Marlin_main.cpp 349 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. // save/restore printing in case that mmu was not responding
  243. bool mmu_print_saved = false;
  244. // storing estimated time to end of print counted by slicer
  245. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  246. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  247. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. //===========================================================================
  250. //=============================Private Variables=============================
  251. //===========================================================================
  252. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  253. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  254. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  255. // For tracing an arc
  256. static float offset[3] = {0.0, 0.0, 0.0};
  257. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  258. // Determines Absolute or Relative Coordinates.
  259. // Also there is bool axis_relative_modes[] per axis flag.
  260. static bool relative_mode = false;
  261. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  262. //static float tt = 0;
  263. //static float bt = 0;
  264. //Inactivity shutdown variables
  265. static unsigned long previous_millis_cmd = 0;
  266. unsigned long max_inactive_time = 0;
  267. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  268. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  269. unsigned long starttime=0;
  270. unsigned long stoptime=0;
  271. unsigned long _usb_timer = 0;
  272. bool extruder_under_pressure = true;
  273. bool Stopped=false;
  274. #if NUM_SERVOS > 0
  275. Servo servos[NUM_SERVOS];
  276. #endif
  277. bool target_direction;
  278. //Insert variables if CHDK is defined
  279. #ifdef CHDK
  280. unsigned long chdkHigh = 0;
  281. boolean chdkActive = false;
  282. #endif
  283. //! @name RAM save/restore printing
  284. //! @{
  285. bool saved_printing = false; //!< Print is paused and saved in RAM
  286. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  287. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  288. static float saved_pos[4] = { 0, 0, 0, 0 };
  289. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  290. static float saved_feedrate2 = 0;
  291. static uint8_t saved_active_extruder = 0;
  292. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  293. static bool saved_extruder_under_pressure = false;
  294. static bool saved_extruder_relative_mode = false;
  295. static int saved_fanSpeed = 0; //!< Print fan speed
  296. //! @}
  297. static int saved_feedmultiply_mm = 100;
  298. //===========================================================================
  299. //=============================Routines======================================
  300. //===========================================================================
  301. static void get_arc_coordinates();
  302. static bool setTargetedHotend(int code, uint8_t &extruder);
  303. static void print_time_remaining_init();
  304. static void wait_for_heater(long codenum, uint8_t extruder);
  305. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  306. static void temp_compensation_start();
  307. static void temp_compensation_apply();
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  317. {
  318. #if 0
  319. char ch=pgm_read_byte(str);
  320. while(ch)
  321. {
  322. MYSERIAL.write(ch);
  323. ch=pgm_read_byte(++str);
  324. }
  325. #else
  326. // hmm, same size as the above version, the compiler did a good job optimizing the above
  327. while( uint8_t ch = pgm_read_byte(str) ){
  328. MYSERIAL.write((char)ch);
  329. ++str;
  330. }
  331. #endif
  332. }
  333. #ifdef SDSUPPORT
  334. #include "SdFatUtil.h"
  335. int freeMemory() { return SdFatUtil::FreeRam(); }
  336. #else
  337. extern "C" {
  338. extern unsigned int __bss_end;
  339. extern unsigned int __heap_start;
  340. extern void *__brkval;
  341. int freeMemory() {
  342. int free_memory;
  343. if ((int)__brkval == 0)
  344. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  345. else
  346. free_memory = ((int)&free_memory) - ((int)__brkval);
  347. return free_memory;
  348. }
  349. }
  350. #endif //!SDSUPPORT
  351. void setup_killpin()
  352. {
  353. #if defined(KILL_PIN) && KILL_PIN > -1
  354. SET_INPUT(KILL_PIN);
  355. WRITE(KILL_PIN,HIGH);
  356. #endif
  357. }
  358. // Set home pin
  359. void setup_homepin(void)
  360. {
  361. #if defined(HOME_PIN) && HOME_PIN > -1
  362. SET_INPUT(HOME_PIN);
  363. WRITE(HOME_PIN,HIGH);
  364. #endif
  365. }
  366. void setup_photpin()
  367. {
  368. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  369. SET_OUTPUT(PHOTOGRAPH_PIN);
  370. WRITE(PHOTOGRAPH_PIN, LOW);
  371. #endif
  372. }
  373. void setup_powerhold()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, HIGH);
  378. #endif
  379. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  380. SET_OUTPUT(PS_ON_PIN);
  381. #if defined(PS_DEFAULT_OFF)
  382. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  383. #else
  384. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  385. #endif
  386. #endif
  387. }
  388. void suicide()
  389. {
  390. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  391. SET_OUTPUT(SUICIDE_PIN);
  392. WRITE(SUICIDE_PIN, LOW);
  393. #endif
  394. }
  395. void servo_init()
  396. {
  397. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  398. servos[0].attach(SERVO0_PIN);
  399. #endif
  400. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  401. servos[1].attach(SERVO1_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  404. servos[2].attach(SERVO2_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  407. servos[3].attach(SERVO3_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 5)
  410. #error "TODO: enter initalisation code for more servos"
  411. #endif
  412. }
  413. bool fans_check_enabled = true;
  414. #ifdef TMC2130
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1022. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1023. {
  1024. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1025. // where all the EEPROM entries are set to 0x0ff.
  1026. // Once a firmware boots up, it forces at least a language selection, which changes
  1027. // EEPROM_LANG to number lower than 0x0ff.
  1028. // 1) Set a high power mode.
  1029. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1030. #ifdef TMC2130
  1031. tmc2130_mode = TMC2130_MODE_NORMAL;
  1032. #endif //TMC2130
  1033. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1034. }
  1035. lcd_encoder_diff=0;
  1036. #ifdef TMC2130
  1037. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1038. if (silentMode == 0xff) silentMode = 0;
  1039. tmc2130_mode = TMC2130_MODE_NORMAL;
  1040. if (lcd_crash_detect_enabled() && !farm_mode)
  1041. {
  1042. lcd_crash_detect_enable();
  1043. puts_P(_N("CrashDetect ENABLED!"));
  1044. }
  1045. else
  1046. {
  1047. lcd_crash_detect_disable();
  1048. puts_P(_N("CrashDetect DISABLED"));
  1049. }
  1050. #ifdef TMC2130_LINEARITY_CORRECTION
  1051. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1052. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1053. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1054. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1055. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1056. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1057. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1058. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1059. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1060. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1061. #endif //TMC2130_LINEARITY_CORRECTION
  1062. #ifdef TMC2130_VARIABLE_RESOLUTION
  1063. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1064. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1065. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1066. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1067. #else //TMC2130_VARIABLE_RESOLUTION
  1068. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1069. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1070. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1071. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1072. #endif //TMC2130_VARIABLE_RESOLUTION
  1073. #endif //TMC2130
  1074. st_init(); // Initialize stepper, this enables interrupts!
  1075. #ifdef UVLO_SUPPORT
  1076. setup_uvlo_interrupt();
  1077. #endif //UVLO_SUPPORT
  1078. #ifdef TMC2130
  1079. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1080. update_mode_profile();
  1081. tmc2130_init();
  1082. #endif //TMC2130
  1083. #ifdef PSU_Delta
  1084. init_force_z(); // ! important for correct Z-axis initialization
  1085. #endif // PSU_Delta
  1086. setup_photpin();
  1087. servo_init();
  1088. // Reset the machine correction matrix.
  1089. // It does not make sense to load the correction matrix until the machine is homed.
  1090. world2machine_reset();
  1091. #ifdef FILAMENT_SENSOR
  1092. fsensor_init();
  1093. #endif //FILAMENT_SENSOR
  1094. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1095. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1096. #endif
  1097. setup_homepin();
  1098. #ifdef TMC2130
  1099. if (1) {
  1100. // try to run to zero phase before powering the Z motor.
  1101. // Move in negative direction
  1102. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1103. // Round the current micro-micro steps to micro steps.
  1104. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1105. // Until the phase counter is reset to zero.
  1106. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1107. _delay(2);
  1108. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1109. _delay(2);
  1110. }
  1111. }
  1112. #endif //TMC2130
  1113. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1114. enable_z();
  1115. #endif
  1116. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1117. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1118. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1119. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1120. if (farm_mode)
  1121. {
  1122. prusa_statistics(8);
  1123. }
  1124. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1125. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1126. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1127. // but this times out if a blocking dialog is shown in setup().
  1128. card.initsd();
  1129. #ifdef DEBUG_SD_SPEED_TEST
  1130. if (card.cardOK)
  1131. {
  1132. uint8_t* buff = (uint8_t*)block_buffer;
  1133. uint32_t block = 0;
  1134. uint32_t sumr = 0;
  1135. uint32_t sumw = 0;
  1136. for (int i = 0; i < 1024; i++)
  1137. {
  1138. uint32_t u = _micros();
  1139. bool res = card.card.readBlock(i, buff);
  1140. u = _micros() - u;
  1141. if (res)
  1142. {
  1143. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1144. sumr += u;
  1145. u = _micros();
  1146. res = card.card.writeBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumw += u;
  1152. }
  1153. else
  1154. {
  1155. printf_P(PSTR("writeBlock %4d error\n"), i);
  1156. break;
  1157. }
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("readBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1166. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1167. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1168. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1169. }
  1170. else
  1171. printf_P(PSTR("Card NG!\n"));
  1172. #endif //DEBUG_SD_SPEED_TEST
  1173. eeprom_init();
  1174. #ifdef SNMM
  1175. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1176. int _z = BOWDEN_LENGTH;
  1177. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1178. }
  1179. #endif
  1180. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1181. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1182. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1183. #if (LANG_MODE != 0) //secondary language support
  1184. #ifdef DEBUG_W25X20CL
  1185. W25X20CL_SPI_ENTER();
  1186. uint8_t uid[8]; // 64bit unique id
  1187. w25x20cl_rd_uid(uid);
  1188. puts_P(_n("W25X20CL UID="));
  1189. for (uint8_t i = 0; i < 8; i ++)
  1190. printf_P(PSTR("%02hhx"), uid[i]);
  1191. putchar('\n');
  1192. list_sec_lang_from_external_flash();
  1193. #endif //DEBUG_W25X20CL
  1194. // lang_reset();
  1195. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1196. lcd_language();
  1197. #ifdef DEBUG_SEC_LANG
  1198. uint16_t sec_lang_code = lang_get_code(1);
  1199. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1200. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1201. lang_print_sec_lang(uartout);
  1202. #endif //DEBUG_SEC_LANG
  1203. #endif //(LANG_MODE != 0)
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1205. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1206. temp_cal_active = false;
  1207. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1208. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1209. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1210. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1211. int16_t z_shift = 0;
  1212. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1213. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1214. temp_cal_active = false;
  1215. }
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1218. }
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1221. }
  1222. //mbl_mode_init();
  1223. mbl_settings_init();
  1224. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1225. if (SilentModeMenu_MMU == 255) {
  1226. SilentModeMenu_MMU = 1;
  1227. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1228. }
  1229. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1230. setup_fan_interrupt();
  1231. #endif //DEBUG_DISABLE_FANCHECK
  1232. #ifdef PAT9125
  1233. fsensor_setup_interrupt();
  1234. #endif //PAT9125
  1235. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1236. #ifndef DEBUG_DISABLE_STARTMSGS
  1237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1238. if (!farm_mode) {
  1239. check_if_fw_is_on_right_printer();
  1240. show_fw_version_warnings();
  1241. }
  1242. switch (hw_changed) {
  1243. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1244. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1245. case(0b01):
  1246. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1247. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1248. break;
  1249. case(0b10):
  1250. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1251. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1252. break;
  1253. case(0b11):
  1254. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1255. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1256. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1257. break;
  1258. default: break; //no change, show no message
  1259. }
  1260. if (!previous_settings_retrieved) {
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1262. Config_StoreSettings();
  1263. }
  1264. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1265. lcd_wizard(WizState::Run);
  1266. }
  1267. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1268. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1269. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1270. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1271. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1272. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1273. // Show the message.
  1274. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1275. }
  1276. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1277. // Show the message.
  1278. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1279. lcd_update_enable(true);
  1280. }
  1281. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1282. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1283. lcd_update_enable(true);
  1284. }
  1285. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1286. // Show the message.
  1287. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1288. }
  1289. }
  1290. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1291. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1292. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1293. update_current_firmware_version_to_eeprom();
  1294. lcd_selftest();
  1295. }
  1296. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1297. KEEPALIVE_STATE(IN_PROCESS);
  1298. #endif //DEBUG_DISABLE_STARTMSGS
  1299. lcd_update_enable(true);
  1300. lcd_clear();
  1301. lcd_update(2);
  1302. // Store the currently running firmware into an eeprom,
  1303. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1304. update_current_firmware_version_to_eeprom();
  1305. #ifdef TMC2130
  1306. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1307. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1308. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1309. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1310. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1311. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1312. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1313. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1314. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1315. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1316. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1317. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1318. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1319. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1320. #endif //TMC2130
  1321. #ifdef UVLO_SUPPORT
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1323. /*
  1324. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1325. else {
  1326. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1327. lcd_update_enable(true);
  1328. lcd_update(2);
  1329. lcd_setstatuspgm(_T(WELCOME_MSG));
  1330. }
  1331. */
  1332. manage_heater(); // Update temperatures
  1333. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1334. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1335. #endif
  1336. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1337. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1338. puts_P(_N("Automatic recovery!"));
  1339. #endif
  1340. recover_print(1);
  1341. }
  1342. else{
  1343. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1344. puts_P(_N("Normal recovery!"));
  1345. #endif
  1346. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1347. else {
  1348. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1349. lcd_update_enable(true);
  1350. lcd_update(2);
  1351. lcd_setstatuspgm(_T(WELCOME_MSG));
  1352. }
  1353. }
  1354. }
  1355. #endif //UVLO_SUPPORT
  1356. fCheckModeInit();
  1357. fSetMmuMode(mmu_enabled);
  1358. KEEPALIVE_STATE(NOT_BUSY);
  1359. #ifdef WATCHDOG
  1360. wdt_enable(WDTO_4S);
  1361. #endif //WATCHDOG
  1362. }
  1363. void trace();
  1364. #define CHUNK_SIZE 64 // bytes
  1365. #define SAFETY_MARGIN 1
  1366. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1367. int chunkHead = 0;
  1368. void serial_read_stream() {
  1369. setAllTargetHotends(0);
  1370. setTargetBed(0);
  1371. lcd_clear();
  1372. lcd_puts_P(PSTR(" Upload in progress"));
  1373. // first wait for how many bytes we will receive
  1374. uint32_t bytesToReceive;
  1375. // receive the four bytes
  1376. char bytesToReceiveBuffer[4];
  1377. for (int i=0; i<4; i++) {
  1378. int data;
  1379. while ((data = MYSERIAL.read()) == -1) {};
  1380. bytesToReceiveBuffer[i] = data;
  1381. }
  1382. // make it a uint32
  1383. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1384. // we're ready, notify the sender
  1385. MYSERIAL.write('+');
  1386. // lock in the routine
  1387. uint32_t receivedBytes = 0;
  1388. while (prusa_sd_card_upload) {
  1389. int i;
  1390. for (i=0; i<CHUNK_SIZE; i++) {
  1391. int data;
  1392. // check if we're not done
  1393. if (receivedBytes == bytesToReceive) {
  1394. break;
  1395. }
  1396. // read the next byte
  1397. while ((data = MYSERIAL.read()) == -1) {};
  1398. receivedBytes++;
  1399. // save it to the chunk
  1400. chunk[i] = data;
  1401. }
  1402. // write the chunk to SD
  1403. card.write_command_no_newline(&chunk[0]);
  1404. // notify the sender we're ready for more data
  1405. MYSERIAL.write('+');
  1406. // for safety
  1407. manage_heater();
  1408. // check if we're done
  1409. if(receivedBytes == bytesToReceive) {
  1410. trace(); // beep
  1411. card.closefile();
  1412. prusa_sd_card_upload = false;
  1413. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1414. }
  1415. }
  1416. }
  1417. /**
  1418. * Output a "busy" message at regular intervals
  1419. * while the machine is not accepting commands.
  1420. */
  1421. void host_keepalive() {
  1422. #ifndef HOST_KEEPALIVE_FEATURE
  1423. return;
  1424. #endif //HOST_KEEPALIVE_FEATURE
  1425. if (farm_mode) return;
  1426. long ms = _millis();
  1427. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1428. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1429. switch (busy_state) {
  1430. case IN_HANDLER:
  1431. case IN_PROCESS:
  1432. SERIAL_ECHO_START;
  1433. SERIAL_ECHOLNPGM("busy: processing");
  1434. break;
  1435. case PAUSED_FOR_USER:
  1436. SERIAL_ECHO_START;
  1437. SERIAL_ECHOLNPGM("busy: paused for user");
  1438. break;
  1439. case PAUSED_FOR_INPUT:
  1440. SERIAL_ECHO_START;
  1441. SERIAL_ECHOLNPGM("busy: paused for input");
  1442. break;
  1443. default:
  1444. break;
  1445. }
  1446. }
  1447. prev_busy_signal_ms = ms;
  1448. }
  1449. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1450. // Before loop(), the setup() function is called by the main() routine.
  1451. void loop()
  1452. {
  1453. KEEPALIVE_STATE(NOT_BUSY);
  1454. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1455. {
  1456. is_usb_printing = true;
  1457. usb_printing_counter--;
  1458. _usb_timer = _millis();
  1459. }
  1460. if (usb_printing_counter == 0)
  1461. {
  1462. is_usb_printing = false;
  1463. }
  1464. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1465. {
  1466. is_usb_printing = true;
  1467. }
  1468. #ifdef FANCHECK
  1469. if (fan_check_error && isPrintPaused)
  1470. {
  1471. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1472. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1473. }
  1474. #endif
  1475. if (prusa_sd_card_upload)
  1476. {
  1477. //we read byte-by byte
  1478. serial_read_stream();
  1479. }
  1480. else
  1481. {
  1482. get_command();
  1483. #ifdef SDSUPPORT
  1484. card.checkautostart(false);
  1485. #endif
  1486. if(buflen)
  1487. {
  1488. cmdbuffer_front_already_processed = false;
  1489. #ifdef SDSUPPORT
  1490. if(card.saving)
  1491. {
  1492. // Saving a G-code file onto an SD-card is in progress.
  1493. // Saving starts with M28, saving until M29 is seen.
  1494. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1495. card.write_command(CMDBUFFER_CURRENT_STRING);
  1496. if(card.logging)
  1497. process_commands();
  1498. else
  1499. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1500. } else {
  1501. card.closefile();
  1502. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1503. }
  1504. } else {
  1505. process_commands();
  1506. }
  1507. #else
  1508. process_commands();
  1509. #endif //SDSUPPORT
  1510. if (! cmdbuffer_front_already_processed && buflen)
  1511. {
  1512. // ptr points to the start of the block currently being processed.
  1513. // The first character in the block is the block type.
  1514. char *ptr = cmdbuffer + bufindr;
  1515. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1516. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1517. union {
  1518. struct {
  1519. char lo;
  1520. char hi;
  1521. } lohi;
  1522. uint16_t value;
  1523. } sdlen;
  1524. sdlen.value = 0;
  1525. {
  1526. // This block locks the interrupts globally for 3.25 us,
  1527. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1528. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1529. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1530. cli();
  1531. // Reset the command to something, which will be ignored by the power panic routine,
  1532. // so this buffer length will not be counted twice.
  1533. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1534. // Extract the current buffer length.
  1535. sdlen.lohi.lo = *ptr ++;
  1536. sdlen.lohi.hi = *ptr;
  1537. // and pass it to the planner queue.
  1538. planner_add_sd_length(sdlen.value);
  1539. sei();
  1540. }
  1541. }
  1542. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1543. cli();
  1544. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1545. // and one for each command to previous block in the planner queue.
  1546. planner_add_sd_length(1);
  1547. sei();
  1548. }
  1549. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1550. // this block's SD card length will not be counted twice as its command type has been replaced
  1551. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1552. cmdqueue_pop_front();
  1553. }
  1554. host_keepalive();
  1555. }
  1556. }
  1557. //check heater every n milliseconds
  1558. manage_heater();
  1559. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1560. checkHitEndstops();
  1561. lcd_update(0);
  1562. #ifdef TMC2130
  1563. tmc2130_check_overtemp();
  1564. if (tmc2130_sg_crash)
  1565. {
  1566. uint8_t crash = tmc2130_sg_crash;
  1567. tmc2130_sg_crash = 0;
  1568. // crashdet_stop_and_save_print();
  1569. switch (crash)
  1570. {
  1571. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1572. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1573. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1574. }
  1575. }
  1576. #endif //TMC2130
  1577. mmu_loop();
  1578. }
  1579. #define DEFINE_PGM_READ_ANY(type, reader) \
  1580. static inline type pgm_read_any(const type *p) \
  1581. { return pgm_read_##reader##_near(p); }
  1582. DEFINE_PGM_READ_ANY(float, float);
  1583. DEFINE_PGM_READ_ANY(signed char, byte);
  1584. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1585. static const PROGMEM type array##_P[3] = \
  1586. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1587. static inline type array(int axis) \
  1588. { return pgm_read_any(&array##_P[axis]); } \
  1589. type array##_ext(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); }
  1591. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1592. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1595. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1596. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1597. static void axis_is_at_home(int axis) {
  1598. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1599. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1600. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1601. }
  1602. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1603. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1604. //! @return original feedmultiply
  1605. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1606. saved_feedrate = feedrate;
  1607. int l_feedmultiply = feedmultiply;
  1608. feedmultiply = 100;
  1609. previous_millis_cmd = _millis();
  1610. enable_endstops(enable_endstops_now);
  1611. return l_feedmultiply;
  1612. }
  1613. //! @param original_feedmultiply feedmultiply to restore
  1614. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1615. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1616. enable_endstops(false);
  1617. #endif
  1618. feedrate = saved_feedrate;
  1619. feedmultiply = original_feedmultiply;
  1620. previous_millis_cmd = _millis();
  1621. }
  1622. #ifdef ENABLE_AUTO_BED_LEVELING
  1623. #ifdef AUTO_BED_LEVELING_GRID
  1624. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1625. {
  1626. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1627. planeNormal.debug("planeNormal");
  1628. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1629. //bedLevel.debug("bedLevel");
  1630. //plan_bed_level_matrix.debug("bed level before");
  1631. //vector_3 uncorrected_position = plan_get_position_mm();
  1632. //uncorrected_position.debug("position before");
  1633. vector_3 corrected_position = plan_get_position();
  1634. // corrected_position.debug("position after");
  1635. current_position[X_AXIS] = corrected_position.x;
  1636. current_position[Y_AXIS] = corrected_position.y;
  1637. current_position[Z_AXIS] = corrected_position.z;
  1638. // put the bed at 0 so we don't go below it.
  1639. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1641. }
  1642. #else // not AUTO_BED_LEVELING_GRID
  1643. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1644. plan_bed_level_matrix.set_to_identity();
  1645. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1646. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1647. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1648. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1649. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1650. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1651. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1652. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1653. vector_3 corrected_position = plan_get_position();
  1654. current_position[X_AXIS] = corrected_position.x;
  1655. current_position[Y_AXIS] = corrected_position.y;
  1656. current_position[Z_AXIS] = corrected_position.z;
  1657. // put the bed at 0 so we don't go below it.
  1658. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1659. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1660. }
  1661. #endif // AUTO_BED_LEVELING_GRID
  1662. static void run_z_probe() {
  1663. plan_bed_level_matrix.set_to_identity();
  1664. feedrate = homing_feedrate[Z_AXIS];
  1665. // move down until you find the bed
  1666. float zPosition = -10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. // we have to let the planner know where we are right now as it is not where we said to go.
  1670. zPosition = st_get_position_mm(Z_AXIS);
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1672. // move up the retract distance
  1673. zPosition += home_retract_mm(Z_AXIS);
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // move back down slowly to find bed
  1677. feedrate = homing_feedrate[Z_AXIS]/4;
  1678. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1682. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. }
  1685. static void do_blocking_move_to(float x, float y, float z) {
  1686. float oldFeedRate = feedrate;
  1687. feedrate = homing_feedrate[Z_AXIS];
  1688. current_position[Z_AXIS] = z;
  1689. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. feedrate = XY_TRAVEL_SPEED;
  1692. current_position[X_AXIS] = x;
  1693. current_position[Y_AXIS] = y;
  1694. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1695. st_synchronize();
  1696. feedrate = oldFeedRate;
  1697. }
  1698. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1699. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1700. }
  1701. /// Probe bed height at position (x,y), returns the measured z value
  1702. static float probe_pt(float x, float y, float z_before) {
  1703. // move to right place
  1704. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1705. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1706. run_z_probe();
  1707. float measured_z = current_position[Z_AXIS];
  1708. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1709. SERIAL_PROTOCOLPGM(" x: ");
  1710. SERIAL_PROTOCOL(x);
  1711. SERIAL_PROTOCOLPGM(" y: ");
  1712. SERIAL_PROTOCOL(y);
  1713. SERIAL_PROTOCOLPGM(" z: ");
  1714. SERIAL_PROTOCOL(measured_z);
  1715. SERIAL_PROTOCOLPGM("\n");
  1716. return measured_z;
  1717. }
  1718. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1719. #ifdef LIN_ADVANCE
  1720. /**
  1721. * M900: Set and/or Get advance K factor and WH/D ratio
  1722. *
  1723. * K<factor> Set advance K factor
  1724. * R<ratio> Set ratio directly (overrides WH/D)
  1725. * W<width> H<height> D<diam> Set ratio from WH/D
  1726. */
  1727. inline void gcode_M900() {
  1728. st_synchronize();
  1729. const float newK = code_seen('K') ? code_value_float() : -1;
  1730. if (newK >= 0) extruder_advance_k = newK;
  1731. float newR = code_seen('R') ? code_value_float() : -1;
  1732. if (newR < 0) {
  1733. const float newD = code_seen('D') ? code_value_float() : -1,
  1734. newW = code_seen('W') ? code_value_float() : -1,
  1735. newH = code_seen('H') ? code_value_float() : -1;
  1736. if (newD >= 0 && newW >= 0 && newH >= 0)
  1737. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1738. }
  1739. if (newR >= 0) advance_ed_ratio = newR;
  1740. SERIAL_ECHO_START;
  1741. SERIAL_ECHOPGM("Advance K=");
  1742. SERIAL_ECHOLN(extruder_advance_k);
  1743. SERIAL_ECHOPGM(" E/D=");
  1744. const float ratio = advance_ed_ratio;
  1745. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1746. }
  1747. #endif // LIN_ADVANCE
  1748. bool check_commands() {
  1749. bool end_command_found = false;
  1750. while (buflen)
  1751. {
  1752. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1753. if (!cmdbuffer_front_already_processed)
  1754. cmdqueue_pop_front();
  1755. cmdbuffer_front_already_processed = false;
  1756. }
  1757. return end_command_found;
  1758. }
  1759. #ifdef TMC2130
  1760. bool calibrate_z_auto()
  1761. {
  1762. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1763. lcd_clear();
  1764. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1765. bool endstops_enabled = enable_endstops(true);
  1766. int axis_up_dir = -home_dir(Z_AXIS);
  1767. tmc2130_home_enter(Z_AXIS_MASK);
  1768. current_position[Z_AXIS] = 0;
  1769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1770. set_destination_to_current();
  1771. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1772. feedrate = homing_feedrate[Z_AXIS];
  1773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1774. st_synchronize();
  1775. // current_position[axis] = 0;
  1776. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. tmc2130_home_exit();
  1778. enable_endstops(false);
  1779. current_position[Z_AXIS] = 0;
  1780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. set_destination_to_current();
  1782. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1783. feedrate = homing_feedrate[Z_AXIS] / 2;
  1784. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1785. st_synchronize();
  1786. enable_endstops(endstops_enabled);
  1787. if (PRINTER_TYPE == PRINTER_MK3) {
  1788. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1789. }
  1790. else {
  1791. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1792. }
  1793. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1794. return true;
  1795. }
  1796. #endif //TMC2130
  1797. #ifdef TMC2130
  1798. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1799. #else
  1800. void homeaxis(int axis, uint8_t cnt)
  1801. #endif //TMC2130
  1802. {
  1803. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1804. #define HOMEAXIS_DO(LETTER) \
  1805. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1806. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1807. {
  1808. int axis_home_dir = home_dir(axis);
  1809. feedrate = homing_feedrate[axis];
  1810. #ifdef TMC2130
  1811. tmc2130_home_enter(X_AXIS_MASK << axis);
  1812. #endif //TMC2130
  1813. // Move away a bit, so that the print head does not touch the end position,
  1814. // and the following movement to endstop has a chance to achieve the required velocity
  1815. // for the stall guard to work.
  1816. current_position[axis] = 0;
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. set_destination_to_current();
  1819. // destination[axis] = 11.f;
  1820. destination[axis] = -3.f * axis_home_dir;
  1821. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1824. endstops_hit_on_purpose();
  1825. enable_endstops(false);
  1826. current_position[axis] = 0;
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1828. destination[axis] = 1. * axis_home_dir;
  1829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1830. st_synchronize();
  1831. // Now continue to move up to the left end stop with the collision detection enabled.
  1832. enable_endstops(true);
  1833. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. for (uint8_t i = 0; i < cnt; i++)
  1837. {
  1838. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1839. endstops_hit_on_purpose();
  1840. enable_endstops(false);
  1841. current_position[axis] = 0;
  1842. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1843. destination[axis] = -10.f * axis_home_dir;
  1844. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. endstops_hit_on_purpose();
  1847. // Now move left up to the collision, this time with a repeatable velocity.
