Marlin_main.cpp 325 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. int mbl_z_probe_nr = 4; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  513. }
  514. #ifdef MESH_BED_LEVELING
  515. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  516. #endif
  517. // Factory reset function
  518. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  519. // Level input parameter sets depth of reset
  520. int er_progress = 0;
  521. static void factory_reset(char level)
  522. {
  523. lcd_clear();
  524. switch (level) {
  525. // Level 0: Language reset
  526. case 0:
  527. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  528. WRITE(BEEPER, HIGH);
  529. _delay_ms(100);
  530. WRITE(BEEPER, LOW);
  531. lang_reset();
  532. break;
  533. //Level 1: Reset statistics
  534. case 1:
  535. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  536. WRITE(BEEPER, HIGH);
  537. _delay_ms(100);
  538. WRITE(BEEPER, LOW);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. //_delay_ms(2000);
  587. break;
  588. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  589. case 3:
  590. lcd_puts_P(PSTR("Factory RESET"));
  591. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  592. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. er_progress = 0;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. // Erase EEPROM
  601. for (int i = 0; i < 4096; i++) {
  602. eeprom_update_byte((uint8_t*)i, 0xFF);
  603. if (i % 41 == 0) {
  604. er_progress++;
  605. lcd_puts_at_P(3, 3, PSTR(" "));
  606. lcd_set_cursor(3, 3);
  607. lcd_print(er_progress);
  608. lcd_puts_P(PSTR("%"));
  609. }
  610. }
  611. break;
  612. case 4:
  613. bowden_menu();
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. extern "C" {
  620. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  621. }
  622. int uart_putchar(char c, FILE *)
  623. {
  624. MYSERIAL.write(c);
  625. return 0;
  626. }
  627. void lcd_splash()
  628. {
  629. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  630. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  631. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  632. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  633. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  634. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. uint8_t check_printer_version()
  688. {
  689. uint8_t version_changed = 0;
  690. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  691. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  692. if (printer_type != PRINTER_TYPE) {
  693. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  694. else version_changed |= 0b10;
  695. }
  696. if (motherboard != MOTHERBOARD) {
  697. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  698. else version_changed |= 0b01;
  699. }
  700. return version_changed;
  701. }
  702. #ifdef BOOTAPP
  703. #include "bootapp.h" //bootloader support
  704. #endif //BOOTAPP
  705. #if (LANG_MODE != 0) //secondary language support
  706. #ifdef W25X20CL
  707. // language update from external flash
  708. #define LANGBOOT_BLOCKSIZE 0x1000u
  709. #define LANGBOOT_RAMBUFFER 0x0800
  710. void update_sec_lang_from_external_flash()
  711. {
  712. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  713. {
  714. uint8_t lang = boot_reserved >> 4;
  715. uint8_t state = boot_reserved & 0xf;
  716. lang_table_header_t header;
  717. uint32_t src_addr;
  718. if (lang_get_header(lang, &header, &src_addr))
  719. {
  720. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  721. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  722. _delay(100);
  723. boot_reserved = (state + 1) | (lang << 4);
  724. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  725. {
  726. cli();
  727. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  728. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  729. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  730. if (state == 0)
  731. {
  732. //TODO - check header integrity
  733. }
  734. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  735. }
  736. else
  737. {
  738. //TODO - check sec lang data integrity
  739. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  740. }
  741. }
  742. }
  743. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  744. }
  745. #ifdef DEBUG_W25X20CL
  746. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  747. {
  748. lang_table_header_t header;
  749. uint8_t count = 0;
  750. uint32_t addr = 0x00000;
  751. while (1)
  752. {
  753. printf_P(_n("LANGTABLE%d:"), count);
  754. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  755. if (header.magic != LANG_MAGIC)
  756. {
  757. printf_P(_n("NG!\n"));
  758. break;
  759. }
  760. printf_P(_n("OK\n"));
  761. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  762. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  763. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  764. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  765. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  766. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  767. addr += header.size;
  768. codes[count] = header.code;
  769. count ++;
  770. }
  771. return count;
  772. }
  773. void list_sec_lang_from_external_flash()
  774. {
  775. uint16_t codes[8];
  776. uint8_t count = lang_xflash_enum_codes(codes);
  777. printf_P(_n("XFlash lang count = %hhd\n"), count);
  778. }
  779. #endif //DEBUG_W25X20CL
  780. #endif //W25X20CL
  781. #endif //(LANG_MODE != 0)
  782. // "Setup" function is called by the Arduino framework on startup.
  783. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  784. // are initialized by the main() routine provided by the Arduino framework.
  785. void setup()
  786. {
  787. mmu_init();
  788. ultralcd_init();
  789. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  790. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  791. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  792. spi_init();
  793. lcd_splash();
  794. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  795. #ifdef W25X20CL
  796. if (!w25x20cl_init())
  797. kill(_i("External SPI flash W25X20CL not responding."));
  798. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  799. optiboot_w25x20cl_enter();
  800. #endif
  801. #if (LANG_MODE != 0) //secondary language support
  802. #ifdef W25X20CL
  803. if (w25x20cl_init())
  804. update_sec_lang_from_external_flash();
  805. #endif //W25X20CL
  806. #endif //(LANG_MODE != 0)
  807. setup_killpin();
  808. setup_powerhold();
  809. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  810. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  811. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  812. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  813. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  814. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  815. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  816. if (farm_mode)
  817. {
  818. no_response = true; //we need confirmation by recieving PRUSA thx
  819. important_status = 8;
  820. prusa_statistics(8);
  821. selectedSerialPort = 1;
  822. #ifdef TMC2130
  823. //increased extruder current (PFW363)
  824. tmc2130_current_h[E_AXIS] = 36;
  825. tmc2130_current_r[E_AXIS] = 36;
  826. #endif //TMC2130
  827. #ifdef FILAMENT_SENSOR
  828. //disabled filament autoload (PFW360)
  829. fsensor_autoload_set(false);
  830. #endif //FILAMENT_SENSOR
  831. }
  832. MYSERIAL.begin(BAUDRATE);
  833. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  834. #ifndef W25X20CL
  835. SERIAL_PROTOCOLLNPGM("start");
  836. #endif //W25X20CL
  837. stdout = uartout;
  838. SERIAL_ECHO_START;
  839. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  840. #ifdef DEBUG_SEC_LANG
  841. lang_table_header_t header;
  842. uint32_t src_addr = 0x00000;
  843. if (lang_get_header(1, &header, &src_addr))
  844. {
  845. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  846. #define LT_PRINT_TEST 2
  847. // flash usage
  848. // total p.test
  849. //0 252718 t+c text code
  850. //1 253142 424 170 254
  851. //2 253040 322 164 158
  852. //3 253248 530 135 395
  853. #if (LT_PRINT_TEST==1) //not optimized printf
  854. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  855. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  856. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  857. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  858. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  859. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  860. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  861. #elif (LT_PRINT_TEST==2) //optimized printf
  862. printf_P(
  863. _n(
  864. " _src_addr = 0x%08lx\n"
  865. " _lt_magic = 0x%08lx %S\n"
  866. " _lt_size = 0x%04x (%d)\n"
  867. " _lt_count = 0x%04x (%d)\n"
  868. " _lt_chsum = 0x%04x\n"
  869. " _lt_code = 0x%04x (%c%c)\n"
  870. " _lt_resv1 = 0x%08lx\n"
  871. ),
  872. src_addr,
  873. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  874. header.size, header.size,
  875. header.count, header.count,
  876. header.checksum,
  877. header.code, header.code >> 8, header.code & 0xff,
  878. header.signature
  879. );
  880. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  881. MYSERIAL.print(" _src_addr = 0x");
  882. MYSERIAL.println(src_addr, 16);
  883. MYSERIAL.print(" _lt_magic = 0x");
  884. MYSERIAL.print(header.magic, 16);
  885. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  886. MYSERIAL.print(" _lt_size = 0x");
  887. MYSERIAL.print(header.size, 16);
  888. MYSERIAL.print(" (");
  889. MYSERIAL.print(header.size, 10);
  890. MYSERIAL.println(")");
  891. MYSERIAL.print(" _lt_count = 0x");
  892. MYSERIAL.print(header.count, 16);
  893. MYSERIAL.print(" (");
  894. MYSERIAL.print(header.count, 10);
  895. MYSERIAL.println(")");
  896. MYSERIAL.print(" _lt_chsum = 0x");
  897. MYSERIAL.println(header.checksum, 16);
  898. MYSERIAL.print(" _lt_code = 0x");
  899. MYSERIAL.print(header.code, 16);
  900. MYSERIAL.print(" (");
  901. MYSERIAL.print((char)(header.code >> 8), 0);
  902. MYSERIAL.print((char)(header.code & 0xff), 0);
  903. MYSERIAL.println(")");
  904. MYSERIAL.print(" _lt_resv1 = 0x");
  905. MYSERIAL.println(header.signature, 16);
  906. #endif //(LT_PRINT_TEST==)
  907. #undef LT_PRINT_TEST
  908. #if 0
  909. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  910. for (uint16_t i = 0; i < 1024; i++)
  911. {
  912. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  913. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  914. if ((i % 16) == 15) putchar('\n');
  915. }
  916. #endif
  917. uint16_t sum = 0;
  918. for (uint16_t i = 0; i < header.size; i++)
  919. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  920. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  921. sum -= header.checksum; //subtract checksum
  922. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  923. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  924. if (sum == header.checksum)
  925. printf_P(_n("Checksum OK\n"), sum);
  926. else
  927. printf_P(_n("Checksum NG\n"), sum);
  928. }
  929. else
  930. printf_P(_n("lang_get_header failed!\n"));
  931. #if 0
  932. for (uint16_t i = 0; i < 1024*10; i++)
  933. {
  934. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  935. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  936. if ((i % 16) == 15) putchar('\n');
  937. }
  938. #endif
  939. #if 0
  940. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  941. for (int i = 0; i < 4096; ++i) {
  942. int b = eeprom_read_byte((unsigned char*)i);
  943. if (b != 255) {
  944. SERIAL_ECHO(i);
  945. SERIAL_ECHO(":");
  946. SERIAL_ECHO(b);
  947. SERIAL_ECHOLN("");
  948. }
  949. }
  950. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  951. #endif
  952. #endif //DEBUG_SEC_LANG
  953. // Check startup - does nothing if bootloader sets MCUSR to 0
  954. byte mcu = MCUSR;
  955. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  956. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  957. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  958. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  959. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  960. if (mcu & 1) puts_P(MSG_POWERUP);
  961. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  962. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  963. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  964. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  965. MCUSR = 0;
  966. //SERIAL_ECHORPGM(MSG_MARLIN);
  967. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  968. #ifdef STRING_VERSION_CONFIG_H
  969. #ifdef STRING_CONFIG_H_AUTHOR
  970. SERIAL_ECHO_START;
  971. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  972. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  973. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  974. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  975. SERIAL_ECHOPGM("Compiled: ");
  976. SERIAL_ECHOLNPGM(__DATE__);
  977. #endif
  978. #endif
  979. SERIAL_ECHO_START;
  980. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  981. SERIAL_ECHO(freeMemory());
  982. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  983. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  984. //lcd_update_enable(false); // why do we need this?? - andre
  985. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  986. bool previous_settings_retrieved = false;
  987. uint8_t hw_changed = check_printer_version();
  988. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  989. previous_settings_retrieved = Config_RetrieveSettings();
  990. }
  991. else { //printer version was changed so use default settings
  992. Config_ResetDefault();
  993. }
  994. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  995. tp_init(); // Initialize temperature loop
  996. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  997. plan_init(); // Initialize planner;
  998. factory_reset();
  999. lcd_encoder_diff=0;
  1000. #ifdef TMC2130
  1001. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1002. if (silentMode == 0xff) silentMode = 0;
  1003. tmc2130_mode = TMC2130_MODE_NORMAL;
  1004. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1005. if (crashdet && !farm_mode)
  1006. {
  1007. crashdet_enable();
  1008. puts_P(_N("CrashDetect ENABLED!"));
  1009. }
  1010. else
  1011. {
  1012. crashdet_disable();
  1013. puts_P(_N("CrashDetect DISABLED"));
  1014. }
  1015. #ifdef TMC2130_LINEARITY_CORRECTION
  1016. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1017. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1018. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1019. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1020. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1021. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1022. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1023. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1024. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1025. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1026. #endif //TMC2130_LINEARITY_CORRECTION
  1027. #ifdef TMC2130_VARIABLE_RESOLUTION
  1028. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1029. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1030. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1031. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1032. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1033. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1034. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1035. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1036. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1037. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1038. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1039. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1040. #else //TMC2130_VARIABLE_RESOLUTION
  1041. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1042. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1043. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1044. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1045. #endif //TMC2130_VARIABLE_RESOLUTION
  1046. #endif //TMC2130
  1047. st_init(); // Initialize stepper, this enables interrupts!
  1048. #ifdef TMC2130
  1049. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1050. update_mode_profile();
  1051. tmc2130_init();
  1052. #endif //TMC2130
  1053. setup_photpin();
  1054. servo_init();
  1055. // Reset the machine correction matrix.
  1056. // It does not make sense to load the correction matrix until the machine is homed.
  1057. world2machine_reset();
  1058. #ifdef FILAMENT_SENSOR
  1059. fsensor_init();
  1060. #endif //FILAMENT_SENSOR
  1061. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1062. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1063. #endif
  1064. setup_homepin();
  1065. #ifdef TMC2130
  1066. if (1) {
  1067. // try to run to zero phase before powering the Z motor.
  1068. // Move in negative direction
  1069. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1070. // Round the current micro-micro steps to micro steps.
  1071. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1072. // Until the phase counter is reset to zero.
  1073. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1074. _delay(2);
  1075. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1076. _delay(2);
  1077. }
  1078. }
  1079. #endif //TMC2130
  1080. #if defined(Z_AXIS_ALWAYS_ON)
  1081. enable_z();
  1082. #endif
  1083. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1084. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1085. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1086. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1087. if (farm_mode)
  1088. {
  1089. prusa_statistics(8);
  1090. }
  1091. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1092. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1093. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1094. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1095. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1096. // where all the EEPROM entries are set to 0x0ff.
  1097. // Once a firmware boots up, it forces at least a language selection, which changes
  1098. // EEPROM_LANG to number lower than 0x0ff.
  1099. // 1) Set a high power mode.
  1100. #ifdef TMC2130
  1101. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1102. tmc2130_mode = TMC2130_MODE_NORMAL;
  1103. #endif //TMC2130
  1104. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1105. }
  1106. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1107. // but this times out if a blocking dialog is shown in setup().
  1108. card.initsd();
  1109. #ifdef DEBUG_SD_SPEED_TEST
  1110. if (card.cardOK)
  1111. {
  1112. uint8_t* buff = (uint8_t*)block_buffer;
  1113. uint32_t block = 0;
  1114. uint32_t sumr = 0;
  1115. uint32_t sumw = 0;
  1116. for (int i = 0; i < 1024; i++)
  1117. {
  1118. uint32_t u = _micros();
  1119. bool res = card.card.readBlock(i, buff);
  1120. u = _micros() - u;
  1121. if (res)
  1122. {
  1123. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1124. sumr += u;
  1125. u = _micros();
  1126. res = card.card.writeBlock(i, buff);
  1127. u = _micros() - u;
  1128. if (res)
  1129. {
  1130. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1131. sumw += u;
  1132. }
  1133. else
  1134. {
  1135. printf_P(PSTR("writeBlock %4d error\n"), i);
  1136. break;
  1137. }
  1138. }
  1139. else
  1140. {
  1141. printf_P(PSTR("readBlock %4d error\n"), i);
  1142. break;
  1143. }
  1144. }
  1145. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1146. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1147. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1148. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1149. }
  1150. else
  1151. printf_P(PSTR("Card NG!\n"));
  1152. #endif //DEBUG_SD_SPEED_TEST
  1153. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1154. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1155. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1156. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1157. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1158. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1159. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1160. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1161. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1162. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1163. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1164. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1165. #ifdef SNMM
  1166. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1167. int _z = BOWDEN_LENGTH;
  1168. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1169. }
  1170. #endif
  1171. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1172. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1173. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1174. #if (LANG_MODE != 0) //secondary language support
  1175. #ifdef DEBUG_W25X20CL
  1176. W25X20CL_SPI_ENTER();
  1177. uint8_t uid[8]; // 64bit unique id
  1178. w25x20cl_rd_uid(uid);
  1179. puts_P(_n("W25X20CL UID="));
  1180. for (uint8_t i = 0; i < 8; i ++)
  1181. printf_P(PSTR("%02hhx"), uid[i]);
  1182. putchar('\n');
  1183. list_sec_lang_from_external_flash();
  1184. #endif //DEBUG_W25X20CL
  1185. // lang_reset();
  1186. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1187. lcd_language();
  1188. #ifdef DEBUG_SEC_LANG
  1189. uint16_t sec_lang_code = lang_get_code(1);
  1190. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1191. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1192. lang_print_sec_lang(uartout);
  1193. #endif //DEBUG_SEC_LANG
  1194. #endif //(LANG_MODE != 0)
  1195. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1196. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1197. temp_cal_active = false;
  1198. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1199. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1200. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1201. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1202. int16_t z_shift = 0;
  1203. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1204. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1205. temp_cal_active = false;
  1206. }
  1207. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1208. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1209. }
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1211. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1212. }
  1213. //mbl_mode_init();
  1214. mbl_settings_init();
  1215. check_babystep(); //checking if Z babystep is in allowed range
  1216. #ifdef UVLO_SUPPORT
  1217. setup_uvlo_interrupt();
  1218. #endif //UVLO_SUPPORT
  1219. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1220. setup_fan_interrupt();
  1221. #endif //DEBUG_DISABLE_FANCHECK
  1222. #ifdef PAT9125
  1223. fsensor_setup_interrupt();
  1224. #endif //PAT9125
  1225. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1226. #ifndef DEBUG_DISABLE_STARTMSGS
  1227. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1228. show_fw_version_warnings();
  1229. switch (hw_changed) {
  1230. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1231. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1232. case(0b01):
  1233. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1234. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1235. break;
  1236. case(0b10):
  1237. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1238. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1239. break;
  1240. case(0b11):
  1241. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1242. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1243. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1244. break;
  1245. default: break; //no change, show no message
  1246. }
  1247. if (!previous_settings_retrieved) {
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1249. Config_StoreSettings();
  1250. }
  1251. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1252. lcd_wizard(WizState::Run);
  1253. }
  1254. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1255. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1256. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1257. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1258. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1259. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1260. // Show the message.
  1261. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1262. }
  1263. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1264. // Show the message.
  1265. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1266. lcd_update_enable(true);
  1267. }
  1268. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1269. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1270. lcd_update_enable(true);
  1271. }
  1272. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1273. // Show the message.
  1274. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1275. }
  1276. }
  1277. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1278. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1279. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1280. update_current_firmware_version_to_eeprom();
  1281. lcd_selftest();
  1282. }
  1283. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1284. KEEPALIVE_STATE(IN_PROCESS);
  1285. #endif //DEBUG_DISABLE_STARTMSGS
  1286. lcd_update_enable(true);
  1287. lcd_clear();
  1288. lcd_update(2);
  1289. // Store the currently running firmware into an eeprom,
  1290. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1291. update_current_firmware_version_to_eeprom();
  1292. #ifdef TMC2130
  1293. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1294. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1295. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1296. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1297. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1298. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1299. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1300. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1301. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1302. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1303. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1304. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1305. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1306. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1307. #endif //TMC2130
  1308. #ifdef UVLO_SUPPORT
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1310. /*
  1311. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1312. else {
  1313. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1314. lcd_update_enable(true);
  1315. lcd_update(2);
  1316. lcd_setstatuspgm(_T(WELCOME_MSG));
  1317. }
  1318. */
  1319. manage_heater(); // Update temperatures
  1320. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1321. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1322. #endif
  1323. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1324. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1325. puts_P(_N("Automatic recovery!"));
  1326. #endif
  1327. recover_print(1);
  1328. }
  1329. else{
  1330. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1331. puts_P(_N("Normal recovery!"));
  1332. #endif
  1333. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1334. else {
  1335. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1336. lcd_update_enable(true);
  1337. lcd_update(2);
  1338. lcd_setstatuspgm(_T(WELCOME_MSG));
  1339. }
  1340. }
  1341. }
  1342. #endif //UVLO_SUPPORT
  1343. KEEPALIVE_STATE(NOT_BUSY);
  1344. #ifdef WATCHDOG
  1345. wdt_enable(WDTO_4S);
  1346. #endif //WATCHDOG
  1347. }
  1348. void trace();
  1349. #define CHUNK_SIZE 64 // bytes
  1350. #define SAFETY_MARGIN 1
  1351. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1352. int chunkHead = 0;
  1353. void serial_read_stream() {
  1354. setAllTargetHotends(0);
  1355. setTargetBed(0);
  1356. lcd_clear();
  1357. lcd_puts_P(PSTR(" Upload in progress"));
  1358. // first wait for how many bytes we will receive
  1359. uint32_t bytesToReceive;
  1360. // receive the four bytes
  1361. char bytesToReceiveBuffer[4];
  1362. for (int i=0; i<4; i++) {
  1363. int data;
  1364. while ((data = MYSERIAL.read()) == -1) {};
  1365. bytesToReceiveBuffer[i] = data;
  1366. }
  1367. // make it a uint32
  1368. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1369. // we're ready, notify the sender
  1370. MYSERIAL.write('+');
  1371. // lock in the routine
  1372. uint32_t receivedBytes = 0;
  1373. while (prusa_sd_card_upload) {
  1374. int i;
  1375. for (i=0; i<CHUNK_SIZE; i++) {
  1376. int data;
  1377. // check if we're not done
  1378. if (receivedBytes == bytesToReceive) {
  1379. break;
  1380. }
  1381. // read the next byte
  1382. while ((data = MYSERIAL.read()) == -1) {};
  1383. receivedBytes++;
  1384. // save it to the chunk
  1385. chunk[i] = data;
  1386. }
  1387. // write the chunk to SD
  1388. card.write_command_no_newline(&chunk[0]);
  1389. // notify the sender we're ready for more data
  1390. MYSERIAL.write('+');
  1391. // for safety
  1392. manage_heater();
  1393. // check if we're done
  1394. if(receivedBytes == bytesToReceive) {
  1395. trace(); // beep
  1396. card.closefile();
  1397. prusa_sd_card_upload = false;
  1398. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1399. }
  1400. }
  1401. }
  1402. /**
  1403. * Output a "busy" message at regular intervals
  1404. * while the machine is not accepting commands.
  1405. */
  1406. void host_keepalive() {
  1407. #ifndef HOST_KEEPALIVE_FEATURE
  1408. return;
  1409. #endif //HOST_KEEPALIVE_FEATURE
  1410. if (farm_mode) return;
  1411. long ms = _millis();
  1412. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1413. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1414. switch (busy_state) {
  1415. case IN_HANDLER:
  1416. case IN_PROCESS:
  1417. SERIAL_ECHO_START;
  1418. SERIAL_ECHOLNPGM("busy: processing");
  1419. break;
  1420. case PAUSED_FOR_USER:
  1421. SERIAL_ECHO_START;
  1422. SERIAL_ECHOLNPGM("busy: paused for user");
  1423. break;
  1424. case PAUSED_FOR_INPUT:
  1425. SERIAL_ECHO_START;
  1426. SERIAL_ECHOLNPGM("busy: paused for input");
  1427. break;
  1428. default:
  1429. break;
  1430. }
  1431. }
  1432. prev_busy_signal_ms = ms;
  1433. }
  1434. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1435. // Before loop(), the setup() function is called by the main() routine.
  1436. void loop()
  1437. {
  1438. KEEPALIVE_STATE(NOT_BUSY);
  1439. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1440. {
  1441. is_usb_printing = true;
  1442. usb_printing_counter--;
  1443. _usb_timer = _millis();
  1444. }
  1445. if (usb_printing_counter == 0)
  1446. {
  1447. is_usb_printing = false;
  1448. }
  1449. if (prusa_sd_card_upload)
  1450. {
  1451. //we read byte-by byte
  1452. serial_read_stream();
  1453. } else
  1454. {
  1455. get_command();
  1456. #ifdef SDSUPPORT
  1457. card.checkautostart(false);
  1458. #endif
  1459. if(buflen)
  1460. {
  1461. cmdbuffer_front_already_processed = false;
  1462. #ifdef SDSUPPORT
  1463. if(card.saving)
  1464. {
  1465. // Saving a G-code file onto an SD-card is in progress.
  1466. // Saving starts with M28, saving until M29 is seen.
  1467. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1468. card.write_command(CMDBUFFER_CURRENT_STRING);
  1469. if(card.logging)
  1470. process_commands();
  1471. else
  1472. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1473. } else {
  1474. card.closefile();
  1475. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1476. }
  1477. } else {
  1478. process_commands();
  1479. }
  1480. #else
  1481. process_commands();
  1482. #endif //SDSUPPORT
  1483. if (! cmdbuffer_front_already_processed && buflen)
  1484. {
  1485. // ptr points to the start of the block currently being processed.
  1486. // The first character in the block is the block type.
  1487. char *ptr = cmdbuffer + bufindr;
  1488. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1489. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1490. union {
  1491. struct {
  1492. char lo;
  1493. char hi;
  1494. } lohi;
  1495. uint16_t value;
  1496. } sdlen;
  1497. sdlen.value = 0;
  1498. {
  1499. // This block locks the interrupts globally for 3.25 us,
  1500. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1501. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1502. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1503. cli();
  1504. // Reset the command to something, which will be ignored by the power panic routine,
  1505. // so this buffer length will not be counted twice.
  1506. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1507. // Extract the current buffer length.
  1508. sdlen.lohi.lo = *ptr ++;
  1509. sdlen.lohi.hi = *ptr;
  1510. // and pass it to the planner queue.
  1511. planner_add_sd_length(sdlen.value);
  1512. sei();
  1513. }
  1514. }
  1515. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1516. cli();
  1517. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1518. // and one for each command to previous block in the planner queue.
  1519. planner_add_sd_length(1);
  1520. sei();
  1521. }
  1522. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1523. // this block's SD card length will not be counted twice as its command type has been replaced
  1524. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1525. cmdqueue_pop_front();
  1526. }
  1527. host_keepalive();
  1528. }
  1529. }
  1530. //check heater every n milliseconds
  1531. manage_heater();
  1532. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1533. checkHitEndstops();
  1534. lcd_update(0);
  1535. #ifdef TMC2130
  1536. tmc2130_check_overtemp();
  1537. if (tmc2130_sg_crash)
  1538. {
  1539. uint8_t crash = tmc2130_sg_crash;
  1540. tmc2130_sg_crash = 0;
  1541. // crashdet_stop_and_save_print();
  1542. switch (crash)
  1543. {
  1544. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1545. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1546. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1547. }
  1548. }
  1549. #endif //TMC2130
  1550. mmu_loop();
  1551. }
  1552. #define DEFINE_PGM_READ_ANY(type, reader) \
  1553. static inline type pgm_read_any(const type *p) \
  1554. { return pgm_read_##reader##_near(p); }
  1555. DEFINE_PGM_READ_ANY(float, float);
  1556. DEFINE_PGM_READ_ANY(signed char, byte);
  1557. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1558. static const PROGMEM type array##_P[3] = \
  1559. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1560. static inline type array(int axis) \
  1561. { return pgm_read_any(&array##_P[axis]); } \
  1562. type array##_ext(int axis) \
  1563. { return pgm_read_any(&array##_P[axis]); }
  1564. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1565. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1566. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1567. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1568. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1569. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1570. static void axis_is_at_home(int axis) {
  1571. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1572. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1573. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1574. }
  1575. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1576. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1577. //! @return original feedmultiply
  1578. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1579. saved_feedrate = feedrate;
  1580. int l_feedmultiply = feedmultiply;
  1581. feedmultiply = 100;
  1582. previous_millis_cmd = _millis();
  1583. enable_endstops(enable_endstops_now);
  1584. return l_feedmultiply;
  1585. }
  1586. //! @param original_feedmultiply feedmultiply to restore
  1587. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1588. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1589. enable_endstops(false);
  1590. #endif
  1591. feedrate = saved_feedrate;
  1592. feedmultiply = original_feedmultiply;
  1593. previous_millis_cmd = _millis();
  1594. }
  1595. #ifdef ENABLE_AUTO_BED_LEVELING
  1596. #ifdef AUTO_BED_LEVELING_GRID
  1597. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1598. {
  1599. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1600. planeNormal.debug("planeNormal");
  1601. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1602. //bedLevel.debug("bedLevel");
  1603. //plan_bed_level_matrix.debug("bed level before");
  1604. //vector_3 uncorrected_position = plan_get_position_mm();
  1605. //uncorrected_position.debug("position before");
  1606. vector_3 corrected_position = plan_get_position();
  1607. // corrected_position.debug("position after");
  1608. current_position[X_AXIS] = corrected_position.x;
  1609. current_position[Y_AXIS] = corrected_position.y;
  1610. current_position[Z_AXIS] = corrected_position.z;
  1611. // put the bed at 0 so we don't go below it.
  1612. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. }
  1615. #else // not AUTO_BED_LEVELING_GRID
  1616. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1617. plan_bed_level_matrix.set_to_identity();
  1618. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1619. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1620. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1621. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1622. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1623. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1624. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1625. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1626. vector_3 corrected_position = plan_get_position();
  1627. current_position[X_AXIS] = corrected_position.x;
  1628. current_position[Y_AXIS] = corrected_position.y;
  1629. current_position[Z_AXIS] = corrected_position.z;
  1630. // put the bed at 0 so we don't go below it.
  1631. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1632. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1633. }
  1634. #endif // AUTO_BED_LEVELING_GRID
  1635. static void run_z_probe() {
  1636. plan_bed_level_matrix.set_to_identity();
  1637. feedrate = homing_feedrate[Z_AXIS];
  1638. // move down until you find the bed
  1639. float zPosition = -10;
  1640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1641. st_synchronize();
  1642. // we have to let the planner know where we are right now as it is not where we said to go.
