fsensor.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "io_atmega2560.h"
  8. #include "cmdqueue.h"
  9. #include "ultralcd.h"
  10. #include "mmu.h"
  11. #include "cardreader.h"
  12. #include "adc.h"
  13. #include "temperature.h"
  14. #include "config.h"
  15. //! @name Basic parameters
  16. //! @{
  17. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  18. #define FSENSOR_ERR_MAX 9 //!< filament sensor maximum error count for runout detection
  19. //! @}
  20. //! @name Optical quality measurement parameters
  21. //! @{
  22. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  23. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  24. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  25. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  26. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  27. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  28. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  29. //! @}
  30. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  31. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  32. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  33. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  34. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  35. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  36. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  37. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  38. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  39. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  40. uint8_t fsensor_int_pin_old = 0;
  41. int16_t fsensor_chunk_len = 0;
  42. //! enabled = initialized and sampled every chunk event
  43. bool fsensor_enabled = true;
  44. //! runout watching is done in fsensor_update (called from main loop)
  45. bool fsensor_watch_runout = true;
  46. //! not responding - is set if any communication error occurred during initialization or readout
  47. bool fsensor_not_responding = false;
  48. //! enable/disable quality meassurement
  49. bool fsensor_oq_meassure_enabled = false;
  50. //! number of errors, updated in ISR
  51. uint8_t fsensor_err_cnt = 0;
  52. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  53. int16_t fsensor_st_cnt = 0;
  54. //! last dy value from pat9125 sensor (used in ISR)
  55. int16_t fsensor_dy_old = 0;
  56. //! log flag: 0=log disabled, 1=log enabled
  57. uint8_t fsensor_log = 1;
  58. //! @name filament autoload variables
  59. //! @{
  60. //! autoload feature enabled
  61. bool fsensor_autoload_enabled = true;
  62. //! autoload watching enable/disable flag
  63. bool fsensor_watch_autoload = false;
  64. //
  65. uint16_t fsensor_autoload_y;
  66. //
  67. uint8_t fsensor_autoload_c;
  68. //
  69. uint32_t fsensor_autoload_last_millis;
  70. //
  71. uint8_t fsensor_autoload_sum;
  72. //
  73. uint8_t fsensor_softfail = 0;
  74. //! @}
  75. //! @name filament optical quality measurement variables
  76. //! @{
  77. //! Measurement enable/disable flag
  78. bool fsensor_oq_meassure = false;
  79. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  80. uint8_t fsensor_oq_skipchunk;
  81. //! number of samples from start of measurement
  82. uint8_t fsensor_oq_samples;
  83. //! sum of steps in positive direction movements
  84. uint16_t fsensor_oq_st_sum;
  85. //! sum of deltas in positive direction movements
  86. uint16_t fsensor_oq_yd_sum;
  87. //! sum of errors during measurement
  88. uint16_t fsensor_oq_er_sum;
  89. //! max error counter value during measurement
  90. uint8_t fsensor_oq_er_max;
  91. //! minimum delta value
  92. int16_t fsensor_oq_yd_min;
  93. //! maximum delta value
  94. int16_t fsensor_oq_yd_max;
  95. //! sum of shutter value
  96. uint16_t fsensor_oq_sh_sum;
  97. //! @}
  98. #if IR_SENSOR_ANALOG
  99. ClFsensorPCB oFsensorPCB;
  100. ClFsensorActionNA oFsensorActionNA;
  101. bool bIRsensorStateFlag=false;
  102. unsigned long nIRsensorLastTime;
  103. #endif //IR_SENSOR_ANALOG
  104. void fsensor_stop_and_save_print(void)
  105. {
  106. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  107. stop_and_save_print_to_ram(0, 0);
  108. fsensor_watch_runout = false;
  109. }
  110. void fsensor_restore_print_and_continue(void)
  111. {
  112. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  113. fsensor_watch_runout = true;
  114. fsensor_err_cnt = 0;
  115. restore_print_from_ram_and_continue(0);
  116. }
  117. // fsensor_checkpoint_print cuts the current print job at the current position,