  1848. enable_endstops(true);
  1849. destination[axis] = 11.f * axis_home_dir;
  1850. #ifdef TMC2130
  1851. feedrate = homing_feedrate[axis];
  1852. #else //TMC2130
  1853. feedrate = homing_feedrate[axis] / 2;
  1854. #endif //TMC2130
  1855. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1856. st_synchronize();
  1857. #ifdef TMC2130
  1858. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1859. if (pstep) pstep[i] = mscnt >> 4;
  1860. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1861. #endif //TMC2130
  1862. }
  1863. endstops_hit_on_purpose();
  1864. enable_endstops(false);
  1865. #ifdef TMC2130
  1866. uint8_t orig = tmc2130_home_origin[axis];
  1867. uint8_t back = tmc2130_home_bsteps[axis];
  1868. if (tmc2130_home_enabled && (orig <= 63))
  1869. {
  1870. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1871. if (back > 0)
  1872. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1873. }
  1874. else
  1875. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1876. tmc2130_home_exit();
  1877. #endif //TMC2130
  1878. axis_is_at_home(axis);
  1879. axis_known_position[axis] = true;
  1880. // Move from minimum
  1881. #ifdef TMC2130
  1882. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1883. #else //TMC2130
  1884. float dist = - axis_home_dir * 0.01f * 64;
  1885. #endif //TMC2130
  1886. current_position[axis] -= dist;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. current_position[axis] += dist;
  1889. destination[axis] = current_position[axis];
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. feedrate = 0.0;
  1893. }
  1894. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1895. {
  1896. #ifdef TMC2130
  1897. FORCE_HIGH_POWER_START;
  1898. #endif
  1899. int axis_home_dir = home_dir(axis);
  1900. current_position[axis] = 0;
  1901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1903. feedrate = homing_feedrate[axis];
  1904. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1905. st_synchronize();
  1906. #ifdef TMC2130
  1907. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1908. FORCE_HIGH_POWER_END;
  1909. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1910. return;
  1911. }
  1912. #endif //TMC2130
  1913. current_position[axis] = 0;
  1914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1915. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1916. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1917. st_synchronize();
  1918. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1919. feedrate = homing_feedrate[axis]/2 ;
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. #ifdef TMC2130
  1923. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1924. FORCE_HIGH_POWER_END;
  1925. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1926. return;
  1927. }
  1928. #endif //TMC2130
  1929. axis_is_at_home(axis);
  1930. destination[axis] = current_position[axis];
  1931. feedrate = 0.0;
  1932. endstops_hit_on_purpose();
  1933. axis_known_position[axis] = true;
  1934. #ifdef TMC2130
  1935. FORCE_HIGH_POWER_END;
  1936. #endif
  1937. }
  1938. enable_endstops(endstops_enabled);
  1939. }
  1940. /**/
  1941. void home_xy()
  1942. {
  1943. set_destination_to_current();
  1944. homeaxis(X_AXIS);
  1945. homeaxis(Y_AXIS);
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. endstops_hit_on_purpose();
  1948. }
  1949. void refresh_cmd_timeout(void)
  1950. {
  1951. previous_millis_cmd = _millis();
  1952. }
  1953. #ifdef FWRETRACT
  1954. void retract(bool retracting, bool swapretract = false) {
  1955. if(retracting && !retracted[active_extruder]) {
  1956. destination[X_AXIS]=current_position[X_AXIS];
  1957. destination[Y_AXIS]=current_position[Y_AXIS];
  1958. destination[Z_AXIS]=current_position[Z_AXIS];
  1959. destination[E_AXIS]=current_position[E_AXIS];
  1960. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1961. plan_set_e_position(current_position[E_AXIS]);
  1962. float oldFeedrate = feedrate;
  1963. feedrate=cs.retract_feedrate*60;
  1964. retracted[active_extruder]=true;
  1965. prepare_move();
  1966. current_position[Z_AXIS]-=cs.retract_zlift;
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. prepare_move();
  1969. feedrate = oldFeedrate;
  1970. } else if(!retracting && retracted[active_extruder]) {
  1971. destination[X_AXIS]=current_position[X_AXIS];
  1972. destination[Y_AXIS]=current_position[Y_AXIS];
  1973. destination[Z_AXIS]=current_position[Z_AXIS];
  1974. destination[E_AXIS]=current_position[E_AXIS];
  1975. current_position[Z_AXIS]+=cs.retract_zlift;
  1976. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1977. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1978. plan_set_e_position(current_position[E_AXIS]);
  1979. float oldFeedrate = feedrate;
  1980. feedrate=cs.retract_recover_feedrate*60;
  1981. retracted[active_extruder]=false;
  1982. prepare_move();
  1983. feedrate = oldFeedrate;
  1984. }
  1985. } //retract
  1986. #endif //FWRETRACT
  1987. void trace() {
  1988. Sound_MakeCustom(25,440,true);
  1989. }
  1990. /*
  1991. void ramming() {
  1992. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1993. if (current_temperature[0] < 230) {
  1994. //PLA
  1995. max_feedrate[E_AXIS] = 50;
  1996. //current_position[E_AXIS] -= 8;
  1997. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1998. //current_position[E_AXIS] += 8;
  1999. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2000. current_position[E_AXIS] += 5.4;
  2001. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2002. current_position[E_AXIS] += 3.2;
  2003. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2004. current_position[E_AXIS] += 3;
  2005. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2006. st_synchronize();
  2007. max_feedrate[E_AXIS] = 80;
  2008. current_position[E_AXIS] -= 82;
  2009. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2010. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2011. current_position[E_AXIS] -= 20;
  2012. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2013. current_position[E_AXIS] += 5;
  2014. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2015. current_position[E_AXIS] += 5;
  2016. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2017. current_position[E_AXIS] -= 10;
  2018. st_synchronize();
  2019. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2020. current_position[E_AXIS] += 10;
  2021. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2022. current_position[E_AXIS] -= 10;
  2023. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2024. current_position[E_AXIS] += 10;
  2025. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2026. current_position[E_AXIS] -= 10;
  2027. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2028. st_synchronize();
  2029. }
  2030. else {
  2031. //ABS
  2032. max_feedrate[E_AXIS] = 50;
  2033. //current_position[E_AXIS] -= 8;
  2034. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2035. //current_position[E_AXIS] += 8;
  2036. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2037. current_position[E_AXIS] += 3.1;
  2038. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2039. current_position[E_AXIS] += 3.1;
  2040. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2041. current_position[E_AXIS] += 4;
  2042. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2043. st_synchronize();
  2044. //current_position[X_AXIS] += 23; //delay
  2045. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2046. //current_position[X_AXIS] -= 23; //delay
  2047. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2048. _delay(4700);
  2049. max_feedrate[E_AXIS] = 80;
  2050. current_position[E_AXIS] -= 92;
  2051. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2052. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2053. current_position[E_AXIS] -= 5;
  2054. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2055. current_position[E_AXIS] += 5;
  2056. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2057. current_position[E_AXIS] -= 5;
  2058. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2059. st_synchronize();
  2060. current_position[E_AXIS] += 5;
  2061. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2062. current_position[E_AXIS] -= 5;
  2063. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2064. current_position[E_AXIS] += 5;
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. current_position[E_AXIS] -= 5;
  2067. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2068. st_synchronize();
  2069. }
  2070. }
  2071. */
  2072. #ifdef TMC2130
  2073. void force_high_power_mode(bool start_high_power_section) {
  2074. #ifdef PSU_Delta
  2075. if (start_high_power_section == true) enable_force_z();
  2076. #endif //PSU_Delta
  2077. uint8_t silent;
  2078. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2079. if (silent == 1) {
  2080. //we are in silent mode, set to normal mode to enable crash detection
  2081. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2082. st_synchronize();
  2083. cli();
  2084. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2085. update_mode_profile();
  2086. tmc2130_init();
  2087. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2088. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2089. st_reset_timer();
  2090. sei();
  2091. }
  2092. }
  2093. #endif //TMC2130
  2094. #ifdef TMC2130
  2095. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2096. #else
  2097. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2098. #endif //TMC2130
  2099. {
  2100. st_synchronize();
  2101. #if 0
  2102. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2103. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2104. #endif
  2105. // Flag for the display update routine and to disable the print cancelation during homing.
  2106. homing_flag = true;
  2107. // Which axes should be homed?
  2108. bool home_x = home_x_axis;
  2109. bool home_y = home_y_axis;
  2110. bool home_z = home_z_axis;
  2111. // Either all X,Y,Z codes are present, or none of them.
  2112. bool home_all_axes = home_x == home_y && home_x == home_z;
  2113. if (home_all_axes)
  2114. // No X/Y/Z code provided means to home all axes.
  2115. home_x = home_y = home_z = true;
  2116. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2117. if (home_all_axes) {
  2118. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2119. feedrate = homing_feedrate[Z_AXIS];
  2120. plan_buffer_line_curposXYZE(feedrate / 60, active_extruder);
  2121. st_synchronize();
  2122. }
  2123. #ifdef ENABLE_AUTO_BED_LEVELING
  2124. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2125. #endif //ENABLE_AUTO_BED_LEVELING
  2126. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2127. // the planner will not perform any adjustments in the XY plane.
  2128. // Wait for the motors to stop and update the current position with the absolute values.
  2129. world2machine_revert_to_uncorrected();
  2130. // For mesh bed leveling deactivate the matrix temporarily.
  2131. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2132. // in a single axis only.
  2133. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2134. #ifdef MESH_BED_LEVELING
  2135. uint8_t mbl_was_active = mbl.active;
  2136. mbl.active = 0;
  2137. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2138. #endif
  2139. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2140. // consumed during the first movements following this statement.
  2141. if (home_z)
  2142. babystep_undo();
  2143. saved_feedrate = feedrate;
  2144. int l_feedmultiply = feedmultiply;
  2145. feedmultiply = 100;
  2146. previous_millis_cmd = _millis();
  2147. enable_endstops(true);
  2148. memcpy(destination, current_position, sizeof(destination));
  2149. feedrate = 0.0;
  2150. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2151. if(home_z)
  2152. homeaxis(Z_AXIS);
  2153. #endif
  2154. #ifdef QUICK_HOME
  2155. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2156. if(home_x && home_y) //first diagonal move
  2157. {
  2158. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2159. int x_axis_home_dir = home_dir(X_AXIS);
  2160. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2161. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2162. feedrate = homing_feedrate[X_AXIS];
  2163. if(homing_feedrate[Y_AXIS]<feedrate)
  2164. feedrate = homing_feedrate[Y_AXIS];
  2165. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2166. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2167. } else {
  2168. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2169. }
  2170. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2171. st_synchronize();
  2172. axis_is_at_home(X_AXIS);
  2173. axis_is_at_home(Y_AXIS);
  2174. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2175. destination[X_AXIS] = current_position[X_AXIS];
  2176. destination[Y_AXIS] = current_position[Y_AXIS];
  2177. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2178. feedrate = 0.0;
  2179. st_synchronize();
  2180. endstops_hit_on_purpose();
  2181. current_position[X_AXIS] = destination[X_AXIS];
  2182. current_position[Y_AXIS] = destination[Y_AXIS];
  2183. current_position[Z_AXIS] = destination[Z_AXIS];
  2184. }
  2185. #endif /* QUICK_HOME */
  2186. #ifdef TMC2130
  2187. if(home_x)
  2188. {
  2189. if (!calib)
  2190. homeaxis(X_AXIS);
  2191. else
  2192. tmc2130_home_calibrate(X_AXIS);
  2193. }
  2194. if(home_y)
  2195. {
  2196. if (!calib)
  2197. homeaxis(Y_AXIS);
  2198. else
  2199. tmc2130_home_calibrate(Y_AXIS);
  2200. }
  2201. #else //TMC2130
  2202. if(home_x) homeaxis(X_AXIS);
  2203. if(home_y) homeaxis(Y_AXIS);
  2204. #endif //TMC2130
  2205. if(home_x_axis && home_x_value != 0)
  2206. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2207. if(home_y_axis && home_y_value != 0)
  2208. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2209. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2210. #ifndef Z_SAFE_HOMING
  2211. if(home_z) {
  2212. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2213. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2214. feedrate = max_feedrate[Z_AXIS];
  2215. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2216. st_synchronize();
  2217. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2218. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2219. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2220. {
  2221. homeaxis(X_AXIS);
  2222. homeaxis(Y_AXIS);
  2223. }
  2224. // 1st mesh bed leveling measurement point, corrected.
  2225. world2machine_initialize();
  2226. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2227. world2machine_reset();
  2228. if (destination[Y_AXIS] < Y_MIN_POS)
  2229. destination[Y_AXIS] = Y_MIN_POS;
  2230. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2231. feedrate = homing_feedrate[Z_AXIS]/10;
  2232. current_position[Z_AXIS] = 0;
  2233. enable_endstops(false);
  2234. #ifdef DEBUG_BUILD
  2235. SERIAL_ECHOLNPGM("plan_set_position()");
  2236. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2237. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2238. #endif
  2239. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2240. #ifdef DEBUG_BUILD
  2241. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2242. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2243. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2244. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2245. #endif
  2246. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2247. st_synchronize();
  2248. current_position[X_AXIS] = destination[X_AXIS];
  2249. current_position[Y_AXIS] = destination[Y_AXIS];
  2250. enable_endstops(true);
  2251. endstops_hit_on_purpose();
  2252. homeaxis(Z_AXIS);
  2253. #else // MESH_BED_LEVELING
  2254. homeaxis(Z_AXIS);
  2255. #endif // MESH_BED_LEVELING
  2256. }
  2257. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2258. if(home_all_axes) {
  2259. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2260. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2261. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2262. feedrate = XY_TRAVEL_SPEED/60;
  2263. current_position[Z_AXIS] = 0;
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2266. st_synchronize();
  2267. current_position[X_AXIS] = destination[X_AXIS];
  2268. current_position[Y_AXIS] = destination[Y_AXIS];
  2269. homeaxis(Z_AXIS);
  2270. }
  2271. // Let's see if X and Y are homed and probe is inside bed area.
  2272. if(home_z) {
  2273. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2274. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2275. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2276. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2277. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2278. current_position[Z_AXIS] = 0;
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2281. feedrate = max_feedrate[Z_AXIS];
  2282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2283. st_synchronize();
  2284. homeaxis(Z_AXIS);
  2285. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2286. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2287. SERIAL_ECHO_START;
  2288. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2289. } else {
  2290. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2291. SERIAL_ECHO_START;
  2292. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2293. }
  2294. }
  2295. #endif // Z_SAFE_HOMING
  2296. #endif // Z_HOME_DIR < 0
  2297. if(home_z_axis && home_z_value != 0)
  2298. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2299. #ifdef ENABLE_AUTO_BED_LEVELING
  2300. if(home_z)
  2301. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2302. #endif
  2303. // Set the planner and stepper routine positions.
  2304. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2305. // contains the machine coordinates.
  2306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2307. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2308. enable_endstops(false);
  2309. #endif
  2310. feedrate = saved_feedrate;
  2311. feedmultiply = l_feedmultiply;
  2312. previous_millis_cmd = _millis();
  2313. endstops_hit_on_purpose();
  2314. #ifndef MESH_BED_LEVELING
  2315. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2316. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2317. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2318. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2319. lcd_adjust_z();
  2320. #endif
  2321. // Load the machine correction matrix
  2322. world2machine_initialize();
  2323. // and correct the current_position XY axes to match the transformed coordinate system.
  2324. world2machine_update_current();
  2325. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2326. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2327. {
  2328. if (! home_z && mbl_was_active) {
  2329. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2330. mbl.active = true;
  2331. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2332. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2333. }
  2334. }
  2335. else
  2336. {
  2337. st_synchronize();
  2338. homing_flag = false;
  2339. }
  2340. #endif
  2341. if (farm_mode) { prusa_statistics(20); };
  2342. homing_flag = false;
  2343. #if 0
  2344. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2345. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2346. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2347. #endif
  2348. }
  2349. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2350. {
  2351. #ifdef TMC2130
  2352. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2353. #else
  2354. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2355. #endif //TMC2130
  2356. }
  2357. void adjust_bed_reset()
  2358. {
  2359. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2360. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2361. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2362. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2363. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2364. }
  2365. //! @brief Calibrate XYZ
  2366. //! @param onlyZ if true, calibrate only Z axis
  2367. //! @param verbosity_level
  2368. //! @retval true Succeeded
  2369. //! @retval false Failed
  2370. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2371. {
  2372. bool final_result = false;
  2373. #ifdef TMC2130
  2374. FORCE_HIGH_POWER_START;
  2375. #endif // TMC2130
  2376. // Only Z calibration?
  2377. if (!onlyZ)
  2378. {
  2379. setTargetBed(0);
  2380. setAllTargetHotends(0);
  2381. adjust_bed_reset(); //reset bed level correction
  2382. }
  2383. // Disable the default update procedure of the display. We will do a modal dialog.
  2384. lcd_update_enable(false);
  2385. // Let the planner use the uncorrected coordinates.
  2386. mbl.reset();
  2387. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2388. // the planner will not perform any adjustments in the XY plane.
  2389. // Wait for the motors to stop and update the current position with the absolute values.
  2390. world2machine_revert_to_uncorrected();
  2391. // Reset the baby step value applied without moving the axes.
  2392. babystep_reset();
  2393. // Mark all axes as in a need for homing.
  2394. memset(axis_known_position, 0, sizeof(axis_known_position));
  2395. // Home in the XY plane.
  2396. //set_destination_to_current();
  2397. int l_feedmultiply = setup_for_endstop_move();
  2398. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2399. home_xy();
  2400. enable_endstops(false);
  2401. current_position[X_AXIS] += 5;
  2402. current_position[Y_AXIS] += 5;
  2403. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2404. st_synchronize();
  2405. // Let the user move the Z axes up to the end stoppers.
  2406. #ifdef TMC2130
  2407. if (calibrate_z_auto())
  2408. {
  2409. #else //TMC2130
  2410. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2411. {
  2412. #endif //TMC2130
  2413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2414. if(onlyZ){
  2415. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2416. lcd_set_cursor(0, 3);
  2417. lcd_print(1);
  2418. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2419. }else{
  2420. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2421. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2422. lcd_set_cursor(0, 2);
  2423. lcd_print(1);
  2424. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2425. }
  2426. refresh_cmd_timeout();
  2427. #ifndef STEEL_SHEET
  2428. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2429. {
  2430. lcd_wait_for_cool_down();
  2431. }
  2432. #endif //STEEL_SHEET
  2433. if(!onlyZ)
  2434. {
  2435. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2436. #ifdef STEEL_SHEET
  2437. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2438. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2439. #endif //STEEL_SHEET
  2440. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2441. KEEPALIVE_STATE(IN_HANDLER);
  2442. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2443. lcd_set_cursor(0, 2);
  2444. lcd_print(1);
  2445. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2446. }
  2447. bool endstops_enabled = enable_endstops(false);
  2448. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2449. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2450. st_synchronize();
  2451. // Move the print head close to the bed.
  2452. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2453. enable_endstops(true);
  2454. #ifdef TMC2130
  2455. tmc2130_home_enter(Z_AXIS_MASK);
  2456. #endif //TMC2130
  2457. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2458. st_synchronize();
  2459. #ifdef TMC2130
  2460. tmc2130_home_exit();
  2461. #endif //TMC2130
  2462. enable_endstops(endstops_enabled);
  2463. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2464. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2465. {
  2466. if (onlyZ)
  2467. {
  2468. clean_up_after_endstop_move(l_feedmultiply);
  2469. // Z only calibration.
  2470. // Load the machine correction matrix
  2471. world2machine_initialize();
  2472. // and correct the current_position to match the transformed coordinate system.
  2473. world2machine_update_current();
  2474. //FIXME
  2475. bool result = sample_mesh_and_store_reference();
  2476. if (result)
  2477. {
  2478. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2479. // Shipped, the nozzle height has been set already. The user can start printing now.
  2480. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2481. final_result = true;
  2482. // babystep_apply();
  2483. }
  2484. }
  2485. else
  2486. {
  2487. // Reset the baby step value and the baby step applied flag.
  2488. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2489. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2490. // Complete XYZ calibration.
  2491. uint8_t point_too_far_mask = 0;
  2492. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2493. clean_up_after_endstop_move(l_feedmultiply);
  2494. // Print head up.
  2495. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2496. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2497. st_synchronize();
  2498. //#ifndef NEW_XYZCAL
  2499. if (result >= 0)
  2500. {
  2501. #ifdef HEATBED_V2
  2502. sample_z();
  2503. #else //HEATBED_V2
  2504. point_too_far_mask = 0;
  2505. // Second half: The fine adjustment.
  2506. // Let the planner use the uncorrected coordinates.
  2507. mbl.reset();
  2508. world2machine_reset();
  2509. // Home in the XY plane.
  2510. int l_feedmultiply = setup_for_endstop_move();
  2511. home_xy();
  2512. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2513. clean_up_after_endstop_move(l_feedmultiply);
  2514. // Print head up.
  2515. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2516. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2517. st_synchronize();
  2518. // if (result >= 0) babystep_apply();
  2519. #endif //HEATBED_V2
  2520. }
  2521. //#endif //NEW_XYZCAL
  2522. lcd_update_enable(true);
  2523. lcd_update(2);
  2524. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2525. if (result >= 0)
  2526. {
  2527. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2528. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2529. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2530. final_result = true;
  2531. }
  2532. }
  2533. #ifdef TMC2130
  2534. tmc2130_home_exit();
  2535. #endif
  2536. }
  2537. else
  2538. {
  2539. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2540. final_result = false;
  2541. }
  2542. }
  2543. else
  2544. {
  2545. // Timeouted.
  2546. }
  2547. lcd_update_enable(true);
  2548. #ifdef TMC2130
  2549. FORCE_HIGH_POWER_END;
  2550. #endif // TMC2130
  2551. return final_result;
  2552. }
  2553. void gcode_M114()
  2554. {
  2555. SERIAL_PROTOCOLPGM("X:");
  2556. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2557. SERIAL_PROTOCOLPGM(" Y:");
  2558. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2559. SERIAL_PROTOCOLPGM(" Z:");
  2560. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2561. SERIAL_PROTOCOLPGM(" E:");
  2562. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2563. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2564. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2565. SERIAL_PROTOCOLPGM(" Y:");
  2566. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2567. SERIAL_PROTOCOLPGM(" Z:");
  2568. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2569. SERIAL_PROTOCOLPGM(" E:");
  2570. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2571. SERIAL_PROTOCOLLN("");
  2572. }
  2573. //! extracted code to compute z_shift for M600 in case of filament change operation
  2574. //! requested from fsensors.
  2575. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2576. //! unlike the previous implementation, which was adding 25mm even when the head was
  2577. //! printing at e.g. 24mm height.
  2578. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2579. //! the printout.
  2580. //! This function is templated to enable fast change of computation data type.
  2581. //! @return new z_shift value
  2582. template<typename T>
  2583. static T gcode_M600_filament_change_z_shift()
  2584. {
  2585. #ifdef FILAMENTCHANGE_ZADD
  2586. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2587. // avoid floating point arithmetics when not necessary - results in shorter code
  2588. T ztmp = T( current_position[Z_AXIS] );
  2589. T z_shift = 0;
  2590. if(ztmp < T(25)){
  2591. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2592. }
  2593. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2594. #else
  2595. return T(0);
  2596. #endif
  2597. }
  2598. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2599. {
  2600. st_synchronize();
  2601. float lastpos[4];
  2602. if (farm_mode)
  2603. {
  2604. prusa_statistics(22);
  2605. }
  2606. //First backup current position and settings
  2607. int feedmultiplyBckp = feedmultiply;
  2608. float HotendTempBckp = degTargetHotend(active_extruder);
  2609. int fanSpeedBckp = fanSpeed;
  2610. lastpos[X_AXIS] = current_position[X_AXIS];
  2611. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2612. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2613. lastpos[E_AXIS] = current_position[E_AXIS];
  2614. //Retract E
  2615. current_position[E_AXIS] += e_shift;
  2616. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2617. st_synchronize();
  2618. //Lift Z
  2619. current_position[Z_AXIS] += z_shift;
  2620. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2621. st_synchronize();
  2622. //Move XY to side
  2623. current_position[X_AXIS] = x_position;
  2624. current_position[Y_AXIS] = y_position;
  2625. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2626. st_synchronize();
  2627. //Beep, manage nozzle heater and wait for user to start unload filament
  2628. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2629. lcd_change_fil_state = 0;
  2630. // Unload filament
  2631. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2632. else unload_filament(); //unload filament for single material (used also in M702)
  2633. //finish moves
  2634. st_synchronize();
  2635. if (!mmu_enabled)
  2636. {
  2637. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2638. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2639. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2640. if (lcd_change_fil_state == 0)
  2641. {
  2642. lcd_clear();
  2643. lcd_set_cursor(0, 2);
  2644. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2645. current_position[X_AXIS] -= 100;
  2646. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2647. st_synchronize();
  2648. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2649. }
  2650. }
  2651. if (mmu_enabled)
  2652. {
  2653. if (!automatic) {
  2654. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2655. mmu_M600_wait_and_beep();
  2656. if (saved_printing) {
  2657. lcd_clear();
  2658. lcd_set_cursor(0, 2);
  2659. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2660. mmu_command(MmuCmd::R0);
  2661. manage_response(false, false);
  2662. }
  2663. }
  2664. mmu_M600_load_filament(automatic, HotendTempBckp);
  2665. }
  2666. else
  2667. M600_load_filament();
  2668. if (!automatic) M600_check_state(HotendTempBckp);
  2669. lcd_update_enable(true);
  2670. //Not let's go back to print
  2671. fanSpeed = fanSpeedBckp;
  2672. //Feed a little of filament to stabilize pressure
  2673. if (!automatic)
  2674. {
  2675. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2676. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2677. }
  2678. //Move XY back
  2679. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2680. FILAMENTCHANGE_XYFEED, active_extruder);
  2681. st_synchronize();
  2682. //Move Z back
  2683. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2684. FILAMENTCHANGE_ZFEED, active_extruder);
  2685. st_synchronize();
  2686. //Set E position to original
  2687. plan_set_e_position(lastpos[E_AXIS]);
  2688. memcpy(current_position, lastpos, sizeof(lastpos));
  2689. memcpy(destination, current_position, sizeof(current_position));
  2690. //Recover feed rate
  2691. feedmultiply = feedmultiplyBckp;
  2692. char cmd[9];
  2693. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2694. enquecommand(cmd);
  2695. #ifdef IR_SENSOR
  2696. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2697. fsensor_check_autoload();
  2698. #endif //IR_SENSOR
  2699. lcd_setstatuspgm(_T(WELCOME_MSG));
  2700. custom_message_type = CustomMsg::Status;
  2701. }
  2702. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2703. //!
  2704. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2705. //! during extruding (loading) filament.
  2706. void marlin_rise_z(void)
  2707. {
  2708. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2709. }
  2710. void gcode_M701()
  2711. {
  2712. printf_P(PSTR("gcode_M701 begin\n"));
  2713. if (farm_mode)
  2714. {
  2715. prusa_statistics(22);
  2716. }
  2717. if (mmu_enabled)
  2718. {
  2719. extr_adj(tmp_extruder);//loads current extruder
  2720. mmu_extruder = tmp_extruder;
  2721. }
  2722. else
  2723. {
  2724. enable_z();
  2725. custom_message_type = CustomMsg::FilamentLoading;
  2726. #ifdef FSENSOR_QUALITY
  2727. fsensor_oq_meassure_start(40);
  2728. #endif //FSENSOR_QUALITY
  2729. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2730. current_position[E_AXIS] += 40;
  2731. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2732. st_synchronize();
  2733. marlin_rise_z();
  2734. current_position[E_AXIS] += 30;
  2735. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2736. load_filament_final_feed(); //slow sequence
  2737. st_synchronize();
  2738. Sound_MakeCustom(50,500,false);
  2739. if (!farm_mode && loading_flag) {
  2740. lcd_load_filament_color_check();
  2741. }
  2742. lcd_update_enable(true);
  2743. lcd_update(2);
  2744. lcd_setstatuspgm(_T(WELCOME_MSG));
  2745. disable_z();
  2746. loading_flag = false;
  2747. custom_message_type = CustomMsg::Status;
  2748. #ifdef FSENSOR_QUALITY
  2749. fsensor_oq_meassure_stop();
  2750. if (!fsensor_oq_result())
  2751. {
  2752. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2753. lcd_update_enable(true);
  2754. lcd_update(2);
  2755. if (disable)
  2756. fsensor_disable();
  2757. }
  2758. #endif //FSENSOR_QUALITY
  2759. }
  2760. }
  2761. /**
  2762. * @brief Get serial number from 32U2 processor
  2763. *
  2764. * Typical format of S/N is:CZPX0917X003XC13518
  2765. *
  2766. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2767. *
  2768. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2769. * reply is transmitted to serial port 1 character by character.
  2770. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2771. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2772. * in any case.
  2773. */
  2774. static void gcode_PRUSA_SN()
  2775. {
  2776. if (farm_mode) {
  2777. selectedSerialPort = 0;
  2778. putchar(';');
  2779. putchar('S');
  2780. int numbersRead = 0;
  2781. ShortTimer timeout;
  2782. timeout.start();
  2783. while (numbersRead < 19) {
  2784. while (MSerial.available() > 0) {
  2785. uint8_t serial_char = MSerial.read();
  2786. selectedSerialPort = 1;
  2787. putchar(serial_char);
  2788. numbersRead++;
  2789. selectedSerialPort = 0;
  2790. }
  2791. if (timeout.expired(100u)) break;
  2792. }
  2793. selectedSerialPort = 1;
  2794. putchar('\n');
  2795. #if 0
  2796. for (int b = 0; b < 3; b++) {
  2797. _tone(BEEPER, 110);
  2798. _delay(50);
  2799. _noTone(BEEPER);
  2800. _delay(50);
  2801. }
  2802. #endif
  2803. } else {
  2804. puts_P(_N("Not in farm mode."));
  2805. }
  2806. }
  2807. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2808. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2809. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2810. //! it may even interfere with other functions of the printer! You have been warned!
  2811. //! The test idea is to measure the time necessary to charge the capacitor.
  2812. //! So the algorithm is as follows:
  2813. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2814. //! 2. Wait a few ms
  2815. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2816. //! Repeat 1.-3. several times
  2817. //! Good RAMBo's times are in the range of approx. 260-320 us
  2818. //! Bad RAMBo's times are approx. 260-1200 us
  2819. //! So basically we are interested in maximum time, the minima are mostly the same.
  2820. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2821. static void gcode_PRUSA_BadRAMBoFanTest(){
  2822. //printf_P(PSTR("Enter fan pin test\n"));
  2823. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2824. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2825. unsigned long tach1max = 0;
  2826. uint8_t tach1cntr = 0;
  2827. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2828. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2829. SET_OUTPUT(TACH_1);
  2830. WRITE(TACH_1, LOW);
  2831. _delay(20); // the delay may be lower
  2832. unsigned long tachMeasure = _micros();
  2833. cli();
  2834. SET_INPUT(TACH_1);
  2835. // just wait brutally in an endless cycle until we reach HIGH
  2836. // if this becomes a problem it may be improved to non-endless cycle
  2837. while( READ(TACH_1) == 0 ) ;
  2838. sei();
  2839. tachMeasure = _micros() - tachMeasure;
  2840. if( tach1max < tachMeasure )
  2841. tach1max = tachMeasure;
  2842. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2843. }
  2844. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2845. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2846. if( tach1max > 500 ){
  2847. // bad RAMBo
  2848. SERIAL_PROTOCOLLNPGM("BAD");
  2849. } else {
  2850. SERIAL_PROTOCOLLNPGM("OK");
  2851. }
  2852. // cleanup after the test function
  2853. SET_INPUT(TACH_1);
  2854. WRITE(TACH_1, HIGH);
  2855. #endif
  2856. }
  2857. #ifdef BACKLASH_X
  2858. extern uint8_t st_backlash_x;
  2859. #endif //BACKLASH_X
  2860. #ifdef BACKLASH_Y
  2861. extern uint8_t st_backlash_y;
  2862. #endif //BACKLASH_Y
  2863. //! \ingroup marlin_main
  2864. //! @brief Parse and process commands
  2865. //!
  2866. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2867. //!
  2868. //!
  2869. //! Implemented Codes
  2870. //! -------------------
  2871. //!
  2872. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2873. //!
  2874. //!@n PRUSA CODES
  2875. //!@n P F - Returns FW versions
  2876. //!@n P R - Returns revision of printer
  2877. //!
  2878. //!@n G0 -> G1
  2879. //!@n G1 - Coordinated Movement X Y Z E
  2880. //!@n G2 - CW ARC
  2881. //!@n G3 - CCW ARC
  2882. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2883. //!@n G10 - retract filament according to settings of M207
  2884. //!@n G11 - retract recover filament according to settings of M208
  2885. //!@n G28 - Home all Axis
  2886. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2887. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2888. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2889. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2890. //!@n G80 - Automatic mesh bed leveling
  2891. //!@n G81 - Print bed profile
  2892. //!@n G90 - Use Absolute Coordinates
  2893. //!@n G91 - Use Relative Coordinates
  2894. //!@n G92 - Set current position to coordinates given
  2895. //!
  2896. //!@n M Codes
  2897. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2898. //!@n M1 - Same as M0
  2899. //!@n M17 - Enable/Power all stepper motors
  2900. //!@n M18 - Disable all stepper motors; same as M84
  2901. //!@n M20 - List SD card
  2902. //!@n M21 - Init SD card
  2903. //!@n M22 - Release SD card
  2904. //!@n M23 - Select SD file (M23 filename.g)
  2905. //!@n M24 - Start/resume SD print
  2906. //!@n M25 - Pause SD print
  2907. //!@n M26 - Set SD position in bytes (M26 S12345)
  2908. //!@n M27 - Report SD print status
  2909. //!@n M28 - Start SD write (M28 filename.g)
  2910. //!@n M29 - Stop SD write
  2911. //!@n M30 - Delete file from SD (M30 filename.g)
  2912. //!@n M31 - Output time since last M109 or SD card start to serial
  2913. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2914. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2915. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2916. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2917. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2918. //!@n M73 - Show percent done and print time remaining
  2919. //!@n M80 - Turn on Power Supply
  2920. //!@n M81 - Turn off Power Supply
  2921. //!@n M82 - Set E codes absolute (default)
  2922. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2923. //!@n M84 - Disable steppers until next move,
  2924. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2925. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2926. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2927. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2928. //!@n M104 - Set extruder target temp
  2929. //!@n M105 - Read current temp
  2930. //!@n M106 - Fan on
  2931. //!@n M107 - Fan off
  2932. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2933. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2934. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2935. //!@n M112 - Emergency stop
  2936. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2937. //!@n M114 - Output current position to serial port
  2938. //!@n M115 - Capabilities string
  2939. //!@n M117 - display message
  2940. //!@n M119 - Output Endstop status to serial port
  2941. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2942. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2943. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2944. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2945. //!@n M140 - Set bed target temp
  2946. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2947. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2948. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2949. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2950. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2951. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2952. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2953. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2954. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2955. //!@n M206 - set additional homing offset
  2956. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2957. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2958. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2959. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2960. //!@n M220 S<factor in percent>- set speed factor override percentage
  2961. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2962. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2963. //!@n M240 - Trigger a camera to take a photograph
  2964. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2965. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2966. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2967. //!@n M301 - Set PID parameters P I and D
  2968. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2969. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2970. //!@n M304 - Set bed PID parameters P I and D
  2971. //!@n M400 - Finish all moves
  2972. //!@n M401 - Lower z-probe if present
  2973. //!@n M402 - Raise z-probe if present
  2974. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2975. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2976. //!@n M406 - Turn off Filament Sensor extrusion control
  2977. //!@n M407 - Displays measured filament diameter
  2978. //!@n M500 - stores parameters in EEPROM
  2979. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2980. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2981. //!@n M503 - print the current settings (from memory not from EEPROM)
  2982. //!@n M509 - force language selection on next restart
  2983. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2984. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2985. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2986. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2987. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2988. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2989. //!@n M907 - Set digital trimpot motor current using axis codes.