  1643. zPosition = st_get_position_mm(Z_AXIS);
  1644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1645. // move up the retract distance
  1646. zPosition += home_retract_mm(Z_AXIS);
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1648. st_synchronize();
  1649. // move back down slowly to find bed
  1650. feedrate = homing_feedrate[Z_AXIS]/4;
  1651. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1653. st_synchronize();
  1654. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1655. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1656. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1657. }
  1658. static void do_blocking_move_to(float x, float y, float z) {
  1659. float oldFeedRate = feedrate;
  1660. feedrate = homing_feedrate[Z_AXIS];
  1661. current_position[Z_AXIS] = z;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1663. st_synchronize();
  1664. feedrate = XY_TRAVEL_SPEED;
  1665. current_position[X_AXIS] = x;
  1666. current_position[Y_AXIS] = y;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. feedrate = oldFeedRate;
  1670. }
  1671. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1672. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1673. }
  1674. /// Probe bed height at position (x,y), returns the measured z value
  1675. static float probe_pt(float x, float y, float z_before) {
  1676. // move to right place
  1677. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1678. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1679. run_z_probe();
  1680. float measured_z = current_position[Z_AXIS];
  1681. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1682. SERIAL_PROTOCOLPGM(" x: ");
  1683. SERIAL_PROTOCOL(x);
  1684. SERIAL_PROTOCOLPGM(" y: ");
  1685. SERIAL_PROTOCOL(y);
  1686. SERIAL_PROTOCOLPGM(" z: ");
  1687. SERIAL_PROTOCOL(measured_z);
  1688. SERIAL_PROTOCOLPGM("\n");
  1689. return measured_z;
  1690. }
  1691. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1692. #ifdef LIN_ADVANCE
  1693. /**
  1694. * M900: Set and/or Get advance K factor and WH/D ratio
  1695. *
  1696. * K<factor> Set advance K factor
  1697. * R<ratio> Set ratio directly (overrides WH/D)
  1698. * W<width> H<height> D<diam> Set ratio from WH/D
  1699. */
  1700. inline void gcode_M900() {
  1701. st_synchronize();
  1702. const float newK = code_seen('K') ? code_value_float() : -1;
  1703. if (newK >= 0) extruder_advance_k = newK;
  1704. float newR = code_seen('R') ? code_value_float() : -1;
  1705. if (newR < 0) {
  1706. const float newD = code_seen('D') ? code_value_float() : -1,
  1707. newW = code_seen('W') ? code_value_float() : -1,
  1708. newH = code_seen('H') ? code_value_float() : -1;
  1709. if (newD >= 0 && newW >= 0 && newH >= 0)
  1710. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1711. }
  1712. if (newR >= 0) advance_ed_ratio = newR;
  1713. SERIAL_ECHO_START;
  1714. SERIAL_ECHOPGM("Advance K=");
  1715. SERIAL_ECHOLN(extruder_advance_k);
  1716. SERIAL_ECHOPGM(" E/D=");
  1717. const float ratio = advance_ed_ratio;
  1718. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1719. }
  1720. #endif // LIN_ADVANCE
  1721. bool check_commands() {
  1722. bool end_command_found = false;
  1723. while (buflen)
  1724. {
  1725. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1726. if (!cmdbuffer_front_already_processed)
  1727. cmdqueue_pop_front();
  1728. cmdbuffer_front_already_processed = false;
  1729. }
  1730. return end_command_found;
  1731. }
  1732. #ifdef TMC2130
  1733. bool calibrate_z_auto()
  1734. {
  1735. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1736. lcd_clear();
  1737. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1738. bool endstops_enabled = enable_endstops(true);
  1739. int axis_up_dir = -home_dir(Z_AXIS);
  1740. tmc2130_home_enter(Z_AXIS_MASK);
  1741. current_position[Z_AXIS] = 0;
  1742. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1743. set_destination_to_current();
  1744. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1745. feedrate = homing_feedrate[Z_AXIS];
  1746. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1747. st_synchronize();
  1748. // current_position[axis] = 0;
  1749. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1750. tmc2130_home_exit();
  1751. enable_endstops(false);
  1752. current_position[Z_AXIS] = 0;
  1753. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1754. set_destination_to_current();
  1755. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1756. feedrate = homing_feedrate[Z_AXIS] / 2;
  1757. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1758. st_synchronize();
  1759. enable_endstops(endstops_enabled);
  1760. if (PRINTER_TYPE == PRINTER_MK3) {
  1761. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1762. }
  1763. else {
  1764. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1765. }
  1766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. return true;
  1768. }
  1769. #endif //TMC2130
  1770. #ifdef TMC2130
  1771. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1772. #else
  1773. void homeaxis(int axis, uint8_t cnt)
  1774. #endif //TMC2130
  1775. {
  1776. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1777. #define HOMEAXIS_DO(LETTER) \
  1778. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1779. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1780. {
  1781. int axis_home_dir = home_dir(axis);
  1782. feedrate = homing_feedrate[axis];
  1783. #ifdef TMC2130
  1784. tmc2130_home_enter(X_AXIS_MASK << axis);
  1785. #endif //TMC2130
  1786. // Move away a bit, so that the print head does not touch the end position,
  1787. // and the following movement to endstop has a chance to achieve the required velocity
  1788. // for the stall guard to work.
  1789. current_position[axis] = 0;
  1790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1791. set_destination_to_current();
  1792. // destination[axis] = 11.f;
  1793. destination[axis] = -3.f * axis_home_dir;
  1794. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1795. st_synchronize();
  1796. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1797. endstops_hit_on_purpose();
  1798. enable_endstops(false);
  1799. current_position[axis] = 0;
  1800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1801. destination[axis] = 1. * axis_home_dir;
  1802. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1803. st_synchronize();
  1804. // Now continue to move up to the left end stop with the collision detection enabled.
  1805. enable_endstops(true);
  1806. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. for (uint8_t i = 0; i < cnt; i++)
  1810. {
  1811. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1812. endstops_hit_on_purpose();
  1813. enable_endstops(false);
  1814. current_position[axis] = 0;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. destination[axis] = -10.f * axis_home_dir;
  1817. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1818. st_synchronize();
  1819. endstops_hit_on_purpose();
  1820. // Now move left up to the collision, this time with a repeatable velocity.
  1821. enable_endstops(true);
  1822. destination[axis] = 11.f * axis_home_dir;
  1823. #ifdef TMC2130
  1824. feedrate = homing_feedrate[axis];
  1825. #else //TMC2130
  1826. feedrate = homing_feedrate[axis] / 2;
  1827. #endif //TMC2130
  1828. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1829. st_synchronize();
  1830. #ifdef TMC2130
  1831. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1832. if (pstep) pstep[i] = mscnt >> 4;
  1833. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1834. #endif //TMC2130
  1835. }
  1836. endstops_hit_on_purpose();
  1837. enable_endstops(false);
  1838. #ifdef TMC2130
  1839. uint8_t orig = tmc2130_home_origin[axis];
  1840. uint8_t back = tmc2130_home_bsteps[axis];
  1841. if (tmc2130_home_enabled && (orig <= 63))
  1842. {
  1843. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1844. if (back > 0)
  1845. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1846. }
  1847. else
  1848. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1849. tmc2130_home_exit();
  1850. #endif //TMC2130
  1851. axis_is_at_home(axis);
  1852. axis_known_position[axis] = true;
  1853. // Move from minimum
  1854. #ifdef TMC2130
  1855. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1856. #else //TMC2130
  1857. float dist = - axis_home_dir * 0.01f * 64;
  1858. #endif //TMC2130
  1859. current_position[axis] -= dist;
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. current_position[axis] += dist;
  1862. destination[axis] = current_position[axis];
  1863. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1864. st_synchronize();
  1865. feedrate = 0.0;
  1866. }
  1867. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1868. {
  1869. #ifdef TMC2130
  1870. FORCE_HIGH_POWER_START;
  1871. #endif
  1872. int axis_home_dir = home_dir(axis);
  1873. current_position[axis] = 0;
  1874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1875. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1876. feedrate = homing_feedrate[axis];
  1877. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1878. st_synchronize();
  1879. #ifdef TMC2130
  1880. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1881. FORCE_HIGH_POWER_END;
  1882. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1883. return;
  1884. }
  1885. #endif //TMC2130
  1886. current_position[axis] = 0;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1890. st_synchronize();
  1891. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1892. feedrate = homing_feedrate[axis]/2 ;
  1893. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1894. st_synchronize();
  1895. #ifdef TMC2130
  1896. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1897. FORCE_HIGH_POWER_END;
  1898. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1899. return;
  1900. }
  1901. #endif //TMC2130
  1902. axis_is_at_home(axis);
  1903. destination[axis] = current_position[axis];
  1904. feedrate = 0.0;
  1905. endstops_hit_on_purpose();
  1906. axis_known_position[axis] = true;
  1907. #ifdef TMC2130
  1908. FORCE_HIGH_POWER_END;
  1909. #endif
  1910. }
  1911. enable_endstops(endstops_enabled);
  1912. }
  1913. /**/
  1914. void home_xy()
  1915. {
  1916. set_destination_to_current();
  1917. homeaxis(X_AXIS);
  1918. homeaxis(Y_AXIS);
  1919. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1920. endstops_hit_on_purpose();
  1921. }
  1922. void refresh_cmd_timeout(void)
  1923. {
  1924. previous_millis_cmd = _millis();
  1925. }
  1926. #ifdef FWRETRACT
  1927. void retract(bool retracting, bool swapretract = false) {
  1928. if(retracting && !retracted[active_extruder]) {
  1929. destination[X_AXIS]=current_position[X_AXIS];
  1930. destination[Y_AXIS]=current_position[Y_AXIS];
  1931. destination[Z_AXIS]=current_position[Z_AXIS];
  1932. destination[E_AXIS]=current_position[E_AXIS];
  1933. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1934. plan_set_e_position(current_position[E_AXIS]);
  1935. float oldFeedrate = feedrate;
  1936. feedrate=cs.retract_feedrate*60;
  1937. retracted[active_extruder]=true;
  1938. prepare_move();
  1939. current_position[Z_AXIS]-=cs.retract_zlift;
  1940. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1941. prepare_move();
  1942. feedrate = oldFeedrate;
  1943. } else if(!retracting && retracted[active_extruder]) {
  1944. destination[X_AXIS]=current_position[X_AXIS];
  1945. destination[Y_AXIS]=current_position[Y_AXIS];
  1946. destination[Z_AXIS]=current_position[Z_AXIS];
  1947. destination[E_AXIS]=current_position[E_AXIS];
  1948. current_position[Z_AXIS]+=cs.retract_zlift;
  1949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1950. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1951. plan_set_e_position(current_position[E_AXIS]);
  1952. float oldFeedrate = feedrate;
  1953. feedrate=cs.retract_recover_feedrate*60;
  1954. retracted[active_extruder]=false;
  1955. prepare_move();
  1956. feedrate = oldFeedrate;
  1957. }
  1958. } //retract
  1959. #endif //FWRETRACT
  1960. void trace() {
  1961. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1962. _tone(BEEPER, 440);
  1963. _delay(25);
  1964. _noTone(BEEPER);
  1965. _delay(20);
  1966. }
  1967. /*
  1968. void ramming() {
  1969. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1970. if (current_temperature[0] < 230) {
  1971. //PLA
  1972. max_feedrate[E_AXIS] = 50;
  1973. //current_position[E_AXIS] -= 8;
  1974. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1975. //current_position[E_AXIS] += 8;
  1976. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1977. current_position[E_AXIS] += 5.4;
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1979. current_position[E_AXIS] += 3.2;
  1980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1981. current_position[E_AXIS] += 3;
  1982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1983. st_synchronize();
  1984. max_feedrate[E_AXIS] = 80;
  1985. current_position[E_AXIS] -= 82;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1987. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1988. current_position[E_AXIS] -= 20;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1990. current_position[E_AXIS] += 5;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1992. current_position[E_AXIS] += 5;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1994. current_position[E_AXIS] -= 10;
  1995. st_synchronize();
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1997. current_position[E_AXIS] += 10;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1999. current_position[E_AXIS] -= 10;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2001. current_position[E_AXIS] += 10;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2003. current_position[E_AXIS] -= 10;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2005. st_synchronize();
  2006. }
  2007. else {
  2008. //ABS
  2009. max_feedrate[E_AXIS] = 50;
  2010. //current_position[E_AXIS] -= 8;
  2011. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2012. //current_position[E_AXIS] += 8;
  2013. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2014. current_position[E_AXIS] += 3.1;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2016. current_position[E_AXIS] += 3.1;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2018. current_position[E_AXIS] += 4;
  2019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2020. st_synchronize();
  2021. //current_position[X_AXIS] += 23; //delay
  2022. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2023. //current_position[X_AXIS] -= 23; //delay
  2024. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2025. _delay(4700);
  2026. max_feedrate[E_AXIS] = 80;
  2027. current_position[E_AXIS] -= 92;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2029. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2030. current_position[E_AXIS] -= 5;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2032. current_position[E_AXIS] += 5;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2034. current_position[E_AXIS] -= 5;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2036. st_synchronize();
  2037. current_position[E_AXIS] += 5;
  2038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2039. current_position[E_AXIS] -= 5;
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2041. current_position[E_AXIS] += 5;
  2042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2043. current_position[E_AXIS] -= 5;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2045. st_synchronize();
  2046. }
  2047. }
  2048. */
  2049. #ifdef TMC2130
  2050. void force_high_power_mode(bool start_high_power_section) {
  2051. uint8_t silent;
  2052. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2053. if (silent == 1) {
  2054. //we are in silent mode, set to normal mode to enable crash detection
  2055. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2056. st_synchronize();
  2057. cli();
  2058. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2059. update_mode_profile();
  2060. tmc2130_init();
  2061. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2062. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2063. st_reset_timer();
  2064. sei();
  2065. }
  2066. }
  2067. #endif //TMC2130
  2068. #ifdef TMC2130
  2069. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2070. #else
  2071. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2072. #endif //TMC2130
  2073. {
  2074. st_synchronize();
  2075. #if 0
  2076. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2077. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2078. #endif
  2079. // Flag for the display update routine and to disable the print cancelation during homing.
  2080. homing_flag = true;
  2081. // Which axes should be homed?
  2082. bool home_x = home_x_axis;
  2083. bool home_y = home_y_axis;
  2084. bool home_z = home_z_axis;
  2085. // Either all X,Y,Z codes are present, or none of them.
  2086. bool home_all_axes = home_x == home_y && home_x == home_z;
  2087. if (home_all_axes)
  2088. // No X/Y/Z code provided means to home all axes.
  2089. home_x = home_y = home_z = true;
  2090. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2091. if (home_all_axes) {
  2092. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2093. feedrate = homing_feedrate[Z_AXIS];
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2095. st_synchronize();
  2096. }
  2097. #ifdef ENABLE_AUTO_BED_LEVELING
  2098. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2099. #endif //ENABLE_AUTO_BED_LEVELING
  2100. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2101. // the planner will not perform any adjustments in the XY plane.
  2102. // Wait for the motors to stop and update the current position with the absolute values.
  2103. world2machine_revert_to_uncorrected();
  2104. // For mesh bed leveling deactivate the matrix temporarily.
  2105. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2106. // in a single axis only.
  2107. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2108. #ifdef MESH_BED_LEVELING
  2109. uint8_t mbl_was_active = mbl.active;
  2110. mbl.active = 0;
  2111. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2112. #endif
  2113. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2114. // consumed during the first movements following this statement.
  2115. if (home_z)
  2116. babystep_undo();
  2117. saved_feedrate = feedrate;
  2118. int l_feedmultiply = feedmultiply;
  2119. feedmultiply = 100;
  2120. previous_millis_cmd = _millis();
  2121. enable_endstops(true);
  2122. memcpy(destination, current_position, sizeof(destination));
  2123. feedrate = 0.0;
  2124. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2125. if(home_z)
  2126. homeaxis(Z_AXIS);
  2127. #endif
  2128. #ifdef QUICK_HOME
  2129. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2130. if(home_x && home_y) //first diagonal move
  2131. {
  2132. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2133. int x_axis_home_dir = home_dir(X_AXIS);
  2134. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2135. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2136. feedrate = homing_feedrate[X_AXIS];
  2137. if(homing_feedrate[Y_AXIS]<feedrate)
  2138. feedrate = homing_feedrate[Y_AXIS];
  2139. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2140. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2141. } else {
  2142. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2143. }
  2144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2145. st_synchronize();
  2146. axis_is_at_home(X_AXIS);
  2147. axis_is_at_home(Y_AXIS);
  2148. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2149. destination[X_AXIS] = current_position[X_AXIS];
  2150. destination[Y_AXIS] = current_position[Y_AXIS];
  2151. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2152. feedrate = 0.0;
  2153. st_synchronize();
  2154. endstops_hit_on_purpose();
  2155. current_position[X_AXIS] = destination[X_AXIS];
  2156. current_position[Y_AXIS] = destination[Y_AXIS];
  2157. current_position[Z_AXIS] = destination[Z_AXIS];
  2158. }
  2159. #endif /* QUICK_HOME */
  2160. #ifdef TMC2130
  2161. if(home_x)
  2162. {
  2163. if (!calib)
  2164. homeaxis(X_AXIS);
  2165. else
  2166. tmc2130_home_calibrate(X_AXIS);
  2167. }
  2168. if(home_y)
  2169. {
  2170. if (!calib)
  2171. homeaxis(Y_AXIS);
  2172. else
  2173. tmc2130_home_calibrate(Y_AXIS);
  2174. }
  2175. #else //TMC2130
  2176. if(home_x) homeaxis(X_AXIS);
  2177. if(home_y) homeaxis(Y_AXIS);
  2178. #endif //TMC2130
  2179. if(home_x_axis && home_x_value != 0)
  2180. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2181. if(home_y_axis && home_y_value != 0)
  2182. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2183. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2184. #ifndef Z_SAFE_HOMING
  2185. if(home_z) {
  2186. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2187. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2188. feedrate = max_feedrate[Z_AXIS];
  2189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2190. st_synchronize();
  2191. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2192. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2193. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2194. {
  2195. homeaxis(X_AXIS);
  2196. homeaxis(Y_AXIS);
  2197. }
  2198. // 1st mesh bed leveling measurement point, corrected.
  2199. world2machine_initialize();
  2200. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2201. world2machine_reset();
  2202. if (destination[Y_AXIS] < Y_MIN_POS)
  2203. destination[Y_AXIS] = Y_MIN_POS;
  2204. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2205. feedrate = homing_feedrate[Z_AXIS]/10;
  2206. current_position[Z_AXIS] = 0;
  2207. enable_endstops(false);
  2208. #ifdef DEBUG_BUILD
  2209. SERIAL_ECHOLNPGM("plan_set_position()");
  2210. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2211. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2212. #endif
  2213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2214. #ifdef DEBUG_BUILD
  2215. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2216. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2217. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2218. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2219. #endif
  2220. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2221. st_synchronize();
  2222. current_position[X_AXIS] = destination[X_AXIS];
  2223. current_position[Y_AXIS] = destination[Y_AXIS];
  2224. enable_endstops(true);
  2225. endstops_hit_on_purpose();
  2226. homeaxis(Z_AXIS);
  2227. #else // MESH_BED_LEVELING
  2228. homeaxis(Z_AXIS);
  2229. #endif // MESH_BED_LEVELING
  2230. }
  2231. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2232. if(home_all_axes) {
  2233. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2234. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2235. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2236. feedrate = XY_TRAVEL_SPEED/60;
  2237. current_position[Z_AXIS] = 0;
  2238. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2239. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2240. st_synchronize();
  2241. current_position[X_AXIS] = destination[X_AXIS];
  2242. current_position[Y_AXIS] = destination[Y_AXIS];
  2243. homeaxis(Z_AXIS);
  2244. }
  2245. // Let's see if X and Y are homed and probe is inside bed area.
  2246. if(home_z) {
  2247. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2248. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2249. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2250. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2251. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2252. current_position[Z_AXIS] = 0;
  2253. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2254. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2255. feedrate = max_feedrate[Z_AXIS];
  2256. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2257. st_synchronize();
  2258. homeaxis(Z_AXIS);
  2259. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2260. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2261. SERIAL_ECHO_START;
  2262. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2263. } else {
  2264. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2265. SERIAL_ECHO_START;
  2266. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2267. }
  2268. }
  2269. #endif // Z_SAFE_HOMING
  2270. #endif // Z_HOME_DIR < 0
  2271. if(home_z_axis && home_z_value != 0)
  2272. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2273. #ifdef ENABLE_AUTO_BED_LEVELING
  2274. if(home_z)
  2275. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2276. #endif
  2277. // Set the planner and stepper routine positions.
  2278. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2279. // contains the machine coordinates.
  2280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2281. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2282. enable_endstops(false);
  2283. #endif
  2284. feedrate = saved_feedrate;
  2285. feedmultiply = l_feedmultiply;
  2286. previous_millis_cmd = _millis();
  2287. endstops_hit_on_purpose();
  2288. #ifndef MESH_BED_LEVELING
  2289. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2290. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2291. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2292. lcd_adjust_z();
  2293. #endif
  2294. // Load the machine correction matrix
  2295. world2machine_initialize();
  2296. // and correct the current_position XY axes to match the transformed coordinate system.
  2297. world2machine_update_current();
  2298. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2299. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2300. {
  2301. if (! home_z && mbl_was_active) {
  2302. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2303. mbl.active = true;
  2304. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2305. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2306. }
  2307. }
  2308. else
  2309. {
  2310. st_synchronize();
  2311. homing_flag = false;
  2312. }
  2313. #endif
  2314. if (farm_mode) { prusa_statistics(20); };
  2315. homing_flag = false;
  2316. #if 0
  2317. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2318. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2319. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2320. #endif
  2321. }
  2322. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2323. {
  2324. #ifdef TMC2130
  2325. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2326. #else
  2327. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2328. #endif //TMC2130
  2329. }
  2330. void adjust_bed_reset()
  2331. {
  2332. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2333. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2334. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2335. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2336. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2337. }
  2338. //! @brief Calibrate XYZ
  2339. //! @param onlyZ if true, calibrate only Z axis
  2340. //! @param verbosity_level
  2341. //! @retval true Succeeded
  2342. //! @retval false Failed
  2343. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2344. {
  2345. bool final_result = false;
  2346. #ifdef TMC2130
  2347. FORCE_HIGH_POWER_START;
  2348. #endif // TMC2130
  2349. // Only Z calibration?
  2350. if (!onlyZ)
  2351. {
  2352. setTargetBed(0);
  2353. setAllTargetHotends(0);
  2354. adjust_bed_reset(); //reset bed level correction
  2355. }
  2356. // Disable the default update procedure of the display. We will do a modal dialog.
  2357. lcd_update_enable(false);
  2358. // Let the planner use the uncorrected coordinates.
  2359. mbl.reset();
  2360. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2361. // the planner will not perform any adjustments in the XY plane.
  2362. // Wait for the motors to stop and update the current position with the absolute values.
  2363. world2machine_revert_to_uncorrected();
  2364. // Reset the baby step value applied without moving the axes.
  2365. babystep_reset();
  2366. // Mark all axes as in a need for homing.
  2367. memset(axis_known_position, 0, sizeof(axis_known_position));
  2368. // Home in the XY plane.
  2369. //set_destination_to_current();
  2370. int l_feedmultiply = setup_for_endstop_move();
  2371. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2372. home_xy();
  2373. enable_endstops(false);
  2374. current_position[X_AXIS] += 5;
  2375. current_position[Y_AXIS] += 5;
  2376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2377. st_synchronize();
  2378. // Let the user move the Z axes up to the end stoppers.
  2379. #ifdef TMC2130
  2380. if (calibrate_z_auto())
  2381. {
  2382. #else //TMC2130
  2383. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2384. {
  2385. #endif //TMC2130
  2386. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2387. if(onlyZ){
  2388. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2389. lcd_set_cursor(0, 3);
  2390. lcd_print(1);
  2391. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2392. }else{
  2393. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2394. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2395. lcd_set_cursor(0, 2);
  2396. lcd_print(1);
  2397. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2398. }
  2399. refresh_cmd_timeout();
  2400. #ifndef STEEL_SHEET
  2401. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2402. {
  2403. lcd_wait_for_cool_down();
  2404. }
  2405. #endif //STEEL_SHEET
  2406. if(!onlyZ)
  2407. {
  2408. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2409. #ifdef STEEL_SHEET
  2410. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2411. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2412. #endif //STEEL_SHEET
  2413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2414. KEEPALIVE_STATE(IN_HANDLER);
  2415. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2416. lcd_set_cursor(0, 2);
  2417. lcd_print(1);
  2418. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2419. }
  2420. bool endstops_enabled = enable_endstops(false);
  2421. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2423. st_synchronize();
  2424. // Move the print head close to the bed.
  2425. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2426. enable_endstops(true);
  2427. #ifdef TMC2130
  2428. tmc2130_home_enter(Z_AXIS_MASK);
  2429. #endif //TMC2130
  2430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2431. st_synchronize();
  2432. #ifdef TMC2130
  2433. tmc2130_home_exit();
  2434. #endif //TMC2130
  2435. enable_endstops(endstops_enabled);
  2436. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2437. {
  2438. if (onlyZ)
  2439. {
  2440. clean_up_after_endstop_move(l_feedmultiply);
  2441. // Z only calibration.
  2442. // Load the machine correction matrix
  2443. world2machine_initialize();
  2444. // and correct the current_position to match the transformed coordinate system.
  2445. world2machine_update_current();
  2446. //FIXME
  2447. bool result = sample_mesh_and_store_reference();
  2448. if (result)
  2449. {
  2450. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2451. // Shipped, the nozzle height has been set already. The user can start printing now.
  2452. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2453. final_result = true;
  2454. // babystep_apply();
  2455. }
  2456. }
  2457. else
  2458. {
  2459. // Reset the baby step value and the baby step applied flag.
  2460. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2461. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2462. // Complete XYZ calibration.
  2463. uint8_t point_too_far_mask = 0;
  2464. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2465. clean_up_after_endstop_move(l_feedmultiply);
  2466. // Print head up.
  2467. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2469. st_synchronize();
  2470. //#ifndef NEW_XYZCAL
  2471. if (result >= 0)
  2472. {
  2473. #ifdef HEATBED_V2
  2474. sample_z();
  2475. #else //HEATBED_V2
  2476. point_too_far_mask = 0;
  2477. // Second half: The fine adjustment.
  2478. // Let the planner use the uncorrected coordinates.
  2479. mbl.reset();
  2480. world2machine_reset();
  2481. // Home in the XY plane.
  2482. int l_feedmultiply = setup_for_endstop_move();
  2483. home_xy();
  2484. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2485. clean_up_after_endstop_move(l_feedmultiply);
  2486. // Print head up.
  2487. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2489. st_synchronize();
  2490. // if (result >= 0) babystep_apply();
  2491. #endif //HEATBED_V2
  2492. }
  2493. //#endif //NEW_XYZCAL
  2494. lcd_update_enable(true);
  2495. lcd_update(2);
  2496. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2497. if (result >= 0)
  2498. {
  2499. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2500. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2501. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2502. final_result = true;
  2503. }
  2504. }
  2505. #ifdef TMC2130
  2506. tmc2130_home_exit();
  2507. #endif
  2508. }
  2509. else
  2510. {
  2511. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2512. final_result = false;
  2513. }
  2514. }
  2515. else
  2516. {
  2517. // Timeouted.