  118. // allowing new instructions to be inserted in the middle
  119. void fsensor_checkpoint_print(void)
  120. {
  121. printf_P(PSTR("fsensor_checkpoint_print\n"));
  122. stop_and_save_print_to_ram(0, 0);
  123. restore_print_from_ram_and_continue(0);
  124. }
  125. void fsensor_init(void)
  126. {
  127. #ifdef PAT9125
  128. uint8_t pat9125 = pat9125_init();
  129. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  130. #endif //PAT9125
  131. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  132. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  133. fsensor_not_responding = false;
  134. #ifdef PAT9125
  135. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  136. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  137. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  138. if (!pat9125)
  139. {
  140. fsensor = 0; //disable sensor
  141. fsensor_not_responding = true;
  142. }
  143. #endif //PAT9125
  144. #if IR_SENSOR_ANALOG
  145. bIRsensorStateFlag=false;
  146. oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  147. oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  148. #endif //IR_SENSOR_ANALOG
  149. if (fsensor)
  150. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  151. else
  152. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  153. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  154. #if IR_SENSOR_ANALOG
  155. printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
  156. #else //IR_SENSOR_ANALOG
  157. printf_P(PSTR("\n"));
  158. #endif //IR_SENSOR_ANALOG
  159. if (check_for_ir_sensor()) ir_sensor_detected = true;
  160. }
  161. bool fsensor_enable(bool bUpdateEEPROM)
  162. {
  163. #ifdef PAT9125
  164. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  165. uint8_t pat9125 = pat9125_init();
  166. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  167. if (pat9125)
  168. fsensor_not_responding = false;
  169. else
  170. fsensor_not_responding = true;
  171. fsensor_enabled = pat9125 ? true : false;
  172. fsensor_watch_runout = true;
  173. fsensor_oq_meassure = false;
  174. fsensor_err_cnt = 0;
  175. fsensor_dy_old = 0;
  176. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  177. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  178. }
  179. else //filament sensor is FINDA, always enable
  180. {
  181. fsensor_enabled = true;
  182. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  183. FSensorStateMenu = 1;
  184. }
  185. #else // PAT9125
  186. #if IR_SENSOR_ANALOG
  187. if(!fsensor_IR_check())
  188. {
  189. bUpdateEEPROM=true;
  190. fsensor_enabled=false;
  191. fsensor_not_responding=true;
  192. FSensorStateMenu=0;
  193. }
  194. else {
  195. #endif //IR_SENSOR_ANALOG
  196. fsensor_enabled=true;
  197. fsensor_not_responding=false;
  198. FSensorStateMenu=1;
  199. #if IR_SENSOR_ANALOG
  200. }
  201. #endif //IR_SENSOR_ANALOG
  202. if(bUpdateEEPROM)
  203. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  204. #endif //PAT9125
  205. return fsensor_enabled;
  206. }
  207. void fsensor_disable(bool bUpdateEEPROM)
  208. {
  209. fsensor_enabled = false;
  210. FSensorStateMenu = 0;
  211. if(bUpdateEEPROM)
  212. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  213. }
  214. void fsensor_autoload_set(bool State)
  215. {
  216. #ifdef PAT9125
  217. if (!State) fsensor_autoload_check_stop();
  218. #endif //PAT9125
  219. fsensor_autoload_enabled = State;
  220. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  221. }
  222. void pciSetup(byte pin)
  223. {
  224. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  225. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  226. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  227. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  228. }
  229. #ifdef PAT9125
  230. void fsensor_autoload_check_start(void)
  231. {
  232. // puts_P(_N("fsensor_autoload_check_start\n"));
  233. if (!fsensor_enabled) return;
  234. if (!fsensor_autoload_enabled) return;
  235. if (fsensor_watch_autoload) return;
  236. if (!pat9125_update()) //update sensor
  237. {
  238. fsensor_disable();
  239. fsensor_not_responding = true;
  240. fsensor_watch_autoload = false;
  241. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  242. return;
  243. }
  244. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  245. fsensor_autoload_y = pat9125_y; //save current y value
  246. fsensor_autoload_c = 0; //reset number of changes counter