  2990. //!@n M908 - Control digital trimpot directly.
  2991. //!@n M350 - Set microstepping mode.
  2992. //!@n M351 - Toggle MS1 MS2 pins directly.
  2993. //!
  2994. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2995. //!@n M999 - Restart after being stopped by error
  2996. //! <br><br>
  2997. /** @defgroup marlin_main Marlin main */
  2998. /** \ingroup GCodes */
  2999. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  3000. void process_commands()
  3001. {
  3002. #ifdef FANCHECK
  3003. if(fan_check_error){
  3004. if(fan_check_error == EFCE_DETECTED){
  3005. fan_check_error = EFCE_REPORTED;
  3006. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3007. lcd_pause_print();
  3008. } // otherwise it has already been reported, so just ignore further processing
  3009. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3010. }
  3011. #endif
  3012. if (!buflen) return; //empty command
  3013. #ifdef FILAMENT_RUNOUT_SUPPORT
  3014. SET_INPUT(FR_SENS);
  3015. #endif
  3016. #ifdef CMDBUFFER_DEBUG
  3017. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3018. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3019. SERIAL_ECHOLNPGM("");
  3020. SERIAL_ECHOPGM("In cmdqueue: ");
  3021. SERIAL_ECHO(buflen);
  3022. SERIAL_ECHOLNPGM("");
  3023. #endif /* CMDBUFFER_DEBUG */
  3024. unsigned long codenum; //throw away variable
  3025. char *starpos = NULL;
  3026. #ifdef ENABLE_AUTO_BED_LEVELING
  3027. float x_tmp, y_tmp, z_tmp, real_z;
  3028. #endif
  3029. // PRUSA GCODES
  3030. KEEPALIVE_STATE(IN_HANDLER);
  3031. #ifdef SNMM
  3032. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3033. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3034. int8_t SilentMode;
  3035. #endif
  3036. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3037. starpos = (strchr(strchr_pointer + 5, '*'));
  3038. if (starpos != NULL)
  3039. *(starpos) = '\0';
  3040. lcd_setstatus(strchr_pointer + 5);
  3041. }
  3042. #ifdef TMC2130
  3043. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3044. {
  3045. //! ### CRASH_DETECTED - TMC2130
  3046. // ---------------------------------
  3047. if(code_seen("CRASH_DETECTED"))
  3048. {
  3049. uint8_t mask = 0;
  3050. if (code_seen('X')) mask |= X_AXIS_MASK;
  3051. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3052. crashdet_detected(mask);
  3053. }
  3054. //! ### CRASH_RECOVER - TMC2130
  3055. // ----------------------------------
  3056. else if(code_seen("CRASH_RECOVER"))
  3057. crashdet_recover();
  3058. //! ### CRASH_CANCEL - TMC2130
  3059. // ----------------------------------
  3060. else if(code_seen("CRASH_CANCEL"))
  3061. crashdet_cancel();
  3062. }
  3063. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3064. {
  3065. //! ### TMC_SET_WAVE_
  3066. // --------------------
  3067. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3068. {
  3069. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3070. axis = (axis == 'E')?3:(axis - 'X');
  3071. if (axis < 4)
  3072. {
  3073. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3074. tmc2130_set_wave(axis, 247, fac);
  3075. }
  3076. }
  3077. //! ### TMC_SET_STEP_
  3078. // ------------------
  3079. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3080. {
  3081. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3082. axis = (axis == 'E')?3:(axis - 'X');
  3083. if (axis < 4)
  3084. {
  3085. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3086. uint16_t res = tmc2130_get_res(axis);
  3087. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3088. }
  3089. }
  3090. //! ### TMC_SET_CHOP_
  3091. // -------------------
  3092. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3093. {
  3094. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3095. axis = (axis == 'E')?3:(axis - 'X');
  3096. if (axis < 4)
  3097. {
  3098. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3099. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3100. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3101. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3102. char* str_end = 0;
  3103. if (CMDBUFFER_CURRENT_STRING[14])
  3104. {
  3105. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3106. if (str_end && *str_end)
  3107. {
  3108. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3109. if (str_end && *str_end)
  3110. {
  3111. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3112. if (str_end && *str_end)
  3113. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3114. }
  3115. }
  3116. }
  3117. tmc2130_chopper_config[axis].toff = chop0;
  3118. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3119. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3120. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3121. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3122. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3123. }
  3124. }
  3125. }
  3126. #ifdef BACKLASH_X
  3127. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3128. {
  3129. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3130. st_backlash_x = bl;
  3131. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3132. }
  3133. #endif //BACKLASH_X
  3134. #ifdef BACKLASH_Y
  3135. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3136. {
  3137. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3138. st_backlash_y = bl;
  3139. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3140. }
  3141. #endif //BACKLASH_Y
  3142. #endif //TMC2130
  3143. else if(code_seen("PRUSA")){
  3144. /*!
  3145. *
  3146. ### PRUSA - Internal command set
  3147. Set of internal PRUSA commands
  3148. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3149. - `Ping`
  3150. - `PRN` - Prints revision of the printer
  3151. - `FAN` - Prints fan details
  3152. - `fn` - Prints farm no.
  3153. - `thx`
  3154. - `uvlo`
  3155. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3156. - `MMURES` - Reset MMU
  3157. - `RESET` - (Careful!)
  3158. - `fv` - ?
  3159. - `M28`
  3160. - `SN`
  3161. - `Fir` - Prints firmware version
  3162. - `Rev`- Prints filament size, elelectronics, nozzle type
  3163. - `Lang` - Reset the language
  3164. - `Lz`
  3165. - `Beat` - Kick farm link timer
  3166. - `FR` - Full factory reset
  3167. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3168. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3169. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3170. *
  3171. */
  3172. if (code_seen("Ping")) { // PRUSA Ping
  3173. if (farm_mode) {
  3174. PingTime = _millis();
  3175. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3176. }
  3177. }
  3178. else if (code_seen("PRN")) { // PRUSA PRN
  3179. printf_P(_N("%d"), status_number);
  3180. } else if( code_seen("FANPINTST") ){
  3181. gcode_PRUSA_BadRAMBoFanTest();
  3182. }else if (code_seen("FAN")) { // PRUSA FAN
  3183. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3184. }else if (code_seen("fn")) { // PRUSA fn
  3185. if (farm_mode) {
  3186. printf_P(_N("%d"), farm_no);
  3187. }
  3188. else {
  3189. puts_P(_N("Not in farm mode."));
  3190. }
  3191. }
  3192. else if (code_seen("thx")) // PRUSA thx
  3193. {
  3194. no_response = false;
  3195. }
  3196. else if (code_seen("uvlo")) // PRUSA uvlo
  3197. {
  3198. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3199. enquecommand_P(PSTR("M24"));
  3200. }
  3201. #ifdef FILAMENT_SENSOR
  3202. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3203. {
  3204. fsensor_restore_print_and_continue();
  3205. }
  3206. #endif //FILAMENT_SENSOR
  3207. else if (code_seen("MMURES")) // PRUSA MMURES
  3208. {
  3209. mmu_reset();
  3210. }
  3211. else if (code_seen("RESET")) { // PRUSA RESET
  3212. // careful!
  3213. if (farm_mode) {
  3214. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3215. boot_app_magic = BOOT_APP_MAGIC;
  3216. boot_app_flags = BOOT_APP_FLG_RUN;
  3217. wdt_enable(WDTO_15MS);
  3218. cli();
  3219. while(1);
  3220. #else //WATCHDOG
  3221. asm volatile("jmp 0x3E000");
  3222. #endif //WATCHDOG
  3223. }
  3224. else {
  3225. MYSERIAL.println("Not in farm mode.");
  3226. }
  3227. }else if (code_seen("fv")) { // PRUSA fv
  3228. // get file version
  3229. #ifdef SDSUPPORT
  3230. card.openFile(strchr_pointer + 3,true);
  3231. while (true) {
  3232. uint16_t readByte = card.get();
  3233. MYSERIAL.write(readByte);
  3234. if (readByte=='\n') {
  3235. break;
  3236. }
  3237. }
  3238. card.closefile();
  3239. #endif // SDSUPPORT
  3240. } else if (code_seen("M28")) { // PRUSA M28
  3241. trace();
  3242. prusa_sd_card_upload = true;
  3243. card.openFile(strchr_pointer+4,false);
  3244. } else if (code_seen("SN")) { // PRUSA SN
  3245. gcode_PRUSA_SN();
  3246. } else if(code_seen("Fir")){ // PRUSA Fir
  3247. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3248. } else if(code_seen("Rev")){ // PRUSA Rev
  3249. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3250. } else if(code_seen("Lang")) { // PRUSA Lang
  3251. lang_reset();
  3252. } else if(code_seen("Lz")) { // PRUSA Lz
  3253. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3254. } else if(code_seen("Beat")) { // PRUSA Beat
  3255. // Kick farm link timer
  3256. kicktime = _millis();
  3257. } else if(code_seen("FR")) { // PRUSA FR
  3258. // Factory full reset
  3259. factory_reset(0);
  3260. //-//
  3261. /*
  3262. } else if(code_seen("rrr")) {
  3263. MYSERIAL.println("=== checking ===");
  3264. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3265. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3266. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3267. MYSERIAL.println(farm_mode,DEC);
  3268. MYSERIAL.println(eCheckMode,DEC);
  3269. } else if(code_seen("www")) {
  3270. MYSERIAL.println("=== @ FF ===");
  3271. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3272. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3273. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3274. */
  3275. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3276. uint16_t nDiameter;
  3277. if(code_seen('D'))
  3278. {
  3279. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3280. nozzle_diameter_check(nDiameter);
  3281. }
  3282. else if(code_seen("set") && farm_mode)
  3283. {
  3284. strchr_pointer++; // skip 1st char (~ 's')
  3285. strchr_pointer++; // skip 2nd char (~ 'e')
  3286. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3287. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3288. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3289. }
  3290. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3291. //-// !!! SupportMenu
  3292. /*
  3293. // musi byt PRED "PRUSA model"
  3294. } else if (code_seen("smodel")) { //! PRUSA smodel
  3295. size_t nOffset;
  3296. // ! -> "l"
  3297. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3298. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3299. if(*(strchr_pointer+1+nOffset))
  3300. printer_smodel_check(strchr_pointer);
  3301. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3302. } else if (code_seen("model")) { //! PRUSA model
  3303. uint16_t nPrinterModel;
  3304. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3305. nPrinterModel=(uint16_t)code_value_long();
  3306. if(nPrinterModel!=0)
  3307. printer_model_check(nPrinterModel);
  3308. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3309. } else if (code_seen("version")) { //! PRUSA version
  3310. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3311. while(*strchr_pointer==' ') // skip leading spaces
  3312. strchr_pointer++;
  3313. if(*strchr_pointer!=0)
  3314. fw_version_check(strchr_pointer);
  3315. else SERIAL_PROTOCOLLN(FW_VERSION);
  3316. } else if (code_seen("gcode")) { //! PRUSA gcode
  3317. uint16_t nGcodeLevel;
  3318. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3319. nGcodeLevel=(uint16_t)code_value_long();
  3320. if(nGcodeLevel!=0)
  3321. gcode_level_check(nGcodeLevel);
  3322. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3323. */
  3324. }
  3325. //else if (code_seen('Cal')) {
  3326. // lcd_calibration();
  3327. // }
  3328. }
  3329. // This prevents reading files with "^" in their names.
  3330. // Since it is unclear, if there is some usage of this construct,
  3331. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3332. // else if (code_seen('^')) {
  3333. // // nothing, this is a version line
  3334. // }
  3335. else if(code_seen('G'))
  3336. {
  3337. gcode_in_progress = (int)code_value();
  3338. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3339. switch (gcode_in_progress)
  3340. {
  3341. //! ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3342. // --------------------------------------
  3343. case 0: // G0 -> G1
  3344. case 1: // G1
  3345. if(Stopped == false) {
  3346. #ifdef FILAMENT_RUNOUT_SUPPORT
  3347. if(READ(FR_SENS)){
  3348. int feedmultiplyBckp=feedmultiply;
  3349. float target[4];
  3350. float lastpos[4];
  3351. target[X_AXIS]=current_position[X_AXIS];
  3352. target[Y_AXIS]=current_position[Y_AXIS];
  3353. target[Z_AXIS]=current_position[Z_AXIS];
  3354. target[E_AXIS]=current_position[E_AXIS];
  3355. lastpos[X_AXIS]=current_position[X_AXIS];
  3356. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3357. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3358. lastpos[E_AXIS]=current_position[E_AXIS];
  3359. //retract by E
  3360. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3361. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3362. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3364. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3365. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3366. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3367. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3368. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3369. //finish moves
  3370. st_synchronize();
  3371. //disable extruder steppers so filament can be removed
  3372. disable_e0();
  3373. disable_e1();
  3374. disable_e2();
  3375. _delay(100);
  3376. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3377. uint8_t cnt=0;
  3378. int counterBeep = 0;
  3379. lcd_wait_interact();
  3380. while(!lcd_clicked()){
  3381. cnt++;
  3382. manage_heater();
  3383. manage_inactivity(true);
  3384. //lcd_update(0);
  3385. if(cnt==0)
  3386. {
  3387. #if BEEPER > 0
  3388. if (counterBeep== 500){
  3389. counterBeep = 0;
  3390. }
  3391. SET_OUTPUT(BEEPER);
  3392. if (counterBeep== 0){
  3393. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3394. WRITE(BEEPER,HIGH);
  3395. }
  3396. if (counterBeep== 20){
  3397. WRITE(BEEPER,LOW);
  3398. }
  3399. counterBeep++;
  3400. #else
  3401. #endif
  3402. }
  3403. }
  3404. WRITE(BEEPER,LOW);
  3405. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3406. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3407. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3408. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3409. lcd_change_fil_state = 0;
  3410. lcd_loading_filament();
  3411. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3412. lcd_change_fil_state = 0;
  3413. lcd_alright();
  3414. switch(lcd_change_fil_state){
  3415. case 2:
  3416. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3417. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3418. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3419. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3420. lcd_loading_filament();
  3421. break;
  3422. case 3:
  3423. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3425. lcd_loading_color();
  3426. break;
  3427. default:
  3428. lcd_change_success();
  3429. break;
  3430. }
  3431. }
  3432. target[E_AXIS]+= 5;
  3433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3434. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3436. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3437. //plan_set_e_position(current_position[E_AXIS]);
  3438. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3439. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3440. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3441. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3442. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3443. plan_set_e_position(lastpos[E_AXIS]);
  3444. feedmultiply=feedmultiplyBckp;
  3445. char cmd[9];
  3446. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3447. enquecommand(cmd);
  3448. }
  3449. #endif
  3450. get_coordinates(); // For X Y Z E F
  3451. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3452. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3453. }
  3454. #ifdef FWRETRACT
  3455. if(cs.autoretract_enabled)
  3456. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3457. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3458. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3459. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3460. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3461. retract(!retracted[active_extruder]);
  3462. return;
  3463. }
  3464. }
  3465. #endif //FWRETRACT
  3466. prepare_move();
  3467. //ClearToSend();
  3468. }
  3469. break;
  3470. //! ### G2 - CW ARC <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3471. // ------------------------------
  3472. case 2:
  3473. if(Stopped == false) {
  3474. get_arc_coordinates();
  3475. prepare_arc_move(true);
  3476. }
  3477. break;
  3478. //! ### G3 - CCW ARC <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3479. // -------------------------------
  3480. case 3:
  3481. if(Stopped == false) {
  3482. get_arc_coordinates();
  3483. prepare_arc_move(false);
  3484. }
  3485. break;
  3486. //! ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3487. // -------------------------------
  3488. case 4:
  3489. codenum = 0;
  3490. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3491. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3492. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3493. st_synchronize();
  3494. codenum += _millis(); // keep track of when we started waiting
  3495. previous_millis_cmd = _millis();
  3496. while(_millis() < codenum) {
  3497. manage_heater();
  3498. manage_inactivity();
  3499. lcd_update(0);
  3500. }
  3501. break;
  3502. #ifdef FWRETRACT
  3503. //! ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3504. // ------------------------------
  3505. case 10:
  3506. #if EXTRUDERS > 1
  3507. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3508. retract(true,retracted_swap[active_extruder]);
  3509. #else
  3510. retract(true);
  3511. #endif
  3512. break;
  3513. //! ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3514. // -----------------------------
  3515. case 11:
  3516. #if EXTRUDERS > 1
  3517. retract(false,retracted_swap[active_extruder]);
  3518. #else
  3519. retract(false);
  3520. #endif
  3521. break;
  3522. #endif //FWRETRACT
  3523. /*!
  3524. *
  3525. ### G28 - Home all Axis one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3526. Unsing G28 without any paramters will perfom on the Prusa i3 printers home AND mesh bed leveling, while the default G-code G28 is just homeing the printer
  3527. G28 [ X | Y | Z | W | C ]
  3528. - `X` - Flag to go back to the X axis origin
  3529. - `Y` - Flag to go back to the Y axis origin
  3530. - `Z` - Flag to go back to the Z axis origin
  3531. - `W` - Suppress mesh bed leveling
  3532. - `C` - Calibrate X and Y origin (home)
  3533. *
  3534. */
  3535. // ------------------------------
  3536. case 28:
  3537. {
  3538. long home_x_value = 0;
  3539. long home_y_value = 0;
  3540. long home_z_value = 0;
  3541. // Which axes should be homed?
  3542. bool home_x = code_seen(axis_codes[X_AXIS]);
  3543. home_x_value = code_value_long();
  3544. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3545. home_y_value = code_value_long();
  3546. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3547. home_z_value = code_value_long();
  3548. bool without_mbl = code_seen('W');
  3549. // calibrate?
  3550. #ifdef TMC2130
  3551. bool calib = code_seen('C');
  3552. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3553. #else
  3554. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3555. #endif //TMC2130
  3556. if ((home_x || home_y || without_mbl || home_z) == false) {
  3557. // Push the commands to the front of the message queue in the reverse order!
  3558. // There shall be always enough space reserved for these commands.
  3559. goto case_G80;
  3560. }
  3561. break;
  3562. }
  3563. #ifdef ENABLE_AUTO_BED_LEVELING
  3564. //! ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3565. // --------------------------------
  3566. case 29:
  3567. {
  3568. #if Z_MIN_PIN == -1
  3569. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3570. #endif
  3571. // Prevent user from running a G29 without first homing in X and Y
  3572. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3573. {
  3574. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3575. SERIAL_ECHO_START;
  3576. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3577. break; // abort G29, since we don't know where we are
  3578. }
  3579. st_synchronize();
  3580. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3581. //vector_3 corrected_position = plan_get_position_mm();
  3582. //corrected_position.debug("position before G29");
  3583. plan_bed_level_matrix.set_to_identity();
  3584. vector_3 uncorrected_position = plan_get_position();
  3585. //uncorrected_position.debug("position durring G29");
  3586. current_position[X_AXIS] = uncorrected_position.x;
  3587. current_position[Y_AXIS] = uncorrected_position.y;
  3588. current_position[Z_AXIS] = uncorrected_position.z;
  3589. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3590. int l_feedmultiply = setup_for_endstop_move();
  3591. feedrate = homing_feedrate[Z_AXIS];
  3592. #ifdef AUTO_BED_LEVELING_GRID
  3593. // probe at the points of a lattice grid
  3594. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3595. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3596. // solve the plane equation ax + by + d = z
  3597. // A is the matrix with rows [x y 1] for all the probed points
  3598. // B is the vector of the Z positions
  3599. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3600. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3601. // "A" matrix of the linear system of equations
  3602. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3603. // "B" vector of Z points
  3604. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3605. int probePointCounter = 0;
  3606. bool zig = true;
  3607. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3608. {
  3609. int xProbe, xInc;
  3610. if (zig)
  3611. {
  3612. xProbe = LEFT_PROBE_BED_POSITION;
  3613. //xEnd = RIGHT_PROBE_BED_POSITION;
  3614. xInc = xGridSpacing;
  3615. zig = false;
  3616. } else // zag
  3617. {
  3618. xProbe = RIGHT_PROBE_BED_POSITION;
  3619. //xEnd = LEFT_PROBE_BED_POSITION;
  3620. xInc = -xGridSpacing;
  3621. zig = true;
  3622. }
  3623. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3624. {
  3625. float z_before;
  3626. if (probePointCounter == 0)
  3627. {
  3628. // raise before probing
  3629. z_before = Z_RAISE_BEFORE_PROBING;
  3630. } else
  3631. {
  3632. // raise extruder
  3633. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3634. }
  3635. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3636. eqnBVector[probePointCounter] = measured_z;
  3637. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3638. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3639. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3640. probePointCounter++;
  3641. xProbe += xInc;
  3642. }
  3643. }
  3644. clean_up_after_endstop_move(l_feedmultiply);
  3645. // solve lsq problem
  3646. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3647. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3648. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3649. SERIAL_PROTOCOLPGM(" b: ");
  3650. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3651. SERIAL_PROTOCOLPGM(" d: ");
  3652. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3653. set_bed_level_equation_lsq(plane_equation_coefficients);
  3654. free(plane_equation_coefficients);
  3655. #else // AUTO_BED_LEVELING_GRID not defined
  3656. // Probe at 3 arbitrary points
  3657. // probe 1
  3658. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3659. // probe 2
  3660. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3661. // probe 3
  3662. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3663. clean_up_after_endstop_move(l_feedmultiply);
  3664. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3665. #endif // AUTO_BED_LEVELING_GRID
  3666. st_synchronize();
  3667. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3668. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3669. // When the bed is uneven, this height must be corrected.
  3670. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3671. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3672. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3673. z_tmp = current_position[Z_AXIS];
  3674. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3675. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3677. }
  3678. break;
  3679. #ifndef Z_PROBE_SLED
  3680. //! ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3681. // ------------------------------------
  3682. case 30:
  3683. {
  3684. st_synchronize();
  3685. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3686. int l_feedmultiply = setup_for_endstop_move();
  3687. feedrate = homing_feedrate[Z_AXIS];
  3688. run_z_probe();
  3689. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3690. SERIAL_PROTOCOLPGM(" X: ");
  3691. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3692. SERIAL_PROTOCOLPGM(" Y: ");
  3693. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3694. SERIAL_PROTOCOLPGM(" Z: ");
  3695. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3696. SERIAL_PROTOCOLPGM("\n");
  3697. clean_up_after_endstop_move(l_feedmultiply);
  3698. }
  3699. break;
  3700. #else
  3701. //! ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3702. // ---------------------------
  3703. case 31:
  3704. dock_sled(true);
  3705. break;
  3706. //! ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3707. // ----------------------------
  3708. case 32:
  3709. dock_sled(false);
  3710. break;
  3711. #endif // Z_PROBE_SLED
  3712. #endif // ENABLE_AUTO_BED_LEVELING
  3713. #ifdef MESH_BED_LEVELING
  3714. //! ### G30 - Single Z Probe
  3715. // ----------------------------
  3716. case 30:
  3717. {
  3718. st_synchronize();
  3719. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3720. int l_feedmultiply = setup_for_endstop_move();
  3721. feedrate = homing_feedrate[Z_AXIS];
  3722. find_bed_induction_sensor_point_z(-10.f, 3);
  3723. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3724. clean_up_after_endstop_move(l_feedmultiply);
  3725. }
  3726. break;
  3727. //! ### G75 - Print temperature interpolation
  3728. // ---------------------------------------------
  3729. case 75:
  3730. {
  3731. for (int i = 40; i <= 110; i++)
  3732. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3733. }
  3734. break;
  3735. //! ### G76 - PINDA probe temperature calibration
  3736. // ------------------------------------------------
  3737. case 76:
  3738. {
  3739. #ifdef PINDA_THERMISTOR
  3740. if (true)
  3741. {
  3742. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3743. //we need to know accurate position of first calibration point
  3744. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3745. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3746. break;
  3747. }
  3748. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3749. {
  3750. // We don't know where we are! HOME!
  3751. // Push the commands to the front of the message queue in the reverse order!
  3752. // There shall be always enough space reserved for these commands.
  3753. repeatcommand_front(); // repeat G76 with all its parameters
  3754. enquecommand_front_P((PSTR("G28 W0")));
  3755. break;
  3756. }
  3757. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3758. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3759. if (result)
  3760. {
  3761. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3762. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3763. current_position[Z_AXIS] = 50;
  3764. current_position[Y_AXIS] = 180;
  3765. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3766. st_synchronize();
  3767. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3768. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3769. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3770. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3771. st_synchronize();
  3772. gcode_G28(false, false, true);
  3773. }
  3774. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3775. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3776. current_position[Z_AXIS] = 100;
  3777. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3778. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3779. lcd_temp_cal_show_result(false);
  3780. break;
  3781. }
  3782. }
  3783. lcd_update_enable(true);
  3784. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3785. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3786. float zero_z;
  3787. int z_shift = 0; //unit: steps
  3788. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3789. if (start_temp < 35) start_temp = 35;
  3790. if (start_temp < current_temperature_pinda) start_temp += 5;
  3791. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3792. // setTargetHotend(200, 0);
  3793. setTargetBed(70 + (start_temp - 30));
  3794. custom_message_type = CustomMsg::TempCal;
  3795. custom_message_state = 1;
  3796. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3797. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3798. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3799. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3800. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3801. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3802. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3803. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3804. st_synchronize();
  3805. while (current_temperature_pinda < start_temp)
  3806. {
  3807. delay_keep_alive(1000);
  3808. serialecho_temperatures();
  3809. }
  3810. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3811. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3812. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3813. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3814. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3815. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3816. st_synchronize();
  3817. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3818. if (find_z_result == false) {
  3819. lcd_temp_cal_show_result(find_z_result);
  3820. break;
  3821. }
  3822. zero_z = current_position[Z_AXIS];
  3823. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3824. int i = -1; for (; i < 5; i++)
  3825. {
  3826. float temp = (40 + i * 5);
  3827. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3828. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3829. if (start_temp <= temp) break;
  3830. }
  3831. for (i++; i < 5; i++)
  3832. {
  3833. float temp = (40 + i * 5);
  3834. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3835. custom_message_state = i + 2;
  3836. setTargetBed(50 + 10 * (temp - 30) / 5);
  3837. // setTargetHotend(255, 0);
  3838. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3839. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3840. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3841. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3842. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3843. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3844. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3845. st_synchronize();
  3846. while (current_temperature_pinda < temp)
  3847. {
  3848. delay_keep_alive(1000);
  3849. serialecho_temperatures();
  3850. }
  3851. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3852. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3853. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3854. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3855. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3856. st_synchronize();
  3857. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3858. if (find_z_result == false) {
  3859. lcd_temp_cal_show_result(find_z_result);
  3860. break;
  3861. }
  3862. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3863. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3864. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3865. }
  3866. lcd_temp_cal_show_result(true);
  3867. break;
  3868. }
  3869. #endif //PINDA_THERMISTOR
  3870. setTargetBed(PINDA_MIN_T);
  3871. float zero_z;
  3872. int z_shift = 0; //unit: steps
  3873. int t_c; // temperature
  3874. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3875. // We don't know where we are! HOME!
  3876. // Push the commands to the front of the message queue in the reverse order!
  3877. // There shall be always enough space reserved for these commands.
  3878. repeatcommand_front(); // repeat G76 with all its parameters
  3879. enquecommand_front_P((PSTR("G28 W0")));
  3880. break;
  3881. }
  3882. puts_P(_N("PINDA probe calibration start"));
  3883. custom_message_type = CustomMsg::TempCal;
  3884. custom_message_state = 1;
  3885. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3886. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3887. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3888. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3889. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3890. st_synchronize();
  3891. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3892. delay_keep_alive(1000);
  3893. serialecho_temperatures();
  3894. }
  3895. //enquecommand_P(PSTR("M190 S50"));
  3896. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3897. delay_keep_alive(1000);
  3898. serialecho_temperatures();
  3899. }
  3900. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3901. current_position[Z_AXIS] = 5;
  3902. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3903. current_position[X_AXIS] = BED_X0;
  3904. current_position[Y_AXIS] = BED_Y0;
  3905. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3906. st_synchronize();
  3907. find_bed_induction_sensor_point_z(-1.f);
  3908. zero_z = current_position[Z_AXIS];
  3909. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3910. for (int i = 0; i<5; i++) {
  3911. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3912. custom_message_state = i + 2;
  3913. t_c = 60 + i * 10;
  3914. setTargetBed(t_c);
  3915. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3916. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3917. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3918. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3919. st_synchronize();
  3920. while (degBed() < t_c) {
  3921. delay_keep_alive(1000);
  3922. serialecho_temperatures();
  3923. }
  3924. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3925. delay_keep_alive(1000);
  3926. serialecho_temperatures();
  3927. }
  3928. current_position[Z_AXIS] = 5;
  3929. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3930. current_position[X_AXIS] = BED_X0;
  3931. current_position[Y_AXIS] = BED_Y0;
  3932. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3933. st_synchronize();
  3934. find_bed_induction_sensor_point_z(-1.f);
  3935. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3936. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3937. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3938. }
  3939. custom_message_type = CustomMsg::Status;
  3940. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3941. puts_P(_N("Temperature calibration done."));
  3942. disable_x();
  3943. disable_y();
  3944. disable_z();
  3945. disable_e0();
  3946. disable_e1();
  3947. disable_e2();
  3948. setTargetBed(0); //set bed target temperature back to 0
  3949. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3950. temp_cal_active = true;
  3951. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3952. lcd_update_enable(true);
  3953. lcd_update(2);
  3954. }
  3955. break;
  3956. //! ### G80 - Mesh-based Z probe
  3957. // -----------------------------------
  3958. /*
  3959. * Probes a grid and produces a mesh to compensate for variable bed height
  3960. * The S0 report the points as below
  3961. * +----> X-axis
  3962. * |
  3963. * |
  3964. * v Y-axis
  3965. */
  3966. case 80:
  3967. #ifdef MK1BP
  3968. break;
  3969. #endif //MK1BP
  3970. case_G80:
  3971. {
  3972. mesh_bed_leveling_flag = true;
  3973. #ifndef PINDA_THERMISTOR
  3974. static bool run = false; // thermistor-less PINDA temperature compensation is running
  3975. #endif // ndef PINDA_THERMISTOR
  3976. #ifdef SUPPORT_VERBOSITY
  3977. int8_t verbosity_level = 0;
  3978. if (code_seen('V')) {
  3979. // Just 'V' without a number counts as V1.
  3980. char c = strchr_pointer[1];
  3981. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3982. }
  3983. #endif //SUPPORT_VERBOSITY
  3984. // Firstly check if we know where we are
  3985. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3986. // We don't know where we are! HOME!
  3987. // Push the commands to the front of the message queue in the reverse order!
  3988. // There shall be always enough space reserved for these commands.
  3989. if (lcd_commands_type != LcdCommands::StopPrint) {
  3990. repeatcommand_front(); // repeat G80 with all its parameters
  3991. enquecommand_front_P((PSTR("G28 W0")));
  3992. }
  3993. else {
  3994. mesh_bed_leveling_flag = false;
  3995. }
  3996. break;
  3997. }
  3998. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3999. if (code_seen('N')) {
  4000. nMeasPoints = code_value_uint8();
  4001. if (nMeasPoints != 7) {
  4002. nMeasPoints = 3;
  4003. }
  4004. }
  4005. else {
  4006. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4007. }
  4008. uint8_t nProbeRetry = 3;
  4009. if (code_seen('R')) {
  4010. nProbeRetry = code_value_uint8();
  4011. if (nProbeRetry > 10) {
  4012. nProbeRetry = 10;
  4013. }
  4014. }
  4015. else {
  4016. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4017. }
  4018. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4019. #ifndef PINDA_THERMISTOR
  4020. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4021. {
  4022. if (lcd_commands_type != LcdCommands::StopPrint) {
  4023. temp_compensation_start();
  4024. run = true;
  4025. repeatcommand_front(); // repeat G80 with all its parameters
  4026. enquecommand_front_P((PSTR("G28 W0")));
  4027. }
  4028. else {
  4029. mesh_bed_leveling_flag = false;
  4030. }
  4031. break;
  4032. }
  4033. run = false;
  4034. #endif //PINDA_THERMISTOR
  4035. if (lcd_commands_type == LcdCommands::StopPrint) {
  4036. mesh_bed_leveling_flag = false;
  4037. break;
  4038. }
  4039. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4040. CustomMsg custom_message_type_old = custom_message_type;
  4041. unsigned int custom_message_state_old = custom_message_state;
  4042. custom_message_type = CustomMsg::MeshBedLeveling;
  4043. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4044. lcd_update(1);
  4045. mbl.reset(); //reset mesh bed leveling
  4046. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4047. // consumed during the first movements following this statement.