  2518. }
  2519. lcd_update_enable(true);
  2520. #ifdef TMC2130
  2521. FORCE_HIGH_POWER_END;
  2522. #endif // TMC2130
  2523. return final_result;
  2524. }
  2525. void gcode_M114()
  2526. {
  2527. SERIAL_PROTOCOLPGM("X:");
  2528. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2529. SERIAL_PROTOCOLPGM(" Y:");
  2530. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2531. SERIAL_PROTOCOLPGM(" Z:");
  2532. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2533. SERIAL_PROTOCOLPGM(" E:");
  2534. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2535. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2536. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2537. SERIAL_PROTOCOLPGM(" Y:");
  2538. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2539. SERIAL_PROTOCOLPGM(" Z:");
  2540. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2541. SERIAL_PROTOCOLPGM(" E:");
  2542. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2543. SERIAL_PROTOCOLLN("");
  2544. }
  2545. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2546. {
  2547. st_synchronize();
  2548. float lastpos[4];
  2549. if (farm_mode)
  2550. {
  2551. prusa_statistics(22);
  2552. }
  2553. //First backup current position and settings
  2554. int feedmultiplyBckp = feedmultiply;
  2555. float HotendTempBckp = degTargetHotend(active_extruder);
  2556. int fanSpeedBckp = fanSpeed;
  2557. lastpos[X_AXIS] = current_position[X_AXIS];
  2558. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2559. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2560. lastpos[E_AXIS] = current_position[E_AXIS];
  2561. //Retract E
  2562. current_position[E_AXIS] += e_shift;
  2563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2564. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2565. st_synchronize();
  2566. //Lift Z
  2567. current_position[Z_AXIS] += z_shift;
  2568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2569. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2570. st_synchronize();
  2571. //Move XY to side
  2572. current_position[X_AXIS] = x_position;
  2573. current_position[Y_AXIS] = y_position;
  2574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2575. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2576. st_synchronize();
  2577. //Beep, manage nozzle heater and wait for user to start unload filament
  2578. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2579. lcd_change_fil_state = 0;
  2580. // Unload filament
  2581. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2582. else unload_filament(); //unload filament for single material (used also in M702)
  2583. //finish moves
  2584. st_synchronize();
  2585. if (!mmu_enabled)
  2586. {
  2587. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2588. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2589. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2590. if (lcd_change_fil_state == 0)
  2591. {
  2592. lcd_clear();
  2593. lcd_set_cursor(0, 2);
  2594. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2595. current_position[X_AXIS] -= 100;
  2596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2597. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2598. st_synchronize();
  2599. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2600. }
  2601. }
  2602. if (mmu_enabled)
  2603. {
  2604. if (!automatic) {
  2605. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2606. mmu_M600_wait_and_beep();
  2607. if (saved_printing) {
  2608. lcd_clear();
  2609. lcd_set_cursor(0, 2);
  2610. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2611. mmu_command(MmuCmd::R0);
  2612. manage_response(false, false);
  2613. }
  2614. }
  2615. mmu_M600_load_filament(automatic);
  2616. }
  2617. else
  2618. M600_load_filament();
  2619. if (!automatic) M600_check_state();
  2620. lcd_update_enable(true);
  2621. //Not let's go back to print
  2622. fanSpeed = fanSpeedBckp;
  2623. //Feed a little of filament to stabilize pressure
  2624. if (!automatic)
  2625. {
  2626. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2628. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2629. }
  2630. //Move XY back
  2631. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2632. FILAMENTCHANGE_XYFEED, active_extruder);
  2633. st_synchronize();
  2634. //Move Z back
  2635. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2636. FILAMENTCHANGE_ZFEED, active_extruder);
  2637. st_synchronize();
  2638. //Set E position to original
  2639. plan_set_e_position(lastpos[E_AXIS]);
  2640. memcpy(current_position, lastpos, sizeof(lastpos));
  2641. memcpy(destination, current_position, sizeof(current_position));
  2642. //Recover feed rate
  2643. feedmultiply = feedmultiplyBckp;
  2644. char cmd[9];
  2645. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2646. enquecommand(cmd);
  2647. #ifdef IR_SENSOR
  2648. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2649. fsensor_check_autoload();
  2650. #endif //IR_SENSOR
  2651. lcd_setstatuspgm(_T(WELCOME_MSG));
  2652. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2653. }
  2654. void gcode_M701()
  2655. {
  2656. printf_P(PSTR("gcode_M701 begin\n"));
  2657. if (mmu_enabled)
  2658. {
  2659. extr_adj(tmp_extruder);//loads current extruder
  2660. mmu_extruder = tmp_extruder;
  2661. }
  2662. else
  2663. {
  2664. enable_z();
  2665. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2666. #ifdef FSENSOR_QUALITY
  2667. fsensor_oq_meassure_start(40);
  2668. #endif //FSENSOR_QUALITY
  2669. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2670. current_position[E_AXIS] += 40;
  2671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2672. st_synchronize();
  2673. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2674. current_position[E_AXIS] += 30;
  2675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2676. load_filament_final_feed(); //slow sequence
  2677. st_synchronize();
  2678. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2679. delay_keep_alive(50);
  2680. _noTone(BEEPER);
  2681. if (!farm_mode && loading_flag) {
  2682. lcd_load_filament_color_check();
  2683. }
  2684. lcd_update_enable(true);
  2685. lcd_update(2);
  2686. lcd_setstatuspgm(_T(WELCOME_MSG));
  2687. disable_z();
  2688. loading_flag = false;
  2689. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2690. #ifdef FSENSOR_QUALITY
  2691. fsensor_oq_meassure_stop();
  2692. if (!fsensor_oq_result())
  2693. {
  2694. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2695. lcd_update_enable(true);
  2696. lcd_update(2);
  2697. if (disable)
  2698. fsensor_disable();
  2699. }
  2700. #endif //FSENSOR_QUALITY
  2701. }
  2702. }
  2703. /**
  2704. * @brief Get serial number from 32U2 processor
  2705. *
  2706. * Typical format of S/N is:CZPX0917X003XC13518
  2707. *
  2708. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2709. *
  2710. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2711. * reply is transmitted to serial port 1 character by character.
  2712. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2713. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2714. * in any case.
  2715. */
  2716. static void gcode_PRUSA_SN()
  2717. {
  2718. if (farm_mode) {
  2719. selectedSerialPort = 0;
  2720. putchar(';');
  2721. putchar('S');
  2722. int numbersRead = 0;
  2723. ShortTimer timeout;
  2724. timeout.start();
  2725. while (numbersRead < 19) {
  2726. while (MSerial.available() > 0) {
  2727. uint8_t serial_char = MSerial.read();
  2728. selectedSerialPort = 1;
  2729. putchar(serial_char);
  2730. numbersRead++;
  2731. selectedSerialPort = 0;
  2732. }
  2733. if (timeout.expired(100u)) break;
  2734. }
  2735. selectedSerialPort = 1;
  2736. putchar('\n');
  2737. #if 0
  2738. for (int b = 0; b < 3; b++) {
  2739. _tone(BEEPER, 110);
  2740. _delay(50);
  2741. _noTone(BEEPER);
  2742. _delay(50);
  2743. }
  2744. #endif
  2745. } else {
  2746. puts_P(_N("Not in farm mode."));
  2747. }
  2748. }
  2749. #ifdef BACKLASH_X
  2750. extern uint8_t st_backlash_x;
  2751. #endif //BACKLASH_X
  2752. #ifdef BACKLASH_Y
  2753. extern uint8_t st_backlash_y;
  2754. #endif //BACKLASH_Y
  2755. //! @brief Parse and process commands
  2756. //!
  2757. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2758. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2759. //!
  2760. //! Implemented Codes
  2761. //! -------------------
  2762. //!
  2763. //!@n PRUSA CODES
  2764. //!@n P F - Returns FW versions
  2765. //!@n P R - Returns revision of printer
  2766. //!
  2767. //!@n G0 -> G1
  2768. //!@n G1 - Coordinated Movement X Y Z E
  2769. //!@n G2 - CW ARC
  2770. //!@n G3 - CCW ARC
  2771. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2772. //!@n G10 - retract filament according to settings of M207
  2773. //!@n G11 - retract recover filament according to settings of M208
  2774. //!@n G28 - Home all Axis
  2775. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2776. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2777. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2778. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2779. //!@n G80 - Automatic mesh bed leveling
  2780. //!@n G81 - Print bed profile
  2781. //!@n G90 - Use Absolute Coordinates
  2782. //!@n G91 - Use Relative Coordinates
  2783. //!@n G92 - Set current position to coordinates given
  2784. //!
  2785. //!@n M Codes
  2786. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2787. //!@n M1 - Same as M0
  2788. //!@n M17 - Enable/Power all stepper motors
  2789. //!@n M18 - Disable all stepper motors; same as M84
  2790. //!@n M20 - List SD card
  2791. //!@n M21 - Init SD card
  2792. //!@n M22 - Release SD card
  2793. //!@n M23 - Select SD file (M23 filename.g)
  2794. //!@n M24 - Start/resume SD print
  2795. //!@n M25 - Pause SD print
  2796. //!@n M26 - Set SD position in bytes (M26 S12345)
  2797. //!@n M27 - Report SD print status
  2798. //!@n M28 - Start SD write (M28 filename.g)
  2799. //!@n M29 - Stop SD write
  2800. //!@n M30 - Delete file from SD (M30 filename.g)
  2801. //!@n M31 - Output time since last M109 or SD card start to serial
  2802. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2803. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2804. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2805. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2806. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2807. //!@n M73 - Show percent done and print time remaining
  2808. //!@n M80 - Turn on Power Supply
  2809. //!@n M81 - Turn off Power Supply
  2810. //!@n M82 - Set E codes absolute (default)
  2811. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2812. //!@n M84 - Disable steppers until next move,
  2813. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2814. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2815. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2816. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2817. //!@n M104 - Set extruder target temp
  2818. //!@n M105 - Read current temp
  2819. //!@n M106 - Fan on
  2820. //!@n M107 - Fan off
  2821. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2822. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2823. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2824. //!@n M112 - Emergency stop
  2825. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2826. //!@n M114 - Output current position to serial port
  2827. //!@n M115 - Capabilities string
  2828. //!@n M117 - display message
  2829. //!@n M119 - Output Endstop status to serial port
  2830. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2831. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2832. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2833. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2834. //!@n M140 - Set bed target temp
  2835. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2836. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2837. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2838. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2839. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2840. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2841. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2842. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2843. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2844. //!@n M206 - set additional homing offset
  2845. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2846. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2847. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2848. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2849. //!@n M220 S<factor in percent>- set speed factor override percentage
  2850. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2851. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2852. //!@n M240 - Trigger a camera to take a photograph
  2853. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2854. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2855. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2856. //!@n M301 - Set PID parameters P I and D
  2857. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2858. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2859. //!@n M304 - Set bed PID parameters P I and D
  2860. //!@n M400 - Finish all moves
  2861. //!@n M401 - Lower z-probe if present
  2862. //!@n M402 - Raise z-probe if present
  2863. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2864. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2865. //!@n M406 - Turn off Filament Sensor extrusion control
  2866. //!@n M407 - Displays measured filament diameter
  2867. //!@n M500 - stores parameters in EEPROM
  2868. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2869. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2870. //!@n M503 - print the current settings (from memory not from EEPROM)
  2871. //!@n M509 - force language selection on next restart
  2872. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2873. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2874. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2875. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2876. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2877. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2878. //!@n M907 - Set digital trimpot motor current using axis codes.
  2879. //!@n M908 - Control digital trimpot directly.
  2880. //!@n M350 - Set microstepping mode.
  2881. //!@n M351 - Toggle MS1 MS2 pins directly.
  2882. //!
  2883. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2884. //!@n M999 - Restart after being stopped by error
  2885. void process_commands()
  2886. {
  2887. if (!buflen) return; //empty command
  2888. #ifdef FILAMENT_RUNOUT_SUPPORT
  2889. SET_INPUT(FR_SENS);
  2890. #endif
  2891. #ifdef CMDBUFFER_DEBUG
  2892. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2893. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2894. SERIAL_ECHOLNPGM("");
  2895. SERIAL_ECHOPGM("In cmdqueue: ");
  2896. SERIAL_ECHO(buflen);
  2897. SERIAL_ECHOLNPGM("");
  2898. #endif /* CMDBUFFER_DEBUG */
  2899. unsigned long codenum; //throw away variable
  2900. char *starpos = NULL;
  2901. #ifdef ENABLE_AUTO_BED_LEVELING
  2902. float x_tmp, y_tmp, z_tmp, real_z;
  2903. #endif
  2904. // PRUSA GCODES
  2905. KEEPALIVE_STATE(IN_HANDLER);
  2906. #ifdef SNMM
  2907. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2908. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2909. int8_t SilentMode;
  2910. #endif
  2911. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2912. starpos = (strchr(strchr_pointer + 5, '*'));
  2913. if (starpos != NULL)
  2914. *(starpos) = '\0';
  2915. lcd_setstatus(strchr_pointer + 5);
  2916. }
  2917. #ifdef TMC2130
  2918. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2919. {
  2920. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2921. {
  2922. uint8_t mask = 0;
  2923. if (code_seen('X')) mask |= X_AXIS_MASK;
  2924. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2925. crashdet_detected(mask);
  2926. }
  2927. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2928. crashdet_recover();
  2929. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2930. crashdet_cancel();
  2931. }
  2932. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2933. {
  2934. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2935. {
  2936. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2937. axis = (axis == 'E')?3:(axis - 'X');
  2938. if (axis < 4)
  2939. {
  2940. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2941. tmc2130_set_wave(axis, 247, fac);
  2942. }
  2943. }
  2944. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2945. {
  2946. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2947. axis = (axis == 'E')?3:(axis - 'X');
  2948. if (axis < 4)
  2949. {
  2950. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2951. uint16_t res = tmc2130_get_res(axis);
  2952. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2953. }
  2954. }
  2955. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2956. {
  2957. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2958. axis = (axis == 'E')?3:(axis - 'X');
  2959. if (axis < 4)
  2960. {
  2961. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2962. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2963. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2964. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2965. char* str_end = 0;
  2966. if (CMDBUFFER_CURRENT_STRING[14])
  2967. {
  2968. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2969. if (str_end && *str_end)
  2970. {
  2971. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2972. if (str_end && *str_end)
  2973. {
  2974. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2975. if (str_end && *str_end)
  2976. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2977. }
  2978. }
  2979. }
  2980. tmc2130_chopper_config[axis].toff = chop0;
  2981. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2982. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2983. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2984. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2985. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2986. }
  2987. }
  2988. }
  2989. #ifdef BACKLASH_X
  2990. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2991. {
  2992. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2993. st_backlash_x = bl;
  2994. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2995. }
  2996. #endif //BACKLASH_X
  2997. #ifdef BACKLASH_Y
  2998. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2999. {
  3000. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3001. st_backlash_y = bl;
  3002. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3003. }
  3004. #endif //BACKLASH_Y
  3005. #endif //TMC2130
  3006. #ifdef FILAMENT_SENSOR
  3007. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  3008. fsensor_restore_print_and_continue();
  3009. }
  3010. #endif //FILAMENT_SENSOR
  3011. else if(code_seen("PRUSA")){
  3012. if (code_seen("Ping")) { //! PRUSA Ping
  3013. if (farm_mode) {
  3014. PingTime = _millis();
  3015. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3016. }
  3017. }
  3018. else if (code_seen("PRN")) { //! PRUSA PRN
  3019. printf_P(_N("%d"), status_number);
  3020. }else if (code_seen("FAN")) { //! PRUSA FAN
  3021. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3022. }else if (code_seen("fn")) { //! PRUSA fn
  3023. if (farm_mode) {
  3024. printf_P(_N("%d"), farm_no);
  3025. }
  3026. else {
  3027. puts_P(_N("Not in farm mode."));
  3028. }
  3029. }
  3030. else if (code_seen("thx")) //! PRUSA thx
  3031. {
  3032. no_response = false;
  3033. }
  3034. else if (code_seen("uvlo")) //! PRUSA uvlo
  3035. {
  3036. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3037. enquecommand_P(PSTR("M24"));
  3038. }
  3039. else if (code_seen("MMURES")) //! PRUSA MMURES
  3040. {
  3041. mmu_reset();
  3042. }
  3043. else if (code_seen("RESET")) { //! PRUSA RESET
  3044. // careful!
  3045. if (farm_mode) {
  3046. #ifdef WATCHDOG
  3047. boot_app_magic = BOOT_APP_MAGIC;
  3048. boot_app_flags = BOOT_APP_FLG_RUN;
  3049. wdt_enable(WDTO_15MS);
  3050. cli();
  3051. while(1);
  3052. #else //WATCHDOG
  3053. asm volatile("jmp 0x3E000");
  3054. #endif //WATCHDOG
  3055. }
  3056. else {
  3057. MYSERIAL.println("Not in farm mode.");
  3058. }
  3059. }else if (code_seen("fv")) { //! PRUSA fv
  3060. // get file version
  3061. #ifdef SDSUPPORT
  3062. card.openFile(strchr_pointer + 3,true);
  3063. while (true) {
  3064. uint16_t readByte = card.get();
  3065. MYSERIAL.write(readByte);
  3066. if (readByte=='\n') {
  3067. break;
  3068. }
  3069. }
  3070. card.closefile();
  3071. #endif // SDSUPPORT
  3072. } else if (code_seen("M28")) { //! PRUSA M28
  3073. trace();
  3074. prusa_sd_card_upload = true;
  3075. card.openFile(strchr_pointer+4,false);
  3076. } else if (code_seen("SN")) { //! PRUSA SN
  3077. gcode_PRUSA_SN();
  3078. } else if(code_seen("Fir")){ //! PRUSA Fir
  3079. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3080. } else if(code_seen("Rev")){ //! PRUSA Rev
  3081. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3082. } else if(code_seen("Lang")) { //! PRUSA Lang
  3083. lang_reset();
  3084. } else if(code_seen("Lz")) { //! PRUSA Lz
  3085. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3086. } else if(code_seen("Beat")) { //! PRUSA Beat
  3087. // Kick farm link timer
  3088. kicktime = _millis();
  3089. } else if(code_seen("FR")) { //! PRUSA FR
  3090. // Factory full reset
  3091. factory_reset(0);
  3092. }
  3093. //else if (code_seen('Cal')) {
  3094. // lcd_calibration();
  3095. // }
  3096. }
  3097. else if (code_seen('^')) {
  3098. // nothing, this is a version line
  3099. } else if(code_seen('G'))
  3100. {
  3101. gcode_in_progress = (int)code_value();
  3102. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3103. switch (gcode_in_progress)
  3104. {
  3105. case 0: // G0 -> G1
  3106. case 1: // G1
  3107. if(Stopped == false) {
  3108. #ifdef FILAMENT_RUNOUT_SUPPORT
  3109. if(READ(FR_SENS)){
  3110. int feedmultiplyBckp=feedmultiply;
  3111. float target[4];
  3112. float lastpos[4];
  3113. target[X_AXIS]=current_position[X_AXIS];
  3114. target[Y_AXIS]=current_position[Y_AXIS];
  3115. target[Z_AXIS]=current_position[Z_AXIS];
  3116. target[E_AXIS]=current_position[E_AXIS];
  3117. lastpos[X_AXIS]=current_position[X_AXIS];
  3118. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3119. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3120. lastpos[E_AXIS]=current_position[E_AXIS];
  3121. //retract by E
  3122. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3124. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3126. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3127. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3129. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3130. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3131. //finish moves
  3132. st_synchronize();
  3133. //disable extruder steppers so filament can be removed
  3134. disable_e0();
  3135. disable_e1();
  3136. disable_e2();
  3137. _delay(100);
  3138. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3139. uint8_t cnt=0;
  3140. int counterBeep = 0;
  3141. lcd_wait_interact();
  3142. while(!lcd_clicked()){
  3143. cnt++;
  3144. manage_heater();
  3145. manage_inactivity(true);
  3146. //lcd_update(0);
  3147. if(cnt==0)
  3148. {
  3149. #if BEEPER > 0
  3150. if (counterBeep== 500){
  3151. counterBeep = 0;
  3152. }
  3153. SET_OUTPUT(BEEPER);
  3154. if (counterBeep== 0){
  3155. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3156. WRITE(BEEPER,HIGH);
  3157. }
  3158. if (counterBeep== 20){
  3159. WRITE(BEEPER,LOW);
  3160. }
  3161. counterBeep++;
  3162. #else
  3163. #endif
  3164. }
  3165. }
  3166. WRITE(BEEPER,LOW);
  3167. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3169. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3170. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3171. lcd_change_fil_state = 0;
  3172. lcd_loading_filament();
  3173. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3174. lcd_change_fil_state = 0;
  3175. lcd_alright();
  3176. switch(lcd_change_fil_state){
  3177. case 2:
  3178. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3180. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3182. lcd_loading_filament();
  3183. break;
  3184. case 3:
  3185. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3186. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3187. lcd_loading_color();
  3188. break;
  3189. default:
  3190. lcd_change_success();
  3191. break;
  3192. }
  3193. }
  3194. target[E_AXIS]+= 5;
  3195. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3196. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3197. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3198. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3199. //plan_set_e_position(current_position[E_AXIS]);
  3200. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3201. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3202. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3203. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3204. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3205. plan_set_e_position(lastpos[E_AXIS]);
  3206. feedmultiply=feedmultiplyBckp;
  3207. char cmd[9];
  3208. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3209. enquecommand(cmd);
  3210. }
  3211. #endif
  3212. get_coordinates(); // For X Y Z E F
  3213. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3214. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3215. }
  3216. #ifdef FWRETRACT
  3217. if(cs.autoretract_enabled)
  3218. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3219. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3220. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3221. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3222. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3223. retract(!retracted[active_extruder]);
  3224. return;
  3225. }
  3226. }
  3227. #endif //FWRETRACT
  3228. prepare_move();
  3229. //ClearToSend();
  3230. }
  3231. break;
  3232. case 2: // G2 - CW ARC
  3233. if(Stopped == false) {
  3234. get_arc_coordinates();
  3235. prepare_arc_move(true);
  3236. }
  3237. break;
  3238. case 3: // G3 - CCW ARC
  3239. if(Stopped == false) {
  3240. get_arc_coordinates();
  3241. prepare_arc_move(false);
  3242. }
  3243. break;
  3244. case 4: // G4 dwell
  3245. codenum = 0;
  3246. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3247. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3248. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3249. st_synchronize();
  3250. codenum += _millis(); // keep track of when we started waiting
  3251. previous_millis_cmd = _millis();
  3252. while(_millis() < codenum) {
  3253. manage_heater();
  3254. manage_inactivity();
  3255. lcd_update(0);
  3256. }
  3257. break;
  3258. #ifdef FWRETRACT
  3259. case 10: // G10 retract
  3260. #if EXTRUDERS > 1
  3261. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3262. retract(true,retracted_swap[active_extruder]);
  3263. #else
  3264. retract(true);
  3265. #endif
  3266. break;
  3267. case 11: // G11 retract_recover
  3268. #if EXTRUDERS > 1
  3269. retract(false,retracted_swap[active_extruder]);
  3270. #else
  3271. retract(false);
  3272. #endif
  3273. break;
  3274. #endif //FWRETRACT
  3275. case 28: //G28 Home all Axis one at a time
  3276. {
  3277. long home_x_value = 0;
  3278. long home_y_value = 0;
  3279. long home_z_value = 0;
  3280. // Which axes should be homed?
  3281. bool home_x = code_seen(axis_codes[X_AXIS]);
  3282. home_x_value = code_value_long();
  3283. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3284. home_y_value = code_value_long();
  3285. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3286. home_z_value = code_value_long();
  3287. bool without_mbl = code_seen('W');
  3288. // calibrate?
  3289. #ifdef TMC2130
  3290. bool calib = code_seen('C');
  3291. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3292. #else
  3293. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3294. #endif //TMC2130
  3295. if ((home_x || home_y || without_mbl || home_z) == false) {
  3296. // Push the commands to the front of the message queue in the reverse order!
  3297. // There shall be always enough space reserved for these commands.
  3298. goto case_G80;
  3299. }
  3300. break;
  3301. }
  3302. #ifdef ENABLE_AUTO_BED_LEVELING
  3303. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3304. {
  3305. #if Z_MIN_PIN == -1
  3306. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3307. #endif
  3308. // Prevent user from running a G29 without first homing in X and Y
  3309. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3310. {
  3311. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3312. SERIAL_ECHO_START;
  3313. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3314. break; // abort G29, since we don't know where we are
  3315. }
  3316. st_synchronize();
  3317. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3318. //vector_3 corrected_position = plan_get_position_mm();
  3319. //corrected_position.debug("position before G29");
  3320. plan_bed_level_matrix.set_to_identity();
  3321. vector_3 uncorrected_position = plan_get_position();
  3322. //uncorrected_position.debug("position durring G29");
  3323. current_position[X_AXIS] = uncorrected_position.x;
  3324. current_position[Y_AXIS] = uncorrected_position.y;
  3325. current_position[Z_AXIS] = uncorrected_position.z;
  3326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3327. int l_feedmultiply = setup_for_endstop_move();
  3328. feedrate = homing_feedrate[Z_AXIS];
  3329. #ifdef AUTO_BED_LEVELING_GRID
  3330. // probe at the points of a lattice grid
  3331. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3332. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3333. // solve the plane equation ax + by + d = z
  3334. // A is the matrix with rows [x y 1] for all the probed points
  3335. // B is the vector of the Z positions
  3336. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3337. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3338. // "A" matrix of the linear system of equations
  3339. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3340. // "B" vector of Z points
  3341. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3342. int probePointCounter = 0;
  3343. bool zig = true;
  3344. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3345. {
  3346. int xProbe, xInc;
  3347. if (zig)
  3348. {
  3349. xProbe = LEFT_PROBE_BED_POSITION;
  3350. //xEnd = RIGHT_PROBE_BED_POSITION;
  3351. xInc = xGridSpacing;
  3352. zig = false;
  3353. } else // zag
  3354. {
  3355. xProbe = RIGHT_PROBE_BED_POSITION;
  3356. //xEnd = LEFT_PROBE_BED_POSITION;
  3357. xInc = -xGridSpacing;
  3358. zig = true;
  3359. }
  3360. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3361. {
  3362. float z_before;
  3363. if (probePointCounter == 0)
  3364. {
  3365. // raise before probing
  3366. z_before = Z_RAISE_BEFORE_PROBING;
  3367. } else
  3368. {
  3369. // raise extruder
  3370. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3371. }
  3372. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3373. eqnBVector[probePointCounter] = measured_z;
  3374. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3375. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3376. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3377. probePointCounter++;
  3378. xProbe += xInc;
  3379. }
  3380. }
  3381. clean_up_after_endstop_move(l_feedmultiply);
  3382. // solve lsq problem
  3383. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3384. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3385. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3386. SERIAL_PROTOCOLPGM(" b: ");
  3387. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3388. SERIAL_PROTOCOLPGM(" d: ");
  3389. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3390. set_bed_level_equation_lsq(plane_equation_coefficients);
  3391. free(plane_equation_coefficients);
  3392. #else // AUTO_BED_LEVELING_GRID not defined
  3393. // Probe at 3 arbitrary points
  3394. // probe 1
  3395. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3396. // probe 2
  3397. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3398. // probe 3
  3399. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3400. clean_up_after_endstop_move(l_feedmultiply);
  3401. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3402. #endif // AUTO_BED_LEVELING_GRID
  3403. st_synchronize();
  3404. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3405. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3406. // When the bed is uneven, this height must be corrected.
  3407. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3408. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3409. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3410. z_tmp = current_position[Z_AXIS];
  3411. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3412. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3413. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3414. }
  3415. break;
  3416. #ifndef Z_PROBE_SLED
  3417. case 30: // G30 Single Z Probe
  3418. {
  3419. st_synchronize();
  3420. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3421. int l_feedmultiply = setup_for_endstop_move();
  3422. feedrate = homing_feedrate[Z_AXIS];
  3423. run_z_probe();
  3424. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3425. SERIAL_PROTOCOLPGM(" X: ");
  3426. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3427. SERIAL_PROTOCOLPGM(" Y: ");
  3428. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3429. SERIAL_PROTOCOLPGM(" Z: ");
  3430. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3431. SERIAL_PROTOCOLPGM("\n");
  3432. clean_up_after_endstop_move(l_feedmultiply);
  3433. }
  3434. break;
  3435. #else
  3436. case 31: // dock the sled
  3437. dock_sled(true);
  3438. break;
  3439. case 32: // undock the sled
  3440. dock_sled(false);
  3441. break;
  3442. #endif // Z_PROBE_SLED
  3443. #endif // ENABLE_AUTO_BED_LEVELING
  3444. #ifdef MESH_BED_LEVELING
  3445. case 30: // G30 Single Z Probe
  3446. {
  3447. st_synchronize();
  3448. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3449. int l_feedmultiply = setup_for_endstop_move();
  3450. feedrate = homing_feedrate[Z_AXIS];
  3451. find_bed_induction_sensor_point_z(-10.f, 3);
  3452. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3453. clean_up_after_endstop_move(l_feedmultiply);
  3454. }
  3455. break;
  3456. case 75:
  3457. {
  3458. for (int i = 40; i <= 110; i++)
  3459. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3460. }
  3461. break;
  3462. case 76: //! G76 - PINDA probe temperature calibration
  3463. {
  3464. #ifdef PINDA_THERMISTOR
  3465. if (true)
  3466. {
  3467. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3468. //we need to know accurate position of first calibration point
  3469. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3470. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3471. break;
  3472. }
  3473. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3474. {
  3475. // We don't know where we are! HOME!
  3476. // Push the commands to the front of the message queue in the reverse order!
  3477. // There shall be always enough space reserved for these commands.
  3478. repeatcommand_front(); // repeat G76 with all its parameters
  3479. enquecommand_front_P((PSTR("G28 W0")));
  3480. break;
  3481. }
  3482. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3483. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3484. if (result)
  3485. {
  3486. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3488. current_position[Z_AXIS] = 50;
  3489. current_position[Y_AXIS] = 180;
  3490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3491. st_synchronize();
  3492. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3493. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3494. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. st_synchronize();
  3497. gcode_G28(false, false, true);
  3498. }
  3499. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3500. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3501. current_position[Z_AXIS] = 100;
  3502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3503. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3504. lcd_temp_cal_show_result(false);
  3505. break;
  3506. }
  3507. }
  3508. lcd_update_enable(true);
  3509. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3510. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3511. float zero_z;
  3512. int z_shift = 0; //unit: steps
  3513. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3514. if (start_temp < 35) start_temp = 35;
  3515. if (start_temp < current_temperature_pinda) start_temp += 5;
  3516. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3517. // setTargetHotend(200, 0);
  3518. setTargetBed(70 + (start_temp - 30));
  3519. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3520. custom_message_state = 1;
  3521. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3522. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3524. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3525. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3527. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3529. st_synchronize();
  3530. while (current_temperature_pinda < start_temp)
  3531. {
  3532. delay_keep_alive(1000);
  3533. serialecho_temperatures();
  3534. }
  3535. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3536. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3538. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3539. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3541. st_synchronize();
  3542. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3543. if (find_z_result == false) {
  3544. lcd_temp_cal_show_result(find_z_result);
  3545. break;
  3546. }
  3547. zero_z = current_position[Z_AXIS];
  3548. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3549. int i = -1; for (; i < 5; i++)
  3550. {
  3551. float temp = (40 + i * 5);
  3552. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3553. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3554. if (start_temp <= temp) break;
  3555. }
  3556. for (i++; i < 5; i++)
  3557. {
  3558. float temp = (40 + i * 5);
  3559. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3560. custom_message_state = i + 2;
  3561. setTargetBed(50 + 10 * (temp - 30) / 5);
  3562. // setTargetHotend(255, 0);
  3563. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3565. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3566. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3568. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3570. st_synchronize();
  3571. while (current_temperature_pinda < temp)
  3572. {
  3573. delay_keep_alive(1000);
  3574. serialecho_temperatures();
  3575. }
  3576. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3578. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3579. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3581. st_synchronize();
  3582. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3583. if (find_z_result == false) {
  3584. lcd_temp_cal_show_result(find_z_result);
  3585. break;
  3586. }
  3587. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3588. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3589. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3590. }
  3591. lcd_temp_cal_show_result(true);
  3592. break;
  3593. }
  3594. #endif //PINDA_THERMISTOR
  3595. setTargetBed(PINDA_MIN_T);
  3596. float zero_z;
  3597. int z_shift = 0; //unit: steps
  3598. int t_c; // temperature
  3599. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3600. // We don't know where we are! HOME!