  247. fsensor_autoload_sum = 0;
  248. fsensor_autoload_last_millis = _millis();
  249. fsensor_watch_runout = false;
  250. fsensor_watch_autoload = true;
  251. fsensor_err_cnt = 0;
  252. }
  253. void fsensor_autoload_check_stop(void)
  254. {
  255. // puts_P(_N("fsensor_autoload_check_stop\n"));
  256. if (!fsensor_enabled) return;
  257. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  258. if (!fsensor_autoload_enabled) return;
  259. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  260. if (!fsensor_watch_autoload) return;
  261. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  262. fsensor_autoload_sum = 0;
  263. fsensor_watch_autoload = false;
  264. fsensor_watch_runout = true;
  265. fsensor_err_cnt = 0;
  266. }
  267. #endif //PAT9125
  268. bool fsensor_check_autoload(void)
  269. {
  270. if (!fsensor_enabled) return false;
  271. if (!fsensor_autoload_enabled) return false;
  272. if (ir_sensor_detected) {
  273. if (digitalRead(IR_SENSOR_PIN) == 1) {
  274. fsensor_watch_autoload = true;
  275. }
  276. else if (fsensor_watch_autoload == true) {
  277. fsensor_watch_autoload = false;
  278. return true;
  279. }
  280. }
  281. #ifdef PAT9125
  282. if (!fsensor_watch_autoload)
  283. {
  284. fsensor_autoload_check_start();
  285. return false;
  286. }
  287. #if 0
  288. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  289. #endif
  290. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  291. fsensor_autoload_last_millis = _millis();
  292. if (!pat9125_update_y()) //update sensor
  293. {
  294. fsensor_disable();
  295. fsensor_not_responding = true;
  296. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  297. return false;
  298. }
  299. int16_t dy = pat9125_y - fsensor_autoload_y;
  300. if (dy) //? dy value is nonzero
  301. {
  302. if (dy > 0) //? delta-y value is positive (inserting)
  303. {
  304. fsensor_autoload_sum += dy;
  305. fsensor_autoload_c += 3; //increment change counter by 3
  306. }
  307. else if (fsensor_autoload_c > 1)
  308. fsensor_autoload_c -= 2; //decrement change counter by 2
  309. fsensor_autoload_y = pat9125_y; //save current value
  310. }
  311. else if (fsensor_autoload_c > 0)
  312. fsensor_autoload_c--;
  313. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  314. #if 0
  315. puts_P(_N("fsensor_check_autoload\n"));
  316. if (fsensor_autoload_c != fsensor_autoload_c_old)
  317. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  318. #endif
  319. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  320. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  321. {
  322. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  323. return true;
  324. }
  325. #endif //PAT9125
  326. return false;
  327. }
  328. void fsensor_oq_meassure_set(bool State)
  329. {
  330. fsensor_oq_meassure_enabled = State;
  331. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  332. }
  333. void fsensor_oq_meassure_start(uint8_t skip)
  334. {
  335. if (!fsensor_enabled) return;
  336. if (!fsensor_oq_meassure_enabled) return;
  337. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  338. fsensor_oq_skipchunk = skip;
  339. fsensor_oq_samples = 0;
  340. fsensor_oq_st_sum = 0;
  341. fsensor_oq_yd_sum = 0;
  342. fsensor_oq_er_sum = 0;
  343. fsensor_oq_er_max = 0;
  344. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  345. fsensor_oq_yd_max = 0;
  346. fsensor_oq_sh_sum = 0;
  347. pat9125_update();
  348. pat9125_y = 0;
  349. fsensor_oq_meassure = true;
  350. }
  351. void fsensor_oq_meassure_stop(void)
  352. {
  353. if (!fsensor_enabled) return;
  354. if (!fsensor_oq_meassure_enabled) return;
  355. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  356. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  357. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  358. fsensor_oq_meassure = false;
  359. fsensor_err_cnt = 0;
  360. }
  361. const char _OK[] PROGMEM = "OK";
  362. const char _NG[] PROGMEM = "NG!";
  363. bool fsensor_oq_result(void)
  364. {
  365. if (!fsensor_enabled) return true;
  366. if (!fsensor_oq_meassure_enabled) return true;
  367. printf_P(_N("fsensor_oq_result\n"));
