Marlin_main.cpp 234 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /*
  6. This firmware is a mashup between Sprinter and grbl.
  7. (https://github.com/kliment/Sprinter)
  8. (https://github.com/simen/grbl/tree)
  9. It has preliminary support for Matthew Roberts advance algorithm
  10. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  11. */
  12. #include "Marlin.h"
  13. #ifdef ENABLE_AUTO_BED_LEVELING
  14. #include "vector_3.h"
  15. #ifdef AUTO_BED_LEVELING_GRID
  16. #include "qr_solve.h"
  17. #endif
  18. #endif // ENABLE_AUTO_BED_LEVELING
  19. #ifdef MESH_BED_LEVELING
  20. #include "mesh_bed_leveling.h"
  21. #include "mesh_bed_calibration.h"
  22. #endif
  23. #include "ultralcd.h"
  24. #include "Configuration_prusa.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #include "math.h"
  35. #include "util.h"
  36. #include <avr/wdt.h>
  37. #ifdef BLINKM
  38. #include "BlinkM.h"
  39. #include "Wire.h"
  40. #endif
  41. #ifdef ULTRALCD
  42. #include "ultralcd.h"
  43. #endif
  44. #if NUM_SERVOS > 0
  45. #include "Servo.h"
  46. #endif
  47. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  48. #include <SPI.h>
  49. #endif
  50. #define VERSION_STRING "1.0.2"
  51. #include "ultralcd.h"
  52. // Macros for bit masks
  53. #define BIT(b) (1<<(b))
  54. #define TEST(n,b) (((n)&BIT(b))!=0)
  55. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  56. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  57. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  58. //Implemented Codes
  59. //-------------------
  60. // PRUSA CODES
  61. // P F - Returns FW versions
  62. // P R - Returns revision of printer
  63. // G0 -> G1
  64. // G1 - Coordinated Movement X Y Z E
  65. // G2 - CW ARC
  66. // G3 - CCW ARC
  67. // G4 - Dwell S<seconds> or P<milliseconds>
  68. // G10 - retract filament according to settings of M207
  69. // G11 - retract recover filament according to settings of M208
  70. // G28 - Home all Axis
  71. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  72. // G30 - Single Z Probe, probes bed at current XY location.
  73. // G31 - Dock sled (Z_PROBE_SLED only)
  74. // G32 - Undock sled (Z_PROBE_SLED only)
  75. // G80 - Automatic mesh bed leveling
  76. // G81 - Print bed profile
  77. // G90 - Use Absolute Coordinates
  78. // G91 - Use Relative Coordinates
  79. // G92 - Set current position to coordinates given
  80. // M Codes
  81. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  82. // M1 - Same as M0
  83. // M17 - Enable/Power all stepper motors
  84. // M18 - Disable all stepper motors; same as M84
  85. // M20 - List SD card
  86. // M21 - Init SD card
  87. // M22 - Release SD card
  88. // M23 - Select SD file (M23 filename.g)
  89. // M24 - Start/resume SD print
  90. // M25 - Pause SD print
  91. // M26 - Set SD position in bytes (M26 S12345)
  92. // M27 - Report SD print status
  93. // M28 - Start SD write (M28 filename.g)
  94. // M29 - Stop SD write
  95. // M30 - Delete file from SD (M30 filename.g)
  96. // M31 - Output time since last M109 or SD card start to serial
  97. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  98. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  99. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  100. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  101. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  102. // M73 - Show percent done and print time remaining
  103. // M80 - Turn on Power Supply
  104. // M81 - Turn off Power Supply
  105. // M82 - Set E codes absolute (default)
  106. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  107. // M84 - Disable steppers until next move,
  108. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  109. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  110. // M92 - Set axis_steps_per_unit - same syntax as G92
  111. // M104 - Set extruder target temp
  112. // M105 - Read current temp
  113. // M106 - Fan on
  114. // M107 - Fan off
  115. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  117. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  118. // M112 - Emergency stop
  119. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  120. // M114 - Output current position to serial port
  121. // M115 - Capabilities string
  122. // M117 - display message
  123. // M119 - Output Endstop status to serial port
  124. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  125. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  126. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  127. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  128. // M140 - Set bed target temp
  129. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  130. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  131. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  132. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  133. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  134. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  135. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  136. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  137. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  138. // M206 - set additional homing offset
  139. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  140. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  141. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  142. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  143. // M220 S<factor in percent>- set speed factor override percentage
  144. // M221 S<factor in percent>- set extrude factor override percentage
  145. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  146. // M240 - Trigger a camera to take a photograph
  147. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  148. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  149. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  150. // M301 - Set PID parameters P I and D
  151. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  152. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  153. // M304 - Set bed PID parameters P I and D
  154. // M400 - Finish all moves
  155. // M401 - Lower z-probe if present
  156. // M402 - Raise z-probe if present
  157. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  158. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  159. // M406 - Turn off Filament Sensor extrusion control
  160. // M407 - Displays measured filament diameter
  161. // M500 - stores parameters in EEPROM
  162. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  163. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  164. // M503 - print the current settings (from memory not from EEPROM)
  165. // M509 - force language selection on next restart
  166. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  167. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  168. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  169. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  170. // M907 - Set digital trimpot motor current using axis codes.
