mmu.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_HWRESET
  18. #define MMU_RST_PIN 76
  19. bool mmu_enabled = false;
  20. bool mmu_ready = false;
  21. int8_t mmu_state = 0;
  22. uint8_t mmu_cmd = 0;
  23. uint8_t mmu_extruder = 0;
  24. uint8_t tmp_extruder = 0;
  25. int8_t mmu_finda = -1;
  26. int16_t mmu_version = -1;
  27. int16_t mmu_buildnr = -1;
  28. uint32_t mmu_last_request = 0;
  29. uint32_t mmu_last_response = 0;
  30. //clear rx buffer
  31. void mmu_clr_rx_buf(void)
  32. {
  33. while (fgetc(uart2io) >= 0);
  34. }
  35. //send command - puts
  36. int mmu_puts_P(const char* str)
  37. {
  38. mmu_clr_rx_buf(); //clear rx buffer
  39. int r = fputs_P(str, uart2io); //send command
  40. mmu_last_request = millis();
  41. return r;
  42. }
  43. //send command - printf
  44. int mmu_printf_P(const char* format, ...)
  45. {
  46. va_list args;
  47. va_start(args, format);
  48. mmu_clr_rx_buf(); //clear rx buffer
  49. int r = vfprintf_P(uart2io, format, args); //send command
  50. va_end(args);
  51. mmu_last_request = millis();
  52. return r;
  53. }
  54. //check 'ok' response
  55. int8_t mmu_rx_ok(void)
  56. {
  57. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  58. if (res == 1) mmu_last_response = millis();
  59. return res;
  60. }
  61. //check 'start' response
  62. int8_t mmu_rx_start(void)
  63. {
  64. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  65. if (res == 1) mmu_last_response = millis();
  66. return res;
  67. }
  68. //initialize mmu2 unit - first part - should be done at begining of startup process
  69. void mmu_init(void)
  70. {
  71. digitalWrite(MMU_RST_PIN, HIGH);
  72. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  73. uart2_init(); //init uart2
  74. _delay_ms(10); //wait 10ms for sure
  75. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  76. mmu_state = -1;
  77. }
  78. //mmu main loop - state machine processing
  79. void mmu_loop(void)
  80. {
  81. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  82. switch (mmu_state)
  83. {
  84. case 0:
  85. return;
  86. case -1:
  87. if (mmu_rx_start() > 0)
  88. {
  89. puts_P(PSTR("MMU => 'start'"));
  90. puts_P(PSTR("MMU <= 'S1'"));
  91. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  92. mmu_state = -2;
  93. }
  94. else if (millis() > 30000) //30sec after reset disable mmu
  95. {
  96. puts_P(PSTR("MMU not responding - DISABLED"));
  97. mmu_state = 0;
  98. }
  99. return;
  100. case -2:
  101. if (mmu_rx_ok() > 0)
  102. {
  103. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  104. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  105. puts_P(PSTR("MMU <= 'S2'"));
  106. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  107. mmu_state = -3;
  108. }
  109. return;
  110. case -3:
  111. if (mmu_rx_ok() > 0)
  112. {
  113. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  114. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  115. puts_P(PSTR("MMU <= 'P0'"));
  116. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  117. mmu_state = -4;
  118. }
  119. return;
  120. case -4:
  121. if (mmu_rx_ok() > 0)
  122. {
  123. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  124. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  125. puts_P(PSTR("MMU - ENABLED"));
  126. mmu_enabled = true;
  127. mmu_state = 1;
  128. }
  129. return;
  130. case 1:
  131. if (mmu_cmd) //command request ?