  368. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  369. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  370. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  371. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  372. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  373. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  374. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  375. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  376. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  377. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  378. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  379. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  380. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  381. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  382. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  383. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  384. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  385. if (yd_qua >= 8) res_sh_avg = true;
  386. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  387. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  388. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  389. return res;
  390. }
  391. #ifdef PAT9125
  392. ISR(FSENSOR_INT_PIN_VECT)
  393. {
  394. if (mmu_enabled || ir_sensor_detected) return;
  395. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  396. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  397. static bool _lock = false;
  398. if (_lock) return;
  399. _lock = true;
  400. int st_cnt = fsensor_st_cnt;
  401. fsensor_st_cnt = 0;
  402. sei();
  403. uint8_t old_err_cnt = fsensor_err_cnt;
  404. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  405. if (!pat9125_res)
  406. {
  407. fsensor_disable();
  408. fsensor_not_responding = true;
  409. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  410. }
  411. if (st_cnt != 0)
  412. { //movement
  413. if (st_cnt > 0) //positive movement
  414. {
  415. if (pat9125_y < 0)
  416. {
  417. fsensor_err_cnt++;
  418. }
  419. else if (pat9125_y > 0)
  420. {
  421. if (fsensor_err_cnt)
  422. fsensor_err_cnt--;
  423. }
  424. else //(pat9125_y == 0)
  425. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  426. fsensor_err_cnt++;
  427. if (fsensor_oq_meassure)
  428. {
  429. if (fsensor_oq_skipchunk)
  430. {
  431. fsensor_oq_skipchunk--;
  432. fsensor_err_cnt = 0;
  433. }
  434. else
  435. {
  436. if (st_cnt == fsensor_chunk_len)
  437. {
  438. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  439. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  440. }
  441. fsensor_oq_samples++;
  442. fsensor_oq_st_sum += st_cnt;
  443. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  444. if (fsensor_err_cnt > old_err_cnt)
  445. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  446. if (fsensor_oq_er_max < fsensor_err_cnt)
  447. fsensor_oq_er_max = fsensor_err_cnt;
  448. fsensor_oq_sh_sum += pat9125_s;
  449. }
  450. }
  451. }
  452. else //negative movement
  453. {
  454. }
  455. }
  456. else
  457. { //no movement
  458. }
  459. #ifdef DEBUG_FSENSOR_LOG
  460. if (fsensor_log)
  461. {
  462. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  463. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  464. }
  465. #endif //DEBUG_FSENSOR_LOG
  466. fsensor_dy_old = pat9125_y;
  467. pat9125_y = 0;
  468. _lock = false;
  469. return;
  470. }
  471. void fsensor_setup_interrupt(void)
  472. {
  473. pinMode(FSENSOR_INT_PIN, OUTPUT);
  474. digitalWrite(FSENSOR_INT_PIN, LOW);
  475. fsensor_int_pin_old = 0;
  476. //pciSetup(FSENSOR_INT_PIN);
  477. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  478. // so interrupt registers settings:
  479. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  480. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  481. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  482. }
  483. #endif //PAT9125
  484. void fsensor_st_block_chunk(int cnt)
  485. {
  486. if (!fsensor_enabled) return;
  487. fsensor_st_cnt += cnt;
  488. if (abs(fsensor_st_cnt) >= fsensor_chunk_len)
  489. {
  490. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  491. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  492. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  493. }
  494. }
  495. //! Common code for enqueing M600 and supplemental codes into the command queue.
  496. //! Used both for the IR sensor and the PAT9125
  497. void fsensor_enque_M600(){
  498. printf_P(PSTR("fsensor_update - M600\n"));
  499. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  500. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  501. enquecommand_front_P((PSTR("M600")));
  502. }
  503. //! @brief filament sensor update (perform M600 on filament runout)
  504. //!
