130
  7350. // Indicate that the interrupt has been triggered.
  7351. // SERIAL_ECHOLNPGM("UVLO");
  7352. // Read out the current Z motor microstep counter. This will be later used
  7353. // for reaching the zero full step before powering off.
  7354. uint16_t z_microsteps = 0;
  7355. #ifdef TMC2130
  7356. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7357. #endif //TMC2130
  7358. // Calculate the file position, from which to resume this print.
  7359. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7360. {
  7361. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7362. sd_position -= sdlen_planner;
  7363. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7364. sd_position -= sdlen_cmdqueue;
  7365. if (sd_position < 0) sd_position = 0;
  7366. }
  7367. // Backup the feedrate in mm/min.
  7368. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7369. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7370. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7371. // are in action.
  7372. planner_abort_hard();
  7373. // Store the current extruder position.
  7374. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7375. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7376. // Clean the input command queue.
  7377. cmdqueue_reset();
  7378. card.sdprinting = false;
  7379. // card.closefile();
  7380. // Enable stepper driver interrupt to move Z axis.
  7381. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7382. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7383. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7384. sei();
  7385. plan_buffer_line(
  7386. current_position[X_AXIS],
  7387. current_position[Y_AXIS],
  7388. current_position[Z_AXIS],
  7389. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7390. 95, active_extruder);
  7391. st_synchronize();
  7392. disable_e0();
  7393. plan_buffer_line(
  7394. current_position[X_AXIS],
  7395. current_position[Y_AXIS],
  7396. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7397. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7398. 40, active_extruder);
  7399. st_synchronize();
  7400. disable_e0();
  7401. plan_buffer_line(
  7402. current_position[X_AXIS],
  7403. current_position[Y_AXIS],
  7404. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7405. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7406. 40, active_extruder);
  7407. st_synchronize();
  7408. disable_e0();
  7409. disable_z();
  7410. // Move Z up to the next 0th full step.
  7411. // Write the file position.
  7412. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7413. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7414. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7415. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7416. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7417. // Scale the z value to 1u resolution.
  7418. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7419. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7420. }
  7421. // Read out the current Z motor microstep counter. This will be later used
  7422. // for reaching the zero full step before powering off.
  7423. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7424. // Store the current position.
  7425. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7426. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7427. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7428. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7429. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7430. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7431. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7432. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7433. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7434. #if EXTRUDERS > 1
  7435. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7436. #if EXTRUDERS > 2
  7437. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7438. #endif
  7439. #endif
  7440. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7441. // Finaly store the "power outage" flag.
  7442. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7443. st_synchronize();
  7444. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7445. disable_z();
  7446. // Increment power failure counter
  7447. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7448. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7449. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7450. #if 0
  7451. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7452. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7454. st_synchronize();
  7455. #endif
  7456. cli();
  7457. volatile unsigned int ppcount = 0;
  7458. SET_OUTPUT(BEEPER);
  7459. WRITE(BEEPER, HIGH);
  7460. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7461. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7462. }
  7463. WRITE(BEEPER, LOW);
  7464. while(1){
  7465. #if 1
  7466. WRITE(BEEPER, LOW);
  7467. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7468. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7469. }
  7470. #endif
  7471. };
  7472. }
  7473. #endif //UVLO_SUPPORT
  7474. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7475. void setup_fan_interrupt() {
  7476. //INT7
  7477. DDRE &= ~(1 << 7); //input pin
  7478. PORTE &= ~(1 << 7); //no internal pull-up
  7479. //start with sensing rising edge
  7480. EICRB &= ~(1 << 6);
  7481. EICRB |= (1 << 7);
  7482. //enable INT7 interrupt
  7483. EIMSK |= (1 << 7);
  7484. }
  7485. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7486. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7487. ISR(INT7_vect) {
  7488. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7489. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7490. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7491. t_fan_rising_edge = millis_nc();
  7492. }
  7493. else { //interrupt was triggered by falling edge
  7494. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7495. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7496. }
  7497. }
  7498. EICRB ^= (1 << 6); //change edge
  7499. }
  7500. #endif
  7501. #ifdef UVLO_SUPPORT
  7502. void setup_uvlo_interrupt() {
  7503. DDRE &= ~(1 << 4); //input pin
  7504. PORTE &= ~(1 << 4); //no internal pull-up
  7505. //sensing falling edge
  7506. EICRB |= (1 << 0);
  7507. EICRB &= ~(1 << 1);
  7508. //enable INT4 interrupt
  7509. EIMSK |= (1 << 4);
  7510. }
  7511. ISR(INT4_vect) {
  7512. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7513. SERIAL_ECHOLNPGM("INT4");
  7514. if (IS_SD_PRINTING) uvlo_();
  7515. }
  7516. void recover_print(uint8_t automatic) {
  7517. char cmd[30];
  7518. lcd_update_enable(true);
  7519. lcd_update(2);
  7520. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7521. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7522. // Lift the print head, so one may remove the excess priming material.