  3601. // Push the commands to the front of the message queue in the reverse order!
  3602. // There shall be always enough space reserved for these commands.
  3603. repeatcommand_front(); // repeat G76 with all its parameters
  3604. enquecommand_front_P((PSTR("G28 W0")));
  3605. break;
  3606. }
  3607. puts_P(_N("PINDA probe calibration start"));
  3608. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3609. custom_message_state = 1;
  3610. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3611. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3612. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3613. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3615. st_synchronize();
  3616. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3617. delay_keep_alive(1000);
  3618. serialecho_temperatures();
  3619. }
  3620. //enquecommand_P(PSTR("M190 S50"));
  3621. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3622. delay_keep_alive(1000);
  3623. serialecho_temperatures();
  3624. }
  3625. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3626. current_position[Z_AXIS] = 5;
  3627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3628. current_position[X_AXIS] = BED_X0;
  3629. current_position[Y_AXIS] = BED_Y0;
  3630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3631. st_synchronize();
  3632. find_bed_induction_sensor_point_z(-1.f);
  3633. zero_z = current_position[Z_AXIS];
  3634. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3635. for (int i = 0; i<5; i++) {
  3636. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3637. custom_message_state = i + 2;
  3638. t_c = 60 + i * 10;
  3639. setTargetBed(t_c);
  3640. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3641. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3642. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3644. st_synchronize();
  3645. while (degBed() < t_c) {
  3646. delay_keep_alive(1000);
  3647. serialecho_temperatures();
  3648. }
  3649. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3650. delay_keep_alive(1000);
  3651. serialecho_temperatures();
  3652. }
  3653. current_position[Z_AXIS] = 5;
  3654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3655. current_position[X_AXIS] = BED_X0;
  3656. current_position[Y_AXIS] = BED_Y0;
  3657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3658. st_synchronize();
  3659. find_bed_induction_sensor_point_z(-1.f);
  3660. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3661. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3662. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3663. }
  3664. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3665. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3666. puts_P(_N("Temperature calibration done."));
  3667. disable_x();
  3668. disable_y();
  3669. disable_z();
  3670. disable_e0();
  3671. disable_e1();
  3672. disable_e2();
  3673. setTargetBed(0); //set bed target temperature back to 0
  3674. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3675. temp_cal_active = true;
  3676. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3677. lcd_update_enable(true);
  3678. lcd_update(2);
  3679. }
  3680. break;
  3681. /**
  3682. * G80: Mesh-based Z probe, probes a grid and produces a
  3683. * mesh to compensate for variable bed height
  3684. *
  3685. * The S0 report the points as below
  3686. * @code{.unparsed}
  3687. * +----> X-axis
  3688. * |
  3689. * |
  3690. * v Y-axis
  3691. * @endcode
  3692. */
  3693. case 80:
  3694. #ifdef MK1BP
  3695. break;
  3696. #endif //MK1BP
  3697. case_G80:
  3698. {
  3699. mesh_bed_leveling_flag = true;
  3700. static bool run = false;
  3701. #ifdef SUPPORT_VERBOSITY
  3702. int8_t verbosity_level = 0;
  3703. if (code_seen('V')) {
  3704. // Just 'V' without a number counts as V1.
  3705. char c = strchr_pointer[1];
  3706. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3707. }
  3708. #endif //SUPPORT_VERBOSITY
  3709. // Firstly check if we know where we are
  3710. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3711. // We don't know where we are! HOME!
  3712. // Push the commands to the front of the message queue in the reverse order!
  3713. // There shall be always enough space reserved for these commands.
  3714. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3715. repeatcommand_front(); // repeat G80 with all its parameters
  3716. enquecommand_front_P((PSTR("G28 W0")));
  3717. }
  3718. else {
  3719. mesh_bed_leveling_flag = false;
  3720. }
  3721. break;
  3722. }
  3723. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3724. if (code_seen('N')) {
  3725. nMeasPoints = code_value_uint8();
  3726. if (nMeasPoints != 7) {
  3727. nMeasPoints = 3;
  3728. }
  3729. }
  3730. else {
  3731. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3732. }
  3733. uint8_t nProbeRetry = 3;
  3734. if (code_seen('R')) {
  3735. nProbeRetry = code_value_uint8();
  3736. if (nProbeRetry > 10) {
  3737. nProbeRetry = 10;
  3738. }
  3739. }
  3740. else {
  3741. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3742. }
  3743. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3744. bool temp_comp_start = true;
  3745. #ifdef PINDA_THERMISTOR
  3746. temp_comp_start = false;
  3747. #endif //PINDA_THERMISTOR
  3748. if (temp_comp_start)
  3749. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3750. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3751. temp_compensation_start();
  3752. run = true;
  3753. repeatcommand_front(); // repeat G80 with all its parameters
  3754. enquecommand_front_P((PSTR("G28 W0")));
  3755. }
  3756. else {
  3757. mesh_bed_leveling_flag = false;
  3758. }
  3759. break;
  3760. }
  3761. run = false;
  3762. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3763. mesh_bed_leveling_flag = false;
  3764. break;
  3765. }
  3766. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3767. unsigned int custom_message_type_old = custom_message_type;
  3768. unsigned int custom_message_state_old = custom_message_state;
  3769. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3770. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3771. lcd_update(1);
  3772. mbl.reset(); //reset mesh bed leveling
  3773. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3774. // consumed during the first movements following this statement.
  3775. babystep_undo();
  3776. // Cycle through all points and probe them
  3777. // First move up. During this first movement, the babystepping will be reverted.
  3778. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3780. // The move to the first calibration point.
  3781. current_position[X_AXIS] = BED_X0;
  3782. current_position[Y_AXIS] = BED_Y0;
  3783. #ifdef SUPPORT_VERBOSITY
  3784. if (verbosity_level >= 1)
  3785. {
  3786. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3787. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3788. }
  3789. #endif //SUPPORT_VERBOSITY
  3790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3791. // Wait until the move is finished.
  3792. st_synchronize();
  3793. uint8_t mesh_point = 0; //index number of calibration point
  3794. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3795. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3796. bool has_z = (nMeasPoints == 3) && is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3797. #ifdef SUPPORT_VERBOSITY
  3798. if (verbosity_level >= 1) {
  3799. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3800. }
  3801. #endif // SUPPORT_VERBOSITY
  3802. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3803. const char *kill_message = NULL;
  3804. while (mesh_point != nMeasPoints * nMeasPoints) {
  3805. // Get coords of a measuring point.
  3806. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3807. uint8_t iy = mesh_point / nMeasPoints;
  3808. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3809. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3810. custom_message_state--;
  3811. mesh_point++;
  3812. continue; //skip
  3813. }*/
  3814. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3815. float z0 = 0.f;
  3816. if (has_z && (mesh_point > 0)) {
  3817. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3818. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3819. //#if 0
  3820. #ifdef SUPPORT_VERBOSITY
  3821. if (verbosity_level >= 1) {
  3822. SERIAL_ECHOLNPGM("");
  3823. SERIAL_ECHOPGM("Bed leveling, point: ");
  3824. MYSERIAL.print(mesh_point);
  3825. SERIAL_ECHOPGM(", calibration z: ");
  3826. MYSERIAL.print(z0, 5);
  3827. SERIAL_ECHOLNPGM("");
  3828. }
  3829. #endif // SUPPORT_VERBOSITY
  3830. //#endif
  3831. }
  3832. // Move Z up to MESH_HOME_Z_SEARCH.
  3833. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3834. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3836. st_synchronize();
  3837. // Move to XY position of the sensor point.
  3838. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3839. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3840. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3841. #ifdef SUPPORT_VERBOSITY
  3842. if (verbosity_level >= 1) {
  3843. SERIAL_PROTOCOL(mesh_point);
  3844. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3845. }
  3846. #endif // SUPPORT_VERBOSITY
  3847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3848. st_synchronize();
  3849. // Go down until endstop is hit
  3850. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3851. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3852. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3853. break;
  3854. }
  3855. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3856. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3858. st_synchronize();
  3859. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3860. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3861. break;
  3862. }
  3863. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3864. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3865. break;
  3866. }
  3867. }
  3868. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3869. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3870. break;
  3871. }
  3872. #ifdef SUPPORT_VERBOSITY
  3873. if (verbosity_level >= 10) {
  3874. SERIAL_ECHOPGM("X: ");
  3875. MYSERIAL.print(current_position[X_AXIS], 5);
  3876. SERIAL_ECHOLNPGM("");
  3877. SERIAL_ECHOPGM("Y: ");
  3878. MYSERIAL.print(current_position[Y_AXIS], 5);
  3879. SERIAL_PROTOCOLPGM("\n");
  3880. }
  3881. #endif // SUPPORT_VERBOSITY
  3882. float offset_z = 0;
  3883. #ifdef PINDA_THERMISTOR
  3884. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3885. #endif //PINDA_THERMISTOR
  3886. // #ifdef SUPPORT_VERBOSITY
  3887. /* if (verbosity_level >= 1)
  3888. {
  3889. SERIAL_ECHOPGM("mesh bed leveling: ");
  3890. MYSERIAL.print(current_position[Z_AXIS], 5);
  3891. SERIAL_ECHOPGM(" offset: ");
  3892. MYSERIAL.print(offset_z, 5);
  3893. SERIAL_ECHOLNPGM("");
  3894. }*/
  3895. // #endif // SUPPORT_VERBOSITY
  3896. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3897. custom_message_state--;
  3898. mesh_point++;
  3899. lcd_update(1);
  3900. }
  3901. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3902. #ifdef SUPPORT_VERBOSITY
  3903. if (verbosity_level >= 20) {
  3904. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3905. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3906. MYSERIAL.print(current_position[Z_AXIS], 5);
  3907. }
  3908. #endif // SUPPORT_VERBOSITY
  3909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3910. st_synchronize();
  3911. if (mesh_point != nMeasPoints * nMeasPoints) {
  3912. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3913. bool bState;
  3914. do { // repeat until Z-leveling o.k.
  3915. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3916. #ifdef TMC2130
  3917. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3918. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3919. #else // TMC2130
  3920. lcd_wait_for_click_delay(0); // ~ no timeout
  3921. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3922. #endif // TMC2130
  3923. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3924. bState=enable_z_endstop(false);
  3925. current_position[Z_AXIS] -= 1;
  3926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3927. st_synchronize();
  3928. enable_z_endstop(true);
  3929. #ifdef TMC2130
  3930. tmc2130_home_enter(Z_AXIS_MASK);
  3931. #endif // TMC2130
  3932. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3934. st_synchronize();
  3935. #ifdef TMC2130
  3936. tmc2130_home_exit();
  3937. #endif // TMC2130
  3938. enable_z_endstop(bState);
  3939. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3940. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3941. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3942. lcd_update_enable(true); // display / status-line recovery
  3943. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3944. repeatcommand_front(); // re-run (i.e. of "G80")
  3945. break;
  3946. }
  3947. clean_up_after_endstop_move(l_feedmultiply);
  3948. // SERIAL_ECHOLNPGM("clean up finished ");
  3949. bool apply_temp_comp = true;
  3950. #ifdef PINDA_THERMISTOR
  3951. apply_temp_comp = false;
  3952. #endif
  3953. if (apply_temp_comp)
  3954. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3955. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3956. // SERIAL_ECHOLNPGM("babystep applied");
  3957. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3958. #ifdef SUPPORT_VERBOSITY
  3959. if (verbosity_level >= 1) {
  3960. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3961. }
  3962. #endif // SUPPORT_VERBOSITY
  3963. for (uint8_t i = 0; i < 4; ++i) {
  3964. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3965. long correction = 0;
  3966. if (code_seen(codes[i]))
  3967. correction = code_value_long();
  3968. else if (eeprom_bed_correction_valid) {
  3969. unsigned char *addr = (i < 2) ?
  3970. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3971. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3972. correction = eeprom_read_int8(addr);
  3973. }
  3974. if (correction == 0)
  3975. continue;
  3976. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  3977. SERIAL_ERROR_START;
  3978. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3979. SERIAL_ECHO(correction);
  3980. SERIAL_ECHOLNPGM(" microns");
  3981. }
  3982. else {
  3983. float offset = float(correction) * 0.001f;
  3984. switch (i) {
  3985. case 0:
  3986. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  3987. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  3988. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  3989. }
  3990. }
  3991. break;
  3992. case 1:
  3993. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  3994. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  3995. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  3996. }
  3997. }
  3998. break;
  3999. case 2:
  4000. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4001. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4002. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4003. }
  4004. }
  4005. break;
  4006. case 3:
  4007. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4008. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4009. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4010. }
  4011. }
  4012. break;
  4013. }
  4014. }
  4015. }
  4016. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4017. if (nMeasPoints == 3) {
  4018. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4019. }
  4020. if (nMeasPoints == 7 && magnet_elimination) {
  4021. mbl_interpolation(nMeasPoints);
  4022. }
  4023. // SERIAL_ECHOLNPGM("Upsample finished");
  4024. mbl.active = 1; //activate mesh bed leveling
  4025. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4026. go_home_with_z_lift();
  4027. // SERIAL_ECHOLNPGM("Go home finished");
  4028. //unretract (after PINDA preheat retraction)
  4029. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4030. current_position[E_AXIS] += default_retraction;
  4031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4032. }
  4033. KEEPALIVE_STATE(NOT_BUSY);
  4034. // Restore custom message state
  4035. lcd_setstatuspgm(_T(WELCOME_MSG));
  4036. custom_message_type = custom_message_type_old;
  4037. custom_message_state = custom_message_state_old;
  4038. mesh_bed_leveling_flag = false;
  4039. mesh_bed_run_from_menu = false;
  4040. lcd_update(2);
  4041. }
  4042. break;
  4043. /**
  4044. * G81: Print mesh bed leveling status and bed profile if activated
  4045. */
  4046. case 81:
  4047. if (mbl.active) {
  4048. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4049. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4050. SERIAL_PROTOCOLPGM(",");
  4051. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4052. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4053. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4054. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4055. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4056. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4057. SERIAL_PROTOCOLPGM(" ");
  4058. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4059. }
  4060. SERIAL_PROTOCOLPGM("\n");
  4061. }
  4062. }
  4063. else
  4064. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4065. break;
  4066. #if 0
  4067. /**
  4068. * G82: Single Z probe at current location
  4069. *
  4070. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4071. *
  4072. */
  4073. case 82:
  4074. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4075. int l_feedmultiply = setup_for_endstop_move();
  4076. find_bed_induction_sensor_point_z();
  4077. clean_up_after_endstop_move(l_feedmultiply);
  4078. SERIAL_PROTOCOLPGM("Bed found at: ");
  4079. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4080. SERIAL_PROTOCOLPGM("\n");
  4081. break;
  4082. /**
  4083. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4084. */
  4085. case 83:
  4086. {
  4087. int babystepz = code_seen('S') ? code_value() : 0;
  4088. int BabyPosition = code_seen('P') ? code_value() : 0;
  4089. if (babystepz != 0) {
  4090. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4091. // Is the axis indexed starting with zero or one?
  4092. if (BabyPosition > 4) {
  4093. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4094. }else{
  4095. // Save it to the eeprom
  4096. babystepLoadZ = babystepz;
  4097. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4098. // adjust the Z
  4099. babystepsTodoZadd(babystepLoadZ);
  4100. }
  4101. }
  4102. }
  4103. break;
  4104. /**
  4105. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4106. */
  4107. case 84:
  4108. babystepsTodoZsubtract(babystepLoadZ);
  4109. // babystepLoadZ = 0;
  4110. break;
  4111. /**
  4112. * G85: Prusa3D specific: Pick best babystep
  4113. */
  4114. case 85:
  4115. lcd_pick_babystep();
  4116. break;
  4117. #endif
  4118. /**
  4119. * G86: Prusa3D specific: Disable babystep correction after home.
  4120. * This G-code will be performed at the start of a calibration script.
  4121. */
  4122. case 86:
  4123. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4124. break;
  4125. /**
  4126. * G87: Prusa3D specific: Enable babystep correction after home
  4127. * This G-code will be performed at the end of a calibration script.
  4128. */
  4129. case 87:
  4130. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4131. break;
  4132. /**
  4133. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4134. */
  4135. case 88:
  4136. break;
  4137. #endif // ENABLE_MESH_BED_LEVELING
  4138. case 90: // G90
  4139. relative_mode = false;
  4140. break;
  4141. case 91: // G91
  4142. relative_mode = true;
  4143. break;
  4144. case 92: // G92
  4145. if(!code_seen(axis_codes[E_AXIS]))
  4146. st_synchronize();
  4147. for(int8_t i=0; i < NUM_AXIS; i++) {
  4148. if(code_seen(axis_codes[i])) {
  4149. if(i == E_AXIS) {
  4150. current_position[i] = code_value();
  4151. plan_set_e_position(current_position[E_AXIS]);
  4152. }
  4153. else {
  4154. current_position[i] = code_value()+cs.add_homing[i];
  4155. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4156. }
  4157. }
  4158. }
  4159. break;
  4160. case 98: //! G98 (activate farm mode)
  4161. farm_mode = 1;
  4162. PingTime = _millis();
  4163. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4164. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4165. SilentModeMenu = SILENT_MODE_OFF;
  4166. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4167. break;
  4168. case 99: //! G99 (deactivate farm mode)
  4169. farm_mode = 0;
  4170. lcd_printer_connected();
  4171. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4172. lcd_update(2);
  4173. break;
  4174. default:
  4175. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4176. }
  4177. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4178. gcode_in_progress = 0;
  4179. } // end if(code_seen('G'))
  4180. else if(code_seen('M'))
  4181. {
  4182. int index;
  4183. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4184. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4185. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4186. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4187. } else
  4188. {
  4189. mcode_in_progress = (int)code_value();
  4190. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4191. switch(mcode_in_progress)
  4192. {
  4193. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4194. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4195. {
  4196. char *src = strchr_pointer + 2;
  4197. codenum = 0;
  4198. bool hasP = false, hasS = false;
  4199. if (code_seen('P')) {
  4200. codenum = code_value(); // milliseconds to wait
  4201. hasP = codenum > 0;
  4202. }
  4203. if (code_seen('S')) {
  4204. codenum = code_value() * 1000; // seconds to wait
  4205. hasS = codenum > 0;
  4206. }
  4207. starpos = strchr(src, '*');
  4208. if (starpos != NULL) *(starpos) = '\0';
  4209. while (*src == ' ') ++src;
  4210. if (!hasP && !hasS && *src != '\0') {
  4211. lcd_setstatus(src);
  4212. } else {
  4213. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4214. }
  4215. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4216. st_synchronize();
  4217. previous_millis_cmd = _millis();
  4218. if (codenum > 0){
  4219. codenum += _millis(); // keep track of when we started waiting
  4220. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4221. while(_millis() < codenum && !lcd_clicked()){
  4222. manage_heater();
  4223. manage_inactivity(true);
  4224. lcd_update(0);
  4225. }
  4226. KEEPALIVE_STATE(IN_HANDLER);
  4227. lcd_ignore_click(false);
  4228. }else{
  4229. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4230. while(!lcd_clicked()){
  4231. manage_heater();
  4232. manage_inactivity(true);
  4233. lcd_update(0);
  4234. }
  4235. KEEPALIVE_STATE(IN_HANDLER);
  4236. }
  4237. if (IS_SD_PRINTING)
  4238. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4239. else
  4240. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4241. }
  4242. break;
  4243. case 17:
  4244. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4245. enable_x();
  4246. enable_y();
  4247. enable_z();
  4248. enable_e0();
  4249. enable_e1();
  4250. enable_e2();
  4251. break;
  4252. #ifdef SDSUPPORT
  4253. case 20: // M20 - list SD card
  4254. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4255. card.ls();
  4256. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4257. break;
  4258. case 21: // M21 - init SD card
  4259. card.initsd();
  4260. break;
  4261. case 22: //M22 - release SD card
  4262. card.release();
  4263. break;
  4264. case 23: //M23 - Select file
  4265. starpos = (strchr(strchr_pointer + 4,'*'));
  4266. if(starpos!=NULL)
  4267. *(starpos)='\0';
  4268. card.openFile(strchr_pointer + 4,true);
  4269. break;
  4270. case 24: //M24 - Start SD print
  4271. if (!card.paused)
  4272. failstats_reset_print();
  4273. card.startFileprint();
  4274. starttime=_millis();
  4275. break;
  4276. case 25: //M25 - Pause SD print
  4277. card.pauseSDPrint();
  4278. break;
  4279. case 26: //M26 - Set SD index
  4280. if(card.cardOK && code_seen('S')) {
  4281. card.setIndex(code_value_long());
  4282. }
  4283. break;
  4284. case 27: //M27 - Get SD status
  4285. card.getStatus();
  4286. break;
  4287. case 28: //M28 - Start SD write
  4288. starpos = (strchr(strchr_pointer + 4,'*'));
  4289. if(starpos != NULL){
  4290. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4291. strchr_pointer = strchr(npos,' ') + 1;
  4292. *(starpos) = '\0';
  4293. }
  4294. card.openFile(strchr_pointer+4,false);
  4295. break;
  4296. case 29: //M29 - Stop SD write
  4297. //processed in write to file routine above
  4298. //card,saving = false;
  4299. break;
  4300. case 30: //M30 <filename> Delete File
  4301. if (card.cardOK){
  4302. card.closefile();
  4303. starpos = (strchr(strchr_pointer + 4,'*'));
  4304. if(starpos != NULL){
  4305. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4306. strchr_pointer = strchr(npos,' ') + 1;
  4307. *(starpos) = '\0';
  4308. }
  4309. card.removeFile(strchr_pointer + 4);
  4310. }
  4311. break;
  4312. case 32: //M32 - Select file and start SD print
  4313. {
  4314. if(card.sdprinting) {
  4315. st_synchronize();
  4316. }
  4317. starpos = (strchr(strchr_pointer + 4,'*'));
  4318. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4319. if(namestartpos==NULL)
  4320. {
  4321. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4322. }
  4323. else
  4324. namestartpos++; //to skip the '!'
  4325. if(starpos!=NULL)
  4326. *(starpos)='\0';
  4327. bool call_procedure=(code_seen('P'));
  4328. if(strchr_pointer>namestartpos)
  4329. call_procedure=false; //false alert, 'P' found within filename
  4330. if( card.cardOK )
  4331. {
  4332. card.openFile(namestartpos,true,!call_procedure);
  4333. if(code_seen('S'))
  4334. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4335. card.setIndex(code_value_long());
  4336. card.startFileprint();
  4337. if(!call_procedure)
  4338. starttime=_millis(); //procedure calls count as normal print time.
  4339. }
  4340. } break;
  4341. case 928: //M928 - Start SD write
  4342. starpos = (strchr(strchr_pointer + 5,'*'));
  4343. if(starpos != NULL){
  4344. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4345. strchr_pointer = strchr(npos,' ') + 1;
  4346. *(starpos) = '\0';
  4347. }
  4348. card.openLogFile(strchr_pointer+5);
  4349. break;
  4350. #endif //SDSUPPORT
  4351. case 31: //M31 take time since the start of the SD print or an M109 command
  4352. {
  4353. stoptime=_millis();
  4354. char time[30];
  4355. unsigned long t=(stoptime-starttime)/1000;
  4356. int sec,min;
  4357. min=t/60;
  4358. sec=t%60;
  4359. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4360. SERIAL_ECHO_START;
  4361. SERIAL_ECHOLN(time);
  4362. lcd_setstatus(time);
  4363. autotempShutdown();
  4364. }
  4365. break;
  4366. case 42: //M42 -Change pin status via gcode
  4367. if (code_seen('S'))
  4368. {
  4369. int pin_status = code_value();
  4370. int pin_number = LED_PIN;
  4371. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4372. pin_number = code_value();
  4373. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4374. {
  4375. if (sensitive_pins[i] == pin_number)
  4376. {
  4377. pin_number = -1;
  4378. break;
  4379. }
  4380. }
  4381. #if defined(FAN_PIN) && FAN_PIN > -1
  4382. if (pin_number == FAN_PIN)
  4383. fanSpeed = pin_status;
  4384. #endif
  4385. if (pin_number > -1)
  4386. {
  4387. pinMode(pin_number, OUTPUT);
  4388. digitalWrite(pin_number, pin_status);
  4389. analogWrite(pin_number, pin_status);
  4390. }
  4391. }
  4392. break;
  4393. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4394. // Reset the baby step value and the baby step applied flag.
  4395. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4396. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4397. // Reset the skew and offset in both RAM and EEPROM.
  4398. reset_bed_offset_and_skew();
  4399. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4400. // the planner will not perform any adjustments in the XY plane.
  4401. // Wait for the motors to stop and update the current position with the absolute values.
  4402. world2machine_revert_to_uncorrected();
  4403. break;
  4404. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4405. {
  4406. int8_t verbosity_level = 0;
  4407. bool only_Z = code_seen('Z');
  4408. #ifdef SUPPORT_VERBOSITY
  4409. if (code_seen('V'))
  4410. {
  4411. // Just 'V' without a number counts as V1.
  4412. char c = strchr_pointer[1];
  4413. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4414. }
  4415. #endif //SUPPORT_VERBOSITY
  4416. gcode_M45(only_Z, verbosity_level);
  4417. }
  4418. break;
  4419. /*
  4420. case 46:
  4421. {
  4422. // M46: Prusa3D: Show the assigned IP address.
  4423. uint8_t ip[4];
  4424. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4425. if (hasIP) {
  4426. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4427. SERIAL_ECHO(int(ip[0]));
  4428. SERIAL_ECHOPGM(".");
  4429. SERIAL_ECHO(int(ip[1]));
  4430. SERIAL_ECHOPGM(".");
  4431. SERIAL_ECHO(int(ip[2]));
  4432. SERIAL_ECHOPGM(".");
  4433. SERIAL_ECHO(int(ip[3]));
  4434. SERIAL_ECHOLNPGM("");
  4435. } else {
  4436. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4437. }
  4438. break;
  4439. }
  4440. */
  4441. case 47:
  4442. //! M47: Prusa3D: Show end stops dialog on the display.
  4443. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4444. lcd_diag_show_end_stops();
  4445. KEEPALIVE_STATE(IN_HANDLER);
  4446. break;
  4447. #if 0
  4448. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4449. {
  4450. // Disable the default update procedure of the display. We will do a modal dialog.
  4451. lcd_update_enable(false);
  4452. // Let the planner use the uncorrected coordinates.
  4453. mbl.reset();
  4454. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4455. // the planner will not perform any adjustments in the XY plane.
  4456. // Wait for the motors to stop and update the current position with the absolute values.
  4457. world2machine_revert_to_uncorrected();
  4458. // Move the print head close to the bed.
  4459. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4461. st_synchronize();
  4462. // Home in the XY plane.
  4463. set_destination_to_current();
  4464. int l_feedmultiply = setup_for_endstop_move();
  4465. home_xy();
  4466. int8_t verbosity_level = 0;
  4467. if (code_seen('V')) {
  4468. // Just 'V' without a number counts as V1.
  4469. char c = strchr_pointer[1];
  4470. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4471. }
  4472. bool success = scan_bed_induction_points(verbosity_level);
  4473. clean_up_after_endstop_move(l_feedmultiply);
  4474. // Print head up.
  4475. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4477. st_synchronize();
  4478. lcd_update_enable(true);
  4479. break;
  4480. }
  4481. #endif
  4482. #ifdef ENABLE_AUTO_BED_LEVELING
  4483. #ifdef Z_PROBE_REPEATABILITY_TEST
  4484. //! M48 Z-Probe repeatability measurement function.
  4485. //!
  4486. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4487. //!
  4488. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4489. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4490. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4491. //! regenerated.
  4492. //!
  4493. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4494. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4495. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4496. //!
  4497. case 48: // M48 Z-Probe repeatability
  4498. {
  4499. #if Z_MIN_PIN == -1
  4500. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4501. #endif
  4502. double sum=0.0;
  4503. double mean=0.0;
  4504. double sigma=0.0;
  4505. double sample_set[50];
  4506. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4507. double X_current, Y_current, Z_current;
  4508. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4509. if (code_seen('V') || code_seen('v')) {
  4510. verbose_level = code_value();
  4511. if (verbose_level<0 || verbose_level>4 ) {
  4512. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4513. goto Sigma_Exit;
  4514. }
  4515. }
  4516. if (verbose_level > 0) {
  4517. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4518. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4519. }
  4520. if (code_seen('n')) {
  4521. n_samples = code_value();
  4522. if (n_samples<4 || n_samples>50 ) {
  4523. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4524. goto Sigma_Exit;
  4525. }
  4526. }
  4527. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4528. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4529. Z_current = st_get_position_mm(Z_AXIS);
  4530. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4531. ext_position = st_get_position_mm(E_AXIS);
  4532. if (code_seen('X') || code_seen('x') ) {
  4533. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4534. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4535. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4536. goto Sigma_Exit;
  4537. }
  4538. }
  4539. if (code_seen('Y') || code_seen('y') ) {
  4540. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4541. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4542. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4543. goto Sigma_Exit;
  4544. }
  4545. }
  4546. if (code_seen('L') || code_seen('l') ) {
  4547. n_legs = code_value();
  4548. if ( n_legs==1 )
  4549. n_legs = 2;
  4550. if ( n_legs<0 || n_legs>15 ) {
  4551. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4552. goto Sigma_Exit;
  4553. }
  4554. }
  4555. //
  4556. // Do all the preliminary setup work. First raise the probe.