  4048. babystep_undo();
  4049. // Cycle through all points and probe them
  4050. // First move up. During this first movement, the babystepping will be reverted.
  4051. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4052. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4053. // The move to the first calibration point.
  4054. current_position[X_AXIS] = BED_X0;
  4055. current_position[Y_AXIS] = BED_Y0;
  4056. #ifdef SUPPORT_VERBOSITY
  4057. if (verbosity_level >= 1)
  4058. {
  4059. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4060. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4061. }
  4062. #else //SUPPORT_VERBOSITY
  4063. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4064. #endif //SUPPORT_VERBOSITY
  4065. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4066. // Wait until the move is finished.
  4067. st_synchronize();
  4068. uint8_t mesh_point = 0; //index number of calibration point
  4069. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4070. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4071. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4072. #ifdef SUPPORT_VERBOSITY
  4073. if (verbosity_level >= 1) {
  4074. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4075. }
  4076. #endif // SUPPORT_VERBOSITY
  4077. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4078. const char *kill_message = NULL;
  4079. while (mesh_point != nMeasPoints * nMeasPoints) {
  4080. // Get coords of a measuring point.
  4081. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4082. uint8_t iy = mesh_point / nMeasPoints;
  4083. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4084. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4085. custom_message_state--;
  4086. mesh_point++;
  4087. continue; //skip
  4088. }*/
  4089. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4090. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4091. {
  4092. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4093. }
  4094. float z0 = 0.f;
  4095. if (has_z && (mesh_point > 0)) {
  4096. uint16_t z_offset_u = 0;
  4097. if (nMeasPoints == 7) {
  4098. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4099. }
  4100. else {
  4101. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4102. }
  4103. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4104. #ifdef SUPPORT_VERBOSITY
  4105. if (verbosity_level >= 1) {
  4106. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4107. }
  4108. #endif // SUPPORT_VERBOSITY
  4109. }
  4110. // Move Z up to MESH_HOME_Z_SEARCH.
  4111. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4112. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4113. float init_z_bckp = current_position[Z_AXIS];
  4114. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4115. st_synchronize();
  4116. // Move to XY position of the sensor point.
  4117. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4118. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4119. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4120. #ifdef SUPPORT_VERBOSITY
  4121. if (verbosity_level >= 1) {
  4122. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4123. SERIAL_PROTOCOL(mesh_point);
  4124. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4125. }
  4126. #else //SUPPORT_VERBOSITY
  4127. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4128. #endif // SUPPORT_VERBOSITY
  4129. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4130. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4131. st_synchronize();
  4132. // Go down until endstop is hit
  4133. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4134. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4135. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4136. break;
  4137. }
  4138. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4139. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4140. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4141. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4142. st_synchronize();
  4143. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4144. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4145. break;
  4146. }
  4147. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4148. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4149. break;
  4150. }
  4151. }
  4152. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4153. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4154. break;
  4155. }
  4156. #ifdef SUPPORT_VERBOSITY
  4157. if (verbosity_level >= 10) {
  4158. SERIAL_ECHOPGM("X: ");
  4159. MYSERIAL.print(current_position[X_AXIS], 5);
  4160. SERIAL_ECHOLNPGM("");
  4161. SERIAL_ECHOPGM("Y: ");
  4162. MYSERIAL.print(current_position[Y_AXIS], 5);
  4163. SERIAL_PROTOCOLPGM("\n");
  4164. }
  4165. #endif // SUPPORT_VERBOSITY
  4166. float offset_z = 0;
  4167. #ifdef PINDA_THERMISTOR
  4168. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4169. #endif //PINDA_THERMISTOR
  4170. // #ifdef SUPPORT_VERBOSITY
  4171. /* if (verbosity_level >= 1)
  4172. {
  4173. SERIAL_ECHOPGM("mesh bed leveling: ");
  4174. MYSERIAL.print(current_position[Z_AXIS], 5);
  4175. SERIAL_ECHOPGM(" offset: ");
  4176. MYSERIAL.print(offset_z, 5);
  4177. SERIAL_ECHOLNPGM("");
  4178. }*/
  4179. // #endif // SUPPORT_VERBOSITY
  4180. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4181. custom_message_state--;
  4182. mesh_point++;
  4183. lcd_update(1);
  4184. }
  4185. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4186. #ifdef SUPPORT_VERBOSITY
  4187. if (verbosity_level >= 20) {
  4188. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4189. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4190. MYSERIAL.print(current_position[Z_AXIS], 5);
  4191. }
  4192. #endif // SUPPORT_VERBOSITY
  4193. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4194. st_synchronize();
  4195. if (mesh_point != nMeasPoints * nMeasPoints) {
  4196. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4197. bool bState;
  4198. do { // repeat until Z-leveling o.k.
  4199. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4200. #ifdef TMC2130
  4201. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4202. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4203. #else // TMC2130
  4204. lcd_wait_for_click_delay(0); // ~ no timeout
  4205. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4206. #endif // TMC2130
  4207. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4208. bState=enable_z_endstop(false);
  4209. current_position[Z_AXIS] -= 1;
  4210. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4211. st_synchronize();
  4212. enable_z_endstop(true);
  4213. #ifdef TMC2130
  4214. tmc2130_home_enter(Z_AXIS_MASK);
  4215. #endif // TMC2130
  4216. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4217. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4218. st_synchronize();
  4219. #ifdef TMC2130
  4220. tmc2130_home_exit();
  4221. #endif // TMC2130
  4222. enable_z_endstop(bState);
  4223. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4224. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4225. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4226. lcd_update_enable(true); // display / status-line recovery
  4227. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4228. repeatcommand_front(); // re-run (i.e. of "G80")
  4229. break;
  4230. }
  4231. clean_up_after_endstop_move(l_feedmultiply);
  4232. // SERIAL_ECHOLNPGM("clean up finished ");
  4233. #ifndef PINDA_THERMISTOR
  4234. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4235. #endif
  4236. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4237. // SERIAL_ECHOLNPGM("babystep applied");
  4238. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4239. #ifdef SUPPORT_VERBOSITY
  4240. if (verbosity_level >= 1) {
  4241. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4242. }
  4243. #endif // SUPPORT_VERBOSITY
  4244. for (uint8_t i = 0; i < 4; ++i) {
  4245. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4246. long correction = 0;
  4247. if (code_seen(codes[i]))
  4248. correction = code_value_long();
  4249. else if (eeprom_bed_correction_valid) {
  4250. unsigned char *addr = (i < 2) ?
  4251. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4252. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4253. correction = eeprom_read_int8(addr);
  4254. }
  4255. if (correction == 0)
  4256. continue;
  4257. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4258. SERIAL_ERROR_START;
  4259. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4260. SERIAL_ECHO(correction);
  4261. SERIAL_ECHOLNPGM(" microns");
  4262. }
  4263. else {
  4264. float offset = float(correction) * 0.001f;
  4265. switch (i) {
  4266. case 0:
  4267. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4268. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4269. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4270. }
  4271. }
  4272. break;
  4273. case 1:
  4274. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4275. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4276. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4277. }
  4278. }
  4279. break;
  4280. case 2:
  4281. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4282. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4283. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4284. }
  4285. }
  4286. break;
  4287. case 3:
  4288. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4289. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4290. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4291. }
  4292. }
  4293. break;
  4294. }
  4295. }
  4296. }
  4297. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4298. if (nMeasPoints == 3) {
  4299. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4300. }
  4301. /*
  4302. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4303. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4304. SERIAL_PROTOCOLPGM(",");
  4305. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4306. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4307. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4308. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4309. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4310. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4311. SERIAL_PROTOCOLPGM(" ");
  4312. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4313. }
  4314. SERIAL_PROTOCOLPGM("\n");
  4315. }
  4316. */
  4317. if (nMeasPoints == 7 && magnet_elimination) {
  4318. mbl_interpolation(nMeasPoints);
  4319. }
  4320. /*
  4321. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4322. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4323. SERIAL_PROTOCOLPGM(",");
  4324. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4325. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4326. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4327. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4328. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4329. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4330. SERIAL_PROTOCOLPGM(" ");
  4331. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4332. }
  4333. SERIAL_PROTOCOLPGM("\n");
  4334. }
  4335. */
  4336. // SERIAL_ECHOLNPGM("Upsample finished");
  4337. mbl.active = 1; //activate mesh bed leveling
  4338. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4339. go_home_with_z_lift();
  4340. // SERIAL_ECHOLNPGM("Go home finished");
  4341. //unretract (after PINDA preheat retraction)
  4342. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4343. current_position[E_AXIS] += default_retraction;
  4344. plan_buffer_line_curposXYZE(400, active_extruder);
  4345. }
  4346. KEEPALIVE_STATE(NOT_BUSY);
  4347. // Restore custom message state
  4348. lcd_setstatuspgm(_T(WELCOME_MSG));
  4349. custom_message_type = custom_message_type_old;
  4350. custom_message_state = custom_message_state_old;
  4351. mesh_bed_leveling_flag = false;
  4352. mesh_bed_run_from_menu = false;
  4353. lcd_update(2);
  4354. }
  4355. break;
  4356. //! ### G81 - Mesh bed leveling status
  4357. // -----------------------------------------
  4358. /*
  4359. * Prints mesh bed leveling status and bed profile if activated
  4360. */
  4361. case 81:
  4362. if (mbl.active) {
  4363. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4364. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4365. SERIAL_PROTOCOLPGM(",");
  4366. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4367. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4368. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4369. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4370. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4371. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4372. SERIAL_PROTOCOLPGM(" ");
  4373. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4374. }
  4375. SERIAL_PROTOCOLPGM("\n");
  4376. }
  4377. }
  4378. else
  4379. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4380. break;
  4381. #if 0
  4382. /*
  4383. * G82: Single Z probe at current location
  4384. *
  4385. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4386. *
  4387. */
  4388. case 82:
  4389. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4390. int l_feedmultiply = setup_for_endstop_move();
  4391. find_bed_induction_sensor_point_z();
  4392. clean_up_after_endstop_move(l_feedmultiply);
  4393. SERIAL_PROTOCOLPGM("Bed found at: ");
  4394. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4395. SERIAL_PROTOCOLPGM("\n");
  4396. break;
  4397. /*
  4398. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4399. */
  4400. case 83:
  4401. {
  4402. int babystepz = code_seen('S') ? code_value() : 0;
  4403. int BabyPosition = code_seen('P') ? code_value() : 0;
  4404. if (babystepz != 0) {
  4405. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4406. // Is the axis indexed starting with zero or one?
  4407. if (BabyPosition > 4) {
  4408. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4409. }else{
  4410. // Save it to the eeprom
  4411. babystepLoadZ = babystepz;
  4412. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4413. // adjust the Z
  4414. babystepsTodoZadd(babystepLoadZ);
  4415. }
  4416. }
  4417. }
  4418. break;
  4419. /*
  4420. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4421. */
  4422. case 84:
  4423. babystepsTodoZsubtract(babystepLoadZ);
  4424. // babystepLoadZ = 0;
  4425. break;
  4426. /*
  4427. * G85: Prusa3D specific: Pick best babystep
  4428. */
  4429. case 85:
  4430. lcd_pick_babystep();
  4431. break;
  4432. #endif
  4433. /**
  4434. * ### G86 - Disable babystep correction after home
  4435. *
  4436. * This G-code will be performed at the start of a calibration script.
  4437. * (Prusa3D specific)
  4438. */
  4439. case 86:
  4440. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4441. break;
  4442. /**
  4443. * ### G87 - Enable babystep correction after home
  4444. *
  4445. *
  4446. * This G-code will be performed at the end of a calibration script.
  4447. * (Prusa3D specific)
  4448. */
  4449. case 87:
  4450. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4451. break;
  4452. /**
  4453. * ### G88 - Reserved
  4454. *
  4455. * Currently has no effect.
  4456. */
  4457. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4458. case 88:
  4459. break;
  4460. #endif // ENABLE_MESH_BED_LEVELING
  4461. //! ### G90 - Switch off relative mode
  4462. // -------------------------------
  4463. case 90:
  4464. relative_mode = false;
  4465. break;
  4466. //! ### G91 - Switch on relative mode
  4467. // -------------------------------
  4468. case 91:
  4469. relative_mode = true;
  4470. break;
  4471. //! ### G92 - Set position
  4472. // -----------------------------
  4473. case 92:
  4474. if(!code_seen(axis_codes[E_AXIS]))
  4475. st_synchronize();
  4476. for(int8_t i=0; i < NUM_AXIS; i++) {
  4477. if(code_seen(axis_codes[i])) {
  4478. if(i == E_AXIS) {
  4479. current_position[i] = code_value();
  4480. plan_set_e_position(current_position[E_AXIS]);
  4481. }
  4482. else {
  4483. current_position[i] = code_value()+cs.add_homing[i];
  4484. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4485. }
  4486. }
  4487. }
  4488. break;
  4489. //! ### G98 - Activate farm mode
  4490. // -----------------------------------
  4491. case 98:
  4492. farm_mode = 1;
  4493. PingTime = _millis();
  4494. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4495. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4496. SilentModeMenu = SILENT_MODE_OFF;
  4497. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4498. fCheckModeInit(); // alternatively invoke printer reset
  4499. break;
  4500. //! ### G99 - Deactivate farm mode
  4501. // -------------------------------------
  4502. case 99:
  4503. farm_mode = 0;
  4504. lcd_printer_connected();
  4505. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4506. lcd_update(2);
  4507. fCheckModeInit(); // alternatively invoke printer reset
  4508. break;
  4509. default:
  4510. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4511. }
  4512. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4513. gcode_in_progress = 0;
  4514. } // end if(code_seen('G'))
  4515. //! ---------------------------------------------------------------------------------
  4516. else if(code_seen('M'))
  4517. {
  4518. int index;
  4519. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4520. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4521. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4522. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4523. } else
  4524. {
  4525. mcode_in_progress = (int)code_value();
  4526. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4527. switch(mcode_in_progress)
  4528. {
  4529. //! ### M0, M1 - Stop the printer
  4530. // ---------------------------------------------------------------
  4531. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4532. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4533. {
  4534. char *src = strchr_pointer + 2;
  4535. codenum = 0;
  4536. bool hasP = false, hasS = false;
  4537. if (code_seen('P')) {
  4538. codenum = code_value(); // milliseconds to wait
  4539. hasP = codenum > 0;
  4540. }
  4541. if (code_seen('S')) {
  4542. codenum = code_value() * 1000; // seconds to wait
  4543. hasS = codenum > 0;
  4544. }
  4545. starpos = strchr(src, '*');
  4546. if (starpos != NULL) *(starpos) = '\0';
  4547. while (*src == ' ') ++src;
  4548. if (!hasP && !hasS && *src != '\0') {
  4549. lcd_setstatus(src);
  4550. } else {
  4551. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4552. }
  4553. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4554. st_synchronize();
  4555. previous_millis_cmd = _millis();
  4556. if (codenum > 0){
  4557. codenum += _millis(); // keep track of when we started waiting
  4558. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4559. while(_millis() < codenum && !lcd_clicked()){
  4560. manage_heater();
  4561. manage_inactivity(true);
  4562. lcd_update(0);
  4563. }
  4564. KEEPALIVE_STATE(IN_HANDLER);
  4565. lcd_ignore_click(false);
  4566. }else{
  4567. marlin_wait_for_click();
  4568. }
  4569. if (IS_SD_PRINTING)
  4570. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4571. else
  4572. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4573. }
  4574. break;
  4575. //! ### M17 - Enable axes
  4576. // ---------------------------------
  4577. case 17:
  4578. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4579. enable_x();
  4580. enable_y();
  4581. enable_z();
  4582. enable_e0();
  4583. enable_e1();
  4584. enable_e2();
  4585. break;
  4586. #ifdef SDSUPPORT
  4587. //! ### M20 - SD Card file list
  4588. // -----------------------------------
  4589. case 20:
  4590. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4591. card.ls();
  4592. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4593. break;
  4594. //! ### M21 - Init SD card
  4595. // ------------------------------------
  4596. case 21:
  4597. card.initsd();
  4598. break;
  4599. //! ### M22 - Release SD card
  4600. // -----------------------------------
  4601. case 22:
  4602. card.release();
  4603. break;
  4604. //! ### M23 - Select file
  4605. // -----------------------------------
  4606. case 23:
  4607. starpos = (strchr(strchr_pointer + 4,'*'));
  4608. if(starpos!=NULL)
  4609. *(starpos)='\0';
  4610. card.openFile(strchr_pointer + 4,true);
  4611. break;
  4612. //! ### M24 - Start SD print
  4613. // ----------------------------------
  4614. case 24:
  4615. if (!card.paused)
  4616. failstats_reset_print();
  4617. card.startFileprint();
  4618. starttime=_millis();
  4619. break;
  4620. //! ### M25 - Pause SD print
  4621. // ----------------------------------
  4622. case 25:
  4623. card.pauseSDPrint();
  4624. break;
  4625. //! ### M26 S\<index\> - Set SD index
  4626. //! Set position in SD card file to index in bytes.
  4627. //! This command is expected to be called after M23 and before M24.
  4628. //! Otherwise effect of this command is undefined.
  4629. // ----------------------------------
  4630. case 26:
  4631. if(card.cardOK && code_seen('S')) {
  4632. long index = code_value_long();
  4633. card.setIndex(index);
  4634. // We don't disable interrupt during update of sdpos_atomic
  4635. // as we expect, that SD card print is not active in this moment
  4636. sdpos_atomic = index;
  4637. }
  4638. break;
  4639. //! ### M27 - Get SD status
  4640. // ----------------------------------
  4641. case 27:
  4642. card.getStatus();
  4643. break;
  4644. //! ### M28 - Start SD write
  4645. // ---------------------------------
  4646. case 28:
  4647. starpos = (strchr(strchr_pointer + 4,'*'));
  4648. if(starpos != NULL){
  4649. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4650. strchr_pointer = strchr(npos,' ') + 1;
  4651. *(starpos) = '\0';
  4652. }
  4653. card.openFile(strchr_pointer+4,false);
  4654. break;
  4655. //! ### M29 - Stop SD write
  4656. // -------------------------------------
  4657. //! Currently has no effect.
  4658. case 29:
  4659. //processed in write to file routine above
  4660. //card,saving = false;
  4661. break;
  4662. //! ### M30 - Delete file <filename>
  4663. // ----------------------------------
  4664. case 30:
  4665. if (card.cardOK){
  4666. card.closefile();
  4667. starpos = (strchr(strchr_pointer + 4,'*'));
  4668. if(starpos != NULL){
  4669. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4670. strchr_pointer = strchr(npos,' ') + 1;
  4671. *(starpos) = '\0';
  4672. }
  4673. card.removeFile(strchr_pointer + 4);
  4674. }
  4675. break;
  4676. //! ### M32 - Select file and start SD print
  4677. // ------------------------------------
  4678. case 32:
  4679. {
  4680. if(card.sdprinting) {
  4681. st_synchronize();
  4682. }
  4683. starpos = (strchr(strchr_pointer + 4,'*'));
  4684. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4685. if(namestartpos==NULL)
  4686. {
  4687. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4688. }
  4689. else
  4690. namestartpos++; //to skip the '!'
  4691. if(starpos!=NULL)
  4692. *(starpos)='\0';
  4693. bool call_procedure=(code_seen('P'));
  4694. if(strchr_pointer>namestartpos)
  4695. call_procedure=false; //false alert, 'P' found within filename
  4696. if( card.cardOK )
  4697. {
  4698. card.openFile(namestartpos,true,!call_procedure);
  4699. if(code_seen('S'))
  4700. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4701. card.setIndex(code_value_long());
  4702. card.startFileprint();
  4703. if(!call_procedure)
  4704. starttime=_millis(); //procedure calls count as normal print time.
  4705. }
  4706. } break;
  4707. //! ### M982 - Start SD write
  4708. // ---------------------------------
  4709. case 928:
  4710. starpos = (strchr(strchr_pointer + 5,'*'));
  4711. if(starpos != NULL){
  4712. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4713. strchr_pointer = strchr(npos,' ') + 1;
  4714. *(starpos) = '\0';
  4715. }
  4716. card.openLogFile(strchr_pointer+5);
  4717. break;
  4718. #endif //SDSUPPORT
  4719. //! ### M31 - Report current print time
  4720. // --------------------------------------------------
  4721. case 31: //M31 take time since the start of the SD print or an M109 command
  4722. {
  4723. stoptime=_millis();
  4724. char time[30];
  4725. unsigned long t=(stoptime-starttime)/1000;
  4726. int sec,min;
  4727. min=t/60;
  4728. sec=t%60;
  4729. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4730. SERIAL_ECHO_START;
  4731. SERIAL_ECHOLN(time);
  4732. lcd_setstatus(time);
  4733. autotempShutdown();
  4734. }
  4735. break;
  4736. //! ### M42 - Set pin state
  4737. // -----------------------------
  4738. case 42:
  4739. if (code_seen('S'))
  4740. {
  4741. int pin_status = code_value();
  4742. int pin_number = LED_PIN;
  4743. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4744. pin_number = code_value();
  4745. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4746. {
  4747. if (sensitive_pins[i] == pin_number)
  4748. {
  4749. pin_number = -1;
  4750. break;
  4751. }
  4752. }
  4753. #if defined(FAN_PIN) && FAN_PIN > -1
  4754. if (pin_number == FAN_PIN)
  4755. fanSpeed = pin_status;
  4756. #endif
  4757. if (pin_number > -1)
  4758. {
  4759. pinMode(pin_number, OUTPUT);
  4760. digitalWrite(pin_number, pin_status);
  4761. analogWrite(pin_number, pin_status);
  4762. }
  4763. }
  4764. break;
  4765. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4766. // --------------------------------------------------------------------
  4767. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4768. // Reset the baby step value and the baby step applied flag.
  4769. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4770. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4771. // Reset the skew and offset in both RAM and EEPROM.
  4772. reset_bed_offset_and_skew();
  4773. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4774. // the planner will not perform any adjustments in the XY plane.
  4775. // Wait for the motors to stop and update the current position with the absolute values.
  4776. world2machine_revert_to_uncorrected();
  4777. break;
  4778. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4779. // ------------------------------------------------------
  4780. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4781. {
  4782. int8_t verbosity_level = 0;
  4783. bool only_Z = code_seen('Z');
  4784. #ifdef SUPPORT_VERBOSITY
  4785. if (code_seen('V'))
  4786. {
  4787. // Just 'V' without a number counts as V1.
  4788. char c = strchr_pointer[1];
  4789. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4790. }
  4791. #endif //SUPPORT_VERBOSITY
  4792. gcode_M45(only_Z, verbosity_level);
  4793. }
  4794. break;
  4795. /*
  4796. case 46:
  4797. {
  4798. // M46: Prusa3D: Show the assigned IP address.
  4799. uint8_t ip[4];
  4800. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4801. if (hasIP) {
  4802. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4803. SERIAL_ECHO(int(ip[0]));
  4804. SERIAL_ECHOPGM(".");
  4805. SERIAL_ECHO(int(ip[1]));
  4806. SERIAL_ECHOPGM(".");
  4807. SERIAL_ECHO(int(ip[2]));
  4808. SERIAL_ECHOPGM(".");
  4809. SERIAL_ECHO(int(ip[3]));
  4810. SERIAL_ECHOLNPGM("");
  4811. } else {
  4812. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4813. }
  4814. break;
  4815. }
  4816. */
  4817. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4818. // ----------------------------------------------------
  4819. case 47:
  4820. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4821. lcd_diag_show_end_stops();
  4822. KEEPALIVE_STATE(IN_HANDLER);
  4823. break;
  4824. #if 0
  4825. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4826. {
  4827. // Disable the default update procedure of the display. We will do a modal dialog.
  4828. lcd_update_enable(false);
  4829. // Let the planner use the uncorrected coordinates.
  4830. mbl.reset();
  4831. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4832. // the planner will not perform any adjustments in the XY plane.
  4833. // Wait for the motors to stop and update the current position with the absolute values.
  4834. world2machine_revert_to_uncorrected();
  4835. // Move the print head close to the bed.
  4836. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4838. st_synchronize();
  4839. // Home in the XY plane.
  4840. set_destination_to_current();
  4841. int l_feedmultiply = setup_for_endstop_move();
  4842. home_xy();
  4843. int8_t verbosity_level = 0;
  4844. if (code_seen('V')) {
  4845. // Just 'V' without a number counts as V1.
  4846. char c = strchr_pointer[1];
  4847. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4848. }
  4849. bool success = scan_bed_induction_points(verbosity_level);
  4850. clean_up_after_endstop_move(l_feedmultiply);
  4851. // Print head up.
  4852. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4854. st_synchronize();
  4855. lcd_update_enable(true);
  4856. break;
  4857. }
  4858. #endif
  4859. #ifdef ENABLE_AUTO_BED_LEVELING
  4860. #ifdef Z_PROBE_REPEATABILITY_TEST
  4861. //! ### M48 - Z-Probe repeatability measurement function.
  4862. // ------------------------------------------------------
  4863. //!
  4864. //! _Usage:_
  4865. //!
  4866. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4867. //!
  4868. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4869. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4870. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4871. //! regenerated.
  4872. //!
  4873. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4874. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4875. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4876. //!
  4877. case 48: // M48 Z-Probe repeatability
  4878. {
  4879. #if Z_MIN_PIN == -1
  4880. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4881. #endif
  4882. double sum=0.0;
  4883. double mean=0.0;
  4884. double sigma=0.0;
  4885. double sample_set[50];
  4886. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4887. double X_current, Y_current, Z_current;
  4888. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4889. if (code_seen('V') || code_seen('v')) {
  4890. verbose_level = code_value();
  4891. if (verbose_level<0 || verbose_level>4 ) {
  4892. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4893. goto Sigma_Exit;
  4894. }
  4895. }
  4896. if (verbose_level > 0) {
  4897. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4898. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4899. }
  4900. if (code_seen('n')) {
  4901. n_samples = code_value();
  4902. if (n_samples<4 || n_samples>50 ) {
  4903. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4904. goto Sigma_Exit;
  4905. }
  4906. }
  4907. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4908. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4909. Z_current = st_get_position_mm(Z_AXIS);
  4910. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4911. ext_position = st_get_position_mm(E_AXIS);
  4912. if (code_seen('X') || code_seen('x') ) {
  4913. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4914. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4915. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4916. goto Sigma_Exit;
  4917. }
  4918. }
  4919. if (code_seen('Y') || code_seen('y') ) {
  4920. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4921. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4922. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4923. goto Sigma_Exit;
  4924. }
  4925. }
  4926. if (code_seen('L') || code_seen('l') ) {
  4927. n_legs = code_value();
  4928. if ( n_legs==1 )
  4929. n_legs = 2;
  4930. if ( n_legs<0 || n_legs>15 ) {
  4931. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4932. goto Sigma_Exit;
  4933. }
  4934. }
  4935. //
  4936. // Do all the preliminary setup work. First raise the probe.
  4937. //
  4938. st_synchronize();
  4939. plan_bed_level_matrix.set_to_identity();
  4940. plan_buffer_line( X_current, Y_current, Z_start_location,
  4941. ext_position,
  4942. homing_feedrate[Z_AXIS]/60,
  4943. active_extruder);
  4944. st_synchronize();
  4945. //
  4946. // Now get everything to the specified probe point So we can safely do a probe to
  4947. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4948. // use that as a starting point for each probe.
  4949. //
  4950. if (verbose_level > 2)
  4951. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4952. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4953. ext_position,
  4954. homing_feedrate[X_AXIS]/60,
  4955. active_extruder);
  4956. st_synchronize();
  4957. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4958. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4959. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4960. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4961. //
  4962. // OK, do the inital probe to get us close to the bed.
  4963. // Then retrace the right amount and use that in subsequent probes
  4964. //
  4965. int l_feedmultiply = setup_for_endstop_move();
  4966. run_z_probe();
  4967. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4968. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4969. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4970. ext_position,
  4971. homing_feedrate[X_AXIS]/60,
  4972. active_extruder);
  4973. st_synchronize();
  4974. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4975. for( n=0; n<n_samples; n++) {
  4976. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4977. if ( n_legs) {
  4978. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4979. int rotational_direction, l;
  4980. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4981. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4982. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4983. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4984. //SERIAL_ECHOPAIR(" theta: ",theta);
  4985. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4986. //SERIAL_PROTOCOLLNPGM("");
  4987. for( l=0; l<n_legs-1; l++) {
  4988. if (rotational_direction==1)
  4989. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4990. else
  4991. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4992. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4993. if ( radius<0.0 )
  4994. radius = -radius;
  4995. X_current = X_probe_location + cos(theta) * radius;
  4996. Y_current = Y_probe_location + sin(theta) * radius;
  4997. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4998. X_current = X_MIN_POS;
  4999. if ( X_current>X_MAX_POS)
  5000. X_current = X_MAX_POS;
  5001. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5002. Y_current = Y_MIN_POS;
  5003. if ( Y_current>Y_MAX_POS)
  5004. Y_current = Y_MAX_POS;
  5005. if (verbose_level>3 ) {
  5006. SERIAL_ECHOPAIR("x: ", X_current);
  5007. SERIAL_ECHOPAIR("y: ", Y_current);
  5008. SERIAL_PROTOCOLLNPGM("");
  5009. }
  5010. do_blocking_move_to( X_current, Y_current, Z_current );
  5011. }
  5012. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5013. }
  5014. int l_feedmultiply = setup_for_endstop_move();
  5015. run_z_probe();
  5016. sample_set[n] = current_position[Z_AXIS];
  5017. //
  5018. // Get the current mean for the data points we have so far
  5019. //
  5020. sum=0.0;
  5021. for( j=0; j<=n; j++) {
  5022. sum = sum + sample_set[j];
  5023. }
  5024. mean = sum / (double (n+1));
  5025. //
  5026. // Now, use that mean to calculate the standard deviation for the
  5027. // data points we have so far
  5028. //
  5029. sum=0.0;
  5030. for( j=0; j<=n; j++) {
  5031. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5032. }
  5033. sigma = sqrt( sum / (double (n+1)) );
  5034. if (verbose_level > 1) {
  5035. SERIAL_PROTOCOL(n+1);
  5036. SERIAL_PROTOCOL(" of ");
  5037. SERIAL_PROTOCOL(n_samples);
  5038. SERIAL_PROTOCOLPGM(" z: ");
  5039. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5040. }
  5041. if (verbose_level > 2) {
  5042. SERIAL_PROTOCOL(" mean: ");
  5043. SERIAL_PROTOCOL_F(mean,6);
  5044. SERIAL_PROTOCOL(" sigma: ");
  5045. SERIAL_PROTOCOL_F(sigma,6);
  5046. }
  5047. if (verbose_level > 0)
  5048. SERIAL_PROTOCOLPGM("\n");
  5049. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5050. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5051. st_synchronize();
  5052. }
  5053. _delay(1000);
  5054. clean_up_after_endstop_move(l_feedmultiply);
  5055. // enable_endstops(true);
  5056. if (verbose_level > 0) {
  5057. SERIAL_PROTOCOLPGM("Mean: ");
  5058. SERIAL_PROTOCOL_F(mean, 6);
  5059. SERIAL_PROTOCOLPGM("\n");
  5060. }
  5061. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5062. SERIAL_PROTOCOL_F(sigma, 6);
  5063. SERIAL_PROTOCOLPGM("\n\n");
  5064. Sigma_Exit:
  5065. break;
  5066. }
  5067. #endif // Z_PROBE_REPEATABILITY_TEST
  5068. #endif // ENABLE_AUTO_BED_LEVELING
  5069. //! ### M73 - Set/get print progress
  5070. // -------------------------------------
  5071. //! _Usage:_
  5072. //!
  5073. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5074. //!
