fsensor.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "cmdqueue.h"
  10. #include "ultralcd.h"
  11. #include "ConfigurationStore.h"
  12. //! @name Basic parameters
  13. //! @{
  14. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  15. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  16. //! @}
  17. //! @name Optical quality measurement parameters
  18. //! @{
  19. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  20. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  21. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  22. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  23. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  24. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  25. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  26. //! @}
  27. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  28. #define FSENSOR_INT_PIN 63 //!< filament sensor interrupt pin PK1
  29. #define FSENSOR_INT_PIN_MSK 0x02 //!< filament sensor interrupt pin mask (bit1)
  30. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  31. extern void restore_print_from_ram_and_continue(float e_move);
  32. extern int8_t FSensorStateMenu;
  33. void fsensor_stop_and_save_print(void)
  34. {
  35. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  36. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  37. }
  38. void fsensor_restore_print_and_continue(void)
  39. {
  40. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  41. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  42. }
  43. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  44. uint8_t fsensor_int_pin_old = 0;
  45. int16_t fsensor_chunk_len = 0;
  46. //! enabled = initialized and sampled every chunk event
  47. bool fsensor_enabled = true;
  48. //! runout watching is done in fsensor_update (called from main loop)
  49. bool fsensor_watch_runout = true;
  50. //! not responding - is set if any communication error occurred during initialization or readout
  51. bool fsensor_not_responding = false;
  52. //! printing saved
  53. bool fsensor_printing_saved = false;
  54. //! enable/disable quality meassurement
  55. bool fsensor_oq_meassure_enabled = false;
  56. //! number of errors, updated in ISR
  57. uint8_t fsensor_err_cnt = 0;
  58. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  59. int16_t fsensor_st_cnt = 0;
  60. //! last dy value from pat9125 sensor (used in ISR)
  61. int16_t fsensor_dy_old = 0;
  62. //! log flag: 0=log disabled, 1=log enabled
  63. uint8_t fsensor_log = 1;
  64. //! @name filament autoload variables
  65. //! @{
  66. //! autoload feature enabled
  67. bool fsensor_autoload_enabled = true;
  68. //! autoload watching enable/disable flag
  69. bool fsensor_watch_autoload = false;
  70. //
  71. uint16_t fsensor_autoload_y;
  72. //
  73. uint8_t fsensor_autoload_c;
  74. //
  75. uint32_t fsensor_autoload_last_millis;
  76. //
  77. uint8_t fsensor_autoload_sum;
  78. //! @}
  79. //! @name filament optical quality measurement variables
  80. //! @{
  81. //! Measurement enable/disable flag
  82. bool fsensor_oq_meassure = false;
  83. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  84. uint8_t fsensor_oq_skipchunk;
  85. //! number of samples from start of measurement
  86. uint8_t fsensor_oq_samples;
  87. //! sum of steps in positive direction movements
  88. uint16_t fsensor_oq_st_sum;
  89. //! sum of deltas in positive direction movements
  90. uint16_t fsensor_oq_yd_sum;
  91. //! sum of errors during measurement
  92. uint16_t fsensor_oq_er_sum;
  93. //! max error counter value during measurement
  94. uint8_t fsensor_oq_er_max;
  95. //! minimum delta value
  96. int16_t fsensor_oq_yd_min;
  97. //! maximum delta value
  98. int16_t fsensor_oq_yd_max;
  99. //! sum of shutter value
  100. uint16_t fsensor_oq_sh_sum;
  101. //! @}
  102. void fsensor_stop_and_save_print(void)
  103. {
  104. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  105. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  106. }
  107. void fsensor_restore_print_and_continue(void)
  108. {
  109. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  110. fsensor_watch_runout = true;
  111. fsensor_err_cnt = 0;
  112. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  113. }
  114. void fsensor_init(void)
  115. {
  116. uint8_t pat9125 = pat9125_init();
  117. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  118. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  119. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  120. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  121. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  122. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  123. if (!pat9125)
  124. {
  125. fsensor = 0; //disable sensor
  126. fsensor_not_responding = true;
  127. }
  128. else
  129. fsensor_not_responding = false;
  130. if (fsensor)
  131. fsensor_enable();
  132. else
  133. fsensor_disable();
  134. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  135. }
  136. bool fsensor_enable(void)
  137. {
  138. uint8_t pat9125 = pat9125_init();
  139. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  140. if (pat9125)
  141. fsensor_not_responding = false;
  142. else
  143. fsensor_not_responding = true;
  144. fsensor_enabled = pat9125?true:false;
  145. fsensor_watch_runout = true;
  146. fsensor_oq_meassure = false;
  147. fsensor_err_cnt = 0;
  148. fsensor_dy_old = 0;
  149. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  150. FSensorStateMenu = fsensor_enabled?1:0;
  151. return fsensor_enabled;
  152. }