  4557. //
  4558. st_synchronize();
  4559. plan_bed_level_matrix.set_to_identity();
  4560. plan_buffer_line( X_current, Y_current, Z_start_location,
  4561. ext_position,
  4562. homing_feedrate[Z_AXIS]/60,
  4563. active_extruder);
  4564. st_synchronize();
  4565. //
  4566. // Now get everything to the specified probe point So we can safely do a probe to
  4567. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4568. // use that as a starting point for each probe.
  4569. //
  4570. if (verbose_level > 2)
  4571. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4572. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4573. ext_position,
  4574. homing_feedrate[X_AXIS]/60,
  4575. active_extruder);
  4576. st_synchronize();
  4577. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4578. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4579. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4580. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4581. //
  4582. // OK, do the inital probe to get us close to the bed.
  4583. // Then retrace the right amount and use that in subsequent probes
  4584. //
  4585. int l_feedmultiply = setup_for_endstop_move();
  4586. run_z_probe();
  4587. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4588. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4589. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4590. ext_position,
  4591. homing_feedrate[X_AXIS]/60,
  4592. active_extruder);
  4593. st_synchronize();
  4594. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4595. for( n=0; n<n_samples; n++) {
  4596. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4597. if ( n_legs) {
  4598. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4599. int rotational_direction, l;
  4600. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4601. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4602. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4603. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4604. //SERIAL_ECHOPAIR(" theta: ",theta);
  4605. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4606. //SERIAL_PROTOCOLLNPGM("");
  4607. for( l=0; l<n_legs-1; l++) {
  4608. if (rotational_direction==1)
  4609. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4610. else
  4611. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4612. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4613. if ( radius<0.0 )
  4614. radius = -radius;
  4615. X_current = X_probe_location + cos(theta) * radius;
  4616. Y_current = Y_probe_location + sin(theta) * radius;
  4617. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4618. X_current = X_MIN_POS;
  4619. if ( X_current>X_MAX_POS)
  4620. X_current = X_MAX_POS;
  4621. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4622. Y_current = Y_MIN_POS;
  4623. if ( Y_current>Y_MAX_POS)
  4624. Y_current = Y_MAX_POS;
  4625. if (verbose_level>3 ) {
  4626. SERIAL_ECHOPAIR("x: ", X_current);
  4627. SERIAL_ECHOPAIR("y: ", Y_current);
  4628. SERIAL_PROTOCOLLNPGM("");
  4629. }
  4630. do_blocking_move_to( X_current, Y_current, Z_current );
  4631. }
  4632. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4633. }
  4634. int l_feedmultiply = setup_for_endstop_move();
  4635. run_z_probe();
  4636. sample_set[n] = current_position[Z_AXIS];
  4637. //
  4638. // Get the current mean for the data points we have so far
  4639. //
  4640. sum=0.0;
  4641. for( j=0; j<=n; j++) {
  4642. sum = sum + sample_set[j];
  4643. }
  4644. mean = sum / (double (n+1));
  4645. //
  4646. // Now, use that mean to calculate the standard deviation for the
  4647. // data points we have so far
  4648. //
  4649. sum=0.0;
  4650. for( j=0; j<=n; j++) {
  4651. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4652. }
  4653. sigma = sqrt( sum / (double (n+1)) );
  4654. if (verbose_level > 1) {
  4655. SERIAL_PROTOCOL(n+1);
  4656. SERIAL_PROTOCOL(" of ");
  4657. SERIAL_PROTOCOL(n_samples);
  4658. SERIAL_PROTOCOLPGM(" z: ");
  4659. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4660. }
  4661. if (verbose_level > 2) {
  4662. SERIAL_PROTOCOL(" mean: ");
  4663. SERIAL_PROTOCOL_F(mean,6);
  4664. SERIAL_PROTOCOL(" sigma: ");
  4665. SERIAL_PROTOCOL_F(sigma,6);
  4666. }
  4667. if (verbose_level > 0)
  4668. SERIAL_PROTOCOLPGM("\n");
  4669. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4670. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4671. st_synchronize();
  4672. }
  4673. _delay(1000);
  4674. clean_up_after_endstop_move(l_feedmultiply);
  4675. // enable_endstops(true);
  4676. if (verbose_level > 0) {
  4677. SERIAL_PROTOCOLPGM("Mean: ");
  4678. SERIAL_PROTOCOL_F(mean, 6);
  4679. SERIAL_PROTOCOLPGM("\n");
  4680. }
  4681. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4682. SERIAL_PROTOCOL_F(sigma, 6);
  4683. SERIAL_PROTOCOLPGM("\n\n");
  4684. Sigma_Exit:
  4685. break;
  4686. }
  4687. #endif // Z_PROBE_REPEATABILITY_TEST
  4688. #endif // ENABLE_AUTO_BED_LEVELING
  4689. case 73: //M73 show percent done and time remaining
  4690. if(code_seen('P')) print_percent_done_normal = code_value();
  4691. if(code_seen('R')) print_time_remaining_normal = code_value();
  4692. if(code_seen('Q')) print_percent_done_silent = code_value();
  4693. if(code_seen('S')) print_time_remaining_silent = code_value();
  4694. {
  4695. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4696. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4697. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4698. }
  4699. break;
  4700. case 104: // M104
  4701. {
  4702. uint8_t extruder;
  4703. if(setTargetedHotend(104,extruder)){
  4704. break;
  4705. }
  4706. if (code_seen('S'))
  4707. {
  4708. setTargetHotendSafe(code_value(), extruder);
  4709. }
  4710. setWatch();
  4711. break;
  4712. }
  4713. case 112: // M112 -Emergency Stop
  4714. kill(_n(""), 3);
  4715. break;
  4716. case 140: // M140 set bed temp
  4717. if (code_seen('S')) setTargetBed(code_value());
  4718. break;
  4719. case 105 : // M105
  4720. {
  4721. uint8_t extruder;
  4722. if(setTargetedHotend(105, extruder)){
  4723. break;
  4724. }
  4725. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4726. SERIAL_PROTOCOLPGM("ok T:");
  4727. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4728. SERIAL_PROTOCOLPGM(" /");
  4729. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4730. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4731. SERIAL_PROTOCOLPGM(" B:");
  4732. SERIAL_PROTOCOL_F(degBed(),1);
  4733. SERIAL_PROTOCOLPGM(" /");
  4734. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4735. #endif //TEMP_BED_PIN
  4736. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4737. SERIAL_PROTOCOLPGM(" T");
  4738. SERIAL_PROTOCOL(cur_extruder);
  4739. SERIAL_PROTOCOLPGM(":");
  4740. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4741. SERIAL_PROTOCOLPGM(" /");
  4742. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4743. }
  4744. #else
  4745. SERIAL_ERROR_START;
  4746. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4747. #endif
  4748. SERIAL_PROTOCOLPGM(" @:");
  4749. #ifdef EXTRUDER_WATTS
  4750. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4751. SERIAL_PROTOCOLPGM("W");
  4752. #else
  4753. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4754. #endif
  4755. SERIAL_PROTOCOLPGM(" B@:");
  4756. #ifdef BED_WATTS
  4757. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4758. SERIAL_PROTOCOLPGM("W");
  4759. #else
  4760. SERIAL_PROTOCOL(getHeaterPower(-1));
  4761. #endif
  4762. #ifdef PINDA_THERMISTOR
  4763. SERIAL_PROTOCOLPGM(" P:");
  4764. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4765. #endif //PINDA_THERMISTOR
  4766. #ifdef AMBIENT_THERMISTOR
  4767. SERIAL_PROTOCOLPGM(" A:");
  4768. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4769. #endif //AMBIENT_THERMISTOR
  4770. #ifdef SHOW_TEMP_ADC_VALUES
  4771. {float raw = 0.0;
  4772. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4773. SERIAL_PROTOCOLPGM(" ADC B:");
  4774. SERIAL_PROTOCOL_F(degBed(),1);
  4775. SERIAL_PROTOCOLPGM("C->");
  4776. raw = rawBedTemp();
  4777. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4778. SERIAL_PROTOCOLPGM(" Rb->");
  4779. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4780. SERIAL_PROTOCOLPGM(" Rxb->");
  4781. SERIAL_PROTOCOL_F(raw, 5);
  4782. #endif
  4783. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4784. SERIAL_PROTOCOLPGM(" T");
  4785. SERIAL_PROTOCOL(cur_extruder);
  4786. SERIAL_PROTOCOLPGM(":");
  4787. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4788. SERIAL_PROTOCOLPGM("C->");
  4789. raw = rawHotendTemp(cur_extruder);
  4790. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4791. SERIAL_PROTOCOLPGM(" Rt");
  4792. SERIAL_PROTOCOL(cur_extruder);
  4793. SERIAL_PROTOCOLPGM("->");
  4794. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4795. SERIAL_PROTOCOLPGM(" Rx");
  4796. SERIAL_PROTOCOL(cur_extruder);
  4797. SERIAL_PROTOCOLPGM("->");
  4798. SERIAL_PROTOCOL_F(raw, 5);
  4799. }}
  4800. #endif
  4801. SERIAL_PROTOCOLLN("");
  4802. KEEPALIVE_STATE(NOT_BUSY);
  4803. return;
  4804. break;
  4805. }
  4806. case 109:
  4807. {// M109 - Wait for extruder heater to reach target.
  4808. uint8_t extruder;
  4809. if(setTargetedHotend(109, extruder)){
  4810. break;
  4811. }
  4812. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4813. heating_status = 1;
  4814. if (farm_mode) { prusa_statistics(1); };
  4815. #ifdef AUTOTEMP
  4816. autotemp_enabled=false;
  4817. #endif
  4818. if (code_seen('S')) {
  4819. setTargetHotendSafe(code_value(), extruder);
  4820. CooldownNoWait = true;
  4821. } else if (code_seen('R')) {
  4822. setTargetHotendSafe(code_value(), extruder);
  4823. CooldownNoWait = false;
  4824. }
  4825. #ifdef AUTOTEMP
  4826. if (code_seen('S')) autotemp_min=code_value();
  4827. if (code_seen('B')) autotemp_max=code_value();
  4828. if (code_seen('F'))
  4829. {
  4830. autotemp_factor=code_value();
  4831. autotemp_enabled=true;
  4832. }
  4833. #endif
  4834. setWatch();
  4835. codenum = _millis();
  4836. /* See if we are heating up or cooling down */
  4837. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4838. KEEPALIVE_STATE(NOT_BUSY);
  4839. cancel_heatup = false;
  4840. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4841. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4842. KEEPALIVE_STATE(IN_HANDLER);
  4843. heating_status = 2;
  4844. if (farm_mode) { prusa_statistics(2); };
  4845. //starttime=_millis();
  4846. previous_millis_cmd = _millis();
  4847. }
  4848. break;
  4849. case 190: // M190 - Wait for bed heater to reach target.
  4850. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4851. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4852. heating_status = 3;
  4853. if (farm_mode) { prusa_statistics(1); };
  4854. if (code_seen('S'))
  4855. {
  4856. setTargetBed(code_value());
  4857. CooldownNoWait = true;
  4858. }
  4859. else if (code_seen('R'))
  4860. {
  4861. setTargetBed(code_value());
  4862. CooldownNoWait = false;
  4863. }
  4864. codenum = _millis();
  4865. cancel_heatup = false;
  4866. target_direction = isHeatingBed(); // true if heating, false if cooling
  4867. KEEPALIVE_STATE(NOT_BUSY);
  4868. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4869. {
  4870. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4871. {
  4872. if (!farm_mode) {
  4873. float tt = degHotend(active_extruder);
  4874. SERIAL_PROTOCOLPGM("T:");
  4875. SERIAL_PROTOCOL(tt);
  4876. SERIAL_PROTOCOLPGM(" E:");
  4877. SERIAL_PROTOCOL((int)active_extruder);
  4878. SERIAL_PROTOCOLPGM(" B:");
  4879. SERIAL_PROTOCOL_F(degBed(), 1);
  4880. SERIAL_PROTOCOLLN("");
  4881. }
  4882. codenum = _millis();
  4883. }
  4884. manage_heater();
  4885. manage_inactivity();
  4886. lcd_update(0);
  4887. }
  4888. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4889. KEEPALIVE_STATE(IN_HANDLER);
  4890. heating_status = 4;
  4891. previous_millis_cmd = _millis();
  4892. #endif
  4893. break;
  4894. #if defined(FAN_PIN) && FAN_PIN > -1
  4895. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4896. if (code_seen('S')){
  4897. fanSpeed=constrain(code_value(),0,255);
  4898. }
  4899. else {
  4900. fanSpeed=255;
  4901. }
  4902. break;
  4903. case 107: //M107 Fan Off
  4904. fanSpeed = 0;
  4905. break;
  4906. #endif //FAN_PIN
  4907. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4908. case 80: // M80 - Turn on Power Supply
  4909. SET_OUTPUT(PS_ON_PIN); //GND
  4910. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4911. // If you have a switch on suicide pin, this is useful
  4912. // if you want to start another print with suicide feature after
  4913. // a print without suicide...
  4914. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4915. SET_OUTPUT(SUICIDE_PIN);
  4916. WRITE(SUICIDE_PIN, HIGH);
  4917. #endif
  4918. powersupply = true;
  4919. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4920. lcd_update(0);
  4921. break;
  4922. #endif
  4923. case 81: // M81 - Turn off Power Supply
  4924. disable_heater();
  4925. st_synchronize();
  4926. disable_e0();
  4927. disable_e1();
  4928. disable_e2();
  4929. finishAndDisableSteppers();
  4930. fanSpeed = 0;
  4931. _delay(1000); // Wait a little before to switch off
  4932. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4933. st_synchronize();
  4934. suicide();
  4935. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4936. SET_OUTPUT(PS_ON_PIN);
  4937. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4938. #endif
  4939. powersupply = false;
  4940. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4941. lcd_update(0);
  4942. break;
  4943. case 82:
  4944. axis_relative_modes[3] = false;
  4945. break;
  4946. case 83:
  4947. axis_relative_modes[3] = true;
  4948. break;
  4949. case 18: //compatibility
  4950. case 84: // M84
  4951. if(code_seen('S')){
  4952. stepper_inactive_time = code_value() * 1000;
  4953. }
  4954. else
  4955. {
  4956. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4957. if(all_axis)
  4958. {
  4959. st_synchronize();
  4960. disable_e0();
  4961. disable_e1();
  4962. disable_e2();
  4963. finishAndDisableSteppers();
  4964. }
  4965. else
  4966. {
  4967. st_synchronize();
  4968. if (code_seen('X')) disable_x();
  4969. if (code_seen('Y')) disable_y();
  4970. if (code_seen('Z')) disable_z();
  4971. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4972. if (code_seen('E')) {
  4973. disable_e0();
  4974. disable_e1();
  4975. disable_e2();
  4976. }
  4977. #endif
  4978. }
  4979. }
  4980. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4981. print_time_remaining_init();
  4982. snmm_filaments_used = 0;
  4983. break;
  4984. case 85: // M85
  4985. if(code_seen('S')) {
  4986. max_inactive_time = code_value() * 1000;
  4987. }
  4988. break;
  4989. #ifdef SAFETYTIMER
  4990. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4991. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4992. if (code_seen('S')) {
  4993. safetytimer_inactive_time = code_value() * 1000;
  4994. safetyTimer.start();
  4995. }
  4996. break;
  4997. #endif
  4998. case 92: // M92
  4999. for(int8_t i=0; i < NUM_AXIS; i++)
  5000. {
  5001. if(code_seen(axis_codes[i]))
  5002. {
  5003. if(i == 3) { // E
  5004. float value = code_value();
  5005. if(value < 20.0) {
  5006. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5007. cs.max_jerk[E_AXIS] *= factor;
  5008. max_feedrate[i] *= factor;
  5009. axis_steps_per_sqr_second[i] *= factor;
  5010. }
  5011. cs.axis_steps_per_unit[i] = value;
  5012. }
  5013. else {
  5014. cs.axis_steps_per_unit[i] = code_value();
  5015. }
  5016. }
  5017. }
  5018. break;
  5019. case 110: //! M110 N<line number> - reset line pos
  5020. if (code_seen('N'))
  5021. gcode_LastN = code_value_long();
  5022. break;
  5023. case 113: // M113 - Get or set Host Keepalive interval
  5024. if (code_seen('S')) {
  5025. host_keepalive_interval = (uint8_t)code_value_short();
  5026. // NOMORE(host_keepalive_interval, 60);
  5027. }
  5028. else {
  5029. SERIAL_ECHO_START;
  5030. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5031. SERIAL_PROTOCOLLN("");
  5032. }
  5033. break;
  5034. case 115: // M115
  5035. if (code_seen('V')) {
  5036. // Report the Prusa version number.
  5037. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5038. } else if (code_seen('U')) {
  5039. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5040. // pause the print and ask the user to upgrade the firmware.
  5041. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5042. } else {
  5043. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5044. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5045. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5046. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5047. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5048. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5049. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5050. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5051. SERIAL_ECHOPGM(" UUID:");
  5052. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5053. }
  5054. break;
  5055. /* case 117: // M117 display message
  5056. starpos = (strchr(strchr_pointer + 5,'*'));
  5057. if(starpos!=NULL)
  5058. *(starpos)='\0';
  5059. lcd_setstatus(strchr_pointer + 5);
  5060. break;*/
  5061. case 114: // M114
  5062. gcode_M114();
  5063. break;
  5064. case 120: //! M120 - Disable endstops
  5065. enable_endstops(false) ;
  5066. break;
  5067. case 121: //! M121 - Enable endstops
  5068. enable_endstops(true) ;
  5069. break;
  5070. case 119: // M119
  5071. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5072. SERIAL_PROTOCOLLN("");
  5073. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5074. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5075. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5076. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5077. }else{
  5078. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5079. }
  5080. SERIAL_PROTOCOLLN("");
  5081. #endif
  5082. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5083. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5084. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5085. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5086. }else{
  5087. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5088. }
  5089. SERIAL_PROTOCOLLN("");
  5090. #endif
  5091. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5092. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5093. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5094. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5095. }else{
  5096. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5097. }
  5098. SERIAL_PROTOCOLLN("");
  5099. #endif
  5100. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5101. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5102. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5103. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5104. }else{
  5105. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5106. }
  5107. SERIAL_PROTOCOLLN("");
  5108. #endif
  5109. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5110. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5111. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5112. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5113. }else{
  5114. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5115. }
  5116. SERIAL_PROTOCOLLN("");
  5117. #endif
  5118. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5119. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5120. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5121. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5122. }else{
  5123. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5124. }
  5125. SERIAL_PROTOCOLLN("");
  5126. #endif
  5127. break;
  5128. //TODO: update for all axis, use for loop
  5129. #ifdef BLINKM
  5130. case 150: // M150
  5131. {
  5132. byte red;
  5133. byte grn;
  5134. byte blu;
  5135. if(code_seen('R')) red = code_value();
  5136. if(code_seen('U')) grn = code_value();
  5137. if(code_seen('B')) blu = code_value();
  5138. SendColors(red,grn,blu);
  5139. }
  5140. break;
  5141. #endif //BLINKM
  5142. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5143. {
  5144. uint8_t extruder = active_extruder;
  5145. if(code_seen('T')) {
  5146. extruder = code_value();
  5147. if(extruder >= EXTRUDERS) {
  5148. SERIAL_ECHO_START;
  5149. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5150. break;
  5151. }
  5152. }
  5153. if(code_seen('D')) {
  5154. float diameter = (float)code_value();
  5155. if (diameter == 0.0) {
  5156. // setting any extruder filament size disables volumetric on the assumption that
  5157. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5158. // for all extruders
  5159. cs.volumetric_enabled = false;
  5160. } else {
  5161. cs.filament_size[extruder] = (float)code_value();
  5162. // make sure all extruders have some sane value for the filament size
  5163. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5164. #if EXTRUDERS > 1
  5165. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5166. #if EXTRUDERS > 2
  5167. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5168. #endif
  5169. #endif
  5170. cs.volumetric_enabled = true;
  5171. }
  5172. } else {
  5173. //reserved for setting filament diameter via UFID or filament measuring device
  5174. break;
  5175. }
  5176. calculate_extruder_multipliers();
  5177. }
  5178. break;
  5179. case 201: // M201
  5180. for (int8_t i = 0; i < NUM_AXIS; i++)
  5181. {
  5182. if (code_seen(axis_codes[i]))
  5183. {
  5184. unsigned long val = code_value();
  5185. #ifdef TMC2130
  5186. unsigned long val_silent = val;
  5187. if ((i == X_AXIS) || (i == Y_AXIS))
  5188. {
  5189. if (val > NORMAL_MAX_ACCEL_XY)
  5190. val = NORMAL_MAX_ACCEL_XY;
  5191. if (val_silent > SILENT_MAX_ACCEL_XY)
  5192. val_silent = SILENT_MAX_ACCEL_XY;
  5193. }
  5194. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5195. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5196. #else //TMC2130
  5197. max_acceleration_units_per_sq_second[i] = val;
  5198. #endif //TMC2130
  5199. }
  5200. }
  5201. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5202. reset_acceleration_rates();
  5203. break;
  5204. #if 0 // Not used for Sprinter/grbl gen6
  5205. case 202: // M202
  5206. for(int8_t i=0; i < NUM_AXIS; i++) {
  5207. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5208. }
  5209. break;
  5210. #endif
  5211. case 203: // M203 max feedrate mm/sec
  5212. for (int8_t i = 0; i < NUM_AXIS; i++)
  5213. {
  5214. if (code_seen(axis_codes[i]))
  5215. {
  5216. float val = code_value();
  5217. #ifdef TMC2130
  5218. float val_silent = val;
  5219. if ((i == X_AXIS) || (i == Y_AXIS))
  5220. {
  5221. if (val > NORMAL_MAX_FEEDRATE_XY)
  5222. val = NORMAL_MAX_FEEDRATE_XY;
  5223. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5224. val_silent = SILENT_MAX_FEEDRATE_XY;
  5225. }
  5226. cs.max_feedrate_normal[i] = val;
  5227. cs.max_feedrate_silent[i] = val_silent;
  5228. #else //TMC2130
  5229. max_feedrate[i] = val;
  5230. #endif //TMC2130
  5231. }
  5232. }
  5233. break;
  5234. case 204:
  5235. //! M204 acclereration settings.
  5236. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5237. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5238. {
  5239. if(code_seen('S')) {
  5240. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5241. // and it is also generated by Slic3r to control acceleration per extrusion type
  5242. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5243. cs.acceleration = code_value();
  5244. // Interpret the T value as retract acceleration in the old Marlin format.
  5245. if(code_seen('T'))
  5246. cs.retract_acceleration = code_value();
  5247. } else {
  5248. // New acceleration format, compatible with the upstream Marlin.
  5249. if(code_seen('P'))
  5250. cs.acceleration = code_value();
  5251. if(code_seen('R'))
  5252. cs.retract_acceleration = code_value();
  5253. if(code_seen('T')) {
  5254. // Interpret the T value as the travel acceleration in the new Marlin format.