  5075. case 73: //M73 show percent done and time remaining
  5076. if(code_seen('P')) print_percent_done_normal = code_value();
  5077. if(code_seen('R')) print_time_remaining_normal = code_value();
  5078. if(code_seen('Q')) print_percent_done_silent = code_value();
  5079. if(code_seen('S')) print_time_remaining_silent = code_value();
  5080. {
  5081. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5082. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5083. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5084. }
  5085. break;
  5086. //! ### M104 - Set hotend temperature
  5087. // -----------------------------------------
  5088. case 104: // M104
  5089. {
  5090. uint8_t extruder;
  5091. if(setTargetedHotend(104,extruder)){
  5092. break;
  5093. }
  5094. if (code_seen('S'))
  5095. {
  5096. setTargetHotendSafe(code_value(), extruder);
  5097. }
  5098. break;
  5099. }
  5100. //! ### M112 - Emergency stop
  5101. // -----------------------------------------
  5102. case 112:
  5103. kill(_n(""), 3);
  5104. break;
  5105. //! ### M140 - Set bed temperature
  5106. // -----------------------------------------
  5107. case 140:
  5108. if (code_seen('S')) setTargetBed(code_value());
  5109. break;
  5110. //! ### M105 - Report temperatures
  5111. // -----------------------------------------
  5112. case 105:
  5113. {
  5114. uint8_t extruder;
  5115. if(setTargetedHotend(105, extruder)){
  5116. break;
  5117. }
  5118. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5119. SERIAL_PROTOCOLPGM("ok T:");
  5120. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5121. SERIAL_PROTOCOLPGM(" /");
  5122. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5123. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5124. SERIAL_PROTOCOLPGM(" B:");
  5125. SERIAL_PROTOCOL_F(degBed(),1);
  5126. SERIAL_PROTOCOLPGM(" /");
  5127. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5128. #endif //TEMP_BED_PIN
  5129. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5130. SERIAL_PROTOCOLPGM(" T");
  5131. SERIAL_PROTOCOL(cur_extruder);
  5132. SERIAL_PROTOCOLPGM(":");
  5133. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5134. SERIAL_PROTOCOLPGM(" /");
  5135. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5136. }
  5137. #else
  5138. SERIAL_ERROR_START;
  5139. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5140. #endif
  5141. SERIAL_PROTOCOLPGM(" @:");
  5142. #ifdef EXTRUDER_WATTS
  5143. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5144. SERIAL_PROTOCOLPGM("W");
  5145. #else
  5146. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5147. #endif
  5148. SERIAL_PROTOCOLPGM(" B@:");
  5149. #ifdef BED_WATTS
  5150. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5151. SERIAL_PROTOCOLPGM("W");
  5152. #else
  5153. SERIAL_PROTOCOL(getHeaterPower(-1));
  5154. #endif
  5155. #ifdef PINDA_THERMISTOR
  5156. SERIAL_PROTOCOLPGM(" P:");
  5157. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5158. #endif //PINDA_THERMISTOR
  5159. #ifdef AMBIENT_THERMISTOR
  5160. SERIAL_PROTOCOLPGM(" A:");
  5161. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5162. #endif //AMBIENT_THERMISTOR
  5163. #ifdef SHOW_TEMP_ADC_VALUES
  5164. {float raw = 0.0;
  5165. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5166. SERIAL_PROTOCOLPGM(" ADC B:");
  5167. SERIAL_PROTOCOL_F(degBed(),1);
  5168. SERIAL_PROTOCOLPGM("C->");
  5169. raw = rawBedTemp();
  5170. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5171. SERIAL_PROTOCOLPGM(" Rb->");
  5172. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5173. SERIAL_PROTOCOLPGM(" Rxb->");
  5174. SERIAL_PROTOCOL_F(raw, 5);
  5175. #endif
  5176. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5177. SERIAL_PROTOCOLPGM(" T");
  5178. SERIAL_PROTOCOL(cur_extruder);
  5179. SERIAL_PROTOCOLPGM(":");
  5180. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5181. SERIAL_PROTOCOLPGM("C->");
  5182. raw = rawHotendTemp(cur_extruder);
  5183. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5184. SERIAL_PROTOCOLPGM(" Rt");
  5185. SERIAL_PROTOCOL(cur_extruder);
  5186. SERIAL_PROTOCOLPGM("->");
  5187. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5188. SERIAL_PROTOCOLPGM(" Rx");
  5189. SERIAL_PROTOCOL(cur_extruder);
  5190. SERIAL_PROTOCOLPGM("->");
  5191. SERIAL_PROTOCOL_F(raw, 5);
  5192. }}
  5193. #endif
  5194. SERIAL_PROTOCOLLN("");
  5195. KEEPALIVE_STATE(NOT_BUSY);
  5196. return;
  5197. break;
  5198. }
  5199. //! ### M109 - Wait for extruder temperature
  5200. //! Parameters (not mandatory):
  5201. //! * S \<temp\> set extruder temperature
  5202. //! * R \<temp\> set extruder temperature
  5203. //!
  5204. //! Parameters S and R are treated identically.
  5205. //! Command always waits for both cool down and heat up.
  5206. //! If no parameters are supplied waits for previously
  5207. //! set extruder temperature.
  5208. // -------------------------------------------------
  5209. case 109:
  5210. {
  5211. uint8_t extruder;
  5212. if(setTargetedHotend(109, extruder)){
  5213. break;
  5214. }
  5215. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5216. heating_status = 1;
  5217. if (farm_mode) { prusa_statistics(1); };
  5218. #ifdef AUTOTEMP
  5219. autotemp_enabled=false;
  5220. #endif
  5221. if (code_seen('S')) {
  5222. setTargetHotendSafe(code_value(), extruder);
  5223. } else if (code_seen('R')) {
  5224. setTargetHotendSafe(code_value(), extruder);
  5225. }
  5226. #ifdef AUTOTEMP
  5227. if (code_seen('S')) autotemp_min=code_value();
  5228. if (code_seen('B')) autotemp_max=code_value();
  5229. if (code_seen('F'))
  5230. {
  5231. autotemp_factor=code_value();
  5232. autotemp_enabled=true;
  5233. }
  5234. #endif
  5235. codenum = _millis();
  5236. /* See if we are heating up or cooling down */
  5237. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5238. KEEPALIVE_STATE(NOT_BUSY);
  5239. cancel_heatup = false;
  5240. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5241. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5242. KEEPALIVE_STATE(IN_HANDLER);
  5243. heating_status = 2;
  5244. if (farm_mode) { prusa_statistics(2); };
  5245. //starttime=_millis();
  5246. previous_millis_cmd = _millis();
  5247. }
  5248. break;
  5249. //! ### M190 - Wait for bed temperature
  5250. //! Parameters (not mandatory):
  5251. //! * S \<temp\> set extruder temperature and wait for heating
  5252. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5253. //!
  5254. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5255. case 190:
  5256. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5257. {
  5258. bool CooldownNoWait = false;
  5259. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5260. heating_status = 3;
  5261. if (farm_mode) { prusa_statistics(1); };
  5262. if (code_seen('S'))
  5263. {
  5264. setTargetBed(code_value());
  5265. CooldownNoWait = true;
  5266. }
  5267. else if (code_seen('R'))
  5268. {
  5269. setTargetBed(code_value());
  5270. }
  5271. codenum = _millis();
  5272. cancel_heatup = false;
  5273. target_direction = isHeatingBed(); // true if heating, false if cooling
  5274. KEEPALIVE_STATE(NOT_BUSY);
  5275. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5276. {
  5277. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5278. {
  5279. if (!farm_mode) {
  5280. float tt = degHotend(active_extruder);
  5281. SERIAL_PROTOCOLPGM("T:");
  5282. SERIAL_PROTOCOL(tt);
  5283. SERIAL_PROTOCOLPGM(" E:");
  5284. SERIAL_PROTOCOL((int)active_extruder);
  5285. SERIAL_PROTOCOLPGM(" B:");
  5286. SERIAL_PROTOCOL_F(degBed(), 1);
  5287. SERIAL_PROTOCOLLN("");
  5288. }
  5289. codenum = _millis();
  5290. }
  5291. manage_heater();
  5292. manage_inactivity();
  5293. lcd_update(0);
  5294. }
  5295. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5296. KEEPALIVE_STATE(IN_HANDLER);
  5297. heating_status = 4;
  5298. previous_millis_cmd = _millis();
  5299. }
  5300. #endif
  5301. break;
  5302. #if defined(FAN_PIN) && FAN_PIN > -1
  5303. //! ### M106 - Set fan speed
  5304. // -------------------------------------------
  5305. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5306. if (code_seen('S')){
  5307. fanSpeed=constrain(code_value(),0,255);
  5308. }
  5309. else {
  5310. fanSpeed=255;
  5311. }
  5312. break;
  5313. //! ### M107 - Fan off
  5314. // -------------------------------
  5315. case 107:
  5316. fanSpeed = 0;
  5317. break;
  5318. #endif //FAN_PIN
  5319. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5320. //! ### M80 - Turn on the Power Supply
  5321. // -------------------------------
  5322. case 80:
  5323. SET_OUTPUT(PS_ON_PIN); //GND
  5324. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5325. // If you have a switch on suicide pin, this is useful
  5326. // if you want to start another print with suicide feature after
  5327. // a print without suicide...
  5328. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5329. SET_OUTPUT(SUICIDE_PIN);
  5330. WRITE(SUICIDE_PIN, HIGH);
  5331. #endif
  5332. powersupply = true;
  5333. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5334. lcd_update(0);
  5335. break;
  5336. #endif
  5337. //! ### M81 - Turn off Power Supply
  5338. // --------------------------------------
  5339. case 81:
  5340. disable_heater();
  5341. st_synchronize();
  5342. disable_e0();
  5343. disable_e1();
  5344. disable_e2();
  5345. finishAndDisableSteppers();
  5346. fanSpeed = 0;
  5347. _delay(1000); // Wait a little before to switch off
  5348. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5349. st_synchronize();
  5350. suicide();
  5351. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5352. SET_OUTPUT(PS_ON_PIN);
  5353. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5354. #endif
  5355. powersupply = false;
  5356. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5357. lcd_update(0);
  5358. break;
  5359. //! ### M82 - Set E axis to absolute mode
  5360. // ---------------------------------------
  5361. case 82:
  5362. axis_relative_modes[3] = false;
  5363. break;
  5364. //! ### M83 - Set E axis to relative mode
  5365. // ---------------------------------------
  5366. case 83:
  5367. axis_relative_modes[3] = true;
  5368. break;
  5369. //! ### M84, M18 - Disable steppers
  5370. //---------------------------------------
  5371. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5372. //!
  5373. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5374. //!
  5375. case 18: //compatibility
  5376. case 84: // M84
  5377. if(code_seen('S')){
  5378. stepper_inactive_time = code_value() * 1000;
  5379. }
  5380. else
  5381. {
  5382. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5383. if(all_axis)
  5384. {
  5385. st_synchronize();
  5386. disable_e0();
  5387. disable_e1();
  5388. disable_e2();
  5389. finishAndDisableSteppers();
  5390. }
  5391. else
  5392. {
  5393. st_synchronize();
  5394. if (code_seen('X')) disable_x();
  5395. if (code_seen('Y')) disable_y();
  5396. if (code_seen('Z')) disable_z();
  5397. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5398. if (code_seen('E')) {
  5399. disable_e0();
  5400. disable_e1();
  5401. disable_e2();
  5402. }
  5403. #endif
  5404. }
  5405. }
  5406. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5407. print_time_remaining_init();
  5408. snmm_filaments_used = 0;
  5409. break;
  5410. //! ### M85 - Set max inactive time
  5411. // ---------------------------------------
  5412. case 85: // M85
  5413. if(code_seen('S')) {
  5414. max_inactive_time = code_value() * 1000;
  5415. }
  5416. break;
  5417. #ifdef SAFETYTIMER
  5418. //! ### M86 - Set safety timer expiration time
  5419. //!
  5420. //! _Usage:_
  5421. //! M86 S<seconds>
  5422. //!
  5423. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5424. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5425. case 86:
  5426. if (code_seen('S')) {
  5427. safetytimer_inactive_time = code_value() * 1000;
  5428. safetyTimer.start();
  5429. }
  5430. break;
  5431. #endif
  5432. //! ### M92 Set Axis steps-per-unit
  5433. // ---------------------------------------
  5434. //! Same syntax as G92
  5435. case 92:
  5436. for(int8_t i=0; i < NUM_AXIS; i++)
  5437. {
  5438. if(code_seen(axis_codes[i]))
  5439. {
  5440. if(i == 3) { // E
  5441. float value = code_value();
  5442. if(value < 20.0) {
  5443. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5444. cs.max_jerk[E_AXIS] *= factor;
  5445. max_feedrate[i] *= factor;
  5446. axis_steps_per_sqr_second[i] *= factor;
  5447. }
  5448. cs.axis_steps_per_unit[i] = value;
  5449. }
  5450. else {
  5451. cs.axis_steps_per_unit[i] = code_value();
  5452. }
  5453. }
  5454. }
  5455. break;
  5456. //! ### M110 - Set Line number
  5457. // ---------------------------------------
  5458. case 110:
  5459. if (code_seen('N'))
  5460. gcode_LastN = code_value_long();
  5461. break;
  5462. //! ### M113 - Get or set host keep-alive interval
  5463. // ------------------------------------------
  5464. case 113:
  5465. if (code_seen('S')) {
  5466. host_keepalive_interval = (uint8_t)code_value_short();
  5467. // NOMORE(host_keepalive_interval, 60);
  5468. }
  5469. else {
  5470. SERIAL_ECHO_START;
  5471. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5472. SERIAL_PROTOCOLLN("");
  5473. }
  5474. break;
  5475. //! ### M115 - Firmware info
  5476. // --------------------------------------
  5477. //! Print the firmware info and capabilities
  5478. //!
  5479. //! M115 [V] [U<version>]
  5480. //!
  5481. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5482. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5483. //! pause the print for 30s and ask the user to upgrade the firmware.
  5484. case 115: // M115
  5485. if (code_seen('V')) {
  5486. // Report the Prusa version number.
  5487. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5488. } else if (code_seen('U')) {
  5489. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5490. // pause the print for 30s and ask the user to upgrade the firmware.
  5491. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5492. } else {
  5493. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5494. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5495. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5496. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5497. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5498. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5499. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5500. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5501. SERIAL_ECHOPGM(" UUID:");
  5502. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5503. }
  5504. break;
  5505. //! ### M114 - Get current position
  5506. // -------------------------------------
  5507. case 114:
  5508. gcode_M114();
  5509. break;
  5510. //! ### M117 - Set LCD Message
  5511. // --------------------------------------
  5512. /*
  5513. M117 moved up to get the high priority
  5514. case 117: // M117 display message
  5515. starpos = (strchr(strchr_pointer + 5,'*'));
  5516. if(starpos!=NULL)
  5517. *(starpos)='\0';
  5518. lcd_setstatus(strchr_pointer + 5);
  5519. break;*/
  5520. //! ### M120 - Disable endstops
  5521. // ----------------------------------------
  5522. case 120:
  5523. enable_endstops(false) ;
  5524. break;
  5525. //! ### M121 - Enable endstops
  5526. // ----------------------------------------
  5527. case 121:
  5528. enable_endstops(true) ;
  5529. break;
  5530. //! ### M119 - Get endstop states
  5531. // ----------------------------------------
  5532. case 119:
  5533. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5534. SERIAL_PROTOCOLLN("");
  5535. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5536. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5537. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5538. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5539. }else{
  5540. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5541. }
  5542. SERIAL_PROTOCOLLN("");
  5543. #endif
  5544. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5545. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5546. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5547. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5548. }else{
  5549. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5550. }
  5551. SERIAL_PROTOCOLLN("");
  5552. #endif
  5553. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5554. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5555. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5556. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5557. }else{
  5558. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5559. }
  5560. SERIAL_PROTOCOLLN("");
  5561. #endif
  5562. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5563. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5564. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5565. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5566. }else{
  5567. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5568. }
  5569. SERIAL_PROTOCOLLN("");
  5570. #endif
  5571. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5572. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5573. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5574. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5575. }else{
  5576. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5577. }
  5578. SERIAL_PROTOCOLLN("");
  5579. #endif
  5580. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5581. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5582. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5583. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5584. }else{
  5585. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5586. }
  5587. SERIAL_PROTOCOLLN("");
  5588. #endif
  5589. break;
  5590. //TODO: update for all axis, use for loop
  5591. #ifdef BLINKM
  5592. //! ### M150 - Set RGB(W) Color
  5593. // -------------------------------------------
  5594. case 150:
  5595. {
  5596. byte red;
  5597. byte grn;
  5598. byte blu;
  5599. if(code_seen('R')) red = code_value();
  5600. if(code_seen('U')) grn = code_value();
  5601. if(code_seen('B')) blu = code_value();
  5602. SendColors(red,grn,blu);
  5603. }
  5604. break;
  5605. #endif //BLINKM
  5606. //! ### M200 - Set filament diameter
  5607. // ----------------------------------------
  5608. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5609. {
  5610. uint8_t extruder = active_extruder;
  5611. if(code_seen('T')) {
  5612. extruder = code_value();
  5613. if(extruder >= EXTRUDERS) {
  5614. SERIAL_ECHO_START;
  5615. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5616. break;
  5617. }
  5618. }
  5619. if(code_seen('D')) {
  5620. float diameter = (float)code_value();
  5621. if (diameter == 0.0) {
  5622. // setting any extruder filament size disables volumetric on the assumption that
  5623. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5624. // for all extruders
  5625. cs.volumetric_enabled = false;
  5626. } else {
  5627. cs.filament_size[extruder] = (float)code_value();
  5628. // make sure all extruders have some sane value for the filament size
  5629. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5630. #if EXTRUDERS > 1
  5631. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5632. #if EXTRUDERS > 2
  5633. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5634. #endif
  5635. #endif
  5636. cs.volumetric_enabled = true;
  5637. }
  5638. } else {
  5639. //reserved for setting filament diameter via UFID or filament measuring device
  5640. break;
  5641. }
  5642. calculate_extruder_multipliers();
  5643. }
  5644. break;
  5645. //! ### M201 - Set Print Max Acceleration
  5646. // -------------------------------------------
  5647. case 201:
  5648. for (int8_t i = 0; i < NUM_AXIS; i++)
  5649. {
  5650. if (code_seen(axis_codes[i]))
  5651. {
  5652. unsigned long val = code_value();
  5653. #ifdef TMC2130
  5654. unsigned long val_silent = val;
  5655. if ((i == X_AXIS) || (i == Y_AXIS))
  5656. {
  5657. if (val > NORMAL_MAX_ACCEL_XY)
  5658. val = NORMAL_MAX_ACCEL_XY;
  5659. if (val_silent > SILENT_MAX_ACCEL_XY)
  5660. val_silent = SILENT_MAX_ACCEL_XY;
  5661. }
  5662. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5663. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5664. #else //TMC2130
  5665. max_acceleration_units_per_sq_second[i] = val;
  5666. #endif //TMC2130
  5667. }
  5668. }
  5669. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5670. reset_acceleration_rates();
  5671. break;
  5672. #if 0 // Not used for Sprinter/grbl gen6
  5673. case 202: // M202
  5674. for(int8_t i=0; i < NUM_AXIS; i++) {
  5675. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5676. }
  5677. break;
  5678. #endif
  5679. //! ### M203 - Set Max Feedrate
  5680. // ---------------------------------------
  5681. case 203: // M203 max feedrate mm/sec
  5682. for (int8_t i = 0; i < NUM_AXIS; i++)
  5683. {
  5684. if (code_seen(axis_codes[i]))
  5685. {
  5686. float val = code_value();
  5687. #ifdef TMC2130
  5688. float val_silent = val;
  5689. if ((i == X_AXIS) || (i == Y_AXIS))
  5690. {
  5691. if (val > NORMAL_MAX_FEEDRATE_XY)
  5692. val = NORMAL_MAX_FEEDRATE_XY;
  5693. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5694. val_silent = SILENT_MAX_FEEDRATE_XY;
  5695. }
  5696. cs.max_feedrate_normal[i] = val;
  5697. cs.max_feedrate_silent[i] = val_silent;
  5698. #else //TMC2130
  5699. max_feedrate[i] = val;
  5700. #endif //TMC2130
  5701. }
  5702. }
  5703. break;
  5704. //! ### M204 - Acceleration settings
  5705. // ------------------------------------------
  5706. //! Supporting old format:
  5707. //!
  5708. //! M204 S[normal moves] T[filmanent only moves]
  5709. //!
  5710. //! and new format:
  5711. //!
  5712. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5713. case 204:
  5714. {
  5715. if(code_seen('S')) {
  5716. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5717. // and it is also generated by Slic3r to control acceleration per extrusion type
  5718. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5719. cs.acceleration = code_value();
  5720. // Interpret the T value as retract acceleration in the old Marlin format.
  5721. if(code_seen('T'))
  5722. cs.retract_acceleration = code_value();
  5723. } else {
  5724. // New acceleration format, compatible with the upstream Marlin.
  5725. if(code_seen('P'))
  5726. cs.acceleration = code_value();
  5727. if(code_seen('R'))
  5728. cs.retract_acceleration = code_value();
  5729. if(code_seen('T')) {
  5730. // Interpret the T value as the travel acceleration in the new Marlin format.
  5731. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5732. // travel_acceleration = code_value();
  5733. }
  5734. }
  5735. }
  5736. break;
  5737. //! ### M205 - Set advanced settings
  5738. // ---------------------------------------------
  5739. //! Set some advanced settings related to movement.
  5740. //!
  5741. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5742. /*!
  5743. - `S` - Minimum feedrate for print moves (unit/s)
  5744. - `T` - Minimum feedrate for travel moves (units/s)
  5745. - `B` - Minimum segment time (us)
  5746. - `X` - Maximum X jerk (units/s), similarly for other axes
  5747. */
  5748. case 205:
  5749. {
  5750. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5751. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5752. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5753. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5754. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5755. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5756. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5757. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5758. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5759. }
  5760. break;
  5761. //! ### M206 - Set additional homing offsets
  5762. // ----------------------------------------------
  5763. case 206:
  5764. for(int8_t i=0; i < 3; i++)
  5765. {
  5766. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5767. }
  5768. break;
  5769. #ifdef FWRETRACT
  5770. //! ### M207 - Set firmware retraction
  5771. // --------------------------------------------------
  5772. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5773. {
  5774. if(code_seen('S'))
  5775. {
  5776. cs.retract_length = code_value() ;
  5777. }
  5778. if(code_seen('F'))
  5779. {
  5780. cs.retract_feedrate = code_value()/60 ;
  5781. }
  5782. if(code_seen('Z'))
  5783. {
  5784. cs.retract_zlift = code_value() ;
  5785. }
  5786. }break;
  5787. //! ### M208 - Set retract recover length
  5788. // --------------------------------------------
  5789. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5790. {
  5791. if(code_seen('S'))
  5792. {
  5793. cs.retract_recover_length = code_value() ;
  5794. }
  5795. if(code_seen('F'))
  5796. {
  5797. cs.retract_recover_feedrate = code_value()/60 ;
  5798. }
  5799. }break;
  5800. //! ### M209 - Enable/disable automatict retract
  5801. // ---------------------------------------------
  5802. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5803. {
  5804. if(code_seen('S'))
  5805. {
  5806. int t= code_value() ;
  5807. switch(t)
  5808. {
  5809. case 0:
  5810. {
  5811. cs.autoretract_enabled=false;
  5812. retracted[0]=false;
  5813. #if EXTRUDERS > 1
  5814. retracted[1]=false;
  5815. #endif
  5816. #if EXTRUDERS > 2
  5817. retracted[2]=false;
  5818. #endif
  5819. }break;
  5820. case 1:
  5821. {
  5822. cs.autoretract_enabled=true;
  5823. retracted[0]=false;
  5824. #if EXTRUDERS > 1
  5825. retracted[1]=false;
  5826. #endif
  5827. #if EXTRUDERS > 2
  5828. retracted[2]=false;
  5829. #endif
  5830. }break;
  5831. default:
  5832. SERIAL_ECHO_START;
  5833. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5834. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5835. SERIAL_ECHOLNPGM("\"(1)");
  5836. }
  5837. }
  5838. }break;
  5839. #endif // FWRETRACT
  5840. #if EXTRUDERS > 1
  5841. // ### M218 - Set hotend offset
  5842. // ----------------------------------------
  5843. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5844. {
  5845. uint8_t extruder;
  5846. if(setTargetedHotend(218, extruder)){
  5847. break;
  5848. }
  5849. if(code_seen('X'))
  5850. {
  5851. extruder_offset[X_AXIS][extruder] = code_value();
  5852. }
  5853. if(code_seen('Y'))
  5854. {
  5855. extruder_offset[Y_AXIS][extruder] = code_value();
  5856. }
  5857. SERIAL_ECHO_START;
  5858. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5859. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5860. {
  5861. SERIAL_ECHO(" ");
  5862. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5863. SERIAL_ECHO(",");
  5864. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5865. }
  5866. SERIAL_ECHOLN("");
  5867. }break;
  5868. #endif
  5869. //! ### M220 Set feedrate percentage
  5870. // -----------------------------------------------
  5871. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5872. {
  5873. if (code_seen('B')) //backup current speed factor
  5874. {
  5875. saved_feedmultiply_mm = feedmultiply;
  5876. }
  5877. if(code_seen('S'))
  5878. {
  5879. feedmultiply = code_value() ;
  5880. }
  5881. if (code_seen('R')) { //restore previous feedmultiply
  5882. feedmultiply = saved_feedmultiply_mm;
  5883. }
  5884. }
  5885. break;
  5886. //! ### M221 - Set extrude factor override percentage
  5887. // ----------------------------------------------------
  5888. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5889. {
  5890. if(code_seen('S'))
  5891. {
  5892. int tmp_code = code_value();
  5893. if (code_seen('T'))
  5894. {
  5895. uint8_t extruder;
  5896. if(setTargetedHotend(221, extruder)){
  5897. break;
  5898. }
  5899. extruder_multiply[extruder] = tmp_code;
  5900. }
  5901. else
  5902. {
  5903. extrudemultiply = tmp_code ;
  5904. }
  5905. }
  5906. calculate_extruder_multipliers();
  5907. }
  5908. break;
  5909. //! ### M226 - Wait for Pin state
  5910. // ------------------------------------------
  5911. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5912. {
  5913. if(code_seen('P')){
  5914. int pin_number = code_value(); // pin number
  5915. int pin_state = -1; // required pin state - default is inverted
  5916. if(code_seen('S')) pin_state = code_value(); // required pin state
  5917. if(pin_state >= -1 && pin_state <= 1){
  5918. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5919. {
  5920. if (sensitive_pins[i] == pin_number)
  5921. {
  5922. pin_number = -1;
  5923. break;
  5924. }
  5925. }
  5926. if (pin_number > -1)
  5927. {
  5928. int target = LOW;
  5929. st_synchronize();
  5930. pinMode(pin_number, INPUT);
  5931. switch(pin_state){
  5932. case 1:
  5933. target = HIGH;
  5934. break;
  5935. case 0:
  5936. target = LOW;
  5937. break;
  5938. case -1:
  5939. target = !digitalRead(pin_number);
  5940. break;
  5941. }
  5942. while(digitalRead(pin_number) != target){
  5943. manage_heater();
  5944. manage_inactivity();
  5945. lcd_update(0);
  5946. }
  5947. }
  5948. }
  5949. }
  5950. }
  5951. break;
  5952. #if NUM_SERVOS > 0
  5953. //! ### M280 - Set/Get servo position
  5954. // --------------------------------------------
  5955. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5956. {
  5957. int servo_index = -1;
  5958. int servo_position = 0;
  5959. if (code_seen('P'))
  5960. servo_index = code_value();
  5961. if (code_seen('S')) {
  5962. servo_position = code_value();
  5963. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5964. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5965. servos[servo_index].attach(0);
  5966. #endif
  5967. servos[servo_index].write(servo_position);
  5968. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5969. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5970. servos[servo_index].detach();
  5971. #endif
  5972. }
  5973. else {
  5974. SERIAL_ECHO_START;
  5975. SERIAL_ECHO("Servo ");
  5976. SERIAL_ECHO(servo_index);
  5977. SERIAL_ECHOLN(" out of range");
  5978. }
  5979. }
  5980. else if (servo_index >= 0) {
  5981. SERIAL_PROTOCOL(MSG_OK);
  5982. SERIAL_PROTOCOL(" Servo ");
  5983. SERIAL_PROTOCOL(servo_index);
  5984. SERIAL_PROTOCOL(": ");
  5985. SERIAL_PROTOCOL(servos[servo_index].read());
  5986. SERIAL_PROTOCOLLN("");
  5987. }
  5988. }
  5989. break;
  5990. #endif // NUM_SERVOS > 0
  5991. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5992. //! ### M300 - Play tone
  5993. // -----------------------
  5994. case 300: // M300
  5995. {
  5996. int beepS = code_seen('S') ? code_value() : 110;
  5997. int beepP = code_seen('P') ? code_value() : 1000;
  5998. if (beepS > 0)
  5999. {
  6000. #if BEEPER > 0
  6001. Sound_MakeCustom(beepP,beepS,false);
  6002. #endif
  6003. }
  6004. else
  6005. {
  6006. _delay(beepP);
  6007. }
  6008. }
  6009. break;
  6010. #endif // M300
  6011. #ifdef PIDTEMP
  6012. //! ### M301 - Set hotend PID
  6013. // ---------------------------------------
  6014. case 301:
  6015. {
  6016. if(code_seen('P')) cs.Kp = code_value();
  6017. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6018. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6019. #ifdef PID_ADD_EXTRUSION_RATE
  6020. if(code_seen('C')) Kc = code_value();
  6021. #endif
  6022. updatePID();
  6023. SERIAL_PROTOCOLRPGM(MSG_OK);
  6024. SERIAL_PROTOCOL(" p:");
  6025. SERIAL_PROTOCOL(cs.Kp);
  6026. SERIAL_PROTOCOL(" i:");
  6027. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6028. SERIAL_PROTOCOL(" d:");
  6029. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6030. #ifdef PID_ADD_EXTRUSION_RATE
  6031. SERIAL_PROTOCOL(" c:");
  6032. //Kc does not have scaling applied above, or in resetting defaults
  6033. SERIAL_PROTOCOL(Kc);
  6034. #endif
  6035. SERIAL_PROTOCOLLN("");
  6036. }
  6037. break;
  6038. #endif //PIDTEMP
  6039. #ifdef PIDTEMPBED
  6040. //! ### M304 - Set bed PID
  6041. // --------------------------------------
  6042. case 304:
  6043. {
  6044. if(code_seen('P')) cs.bedKp = code_value();
  6045. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6046. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6047. updatePID();
  6048. SERIAL_PROTOCOLRPGM(MSG_OK);
  6049. SERIAL_PROTOCOL(" p:");
  6050. SERIAL_PROTOCOL(cs.bedKp);
  6051. SERIAL_PROTOCOL(" i:");
  6052. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6053. SERIAL_PROTOCOL(" d:");
  6054. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6055. SERIAL_PROTOCOLLN("");
  6056. }
  6057. break;
  6058. #endif //PIDTEMP
  6059. //! ### M240 - Trigger camera
  6060. // --------------------------------------------
  6061. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6062. {
  6063. #ifdef CHDK
  6064. SET_OUTPUT(CHDK);
  6065. WRITE(CHDK, HIGH);
  6066. chdkHigh = _millis();
  6067. chdkActive = true;
  6068. #else
  6069. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6070. const uint8_t NUM_PULSES=16;
  6071. const float PULSE_LENGTH=0.01524;
  6072. for(int i=0; i < NUM_PULSES; i++) {
  6073. WRITE(PHOTOGRAPH_PIN, HIGH);
  6074. _delay_ms(PULSE_LENGTH);
  6075. WRITE(PHOTOGRAPH_PIN, LOW);
  6076. _delay_ms(PULSE_LENGTH);
  6077. }
  6078. _delay(7.33);
  6079. for(int i=0; i < NUM_PULSES; i++) {
  6080. WRITE(PHOTOGRAPH_PIN, HIGH);
  6081. _delay_ms(PULSE_LENGTH);
  6082. WRITE(PHOTOGRAPH_PIN, LOW);
  6083. _delay_ms(PULSE_LENGTH);
  6084. }
  6085. #endif
  6086. #endif //chdk end if
  6087. }
  6088. break;
  6089. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6090. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6091. // -------------------------------------------------------------------
  6092. case 302:
  6093. {
  6094. float temp = .0;
  6095. if (code_seen('S')) temp=code_value();
  6096. set_extrude_min_temp(temp);
  6097. }
  6098. break;
  6099. #endif
  6100. //! ### M303 - PID autotune
  6101. // -------------------------------------
  6102. case 303:
  6103. {
  6104. float temp = 150.0;
  6105. int e=0;
  6106. int c=5;
  6107. if (code_seen('E')) e=code_value();
  6108. if (e<0)
  6109. temp=70;
  6110. if (code_seen('S')) temp=code_value();
  6111. if (code_seen('C')) c=code_value();
  6112. PID_autotune(temp, e, c);
  6113. }
  6114. break;
  6115. //! ### M400 - Wait for all moves to finish
  6116. // -----------------------------------------
  6117. case 400:
  6118. {
  6119. st_synchronize();
  6120. }
  6121. break;
  6122. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6123. // ----------------------------------------------
  6124. case 403:
  6125. {
  6126. // currently three different materials are needed (default, flex and PVA)
  6127. // add storing this information for different load/unload profiles etc. in the future
  6128. // firmware does not wait for "ok" from mmu
  6129. if (mmu_enabled)
  6130. {
  6131. uint8_t extruder = 255;
  6132. uint8_t filament = FILAMENT_UNDEFINED;
  6133. if(code_seen('E')) extruder = code_value();
  6134. if(code_seen('F')) filament = code_value();
  6135. mmu_set_filament_type(extruder, filament);
  6136. }
  6137. }
  6138. break;
  6139. //! ### M500 - Store settings in EEPROM
  6140. // -----------------------------------------
  6141. case 500:
  6142. {
  6143. Config_StoreSettings();
  6144. }
  6145. break;
  6146. //! ### M501 - Read settings from EEPROM
  6147. // ----------------------------------------
  6148. case 501:
  6149. {
  6150. Config_RetrieveSettings();
  6151. }
  6152. break;
  6153. //! ### M502 - Revert all settings to factory default
  6154. // -------------------------------------------------
  6155. case 502:
  6156. {
  6157. Config_ResetDefault();
  6158. }
  6159. break;
  6160. //! ### M503 - Repport all settings currently in memory
  6161. // -------------------------------------------------
  6162. case 503:
  6163. {
  6164. Config_PrintSettings();
  6165. }
  6166. break;
  6167. //! ### M509 - Force language selection
  6168. // ------------------------------------------------
  6169. case 509:
  6170. {
  6171. lang_reset();
  6172. SERIAL_ECHO_START;
  6173. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6174. }
  6175. break;
  6176. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6177. //! ### M540 - Abort print on endstop hit (enable/disable)
  6178. // -----------------------------------------------------
  6179. case 540:
  6180. {
  6181. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6182. }
  6183. break;
  6184. #endif
  6185. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6186. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6187. {
  6188. float value;
  6189. if (code_seen('Z'))
  6190. {
  6191. value = code_value();
  6192. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6193. {
  6194. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6195. SERIAL_ECHO_START;
  6196. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6197. SERIAL_PROTOCOLLN("");
  6198. }
  6199. else
  6200. {
  6201. SERIAL_ECHO_START;
  6202. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6203. SERIAL_ECHORPGM(MSG_Z_MIN);
  6204. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6205. SERIAL_ECHORPGM(MSG_Z_MAX);
  6206. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6207. SERIAL_PROTOCOLLN("");
  6208. }
  6209. }
  6210. else
  6211. {
  6212. SERIAL_ECHO_START;
  6213. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6214. SERIAL_ECHO(-cs.zprobe_zoffset);
  6215. SERIAL_PROTOCOLLN("");
  6216. }
  6217. break;
  6218. }
  6219. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6220. #ifdef FILAMENTCHANGEENABLE
  6221. //! ### M600 - Initiate Filament change procedure
  6222. // --------------------------------------
  6223. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6224. {
  6225. st_synchronize();
  6226. float x_position = current_position[X_AXIS];
  6227. float y_position = current_position[Y_AXIS];
  6228. float z_shift = 0; // is it necessary to be a float?