  505. //! Works only if filament sensor is enabled.
  506. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  507. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  508. void fsensor_update(void)
  509. {
  510. #ifdef PAT9125
  511. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  512. {
  513. fsensor_stop_and_save_print();
  514. KEEPALIVE_STATE(IN_HANDLER);
  515. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  516. fsensor_autoload_enabled = false;
  517. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  518. fsensor_oq_meassure_enabled = true;
  519. // move the nozzle away while checking the filament
  520. current_position[Z_AXIS] += 0.8;
  521. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  522. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  523. st_synchronize();
  524. // check the filament in isolation
  525. fsensor_err_cnt = 0;
  526. fsensor_oq_meassure_start(0);
  527. float e_tmp = current_position[E_AXIS];
  528. current_position[E_AXIS] -= 3;
  529. plan_buffer_line_curposXYZE(200/60, active_extruder);
  530. current_position[E_AXIS] = e_tmp;
  531. plan_buffer_line_curposXYZE(200/60, active_extruder);
  532. st_synchronize();
  533. uint8_t err_cnt = fsensor_err_cnt;
  534. fsensor_oq_meassure_stop();
  535. bool err = false;
  536. err |= (err_cnt > 1);
  537. err |= (fsensor_oq_er_sum > 2);
  538. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  539. fsensor_restore_print_and_continue();
  540. fsensor_autoload_enabled = autoload_enabled_tmp;
  541. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  542. if (!err)
  543. {
  544. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  545. ++fsensor_softfail;
  546. }
  547. else
  548. fsensor_enque_M600();
  549. }
  550. #else //PAT9125
  551. if (CHECK_FSENSOR && ir_sensor_detected)
  552. {
  553. if(digitalRead(IR_SENSOR_PIN))
  554. { // IR_SENSOR_PIN ~ H
  555. #if IR_SENSOR_ANALOG
  556. if(!bIRsensorStateFlag)
  557. {
  558. bIRsensorStateFlag=true;
  559. nIRsensorLastTime=_millis();
  560. }
  561. else
  562. {
  563. if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
  564. {
  565. uint8_t nMUX1,nMUX2;
  566. uint16_t nADC;
  567. bIRsensorStateFlag=false;
  568. // sequence for direct data reading from AD converter
  569. DISABLE_TEMPERATURE_INTERRUPT();
  570. nMUX1=ADMUX; // ADMUX saving
  571. nMUX2=ADCSRB;
  572. adc_setmux(VOLT_IR_PIN);
  573. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  574. while(ADCSRA&(1<<ADSC))
  575. ;
  576. ADCSRA|=(1<<ADSC); // second conversion used
  577. while(ADCSRA&(1<<ADSC))
  578. ;
  579. nADC=ADC;
  580. ADMUX=nMUX1; // ADMUX restoring
  581. ADCSRB=nMUX2;
  582. ENABLE_TEMPERATURE_INTERRUPT();
  583. // end of sequence for ...
  584. if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
  585. {
  586. fsensor_disable();
  587. fsensor_not_responding = true;
  588. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  589. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  590. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  591. lcd_pause_print();
  592. }
  593. else
  594. {
  595. #endif //IR_SENSOR_ANALOG
  596. fsensor_checkpoint_print();
  597. fsensor_enque_M600();
  598. #if IR_SENSOR_ANALOG
  599. }
  600. }
  601. }
  602. }
  603. else
  604. { // IR_SENSOR_PIN ~ L
  605. bIRsensorStateFlag=false;
  606. #endif //IR_SENSOR_ANALOG
  607. }
  608. }
  609. #endif //PAT9125
  610. }
  611. #if IR_SENSOR_ANALOG
  612. bool fsensor_IR_check()
  613. {
  614. uint16_t volt_IR_int;
  615. bool bCheckResult;
  616. volt_IR_int=current_voltage_raw_IR;
  617. bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
  618. bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
  619. return(bCheckResult);
  620. }
  621. #endif //IR_SENSOR_ANALOG