  132. {
  133. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  134. {
  135. int extruder = mmu_cmd - MMU_CMD_T0;
  136. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  137. mmu_printf_P(PSTR("T%d\n"), extruder);
  138. mmu_state = 3; // wait for response
  139. }
  140. mmu_cmd = 0;
  141. }
  142. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  143. {
  144. puts_P(PSTR("MMU <= 'P0'"));
  145. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  146. mmu_state = 2;
  147. }
  148. return;
  149. case 2: //response to command P0
  150. if (mmu_rx_ok() > 0)
  151. {
  152. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  153. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  154. mmu_state = 1;
  155. if (mmu_cmd == 0)
  156. mmu_ready = true;
  157. }
  158. else if ((mmu_last_request + 30000) < millis())
  159. { //resend request after timeout (30s)
  160. mmu_state = 1;
  161. }
  162. return;
  163. case 3: //response to commands T0-T4
  164. if (mmu_rx_ok() > 0)
  165. {
  166. printf_P(PSTR("MMU => 'ok'\n"), mmu_finda);
  167. mmu_ready = true;
  168. mmu_state = 1;
  169. }
  170. else if ((mmu_last_request + 30000) < millis())
  171. { //resend request after timeout (30s)
  172. mmu_state = 1;
  173. }
  174. return;
  175. }
  176. }
  177. void mmu_reset(void)
  178. {
  179. #ifdef MMU_HWRESET //HW - pulse reset pin
  180. digitalWrite(MMU_RST_PIN, LOW);
  181. _delay_us(100);
  182. digitalWrite(MMU_RST_PIN, HIGH);
  183. #else //SW - send X0 command
  184. mmu_puts_P(PSTR("X0\n"));
  185. #endif
  186. }
  187. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  188. {
  189. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  190. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  191. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  192. while ((mmu_rx_ok() <= 0) && (--timeout))
  193. delay_keep_alive(MMU_TODELAY);
  194. return timeout?1:0;
  195. }
  196. void mmu_command(uint8_t cmd)
  197. {
  198. mmu_cmd = cmd;
  199. mmu_ready = false;
  200. }
  201. bool mmu_get_response(void)
  202. {
  203. // printf_P(PSTR("mmu_get_response - begin\n"));
  204. KEEPALIVE_STATE(IN_PROCESS);
  205. while (mmu_cmd != 0)
  206. {
  207. // mmu_loop();
  208. delay_keep_alive(100);
  209. }
  210. while (!mmu_ready)
  211. {
  212. // mmu_loop();
  213. if (mmu_state != 3)
  214. break;
  215. delay_keep_alive(100);
  216. }
  217. bool ret = mmu_ready;
  218. mmu_ready = false;
  219. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  220. return ret;
  221. /* //waits for "ok" from mmu
  222. //function returns true if "ok" was received
  223. //if timeout is set to true function return false if there is no "ok" received before timeout
  224. bool response = true;
  225. LongTimer mmu_get_reponse_timeout;
  226. KEEPALIVE_STATE(IN_PROCESS);
  227. mmu_get_reponse_timeout.start();
  228. while (mmu_rx_ok() <= 0)
  229. {
  230. delay_keep_alive(100);
  231. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  232. { //5 minutes timeout
  233. response = false;
  234. break;
  235. }
  236. }
  237. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  238. return response;*/
  239. }
  240. void manage_response(bool move_axes, bool turn_off_nozzle)
  241. {
  242. bool response = false;
  243. mmu_print_saved = false;
  244. bool lcd_update_was_enabled = false;
  245. float hotend_temp_bckp = degTargetHotend(active_extruder);
  246. float z_position_bckp = current_position[Z_AXIS];
  247. float x_position_bckp = current_position[X_AXIS];
  248. float y_position_bckp = current_position[Y_AXIS];
  249. while(!response)
  250. {
  251. response = mmu_get_response(); //wait for "ok" from mmu
  252. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  253. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  254. if (lcd_update_enabled) {
  255. lcd_update_was_enabled = true;
  256. lcd_update_enable(false);
  257. }
  258. st_synchronize();
  259. mmu_print_saved = true;
  260. hotend_temp_bckp = degTargetHotend(active_extruder);
  261. if (move_axes) {
  262. z_position_bckp = current_position[Z_AXIS];
  263. x_position_bckp = current_position[X_AXIS];
  264. y_position_bckp = current_position[Y_AXIS];
  265. //lift z
  266. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  267. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  269. st_synchronize();
  270. //Move XY to side
  271. current_position[X_AXIS] = X_PAUSE_POS;