  6229. float e_shift_init = 0;
  6230. float e_shift_late = 0;
  6231. bool automatic = false;
  6232. //Retract extruder
  6233. if(code_seen('E'))
  6234. {
  6235. e_shift_init = code_value();
  6236. }
  6237. else
  6238. {
  6239. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6240. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6241. #endif
  6242. }
  6243. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6244. if (code_seen('L'))
  6245. {
  6246. e_shift_late = code_value();
  6247. }
  6248. else
  6249. {
  6250. #ifdef FILAMENTCHANGE_FINALRETRACT
  6251. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6252. #endif
  6253. }
  6254. //Lift Z
  6255. if(code_seen('Z'))
  6256. {
  6257. z_shift = code_value();
  6258. }
  6259. else
  6260. {
  6261. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6262. }
  6263. //Move XY to side
  6264. if(code_seen('X'))
  6265. {
  6266. x_position = code_value();
  6267. }
  6268. else
  6269. {
  6270. #ifdef FILAMENTCHANGE_XPOS
  6271. x_position = FILAMENTCHANGE_XPOS;
  6272. #endif
  6273. }
  6274. if(code_seen('Y'))
  6275. {
  6276. y_position = code_value();
  6277. }
  6278. else
  6279. {
  6280. #ifdef FILAMENTCHANGE_YPOS
  6281. y_position = FILAMENTCHANGE_YPOS ;
  6282. #endif
  6283. }
  6284. if (mmu_enabled && code_seen("AUTO"))
  6285. automatic = true;
  6286. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6287. }
  6288. break;
  6289. #endif //FILAMENTCHANGEENABLE
  6290. //! ### M601 - Pause print
  6291. // -------------------------------
  6292. case 601:
  6293. {
  6294. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6295. lcd_pause_print();
  6296. }
  6297. break;
  6298. //! ### M602 - Resume print
  6299. // -------------------------------
  6300. case 602: {
  6301. lcd_resume_print();
  6302. }
  6303. break;
  6304. //! ### M603 - Stop print
  6305. // -------------------------------
  6306. case 603: {
  6307. lcd_print_stop();
  6308. }
  6309. #ifdef PINDA_THERMISTOR
  6310. //! ### M860 - Wait for extruder temperature (PINDA)
  6311. // --------------------------------------------------------------
  6312. /*!
  6313. Wait for PINDA thermistor to reach target temperature
  6314. M860 [S<target_temperature>]
  6315. */
  6316. case 860:
  6317. {
  6318. int set_target_pinda = 0;
  6319. if (code_seen('S')) {
  6320. set_target_pinda = code_value();
  6321. }
  6322. else {
  6323. break;
  6324. }
  6325. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6326. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6327. SERIAL_PROTOCOL(set_target_pinda);
  6328. SERIAL_PROTOCOLLN("");
  6329. codenum = _millis();
  6330. cancel_heatup = false;
  6331. bool is_pinda_cooling = false;
  6332. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6333. is_pinda_cooling = true;
  6334. }
  6335. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6336. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6337. {
  6338. SERIAL_PROTOCOLPGM("P:");
  6339. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6340. SERIAL_PROTOCOLPGM("/");
  6341. SERIAL_PROTOCOL(set_target_pinda);
  6342. SERIAL_PROTOCOLLN("");
  6343. codenum = _millis();
  6344. }
  6345. manage_heater();
  6346. manage_inactivity();
  6347. lcd_update(0);
  6348. }
  6349. LCD_MESSAGERPGM(MSG_OK);
  6350. break;
  6351. }
  6352. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6353. // -----------------------------------------------------------
  6354. /*!
  6355. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6356. - `?` - Print current EEPROM offset values
  6357. - `!` - Set factory default values
  6358. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6359. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6360. */
  6361. case 861:
  6362. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6363. uint8_t cal_status = calibration_status_pinda();
  6364. int16_t usteps = 0;
  6365. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6366. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6367. for (uint8_t i = 0; i < 6; i++)
  6368. {
  6369. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6370. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6371. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6372. SERIAL_PROTOCOLPGM(", ");
  6373. SERIAL_PROTOCOL(35 + (i * 5));
  6374. SERIAL_PROTOCOLPGM(", ");
  6375. SERIAL_PROTOCOL(usteps);
  6376. SERIAL_PROTOCOLPGM(", ");
  6377. SERIAL_PROTOCOL(mm * 1000);
  6378. SERIAL_PROTOCOLLN("");
  6379. }
  6380. }
  6381. else if (code_seen('!')) { // ! - Set factory default values
  6382. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6383. int16_t z_shift = 8; //40C - 20um - 8usteps
  6384. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6385. z_shift = 24; //45C - 60um - 24usteps
  6386. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6387. z_shift = 48; //50C - 120um - 48usteps
  6388. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6389. z_shift = 80; //55C - 200um - 80usteps
  6390. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6391. z_shift = 120; //60C - 300um - 120usteps
  6392. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6393. SERIAL_PROTOCOLLN("factory restored");
  6394. }
  6395. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6396. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6397. int16_t z_shift = 0;
  6398. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6399. SERIAL_PROTOCOLLN("zerorized");
  6400. }
  6401. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6402. int16_t usteps = code_value();
  6403. if (code_seen('I')) {
  6404. uint8_t index = code_value();
  6405. if (index < 5) {
  6406. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6407. SERIAL_PROTOCOLLN("OK");
  6408. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6409. for (uint8_t i = 0; i < 6; i++)
  6410. {
  6411. usteps = 0;
  6412. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6413. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6414. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6415. SERIAL_PROTOCOLPGM(", ");
  6416. SERIAL_PROTOCOL(35 + (i * 5));
  6417. SERIAL_PROTOCOLPGM(", ");
  6418. SERIAL_PROTOCOL(usteps);
  6419. SERIAL_PROTOCOLPGM(", ");
  6420. SERIAL_PROTOCOL(mm * 1000);
  6421. SERIAL_PROTOCOLLN("");
  6422. }
  6423. }
  6424. }
  6425. }
  6426. else {
  6427. SERIAL_PROTOCOLPGM("no valid command");
  6428. }
  6429. break;
  6430. #endif //PINDA_THERMISTOR
  6431. //! ### M862 - Print checking
  6432. // ----------------------------------------------
  6433. /*!
  6434. Checks the parameters of the printer and gcode and performs compatibility check
  6435. - M862.1 { P<nozzle_diameter> | Q }
  6436. - M862.2 { P<model_code> | Q }
  6437. - M862.3 { P"<model_name>" | Q }
  6438. - M862.4 { P<fw_version> | Q }
  6439. - M862.5 { P<gcode_level> | Q }
  6440. When run with P<> argument, the check is performed against the input value.
  6441. When run with Q argument, the current value is shown.
  6442. M862.3 accepts text identifiers of printer types too.
  6443. The syntax of M862.3 is (note the quotes around the type):
  6444. M862.3 P "MK3S"
  6445. Accepted printer type identifiers and their numeric counterparts:
  6446. - MK1 (100)
  6447. - MK2 (200)
  6448. - MK2MM (201)
  6449. - MK2S (202)
  6450. - MK2SMM (203)
  6451. - MK2.5 (250)
  6452. - MK2.5MMU2 (20250)
  6453. - MK2.5S (252)
  6454. - MK2.5SMMU2S (20252)
  6455. - MK3 (300)
  6456. - MK3MMU2 (20300)
  6457. - MK3S (302)
  6458. - MK3SMMU2S (20302)
  6459. */
  6460. case 862: // M862: print checking
  6461. float nDummy;
  6462. uint8_t nCommand;
  6463. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6464. switch((ClPrintChecking)nCommand)
  6465. {
  6466. case ClPrintChecking::_Nozzle: // ~ .1
  6467. uint16_t nDiameter;
  6468. if(code_seen('P'))
  6469. {
  6470. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6471. nozzle_diameter_check(nDiameter);
  6472. }
  6473. /*
  6474. else if(code_seen('S')&&farm_mode)
  6475. {
  6476. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6477. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6478. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6479. }
  6480. */
  6481. else if(code_seen('Q'))
  6482. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6483. break;
  6484. case ClPrintChecking::_Model: // ~ .2
  6485. if(code_seen('P'))
  6486. {
  6487. uint16_t nPrinterModel;
  6488. nPrinterModel=(uint16_t)code_value_long();
  6489. printer_model_check(nPrinterModel);
  6490. }
  6491. else if(code_seen('Q'))
  6492. SERIAL_PROTOCOLLN(nPrinterType);
  6493. break;
  6494. case ClPrintChecking::_Smodel: // ~ .3
  6495. if(code_seen('P'))
  6496. printer_smodel_check(strchr_pointer);
  6497. else if(code_seen('Q'))
  6498. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6499. break;
  6500. case ClPrintChecking::_Version: // ~ .4
  6501. if(code_seen('P'))
  6502. fw_version_check(++strchr_pointer);
  6503. else if(code_seen('Q'))
  6504. SERIAL_PROTOCOLLN(FW_VERSION);
  6505. break;
  6506. case ClPrintChecking::_Gcode: // ~ .5
  6507. if(code_seen('P'))
  6508. {
  6509. uint16_t nGcodeLevel;
  6510. nGcodeLevel=(uint16_t)code_value_long();
  6511. gcode_level_check(nGcodeLevel);
  6512. }
  6513. else if(code_seen('Q'))
  6514. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6515. break;
  6516. }
  6517. break;
  6518. #ifdef LIN_ADVANCE
  6519. //! ### M900 - Set Linear advance options
  6520. // ----------------------------------------------
  6521. case 900:
  6522. gcode_M900();
  6523. break;
  6524. #endif
  6525. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6526. // ---------------------------------------------------------------
  6527. case 907:
  6528. {
  6529. #ifdef TMC2130
  6530. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6531. for (int i = 0; i < NUM_AXIS; i++)
  6532. if(code_seen(axis_codes[i]))
  6533. {
  6534. long cur_mA = code_value_long();
  6535. uint8_t val = tmc2130_cur2val(cur_mA);
  6536. tmc2130_set_current_h(i, val);
  6537. tmc2130_set_current_r(i, val);
  6538. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6539. }
  6540. #else //TMC2130
  6541. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6542. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6543. if(code_seen('B')) st_current_set(4,code_value());
  6544. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6545. #endif
  6546. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6547. if(code_seen('X')) st_current_set(0, code_value());
  6548. #endif
  6549. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6550. if(code_seen('Z')) st_current_set(1, code_value());
  6551. #endif
  6552. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6553. if(code_seen('E')) st_current_set(2, code_value());
  6554. #endif
  6555. #endif //TMC2130
  6556. }
  6557. break;
  6558. //! ### M908 - Control digital trimpot directly
  6559. // ---------------------------------------------------------
  6560. case 908:
  6561. {
  6562. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6563. uint8_t channel,current;
  6564. if(code_seen('P')) channel=code_value();
  6565. if(code_seen('S')) current=code_value();
  6566. digitalPotWrite(channel, current);
  6567. #endif
  6568. }
  6569. break;
  6570. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6571. //! ### M910 - TMC2130 init
  6572. // -----------------------------------------------
  6573. case 910:
  6574. {
  6575. tmc2130_init();
  6576. }
  6577. break;
  6578. //! ### M911 - Set TMC2130 holding currents
  6579. // -------------------------------------------------
  6580. case 911:
  6581. {
  6582. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6583. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6584. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6585. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6586. }
  6587. break;
  6588. //! ### M912 - Set TMC2130 running currents
  6589. // -----------------------------------------------
  6590. case 912:
  6591. {
  6592. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6593. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6594. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6595. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6596. }
  6597. break;
  6598. //! ### M913 - Print TMC2130 currents
  6599. // -----------------------------
  6600. case 913:
  6601. {
  6602. tmc2130_print_currents();
  6603. }
  6604. break;
  6605. //! ### M914 - Set TMC2130 normal mode
  6606. // ------------------------------
  6607. case 914:
  6608. {
  6609. tmc2130_mode = TMC2130_MODE_NORMAL;
  6610. update_mode_profile();
  6611. tmc2130_init();
  6612. }
  6613. break;
  6614. //! ### M95 - Set TMC2130 silent mode
  6615. // ------------------------------
  6616. case 915:
  6617. {
  6618. tmc2130_mode = TMC2130_MODE_SILENT;
  6619. update_mode_profile();
  6620. tmc2130_init();
  6621. }
  6622. break;
  6623. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6624. // -------------------------------------------------------
  6625. case 916:
  6626. {
  6627. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6628. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6629. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6630. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6631. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6632. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6633. }
  6634. break;
  6635. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6636. // --------------------------------------------------------------
  6637. case 917:
  6638. {
  6639. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6640. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6641. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6642. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6643. }
  6644. break;
  6645. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6646. // -------------------------------------------------------------
  6647. case 918:
  6648. {
  6649. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6650. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6651. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6652. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6653. }
  6654. break;
  6655. #endif //TMC2130_SERVICE_CODES_M910_M918
  6656. //! ### M350 - Set microstepping mode
  6657. // ---------------------------------------------------
  6658. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6659. case 350:
  6660. {
  6661. #ifdef TMC2130
  6662. if(code_seen('E'))
  6663. {
  6664. uint16_t res_new = code_value();
  6665. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6666. {
  6667. st_synchronize();
  6668. uint8_t axis = E_AXIS;
  6669. uint16_t res = tmc2130_get_res(axis);
  6670. tmc2130_set_res(axis, res_new);
  6671. cs.axis_ustep_resolution[axis] = res_new;
  6672. if (res_new > res)
  6673. {
  6674. uint16_t fac = (res_new / res);
  6675. cs.axis_steps_per_unit[axis] *= fac;
  6676. position[E_AXIS] *= fac;
  6677. }
  6678. else
  6679. {
  6680. uint16_t fac = (res / res_new);
  6681. cs.axis_steps_per_unit[axis] /= fac;
  6682. position[E_AXIS] /= fac;
  6683. }
  6684. }
  6685. }
  6686. #else //TMC2130
  6687. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6688. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6689. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6690. if(code_seen('B')) microstep_mode(4,code_value());
  6691. microstep_readings();
  6692. #endif
  6693. #endif //TMC2130
  6694. }
  6695. break;
  6696. //! ### M351 - Toggle Microstep Pins
  6697. // -----------------------------------
  6698. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6699. //!
  6700. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6701. case 351:
  6702. {
  6703. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6704. if(code_seen('S')) switch((int)code_value())
  6705. {
  6706. case 1:
  6707. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6708. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6709. break;
  6710. case 2:
  6711. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6712. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6713. break;
  6714. }
  6715. microstep_readings();
  6716. #endif
  6717. }
  6718. break;
  6719. //! ### M701 - Load filament
  6720. // -------------------------
  6721. case 701:
  6722. {
  6723. if (mmu_enabled && code_seen('E'))
  6724. tmp_extruder = code_value();
  6725. gcode_M701();
  6726. }
  6727. break;
  6728. //! ### M702 - Unload filament
  6729. // ------------------------
  6730. /*!
  6731. M702 [U C]
  6732. - `U` Unload all filaments used in current print
  6733. - `C` Unload just current filament
  6734. - without any parameters unload all filaments
  6735. */
  6736. case 702:
  6737. {
  6738. #ifdef SNMM
  6739. if (code_seen('U'))
  6740. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6741. else if (code_seen('C'))
  6742. extr_unload(); //! if "C" unload just current filament
  6743. else
  6744. extr_unload_all(); //! otherwise unload all filaments
  6745. #else
  6746. if (code_seen('C')) {
  6747. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6748. }
  6749. else {
  6750. if(mmu_enabled) extr_unload(); //! unload current filament
  6751. else unload_filament();
  6752. }
  6753. #endif //SNMM
  6754. }
  6755. break;
  6756. //! ### M999 - Restart after being stopped
  6757. // ------------------------------------
  6758. case 999:
  6759. Stopped = false;
  6760. lcd_reset_alert_level();
  6761. gcode_LastN = Stopped_gcode_LastN;
  6762. FlushSerialRequestResend();
  6763. break;
  6764. default:
  6765. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6766. }
  6767. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6768. mcode_in_progress = 0;
  6769. }
  6770. }
  6771. // end if(code_seen('M')) (end of M codes)
  6772. //! -----------------------------------------------------------------------------------------
  6773. //! T Codes
  6774. //!
  6775. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6776. //! select filament in case of MMU_V2
  6777. //! if extruder is "?", open menu to let the user select extruder/filament
  6778. //!
  6779. //! For MMU_V2:
  6780. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6781. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6782. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6783. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6784. else if(code_seen('T'))
  6785. {
  6786. int index;
  6787. bool load_to_nozzle = false;
  6788. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6789. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6790. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6791. SERIAL_ECHOLNPGM("Invalid T code.");
  6792. }
  6793. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6794. if (mmu_enabled)
  6795. {
  6796. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6797. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6798. {
  6799. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6800. }
  6801. else
  6802. {
  6803. st_synchronize();
  6804. mmu_command(MmuCmd::T0 + tmp_extruder);
  6805. manage_response(true, true, MMU_TCODE_MOVE);
  6806. }
  6807. }
  6808. }
  6809. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6810. if (mmu_enabled)
  6811. {
  6812. st_synchronize();
  6813. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6814. mmu_extruder = tmp_extruder; //filament change is finished
  6815. mmu_load_to_nozzle();
  6816. }
  6817. }
  6818. else {
  6819. if (*(strchr_pointer + index) == '?')
  6820. {
  6821. if(mmu_enabled)
  6822. {
  6823. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6824. load_to_nozzle = true;
  6825. } else
  6826. {
  6827. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6828. }
  6829. }
  6830. else {
  6831. tmp_extruder = code_value();
  6832. if (mmu_enabled && lcd_autoDepleteEnabled())
  6833. {
  6834. tmp_extruder = ad_getAlternative(tmp_extruder);
  6835. }
  6836. }
  6837. st_synchronize();
  6838. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6839. if (mmu_enabled)
  6840. {
  6841. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6842. {
  6843. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6844. }
  6845. else
  6846. {
  6847. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6848. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6849. {
  6850. mmu_command(MmuCmd::K0 + tmp_extruder);
  6851. manage_response(true, true, MMU_UNLOAD_MOVE);
  6852. }
  6853. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6854. mmu_command(MmuCmd::T0 + tmp_extruder);
  6855. manage_response(true, true, MMU_TCODE_MOVE);
  6856. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6857. mmu_extruder = tmp_extruder; //filament change is finished
  6858. if (load_to_nozzle)// for single material usage with mmu
  6859. {
  6860. mmu_load_to_nozzle();
  6861. }
  6862. }
  6863. }
  6864. else
  6865. {
  6866. #ifdef SNMM
  6867. #ifdef LIN_ADVANCE
  6868. if (mmu_extruder != tmp_extruder)
  6869. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6870. #endif
  6871. mmu_extruder = tmp_extruder;
  6872. _delay(100);
  6873. disable_e0();
  6874. disable_e1();
  6875. disable_e2();
  6876. pinMode(E_MUX0_PIN, OUTPUT);
  6877. pinMode(E_MUX1_PIN, OUTPUT);
  6878. _delay(100);
  6879. SERIAL_ECHO_START;
  6880. SERIAL_ECHO("T:");
  6881. SERIAL_ECHOLN((int)tmp_extruder);
  6882. switch (tmp_extruder) {
  6883. case 1:
  6884. WRITE(E_MUX0_PIN, HIGH);
  6885. WRITE(E_MUX1_PIN, LOW);
  6886. break;
  6887. case 2:
  6888. WRITE(E_MUX0_PIN, LOW);
  6889. WRITE(E_MUX1_PIN, HIGH);
  6890. break;
  6891. case 3:
  6892. WRITE(E_MUX0_PIN, HIGH);
  6893. WRITE(E_MUX1_PIN, HIGH);
  6894. break;
  6895. default:
  6896. WRITE(E_MUX0_PIN, LOW);
  6897. WRITE(E_MUX1_PIN, LOW);
  6898. break;
  6899. }
  6900. _delay(100);
  6901. #else //SNMM
  6902. if (tmp_extruder >= EXTRUDERS) {
  6903. SERIAL_ECHO_START;
  6904. SERIAL_ECHOPGM("T");
  6905. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6906. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6907. }
  6908. else {
  6909. #if EXTRUDERS > 1
  6910. boolean make_move = false;
  6911. #endif
  6912. if (code_seen('F')) {
  6913. #if EXTRUDERS > 1
  6914. make_move = true;
  6915. #endif
  6916. next_feedrate = code_value();
  6917. if (next_feedrate > 0.0) {
  6918. feedrate = next_feedrate;
  6919. }
  6920. }
  6921. #if EXTRUDERS > 1
  6922. if (tmp_extruder != active_extruder) {
  6923. // Save current position to return to after applying extruder offset
  6924. memcpy(destination, current_position, sizeof(destination));
  6925. // Offset extruder (only by XY)
  6926. int i;
  6927. for (i = 0; i < 2; i++) {
  6928. current_position[i] = current_position[i] -
  6929. extruder_offset[i][active_extruder] +
  6930. extruder_offset[i][tmp_extruder];
  6931. }
  6932. // Set the new active extruder and position
  6933. active_extruder = tmp_extruder;
  6934. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6935. // Move to the old position if 'F' was in the parameters
  6936. if (make_move && Stopped == false) {
  6937. prepare_move();
  6938. }
  6939. }
  6940. #endif
  6941. SERIAL_ECHO_START;
  6942. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6943. SERIAL_PROTOCOLLN((int)active_extruder);
  6944. }
  6945. #endif //SNMM
  6946. }
  6947. }
  6948. } // end if(code_seen('T')) (end of T codes)
  6949. //! ----------------------------------------------------------------------------------------------
  6950. else if (code_seen('D')) // D codes (debug)
  6951. {
  6952. switch((int)code_value())
  6953. {
  6954. //! ### D-1 - Endless loop
  6955. // -------------------
  6956. case -1:
  6957. dcode__1(); break;
  6958. #ifdef DEBUG_DCODES
  6959. //! ### D0 - Reset
  6960. // --------------
  6961. case 0:
  6962. dcode_0(); break;
  6963. //! ### D1 - Clear EEPROM
  6964. // ------------------
  6965. case 1:
  6966. dcode_1(); break;
  6967. //! ### D2 - Read/Write RAM
  6968. // --------------------
  6969. case 2:
  6970. dcode_2(); break;
  6971. #endif //DEBUG_DCODES
  6972. #ifdef DEBUG_DCODE3
  6973. //! ### D3 - Read/Write EEPROM
  6974. // -----------------------
  6975. case 3:
  6976. dcode_3(); break;
  6977. #endif //DEBUG_DCODE3
  6978. #ifdef DEBUG_DCODES
  6979. //! ### D4 - Read/Write PIN
  6980. // ---------------------
  6981. case 4:
  6982. dcode_4(); break;
  6983. #endif //DEBUG_DCODES
  6984. #ifdef DEBUG_DCODE5
  6985. //! ### D5 - Read/Write FLASH
  6986. // ------------------------
  6987. case 5:
  6988. dcode_5(); break;
  6989. break;
  6990. #endif //DEBUG_DCODE5
  6991. #ifdef DEBUG_DCODES
  6992. //! ### D6 - Read/Write external FLASH
  6993. // ---------------------------------------
  6994. case 6:
  6995. dcode_6(); break;
  6996. //! ### D7 - Read/Write Bootloader
  6997. // -------------------------------
  6998. case 7:
  6999. dcode_7(); break;
  7000. //! ### D8 - Read/Write PINDA
  7001. // ---------------------------
  7002. case 8:
  7003. dcode_8(); break;
  7004. // ### D9 - Read/Write ADC
  7005. // ------------------------
  7006. case 9:
  7007. dcode_9(); break;
  7008. //! ### D10 - XYZ calibration = OK
  7009. // ------------------------------
  7010. case 10:
  7011. dcode_10(); break;
  7012. #endif //DEBUG_DCODES
  7013. #ifdef HEATBED_ANALYSIS
  7014. //! ### D80 - Bed check
  7015. // ---------------------
  7016. /*!
  7017. - `E` - dimension x
  7018. - `F` - dimention y
  7019. - `G` - points_x
  7020. - `H` - points_y
  7021. - `I` - offset_x
  7022. - `J` - offset_y
  7023. */
  7024. case 80:
  7025. {
  7026. float dimension_x = 40;
  7027. float dimension_y = 40;
  7028. int points_x = 40;
  7029. int points_y = 40;
  7030. float offset_x = 74;
  7031. float offset_y = 33;
  7032. if (code_seen('E')) dimension_x = code_value();
  7033. if (code_seen('F')) dimension_y = code_value();
  7034. if (code_seen('G')) {points_x = code_value(); }
  7035. if (code_seen('H')) {points_y = code_value(); }
  7036. if (code_seen('I')) {offset_x = code_value(); }
  7037. if (code_seen('J')) {offset_y = code_value(); }
  7038. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7039. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7040. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7041. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7042. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7043. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7044. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7045. }break;
  7046. //! ### D81 - Bed analysis
  7047. // -----------------------------
  7048. /*!
  7049. - `E` - dimension x
  7050. - `F` - dimention y
  7051. - `G` - points_x
  7052. - `H` - points_y
  7053. - `I` - offset_x
  7054. - `J` - offset_y
  7055. */
  7056. case 81:
  7057. {
  7058. float dimension_x = 40;
  7059. float dimension_y = 40;
  7060. int points_x = 40;
  7061. int points_y = 40;
  7062. float offset_x = 74;
  7063. float offset_y = 33;
  7064. if (code_seen('E')) dimension_x = code_value();
  7065. if (code_seen('F')) dimension_y = code_value();
  7066. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7067. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7068. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7069. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7070. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7071. } break;
  7072. #endif //HEATBED_ANALYSIS
  7073. #ifdef DEBUG_DCODES
  7074. //! ### D106 print measured fan speed for different pwm values
  7075. // --------------------------------------------------------------
  7076. case 106:
  7077. {
  7078. for (int i = 255; i > 0; i = i - 5) {
  7079. fanSpeed = i;
  7080. //delay_keep_alive(2000);
  7081. for (int j = 0; j < 100; j++) {
  7082. delay_keep_alive(100);
  7083. }
  7084. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7085. }
  7086. }break;
  7087. #ifdef TMC2130
  7088. //! ### D2130 - TMC2130 Trinamic stepper controller
  7089. // ---------------------------
  7090. /*!
  7091. D2130<axis><command>[subcommand][value]
  7092. - <command>:
  7093. - '0' current off
  7094. - '1' current on
  7095. - '+' single step
  7096. - * value sereval steps
  7097. - '-' dtto oposite direction
  7098. - '?' read register
  7099. - * "mres"
  7100. - * "step"
  7101. - * "mscnt"
  7102. - * "mscuract"
  7103. - * "wave"
  7104. - '!' set register
  7105. - * "mres"
  7106. - * "step"
  7107. - * "wave"
  7108. - '@' home calibrate axis
  7109. Example:
  7110. D2130E?wave ... print extruder microstep linearity compensation curve
  7111. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7112. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7113. */
  7114. case 2130:
  7115. dcode_2130(); break;
  7116. #endif //TMC2130
  7117. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7118. //! ### D9125 - FILAMENT_SENSOR
  7119. // ---------------------------------
  7120. case 9125:
  7121. dcode_9125(); break;
  7122. #endif //FILAMENT_SENSOR
  7123. #endif //DEBUG_DCODES
  7124. }
  7125. }
  7126. else
  7127. {
  7128. SERIAL_ECHO_START;
  7129. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7130. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7131. SERIAL_ECHOLNPGM("\"(2)");
  7132. }
  7133. KEEPALIVE_STATE(NOT_BUSY);
  7134. ClearToSend();
  7135. }
  7136. /** @defgroup GCodes G-Code List
  7137. */
  7138. // ---------------------------------------------------
  7139. void FlushSerialRequestResend()
  7140. {
  7141. //char cmdbuffer[bufindr][100]="Resend:";
  7142. MYSERIAL.flush();
  7143. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7144. }
  7145. // Confirm the execution of a command, if sent from a serial line.
  7146. // Execution of a command from a SD card will not be confirmed.