  5255. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5256. // travel_acceleration = code_value();
  5257. }
  5258. }
  5259. }
  5260. break;
  5261. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5262. {
  5263. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5264. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5265. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5266. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5267. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5268. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5269. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5270. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5271. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5272. }
  5273. break;
  5274. case 206: // M206 additional homing offset
  5275. for(int8_t i=0; i < 3; i++)
  5276. {
  5277. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5278. }
  5279. break;
  5280. #ifdef FWRETRACT
  5281. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5282. {
  5283. if(code_seen('S'))
  5284. {
  5285. cs.retract_length = code_value() ;
  5286. }
  5287. if(code_seen('F'))
  5288. {
  5289. cs.retract_feedrate = code_value()/60 ;
  5290. }
  5291. if(code_seen('Z'))
  5292. {
  5293. cs.retract_zlift = code_value() ;
  5294. }
  5295. }break;
  5296. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5297. {
  5298. if(code_seen('S'))
  5299. {
  5300. cs.retract_recover_length = code_value() ;
  5301. }
  5302. if(code_seen('F'))
  5303. {
  5304. cs.retract_recover_feedrate = code_value()/60 ;
  5305. }
  5306. }break;
  5307. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5308. {
  5309. if(code_seen('S'))
  5310. {
  5311. int t= code_value() ;
  5312. switch(t)
  5313. {
  5314. case 0:
  5315. {
  5316. cs.autoretract_enabled=false;
  5317. retracted[0]=false;
  5318. #if EXTRUDERS > 1
  5319. retracted[1]=false;
  5320. #endif
  5321. #if EXTRUDERS > 2
  5322. retracted[2]=false;
  5323. #endif
  5324. }break;
  5325. case 1:
  5326. {
  5327. cs.autoretract_enabled=true;
  5328. retracted[0]=false;
  5329. #if EXTRUDERS > 1
  5330. retracted[1]=false;
  5331. #endif
  5332. #if EXTRUDERS > 2
  5333. retracted[2]=false;
  5334. #endif
  5335. }break;
  5336. default:
  5337. SERIAL_ECHO_START;
  5338. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5339. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5340. SERIAL_ECHOLNPGM("\"(1)");
  5341. }
  5342. }
  5343. }break;
  5344. #endif // FWRETRACT
  5345. #if EXTRUDERS > 1
  5346. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5347. {
  5348. uint8_t extruder;
  5349. if(setTargetedHotend(218, extruder)){
  5350. break;
  5351. }
  5352. if(code_seen('X'))
  5353. {
  5354. extruder_offset[X_AXIS][extruder] = code_value();
  5355. }
  5356. if(code_seen('Y'))
  5357. {
  5358. extruder_offset[Y_AXIS][extruder] = code_value();
  5359. }
  5360. SERIAL_ECHO_START;
  5361. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5362. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5363. {
  5364. SERIAL_ECHO(" ");
  5365. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5366. SERIAL_ECHO(",");
  5367. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5368. }
  5369. SERIAL_ECHOLN("");
  5370. }break;
  5371. #endif
  5372. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5373. {
  5374. if (code_seen('B')) //backup current speed factor
  5375. {
  5376. saved_feedmultiply_mm = feedmultiply;
  5377. }
  5378. if(code_seen('S'))
  5379. {
  5380. feedmultiply = code_value() ;
  5381. }
  5382. if (code_seen('R')) { //restore previous feedmultiply
  5383. feedmultiply = saved_feedmultiply_mm;
  5384. }
  5385. }
  5386. break;
  5387. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5388. {
  5389. if(code_seen('S'))
  5390. {
  5391. int tmp_code = code_value();
  5392. if (code_seen('T'))
  5393. {
  5394. uint8_t extruder;
  5395. if(setTargetedHotend(221, extruder)){
  5396. break;
  5397. }
  5398. extruder_multiply[extruder] = tmp_code;
  5399. }
  5400. else
  5401. {
  5402. extrudemultiply = tmp_code ;
  5403. }
  5404. }
  5405. calculate_extruder_multipliers();
  5406. }
  5407. break;
  5408. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5409. {
  5410. if(code_seen('P')){
  5411. int pin_number = code_value(); // pin number
  5412. int pin_state = -1; // required pin state - default is inverted
  5413. if(code_seen('S')) pin_state = code_value(); // required pin state
  5414. if(pin_state >= -1 && pin_state <= 1){
  5415. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5416. {
  5417. if (sensitive_pins[i] == pin_number)
  5418. {
  5419. pin_number = -1;
  5420. break;
  5421. }
  5422. }
  5423. if (pin_number > -1)
  5424. {
  5425. int target = LOW;
  5426. st_synchronize();
  5427. pinMode(pin_number, INPUT);
  5428. switch(pin_state){
  5429. case 1:
  5430. target = HIGH;
  5431. break;
  5432. case 0:
  5433. target = LOW;
  5434. break;
  5435. case -1:
  5436. target = !digitalRead(pin_number);
  5437. break;
  5438. }
  5439. while(digitalRead(pin_number) != target){
  5440. manage_heater();
  5441. manage_inactivity();
  5442. lcd_update(0);
  5443. }
  5444. }
  5445. }
  5446. }
  5447. }
  5448. break;
  5449. #if NUM_SERVOS > 0
  5450. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5451. {
  5452. int servo_index = -1;
  5453. int servo_position = 0;
  5454. if (code_seen('P'))
  5455. servo_index = code_value();
  5456. if (code_seen('S')) {
  5457. servo_position = code_value();
  5458. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5459. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5460. servos[servo_index].attach(0);
  5461. #endif
  5462. servos[servo_index].write(servo_position);
  5463. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5464. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5465. servos[servo_index].detach();
  5466. #endif
  5467. }
  5468. else {
  5469. SERIAL_ECHO_START;
  5470. SERIAL_ECHO("Servo ");
  5471. SERIAL_ECHO(servo_index);
  5472. SERIAL_ECHOLN(" out of range");
  5473. }
  5474. }
  5475. else if (servo_index >= 0) {
  5476. SERIAL_PROTOCOL(MSG_OK);
  5477. SERIAL_PROTOCOL(" Servo ");
  5478. SERIAL_PROTOCOL(servo_index);
  5479. SERIAL_PROTOCOL(": ");
  5480. SERIAL_PROTOCOL(servos[servo_index].read());
  5481. SERIAL_PROTOCOLLN("");
  5482. }
  5483. }
  5484. break;
  5485. #endif // NUM_SERVOS > 0
  5486. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5487. case 300: // M300
  5488. {
  5489. int beepS = code_seen('S') ? code_value() : 110;
  5490. int beepP = code_seen('P') ? code_value() : 1000;
  5491. if (beepS > 0)
  5492. {
  5493. #if BEEPER > 0
  5494. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5495. _tone(BEEPER, beepS);
  5496. _delay(beepP);
  5497. _noTone(BEEPER);
  5498. #endif
  5499. }
  5500. else
  5501. {
  5502. _delay(beepP);
  5503. }
  5504. }
  5505. break;
  5506. #endif // M300
  5507. #ifdef PIDTEMP
  5508. case 301: // M301
  5509. {
  5510. if(code_seen('P')) cs.Kp = code_value();
  5511. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5512. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5513. #ifdef PID_ADD_EXTRUSION_RATE
  5514. if(code_seen('C')) Kc = code_value();
  5515. #endif
  5516. updatePID();
  5517. SERIAL_PROTOCOLRPGM(MSG_OK);
  5518. SERIAL_PROTOCOL(" p:");
  5519. SERIAL_PROTOCOL(cs.Kp);
  5520. SERIAL_PROTOCOL(" i:");
  5521. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5522. SERIAL_PROTOCOL(" d:");
  5523. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5524. #ifdef PID_ADD_EXTRUSION_RATE
  5525. SERIAL_PROTOCOL(" c:");
  5526. //Kc does not have scaling applied above, or in resetting defaults
  5527. SERIAL_PROTOCOL(Kc);
  5528. #endif
  5529. SERIAL_PROTOCOLLN("");
  5530. }
  5531. break;
  5532. #endif //PIDTEMP
  5533. #ifdef PIDTEMPBED
  5534. case 304: // M304
  5535. {
  5536. if(code_seen('P')) cs.bedKp = code_value();
  5537. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5538. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5539. updatePID();
  5540. SERIAL_PROTOCOLRPGM(MSG_OK);
  5541. SERIAL_PROTOCOL(" p:");
  5542. SERIAL_PROTOCOL(cs.bedKp);
  5543. SERIAL_PROTOCOL(" i:");
  5544. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5545. SERIAL_PROTOCOL(" d:");
  5546. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5547. SERIAL_PROTOCOLLN("");
  5548. }
  5549. break;
  5550. #endif //PIDTEMP
  5551. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5552. {
  5553. #ifdef CHDK
  5554. SET_OUTPUT(CHDK);
  5555. WRITE(CHDK, HIGH);
  5556. chdkHigh = _millis();
  5557. chdkActive = true;
  5558. #else
  5559. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5560. const uint8_t NUM_PULSES=16;
  5561. const float PULSE_LENGTH=0.01524;
  5562. for(int i=0; i < NUM_PULSES; i++) {
  5563. WRITE(PHOTOGRAPH_PIN, HIGH);
  5564. _delay_ms(PULSE_LENGTH);
  5565. WRITE(PHOTOGRAPH_PIN, LOW);
  5566. _delay_ms(PULSE_LENGTH);
  5567. }
  5568. _delay(7.33);
  5569. for(int i=0; i < NUM_PULSES; i++) {
  5570. WRITE(PHOTOGRAPH_PIN, HIGH);
  5571. _delay_ms(PULSE_LENGTH);
  5572. WRITE(PHOTOGRAPH_PIN, LOW);
  5573. _delay_ms(PULSE_LENGTH);
  5574. }
  5575. #endif
  5576. #endif //chdk end if
  5577. }
  5578. break;
  5579. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5580. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5581. {
  5582. float temp = .0;
  5583. if (code_seen('S')) temp=code_value();
  5584. set_extrude_min_temp(temp);
  5585. }
  5586. break;
  5587. #endif
  5588. case 303: // M303 PID autotune
  5589. {
  5590. float temp = 150.0;
  5591. int e=0;
  5592. int c=5;
  5593. if (code_seen('E')) e=code_value();
  5594. if (e<0)
  5595. temp=70;
  5596. if (code_seen('S')) temp=code_value();
  5597. if (code_seen('C')) c=code_value();
  5598. PID_autotune(temp, e, c);
  5599. }
  5600. break;
  5601. case 400: // M400 finish all moves
  5602. {
  5603. st_synchronize();
  5604. }
  5605. break;
  5606. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5607. {
  5608. //! currently three different materials are needed (default, flex and PVA)
  5609. //! add storing this information for different load/unload profiles etc. in the future
  5610. //!firmware does not wait for "ok" from mmu
  5611. if (mmu_enabled)
  5612. {
  5613. uint8_t extruder = 255;
  5614. uint8_t filament = FILAMENT_UNDEFINED;
  5615. if(code_seen('E')) extruder = code_value();
  5616. if(code_seen('F')) filament = code_value();
  5617. mmu_set_filament_type(extruder, filament);
  5618. }
  5619. }
  5620. break;
  5621. case 500: // M500 Store settings in EEPROM
  5622. {
  5623. Config_StoreSettings();
  5624. }
  5625. break;
  5626. case 501: // M501 Read settings from EEPROM
  5627. {
  5628. Config_RetrieveSettings();
  5629. }
  5630. break;
  5631. case 502: // M502 Revert to default settings
  5632. {
  5633. Config_ResetDefault();
  5634. }
  5635. break;
  5636. case 503: // M503 print settings currently in memory
  5637. {
  5638. Config_PrintSettings();
  5639. }
  5640. break;
  5641. case 509: //M509 Force language selection
  5642. {
  5643. lang_reset();
  5644. SERIAL_ECHO_START;
  5645. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5646. }
  5647. break;
  5648. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5649. case 540:
  5650. {
  5651. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5652. }
  5653. break;
  5654. #endif
  5655. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5656. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5657. {
  5658. float value;
  5659. if (code_seen('Z'))
  5660. {
  5661. value = code_value();
  5662. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5663. {
  5664. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5665. SERIAL_ECHO_START;
  5666. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5667. SERIAL_PROTOCOLLN("");
  5668. }
  5669. else
  5670. {
  5671. SERIAL_ECHO_START;
  5672. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5673. SERIAL_ECHORPGM(MSG_Z_MIN);
  5674. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5675. SERIAL_ECHORPGM(MSG_Z_MAX);
  5676. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5677. SERIAL_PROTOCOLLN("");
  5678. }
  5679. }
  5680. else
  5681. {
  5682. SERIAL_ECHO_START;
  5683. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5684. SERIAL_ECHO(-cs.zprobe_zoffset);
  5685. SERIAL_PROTOCOLLN("");
  5686. }
  5687. break;
  5688. }
  5689. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5690. #ifdef FILAMENTCHANGEENABLE
  5691. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5692. {
  5693. st_synchronize();
  5694. float x_position = current_position[X_AXIS];
  5695. float y_position = current_position[Y_AXIS];
  5696. float z_shift = 0;
  5697. float e_shift_init = 0;
  5698. float e_shift_late = 0;
  5699. bool automatic = false;
  5700. //Retract extruder
  5701. if(code_seen('E'))
  5702. {
  5703. e_shift_init = code_value();
  5704. }
  5705. else
  5706. {
  5707. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5708. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5709. #endif
  5710. }
  5711. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5712. if (code_seen('L'))
  5713. {
  5714. e_shift_late = code_value();
  5715. }
  5716. else
  5717. {
  5718. #ifdef FILAMENTCHANGE_FINALRETRACT
  5719. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5720. #endif
  5721. }
  5722. //Lift Z
  5723. if(code_seen('Z'))
  5724. {
  5725. z_shift = code_value();
  5726. }
  5727. else
  5728. {
  5729. #ifdef FILAMENTCHANGE_ZADD
  5730. z_shift= FILAMENTCHANGE_ZADD ;
  5731. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5732. #endif
  5733. }
  5734. //Move XY to side
  5735. if(code_seen('X'))
  5736. {
  5737. x_position = code_value();
  5738. }
  5739. else
  5740. {
  5741. #ifdef FILAMENTCHANGE_XPOS
  5742. x_position = FILAMENTCHANGE_XPOS;
  5743. #endif
  5744. }
  5745. if(code_seen('Y'))
  5746. {
  5747. y_position = code_value();
  5748. }
  5749. else
  5750. {
  5751. #ifdef FILAMENTCHANGE_YPOS
  5752. y_position = FILAMENTCHANGE_YPOS ;
  5753. #endif
  5754. }
  5755. if (mmu_enabled && code_seen("AUTO"))
  5756. automatic = true;
  5757. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5758. }
  5759. break;
  5760. #endif //FILAMENTCHANGEENABLE
  5761. case 601: //! M601 - Pause print
  5762. {
  5763. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5764. lcd_pause_print();
  5765. }
  5766. break;
  5767. case 602: { //! M602 - Resume print
  5768. lcd_resume_print();
  5769. }
  5770. break;
  5771. #ifdef PINDA_THERMISTOR
  5772. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5773. {
  5774. int set_target_pinda = 0;
  5775. if (code_seen('S')) {
  5776. set_target_pinda = code_value();
  5777. }
  5778. else {
  5779. break;
  5780. }
  5781. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5782. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5783. SERIAL_PROTOCOL(set_target_pinda);
  5784. SERIAL_PROTOCOLLN("");
  5785. codenum = _millis();
  5786. cancel_heatup = false;
  5787. bool is_pinda_cooling = false;
  5788. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5789. is_pinda_cooling = true;
  5790. }
  5791. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5792. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5793. {
  5794. SERIAL_PROTOCOLPGM("P:");
  5795. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5796. SERIAL_PROTOCOLPGM("/");
  5797. SERIAL_PROTOCOL(set_target_pinda);
  5798. SERIAL_PROTOCOLLN("");
  5799. codenum = _millis();
  5800. }
  5801. manage_heater();
  5802. manage_inactivity();
  5803. lcd_update(0);
  5804. }
  5805. LCD_MESSAGERPGM(MSG_OK);
  5806. break;
  5807. }
  5808. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5809. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5810. uint8_t cal_status = calibration_status_pinda();
  5811. int16_t usteps = 0;
  5812. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5813. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5814. for (uint8_t i = 0; i < 6; i++)
  5815. {
  5816. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5817. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5818. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5819. SERIAL_PROTOCOLPGM(", ");
  5820. SERIAL_PROTOCOL(35 + (i * 5));
  5821. SERIAL_PROTOCOLPGM(", ");
  5822. SERIAL_PROTOCOL(usteps);
  5823. SERIAL_PROTOCOLPGM(", ");
  5824. SERIAL_PROTOCOL(mm * 1000);
  5825. SERIAL_PROTOCOLLN("");
  5826. }
  5827. }
  5828. else if (code_seen('!')) { // ! - Set factory default values
  5829. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5830. int16_t z_shift = 8; //40C - 20um - 8usteps
  5831. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5832. z_shift = 24; //45C - 60um - 24usteps
  5833. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5834. z_shift = 48; //50C - 120um - 48usteps
  5835. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5836. z_shift = 80; //55C - 200um - 80usteps
  5837. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5838. z_shift = 120; //60C - 300um - 120usteps
  5839. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5840. SERIAL_PROTOCOLLN("factory restored");
  5841. }
  5842. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5843. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5844. int16_t z_shift = 0;
  5845. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5846. SERIAL_PROTOCOLLN("zerorized");
  5847. }
  5848. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5849. int16_t usteps = code_value();
  5850. if (code_seen('I')) {
  5851. uint8_t index = code_value();
  5852. if (index < 5) {
  5853. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5854. SERIAL_PROTOCOLLN("OK");
  5855. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5856. for (uint8_t i = 0; i < 6; i++)
  5857. {
  5858. usteps = 0;
  5859. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5860. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5861. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5862. SERIAL_PROTOCOLPGM(", ");
  5863. SERIAL_PROTOCOL(35 + (i * 5));
  5864. SERIAL_PROTOCOLPGM(", ");
  5865. SERIAL_PROTOCOL(usteps);
  5866. SERIAL_PROTOCOLPGM(", ");
  5867. SERIAL_PROTOCOL(mm * 1000);
  5868. SERIAL_PROTOCOLLN("");
  5869. }
  5870. }
  5871. }
  5872. }
  5873. else {
  5874. SERIAL_PROTOCOLPGM("no valid command");
  5875. }
  5876. break;
  5877. #endif //PINDA_THERMISTOR
  5878. #ifdef LIN_ADVANCE
  5879. case 900: // M900: Set LIN_ADVANCE options.
  5880. gcode_M900();
  5881. break;
  5882. #endif
  5883. case 907: // M907 Set digital trimpot motor current using axis codes.
  5884. {
  5885. #ifdef TMC2130
  5886. for (int i = 0; i < NUM_AXIS; i++)
  5887. if(code_seen(axis_codes[i]))
  5888. {
  5889. long cur_mA = code_value_long();
  5890. uint8_t val = tmc2130_cur2val(cur_mA);
  5891. tmc2130_set_current_h(i, val);
  5892. tmc2130_set_current_r(i, val);
  5893. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5894. }
  5895. #else //TMC2130
  5896. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5897. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5898. if(code_seen('B')) st_current_set(4,code_value());
  5899. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5900. #endif
  5901. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5902. if(code_seen('X')) st_current_set(0, code_value());
  5903. #endif
  5904. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5905. if(code_seen('Z')) st_current_set(1, code_value());
  5906. #endif
  5907. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5908. if(code_seen('E')) st_current_set(2, code_value());
  5909. #endif
  5910. #endif //TMC2130
  5911. }
  5912. break;
  5913. case 908: // M908 Control digital trimpot directly.
  5914. {
  5915. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5916. uint8_t channel,current;
  5917. if(code_seen('P')) channel=code_value();
  5918. if(code_seen('S')) current=code_value();
  5919. digitalPotWrite(channel, current);
  5920. #endif
  5921. }
  5922. break;
  5923. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5924. case 910: //! M910 - TMC2130 init
  5925. {
  5926. tmc2130_init();
  5927. }
  5928. break;
  5929. case 911: //! M911 - Set TMC2130 holding currents
  5930. {
  5931. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5932. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5933. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5934. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5935. }
  5936. break;
  5937. case 912: //! M912 - Set TMC2130 running currents
  5938. {
  5939. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5940. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5941. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5942. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5943. }
  5944. break;
  5945. case 913: //! M913 - Print TMC2130 currents
  5946. {
  5947. tmc2130_print_currents();
  5948. }
  5949. break;
  5950. case 914: //! M914 - Set normal mode
  5951. {
  5952. tmc2130_mode = TMC2130_MODE_NORMAL;
  5953. update_mode_profile();
  5954. tmc2130_init();
  5955. }
  5956. break;
  5957. case 915: //! M915 - Set silent mode
  5958. {
  5959. tmc2130_mode = TMC2130_MODE_SILENT;
  5960. update_mode_profile();
  5961. tmc2130_init();
  5962. }
  5963. break;
  5964. case 916: //! M916 - Set sg_thrs
  5965. {
  5966. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5967. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5968. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5969. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5970. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5971. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5972. }
  5973. break;
  5974. case 917: //! M917 - Set TMC2130 pwm_ampl
  5975. {
  5976. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5977. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5978. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5979. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5980. }
  5981. break;
  5982. case 918: //! M918 - Set TMC2130 pwm_grad
  5983. {
  5984. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5985. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5986. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5987. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5988. }
  5989. break;
  5990. #endif //TMC2130_SERVICE_CODES_M910_M918
  5991. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5992. {
  5993. #ifdef TMC2130
  5994. if(code_seen('E'))
  5995. {
  5996. uint16_t res_new = code_value();
  5997. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5998. {
  5999. st_synchronize();
  6000. uint8_t axis = E_AXIS;
  6001. uint16_t res = tmc2130_get_res(axis);
  6002. tmc2130_set_res(axis, res_new);
  6003. if (res_new > res)
  6004. {
  6005. uint16_t fac = (res_new / res);
  6006. cs.axis_steps_per_unit[axis] *= fac;
  6007. position[E_AXIS] *= fac;
  6008. }
  6009. else
  6010. {
  6011. uint16_t fac = (res / res_new);
  6012. cs.axis_steps_per_unit[axis] /= fac;
  6013. position[E_AXIS] /= fac;
  6014. }
  6015. }
  6016. }
  6017. #else //TMC2130
  6018. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6019. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6020. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6021. if(code_seen('B')) microstep_mode(4,code_value());
  6022. microstep_readings();
  6023. #endif
  6024. #endif //TMC2130
  6025. }
  6026. break;
  6027. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6028. {
  6029. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6030. if(code_seen('S')) switch((int)code_value())
  6031. {
  6032. case 1:
  6033. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6034. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6035. break;
  6036. case 2:
  6037. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6038. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6039. break;
  6040. }
  6041. microstep_readings();
  6042. #endif
  6043. }
  6044. break;
  6045. case 701: //! M701 - load filament
  6046. {
  6047. if (mmu_enabled && code_seen('E'))
  6048. tmp_extruder = code_value();
  6049. gcode_M701();
  6050. }
  6051. break;
  6052. case 702: //! M702 [U C] -
  6053. {
  6054. #ifdef SNMM
  6055. if (code_seen('U'))
  6056. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6057. else if (code_seen('C'))
  6058. extr_unload(); //! if "C" unload just current filament
  6059. else
  6060. extr_unload_all(); //! otherwise unload all filaments
  6061. #else
  6062. if (code_seen('C')) {
  6063. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6064. }
  6065. else {
  6066. if(mmu_enabled) extr_unload(); //! unload current filament
  6067. else unload_filament();
  6068. }
  6069. #endif //SNMM
  6070. }
  6071. break;
  6072. case 999: // M999: Restart after being stopped
  6073. Stopped = false;
  6074. lcd_reset_alert_level();
  6075. gcode_LastN = Stopped_gcode_LastN;
  6076. FlushSerialRequestResend();
  6077. break;
  6078. default:
  6079. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6080. }
  6081. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6082. mcode_in_progress = 0;
  6083. }
  6084. }
  6085. // end if(code_seen('M')) (end of M codes)
  6086. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6087. //! select filament in case of MMU_V2
  6088. //! if extruder is "?", open menu to let the user select extruder/filament
  6089. //!
  6090. //! For MMU_V2:
  6091. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6092. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6093. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6094. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6095. else if(code_seen('T'))
  6096. {
  6097. int index;
  6098. bool load_to_nozzle = false;
  6099. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6100. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6101. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6102. SERIAL_ECHOLNPGM("Invalid T code.");
  6103. }
  6104. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6105. if (mmu_enabled)
  6106. {
  6107. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6108. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6109. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6110. return; //dont execute the same T-code twice in a row
  6111. }
  6112. st_synchronize();
  6113. mmu_command(MmuCmd::T0 + tmp_extruder);
  6114. manage_response(true, true, MMU_TCODE_MOVE);
  6115. }
  6116. }
  6117. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6118. if (mmu_enabled)
  6119. {
  6120. st_synchronize();
  6121. mmu_continue_loading();
  6122. mmu_extruder = tmp_extruder; //filament change is finished
  6123. mmu_load_to_nozzle();
  6124. }
  6125. }
  6126. else {
  6127. if (*(strchr_pointer + index) == '?')
  6128. {
  6129. if(mmu_enabled)
  6130. {
  6131. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6132. load_to_nozzle = true;
  6133. } else
  6134. {
  6135. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6136. }
  6137. }
  6138. else {
  6139. tmp_extruder = code_value();
  6140. if (mmu_enabled && lcd_autoDepleteEnabled())
  6141. {
  6142. tmp_extruder = ad_getAlternative(tmp_extruder);
  6143. }
  6144. }
  6145. st_synchronize();
  6146. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6147. if (mmu_enabled)
  6148. {
  6149. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6150. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6151. return; //dont execute the same T-code twice in a row
  6152. }
  6153. mmu_command(MmuCmd::T0 + tmp_extruder);
  6154. manage_response(true, true, MMU_TCODE_MOVE);
  6155. mmu_continue_loading();
  6156. mmu_extruder = tmp_extruder; //filament change is finished
  6157. if (load_to_nozzle)// for single material usage with mmu
  6158. {
  6159. mmu_load_to_nozzle();
  6160. }
  6161. }
  6162. else
  6163. {
  6164. #ifdef SNMM
  6165. #ifdef LIN_ADVANCE
  6166. if (mmu_extruder != tmp_extruder)
  6167. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6168. #endif
  6169. mmu_extruder = tmp_extruder;
  6170. _delay(100);
  6171. disable_e0();
  6172. disable_e1();
  6173. disable_e2();
  6174. pinMode(E_MUX0_PIN, OUTPUT);
  6175. pinMode(E_MUX1_PIN, OUTPUT);
  6176. _delay(100);
  6177. SERIAL_ECHO_START;
  6178. SERIAL_ECHO("T:");
  6179. SERIAL_ECHOLN((int)tmp_extruder);
  6180. switch (tmp_extruder) {
  6181. case 1:
  6182. WRITE(E_MUX0_PIN, HIGH);
  6183. WRITE(E_MUX1_PIN, LOW);
  6184. break;
  6185. case 2:
  6186. WRITE(E_MUX0_PIN, LOW);
  6187. WRITE(E_MUX1_PIN, HIGH);
  6188. break;
  6189. case 3:
  6190. WRITE(E_MUX0_PIN, HIGH);
  6191. WRITE(E_MUX1_PIN, HIGH);
  6192. break;
  6193. default:
  6194. WRITE(E_MUX0_PIN, LOW);
  6195. WRITE(E_MUX1_PIN, LOW);
  6196. break;
  6197. }
  6198. _delay(100);
  6199. #else //SNMM
  6200. if (tmp_extruder >= EXTRUDERS) {
  6201. SERIAL_ECHO_START;
  6202. SERIAL_ECHOPGM("T");
  6203. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6204. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6205. }
  6206. else {
  6207. #if EXTRUDERS > 1
  6208. boolean make_move = false;
  6209. #endif
  6210. if (code_seen('F')) {
  6211. #if EXTRUDERS > 1
  6212. make_move = true;
  6213. #endif
  6214. next_feedrate = code_value();
  6215. if (next_feedrate > 0.0) {
  6216. feedrate = next_feedrate;
  6217. }
  6218. }
  6219. #if EXTRUDERS > 1
  6220. if (tmp_extruder != active_extruder) {
  6221. // Save current position to return to after applying extruder offset
  6222. memcpy(destination, current_position, sizeof(destination));
  6223. // Offset extruder (only by XY)
  6224. int i;
  6225. for (i = 0; i < 2; i++) {
  6226. current_position[i] = current_position[i] -
  6227. extruder_offset[i][active_extruder] +
  6228. extruder_offset[i][tmp_extruder];
  6229. }
  6230. // Set the new active extruder and position
  6231. active_extruder = tmp_extruder;
  6232. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6233. // Move to the old position if 'F' was in the parameters
  6234. if (make_move && Stopped == false) {
  6235. prepare_move();
  6236. }
  6237. }
  6238. #endif
  6239. SERIAL_ECHO_START;
  6240. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6241. SERIAL_PROTOCOLLN((int)active_extruder);
  6242. }
  6243. #endif //SNMM
  6244. }
  6245. }
  6246. } // end if(code_seen('T')) (end of T codes)
  6247. else if (code_seen('D')) // D codes (debug)
  6248. {
  6249. switch((int)code_value())
  6250. {
  6251. #ifdef DEBUG_DCODES
  6252. case -1: //! D-1 - Endless loop
  6253. dcode__1(); break;
  6254. case 0: //! D0 - Reset
  6255. dcode_0(); break;
  6256. case 1: //! D1 - Clear EEPROM
  6257. dcode_1(); break;
  6258. case 2: //! D2 - Read/Write RAM
  6259. dcode_2(); break;
  6260. #endif //DEBUG_DCODES
  6261. #ifdef DEBUG_DCODE3
  6262. case 3: //! D3 - Read/Write EEPROM
  6263. dcode_3(); break;
  6264. #endif //DEBUG_DCODE3
  6265. #ifdef DEBUG_DCODES
  6266. case 4: //! D4 - Read/Write PIN
  6267. dcode_4(); break;
  6268. #endif //DEBUG_DCODES
  6269. #ifdef DEBUG_DCODE5
  6270. case 5: // D5 - Read/Write FLASH
  6271. dcode_5(); break;
  6272. break;
  6273. #endif //DEBUG_DCODE5
  6274. #ifdef DEBUG_DCODES
  6275. case 6: // D6 - Read/Write external FLASH
  6276. dcode_6(); break;
  6277. case 7: //! D7 - Read/Write Bootloader
  6278. dcode_7(); break;
  6279. case 8: //! D8 - Read/Write PINDA
  6280. dcode_8(); break;
  6281. case 9: //! D9 - Read/Write ADC
  6282. dcode_9(); break;
  6283. case 10: //! D10 - XYZ calibration = OK
  6284. dcode_10(); break;
  6285. #endif //DEBUG_DCODES
  6286. #ifdef HEATBED_ANALYSIS
  6287. case 80:
  6288. {
  6289. float dimension_x = 40;
  6290. float dimension_y = 40;
  6291. int points_x = 40;
  6292. int points_y = 40;
  6293. float offset_x = 74;
  6294. float offset_y = 33;
  6295. if (code_seen('E')) dimension_x = code_value();
  6296. if (code_seen('F')) dimension_y = code_value();
  6297. if (code_seen('G')) {points_x = code_value(); }
  6298. if (code_seen('H')) {points_y = code_value(); }
  6299. if (code_seen('I')) {offset_x = code_value(); }
  6300. if (code_seen('J')) {offset_y = code_value(); }
  6301. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6302. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6303. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6304. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6305. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6306. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6307. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6308. }break;
  6309. case 81:
  6310. {
  6311. float dimension_x = 40;
  6312. float dimension_y = 40;
  6313. int points_x = 40;
  6314. int points_y = 40;
  6315. float offset_x = 74;
  6316. float offset_y = 33;
  6317. if (code_seen('E')) dimension_x = code_value();
  6318. if (code_seen('F')) dimension_y = code_value();
  6319. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6320. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6321. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6322. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6323. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6324. } break;
  6325. #endif //HEATBED_ANALYSIS
  6326. #ifdef DEBUG_DCODES
  6327. case 106: //D106 print measured fan speed for different pwm values
  6328. {
  6329. for (int i = 255; i > 0; i = i - 5) {
  6330. fanSpeed = i;
  6331. //delay_keep_alive(2000);
  6332. for (int j = 0; j < 100; j++) {
  6333. delay_keep_alive(100);
  6334. }
  6335. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6336. }
  6337. }break;
  6338. #ifdef TMC2130
  6339. case 2130: //! D2130 - TMC2130
  6340. dcode_2130(); break;
  6341. #endif //TMC2130
  6342. #ifdef FILAMENT_SENSOR
  6343. case 9125: //! D9125 - FILAMENT_SENSOR
  6344. dcode_9125(); break;
  6345. #endif //FILAMENT_SENSOR
  6346. #endif //DEBUG_DCODES
  6347. }
  6348. }
  6349. else
  6350. {
  6351. SERIAL_ECHO_START;
  6352. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6353. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6354. SERIAL_ECHOLNPGM("\"(2)");
  6355. }
  6356. KEEPALIVE_STATE(NOT_BUSY);
  6357. ClearToSend();
  6358. }
  6359. void FlushSerialRequestResend()
  6360. {
  6361. //char cmdbuffer[bufindr][100]="Resend:";
  6362. MYSERIAL.flush();
  6363. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6364. }
  6365. // Confirm the execution of a command, if sent from a serial line.
  6366. // Execution of a command from a SD card will not be confirmed.
  6367. void ClearToSend()
  6368. {
  6369. previous_millis_cmd = _millis();
  6370. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6371. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6372. }
  6373. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6374. void update_currents() {
  6375. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6376. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6377. float tmp_motor[3];
  6378. //SERIAL_ECHOLNPGM("Currents updated: ");
  6379. if (destination[Z_AXIS] < Z_SILENT) {
  6380. //SERIAL_ECHOLNPGM("LOW");
  6381. for (uint8_t i = 0; i < 3; i++) {
  6382. st_current_set(i, current_low[i]);
  6383. /*MYSERIAL.print(int(i));
  6384. SERIAL_ECHOPGM(": ");
  6385. MYSERIAL.println(current_low[i]);*/
  6386. }
  6387. }
  6388. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6389. //SERIAL_ECHOLNPGM("HIGH");
  6390. for (uint8_t i = 0; i < 3; i++) {
  6391. st_current_set(i, current_high[i]);
  6392. /*MYSERIAL.print(int(i));
  6393. SERIAL_ECHOPGM(": ");
  6394. MYSERIAL.println(current_high[i]);*/
  6395. }
  6396. }
  6397. else {
  6398. for (uint8_t i = 0; i < 3; i++) {
  6399. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6400. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6401. st_current_set(i, tmp_motor[i]);
  6402. /*MYSERIAL.print(int(i));
  6403. SERIAL_ECHOPGM(": ");
  6404. MYSERIAL.println(tmp_motor[i]);*/
  6405. }
  6406. }
  6407. }
  6408. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6409. void get_coordinates()
  6410. {
  6411. bool seen[4]={false,false,false,false};
  6412. for(int8_t i=0; i < NUM_AXIS; i++) {
  6413. if(code_seen(axis_codes[i]))
  6414. {
  6415. bool relative = axis_relative_modes[i] || relative_mode;
  6416. destination[i] = (float)code_value();
  6417. if (i == E_AXIS) {
  6418. float emult = extruder_multiplier[active_extruder];
  6419. if (emult != 1.) {
  6420. if (! relative) {
  6421. destination[i] -= current_position[i];
  6422. relative = true;
  6423. }
  6424. destination[i] *= emult;
  6425. }
  6426. }
  6427. if (relative)
  6428. destination[i] += current_position[i];
  6429. seen[i]=true;
  6430. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6431. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6432. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6433. }
  6434. else destination[i] = current_position[i]; //Are these else lines really needed?
  6435. }
  6436. if(code_seen('F')) {
  6437. next_feedrate = code_value();
  6438. #ifdef MAX_SILENT_FEEDRATE
  6439. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6440. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6441. #endif //MAX_SILENT_FEEDRATE
  6442. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6443. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6444. {
  6445. // float e_max_speed =
  6446. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6447. }
  6448. }
  6449. }
  6450. void get_arc_coordinates()
  6451. {
  6452. #ifdef SF_ARC_FIX
  6453. bool relative_mode_backup = relative_mode;
  6454. relative_mode = true;
  6455. #endif
  6456. get_coordinates();
  6457. #ifdef SF_ARC_FIX
  6458. relative_mode=relative_mode_backup;
  6459. #endif
  6460. if(code_seen('I')) {
  6461. offset[0] = code_value();
  6462. }
  6463. else {
  6464. offset[0] = 0.0;
  6465. }
  6466. if(code_seen('J')) {
  6467. offset[1] = code_value();
  6468. }
  6469. else {
  6470. offset[1] = 0.0;
  6471. }
  6472. }
  6473. void clamp_to_software_endstops(float target[3])
  6474. {
  6475. #ifdef DEBUG_DISABLE_SWLIMITS
  6476. return;
  6477. #endif //DEBUG_DISABLE_SWLIMITS
  6478. world2machine_clamp(target[0], target[1]);
  6479. // Clamp the Z coordinate.