  272. current_position[Y_AXIS] = Y_PAUSE_POS;
  273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  274. st_synchronize();
  275. }
  276. if (turn_off_nozzle) {
  277. //set nozzle target temperature to 0
  278. setAllTargetHotends(0);
  279. printf_P(PSTR("MMU not responding\n"));
  280. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  281. setTargetHotend(hotend_temp_bckp, active_extruder);
  282. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  283. delay_keep_alive(1000);
  284. lcd_wait_for_heater();
  285. }
  286. }
  287. }
  288. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  289. }
  290. else if (mmu_print_saved) {
  291. printf_P(PSTR("MMU start responding\n"));
  292. lcd_clear();
  293. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  294. if (move_axes) {
  295. current_position[X_AXIS] = x_position_bckp;
  296. current_position[Y_AXIS] = y_position_bckp;
  297. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  298. st_synchronize();
  299. current_position[Z_AXIS] = z_position_bckp;
  300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  301. st_synchronize();
  302. }
  303. else {
  304. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  305. }
  306. }
  307. }
  308. if (lcd_update_was_enabled) lcd_update_enable(true);
  309. }
  310. void mmu_load_to_nozzle()
  311. {
  312. st_synchronize();
  313. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  314. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  315. current_position[E_AXIS] += 7.2f;
  316. float feedrate = 562;
  317. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  318. st_synchronize();
  319. current_position[E_AXIS] += 14.4f;
  320. feedrate = 871;
  321. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  322. st_synchronize();
  323. current_position[E_AXIS] += 36.0f;
  324. feedrate = 1393;
  325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  326. st_synchronize();
  327. current_position[E_AXIS] += 14.4f;
  328. feedrate = 871;
  329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  330. st_synchronize();
  331. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  332. }
  333. void mmu_M600_load_filament(bool automatic)
  334. {
  335. //load filament for mmu v2
  336. bool response = false;
  337. bool yes = false;
  338. if (!automatic) {
  339. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  340. if(yes) tmp_extruder = choose_extruder_menu();
  341. else tmp_extruder = mmu_extruder;
  342. }
  343. else {
  344. tmp_extruder = (tmp_extruder+1)%5;
  345. }
  346. lcd_update_enable(false);
  347. lcd_clear();
  348. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  349. lcd_print(" ");
  350. lcd_print(tmp_extruder + 1);
  351. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  352. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  353. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  354. mmu_command(MMU_CMD_T0 + tmp_extruder);
  355. manage_response(false, true);
  356. mmu_extruder = tmp_extruder; //filament change is finished
  357. mmu_load_to_nozzle();
  358. st_synchronize();
  359. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  361. }
  362. void extr_mov(float shift, float feed_rate)
  363. { //move extruder no matter what the current heater temperature is
  364. set_extrude_min_temp(.0);
  365. current_position[E_AXIS] += shift;
  366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  367. set_extrude_min_temp(EXTRUDE_MINTEMP);
  368. }
  369. void change_extr(int extr) { //switches multiplexer for extruders
  370. #ifdef SNMM
  371. st_synchronize();
  372. delay(100);
  373. disable_e0();
  374. disable_e1();
  375. disable_e2();
  376. mmu_extruder = extr;
  377. pinMode(E_MUX0_PIN, OUTPUT);
  378. pinMode(E_MUX1_PIN, OUTPUT);
  379. switch (extr) {
  380. case 1:
  381. WRITE(E_MUX0_PIN, HIGH);
  382. WRITE(E_MUX1_PIN, LOW);
  383. break;
  384. case 2:
  385. WRITE(E_MUX0_PIN, LOW);
  386. WRITE(E_MUX1_PIN, HIGH);
  387. break;
  388. case 3:
  389. WRITE(E_MUX0_PIN, HIGH);
  390. WRITE(E_MUX1_PIN, HIGH);
  391. break;
  392. default:
  393. WRITE(E_MUX0_PIN, LOW);
  394. WRITE(E_MUX1_PIN, LOW);
  395. break;
  396. }
  397. delay(100);
  398. #endif
  399. }
  400. int get_ext_nr()
  401. { //reads multiplexer input pins and return current extruder number (counted from 0)
  402. #ifndef SNMM
  403. return(mmu_extruder); //update needed