  153. void fsensor_disable(void)
  154. {
  155. fsensor_enabled = false;
  156. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  157. FSensorStateMenu = 0;
  158. }
  159. void fsensor_autoload_set(bool State)
  160. {
  161. fsensor_autoload_enabled = State;
  162. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  163. }
  164. void pciSetup(byte pin)
  165. {
  166. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  167. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  168. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  169. }
  170. void fsensor_autoload_check_start(void)
  171. {
  172. // puts_P(_N("fsensor_autoload_check_start\n"));
  173. if (!fsensor_enabled) return;
  174. if (!fsensor_autoload_enabled) return;
  175. if (fsensor_watch_autoload) return;
  176. if (!pat9125_update_y()) //update sensor
  177. {
  178. fsensor_disable();
  179. fsensor_not_responding = true;
  180. fsensor_watch_autoload = false;
  181. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  182. return;
  183. }
  184. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  185. fsensor_autoload_y = pat9125_y; //save current y value
  186. fsensor_autoload_c = 0; //reset number of changes counter
  187. fsensor_autoload_sum = 0;
  188. fsensor_autoload_last_millis = millis();
  189. fsensor_watch_runout = false;
  190. fsensor_watch_autoload = true;
  191. fsensor_err_cnt = 0;
  192. }
  193. void fsensor_autoload_check_stop(void)
  194. {
  195. // puts_P(_N("fsensor_autoload_check_stop\n"));
  196. if (!fsensor_enabled) return;
  197. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  198. if (!fsensor_autoload_enabled) return;
  199. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  200. if (!fsensor_watch_autoload) return;
  201. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  202. fsensor_autoload_sum = 0;
  203. fsensor_watch_autoload = false;
  204. fsensor_watch_runout = true;
  205. fsensor_err_cnt = 0;
  206. }
  207. bool fsensor_check_autoload(void)
  208. {
  209. if (!fsensor_enabled) return false;
  210. if (!fsensor_autoload_enabled) return false;
  211. if (!fsensor_watch_autoload)
  212. {
  213. fsensor_autoload_check_start();
  214. return false;
  215. }
  216. #if 0
  217. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  218. #endif
  219. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  220. fsensor_autoload_last_millis = millis();
  221. if (!pat9125_update_y()) //update sensor
  222. {
  223. fsensor_disable();
  224. fsensor_not_responding = true;
  225. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  226. return false;
  227. }
  228. int16_t dy = pat9125_y - fsensor_autoload_y;
  229. if (dy) //? dy value is nonzero
  230. {
  231. if (dy > 0) //? delta-y value is positive (inserting)
  232. {
  233. fsensor_autoload_sum += dy;
  234. fsensor_autoload_c += 3; //increment change counter by 3
  235. }
  236. else if (fsensor_autoload_c > 1)
  237. fsensor_autoload_c -= 2; //decrement change counter by 2
  238. fsensor_autoload_y = pat9125_y; //save current value
  239. }
  240. else if (fsensor_autoload_c > 0)
  241. fsensor_autoload_c--;
  242. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  243. #if 0
  244. puts_P(_N("fsensor_check_autoload\n"));
  245. if (fsensor_autoload_c != fsensor_autoload_c_old)
  246. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  247. #endif
  248. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  249. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  250. {
  251. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  252. return true;
  253. }
  254. return false;
  255. }
  256. void fsensor_oq_meassure_set(bool State)
  257. {
  258. fsensor_oq_meassure_enabled = State;
  259. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  260. }
  261. void fsensor_oq_meassure_start(uint8_t skip)
  262. {
  263. if (!fsensor_enabled) return;
  264. if (!fsensor_oq_meassure_enabled) return;
  265. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  266. fsensor_oq_skipchunk = skip;
  267. fsensor_oq_samples = 0;
  268. fsensor_oq_st_sum = 0;
  269. fsensor_oq_yd_sum = 0;
  270. fsensor_oq_er_sum = 0;
  271. fsensor_oq_er_max = 0;
  272. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  273. fsensor_oq_yd_max = 0;
  274. fsensor_oq_sh_sum = 0;
  275. pat9125_update();
  276. pat9125_y = 0;
  277. fsensor_watch_runout = false;
  278. fsensor_oq_meassure = true;
  279. }
  280. void fsensor_oq_meassure_stop(void)
  281. {
  282. if (!fsensor_enabled) return;
  283. if (!fsensor_oq_meassure_enabled) return;
  284. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  285. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  286. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  287. fsensor_oq_meassure = false;
  288. fsensor_watch_runout = true;
  289. fsensor_err_cnt = 0;
  290. }
  291. const char _OK[] PROGMEM = "OK";
  292. const char _NG[] PROGMEM = "NG!";
  293. bool fsensor_oq_result(void)
  294. {
  295. if (!fsensor_enabled) return true;
  296. if (!fsensor_oq_meassure_enabled) return true;
  297. printf_P(_N("fsensor_oq_result\n"));