  6480. if (min_software_endstops) {
  6481. float negative_z_offset = 0;
  6482. #ifdef ENABLE_AUTO_BED_LEVELING
  6483. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6484. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6485. #endif
  6486. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6487. }
  6488. if (max_software_endstops) {
  6489. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6490. }
  6491. }
  6492. #ifdef MESH_BED_LEVELING
  6493. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6494. float dx = x - current_position[X_AXIS];
  6495. float dy = y - current_position[Y_AXIS];
  6496. float dz = z - current_position[Z_AXIS];
  6497. int n_segments = 0;
  6498. if (mbl.active) {
  6499. float len = abs(dx) + abs(dy);
  6500. if (len > 0)
  6501. // Split to 3cm segments or shorter.
  6502. n_segments = int(ceil(len / 30.f));
  6503. }
  6504. if (n_segments > 1) {
  6505. float de = e - current_position[E_AXIS];
  6506. for (int i = 1; i < n_segments; ++ i) {
  6507. float t = float(i) / float(n_segments);
  6508. if (saved_printing || (mbl.active == false)) return;
  6509. plan_buffer_line(
  6510. current_position[X_AXIS] + t * dx,
  6511. current_position[Y_AXIS] + t * dy,
  6512. current_position[Z_AXIS] + t * dz,
  6513. current_position[E_AXIS] + t * de,
  6514. feed_rate, extruder);
  6515. }
  6516. }
  6517. // The rest of the path.
  6518. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6519. current_position[X_AXIS] = x;
  6520. current_position[Y_AXIS] = y;
  6521. current_position[Z_AXIS] = z;
  6522. current_position[E_AXIS] = e;
  6523. }
  6524. #endif // MESH_BED_LEVELING
  6525. void prepare_move()
  6526. {
  6527. clamp_to_software_endstops(destination);
  6528. previous_millis_cmd = _millis();
  6529. // Do not use feedmultiply for E or Z only moves
  6530. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6531. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6532. }
  6533. else {
  6534. #ifdef MESH_BED_LEVELING
  6535. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6536. #else
  6537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6538. #endif
  6539. }
  6540. for(int8_t i=0; i < NUM_AXIS; i++) {
  6541. current_position[i] = destination[i];
  6542. }
  6543. }
  6544. void prepare_arc_move(char isclockwise) {
  6545. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6546. // Trace the arc
  6547. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6548. // As far as the parser is concerned, the position is now == target. In reality the
  6549. // motion control system might still be processing the action and the real tool position
  6550. // in any intermediate location.
  6551. for(int8_t i=0; i < NUM_AXIS; i++) {
  6552. current_position[i] = destination[i];
  6553. }
  6554. previous_millis_cmd = _millis();
  6555. }
  6556. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6557. #if defined(FAN_PIN)
  6558. #if CONTROLLERFAN_PIN == FAN_PIN
  6559. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6560. #endif
  6561. #endif
  6562. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6563. unsigned long lastMotorCheck = 0;
  6564. void controllerFan()
  6565. {
  6566. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6567. {
  6568. lastMotorCheck = _millis();
  6569. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6570. #if EXTRUDERS > 2
  6571. || !READ(E2_ENABLE_PIN)
  6572. #endif
  6573. #if EXTRUDER > 1
  6574. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6575. || !READ(X2_ENABLE_PIN)
  6576. #endif
  6577. || !READ(E1_ENABLE_PIN)
  6578. #endif
  6579. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6580. {
  6581. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6582. }
  6583. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6584. {
  6585. digitalWrite(CONTROLLERFAN_PIN, 0);
  6586. analogWrite(CONTROLLERFAN_PIN, 0);
  6587. }
  6588. else
  6589. {
  6590. // allows digital or PWM fan output to be used (see M42 handling)
  6591. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6592. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6593. }
  6594. }
  6595. }
  6596. #endif
  6597. #ifdef TEMP_STAT_LEDS
  6598. static bool blue_led = false;
  6599. static bool red_led = false;
  6600. static uint32_t stat_update = 0;
  6601. void handle_status_leds(void) {
  6602. float max_temp = 0.0;
  6603. if(_millis() > stat_update) {
  6604. stat_update += 500; // Update every 0.5s
  6605. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6606. max_temp = max(max_temp, degHotend(cur_extruder));
  6607. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6608. }
  6609. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6610. max_temp = max(max_temp, degTargetBed());
  6611. max_temp = max(max_temp, degBed());
  6612. #endif
  6613. if((max_temp > 55.0) && (red_led == false)) {
  6614. digitalWrite(STAT_LED_RED, 1);
  6615. digitalWrite(STAT_LED_BLUE, 0);
  6616. red_led = true;
  6617. blue_led = false;
  6618. }
  6619. if((max_temp < 54.0) && (blue_led == false)) {
  6620. digitalWrite(STAT_LED_RED, 0);
  6621. digitalWrite(STAT_LED_BLUE, 1);
  6622. red_led = false;
  6623. blue_led = true;
  6624. }
  6625. }
  6626. }
  6627. #endif
  6628. #ifdef SAFETYTIMER
  6629. /**
  6630. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6631. *
  6632. * Full screen blocking notification message is shown after heater turning off.
  6633. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6634. * damage print.
  6635. *
  6636. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6637. */
  6638. static void handleSafetyTimer()
  6639. {
  6640. #if (EXTRUDERS > 1)
  6641. #error Implemented only for one extruder.
  6642. #endif //(EXTRUDERS > 1)
  6643. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6644. {
  6645. safetyTimer.stop();
  6646. }
  6647. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6648. {
  6649. safetyTimer.start();
  6650. }
  6651. else if (safetyTimer.expired(safetytimer_inactive_time))
  6652. {
  6653. setTargetBed(0);
  6654. setAllTargetHotends(0);
  6655. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6656. }
  6657. }
  6658. #endif //SAFETYTIMER
  6659. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6660. {
  6661. #ifdef FILAMENT_SENSOR
  6662. if (mmu_enabled == false)
  6663. {
  6664. //-// if (mcode_in_progress != 600) //M600 not in progress
  6665. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (menu_menu!=lcd_menu_extruder_info)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo menu not active
  6666. {
  6667. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6668. {
  6669. if (fsensor_check_autoload())
  6670. {
  6671. #ifdef PAT9125
  6672. fsensor_autoload_check_stop();
  6673. #endif //PAT9125
  6674. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6675. if(0)
  6676. {
  6677. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6678. _tone(BEEPER, 1000);
  6679. delay_keep_alive(50);
  6680. _noTone(BEEPER);
  6681. loading_flag = true;
  6682. enquecommand_front_P((PSTR("M701")));
  6683. }
  6684. else
  6685. {
  6686. /*
  6687. lcd_update_enable(false);
  6688. show_preheat_nozzle_warning();
  6689. lcd_update_enable(true);
  6690. */
  6691. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6692. bFilamentFirstRun=false;
  6693. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6694. {
  6695. bFilamentPreheatState=true;
  6696. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6697. menu_submenu(mFilamentItemForce);
  6698. }
  6699. else
  6700. {
  6701. menu_submenu(mFilamentMenu);
  6702. lcd_timeoutToStatus.start();
  6703. }
  6704. }
  6705. }
  6706. }
  6707. else
  6708. {
  6709. #ifdef PAT9125
  6710. fsensor_autoload_check_stop();
  6711. #endif //PAT9125
  6712. fsensor_update();
  6713. }
  6714. }
  6715. }
  6716. #endif //FILAMENT_SENSOR
  6717. #ifdef SAFETYTIMER
  6718. handleSafetyTimer();
  6719. #endif //SAFETYTIMER
  6720. #if defined(KILL_PIN) && KILL_PIN > -1
  6721. static int killCount = 0; // make the inactivity button a bit less responsive
  6722. const int KILL_DELAY = 10000;
  6723. #endif
  6724. if(buflen < (BUFSIZE-1)){
  6725. get_command();
  6726. }
  6727. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6728. if(max_inactive_time)
  6729. kill(_n(""), 4);
  6730. if(stepper_inactive_time) {
  6731. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6732. {
  6733. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6734. disable_x();
  6735. disable_y();
  6736. disable_z();
  6737. disable_e0();
  6738. disable_e1();
  6739. disable_e2();
  6740. }
  6741. }
  6742. }
  6743. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6744. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6745. {
  6746. chdkActive = false;
  6747. WRITE(CHDK, LOW);
  6748. }
  6749. #endif
  6750. #if defined(KILL_PIN) && KILL_PIN > -1
  6751. // Check if the kill button was pressed and wait just in case it was an accidental
  6752. // key kill key press
  6753. // -------------------------------------------------------------------------------
  6754. if( 0 == READ(KILL_PIN) )
  6755. {
  6756. killCount++;
  6757. }
  6758. else if (killCount > 0)
  6759. {
  6760. killCount--;
  6761. }
  6762. // Exceeded threshold and we can confirm that it was not accidental
  6763. // KILL the machine
  6764. // ----------------------------------------------------------------
  6765. if ( killCount >= KILL_DELAY)
  6766. {
  6767. kill("", 5);
  6768. }
  6769. #endif
  6770. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6771. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6772. #endif
  6773. #ifdef EXTRUDER_RUNOUT_PREVENT
  6774. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6775. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6776. {
  6777. bool oldstatus=READ(E0_ENABLE_PIN);
  6778. enable_e0();
  6779. float oldepos=current_position[E_AXIS];
  6780. float oldedes=destination[E_AXIS];
  6781. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6782. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6783. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6784. current_position[E_AXIS]=oldepos;
  6785. destination[E_AXIS]=oldedes;
  6786. plan_set_e_position(oldepos);
  6787. previous_millis_cmd=_millis();
  6788. st_synchronize();
  6789. WRITE(E0_ENABLE_PIN,oldstatus);
  6790. }
  6791. #endif
  6792. #ifdef TEMP_STAT_LEDS
  6793. handle_status_leds();
  6794. #endif
  6795. check_axes_activity();
  6796. mmu_loop();
  6797. }
  6798. void kill(const char *full_screen_message, unsigned char id)
  6799. {
  6800. printf_P(_N("KILL: %d\n"), id);
  6801. //return;
  6802. cli(); // Stop interrupts
  6803. disable_heater();
  6804. disable_x();
  6805. // SERIAL_ECHOLNPGM("kill - disable Y");
  6806. disable_y();
  6807. disable_z();
  6808. disable_e0();
  6809. disable_e1();
  6810. disable_e2();
  6811. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6812. pinMode(PS_ON_PIN,INPUT);
  6813. #endif
  6814. SERIAL_ERROR_START;
  6815. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6816. if (full_screen_message != NULL) {
  6817. SERIAL_ERRORLNRPGM(full_screen_message);
  6818. lcd_display_message_fullscreen_P(full_screen_message);
  6819. } else {
  6820. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6821. }
  6822. // FMC small patch to update the LCD before ending
  6823. sei(); // enable interrupts
  6824. for ( int i=5; i--; lcd_update(0))
  6825. {
  6826. _delay(200);
  6827. }
  6828. cli(); // disable interrupts
  6829. suicide();
  6830. while(1)
  6831. {
  6832. #ifdef WATCHDOG
  6833. wdt_reset();
  6834. #endif //WATCHDOG
  6835. /* Intentionally left empty */
  6836. } // Wait for reset
  6837. }
  6838. void Stop()
  6839. {
  6840. disable_heater();
  6841. if(Stopped == false) {
  6842. Stopped = true;
  6843. lcd_print_stop();
  6844. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6845. SERIAL_ERROR_START;
  6846. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6847. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6848. }
  6849. }
  6850. bool IsStopped() { return Stopped; };
  6851. #ifdef FAST_PWM_FAN
  6852. void setPwmFrequency(uint8_t pin, int val)
  6853. {
  6854. val &= 0x07;
  6855. switch(digitalPinToTimer(pin))
  6856. {
  6857. #if defined(TCCR0A)
  6858. case TIMER0A:
  6859. case TIMER0B:
  6860. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6861. // TCCR0B |= val;
  6862. break;
  6863. #endif
  6864. #if defined(TCCR1A)
  6865. case TIMER1A:
  6866. case TIMER1B:
  6867. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6868. // TCCR1B |= val;
  6869. break;
  6870. #endif
  6871. #if defined(TCCR2)
  6872. case TIMER2:
  6873. case TIMER2:
  6874. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6875. TCCR2 |= val;
  6876. break;
  6877. #endif
  6878. #if defined(TCCR2A)
  6879. case TIMER2A:
  6880. case TIMER2B:
  6881. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6882. TCCR2B |= val;
  6883. break;
  6884. #endif
  6885. #if defined(TCCR3A)
  6886. case TIMER3A:
  6887. case TIMER3B:
  6888. case TIMER3C:
  6889. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6890. TCCR3B |= val;
  6891. break;
  6892. #endif
  6893. #if defined(TCCR4A)
  6894. case TIMER4A:
  6895. case TIMER4B:
  6896. case TIMER4C:
  6897. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6898. TCCR4B |= val;
  6899. break;
  6900. #endif
  6901. #if defined(TCCR5A)
  6902. case TIMER5A:
  6903. case TIMER5B:
  6904. case TIMER5C:
  6905. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6906. TCCR5B |= val;
  6907. break;
  6908. #endif
  6909. }
  6910. }
  6911. #endif //FAST_PWM_FAN
  6912. //! @brief Get and validate extruder number
  6913. //!
  6914. //! If it is not specified, active_extruder is returned in parameter extruder.
  6915. //! @param [in] code M code number
  6916. //! @param [out] extruder
  6917. //! @return error
  6918. //! @retval true Invalid extruder specified in T code
  6919. //! @retval false Valid extruder specified in T code, or not specifiead
  6920. bool setTargetedHotend(int code, uint8_t &extruder)
  6921. {
  6922. extruder = active_extruder;
  6923. if(code_seen('T')) {
  6924. extruder = code_value();
  6925. if(extruder >= EXTRUDERS) {
  6926. SERIAL_ECHO_START;
  6927. switch(code){
  6928. case 104:
  6929. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6930. break;
  6931. case 105:
  6932. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6933. break;
  6934. case 109:
  6935. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6936. break;
  6937. case 218:
  6938. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6939. break;
  6940. case 221:
  6941. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6942. break;
  6943. }
  6944. SERIAL_PROTOCOLLN((int)extruder);
  6945. return true;
  6946. }
  6947. }
  6948. return false;
  6949. }
  6950. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6951. {
  6952. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6953. {
  6954. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6955. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6956. }
  6957. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6958. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6959. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6960. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6961. total_filament_used = 0;
  6962. }
  6963. float calculate_extruder_multiplier(float diameter) {
  6964. float out = 1.f;
  6965. if (cs.volumetric_enabled && diameter > 0.f) {
  6966. float area = M_PI * diameter * diameter * 0.25;
  6967. out = 1.f / area;
  6968. }
  6969. if (extrudemultiply != 100)
  6970. out *= float(extrudemultiply) * 0.01f;
  6971. return out;
  6972. }
  6973. void calculate_extruder_multipliers() {
  6974. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6975. #if EXTRUDERS > 1
  6976. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6977. #if EXTRUDERS > 2
  6978. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6979. #endif
  6980. #endif
  6981. }
  6982. void delay_keep_alive(unsigned int ms)
  6983. {
  6984. for (;;) {
  6985. manage_heater();
  6986. // Manage inactivity, but don't disable steppers on timeout.
  6987. manage_inactivity(true);
  6988. lcd_update(0);
  6989. if (ms == 0)
  6990. break;
  6991. else if (ms >= 50) {
  6992. _delay(50);
  6993. ms -= 50;
  6994. } else {
  6995. _delay(ms);
  6996. ms = 0;
  6997. }
  6998. }
  6999. }
  7000. static void wait_for_heater(long codenum, uint8_t extruder) {
  7001. #ifdef TEMP_RESIDENCY_TIME
  7002. long residencyStart;
  7003. residencyStart = -1;
  7004. /* continue to loop until we have reached the target temp
  7005. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7006. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7007. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7008. #else
  7009. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7010. #endif //TEMP_RESIDENCY_TIME
  7011. if ((_millis() - codenum) > 1000UL)
  7012. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7013. if (!farm_mode) {
  7014. SERIAL_PROTOCOLPGM("T:");
  7015. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7016. SERIAL_PROTOCOLPGM(" E:");
  7017. SERIAL_PROTOCOL((int)extruder);
  7018. #ifdef TEMP_RESIDENCY_TIME
  7019. SERIAL_PROTOCOLPGM(" W:");
  7020. if (residencyStart > -1)
  7021. {
  7022. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7023. SERIAL_PROTOCOLLN(codenum);
  7024. }
  7025. else
  7026. {
  7027. SERIAL_PROTOCOLLN("?");
  7028. }
  7029. }
  7030. #else
  7031. SERIAL_PROTOCOLLN("");
  7032. #endif
  7033. codenum = _millis();
  7034. }
  7035. manage_heater();
  7036. manage_inactivity(true); //do not disable steppers
  7037. lcd_update(0);
  7038. #ifdef TEMP_RESIDENCY_TIME
  7039. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7040. or when current temp falls outside the hysteresis after target temp was reached */
  7041. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7042. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7043. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7044. {
  7045. residencyStart = _millis();
  7046. }
  7047. #endif //TEMP_RESIDENCY_TIME
  7048. }
  7049. }
  7050. void check_babystep()
  7051. {
  7052. int babystep_z;
  7053. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7054. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7055. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7056. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7057. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7058. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7059. lcd_update_enable(true);
  7060. }
  7061. }
  7062. #ifdef HEATBED_ANALYSIS
  7063. void d_setup()
  7064. {
  7065. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7066. pinMode(D_DATA, INPUT_PULLUP);
  7067. pinMode(D_REQUIRE, OUTPUT);
  7068. digitalWrite(D_REQUIRE, HIGH);
  7069. }
  7070. float d_ReadData()
  7071. {
  7072. int digit[13];
  7073. String mergeOutput;
  7074. float output;
  7075. digitalWrite(D_REQUIRE, HIGH);
  7076. for (int i = 0; i<13; i++)
  7077. {
  7078. for (int j = 0; j < 4; j++)
  7079. {
  7080. while (digitalRead(D_DATACLOCK) == LOW) {}
  7081. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7082. bitWrite(digit[i], j, digitalRead(D_DATA));
  7083. }
  7084. }
  7085. digitalWrite(D_REQUIRE, LOW);
  7086. mergeOutput = "";
  7087. output = 0;
  7088. for (int r = 5; r <= 10; r++) //Merge digits
  7089. {
  7090. mergeOutput += digit[r];
  7091. }
  7092. output = mergeOutput.toFloat();
  7093. if (digit[4] == 8) //Handle sign
  7094. {
  7095. output *= -1;
  7096. }
  7097. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7098. {
  7099. output /= 10;
  7100. }
  7101. return output;
  7102. }
  7103. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7104. int t1 = 0;
  7105. int t_delay = 0;
  7106. int digit[13];
  7107. int m;
  7108. char str[3];
  7109. //String mergeOutput;
  7110. char mergeOutput[15];
  7111. float output;
  7112. int mesh_point = 0; //index number of calibration point
  7113. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7114. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7115. float mesh_home_z_search = 4;
  7116. float measure_z_heigth = 0.2f;
  7117. float row[x_points_num];
  7118. int ix = 0;
  7119. int iy = 0;
  7120. const char* filename_wldsd = "mesh.txt";
  7121. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7122. char numb_wldsd[8]; // (" -A.BCD" + null)
  7123. #ifdef MICROMETER_LOGGING
  7124. d_setup();
  7125. #endif //MICROMETER_LOGGING
  7126. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7127. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7128. unsigned int custom_message_type_old = custom_message_type;
  7129. unsigned int custom_message_state_old = custom_message_state;
  7130. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7131. custom_message_state = (x_points_num * y_points_num) + 10;
  7132. lcd_update(1);
  7133. //mbl.reset();
  7134. babystep_undo();
  7135. card.openFile(filename_wldsd, false);
  7136. /*destination[Z_AXIS] = mesh_home_z_search;
  7137. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7138. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7139. for(int8_t i=0; i < NUM_AXIS; i++) {
  7140. current_position[i] = destination[i];
  7141. }
  7142. st_synchronize();
  7143. */
  7144. destination[Z_AXIS] = measure_z_heigth;
  7145. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7146. for(int8_t i=0; i < NUM_AXIS; i++) {
  7147. current_position[i] = destination[i];
  7148. }
  7149. st_synchronize();
  7150. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7151. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7152. SERIAL_PROTOCOL(x_points_num);
  7153. SERIAL_PROTOCOLPGM(",");
  7154. SERIAL_PROTOCOL(y_points_num);
  7155. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7156. SERIAL_PROTOCOL(mesh_home_z_search);
  7157. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7158. SERIAL_PROTOCOL(x_dimension);
  7159. SERIAL_PROTOCOLPGM(",");
  7160. SERIAL_PROTOCOL(y_dimension);
  7161. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7162. while (mesh_point != x_points_num * y_points_num) {
  7163. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7164. iy = mesh_point / x_points_num;
  7165. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7166. float z0 = 0.f;
  7167. /*destination[Z_AXIS] = mesh_home_z_search;
  7168. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7169. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7170. for(int8_t i=0; i < NUM_AXIS; i++) {
  7171. current_position[i] = destination[i];
  7172. }
  7173. st_synchronize();*/
  7174. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7175. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7176. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7177. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7178. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7179. for(int8_t i=0; i < NUM_AXIS; i++) {
  7180. current_position[i] = destination[i];
  7181. }
  7182. st_synchronize();
  7183. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7184. delay_keep_alive(1000);
  7185. #ifdef MICROMETER_LOGGING
  7186. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7187. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7188. //strcat(data_wldsd, numb_wldsd);
  7189. //MYSERIAL.println(data_wldsd);
  7190. //delay(1000);
  7191. //delay(3000);
  7192. //t1 = millis();
  7193. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7194. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7195. memset(digit, 0, sizeof(digit));
  7196. //cli();
  7197. digitalWrite(D_REQUIRE, LOW);
  7198. for (int i = 0; i<13; i++)
  7199. {
  7200. //t1 = millis();
  7201. for (int j = 0; j < 4; j++)
  7202. {
  7203. while (digitalRead(D_DATACLOCK) == LOW) {}
  7204. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7205. //printf_P(PSTR("Done %d\n"), j);
  7206. bitWrite(digit[i], j, digitalRead(D_DATA));
  7207. }
  7208. //t_delay = (millis() - t1);
  7209. //SERIAL_PROTOCOLPGM(" ");
  7210. //SERIAL_PROTOCOL_F(t_delay, 5);
  7211. //SERIAL_PROTOCOLPGM(" ");
  7212. }
  7213. //sei();
  7214. digitalWrite(D_REQUIRE, HIGH);
  7215. mergeOutput[0] = '\0';
  7216. output = 0;
  7217. for (int r = 5; r <= 10; r++) //Merge digits
  7218. {
  7219. sprintf(str, "%d", digit[r]);
  7220. strcat(mergeOutput, str);
  7221. }
  7222. output = atof(mergeOutput);
  7223. if (digit[4] == 8) //Handle sign
  7224. {
  7225. output *= -1;
  7226. }
  7227. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7228. {
  7229. output *= 0.1;
  7230. }
  7231. //output = d_ReadData();
  7232. //row[ix] = current_position[Z_AXIS];
  7233. //row[ix] = d_ReadData();
  7234. row[ix] = output;
  7235. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7236. memset(data_wldsd, 0, sizeof(data_wldsd));
  7237. for (int i = 0; i < x_points_num; i++) {
  7238. SERIAL_PROTOCOLPGM(" ");
  7239. SERIAL_PROTOCOL_F(row[i], 5);
  7240. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7241. dtostrf(row[i], 7, 3, numb_wldsd);
  7242. strcat(data_wldsd, numb_wldsd);
  7243. }
  7244. card.write_command(data_wldsd);
  7245. SERIAL_PROTOCOLPGM("\n");
  7246. }
  7247. custom_message_state--;
  7248. mesh_point++;
  7249. lcd_update(1);
  7250. }
  7251. #endif //MICROMETER_LOGGING
  7252. card.closefile();
  7253. //clean_up_after_endstop_move(l_feedmultiply);
  7254. }
  7255. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7256. int t1 = 0;
  7257. int t_delay = 0;
  7258. int digit[13];
  7259. int m;
  7260. char str[3];
  7261. //String mergeOutput;
  7262. char mergeOutput[15];
  7263. float output;
  7264. int mesh_point = 0; //index number of calibration point
  7265. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7266. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7267. float mesh_home_z_search = 4;
  7268. float row[x_points_num];
  7269. int ix = 0;
  7270. int iy = 0;
  7271. const char* filename_wldsd = "wldsd.txt";
  7272. char data_wldsd[70];
  7273. char numb_wldsd[10];
  7274. d_setup();
  7275. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7276. // We don't know where we are! HOME!
  7277. // Push the commands to the front of the message queue in the reverse order!
  7278. // There shall be always enough space reserved for these commands.