  7147. void ClearToSend()
  7148. {
  7149. previous_millis_cmd = _millis();
  7150. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7151. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7152. }
  7153. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7154. void update_currents() {
  7155. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7156. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7157. float tmp_motor[3];
  7158. //SERIAL_ECHOLNPGM("Currents updated: ");
  7159. if (destination[Z_AXIS] < Z_SILENT) {
  7160. //SERIAL_ECHOLNPGM("LOW");
  7161. for (uint8_t i = 0; i < 3; i++) {
  7162. st_current_set(i, current_low[i]);
  7163. /*MYSERIAL.print(int(i));
  7164. SERIAL_ECHOPGM(": ");
  7165. MYSERIAL.println(current_low[i]);*/
  7166. }
  7167. }
  7168. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7169. //SERIAL_ECHOLNPGM("HIGH");
  7170. for (uint8_t i = 0; i < 3; i++) {
  7171. st_current_set(i, current_high[i]);
  7172. /*MYSERIAL.print(int(i));
  7173. SERIAL_ECHOPGM(": ");
  7174. MYSERIAL.println(current_high[i]);*/
  7175. }
  7176. }
  7177. else {
  7178. for (uint8_t i = 0; i < 3; i++) {
  7179. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7180. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7181. st_current_set(i, tmp_motor[i]);
  7182. /*MYSERIAL.print(int(i));
  7183. SERIAL_ECHOPGM(": ");
  7184. MYSERIAL.println(tmp_motor[i]);*/
  7185. }
  7186. }
  7187. }
  7188. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7189. void get_coordinates()
  7190. {
  7191. bool seen[4]={false,false,false,false};
  7192. for(int8_t i=0; i < NUM_AXIS; i++) {
  7193. if(code_seen(axis_codes[i]))
  7194. {
  7195. bool relative = axis_relative_modes[i] || relative_mode;
  7196. destination[i] = (float)code_value();
  7197. if (i == E_AXIS) {
  7198. float emult = extruder_multiplier[active_extruder];
  7199. if (emult != 1.) {
  7200. if (! relative) {
  7201. destination[i] -= current_position[i];
  7202. relative = true;
  7203. }
  7204. destination[i] *= emult;
  7205. }
  7206. }
  7207. if (relative)
  7208. destination[i] += current_position[i];
  7209. seen[i]=true;
  7210. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7211. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7212. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7213. }
  7214. else destination[i] = current_position[i]; //Are these else lines really needed?
  7215. }
  7216. if(code_seen('F')) {
  7217. next_feedrate = code_value();
  7218. #ifdef MAX_SILENT_FEEDRATE
  7219. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7220. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7221. #endif //MAX_SILENT_FEEDRATE
  7222. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7223. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7224. {
  7225. // float e_max_speed =
  7226. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7227. }
  7228. }
  7229. }
  7230. void get_arc_coordinates()
  7231. {
  7232. #ifdef SF_ARC_FIX
  7233. bool relative_mode_backup = relative_mode;
  7234. relative_mode = true;
  7235. #endif
  7236. get_coordinates();
  7237. #ifdef SF_ARC_FIX
  7238. relative_mode=relative_mode_backup;
  7239. #endif
  7240. if(code_seen('I')) {
  7241. offset[0] = code_value();
  7242. }
  7243. else {
  7244. offset[0] = 0.0;
  7245. }
  7246. if(code_seen('J')) {
  7247. offset[1] = code_value();
  7248. }
  7249. else {
  7250. offset[1] = 0.0;
  7251. }
  7252. }
  7253. void clamp_to_software_endstops(float target[3])
  7254. {
  7255. #ifdef DEBUG_DISABLE_SWLIMITS
  7256. return;
  7257. #endif //DEBUG_DISABLE_SWLIMITS
  7258. world2machine_clamp(target[0], target[1]);
  7259. // Clamp the Z coordinate.
  7260. if (min_software_endstops) {
  7261. float negative_z_offset = 0;
  7262. #ifdef ENABLE_AUTO_BED_LEVELING
  7263. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7264. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7265. #endif
  7266. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7267. }
  7268. if (max_software_endstops) {
  7269. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7270. }
  7271. }
  7272. #ifdef MESH_BED_LEVELING
  7273. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7274. float dx = x - current_position[X_AXIS];
  7275. float dy = y - current_position[Y_AXIS];
  7276. float dz = z - current_position[Z_AXIS];
  7277. int n_segments = 0;
  7278. if (mbl.active) {
  7279. float len = abs(dx) + abs(dy);
  7280. if (len > 0)
  7281. // Split to 3cm segments or shorter.
  7282. n_segments = int(ceil(len / 30.f));
  7283. }
  7284. if (n_segments > 1) {
  7285. float de = e - current_position[E_AXIS];
  7286. for (int i = 1; i < n_segments; ++ i) {
  7287. float t = float(i) / float(n_segments);
  7288. if (saved_printing || (mbl.active == false)) return;
  7289. plan_buffer_line(
  7290. current_position[X_AXIS] + t * dx,
  7291. current_position[Y_AXIS] + t * dy,
  7292. current_position[Z_AXIS] + t * dz,
  7293. current_position[E_AXIS] + t * de,
  7294. feed_rate, extruder);
  7295. }
  7296. }
  7297. // The rest of the path.
  7298. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7299. current_position[X_AXIS] = x;
  7300. current_position[Y_AXIS] = y;
  7301. current_position[Z_AXIS] = z;
  7302. current_position[E_AXIS] = e;
  7303. }
  7304. #endif // MESH_BED_LEVELING
  7305. void prepare_move()
  7306. {
  7307. clamp_to_software_endstops(destination);
  7308. previous_millis_cmd = _millis();
  7309. // Do not use feedmultiply for E or Z only moves
  7310. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7311. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7312. }
  7313. else {
  7314. #ifdef MESH_BED_LEVELING
  7315. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7316. #else
  7317. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7318. #endif
  7319. }
  7320. for(int8_t i=0; i < NUM_AXIS; i++) {
  7321. current_position[i] = destination[i];
  7322. }
  7323. }
  7324. void prepare_arc_move(char isclockwise) {
  7325. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7326. // Trace the arc
  7327. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7328. // As far as the parser is concerned, the position is now == target. In reality the
  7329. // motion control system might still be processing the action and the real tool position
  7330. // in any intermediate location.
  7331. for(int8_t i=0; i < NUM_AXIS; i++) {
  7332. current_position[i] = destination[i];
  7333. }
  7334. previous_millis_cmd = _millis();
  7335. }
  7336. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7337. #if defined(FAN_PIN)
  7338. #if CONTROLLERFAN_PIN == FAN_PIN
  7339. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7340. #endif
  7341. #endif
  7342. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7343. unsigned long lastMotorCheck = 0;
  7344. void controllerFan()
  7345. {
  7346. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7347. {
  7348. lastMotorCheck = _millis();
  7349. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7350. #if EXTRUDERS > 2
  7351. || !READ(E2_ENABLE_PIN)
  7352. #endif
  7353. #if EXTRUDER > 1
  7354. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7355. || !READ(X2_ENABLE_PIN)
  7356. #endif
  7357. || !READ(E1_ENABLE_PIN)
  7358. #endif
  7359. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7360. {
  7361. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7362. }
  7363. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7364. {
  7365. digitalWrite(CONTROLLERFAN_PIN, 0);
  7366. analogWrite(CONTROLLERFAN_PIN, 0);
  7367. }
  7368. else
  7369. {
  7370. // allows digital or PWM fan output to be used (see M42 handling)
  7371. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7372. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7373. }
  7374. }
  7375. }
  7376. #endif
  7377. #ifdef TEMP_STAT_LEDS
  7378. static bool blue_led = false;
  7379. static bool red_led = false;
  7380. static uint32_t stat_update = 0;
  7381. void handle_status_leds(void) {
  7382. float max_temp = 0.0;
  7383. if(_millis() > stat_update) {
  7384. stat_update += 500; // Update every 0.5s
  7385. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7386. max_temp = max(max_temp, degHotend(cur_extruder));
  7387. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7388. }
  7389. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7390. max_temp = max(max_temp, degTargetBed());
  7391. max_temp = max(max_temp, degBed());
  7392. #endif
  7393. if((max_temp > 55.0) && (red_led == false)) {
  7394. digitalWrite(STAT_LED_RED, 1);
  7395. digitalWrite(STAT_LED_BLUE, 0);
  7396. red_led = true;
  7397. blue_led = false;
  7398. }
  7399. if((max_temp < 54.0) && (blue_led == false)) {
  7400. digitalWrite(STAT_LED_RED, 0);
  7401. digitalWrite(STAT_LED_BLUE, 1);
  7402. red_led = false;
  7403. blue_led = true;
  7404. }
  7405. }
  7406. }
  7407. #endif
  7408. #ifdef SAFETYTIMER
  7409. /**
  7410. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7411. *
  7412. * Full screen blocking notification message is shown after heater turning off.
  7413. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7414. * damage print.
  7415. *
  7416. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7417. */
  7418. static void handleSafetyTimer()
  7419. {
  7420. #if (EXTRUDERS > 1)
  7421. #error Implemented only for one extruder.
  7422. #endif //(EXTRUDERS > 1)
  7423. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7424. {
  7425. safetyTimer.stop();
  7426. }
  7427. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7428. {
  7429. safetyTimer.start();
  7430. }
  7431. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7432. {
  7433. setTargetBed(0);
  7434. setAllTargetHotends(0);
  7435. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7436. }
  7437. }
  7438. #endif //SAFETYTIMER
  7439. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7440. {
  7441. bool bInhibitFlag;
  7442. #ifdef FILAMENT_SENSOR
  7443. if (mmu_enabled == false)
  7444. {
  7445. //-// if (mcode_in_progress != 600) //M600 not in progress
  7446. #ifdef PAT9125
  7447. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7448. #endif // PAT9125
  7449. #ifdef IR_SENSOR
  7450. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7451. #endif // IR_SENSOR
  7452. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7453. {
  7454. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7455. {
  7456. if (fsensor_check_autoload())
  7457. {
  7458. #ifdef PAT9125
  7459. fsensor_autoload_check_stop();
  7460. #endif //PAT9125
  7461. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7462. if(0)
  7463. {
  7464. Sound_MakeCustom(50,1000,false);
  7465. loading_flag = true;
  7466. enquecommand_front_P((PSTR("M701")));
  7467. }
  7468. else
  7469. {
  7470. /*
  7471. lcd_update_enable(false);
  7472. show_preheat_nozzle_warning();
  7473. lcd_update_enable(true);
  7474. */
  7475. eFilamentAction=FilamentAction::AutoLoad;
  7476. bFilamentFirstRun=false;
  7477. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7478. {
  7479. bFilamentPreheatState=true;
  7480. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7481. menu_submenu(mFilamentItemForce);
  7482. }
  7483. else
  7484. {
  7485. menu_submenu(lcd_generic_preheat_menu);
  7486. lcd_timeoutToStatus.start();
  7487. }
  7488. }
  7489. }
  7490. }
  7491. else
  7492. {
  7493. #ifdef PAT9125
  7494. fsensor_autoload_check_stop();
  7495. #endif //PAT9125
  7496. fsensor_update();
  7497. }
  7498. }
  7499. }
  7500. #endif //FILAMENT_SENSOR
  7501. #ifdef SAFETYTIMER
  7502. handleSafetyTimer();
  7503. #endif //SAFETYTIMER
  7504. #if defined(KILL_PIN) && KILL_PIN > -1
  7505. static int killCount = 0; // make the inactivity button a bit less responsive
  7506. const int KILL_DELAY = 10000;
  7507. #endif
  7508. if(buflen < (BUFSIZE-1)){
  7509. get_command();
  7510. }
  7511. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7512. if(max_inactive_time)
  7513. kill(_n(""), 4);
  7514. if(stepper_inactive_time) {
  7515. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7516. {
  7517. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7518. disable_x();
  7519. disable_y();
  7520. disable_z();
  7521. disable_e0();
  7522. disable_e1();
  7523. disable_e2();
  7524. }
  7525. }
  7526. }
  7527. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7528. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7529. {
  7530. chdkActive = false;
  7531. WRITE(CHDK, LOW);
  7532. }
  7533. #endif
  7534. #if defined(KILL_PIN) && KILL_PIN > -1
  7535. // Check if the kill button was pressed and wait just in case it was an accidental
  7536. // key kill key press
  7537. // -------------------------------------------------------------------------------
  7538. if( 0 == READ(KILL_PIN) )
  7539. {
  7540. killCount++;
  7541. }
  7542. else if (killCount > 0)
  7543. {
  7544. killCount--;
  7545. }
  7546. // Exceeded threshold and we can confirm that it was not accidental
  7547. // KILL the machine
  7548. // ----------------------------------------------------------------
  7549. if ( killCount >= KILL_DELAY)
  7550. {
  7551. kill("", 5);
  7552. }
  7553. #endif
  7554. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7555. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7556. #endif
  7557. #ifdef EXTRUDER_RUNOUT_PREVENT
  7558. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7559. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7560. {
  7561. bool oldstatus=READ(E0_ENABLE_PIN);
  7562. enable_e0();
  7563. float oldepos=current_position[E_AXIS];
  7564. float oldedes=destination[E_AXIS];
  7565. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7566. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7567. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7568. current_position[E_AXIS]=oldepos;
  7569. destination[E_AXIS]=oldedes;
  7570. plan_set_e_position(oldepos);
  7571. previous_millis_cmd=_millis();
  7572. st_synchronize();
  7573. WRITE(E0_ENABLE_PIN,oldstatus);
  7574. }
  7575. #endif
  7576. #ifdef TEMP_STAT_LEDS
  7577. handle_status_leds();
  7578. #endif
  7579. check_axes_activity();
  7580. mmu_loop();
  7581. }
  7582. void kill(const char *full_screen_message, unsigned char id)
  7583. {
  7584. printf_P(_N("KILL: %d\n"), id);
  7585. //return;
  7586. cli(); // Stop interrupts
  7587. disable_heater();
  7588. disable_x();
  7589. // SERIAL_ECHOLNPGM("kill - disable Y");
  7590. disable_y();
  7591. disable_z();
  7592. disable_e0();
  7593. disable_e1();
  7594. disable_e2();
  7595. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7596. pinMode(PS_ON_PIN,INPUT);
  7597. #endif
  7598. SERIAL_ERROR_START;
  7599. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7600. if (full_screen_message != NULL) {
  7601. SERIAL_ERRORLNRPGM(full_screen_message);
  7602. lcd_display_message_fullscreen_P(full_screen_message);
  7603. } else {
  7604. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7605. }
  7606. // FMC small patch to update the LCD before ending
  7607. sei(); // enable interrupts
  7608. for ( int i=5; i--; lcd_update(0))
  7609. {
  7610. _delay(200);
  7611. }
  7612. cli(); // disable interrupts
  7613. suicide();
  7614. while(1)
  7615. {
  7616. #ifdef WATCHDOG
  7617. wdt_reset();
  7618. #endif //WATCHDOG
  7619. /* Intentionally left empty */
  7620. } // Wait for reset
  7621. }
  7622. void Stop()
  7623. {
  7624. disable_heater();
  7625. if(Stopped == false) {
  7626. Stopped = true;
  7627. lcd_print_stop();
  7628. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7629. SERIAL_ERROR_START;
  7630. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7631. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7632. }
  7633. }
  7634. bool IsStopped() { return Stopped; };
  7635. #ifdef FAST_PWM_FAN
  7636. void setPwmFrequency(uint8_t pin, int val)
  7637. {
  7638. val &= 0x07;
  7639. switch(digitalPinToTimer(pin))
  7640. {
  7641. #if defined(TCCR0A)
  7642. case TIMER0A:
  7643. case TIMER0B:
  7644. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7645. // TCCR0B |= val;
  7646. break;
  7647. #endif
  7648. #if defined(TCCR1A)
  7649. case TIMER1A:
  7650. case TIMER1B:
  7651. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7652. // TCCR1B |= val;
  7653. break;
  7654. #endif
  7655. #if defined(TCCR2)
  7656. case TIMER2:
  7657. case TIMER2:
  7658. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7659. TCCR2 |= val;
  7660. break;
  7661. #endif
  7662. #if defined(TCCR2A)
  7663. case TIMER2A:
  7664. case TIMER2B:
  7665. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7666. TCCR2B |= val;
  7667. break;
  7668. #endif
  7669. #if defined(TCCR3A)
  7670. case TIMER3A:
  7671. case TIMER3B:
  7672. case TIMER3C:
  7673. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7674. TCCR3B |= val;
  7675. break;
  7676. #endif
  7677. #if defined(TCCR4A)
  7678. case TIMER4A:
  7679. case TIMER4B:
  7680. case TIMER4C:
  7681. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7682. TCCR4B |= val;
  7683. break;
  7684. #endif
  7685. #if defined(TCCR5A)
  7686. case TIMER5A:
  7687. case TIMER5B:
  7688. case TIMER5C:
  7689. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7690. TCCR5B |= val;
  7691. break;
  7692. #endif
  7693. }
  7694. }
  7695. #endif //FAST_PWM_FAN
  7696. //! @brief Get and validate extruder number
  7697. //!
  7698. //! If it is not specified, active_extruder is returned in parameter extruder.
  7699. //! @param [in] code M code number
  7700. //! @param [out] extruder
  7701. //! @return error
  7702. //! @retval true Invalid extruder specified in T code
  7703. //! @retval false Valid extruder specified in T code, or not specifiead
  7704. bool setTargetedHotend(int code, uint8_t &extruder)
  7705. {
  7706. extruder = active_extruder;
  7707. if(code_seen('T')) {
  7708. extruder = code_value();
  7709. if(extruder >= EXTRUDERS) {
  7710. SERIAL_ECHO_START;
  7711. switch(code){
  7712. case 104:
  7713. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7714. break;
  7715. case 105:
  7716. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7717. break;
  7718. case 109:
  7719. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7720. break;
  7721. case 218:
  7722. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7723. break;
  7724. case 221:
  7725. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7726. break;
  7727. }
  7728. SERIAL_PROTOCOLLN((int)extruder);
  7729. return true;
  7730. }
  7731. }
  7732. return false;
  7733. }
  7734. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7735. {
  7736. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7737. {
  7738. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7739. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7740. }
  7741. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7742. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7743. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7744. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7745. total_filament_used = 0;
  7746. }
  7747. float calculate_extruder_multiplier(float diameter) {
  7748. float out = 1.f;
  7749. if (cs.volumetric_enabled && diameter > 0.f) {
  7750. float area = M_PI * diameter * diameter * 0.25;
  7751. out = 1.f / area;
  7752. }
  7753. if (extrudemultiply != 100)
  7754. out *= float(extrudemultiply) * 0.01f;
  7755. return out;
  7756. }
  7757. void calculate_extruder_multipliers() {
  7758. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7759. #if EXTRUDERS > 1
  7760. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7761. #if EXTRUDERS > 2
  7762. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7763. #endif
  7764. #endif
  7765. }
  7766. void delay_keep_alive(unsigned int ms)
  7767. {
  7768. for (;;) {
  7769. manage_heater();
  7770. // Manage inactivity, but don't disable steppers on timeout.
  7771. manage_inactivity(true);
  7772. lcd_update(0);
  7773. if (ms == 0)
  7774. break;
  7775. else if (ms >= 50) {
  7776. _delay(50);
  7777. ms -= 50;
  7778. } else {
  7779. _delay(ms);
  7780. ms = 0;
  7781. }
  7782. }
  7783. }
  7784. static void wait_for_heater(long codenum, uint8_t extruder) {
  7785. #ifdef TEMP_RESIDENCY_TIME
  7786. long residencyStart;
  7787. residencyStart = -1;
  7788. /* continue to loop until we have reached the target temp
  7789. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7790. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7791. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7792. #else
  7793. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7794. #endif //TEMP_RESIDENCY_TIME
  7795. if ((_millis() - codenum) > 1000UL)
  7796. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7797. if (!farm_mode) {
  7798. SERIAL_PROTOCOLPGM("T:");
  7799. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7800. SERIAL_PROTOCOLPGM(" E:");
  7801. SERIAL_PROTOCOL((int)extruder);
  7802. #ifdef TEMP_RESIDENCY_TIME
  7803. SERIAL_PROTOCOLPGM(" W:");
  7804. if (residencyStart > -1)
  7805. {
  7806. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7807. SERIAL_PROTOCOLLN(codenum);
  7808. }
  7809. else
  7810. {
  7811. SERIAL_PROTOCOLLN("?");
  7812. }
  7813. }
  7814. #else
  7815. SERIAL_PROTOCOLLN("");
  7816. #endif
  7817. codenum = _millis();
  7818. }
  7819. manage_heater();
  7820. manage_inactivity(true); //do not disable steppers
  7821. lcd_update(0);
  7822. #ifdef TEMP_RESIDENCY_TIME
  7823. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7824. or when current temp falls outside the hysteresis after target temp was reached */
  7825. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7826. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7827. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7828. {
  7829. residencyStart = _millis();
  7830. }
  7831. #endif //TEMP_RESIDENCY_TIME
  7832. }
  7833. }
  7834. void check_babystep()
  7835. {
  7836. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7837. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7838. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7839. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7840. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7841. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7842. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7843. babystep_z);
  7844. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7845. lcd_update_enable(true);
  7846. }
  7847. }
  7848. #ifdef HEATBED_ANALYSIS
  7849. void d_setup()
  7850. {
  7851. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7852. pinMode(D_DATA, INPUT_PULLUP);
  7853. pinMode(D_REQUIRE, OUTPUT);
  7854. digitalWrite(D_REQUIRE, HIGH);
  7855. }
  7856. float d_ReadData()
  7857. {
  7858. int digit[13];
  7859. String mergeOutput;
  7860. float output;
  7861. digitalWrite(D_REQUIRE, HIGH);
  7862. for (int i = 0; i<13; i++)
  7863. {
  7864. for (int j = 0; j < 4; j++)
  7865. {
  7866. while (digitalRead(D_DATACLOCK) == LOW) {}
  7867. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7868. bitWrite(digit[i], j, digitalRead(D_DATA));
  7869. }
  7870. }
  7871. digitalWrite(D_REQUIRE, LOW);
  7872. mergeOutput = "";
  7873. output = 0;
  7874. for (int r = 5; r <= 10; r++) //Merge digits
  7875. {
  7876. mergeOutput += digit[r];
  7877. }
  7878. output = mergeOutput.toFloat();
  7879. if (digit[4] == 8) //Handle sign
  7880. {
  7881. output *= -1;
  7882. }
  7883. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7884. {
  7885. output /= 10;
  7886. }
  7887. return output;
  7888. }
  7889. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7890. int t1 = 0;
  7891. int t_delay = 0;
  7892. int digit[13];
  7893. int m;
  7894. char str[3];
  7895. //String mergeOutput;
  7896. char mergeOutput[15];
  7897. float output;
  7898. int mesh_point = 0; //index number of calibration point
  7899. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7900. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7901. float mesh_home_z_search = 4;
  7902. float measure_z_height = 0.2f;
  7903. float row[x_points_num];
  7904. int ix = 0;
  7905. int iy = 0;
  7906. const char* filename_wldsd = "mesh.txt";
  7907. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7908. char numb_wldsd[8]; // (" -A.BCD" + null)
  7909. #ifdef MICROMETER_LOGGING
  7910. d_setup();
  7911. #endif //MICROMETER_LOGGING
  7912. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7913. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7914. unsigned int custom_message_type_old = custom_message_type;
  7915. unsigned int custom_message_state_old = custom_message_state;
  7916. custom_message_type = CustomMsg::MeshBedLeveling;
  7917. custom_message_state = (x_points_num * y_points_num) + 10;
  7918. lcd_update(1);
  7919. //mbl.reset();
  7920. babystep_undo();
  7921. card.openFile(filename_wldsd, false);
  7922. /*destination[Z_AXIS] = mesh_home_z_search;
  7923. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7925. for(int8_t i=0; i < NUM_AXIS; i++) {
  7926. current_position[i] = destination[i];
  7927. }
  7928. st_synchronize();
  7929. */
  7930. destination[Z_AXIS] = measure_z_height;
  7931. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7932. for(int8_t i=0; i < NUM_AXIS; i++) {
  7933. current_position[i] = destination[i];
  7934. }
  7935. st_synchronize();
  7936. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7937. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7938. SERIAL_PROTOCOL(x_points_num);
  7939. SERIAL_PROTOCOLPGM(",");
  7940. SERIAL_PROTOCOL(y_points_num);
  7941. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7942. SERIAL_PROTOCOL(mesh_home_z_search);
  7943. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7944. SERIAL_PROTOCOL(x_dimension);
  7945. SERIAL_PROTOCOLPGM(",");
  7946. SERIAL_PROTOCOL(y_dimension);
  7947. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7948. while (mesh_point != x_points_num * y_points_num) {
  7949. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7950. iy = mesh_point / x_points_num;
  7951. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7952. float z0 = 0.f;
  7953. /*destination[Z_AXIS] = mesh_home_z_search;
  7954. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7955. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7956. for(int8_t i=0; i < NUM_AXIS; i++) {
  7957. current_position[i] = destination[i];
  7958. }
  7959. st_synchronize();*/
  7960. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7961. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7962. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7963. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7964. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7965. for(int8_t i=0; i < NUM_AXIS; i++) {
  7966. current_position[i] = destination[i];
  7967. }
  7968. st_synchronize();
  7969. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7970. delay_keep_alive(1000);
  7971. #ifdef MICROMETER_LOGGING
  7972. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7973. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7974. //strcat(data_wldsd, numb_wldsd);
  7975. //MYSERIAL.println(data_wldsd);
  7976. //delay(1000);
  7977. //delay(3000);
  7978. //t1 = millis();
  7979. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7980. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7981. memset(digit, 0, sizeof(digit));
  7982. //cli();
  7983. digitalWrite(D_REQUIRE, LOW);
  7984. for (int i = 0; i<13; i++)
  7985. {
  7986. //t1 = millis();
  7987. for (int j = 0; j < 4; j++)
  7988. {
  7989. while (digitalRead(D_DATACLOCK) == LOW) {}
  7990. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7991. //printf_P(PSTR("Done %d\n"), j);
  7992. bitWrite(digit[i], j, digitalRead(D_DATA));
  7993. }
  7994. //t_delay = (millis() - t1);
  7995. //SERIAL_PROTOCOLPGM(" ");
  7996. //SERIAL_PROTOCOL_F(t_delay, 5);
  7997. //SERIAL_PROTOCOLPGM(" ");
  7998. }
  7999. //sei();
  8000. digitalWrite(D_REQUIRE, HIGH);
  8001. mergeOutput[0] = '\0';
  8002. output = 0;
  8003. for (int r = 5; r <= 10; r++) //Merge digits
  8004. {
  8005. sprintf(str, "%d", digit[r]);
  8006. strcat(mergeOutput, str);
  8007. }
  8008. output = atof(mergeOutput);
  8009. if (digit[4] == 8) //Handle sign
  8010. {
  8011. output *= -1;
  8012. }
  8013. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8014. {
  8015. output *= 0.1;
  8016. }
  8017. //output = d_ReadData();
  8018. //row[ix] = current_position[Z_AXIS];
  8019. //row[ix] = d_ReadData();
  8020. row[ix] = output;
  8021. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8022. memset(data_wldsd, 0, sizeof(data_wldsd));
  8023. for (int i = 0; i < x_points_num; i++) {
  8024. SERIAL_PROTOCOLPGM(" ");
  8025. SERIAL_PROTOCOL_F(row[i], 5);
  8026. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8027. dtostrf(row[i], 7, 3, numb_wldsd);
  8028. strcat(data_wldsd, numb_wldsd);
  8029. }
  8030. card.write_command(data_wldsd);
  8031. SERIAL_PROTOCOLPGM("\n");
  8032. }
  8033. custom_message_state--;
  8034. mesh_point++;
  8035. lcd_update(1);
  8036. }
  8037. #endif //MICROMETER_LOGGING
  8038. card.closefile();
  8039. //clean_up_after_endstop_move(l_feedmultiply);
  8040. }
  8041. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8042. int t1 = 0;
  8043. int t_delay = 0;
  8044. int digit[13];
  8045. int m;
  8046. char str[3];
  8047. //String mergeOutput;
  8048. char mergeOutput[15];
  8049. float output;
  8050. int mesh_point = 0; //index number of calibration point
  8051. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8052. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8053. float mesh_home_z_search = 4;
  8054. float row[x_points_num];
  8055. int ix = 0;
  8056. int iy = 0;
  8057. const char* filename_wldsd = "wldsd.txt";
  8058. char data_wldsd[70];
  8059. char numb_wldsd[10];
  8060. d_setup();
  8061. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8062. // We don't know where we are! HOME!
  8063. // Push the commands to the front of the message queue in the reverse order!
  8064. // There shall be always enough space reserved for these commands.
