fsensor.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. #include "Marlin.h"
  2. #include "fsensor.h"
  3. #include <avr/pgmspace.h>
  4. #include "pat9125.h"
  5. #include "stepper.h"
  6. #include "planner.h"
  7. #include "fastio.h"
  8. #include "cmdqueue.h"
  9. #include "ultralcd.h"
  10. //Basic params
  11. #define FSENSOR_CHUNK_LEN 0.64F //filament sensor chunk length 0.64mm
  12. #define FSENSOR_ERR_MAX 17 //filament sensor maximum error count for runout detection
  13. //Optical quality meassurement params
  14. #define FSENSOR_OQ_MAX_ES 6 //maximum error sum while loading (length ~64mm = 100chunks)
  15. #define FSENSOR_OQ_MAX_EM 2 //maximum error counter value while loading
  16. #define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk (applied to avg value)
  17. #define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk (applied to avg value)
  18. #define FSENSOR_OQ_MAX_PD 4 //maximum positive deviation (= yd_max/yd_avg)
  19. #define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min)
  20. #define FSENSOR_OQ_MAX_SH 13 //maximum shutter value
  21. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  22. #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
  23. #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
  24. void fsensor_stop_and_save_print(void)
  25. {
  26. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  27. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  28. }
  29. void fsensor_restore_print_and_continue(void)
  30. {
  31. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  32. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  33. }
  34. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  35. uint8_t fsensor_int_pin_old = 0;
  36. int16_t fsensor_chunk_len = 0;
  37. //enabled = initialized and sampled every chunk event
  38. bool fsensor_enabled = true;
  39. //runout watching is done in fsensor_update (called from main loop)
  40. bool fsensor_watch_runout = true;
  41. //not responding - is set if any communication error occured durring initialization or readout
  42. bool fsensor_not_responding = false;
  43. //printing saved
  44. bool fsensor_printing_saved = false;
  45. //number of errors, updated in ISR
  46. uint8_t fsensor_err_cnt = 0;
  47. //variable for accumolating step count (updated callbacks from stepper and ISR)
  48. int16_t fsensor_st_cnt = 0;
  49. //last dy value from pat9125 sensor (used in ISR)
  50. int16_t fsensor_dy_old = 0;
  51. //log flag: 0=log disabled, 1=log enabled
  52. uint8_t fsensor_log = 1;
  53. ////////////////////////////////////////////////////////////////////////////////
  54. //filament autoload variables
  55. //autoload feature enabled
  56. bool fsensor_autoload_enabled = true;
  57. //autoload watching enable/disable flag
  58. bool fsensor_watch_autoload = false;
  59. //
  60. uint16_t fsensor_autoload_y;
  61. //
  62. uint8_t fsensor_autoload_c;
  63. //
  64. uint32_t fsensor_autoload_last_millis;
  65. //
  66. uint8_t fsensor_autoload_sum;
  67. ////////////////////////////////////////////////////////////////////////////////
  68. //filament optical quality meassurement variables
  69. //meassurement enable/disable flag
  70. bool fsensor_oq_meassure = false;
  71. //skip-chunk counter, for accurate meassurement is necesary to skip first chunk...
  72. uint8_t fsensor_oq_skipchunk;
  73. //number of samples from start of meassurement
  74. uint8_t fsensor_oq_samples;
  75. //sum of steps in positive direction movements
  76. uint16_t fsensor_oq_st_sum;
  77. //sum of deltas in positive direction movements
  78. uint16_t fsensor_oq_yd_sum;
  79. //sum of errors durring meassurement
  80. uint16_t fsensor_oq_er_sum;
  81. //max error counter value durring meassurement
  82. uint8_t fsensor_oq_er_max;
  83. //minimum delta value
  84. int16_t fsensor_oq_yd_min;
  85. //maximum delta value
  86. int16_t fsensor_oq_yd_max;
  87. //sum of shutter value
  88. uint16_t fsensor_oq_sh_sum;
  89. void fsensor_init(void)
  90. {
  91. uint8_t pat9125 = pat9125_init();
  92. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  93. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  94. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  95. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * axis_steps_per_unit[E_AXIS]);
  96. if (!pat9125)
  97. {
  98. fsensor = 0; //disable sensor
  99. fsensor_not_responding = true;
  100. }
  101. else
  102. fsensor_not_responding = false;
  103. if (fsensor)
  104. fsensor_enable();
  105. else
  106. fsensor_disable();
  107. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  108. }
  109. bool fsensor_enable(void)
  110. {
  111. uint8_t pat9125 = pat9125_init();
  112. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  113. if (pat9125)
  114. fsensor_not_responding = false;
  115. else
  116. fsensor_not_responding = true;
  117. fsensor_enabled = pat9125?true:false;
  118. fsensor_watch_runout = true;
  119. fsensor_oq_meassure = false;
  120. fsensor_err_cnt = 0;
  121. fsensor_dy_old = 0;
  122. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  123. FSensorStateMenu = fsensor_enabled?1:0;
  124. return fsensor_enabled;
  125. }
  126. void fsensor_disable(void)
  127. {
  128. fsensor_enabled = false;
  129. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  130. FSensorStateMenu = 0;