  404. #else
  405. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  406. #endif
  407. }
  408. void display_loading()
  409. {
  410. switch (mmu_extruder)
  411. {
  412. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  413. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  414. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  415. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  416. }
  417. }
  418. void extr_adj(int extruder) //loading filament for SNMM
  419. {
  420. #ifndef SNMM
  421. printf_P(PSTR("L%d \n"),extruder);
  422. fprintf_P(uart2io, PSTR("L%d\n"), extruder);
  423. //show which filament is currently loaded
  424. lcd_update_enable(false);
  425. lcd_clear();
  426. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  427. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  428. //else lcd.print(" ");
  429. lcd_print(" ");
  430. lcd_print(mmu_extruder + 1);
  431. // get response
  432. manage_response(false, false);
  433. lcd_update_enable(true);
  434. //lcd_return_to_status();
  435. #else
  436. bool correct;
  437. max_feedrate[E_AXIS] =80;
  438. //max_feedrate[E_AXIS] = 50;
  439. START:
  440. lcd_clear();
  441. lcd_set_cursor(0, 0);
  442. switch (extruder) {
  443. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  444. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  445. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  446. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  447. }
  448. KEEPALIVE_STATE(PAUSED_FOR_USER);
  449. do{
  450. extr_mov(0.001,1000);
  451. delay_keep_alive(2);
  452. } while (!lcd_clicked());
  453. //delay_keep_alive(500);
  454. KEEPALIVE_STATE(IN_HANDLER);
  455. st_synchronize();
  456. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  457. //if (!correct) goto START;
  458. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  459. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  460. extr_mov(bowden_length[extruder], 500);
  461. lcd_clear();
  462. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  463. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  464. else lcd_print(" ");
  465. lcd_print(mmu_extruder + 1);
  466. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  467. st_synchronize();
  468. max_feedrate[E_AXIS] = 50;
  469. lcd_update_enable(true);
  470. lcd_return_to_status();
  471. lcdDrawUpdate = 2;
  472. #endif
  473. }
  474. void extr_unload()
  475. { //unload just current filament for multimaterial printers
  476. #ifdef SNMM
  477. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  478. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  479. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  480. #endif
  481. if (degHotend0() > EXTRUDE_MINTEMP)
  482. {
  483. #ifndef SNMM
  484. st_synchronize();
  485. //show which filament is currently unloaded
  486. lcd_update_enable(false);
  487. lcd_clear();
  488. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  489. lcd_print(" ");
  490. lcd_print(mmu_extruder + 1);
  491. current_position[E_AXIS] -= 80;
  492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  493. st_synchronize();
  494. printf_P(PSTR("U0\n"));
  495. fprintf_P(uart2io, PSTR("U0\n"));
  496. // get response
  497. manage_response(false, true);
  498. lcd_update_enable(true);
  499. #else //SNMM
  500. lcd_clear();
  501. lcd_display_message_fullscreen_P(PSTR(""));
  502. max_feedrate[E_AXIS] = 50;
  503. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  504. lcd_print(" ");
  505. lcd_print(mmu_extruder + 1);
  506. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  507. if (current_position[Z_AXIS] < 15) {
  508. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  510. }
  511. current_position[E_AXIS] += 10; //extrusion
  512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  513. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  514. if (current_temperature[0] < 230) { //PLA & all other filaments
  515. current_position[E_AXIS] += 5.4;
  516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  517. current_position[E_AXIS] += 3.2;
  518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  519. current_position[E_AXIS] += 3;
  520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  521. }
  522. else { //ABS
  523. current_position[E_AXIS] += 3.1;
  524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  525. current_position[E_AXIS] += 3.1;