  171. // M908 - Control digital trimpot directly.
  172. // M350 - Set microstepping mode.
  173. // M351 - Toggle MS1 MS2 pins directly.
  174. // M928 - Start SD logging (M928 filename.g) - ended by M29
  175. // M999 - Restart after being stopped by error
  176. //Stepper Movement Variables
  177. //===========================================================================
  178. //=============================imported variables============================
  179. //===========================================================================
  180. //===========================================================================
  181. //=============================public variables=============================
  182. //===========================================================================
  183. #ifdef SDSUPPORT
  184. CardReader card;
  185. #endif
  186. unsigned long TimeSent = millis();
  187. unsigned long TimeNow = millis();
  188. unsigned long PingTime = millis();
  189. unsigned long NcTime;
  190. union Data
  191. {
  192. byte b[2];
  193. int value;
  194. };
  195. float homing_feedrate[] = HOMING_FEEDRATE;
  196. // Currently only the extruder axis may be switched to a relative mode.
  197. // Other axes are always absolute or relative based on the common relative_mode flag.
  198. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  199. int feedmultiply=100; //100->1 200->2
  200. int saved_feedmultiply;
  201. int extrudemultiply=100; //100->1 200->2
  202. int extruder_multiply[EXTRUDERS] = {100
  203. #if EXTRUDERS > 1
  204. , 100
  205. #if EXTRUDERS > 2
  206. , 100
  207. #endif
  208. #endif
  209. };
  210. int bowden_length[4];
  211. bool is_usb_printing = false;
  212. bool homing_flag = false;
  213. bool temp_cal_active = false;
  214. unsigned long kicktime = millis()+100000;
  215. unsigned int usb_printing_counter;
  216. int lcd_change_fil_state = 0;
  217. int feedmultiplyBckp = 100;
  218. float HotendTempBckp = 0;
  219. int fanSpeedBckp = 0;
  220. float pause_lastpos[4];
  221. unsigned long pause_time = 0;
  222. unsigned long start_pause_print = millis();
  223. unsigned long load_filament_time;
  224. bool mesh_bed_leveling_flag = false;
  225. bool mesh_bed_run_from_menu = false;
  226. unsigned char lang_selected = 0;
  227. bool prusa_sd_card_upload = false;
  228. unsigned int status_number = 0;
  229. unsigned long total_filament_used;
  230. unsigned int heating_status;
  231. unsigned int heating_status_counter;
  232. bool custom_message;
  233. bool loading_flag = false;
  234. unsigned int custom_message_type;
  235. unsigned int custom_message_state;
  236. char snmm_filaments_used = 0;
  237. uint8_t selectedSerialPort;
  238. float distance_from_min[3];
  239. bool sortAlpha = false;
  240. bool volumetric_enabled = false;
  241. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  242. #if EXTRUDERS > 1
  243. , DEFAULT_NOMINAL_FILAMENT_DIA
  244. #if EXTRUDERS > 2
  245. , DEFAULT_NOMINAL_FILAMENT_DIA
  246. #endif
  247. #endif
  248. };
  249. float volumetric_multiplier[EXTRUDERS] = {1.0
  250. #if EXTRUDERS > 1
  251. , 1.0
  252. #if EXTRUDERS > 2
  253. , 1.0
  254. #endif
  255. #endif
  256. };
  257. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  258. float add_homing[3]={0,0,0};
  259. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  260. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  261. bool axis_known_position[3] = {false, false, false};
  262. float zprobe_zoffset;
  263. // Extruder offset
  264. #if EXTRUDERS > 1
  265. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  266. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  267. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  268. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  269. #endif
  270. };
  271. #endif
  272. uint8_t active_extruder = 0;
  273. int fanSpeed=0;
  274. #ifdef FWRETRACT
  275. bool autoretract_enabled=false;
  276. bool retracted[EXTRUDERS]={false
  277. #if EXTRUDERS > 1
  278. , false
  279. #if EXTRUDERS > 2
  280. , false
  281. #endif
  282. #endif
  283. };
  284. bool retracted_swap[EXTRUDERS]={false
  285. #if EXTRUDERS > 1
  286. , false
  287. #if EXTRUDERS > 2
  288. , false
  289. #endif
  290. #endif
  291. };
  292. float retract_length = RETRACT_LENGTH;
  293. float retract_length_swap = RETRACT_LENGTH_SWAP;
  294. float retract_feedrate = RETRACT_FEEDRATE;
  295. float retract_zlift = RETRACT_ZLIFT;
  296. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  297. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  298. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  299. #endif
  300. #ifdef ULTIPANEL
  301. #ifdef PS_DEFAULT_OFF
  302. bool powersupply = false;
  303. #else
  304. bool powersupply = true;
  305. #endif
  306. #endif
  307. bool cancel_heatup = false ;
  308. #ifdef HOST_KEEPALIVE_FEATURE
  309. MarlinBusyState busy_state = NOT_BUSY;
  310. static long prev_busy_signal_ms = -1;