  298. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  299. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  300. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  301. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  302. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  303. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  304. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  305. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  306. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  307. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  308. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  309. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  310. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  311. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  312. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  313. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  314. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  315. if (yd_qua >= 8) res_sh_avg = true;
  316. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  317. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  318. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  319. return res;
  320. }
  321. ISR(PCINT2_vect)
  322. {
  323. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  324. fsensor_int_pin_old = PINK;
  325. static bool _lock = false;
  326. if (_lock) return;
  327. _lock = true;
  328. int st_cnt = fsensor_st_cnt;
  329. fsensor_st_cnt = 0;
  330. sei();
  331. uint8_t old_err_cnt = fsensor_err_cnt;
  332. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  333. if (!pat9125_res)
  334. {
  335. fsensor_disable();
  336. fsensor_not_responding = true;
  337. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  338. }
  339. if (st_cnt != 0)
  340. { //movement
  341. if (st_cnt > 0) //positive movement
  342. {
  343. if (pat9125_y < 0)
  344. {
  345. if (fsensor_err_cnt)
  346. fsensor_err_cnt += 2;
  347. else
  348. fsensor_err_cnt++;
  349. }
  350. else if (pat9125_y > 0)
  351. {
  352. if (fsensor_err_cnt)
  353. fsensor_err_cnt--;
  354. }
  355. else //(pat9125_y == 0)
  356. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  357. fsensor_err_cnt++;
  358. if (fsensor_oq_meassure)
  359. {
  360. if (fsensor_oq_skipchunk)
  361. {
  362. fsensor_oq_skipchunk--;
  363. fsensor_err_cnt = 0;
  364. }
  365. else
  366. {
  367. if (st_cnt == fsensor_chunk_len)
  368. {
  369. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  370. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  371. }
  372. fsensor_oq_samples++;
  373. fsensor_oq_st_sum += st_cnt;
  374. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  375. if (fsensor_err_cnt > old_err_cnt)
  376. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  377. if (fsensor_oq_er_max < fsensor_err_cnt)
  378. fsensor_oq_er_max = fsensor_err_cnt;
  379. fsensor_oq_sh_sum += pat9125_s;
  380. }
  381. }
  382. }
  383. else //negative movement
  384. {
  385. }
  386. }
  387. else
  388. { //no movement
  389. }
  390. #ifdef DEBUG_FSENSOR_LOG
  391. if (fsensor_log)
  392. {
  393. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  394. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  395. }
  396. #endif //DEBUG_FSENSOR_LOG
  397. fsensor_dy_old = pat9125_y;
  398. pat9125_y = 0;
  399. _lock = false;
  400. return;
  401. }
  402. void fsensor_st_block_begin(block_t* bl)
  403. {
  404. if (!fsensor_enabled) return;
  405. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  406. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  407. {
  408. if (_READ(63)) _WRITE(63, LOW);
  409. else _WRITE(63, HIGH);
  410. }
  411. }
  412. void fsensor_st_block_chunk(block_t* bl, int cnt)
  413. {
  414. if (!fsensor_enabled) return;
  415. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  416. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  417. {
  418. if (_READ(63)) _WRITE(63, LOW);
  419. else _WRITE(63, HIGH);
  420. }
  421. }
  422. //! @brief filament sensor update (perform M600 on filament runout)
  423. //!
  424. //! Works only if filament sensor is enabled.
  425. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  426. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  427. void fsensor_update(void)
  428. {
  429. if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  430. {
  431. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  432. fsensor_autoload_enabled = false;
  433. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  434. fsensor_oq_meassure_enabled = true;
  435. fsensor_stop_and_save_print();
  436. fsensor_err_cnt = 0;
  437. fsensor_oq_meassure_start(0);
  438. enquecommand_front_P((PSTR("G1 E-3 F200")));
  439. process_commands();
  440. KEEPALIVE_STATE(IN_HANDLER);
  441. cmdqueue_pop_front();
  442. st_synchronize();
  443. enquecommand_front_P((PSTR("G1 E3 F200")));
  444. process_commands();
  445. KEEPALIVE_STATE(IN_HANDLER);
  446. cmdqueue_pop_front();
  447. st_synchronize();
  448. uint8_t err_cnt = fsensor_err_cnt;
  449. fsensor_oq_meassure_stop();
  450. bool err = false;
  451. err |= (err_cnt > 1);
  452. err |= (fsensor_oq_er_sum > 2);
  453. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  454. if (!err)
  455. {
  456. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  457. fsensor_restore_print_and_continue();
  458. }
  459. else
  460. {
  461. printf_P(PSTR("fsensor_update - M600\n"));
  462. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  463. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  464. enquecommand_front_P(PSTR("FSENSOR_RECOVER"));
  465. enquecommand_front_P((PSTR("M600")));
  466. fsensor_watch_runout = false;
  467. }
  468. fsensor_autoload_enabled = autoload_enabled_tmp;
  469. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  470. }
  471. }
  472. void fsensor_setup_interrupt(void)
  473. {
  474. pinMode(FSENSOR_INT_PIN, OUTPUT);
  475. digitalWrite(FSENSOR_INT_PIN, LOW);
  476. fsensor_int_pin_old = 0;
  477. pciSetup(FSENSOR_INT_PIN);
  478. }