  7523. if (current_position[Z_AXIS] < 25)
  7524. enquecommand_P(PSTR("G1 Z25 F800"));
  7525. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7526. enquecommand_P(PSTR("G28 X Y"));
  7527. // Set the target bed and nozzle temperatures and wait.
  7528. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7529. enquecommand(cmd);
  7530. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7531. enquecommand(cmd);
  7532. enquecommand_P(PSTR("M83")); //E axis relative mode
  7533. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7534. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7535. if(automatic == 0){
  7536. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7537. }
  7538. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7539. // Mark the power panic status as inactive.
  7540. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7541. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7542. delay_keep_alive(1000);
  7543. }*/
  7544. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7545. // Restart the print.
  7546. restore_print_from_eeprom();
  7547. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7548. }
  7549. void recover_machine_state_after_power_panic()
  7550. {
  7551. char cmd[30];
  7552. // 1) Recover the logical cordinates at the time of the power panic.
  7553. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7554. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7555. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7556. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7557. // The current position after power panic is moved to the next closest 0th full step.
  7558. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7559. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7560. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7561. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7562. sprintf_P(cmd, PSTR("G92 E"));
  7563. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7564. enquecommand(cmd);
  7565. }
  7566. memcpy(destination, current_position, sizeof(destination));
  7567. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7568. print_world_coordinates();
  7569. // 2) Initialize the logical to physical coordinate system transformation.
  7570. world2machine_initialize();
  7571. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7572. mbl.active = false;
  7573. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7574. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7575. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7576. // Scale the z value to 10u resolution.
  7577. int16_t v;
  7578. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7579. if (v != 0)
  7580. mbl.active = true;
  7581. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7582. }
  7583. if (mbl.active)
  7584. mbl.upsample_3x3();
  7585. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7586. // print_mesh_bed_leveling_table();
  7587. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7588. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7589. babystep_load();
  7590. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7592. // 6) Power up the motors, mark their positions as known.
  7593. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7594. axis_known_position[X_AXIS] = true; enable_x();
  7595. axis_known_position[Y_AXIS] = true; enable_y();
  7596. axis_known_position[Z_AXIS] = true; enable_z();
  7597. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7598. print_physical_coordinates();
  7599. // 7) Recover the target temperatures.
  7600. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7601. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7602. // 8) Recover extruder multipilers
  7603. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7604. #if EXTRUDERS > 1
  7605. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7606. #if EXTRUDERS > 2
  7607. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7608. #endif
  7609. #endif
  7610. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7611. }
  7612. void restore_print_from_eeprom() {
  7613. float x_rec, y_rec, z_pos;
  7614. int feedrate_rec;
  7615. uint8_t fan_speed_rec;
  7616. char cmd[30];
  7617. char* c;
  7618. char filename[13];
  7619. uint8_t depth = 0;
  7620. char dir_name[9];
  7621. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7622. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7623. SERIAL_ECHOPGM("Feedrate:");
  7624. MYSERIAL.println(feedrate_rec);
  7625. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7626. MYSERIAL.println(int(depth));
  7627. for (int i = 0; i < depth; i++) {
  7628. for (int j = 0; j < 8; j++) {
  7629. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7630. }
  7631. dir_name[8] = '\0';
  7632. MYSERIAL.println(dir_name);
  7633. strcpy(dir_names[i], dir_name);
  7634. card.chdir(dir_name);
  7635. }
  7636. for (int i = 0; i < 8; i++) {
  7637. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7638. }
  7639. filename[8] = '\0';
  7640. MYSERIAL.print(filename);
  7641. strcat_P(filename, PSTR(".gco"));
  7642. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7643. enquecommand(cmd);
  7644. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7645. SERIAL_ECHOPGM("Position read from eeprom:");
  7646. MYSERIAL.println(position);
  7647. // E axis relative mode.