  7279. repeatcommand_front(); // repeat G80 with all its parameters
  7280. enquecommand_front_P((PSTR("G28 W0")));
  7281. enquecommand_front_P((PSTR("G1 Z5")));
  7282. return;
  7283. }
  7284. unsigned int custom_message_type_old = custom_message_type;
  7285. unsigned int custom_message_state_old = custom_message_state;
  7286. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7287. custom_message_state = (x_points_num * y_points_num) + 10;
  7288. lcd_update(1);
  7289. mbl.reset();
  7290. babystep_undo();
  7291. card.openFile(filename_wldsd, false);
  7292. current_position[Z_AXIS] = mesh_home_z_search;
  7293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7294. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7295. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7296. int l_feedmultiply = setup_for_endstop_move(false);
  7297. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7298. SERIAL_PROTOCOL(x_points_num);
  7299. SERIAL_PROTOCOLPGM(",");
  7300. SERIAL_PROTOCOL(y_points_num);
  7301. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7302. SERIAL_PROTOCOL(mesh_home_z_search);
  7303. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7304. SERIAL_PROTOCOL(x_dimension);
  7305. SERIAL_PROTOCOLPGM(",");
  7306. SERIAL_PROTOCOL(y_dimension);
  7307. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7308. while (mesh_point != x_points_num * y_points_num) {
  7309. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7310. iy = mesh_point / x_points_num;
  7311. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7312. float z0 = 0.f;
  7313. current_position[Z_AXIS] = mesh_home_z_search;
  7314. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7315. st_synchronize();
  7316. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7317. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7319. st_synchronize();
  7320. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7321. break;
  7322. card.closefile();
  7323. }
  7324. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7325. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7326. //strcat(data_wldsd, numb_wldsd);
  7327. //MYSERIAL.println(data_wldsd);
  7328. //_delay(1000);
  7329. //_delay(3000);
  7330. //t1 = _millis();
  7331. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7332. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7333. memset(digit, 0, sizeof(digit));
  7334. //cli();
  7335. digitalWrite(D_REQUIRE, LOW);
  7336. for (int i = 0; i<13; i++)
  7337. {
  7338. //t1 = _millis();
  7339. for (int j = 0; j < 4; j++)
  7340. {
  7341. while (digitalRead(D_DATACLOCK) == LOW) {}
  7342. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7343. bitWrite(digit[i], j, digitalRead(D_DATA));
  7344. }
  7345. //t_delay = (_millis() - t1);
  7346. //SERIAL_PROTOCOLPGM(" ");
  7347. //SERIAL_PROTOCOL_F(t_delay, 5);
  7348. //SERIAL_PROTOCOLPGM(" ");
  7349. }
  7350. //sei();
  7351. digitalWrite(D_REQUIRE, HIGH);
  7352. mergeOutput[0] = '\0';
  7353. output = 0;
  7354. for (int r = 5; r <= 10; r++) //Merge digits
  7355. {
  7356. sprintf(str, "%d", digit[r]);
  7357. strcat(mergeOutput, str);
  7358. }
  7359. output = atof(mergeOutput);
  7360. if (digit[4] == 8) //Handle sign
  7361. {
  7362. output *= -1;
  7363. }
  7364. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7365. {
  7366. output *= 0.1;
  7367. }
  7368. //output = d_ReadData();
  7369. //row[ix] = current_position[Z_AXIS];
  7370. memset(data_wldsd, 0, sizeof(data_wldsd));
  7371. for (int i = 0; i <3; i++) {
  7372. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7373. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7374. strcat(data_wldsd, numb_wldsd);
  7375. strcat(data_wldsd, ";");
  7376. }
  7377. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7378. dtostrf(output, 8, 5, numb_wldsd);
  7379. strcat(data_wldsd, numb_wldsd);
  7380. //strcat(data_wldsd, ";");
  7381. card.write_command(data_wldsd);
  7382. //row[ix] = d_ReadData();
  7383. row[ix] = output; // current_position[Z_AXIS];
  7384. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7385. for (int i = 0; i < x_points_num; i++) {
  7386. SERIAL_PROTOCOLPGM(" ");
  7387. SERIAL_PROTOCOL_F(row[i], 5);
  7388. }
  7389. SERIAL_PROTOCOLPGM("\n");
  7390. }
  7391. custom_message_state--;
  7392. mesh_point++;
  7393. lcd_update(1);
  7394. }
  7395. card.closefile();
  7396. clean_up_after_endstop_move(l_feedmultiply);
  7397. }
  7398. #endif //HEATBED_ANALYSIS
  7399. void temp_compensation_start() {
  7400. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7401. custom_message_state = PINDA_HEAT_T + 1;
  7402. lcd_update(2);
  7403. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7404. current_position[E_AXIS] -= default_retraction;
  7405. }
  7406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7407. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7408. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7409. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7411. st_synchronize();
  7412. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7413. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7414. delay_keep_alive(1000);
  7415. custom_message_state = PINDA_HEAT_T - i;
  7416. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7417. else lcd_update(1);
  7418. }
  7419. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7420. custom_message_state = 0;
  7421. }
  7422. void temp_compensation_apply() {
  7423. int i_add;
  7424. int z_shift = 0;
  7425. float z_shift_mm;
  7426. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7427. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7428. i_add = (target_temperature_bed - 60) / 10;
  7429. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7430. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7431. }else {
  7432. //interpolation
  7433. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7434. }
  7435. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7437. st_synchronize();
  7438. plan_set_z_position(current_position[Z_AXIS]);
  7439. }
  7440. else {
  7441. //we have no temp compensation data
  7442. }
  7443. }
  7444. float temp_comp_interpolation(float inp_temperature) {
  7445. //cubic spline interpolation
  7446. int n, i, j;
  7447. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7448. int shift[10];
  7449. int temp_C[10];
  7450. n = 6; //number of measured points
  7451. shift[0] = 0;
  7452. for (i = 0; i < n; i++) {
  7453. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7454. temp_C[i] = 50 + i * 10; //temperature in C
  7455. #ifdef PINDA_THERMISTOR
  7456. temp_C[i] = 35 + i * 5; //temperature in C
  7457. #else
  7458. temp_C[i] = 50 + i * 10; //temperature in C
  7459. #endif
  7460. x[i] = (float)temp_C[i];
  7461. f[i] = (float)shift[i];
  7462. }
  7463. if (inp_temperature < x[0]) return 0;
  7464. for (i = n - 1; i>0; i--) {
  7465. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7466. h[i - 1] = x[i] - x[i - 1];
  7467. }
  7468. //*********** formation of h, s , f matrix **************
  7469. for (i = 1; i<n - 1; i++) {
  7470. m[i][i] = 2 * (h[i - 1] + h[i]);
  7471. if (i != 1) {
  7472. m[i][i - 1] = h[i - 1];
  7473. m[i - 1][i] = h[i - 1];
  7474. }
  7475. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7476. }
  7477. //*********** forward elimination **************
  7478. for (i = 1; i<n - 2; i++) {
  7479. temp = (m[i + 1][i] / m[i][i]);
  7480. for (j = 1; j <= n - 1; j++)
  7481. m[i + 1][j] -= temp*m[i][j];
  7482. }
  7483. //*********** backward substitution *********
  7484. for (i = n - 2; i>0; i--) {
  7485. sum = 0;
  7486. for (j = i; j <= n - 2; j++)
  7487. sum += m[i][j] * s[j];
  7488. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7489. }
  7490. for (i = 0; i<n - 1; i++)
  7491. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7492. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7493. b = s[i] / 2;
  7494. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7495. d = f[i];
  7496. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7497. }
  7498. return sum;
  7499. }
  7500. #ifdef PINDA_THERMISTOR
  7501. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7502. {
  7503. if (!temp_cal_active) return 0;
  7504. if (!calibration_status_pinda()) return 0;
  7505. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7506. }
  7507. #endif //PINDA_THERMISTOR
  7508. void long_pause() //long pause print
  7509. {
  7510. st_synchronize();
  7511. start_pause_print = _millis();
  7512. //retract
  7513. current_position[E_AXIS] -= default_retraction;
  7514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7515. //lift z
  7516. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7517. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7519. //Move XY to side
  7520. current_position[X_AXIS] = X_PAUSE_POS;
  7521. current_position[Y_AXIS] = Y_PAUSE_POS;
  7522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7523. // Turn off the print fan
  7524. fanSpeed = 0;
  7525. st_synchronize();
  7526. }
  7527. void serialecho_temperatures() {
  7528. float tt = degHotend(active_extruder);
  7529. SERIAL_PROTOCOLPGM("T:");
  7530. SERIAL_PROTOCOL(tt);
  7531. SERIAL_PROTOCOLPGM(" E:");
  7532. SERIAL_PROTOCOL((int)active_extruder);
  7533. SERIAL_PROTOCOLPGM(" B:");
  7534. SERIAL_PROTOCOL_F(degBed(), 1);
  7535. SERIAL_PROTOCOLLN("");
  7536. }
  7537. extern uint32_t sdpos_atomic;
  7538. #ifdef UVLO_SUPPORT
  7539. void uvlo_()
  7540. {
  7541. unsigned long time_start = _millis();
  7542. bool sd_print = card.sdprinting;
  7543. // Conserve power as soon as possible.
  7544. disable_x();
  7545. disable_y();
  7546. #ifdef TMC2130
  7547. tmc2130_set_current_h(Z_AXIS, 20);
  7548. tmc2130_set_current_r(Z_AXIS, 20);
  7549. tmc2130_set_current_h(E_AXIS, 20);
  7550. tmc2130_set_current_r(E_AXIS, 20);
  7551. #endif //TMC2130
  7552. // Indicate that the interrupt has been triggered.
  7553. // SERIAL_ECHOLNPGM("UVLO");
  7554. // Read out the current Z motor microstep counter. This will be later used
  7555. // for reaching the zero full step before powering off.
  7556. uint16_t z_microsteps = 0;
  7557. #ifdef TMC2130
  7558. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7559. #endif //TMC2130
  7560. // Calculate the file position, from which to resume this print.
  7561. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7562. {
  7563. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7564. sd_position -= sdlen_planner;
  7565. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7566. sd_position -= sdlen_cmdqueue;
  7567. if (sd_position < 0) sd_position = 0;
  7568. }
  7569. // Backup the feedrate in mm/min.
  7570. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7571. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7572. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7573. // are in action.
  7574. planner_abort_hard();
  7575. // Store the current extruder position.
  7576. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7577. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7578. // Clean the input command queue.
  7579. cmdqueue_reset();
  7580. card.sdprinting = false;
  7581. // card.closefile();
  7582. // Enable stepper driver interrupt to move Z axis.
  7583. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7584. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7585. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7586. sei();
  7587. plan_buffer_line(
  7588. current_position[X_AXIS],
  7589. current_position[Y_AXIS],
  7590. current_position[Z_AXIS],
  7591. current_position[E_AXIS] - default_retraction,
  7592. 95, active_extruder);
  7593. st_synchronize();
  7594. disable_e0();
  7595. plan_buffer_line(
  7596. current_position[X_AXIS],
  7597. current_position[Y_AXIS],
  7598. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7599. current_position[E_AXIS] - default_retraction,
  7600. 40, active_extruder);
  7601. st_synchronize();
  7602. disable_e0();
  7603. plan_buffer_line(
  7604. current_position[X_AXIS],
  7605. current_position[Y_AXIS],
  7606. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7607. current_position[E_AXIS] - default_retraction,
  7608. 40, active_extruder);
  7609. st_synchronize();
  7610. disable_e0();
  7611. disable_z();
  7612. // Move Z up to the next 0th full step.
  7613. // Write the file position.
  7614. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7615. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7616. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7617. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7618. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7619. // Scale the z value to 1u resolution.
  7620. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7621. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7622. }
  7623. // Read out the current Z motor microstep counter. This will be later used
  7624. // for reaching the zero full step before powering off.
  7625. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7626. // Store the current position.
  7627. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7628. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7629. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7630. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7631. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7632. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7633. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7634. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7635. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7636. #if EXTRUDERS > 1
  7637. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7638. #if EXTRUDERS > 2
  7639. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7640. #endif
  7641. #endif
  7642. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7643. // Finaly store the "power outage" flag.
  7644. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7645. st_synchronize();
  7646. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7647. disable_z();
  7648. // Increment power failure counter
  7649. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7650. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7651. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7652. #if 0
  7653. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7654. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7656. st_synchronize();
  7657. #endif
  7658. wdt_enable(WDTO_500MS);
  7659. WRITE(BEEPER,HIGH);
  7660. while(1)
  7661. ;
  7662. }
  7663. void uvlo_tiny()
  7664. {
  7665. uint16_t z_microsteps=0;
  7666. // Conserve power as soon as possible.
  7667. disable_x();
  7668. disable_y();
  7669. disable_e0();
  7670. #ifdef TMC2130
  7671. tmc2130_set_current_h(Z_AXIS, 20);
  7672. tmc2130_set_current_r(Z_AXIS, 20);
  7673. #endif //TMC2130
  7674. // Read out the current Z motor microstep counter
  7675. #ifdef TMC2130
  7676. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7677. #endif //TMC2130
  7678. planner_abort_hard();
  7679. sei();
  7680. plan_buffer_line(
  7681. current_position[X_AXIS],
  7682. current_position[Y_AXIS],
  7683. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7684. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7685. current_position[E_AXIS],
  7686. 40, active_extruder);
  7687. st_synchronize();
  7688. disable_z();
  7689. // Finaly store the "power outage" flag.
  7690. //if(sd_print)
  7691. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7692. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7693. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7694. // Increment power failure counter
  7695. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7696. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7697. wdt_enable(WDTO_500MS);
  7698. WRITE(BEEPER,HIGH);
  7699. while(1)
  7700. ;
  7701. }
  7702. #endif //UVLO_SUPPORT
  7703. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7704. void setup_fan_interrupt() {
  7705. //INT7
  7706. DDRE &= ~(1 << 7); //input pin
  7707. PORTE &= ~(1 << 7); //no internal pull-up
  7708. //start with sensing rising edge
  7709. EICRB &= ~(1 << 6);
  7710. EICRB |= (1 << 7);
  7711. //enable INT7 interrupt
  7712. EIMSK |= (1 << 7);
  7713. }
  7714. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7715. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7716. ISR(INT7_vect) {
  7717. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7718. #ifdef FAN_SOFT_PWM
  7719. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7720. #else //FAN_SOFT_PWM
  7721. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7722. #endif //FAN_SOFT_PWM
  7723. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7724. t_fan_rising_edge = millis_nc();
  7725. }
  7726. else { //interrupt was triggered by falling edge
  7727. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7728. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7729. }
  7730. }
  7731. EICRB ^= (1 << 6); //change edge
  7732. }
  7733. #endif
  7734. #ifdef UVLO_SUPPORT
  7735. void setup_uvlo_interrupt() {
  7736. DDRE &= ~(1 << 4); //input pin
  7737. PORTE &= ~(1 << 4); //no internal pull-up
  7738. //sensing falling edge
  7739. EICRB |= (1 << 0);
  7740. EICRB &= ~(1 << 1);
  7741. //enable INT4 interrupt
  7742. EIMSK |= (1 << 4);
  7743. }
  7744. ISR(INT4_vect) {
  7745. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7746. SERIAL_ECHOLNPGM("INT4");
  7747. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7748. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7749. }
  7750. void recover_print(uint8_t automatic) {
  7751. char cmd[30];
  7752. lcd_update_enable(true);
  7753. lcd_update(2);
  7754. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7755. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7756. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7757. // Lift the print head, so one may remove the excess priming material.
  7758. if(!bTiny&&(current_position[Z_AXIS]<25))
  7759. enquecommand_P(PSTR("G1 Z25 F800"));
  7760. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7761. enquecommand_P(PSTR("G28 X Y"));
  7762. // Set the target bed and nozzle temperatures and wait.
  7763. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7764. enquecommand(cmd);
  7765. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7766. enquecommand(cmd);
  7767. enquecommand_P(PSTR("M83")); //E axis relative mode
  7768. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7769. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7770. if(automatic == 0){
  7771. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7772. }
  7773. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7774. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7775. // Restart the print.
  7776. restore_print_from_eeprom();
  7777. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7778. }
  7779. void recover_machine_state_after_power_panic(bool bTiny)
  7780. {
  7781. char cmd[30];
  7782. // 1) Recover the logical cordinates at the time of the power panic.
  7783. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7784. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7785. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7786. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7787. // The current position after power panic is moved to the next closest 0th full step.
  7788. if(bTiny)
  7789. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7790. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7791. else
  7792. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7793. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7794. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7795. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7796. sprintf_P(cmd, PSTR("G92 E"));
  7797. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7798. enquecommand(cmd);
  7799. }
  7800. memcpy(destination, current_position, sizeof(destination));
  7801. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7802. print_world_coordinates();
  7803. // 2) Initialize the logical to physical coordinate system transformation.
  7804. world2machine_initialize();
  7805. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7806. mbl.active = false;
  7807. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7808. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7809. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7810. // Scale the z value to 10u resolution.
  7811. int16_t v;
  7812. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7813. if (v != 0)
  7814. mbl.active = true;
  7815. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7816. }
  7817. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7818. // print_mesh_bed_leveling_table();
  7819. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7820. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7821. babystep_load();
  7822. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7823. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7824. // 6) Power up the motors, mark their positions as known.
  7825. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7826. axis_known_position[X_AXIS] = true; enable_x();
  7827. axis_known_position[Y_AXIS] = true; enable_y();
  7828. axis_known_position[Z_AXIS] = true; enable_z();
  7829. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7830. print_physical_coordinates();
  7831. // 7) Recover the target temperatures.
  7832. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7833. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7834. // 8) Recover extruder multipilers
  7835. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7836. #if EXTRUDERS > 1
  7837. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7838. #if EXTRUDERS > 2
  7839. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7840. #endif
  7841. #endif
  7842. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7843. }
  7844. void restore_print_from_eeprom() {
  7845. int feedrate_rec;
  7846. uint8_t fan_speed_rec;
  7847. char cmd[30];
  7848. char filename[13];
  7849. uint8_t depth = 0;
  7850. char dir_name[9];
  7851. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7852. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7853. SERIAL_ECHOPGM("Feedrate:");
  7854. MYSERIAL.println(feedrate_rec);
  7855. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7856. MYSERIAL.println(int(depth));
  7857. for (int i = 0; i < depth; i++) {
  7858. for (int j = 0; j < 8; j++) {
  7859. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7860. }
  7861. dir_name[8] = '\0';
  7862. MYSERIAL.println(dir_name);
  7863. strcpy(dir_names[i], dir_name);
  7864. card.chdir(dir_name);
  7865. }
  7866. for (int i = 0; i < 8; i++) {
  7867. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7868. }
  7869. filename[8] = '\0';
  7870. MYSERIAL.print(filename);
  7871. strcat_P(filename, PSTR(".gco"));
  7872. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7873. enquecommand(cmd);
  7874. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7875. SERIAL_ECHOPGM("Position read from eeprom:");
  7876. MYSERIAL.println(position);
  7877. // E axis relative mode.
  7878. enquecommand_P(PSTR("M83"));
  7879. // Move to the XY print position in logical coordinates, where the print has been killed.
  7880. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7881. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7882. strcat_P(cmd, PSTR(" F2000"));
  7883. enquecommand(cmd);
  7884. // Move the Z axis down to the print, in logical coordinates.
  7885. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7886. enquecommand(cmd);
  7887. // Unretract.
  7888. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7889. // Set the feedrate saved at the power panic.
  7890. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7891. enquecommand(cmd);
  7892. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7893. {
  7894. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7895. }
  7896. // Set the fan speed saved at the power panic.
  7897. strcpy_P(cmd, PSTR("M106 S"));
  7898. strcat(cmd, itostr3(int(fan_speed_rec)));
  7899. enquecommand(cmd);
  7900. // Set a position in the file.
  7901. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7902. enquecommand(cmd);
  7903. enquecommand_P(PSTR("G4 S0"));
  7904. enquecommand_P(PSTR("PRUSA uvlo"));
  7905. }
  7906. #endif //UVLO_SUPPORT
  7907. //! @brief Immediately stop print moves
  7908. //!
  7909. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7910. //! If printing from sd card, position in file is saved.
  7911. //! If printing from USB, line number is saved.
  7912. //!
  7913. //! @param z_move
  7914. //! @param e_move
  7915. void stop_and_save_print_to_ram(float z_move, float e_move)
  7916. {
  7917. if (saved_printing) return;
  7918. #if 0
  7919. unsigned char nplanner_blocks;
  7920. #endif
  7921. unsigned char nlines;
  7922. uint16_t sdlen_planner;
  7923. uint16_t sdlen_cmdqueue;
  7924. cli();
  7925. if (card.sdprinting) {
  7926. #if 0
  7927. nplanner_blocks = number_of_blocks();
  7928. #endif
  7929. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7930. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7931. saved_sdpos -= sdlen_planner;
  7932. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7933. saved_sdpos -= sdlen_cmdqueue;
  7934. saved_printing_type = PRINTING_TYPE_SD;
  7935. }
  7936. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7937. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7938. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7939. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7940. saved_sdpos -= nlines;
  7941. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7942. saved_printing_type = PRINTING_TYPE_USB;
  7943. }
  7944. else {
  7945. saved_printing_type = PRINTING_TYPE_NONE;
  7946. //not sd printing nor usb printing
  7947. }
  7948. #if 0
  7949. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7950. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7951. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7952. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7953. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7954. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7955. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7956. {
  7957. card.setIndex(saved_sdpos);
  7958. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7959. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7960. MYSERIAL.print(char(card.get()));
  7961. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7962. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7963. MYSERIAL.print(char(card.get()));
  7964. SERIAL_ECHOLNPGM("End of command buffer");
  7965. }
  7966. {
  7967. // Print the content of the planner buffer, line by line:
  7968. card.setIndex(saved_sdpos);
  7969. int8_t iline = 0;
  7970. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7971. SERIAL_ECHOPGM("Planner line (from file): ");
  7972. MYSERIAL.print(int(iline), DEC);
  7973. SERIAL_ECHOPGM(", length: ");
  7974. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7975. SERIAL_ECHOPGM(", steps: (");
  7976. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7977. SERIAL_ECHOPGM(",");
  7978. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7979. SERIAL_ECHOPGM(",");
  7980. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7981. SERIAL_ECHOPGM(",");
  7982. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7983. SERIAL_ECHOPGM("), events: ");
  7984. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7985. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7986. MYSERIAL.print(char(card.get()));
  7987. }
  7988. }
  7989. {
  7990. // Print the content of the command buffer, line by line:
  7991. int8_t iline = 0;
  7992. union {
  7993. struct {
  7994. char lo;
  7995. char hi;
  7996. } lohi;
  7997. uint16_t value;
  7998. } sdlen_single;
  7999. int _bufindr = bufindr;
  8000. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8001. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8002. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8003. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8004. }
  8005. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8006. MYSERIAL.print(int(iline), DEC);
  8007. SERIAL_ECHOPGM(", type: ");
  8008. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8009. SERIAL_ECHOPGM(", len: ");
  8010. MYSERIAL.println(sdlen_single.value, DEC);
  8011. // Print the content of the buffer line.
  8012. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8013. SERIAL_ECHOPGM("Buffer line (from file): ");
  8014. MYSERIAL.println(int(iline), DEC);
  8015. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8016. MYSERIAL.print(char(card.get()));
  8017. if (-- _buflen == 0)
  8018. break;
  8019. // First skip the current command ID and iterate up to the end of the string.
  8020. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8021. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8022. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8023. // If the end of the buffer was empty,
  8024. if (_bufindr == sizeof(cmdbuffer)) {
  8025. // skip to the start and find the nonzero command.
  8026. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8027. }
  8028. }
  8029. }
  8030. #endif
  8031. #if 0
  8032. saved_feedrate2 = feedrate; //save feedrate
  8033. #else
  8034. // Try to deduce the feedrate from the first block of the planner.
  8035. // Speed is in mm/min.
  8036. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8037. #endif
  8038. planner_abort_hard(); //abort printing
  8039. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8040. saved_active_extruder = active_extruder; //save active_extruder
  8041. saved_extruder_temperature = degTargetHotend(active_extruder);
  8042. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8043. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8044. saved_fanSpeed = fanSpeed;
  8045. cmdqueue_reset(); //empty cmdqueue
  8046. card.sdprinting = false;
  8047. // card.closefile();
  8048. saved_printing = true;
  8049. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8050. st_reset_timer();
  8051. sei();
  8052. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8053. #if 1
  8054. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8055. char buf[48];
  8056. // First unretract (relative extrusion)
  8057. if(!saved_extruder_relative_mode){
  8058. strcpy_P(buf, PSTR("M83"));
  8059. enquecommand(buf, false);
  8060. }
  8061. //retract 45mm/s
  8062. strcpy_P(buf, PSTR("G1 E"));
  8063. dtostrf(e_move, 6, 3, buf + strlen(buf));
  8064. strcat_P(buf, PSTR(" F"));
  8065. dtostrf(2700, 8, 3, buf + strlen(buf));
  8066. enquecommand(buf, false);
  8067. // Then lift Z axis
  8068. strcpy_P(buf, PSTR("G1 Z"));
  8069. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  8070. strcat_P(buf, PSTR(" F"));
  8071. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  8072. // At this point the command queue is empty.
  8073. enquecommand(buf, false);
  8074. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8075. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8076. repeatcommand_front();
  8077. #else
  8078. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8079. st_synchronize(); //wait moving
  8080. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8081. memcpy(destination, current_position, sizeof(destination));
  8082. #endif
  8083. }
  8084. }
  8085. //! @brief Restore print from ram
  8086. //!
  8087. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8088. //! waits for extruder temperature restore, then restores position and continues
  8089. //! print moves.
  8090. //! Internaly lcd_update() is called by wait_for_heater().
  8091. //!
  8092. //! @param e_move
  8093. void restore_print_from_ram_and_continue(float e_move)
  8094. {
  8095. if (!saved_printing) return;
  8096. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8097. // current_position[axis] = st_get_position_mm(axis);
  8098. active_extruder = saved_active_extruder; //restore active_extruder
  8099. if (saved_extruder_temperature) {
  8100. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8101. heating_status = 1;
  8102. wait_for_heater(_millis(), saved_active_extruder);
  8103. heating_status = 2;
  8104. }
  8105. feedrate = saved_feedrate2; //restore feedrate
  8106. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8107. fanSpeed = saved_fanSpeed;
  8108. float e = saved_pos[E_AXIS] - e_move;
  8109. plan_set_e_position(e);
  8110. //first move print head in XY to the saved position:
  8111. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8112. st_synchronize();
  8113. //then move Z
  8114. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8115. st_synchronize();
  8116. //and finaly unretract (35mm/s)
  8117. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8118. st_synchronize();
  8119. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8120. memcpy(destination, current_position, sizeof(destination));
  8121. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8122. card.setIndex(saved_sdpos);
  8123. sdpos_atomic = saved_sdpos;
  8124. card.sdprinting = true;
  8125. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8126. }
  8127. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8128. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8129. serial_count = 0;
  8130. FlushSerialRequestResend();
  8131. }
  8132. else {
  8133. //not sd printing nor usb printing
  8134. }
  8135. lcd_setstatuspgm(_T(WELCOME_MSG));
  8136. saved_printing = false;
  8137. }
  8138. void print_world_coordinates()
  8139. {
  8140. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8141. }
  8142. void print_physical_coordinates()
  8143. {
  8144. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8145. }
  8146. void print_mesh_bed_leveling_table()
  8147. {
  8148. SERIAL_ECHOPGM("mesh bed leveling: ");
  8149. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8150. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8151. MYSERIAL.print(mbl.z_values[y][x], 3);
  8152. SERIAL_ECHOPGM(" ");
  8153. }
  8154. SERIAL_ECHOLNPGM("");
  8155. }
  8156. uint16_t print_time_remaining() {
  8157. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8158. #ifdef TMC2130
  8159. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8160. else print_t = print_time_remaining_silent;
  8161. #else
  8162. print_t = print_time_remaining_normal;
  8163. #endif //TMC2130
  8164. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8165. return print_t;
  8166. }
  8167. uint8_t calc_percent_done()
  8168. {
  8169. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8170. uint8_t percent_done = 0;
  8171. #ifdef TMC2130
  8172. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8173. percent_done = print_percent_done_normal;
  8174. }
  8175. else if (print_percent_done_silent <= 100) {
  8176. percent_done = print_percent_done_silent;
  8177. }
  8178. #else
  8179. if (print_percent_done_normal <= 100) {
  8180. percent_done = print_percent_done_normal;
  8181. }
  8182. #endif //TMC2130
  8183. else {
  8184. percent_done = card.percentDone();
  8185. }
  8186. return percent_done;
  8187. }
  8188. static void print_time_remaining_init()
  8189. {
  8190. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8191. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8192. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8193. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8194. }
  8195. void load_filament_final_feed()
  8196. {
  8197. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8199. }
  8200. void M600_check_state()
  8201. {
  8202. //Wait for user to check the state
  8203. lcd_change_fil_state = 0;
  8204. while (lcd_change_fil_state != 1){
  8205. lcd_change_fil_state = 0;
  8206. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8207. lcd_alright();
  8208. KEEPALIVE_STATE(IN_HANDLER);
  8209. switch(lcd_change_fil_state){
  8210. // Filament failed to load so load it again
  8211. case 2:
  8212. if (mmu_enabled)
  8213. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  8214. else
  8215. M600_load_filament_movements();
  8216. break;
  8217. // Filament loaded properly but color is not clear
  8218. case 3:
  8219. st_synchronize();
  8220. load_filament_final_feed();
  8221. lcd_loading_color();
  8222. st_synchronize();
  8223. break;
  8224. // Everything good
  8225. default:
  8226. lcd_change_success();
  8227. break;
  8228. }
  8229. }
  8230. }
  8231. //! @brief Wait for user action
  8232. //!
  8233. //! Beep, manage nozzle heater and wait for user to start unload filament
  8234. //! If times out, active extruder temperature is set to 0.
  8235. //!
  8236. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8237. void M600_wait_for_user(float HotendTempBckp) {
  8238. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8239. int counterBeep = 0;
  8240. unsigned long waiting_start_time = _millis();
  8241. uint8_t wait_for_user_state = 0;
  8242. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8243. bool bFirst=true;
  8244. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8245. manage_heater();
  8246. manage_inactivity(true);
  8247. #if BEEPER > 0
  8248. if (counterBeep == 500) {
  8249. counterBeep = 0;
  8250. }
  8251. SET_OUTPUT(BEEPER);
  8252. if (counterBeep == 0) {
  8253. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8254. {
  8255. bFirst=false;
  8256. WRITE(BEEPER, HIGH);
  8257. }
  8258. }
  8259. if (counterBeep == 20) {
  8260. WRITE(BEEPER, LOW);
  8261. }
  8262. counterBeep++;
  8263. #endif //BEEPER > 0
  8264. switch (wait_for_user_state) {
  8265. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8266. delay_keep_alive(4);
  8267. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8268. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8269. wait_for_user_state = 1;
  8270. setAllTargetHotends(0);
  8271. st_synchronize();
  8272. disable_e0();
  8273. disable_e1();
  8274. disable_e2();
  8275. }
  8276. break;
  8277. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8278. delay_keep_alive(4);
  8279. if (lcd_clicked()) {
  8280. setTargetHotend(HotendTempBckp, active_extruder);
  8281. lcd_wait_for_heater();
  8282. wait_for_user_state = 2;
  8283. }
  8284. break;
  8285. case 2: //waiting for nozzle to reach target temperature
  8286. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8287. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8288. waiting_start_time = _millis();
  8289. wait_for_user_state = 0;
  8290. }
  8291. else {
  8292. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8293. lcd_set_cursor(1, 4);
  8294. lcd_print(ftostr3(degHotend(active_extruder)));
  8295. }
  8296. break;
  8297. }
  8298. }
  8299. WRITE(BEEPER, LOW);
  8300. }
  8301. void M600_load_filament_movements()
  8302. {
  8303. #ifdef SNMM
  8304. display_loading();
  8305. do
  8306. {
  8307. current_position[E_AXIS] += 0.002;
  8308. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8309. delay_keep_alive(2);
  8310. }
  8311. while (!lcd_clicked());
  8312. st_synchronize();
  8313. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8314. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8315. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8317. current_position[E_AXIS] += 40;
  8318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8319. current_position[E_AXIS] += 10;
  8320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8321. #else
  8322. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8323. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8324. #endif
  8325. load_filament_final_feed();
  8326. lcd_loading_filament();
  8327. st_synchronize();
  8328. }
  8329. void M600_load_filament() {
  8330. //load filament for single material and SNMM
  8331. lcd_wait_interact();
  8332. //load_filament_time = _millis();
  8333. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8334. #ifdef PAT9125
  8335. fsensor_autoload_check_start();
  8336. #endif //PAT9125
  8337. while(!lcd_clicked())
  8338. {
  8339. manage_heater();
  8340. manage_inactivity(true);
  8341. #ifdef FILAMENT_SENSOR
  8342. if (fsensor_check_autoload())
  8343. {
  8344. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8345. _tone(BEEPER, 1000);
  8346. delay_keep_alive(50);
  8347. _noTone(BEEPER);
  8348. break;
  8349. }
  8350. #endif //FILAMENT_SENSOR
  8351. }
  8352. #ifdef PAT9125
  8353. fsensor_autoload_check_stop();
  8354. #endif //PAT9125
  8355. KEEPALIVE_STATE(IN_HANDLER);
  8356. #ifdef FSENSOR_QUALITY
  8357. fsensor_oq_meassure_start(70);
  8358. #endif //FSENSOR_QUALITY
  8359. M600_load_filament_movements();
  8360. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8361. _tone(BEEPER, 500);
  8362. delay_keep_alive(50);
  8363. _noTone(BEEPER);
  8364. #ifdef FSENSOR_QUALITY
  8365. fsensor_oq_meassure_stop();
  8366. if (!fsensor_oq_result())
  8367. {
  8368. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8369. lcd_update_enable(true);
  8370. lcd_update(2);
  8371. if (disable)
  8372. fsensor_disable();
  8373. }
  8374. #endif //FSENSOR_QUALITY
  8375. lcd_update_enable(false);
  8376. }
  8377. #define FIL_LOAD_LENGTH 60