  8065. repeatcommand_front(); // repeat G80 with all its parameters
  8066. enquecommand_front_P((PSTR("G28 W0")));
  8067. enquecommand_front_P((PSTR("G1 Z5")));
  8068. return;
  8069. }
  8070. unsigned int custom_message_type_old = custom_message_type;
  8071. unsigned int custom_message_state_old = custom_message_state;
  8072. custom_message_type = CustomMsg::MeshBedLeveling;
  8073. custom_message_state = (x_points_num * y_points_num) + 10;
  8074. lcd_update(1);
  8075. mbl.reset();
  8076. babystep_undo();
  8077. card.openFile(filename_wldsd, false);
  8078. current_position[Z_AXIS] = mesh_home_z_search;
  8079. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8080. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8081. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8082. int l_feedmultiply = setup_for_endstop_move(false);
  8083. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8084. SERIAL_PROTOCOL(x_points_num);
  8085. SERIAL_PROTOCOLPGM(",");
  8086. SERIAL_PROTOCOL(y_points_num);
  8087. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8088. SERIAL_PROTOCOL(mesh_home_z_search);
  8089. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8090. SERIAL_PROTOCOL(x_dimension);
  8091. SERIAL_PROTOCOLPGM(",");
  8092. SERIAL_PROTOCOL(y_dimension);
  8093. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8094. while (mesh_point != x_points_num * y_points_num) {
  8095. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8096. iy = mesh_point / x_points_num;
  8097. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8098. float z0 = 0.f;
  8099. current_position[Z_AXIS] = mesh_home_z_search;
  8100. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8101. st_synchronize();
  8102. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8103. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8104. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8105. st_synchronize();
  8106. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8107. break;
  8108. card.closefile();
  8109. }
  8110. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8111. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8112. //strcat(data_wldsd, numb_wldsd);
  8113. //MYSERIAL.println(data_wldsd);
  8114. //_delay(1000);
  8115. //_delay(3000);
  8116. //t1 = _millis();
  8117. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8118. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8119. memset(digit, 0, sizeof(digit));
  8120. //cli();
  8121. digitalWrite(D_REQUIRE, LOW);
  8122. for (int i = 0; i<13; i++)
  8123. {
  8124. //t1 = _millis();
  8125. for (int j = 0; j < 4; j++)
  8126. {
  8127. while (digitalRead(D_DATACLOCK) == LOW) {}
  8128. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8129. bitWrite(digit[i], j, digitalRead(D_DATA));
  8130. }
  8131. //t_delay = (_millis() - t1);
  8132. //SERIAL_PROTOCOLPGM(" ");
  8133. //SERIAL_PROTOCOL_F(t_delay, 5);
  8134. //SERIAL_PROTOCOLPGM(" ");
  8135. }
  8136. //sei();
  8137. digitalWrite(D_REQUIRE, HIGH);
  8138. mergeOutput[0] = '\0';
  8139. output = 0;
  8140. for (int r = 5; r <= 10; r++) //Merge digits
  8141. {
  8142. sprintf(str, "%d", digit[r]);
  8143. strcat(mergeOutput, str);
  8144. }
  8145. output = atof(mergeOutput);
  8146. if (digit[4] == 8) //Handle sign
  8147. {
  8148. output *= -1;
  8149. }
  8150. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8151. {
  8152. output *= 0.1;
  8153. }
  8154. //output = d_ReadData();
  8155. //row[ix] = current_position[Z_AXIS];
  8156. memset(data_wldsd, 0, sizeof(data_wldsd));
  8157. for (int i = 0; i <3; i++) {
  8158. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8159. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8160. strcat(data_wldsd, numb_wldsd);
  8161. strcat(data_wldsd, ";");
  8162. }
  8163. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8164. dtostrf(output, 8, 5, numb_wldsd);
  8165. strcat(data_wldsd, numb_wldsd);
  8166. //strcat(data_wldsd, ";");
  8167. card.write_command(data_wldsd);
  8168. //row[ix] = d_ReadData();
  8169. row[ix] = output; // current_position[Z_AXIS];
  8170. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8171. for (int i = 0; i < x_points_num; i++) {
  8172. SERIAL_PROTOCOLPGM(" ");
  8173. SERIAL_PROTOCOL_F(row[i], 5);
  8174. }
  8175. SERIAL_PROTOCOLPGM("\n");
  8176. }
  8177. custom_message_state--;
  8178. mesh_point++;
  8179. lcd_update(1);
  8180. }
  8181. card.closefile();
  8182. clean_up_after_endstop_move(l_feedmultiply);
  8183. }
  8184. #endif //HEATBED_ANALYSIS
  8185. #ifndef PINDA_THERMISTOR
  8186. static void temp_compensation_start() {
  8187. custom_message_type = CustomMsg::TempCompPreheat;
  8188. custom_message_state = PINDA_HEAT_T + 1;
  8189. lcd_update(2);
  8190. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8191. current_position[E_AXIS] -= default_retraction;
  8192. }
  8193. plan_buffer_line_curposXYZE(400, active_extruder);
  8194. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8195. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8196. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8197. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8198. st_synchronize();
  8199. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8200. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8201. delay_keep_alive(1000);
  8202. custom_message_state = PINDA_HEAT_T - i;
  8203. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8204. else lcd_update(1);
  8205. }
  8206. custom_message_type = CustomMsg::Status;
  8207. custom_message_state = 0;
  8208. }
  8209. static void temp_compensation_apply() {
  8210. int i_add;
  8211. int z_shift = 0;
  8212. float z_shift_mm;
  8213. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8214. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8215. i_add = (target_temperature_bed - 60) / 10;
  8216. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8217. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8218. }else {
  8219. //interpolation
  8220. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8221. }
  8222. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8223. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8224. st_synchronize();
  8225. plan_set_z_position(current_position[Z_AXIS]);
  8226. }
  8227. else {
  8228. //we have no temp compensation data
  8229. }
  8230. }
  8231. #endif //ndef PINDA_THERMISTOR
  8232. float temp_comp_interpolation(float inp_temperature) {
  8233. //cubic spline interpolation
  8234. int n, i, j;
  8235. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8236. int shift[10];
  8237. int temp_C[10];
  8238. n = 6; //number of measured points
  8239. shift[0] = 0;
  8240. for (i = 0; i < n; i++) {
  8241. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8242. temp_C[i] = 50 + i * 10; //temperature in C
  8243. #ifdef PINDA_THERMISTOR
  8244. temp_C[i] = 35 + i * 5; //temperature in C
  8245. #else
  8246. temp_C[i] = 50 + i * 10; //temperature in C
  8247. #endif
  8248. x[i] = (float)temp_C[i];
  8249. f[i] = (float)shift[i];
  8250. }
  8251. if (inp_temperature < x[0]) return 0;
  8252. for (i = n - 1; i>0; i--) {
  8253. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8254. h[i - 1] = x[i] - x[i - 1];
  8255. }
  8256. //*********** formation of h, s , f matrix **************
  8257. for (i = 1; i<n - 1; i++) {
  8258. m[i][i] = 2 * (h[i - 1] + h[i]);
  8259. if (i != 1) {
  8260. m[i][i - 1] = h[i - 1];
  8261. m[i - 1][i] = h[i - 1];
  8262. }
  8263. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8264. }
  8265. //*********** forward elimination **************
  8266. for (i = 1; i<n - 2; i++) {
  8267. temp = (m[i + 1][i] / m[i][i]);
  8268. for (j = 1; j <= n - 1; j++)
  8269. m[i + 1][j] -= temp*m[i][j];
  8270. }
  8271. //*********** backward substitution *********
  8272. for (i = n - 2; i>0; i--) {
  8273. sum = 0;
  8274. for (j = i; j <= n - 2; j++)
  8275. sum += m[i][j] * s[j];
  8276. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8277. }
  8278. for (i = 0; i<n - 1; i++)
  8279. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8280. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8281. b = s[i] / 2;
  8282. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8283. d = f[i];
  8284. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8285. }
  8286. return sum;
  8287. }
  8288. #ifdef PINDA_THERMISTOR
  8289. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8290. {
  8291. if (!temp_cal_active) return 0;
  8292. if (!calibration_status_pinda()) return 0;
  8293. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8294. }
  8295. #endif //PINDA_THERMISTOR
  8296. void long_pause() //long pause print
  8297. {
  8298. st_synchronize();
  8299. start_pause_print = _millis();
  8300. //retract
  8301. current_position[E_AXIS] -= default_retraction;
  8302. plan_buffer_line_curposXYZE(400, active_extruder);
  8303. //lift z
  8304. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8305. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8306. plan_buffer_line_curposXYZE(15, active_extruder);
  8307. //Move XY to side
  8308. current_position[X_AXIS] = X_PAUSE_POS;
  8309. current_position[Y_AXIS] = Y_PAUSE_POS;
  8310. plan_buffer_line_curposXYZE(50, active_extruder);
  8311. // Turn off the print fan
  8312. fanSpeed = 0;
  8313. st_synchronize();
  8314. }
  8315. void serialecho_temperatures() {
  8316. float tt = degHotend(active_extruder);
  8317. SERIAL_PROTOCOLPGM("T:");
  8318. SERIAL_PROTOCOL(tt);
  8319. SERIAL_PROTOCOLPGM(" E:");
  8320. SERIAL_PROTOCOL((int)active_extruder);
  8321. SERIAL_PROTOCOLPGM(" B:");
  8322. SERIAL_PROTOCOL_F(degBed(), 1);
  8323. SERIAL_PROTOCOLLN("");
  8324. }
  8325. #ifdef UVLO_SUPPORT
  8326. void uvlo_()
  8327. {
  8328. unsigned long time_start = _millis();
  8329. bool sd_print = card.sdprinting;
  8330. // Conserve power as soon as possible.
  8331. disable_x();
  8332. disable_y();
  8333. #ifdef TMC2130
  8334. tmc2130_set_current_h(Z_AXIS, 20);
  8335. tmc2130_set_current_r(Z_AXIS, 20);
  8336. tmc2130_set_current_h(E_AXIS, 20);
  8337. tmc2130_set_current_r(E_AXIS, 20);
  8338. #endif //TMC2130
  8339. // Indicate that the interrupt has been triggered.
  8340. // SERIAL_ECHOLNPGM("UVLO");
  8341. // Read out the current Z motor microstep counter. This will be later used
  8342. // for reaching the zero full step before powering off.
  8343. uint16_t z_microsteps = 0;
  8344. #ifdef TMC2130
  8345. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8346. #endif //TMC2130
  8347. // Calculate the file position, from which to resume this print.
  8348. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8349. {
  8350. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8351. sd_position -= sdlen_planner;
  8352. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8353. sd_position -= sdlen_cmdqueue;
  8354. if (sd_position < 0) sd_position = 0;
  8355. }
  8356. // Backup the feedrate in mm/min.
  8357. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8358. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8359. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8360. // are in action.
  8361. planner_abort_hard();
  8362. // Store the current extruder position.
  8363. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8364. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8365. // Clean the input command queue.
  8366. cmdqueue_reset();
  8367. card.sdprinting = false;
  8368. // card.closefile();
  8369. // Enable stepper driver interrupt to move Z axis.
  8370. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8371. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8372. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8373. sei();
  8374. plan_buffer_line(
  8375. current_position[X_AXIS],
  8376. current_position[Y_AXIS],
  8377. current_position[Z_AXIS],
  8378. current_position[E_AXIS] - default_retraction,
  8379. 95, active_extruder);
  8380. st_synchronize();
  8381. disable_e0();
  8382. plan_buffer_line(
  8383. current_position[X_AXIS],
  8384. current_position[Y_AXIS],
  8385. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8386. current_position[E_AXIS] - default_retraction,
  8387. 40, active_extruder);
  8388. st_synchronize();
  8389. disable_e0();
  8390. plan_buffer_line(
  8391. current_position[X_AXIS],
  8392. current_position[Y_AXIS],
  8393. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8394. current_position[E_AXIS] - default_retraction,
  8395. 40, active_extruder);
  8396. st_synchronize();
  8397. disable_e0();
  8398. // Move Z up to the next 0th full step.
  8399. // Write the file position.
  8400. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8401. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8402. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8403. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8404. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8405. // Scale the z value to 1u resolution.
  8406. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8407. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8408. }
  8409. // Read out the current Z motor microstep counter. This will be later used
  8410. // for reaching the zero full step before powering off.
  8411. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8412. // Store the current position.
  8413. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8414. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8415. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8416. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8417. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8418. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8419. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8420. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8421. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8422. #if EXTRUDERS > 1
  8423. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8424. #if EXTRUDERS > 2
  8425. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8426. #endif
  8427. #endif
  8428. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8429. // Finaly store the "power outage" flag.
  8430. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8431. st_synchronize();
  8432. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8433. // Increment power failure counter
  8434. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8435. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8436. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8437. #if 0
  8438. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8439. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8440. plan_buffer_line_curposXYZE(500, active_extruder);
  8441. st_synchronize();
  8442. #endif
  8443. wdt_enable(WDTO_500MS);
  8444. WRITE(BEEPER,HIGH);
  8445. while(1)
  8446. ;
  8447. }
  8448. void uvlo_tiny()
  8449. {
  8450. uint16_t z_microsteps=0;
  8451. // Conserve power as soon as possible.
  8452. disable_x();
  8453. disable_y();
  8454. disable_e0();
  8455. #ifdef TMC2130
  8456. tmc2130_set_current_h(Z_AXIS, 20);
  8457. tmc2130_set_current_r(Z_AXIS, 20);
  8458. #endif //TMC2130
  8459. // Read out the current Z motor microstep counter
  8460. #ifdef TMC2130
  8461. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8462. #endif //TMC2130
  8463. planner_abort_hard();
  8464. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8465. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8466. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8467. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8468. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8469. }
  8470. //after multiple power panics current Z axis is unknow
  8471. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8472. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8473. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8474. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8475. }
  8476. // Finaly store the "power outage" flag.
  8477. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8478. // Increment power failure counter
  8479. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8480. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8481. wdt_enable(WDTO_500MS);
  8482. WRITE(BEEPER,HIGH);
  8483. while(1)
  8484. ;
  8485. }
  8486. #endif //UVLO_SUPPORT
  8487. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8488. void setup_fan_interrupt() {
  8489. //INT7
  8490. DDRE &= ~(1 << 7); //input pin
  8491. PORTE &= ~(1 << 7); //no internal pull-up
  8492. //start with sensing rising edge
  8493. EICRB &= ~(1 << 6);
  8494. EICRB |= (1 << 7);
  8495. //enable INT7 interrupt
  8496. EIMSK |= (1 << 7);
  8497. }
  8498. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8499. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8500. ISR(INT7_vect) {
  8501. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8502. #ifdef FAN_SOFT_PWM
  8503. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8504. #else //FAN_SOFT_PWM
  8505. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8506. #endif //FAN_SOFT_PWM
  8507. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8508. t_fan_rising_edge = millis_nc();
  8509. }
  8510. else { //interrupt was triggered by falling edge
  8511. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8512. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8513. }
  8514. }
  8515. EICRB ^= (1 << 6); //change edge
  8516. }
  8517. #endif
  8518. #ifdef UVLO_SUPPORT
  8519. void setup_uvlo_interrupt() {
  8520. DDRE &= ~(1 << 4); //input pin
  8521. PORTE &= ~(1 << 4); //no internal pull-up
  8522. //sensing falling edge
  8523. EICRB |= (1 << 0);
  8524. EICRB &= ~(1 << 1);
  8525. //enable INT4 interrupt
  8526. EIMSK |= (1 << 4);
  8527. }
  8528. ISR(INT4_vect) {
  8529. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8530. SERIAL_ECHOLNPGM("INT4");
  8531. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8532. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8533. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8534. }
  8535. void recover_print(uint8_t automatic) {
  8536. char cmd[30];
  8537. lcd_update_enable(true);
  8538. lcd_update(2);
  8539. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8540. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8541. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8542. // Lift the print head, so one may remove the excess priming material.
  8543. if(!bTiny&&(current_position[Z_AXIS]<25))
  8544. enquecommand_P(PSTR("G1 Z25 F800"));
  8545. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8546. enquecommand_P(PSTR("G28 X Y"));
  8547. // Set the target bed and nozzle temperatures and wait.
  8548. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8549. enquecommand(cmd);
  8550. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8551. enquecommand(cmd);
  8552. enquecommand_P(PSTR("M83")); //E axis relative mode
  8553. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8554. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8555. if(automatic == 0){
  8556. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8557. }
  8558. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8559. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8560. // Restart the print.
  8561. restore_print_from_eeprom();
  8562. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8563. }
  8564. void recover_machine_state_after_power_panic(bool bTiny)
  8565. {
  8566. char cmd[30];
  8567. // 1) Recover the logical cordinates at the time of the power panic.
  8568. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8569. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8570. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8571. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8572. mbl.active = false;
  8573. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8574. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8575. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8576. // Scale the z value to 10u resolution.
  8577. int16_t v;
  8578. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8579. if (v != 0)
  8580. mbl.active = true;
  8581. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8582. }
  8583. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8584. // The current position after power panic is moved to the next closest 0th full step.
  8585. if(bTiny){
  8586. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8587. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8588. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8589. //after multiple power panics the print is slightly in the air so get it little bit down.
  8590. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8591. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8592. }
  8593. else{
  8594. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8595. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8596. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8597. }
  8598. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8599. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8600. sprintf_P(cmd, PSTR("G92 E"));
  8601. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8602. enquecommand(cmd);
  8603. }
  8604. memcpy(destination, current_position, sizeof(destination));
  8605. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8606. print_world_coordinates();
  8607. // 3) Initialize the logical to physical coordinate system transformation.
  8608. world2machine_initialize();
  8609. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8610. // print_mesh_bed_leveling_table();
  8611. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8612. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8613. babystep_load();
  8614. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8616. // 6) Power up the motors, mark their positions as known.
  8617. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8618. axis_known_position[X_AXIS] = true; enable_x();
  8619. axis_known_position[Y_AXIS] = true; enable_y();
  8620. axis_known_position[Z_AXIS] = true; enable_z();
  8621. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8622. print_physical_coordinates();
  8623. // 7) Recover the target temperatures.
  8624. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8625. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8626. // 8) Recover extruder multipilers
  8627. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8628. #if EXTRUDERS > 1
  8629. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8630. #if EXTRUDERS > 2
  8631. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8632. #endif
  8633. #endif
  8634. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8635. }
  8636. void restore_print_from_eeprom() {
  8637. int feedrate_rec;
  8638. uint8_t fan_speed_rec;
  8639. char cmd[30];
  8640. char filename[13];
  8641. uint8_t depth = 0;
  8642. char dir_name[9];
  8643. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8644. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8645. SERIAL_ECHOPGM("Feedrate:");
  8646. MYSERIAL.println(feedrate_rec);
  8647. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8648. MYSERIAL.println(int(depth));
  8649. for (int i = 0; i < depth; i++) {
  8650. for (int j = 0; j < 8; j++) {
  8651. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8652. }
  8653. dir_name[8] = '\0';
  8654. MYSERIAL.println(dir_name);
  8655. strcpy(dir_names[i], dir_name);
  8656. card.chdir(dir_name);
  8657. }
  8658. for (int i = 0; i < 8; i++) {
  8659. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8660. }
  8661. filename[8] = '\0';
  8662. MYSERIAL.print(filename);
  8663. strcat_P(filename, PSTR(".gco"));
  8664. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8665. enquecommand(cmd);
  8666. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8667. SERIAL_ECHOPGM("Position read from eeprom:");
  8668. MYSERIAL.println(position);
  8669. // E axis relative mode.
  8670. enquecommand_P(PSTR("M83"));
  8671. // Move to the XY print position in logical coordinates, where the print has been killed.
  8672. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8673. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8674. strcat_P(cmd, PSTR(" F2000"));
  8675. enquecommand(cmd);
  8676. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8677. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8678. // Move the Z axis down to the print, in logical coordinates.
  8679. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8680. enquecommand(cmd);
  8681. // Unretract.
  8682. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8683. // Set the feedrate saved at the power panic.
  8684. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8685. enquecommand(cmd);
  8686. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8687. {
  8688. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8689. }
  8690. // Set the fan speed saved at the power panic.
  8691. strcpy_P(cmd, PSTR("M106 S"));
  8692. strcat(cmd, itostr3(int(fan_speed_rec)));
  8693. enquecommand(cmd);
  8694. // Set a position in the file.
  8695. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8696. enquecommand(cmd);
  8697. enquecommand_P(PSTR("G4 S0"));
  8698. enquecommand_P(PSTR("PRUSA uvlo"));
  8699. }
  8700. #endif //UVLO_SUPPORT
  8701. //! @brief Immediately stop print moves
  8702. //!
  8703. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8704. //! If printing from sd card, position in file is saved.
  8705. //! If printing from USB, line number is saved.
  8706. //!
  8707. //! @param z_move
  8708. //! @param e_move
  8709. void stop_and_save_print_to_ram(float z_move, float e_move)
  8710. {
  8711. if (saved_printing) return;
  8712. #if 0
  8713. unsigned char nplanner_blocks;
  8714. #endif
  8715. unsigned char nlines;
  8716. uint16_t sdlen_planner;
  8717. uint16_t sdlen_cmdqueue;
  8718. cli();
  8719. if (card.sdprinting) {
  8720. #if 0
  8721. nplanner_blocks = number_of_blocks();
  8722. #endif
  8723. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8724. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8725. saved_sdpos -= sdlen_planner;
  8726. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8727. saved_sdpos -= sdlen_cmdqueue;
  8728. saved_printing_type = PRINTING_TYPE_SD;
  8729. }
  8730. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8731. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8732. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8733. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8734. saved_sdpos -= nlines;
  8735. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8736. saved_printing_type = PRINTING_TYPE_USB;
  8737. }
  8738. else {
  8739. saved_printing_type = PRINTING_TYPE_NONE;
  8740. //not sd printing nor usb printing
  8741. }
  8742. #if 0
  8743. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8744. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8745. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8746. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8747. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8748. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8749. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8750. {
  8751. card.setIndex(saved_sdpos);
  8752. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8753. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8754. MYSERIAL.print(char(card.get()));
  8755. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8756. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8757. MYSERIAL.print(char(card.get()));
  8758. SERIAL_ECHOLNPGM("End of command buffer");
  8759. }
  8760. {
  8761. // Print the content of the planner buffer, line by line:
  8762. card.setIndex(saved_sdpos);
  8763. int8_t iline = 0;
  8764. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8765. SERIAL_ECHOPGM("Planner line (from file): ");
  8766. MYSERIAL.print(int(iline), DEC);
  8767. SERIAL_ECHOPGM(", length: ");
  8768. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8769. SERIAL_ECHOPGM(", steps: (");
  8770. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8771. SERIAL_ECHOPGM(",");
  8772. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8773. SERIAL_ECHOPGM(",");
  8774. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8775. SERIAL_ECHOPGM(",");
  8776. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8777. SERIAL_ECHOPGM("), events: ");
  8778. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8779. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8780. MYSERIAL.print(char(card.get()));
  8781. }
  8782. }
  8783. {
  8784. // Print the content of the command buffer, line by line:
  8785. int8_t iline = 0;
  8786. union {
  8787. struct {
  8788. char lo;
  8789. char hi;
  8790. } lohi;
  8791. uint16_t value;
  8792. } sdlen_single;
  8793. int _bufindr = bufindr;
  8794. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8795. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8796. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8797. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8798. }
  8799. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8800. MYSERIAL.print(int(iline), DEC);
  8801. SERIAL_ECHOPGM(", type: ");
  8802. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8803. SERIAL_ECHOPGM(", len: ");
  8804. MYSERIAL.println(sdlen_single.value, DEC);
  8805. // Print the content of the buffer line.
  8806. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8807. SERIAL_ECHOPGM("Buffer line (from file): ");
  8808. MYSERIAL.println(int(iline), DEC);
  8809. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8810. MYSERIAL.print(char(card.get()));
  8811. if (-- _buflen == 0)
  8812. break;
  8813. // First skip the current command ID and iterate up to the end of the string.
  8814. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8815. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8816. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8817. // If the end of the buffer was empty,
  8818. if (_bufindr == sizeof(cmdbuffer)) {
  8819. // skip to the start and find the nonzero command.
  8820. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8821. }
  8822. }
  8823. }
  8824. #endif
  8825. #if 0
  8826. saved_feedrate2 = feedrate; //save feedrate
  8827. #else
  8828. // Try to deduce the feedrate from the first block of the planner.
  8829. // Speed is in mm/min.
  8830. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8831. #endif
  8832. planner_abort_hard(); //abort printing
  8833. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8834. saved_active_extruder = active_extruder; //save active_extruder
  8835. saved_extruder_temperature = degTargetHotend(active_extruder);
  8836. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8837. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8838. saved_fanSpeed = fanSpeed;
  8839. cmdqueue_reset(); //empty cmdqueue
  8840. card.sdprinting = false;
  8841. // card.closefile();
  8842. saved_printing = true;
  8843. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8844. st_reset_timer();
  8845. sei();
  8846. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8847. #if 1
  8848. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8849. char buf[48];
  8850. // First unretract (relative extrusion)
  8851. if(!saved_extruder_relative_mode){
  8852. enquecommand(PSTR("M83"), true);
  8853. }
  8854. //retract 45mm/s
  8855. // A single sprintf may not be faster, but is definitely 20B shorter
  8856. // than a sequence of commands building the string piece by piece
  8857. // A snprintf would have been a safer call, but since it is not used
  8858. // in the whole program, its implementation would bring more bytes to the total size
  8859. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8860. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8861. enquecommand(buf, false);
  8862. // Then lift Z axis
  8863. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8864. // At this point the command queue is empty.
  8865. enquecommand(buf, false);
  8866. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8867. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8868. repeatcommand_front();
  8869. #else
  8870. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8871. st_synchronize(); //wait moving
  8872. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8873. memcpy(destination, current_position, sizeof(destination));
  8874. #endif
  8875. }
  8876. }
  8877. //! @brief Restore print from ram
  8878. //!
  8879. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8880. //! print fan speed, waits for extruder temperature restore, then restores
  8881. //! position and continues print moves.
  8882. //!
  8883. //! Internally lcd_update() is called by wait_for_heater().
  8884. //!
  8885. //! @param e_move
  8886. void restore_print_from_ram_and_continue(float e_move)
  8887. {
  8888. if (!saved_printing) return;
  8889. #ifdef FANCHECK
  8890. // Do not allow resume printing if fans are still not ok
  8891. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8892. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8893. #endif
  8894. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8895. // current_position[axis] = st_get_position_mm(axis);
  8896. active_extruder = saved_active_extruder; //restore active_extruder
  8897. fanSpeed = saved_fanSpeed;
  8898. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8899. {
  8900. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8901. heating_status = 1;
  8902. wait_for_heater(_millis(), saved_active_extruder);
  8903. heating_status = 2;
  8904. }
  8905. feedrate = saved_feedrate2; //restore feedrate
  8906. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8907. float e = saved_pos[E_AXIS] - e_move;
  8908. plan_set_e_position(e);
  8909. #ifdef FANCHECK
  8910. fans_check_enabled = false;
  8911. #endif
  8912. //first move print head in XY to the saved position:
  8913. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8914. st_synchronize();
  8915. //then move Z
  8916. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8917. st_synchronize();
  8918. //and finaly unretract (35mm/s)
  8919. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8920. st_synchronize();
  8921. #ifdef FANCHECK
  8922. fans_check_enabled = true;
  8923. #endif
  8924. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8925. memcpy(destination, current_position, sizeof(destination));
  8926. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8927. card.setIndex(saved_sdpos);
  8928. sdpos_atomic = saved_sdpos;
  8929. card.sdprinting = true;
  8930. }
  8931. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8932. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8933. serial_count = 0;
  8934. FlushSerialRequestResend();
  8935. }
  8936. else {
  8937. //not sd printing nor usb printing
  8938. }
  8939. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  8940. lcd_setstatuspgm(_T(WELCOME_MSG));
  8941. saved_printing_type = PRINTING_TYPE_NONE;
  8942. saved_printing = false;
  8943. }
  8944. void print_world_coordinates()
  8945. {
  8946. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8947. }
  8948. void print_physical_coordinates()
  8949. {
  8950. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8951. }
  8952. void print_mesh_bed_leveling_table()
  8953. {
  8954. SERIAL_ECHOPGM("mesh bed leveling: ");
  8955. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8956. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8957. MYSERIAL.print(mbl.z_values[y][x], 3);
  8958. SERIAL_ECHOPGM(" ");
  8959. }
  8960. SERIAL_ECHOLNPGM("");
  8961. }
  8962. uint16_t print_time_remaining() {
  8963. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8964. #ifdef TMC2130
  8965. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8966. else print_t = print_time_remaining_silent;
  8967. #else
  8968. print_t = print_time_remaining_normal;
  8969. #endif //TMC2130
  8970. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8971. return print_t;
  8972. }
  8973. uint8_t calc_percent_done()
  8974. {
  8975. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8976. uint8_t percent_done = 0;
  8977. #ifdef TMC2130
  8978. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8979. percent_done = print_percent_done_normal;
  8980. }
  8981. else if (print_percent_done_silent <= 100) {
  8982. percent_done = print_percent_done_silent;
  8983. }
  8984. #else
  8985. if (print_percent_done_normal <= 100) {
  8986. percent_done = print_percent_done_normal;
  8987. }
  8988. #endif //TMC2130
  8989. else {
  8990. percent_done = card.percentDone();
  8991. }
  8992. return percent_done;
  8993. }
  8994. static void print_time_remaining_init()
  8995. {
  8996. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8997. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8998. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8999. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9000. }
  9001. void load_filament_final_feed()
  9002. {
  9003. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9004. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9005. }
  9006. //! @brief Wait for user to check the state
  9007. //! @par nozzle_temp nozzle temperature to load filament
  9008. void M600_check_state(float nozzle_temp)
  9009. {
  9010. lcd_change_fil_state = 0;
  9011. while (lcd_change_fil_state != 1)
  9012. {
  9013. lcd_change_fil_state = 0;
  9014. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9015. lcd_alright();
  9016. KEEPALIVE_STATE(IN_HANDLER);
  9017. switch(lcd_change_fil_state)
  9018. {
  9019. // Filament failed to load so load it again
  9020. case 2:
  9021. if (mmu_enabled)
  9022. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9023. else
  9024. M600_load_filament_movements();
  9025. break;
  9026. // Filament loaded properly but color is not clear
  9027. case 3:
  9028. st_synchronize();
  9029. load_filament_final_feed();
  9030. lcd_loading_color();
  9031. st_synchronize();
  9032. break;
  9033. // Everything good
  9034. default:
  9035. lcd_change_success();
  9036. break;
  9037. }
  9038. }
  9039. }
  9040. //! @brief Wait for user action
  9041. //!
  9042. //! Beep, manage nozzle heater and wait for user to start unload filament
  9043. //! If times out, active extruder temperature is set to 0.
  9044. //!
  9045. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9046. void M600_wait_for_user(float HotendTempBckp) {
  9047. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9048. int counterBeep = 0;
  9049. unsigned long waiting_start_time = _millis();
  9050. uint8_t wait_for_user_state = 0;
  9051. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9052. bool bFirst=true;
  9053. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9054. manage_heater();
  9055. manage_inactivity(true);
  9056. #if BEEPER > 0
  9057. if (counterBeep == 500) {
  9058. counterBeep = 0;
  9059. }
  9060. SET_OUTPUT(BEEPER);
  9061. if (counterBeep == 0) {
  9062. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9063. {
  9064. bFirst=false;
  9065. WRITE(BEEPER, HIGH);
  9066. }
  9067. }
  9068. if (counterBeep == 20) {
  9069. WRITE(BEEPER, LOW);
  9070. }
  9071. counterBeep++;
  9072. #endif //BEEPER > 0
  9073. switch (wait_for_user_state) {
  9074. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9075. delay_keep_alive(4);
  9076. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9077. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9078. wait_for_user_state = 1;
  9079. setAllTargetHotends(0);
  9080. st_synchronize();
  9081. disable_e0();
  9082. disable_e1();
  9083. disable_e2();
  9084. }
  9085. break;
  9086. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9087. delay_keep_alive(4);
  9088. if (lcd_clicked()) {
  9089. setTargetHotend(HotendTempBckp, active_extruder);
  9090. lcd_wait_for_heater();
  9091. wait_for_user_state = 2;
  9092. }
  9093. break;
  9094. case 2: //waiting for nozzle to reach target temperature
  9095. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9096. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9097. waiting_start_time = _millis();
  9098. wait_for_user_state = 0;
  9099. }
  9100. else {
  9101. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9102. lcd_set_cursor(1, 4);
  9103. lcd_print(ftostr3(degHotend(active_extruder)));
  9104. }
  9105. break;
  9106. }
  9107. }
  9108. WRITE(BEEPER, LOW);
  9109. }
  9110. void M600_load_filament_movements()
  9111. {
  9112. #ifdef SNMM
  9113. display_loading();
  9114. do
  9115. {
  9116. current_position[E_AXIS] += 0.002;
  9117. plan_buffer_line_curposXYZE(500, active_extruder);
  9118. delay_keep_alive(2);
  9119. }
  9120. while (!lcd_clicked());
  9121. st_synchronize();
  9122. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9123. plan_buffer_line_curposXYZE(3000, active_extruder);
  9124. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9125. plan_buffer_line_curposXYZE(1400, active_extruder);
  9126. current_position[E_AXIS] += 40;
  9127. plan_buffer_line_curposXYZE(400, active_extruder);
  9128. current_position[E_AXIS] += 10;
  9129. plan_buffer_line_curposXYZE(50, active_extruder);
  9130. #else
  9131. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9132. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9133. #endif
  9134. load_filament_final_feed();
  9135. lcd_loading_filament();
  9136. st_synchronize();
  9137. }
  9138. void M600_load_filament() {
  9139. //load filament for single material and SNMM
  9140. lcd_wait_interact();
  9141. //load_filament_time = _millis();
  9142. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9143. #ifdef PAT9125
  9144. fsensor_autoload_check_start();
  9145. #endif //PAT9125
  9146. while(!lcd_clicked())
  9147. {
  9148. manage_heater();
  9149. manage_inactivity(true);
  9150. #ifdef FILAMENT_SENSOR
  9151. if (fsensor_check_autoload())
  9152. {
  9153. Sound_MakeCustom(50,1000,false);
  9154. break;
  9155. }
  9156. #endif //FILAMENT_SENSOR
  9157. }
  9158. #ifdef PAT9125
  9159. fsensor_autoload_check_stop();
  9160. #endif //PAT9125
  9161. KEEPALIVE_STATE(IN_HANDLER);
  9162. #ifdef FSENSOR_QUALITY
  9163. fsensor_oq_meassure_start(70);
  9164. #endif //FSENSOR_QUALITY
  9165. M600_load_filament_movements();
  9166. Sound_MakeCustom(50,1000,false);
  9167. #ifdef FSENSOR_QUALITY
  9168. fsensor_oq_meassure_stop();
  9169. if (!fsensor_oq_result())
  9170. {
  9171. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9172. lcd_update_enable(true);
  9173. lcd_update(2);
  9174. if (disable)
  9175. fsensor_disable();
  9176. }
  9177. #endif //FSENSOR_QUALITY
  9178. lcd_update_enable(false);
  9179. }
  9180. //! @brief Wait for click
  9181. //!
  9182. //! Set
  9183. void marlin_wait_for_click()
  9184. {
  9185. int8_t busy_state_backup = busy_state;
  9186. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9187. lcd_consume_click();
  9188. while(!lcd_clicked())
  9189. {
  9190. manage_heater();
  9191. manage_inactivity(true);
  9192. lcd_update(0);
  9193. }
  9194. KEEPALIVE_STATE(busy_state_backup);
  9195. }
  9196. #define FIL_LOAD_LENGTH 60
  9197. #ifdef PSU_Delta
  9198. bool bEnableForce_z;
  9199. void init_force_z()
  9200. {
  9201. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9202. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9203. disable_force_z();
  9204. }
  9205. void check_force_z()
  9206. {
  9207. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9208. init_force_z(); // causes enforced switching into disable-state
  9209. }
  9210. void disable_force_z()
  9211. {
  9212. uint16_t z_microsteps=0;
  9213. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9214. bEnableForce_z=false;
  9215. // switching to silent mode
  9216. #ifdef TMC2130
  9217. tmc2130_mode=TMC2130_MODE_SILENT;
  9218. update_mode_profile();
  9219. tmc2130_init(true);
  9220. #endif // TMC2130
  9221. axis_known_position[Z_AXIS]=false;
  9222. }
  9223. void enable_force_z()
  9224. {
  9225. if(bEnableForce_z)
  9226. return; // motor already enabled (may be ;-p )
  9227. bEnableForce_z=true;
  9228. // mode recovering
  9229. #ifdef TMC2130
  9230. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9231. update_mode_profile();
  9232. tmc2130_init(true);
  9233. #endif // TMC2130
  9234. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9235. }
  9236. #endif // PSU_Delta