  7648. enquecommand_P(PSTR("M83"));
  7649. // Move to the XY print position in logical coordinates, where the print has been killed.
  7650. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7651. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7652. strcat_P(cmd, PSTR(" F2000"));
  7653. enquecommand(cmd);
  7654. // Move the Z axis down to the print, in logical coordinates.
  7655. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7656. enquecommand(cmd);
  7657. // Unretract.
  7658. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7659. // Set the feedrate saved at the power panic.
  7660. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7661. enquecommand(cmd);
  7662. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7663. {
  7664. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7665. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7666. }
  7667. // Set the fan speed saved at the power panic.
  7668. strcpy_P(cmd, PSTR("M106 S"));
  7669. strcat(cmd, itostr3(int(fan_speed_rec)));
  7670. enquecommand(cmd);
  7671. // Set a position in the file.
  7672. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7673. enquecommand(cmd);
  7674. // Start SD print.
  7675. enquecommand_P(PSTR("M24"));
  7676. }
  7677. #endif //UVLO_SUPPORT
  7678. ////////////////////////////////////////////////////////////////////////////////
  7679. // save/restore printing
  7680. void stop_and_save_print_to_ram(float z_move, float e_move)
  7681. {
  7682. if (saved_printing) return;
  7683. unsigned char nplanner_blocks;
  7684. unsigned char nlines;
  7685. uint16_t sdlen_planner;
  7686. uint16_t sdlen_cmdqueue;
  7687. cli();
  7688. if (card.sdprinting) {
  7689. nplanner_blocks = number_of_blocks();
  7690. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7691. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7692. saved_sdpos -= sdlen_planner;
  7693. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7694. saved_sdpos -= sdlen_cmdqueue;
  7695. saved_printing_type = PRINTING_TYPE_SD;
  7696. }
  7697. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7698. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7699. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7700. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7701. saved_sdpos -= nlines;
  7702. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7703. saved_printing_type = PRINTING_TYPE_USB;
  7704. }
  7705. else {
  7706. //not sd printing nor usb printing
  7707. }
  7708. #if 0
  7709. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7710. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7711. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7712. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7713. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7714. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7715. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7716. {
  7717. card.setIndex(saved_sdpos);
  7718. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7719. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7720. MYSERIAL.print(char(card.get()));
  7721. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7722. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7723. MYSERIAL.print(char(card.get()));
  7724. SERIAL_ECHOLNPGM("End of command buffer");
  7725. }
  7726. {
  7727. // Print the content of the planner buffer, line by line:
  7728. card.setIndex(saved_sdpos);
  7729. int8_t iline = 0;
  7730. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7731. SERIAL_ECHOPGM("Planner line (from file): ");
  7732. MYSERIAL.print(int(iline), DEC);
  7733. SERIAL_ECHOPGM(", length: ");
  7734. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7735. SERIAL_ECHOPGM(", steps: (");
  7736. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7737. SERIAL_ECHOPGM(",");
  7738. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7739. SERIAL_ECHOPGM(",");
  7740. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7741. SERIAL_ECHOPGM(",");
  7742. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7743. SERIAL_ECHOPGM("), events: ");
  7744. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7745. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7746. MYSERIAL.print(char(card.get()));
  7747. }
  7748. }
  7749. {
  7750. // Print the content of the command buffer, line by line:
  7751. int8_t iline = 0;
  7752. union {
  7753. struct {
  7754. char lo;
  7755. char hi;
  7756. } lohi;
  7757. uint16_t value;
  7758. } sdlen_single;
  7759. int _bufindr = bufindr;
  7760. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7761. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7762. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7763. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7764. }
  7765. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7766. MYSERIAL.print(int(iline), DEC);
  7767. SERIAL_ECHOPGM(", type: ");
  7768. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7769. SERIAL_ECHOPGM(", len: ");
  7770. MYSERIAL.println(sdlen_single.value, DEC);
  7771. // Print the content of the buffer line.
  7772. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7773. SERIAL_ECHOPGM("Buffer line (from file): ");
  7774. MYSERIAL.println(int(iline), DEC);
  7775. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7776. MYSERIAL.print(char(card.get()));
  7777. if (-- _buflen == 0)
  7778. break;
  7779. // First skip the current command ID and iterate up to the end of the string.
  7780. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7781. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7782. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7783. // If the end of the buffer was empty,
  7784. if (_bufindr == sizeof(cmdbuffer)) {
  7785. // skip to the start and find the nonzero command.