  526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  527. current_position[E_AXIS] += 4;
  528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  529. /*current_position[X_AXIS] += 23; //delay
  530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  531. current_position[X_AXIS] -= 23; //delay
  532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  533. delay_keep_alive(4700);
  534. }
  535. max_feedrate[E_AXIS] = 80;
  536. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  538. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  540. st_synchronize();
  541. //st_current_init();
  542. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  543. else st_current_set(2, tmp_motor_loud[2]);
  544. lcd_update_enable(true);
  545. lcd_return_to_status();
  546. max_feedrate[E_AXIS] = 50;
  547. #endif //SNMM
  548. }
  549. else
  550. {
  551. lcd_clear();
  552. lcd_set_cursor(0, 0);
  553. lcd_puts_P(_T(MSG_ERROR));
  554. lcd_set_cursor(0, 2);
  555. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  556. delay(2000);
  557. lcd_clear();
  558. }
  559. //lcd_return_to_status();
  560. }
  561. //wrapper functions for loading filament
  562. void extr_adj_0()
  563. {
  564. #ifndef SNMM
  565. enquecommand_P(PSTR("M701 E0"));
  566. #else
  567. change_extr(0);
  568. extr_adj(0);
  569. #endif
  570. }
  571. void extr_adj_1()
  572. {
  573. #ifndef SNMM
  574. enquecommand_P(PSTR("M701 E1"));
  575. #else
  576. change_extr(1);
  577. extr_adj(1);
  578. #endif
  579. }
  580. void extr_adj_2()
  581. {
  582. #ifndef SNMM
  583. enquecommand_P(PSTR("M701 E2"));
  584. #else
  585. change_extr(2);
  586. extr_adj(2);
  587. #endif
  588. }
  589. void extr_adj_3()
  590. {
  591. #ifndef SNMM
  592. enquecommand_P(PSTR("M701 E3"));
  593. #else
  594. change_extr(3);
  595. extr_adj(3);
  596. #endif
  597. }
  598. void extr_adj_4()
  599. {
  600. #ifndef SNMM
  601. enquecommand_P(PSTR("M701 E4"));
  602. #else
  603. change_extr(4);
  604. extr_adj(4);
  605. #endif
  606. }
  607. void load_all()
  608. {
  609. #ifndef SNMM
  610. enquecommand_P(PSTR("M701 E0"));
  611. enquecommand_P(PSTR("M701 E1"));
  612. enquecommand_P(PSTR("M701 E2"));
  613. enquecommand_P(PSTR("M701 E3"));
  614. enquecommand_P(PSTR("M701 E4"));
  615. #else
  616. for (int i = 0; i < 4; i++)
  617. {
  618. change_extr(i);
  619. extr_adj(i);
  620. }
  621. #endif
  622. }
  623. //wrapper functions for changing extruders
  624. void extr_change_0()
  625. {
  626. change_extr(0);
  627. lcd_return_to_status();
  628. }
  629. void extr_change_1()
  630. {
  631. change_extr(1);
  632. lcd_return_to_status();
  633. }
  634. void extr_change_2()
  635. {
  636. change_extr(2);
  637. lcd_return_to_status();
  638. }
  639. void extr_change_3()
  640. {
  641. change_extr(3);
  642. lcd_return_to_status();
  643. }
  644. //wrapper functions for unloading filament
  645. void extr_unload_all()
  646. {
  647. if (degHotend0() > EXTRUDE_MINTEMP)
  648. {
  649. for (int i = 0; i < 4; i++)
  650. {
  651. change_extr(i);
  652. extr_unload();
  653. }
  654. }
  655. else
  656. {
  657. lcd_clear();
  658. lcd_set_cursor(0, 0);
  659. lcd_puts_P(_T(MSG_ERROR));
  660. lcd_set_cursor(0, 2);
  661. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  662. delay(2000);
  663. lcd_clear();
  664. lcd_return_to_status();
  665. }
  666. }
  667. //unloading just used filament (for snmm)
  668. void extr_unload_used()
  669. {
  670. if (degHotend0() > EXTRUDE_MINTEMP) {
  671. for (int i = 0; i < 4; i++) {
  672. if (snmm_filaments_used & (1 << i)) {
  673. change_extr(i);
  674. extr_unload();
  675. }
  676. }
  677. snmm_filaments_used = 0;
  678. }
  679. else {
  680. lcd_clear();
  681. lcd_set_cursor(0, 0);
  682. lcd_puts_P(_T(MSG_ERROR));
  683. lcd_set_cursor(0, 2);
  684. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  685. delay(2000);
  686. lcd_clear();
  687. lcd_return_to_status();
  688. }
  689. }
  690. void extr_unload_0()
  691. {
  692. change_extr(0);
  693. extr_unload();
  694. }
  695. void extr_unload_1()
  696. {
  697. change_extr(1);
  698. extr_unload();
  699. }
  700. void extr_unload_2()
  701. {
  702. change_extr(2);
  703. extr_unload();
  704. }
  705. void extr_unload_3()
  706. {
  707. change_extr(3);
  708. extr_unload();
  709. }
  710. void extr_unload_4()
  711. {
  712. change_extr(4);
  713. extr_unload();
  714. }