  131. }
  132. void fsensor_autoload_set(bool State)
  133. {
  134. fsensor_autoload_enabled = State;
  135. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  136. }
  137. void pciSetup(byte pin)
  138. {
  139. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  140. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  141. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  142. }
  143. void fsensor_autoload_check_start(void)
  144. {
  145. // puts_P(_N("fsensor_autoload_check_start\n"));
  146. if (!fsensor_enabled) return;
  147. if (!fsensor_autoload_enabled) return;
  148. if (fsensor_watch_autoload) return;
  149. if (!pat9125_update_y()) //update sensor
  150. {
  151. fsensor_disable();
  152. fsensor_not_responding = true;
  153. fsensor_watch_autoload = false;
  154. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  155. return;
  156. }
  157. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  158. fsensor_autoload_y = pat9125_y; //save current y value
  159. fsensor_autoload_c = 0; //reset number of changes counter
  160. fsensor_autoload_sum = 0;
  161. fsensor_autoload_last_millis = millis();
  162. fsensor_watch_runout = false;
  163. fsensor_watch_autoload = true;
  164. fsensor_err_cnt = 0;
  165. }
  166. void fsensor_autoload_check_stop(void)
  167. {
  168. // puts_P(_N("fsensor_autoload_check_stop\n"));
  169. if (!fsensor_enabled) return;
  170. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  171. if (!fsensor_autoload_enabled) return;
  172. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  173. if (!fsensor_watch_autoload) return;
  174. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  175. fsensor_autoload_sum = 0;
  176. fsensor_watch_autoload = false;
  177. fsensor_watch_runout = true;
  178. fsensor_err_cnt = 0;
  179. }
  180. bool fsensor_check_autoload(void)
  181. {
  182. if (!fsensor_enabled) return false;
  183. if (!fsensor_autoload_enabled) return false;
  184. if (!fsensor_watch_autoload)
  185. {
  186. fsensor_autoload_check_start();
  187. return false;
  188. }
  189. #if 0
  190. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  191. #endif
  192. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  193. fsensor_autoload_last_millis = millis();
  194. if (!pat9125_update_y()) //update sensor
  195. {
  196. fsensor_disable();
  197. fsensor_not_responding = true;
  198. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  199. return false;
  200. }
  201. int16_t dy = pat9125_y - fsensor_autoload_y;
  202. if (dy) //? dy value is nonzero
  203. {
  204. if (dy > 0) //? delta-y value is positive (inserting)
  205. {
  206. fsensor_autoload_sum += dy;
  207. fsensor_autoload_c += 3; //increment change counter by 3
  208. }
  209. else if (fsensor_autoload_c > 1)
  210. fsensor_autoload_c -= 2; //decrement change counter by 2
  211. fsensor_autoload_y = pat9125_y; //save current value
  212. }
  213. else if (fsensor_autoload_c > 0)
  214. fsensor_autoload_c--;
  215. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  216. #if 0
  217. puts_P(_N("fsensor_check_autoload\n"));
  218. if (fsensor_autoload_c != fsensor_autoload_c_old)
  219. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  220. #endif
  221. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  222. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  223. {
  224. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  225. return true;
  226. }
  227. return false;
  228. }
  229. void fsensor_oq_meassure_start(uint8_t skip)
  230. {
  231. if (!fsensor_enabled) return;
  232. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  233. fsensor_oq_skipchunk = skip;
  234. fsensor_oq_samples = 0;
  235. fsensor_oq_st_sum = 0;
  236. fsensor_oq_yd_sum = 0;
  237. fsensor_oq_er_sum = 0;
  238. fsensor_oq_er_max = 0;
  239. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  240. fsensor_oq_yd_max = 0;
  241. fsensor_oq_sh_sum = 0;
  242. pat9125_update();
  243. pat9125_y = 0;
  244. fsensor_watch_runout = false;
  245. fsensor_oq_meassure = true;
  246. }
  247. void fsensor_oq_meassure_stop(void)
  248. {
  249. if (!fsensor_enabled) return;
  250. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  251. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  252. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  253. fsensor_oq_meassure = false;
  254. fsensor_watch_runout = true;
  255. fsensor_err_cnt = 0;
  256. }
  257. const char _OK[] PROGMEM = "OK";
  258. const char _NG[] PROGMEM = "NG!";
  259. bool fsensor_oq_result(void)
  260. {
  261. if (!fsensor_enabled) return true;
  262. printf_P(_N("fsensor_oq_result\n"));
  263. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  264. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  265. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  266. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  267. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  268. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  269. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  270. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  271. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  272. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  273. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  274. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  275. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  276. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  277. printf_P(_N(" yd_qua = %u\n"), yd_qua);