  7786. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7787. }
  7788. }
  7789. }
  7790. #endif
  7791. #if 0
  7792. saved_feedrate2 = feedrate; //save feedrate
  7793. #else
  7794. // Try to deduce the feedrate from the first block of the planner.
  7795. // Speed is in mm/min.
  7796. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7797. #endif
  7798. planner_abort_hard(); //abort printing
  7799. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7800. saved_active_extruder = active_extruder; //save active_extruder
  7801. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7802. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7803. cmdqueue_reset(); //empty cmdqueue
  7804. card.sdprinting = false;
  7805. // card.closefile();
  7806. saved_printing = true;
  7807. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7808. st_reset_timer();
  7809. sei();
  7810. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7811. #if 1
  7812. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7813. char buf[48];
  7814. // First unretract (relative extrusion)
  7815. if(!saved_extruder_relative_mode){
  7816. strcpy_P(buf, PSTR("M83"));
  7817. enquecommand(buf, false);
  7818. }
  7819. //retract 45mm/s
  7820. strcpy_P(buf, PSTR("G1 E"));
  7821. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7822. strcat_P(buf, PSTR(" F"));
  7823. dtostrf(2700, 8, 3, buf + strlen(buf));
  7824. enquecommand(buf, false);
  7825. // Then lift Z axis
  7826. strcpy_P(buf, PSTR("G1 Z"));
  7827. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7828. strcat_P(buf, PSTR(" F"));
  7829. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7830. // At this point the command queue is empty.
  7831. enquecommand(buf, false);
  7832. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7833. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7834. repeatcommand_front();
  7835. #else
  7836. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7837. st_synchronize(); //wait moving
  7838. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7839. memcpy(destination, current_position, sizeof(destination));
  7840. #endif
  7841. }
  7842. }
  7843. void restore_print_from_ram_and_continue(float e_move)
  7844. {
  7845. if (!saved_printing) return;
  7846. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7847. // current_position[axis] = st_get_position_mm(axis);
  7848. active_extruder = saved_active_extruder; //restore active_extruder
  7849. feedrate = saved_feedrate2; //restore feedrate
  7850. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7851. float e = saved_pos[E_AXIS] - e_move;
  7852. plan_set_e_position(e);
  7853. //first move print head in XY to the saved position:
  7854. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7855. st_synchronize();
  7856. //then move Z
  7857. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7858. st_synchronize();
  7859. //and finaly unretract (35mm/s)
  7860. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7861. st_synchronize();
  7862. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7863. memcpy(destination, current_position, sizeof(destination));
  7864. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7865. card.setIndex(saved_sdpos);
  7866. sdpos_atomic = saved_sdpos;
  7867. card.sdprinting = true;
  7868. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7869. }
  7870. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7871. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7872. serial_count = 0;
  7873. FlushSerialRequestResend();
  7874. }
  7875. else {
  7876. //not sd printing nor usb printing
  7877. }
  7878. lcd_setstatuspgm(_T(WELCOME_MSG));
  7879. saved_printing = false;
  7880. }
  7881. void print_world_coordinates()
  7882. {
  7883. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7884. }
  7885. void print_physical_coordinates()
  7886. {
  7887. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7888. }
  7889. void print_mesh_bed_leveling_table()
  7890. {
  7891. SERIAL_ECHOPGM("mesh bed leveling: ");
  7892. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7893. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7894. MYSERIAL.print(mbl.z_values[y][x], 3);
  7895. SERIAL_ECHOPGM(" ");
  7896. }
  7897. SERIAL_ECHOLNPGM("");
  7898. }
  7899. uint16_t print_time_remaining() {
  7900. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7901. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7902. else print_t = print_time_remaining_silent;
  7903. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7904. return print_t;
  7905. }
  7906. uint8_t print_percent_done() {
  7907. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7908. uint8_t percent_done = 0;
  7909. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7910. percent_done = print_percent_done_normal;
  7911. }
  7912. else if (print_percent_done_silent <= 100) {
  7913. percent_done = print_percent_done_silent;
  7914. }
  7915. else {
  7916. percent_done = card.percentDone();
  7917. }
  7918. return percent_done;
  7919. }
  7920. static void print_time_remaining_init() {
  7921. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7922. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7923. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7924. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7925. }
  7926. #define FIL_LOAD_LENGTH 60