  278. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  279. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  280. if (yd_qua >= 8) res_sh_avg = true;
  281. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  282. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  283. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  284. return res;
  285. }
  286. ISR(PCINT2_vect)
  287. {
  288. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  289. fsensor_int_pin_old = PINK;
  290. static bool _lock = false;
  291. if (_lock) return;
  292. _lock = true;
  293. int st_cnt = fsensor_st_cnt;
  294. fsensor_st_cnt = 0;
  295. sei();
  296. uint8_t old_err_cnt = fsensor_err_cnt;
  297. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  298. if (!pat9125_res)
  299. {
  300. fsensor_disable();
  301. fsensor_not_responding = true;
  302. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  303. }
  304. if (st_cnt != 0)
  305. { //movement
  306. if (st_cnt > 0) //positive movement
  307. {
  308. if (pat9125_y < 0)
  309. {
  310. if (fsensor_err_cnt)
  311. fsensor_err_cnt += 2;
  312. else
  313. fsensor_err_cnt++;
  314. }
  315. else if (pat9125_y > 0)
  316. {
  317. if (fsensor_err_cnt)
  318. fsensor_err_cnt--;
  319. }
  320. else //(pat9125_y == 0)
  321. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  322. fsensor_err_cnt++;
  323. if (fsensor_oq_meassure)
  324. {
  325. if (fsensor_oq_skipchunk)
  326. {
  327. fsensor_oq_skipchunk--;
  328. fsensor_err_cnt = 0;
  329. }
  330. else
  331. {
  332. if (st_cnt == fsensor_chunk_len)
  333. {
  334. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  335. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  336. }
  337. fsensor_oq_samples++;
  338. fsensor_oq_st_sum += st_cnt;
  339. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  340. if (fsensor_err_cnt > old_err_cnt)
  341. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  342. if (fsensor_oq_er_max < fsensor_err_cnt)
  343. fsensor_oq_er_max = fsensor_err_cnt;
  344. fsensor_oq_sh_sum += pat9125_s;
  345. }
  346. }
  347. }
  348. else //negative movement
  349. {
  350. }
  351. }
  352. else
  353. { //no movement
  354. }
  355. #ifdef DEBUG_FSENSOR_LOG
  356. if (fsensor_log)
  357. {
  358. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  359. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  360. }
  361. #endif //DEBUG_FSENSOR_LOG
  362. fsensor_dy_old = pat9125_y;
  363. pat9125_y = 0;
  364. _lock = false;
  365. return;
  366. }
  367. void fsensor_st_block_begin(block_t* bl)
  368. {
  369. if (!fsensor_enabled) return;
  370. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  371. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  372. {
  373. if (_READ(63)) _WRITE(63, LOW);
  374. else _WRITE(63, HIGH);
  375. }
  376. }
  377. void fsensor_st_block_chunk(block_t* bl, int cnt)
  378. {
  379. if (!fsensor_enabled) return;
  380. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  381. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  382. {
  383. if (_READ(63)) _WRITE(63, LOW);
  384. else _WRITE(63, HIGH);
  385. }
  386. }
  387. //! update (perform M600 on filament runout)
  388. //!
  389. //! Works only if filament sensor is enabled.
  390. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  391. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  392. void fsensor_update(void)
  393. {
  394. if (fsensor_enabled)
  395. {
  396. if (fsensor_printing_saved)
  397. {
  398. fsensor_restore_print_and_continue();
  399. fsensor_printing_saved = false;
  400. fsensor_watch_runout = true;
  401. fsensor_err_cnt = 0;
  402. }
  403. else if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  404. {
  405. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  406. fsensor_autoload_enabled = false;
  407. fsensor_stop_and_save_print();
  408. fsensor_printing_saved = true;
  409. fsensor_err_cnt = 0;
  410. fsensor_oq_meassure_start(0);
  411. enquecommand_front_P((PSTR("G1 E-3 F200")));
  412. process_commands();
  413. cmdqueue_pop_front();
  414. st_synchronize();
  415. enquecommand_front_P((PSTR("G1 E3 F200")));
  416. process_commands();
  417. cmdqueue_pop_front();
  418. st_synchronize();
  419. fsensor_oq_meassure_stop();
  420. bool err = false;
  421. err |= (fsensor_oq_er_sum > 1);
  422. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  423. if (!err)
  424. {
  425. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  426. fsensor_restore_print_and_continue();
  427. fsensor_printing_saved = false;
  428. }
  429. else
  430. {
  431. printf_P(PSTR("fsensor_update - M600\n"));
  432. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  433. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  434. enquecommand_front_P((PSTR("M600")));
  435. fsensor_watch_runout = false;
  436. }
  437. fsensor_autoload_enabled = autoload_enabled_tmp;
  438. }
  439. }
  440. }
  441. void fsensor_setup_interrupt(void)
  442. {
  443. pinMode(FSENSOR_INT_PIN, OUTPUT);
  444. digitalWrite(FSENSOR_INT_PIN, LOW);
  445. fsensor_int_pin_old = 0;
  446. pciSetup(FSENSOR_INT_PIN);
  447. }