  311. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  312. #else
  313. #define host_keepalive();
  314. #define KEEPALIVE_STATE(n);
  315. #endif
  316. #ifdef FILAMENT_SENSOR
  317. //Variables for Filament Sensor input
  318. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  319. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  320. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  321. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  322. int delay_index1=0; //index into ring buffer
  323. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  324. float delay_dist=0; //delay distance counter
  325. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  326. #endif
  327. const char errormagic[] PROGMEM = "Error:";
  328. const char echomagic[] PROGMEM = "echo:";
  329. bool no_response = false;
  330. uint8_t important_status;
  331. uint8_t saved_filament_type;
  332. // storing estimated time to end of print counted by slicer
  333. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  334. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  335. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  336. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  337. //===========================================================================
  338. //=============================Private Variables=============================
  339. //===========================================================================
  340. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  341. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  342. // For tracing an arc
  343. static float offset[3] = {0.0, 0.0, 0.0};
  344. static bool home_all_axis = true;
  345. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  346. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  347. // Determines Absolute or Relative Coordinates.
  348. // Also there is bool axis_relative_modes[] per axis flag.
  349. static bool relative_mode = false;
  350. // String circular buffer. Commands may be pushed to the buffer from both sides:
  351. // Chained commands will be pushed to the front, interactive (from LCD menu)
  352. // and printing commands (from serial line or from SD card) are pushed to the tail.
  353. // First character of each entry indicates the type of the entry:
  354. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  355. // Command in cmdbuffer was sent over USB.
  356. #define CMDBUFFER_CURRENT_TYPE_USB 1
  357. // Command in cmdbuffer was read from SDCARD.
  358. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  359. // Command in cmdbuffer was generated by the UI.
  360. #define CMDBUFFER_CURRENT_TYPE_UI 3
  361. // Command in cmdbuffer was generated by another G-code.
  362. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  363. // How much space to reserve for the chained commands
  364. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  365. // which are pushed to the front of the queue?
  366. // Maximum 5 commands of max length 20 + null terminator.
  367. #define CMDBUFFER_RESERVE_FRONT (5*21)
  368. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  369. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  370. // Head of the circular buffer, where to read.
  371. static int bufindr = 0;
  372. // Tail of the buffer, where to write.
  373. static int bufindw = 0;
  374. // Number of lines in cmdbuffer.
  375. static int buflen = 0;
  376. // Flag for processing the current command inside the main Arduino loop().
  377. // If a new command was pushed to the front of a command buffer while
  378. // processing another command, this replaces the command on the top.
  379. // Therefore don't remove the command from the queue in the loop() function.
  380. static bool cmdbuffer_front_already_processed = false;
  381. // Type of a command, which is to be executed right now.
  382. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  383. // String of a command, which is to be executed right now.
  384. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  385. // Enable debugging of the command buffer.
  386. // Debugging information will be sent to serial line.
  387. // #define CMDBUFFER_DEBUG
  388. static int serial_count = 0; //index of character read from serial line
  389. static boolean comment_mode = false;
  390. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  391. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  392. //static float tt = 0;
  393. //static float bt = 0;
  394. //Inactivity shutdown variables
  395. static unsigned long previous_millis_cmd = 0;
  396. unsigned long max_inactive_time = 0;
  397. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  398. unsigned long starttime=0;
  399. unsigned long stoptime=0;
  400. unsigned long _usb_timer = 0;
  401. static uint8_t tmp_extruder;
  402. bool Stopped=false;
  403. #if NUM_SERVOS > 0
  404. Servo servos[NUM_SERVOS];
  405. #endif
  406. bool CooldownNoWait = true;
  407. bool target_direction;
  408. //Insert variables if CHDK is defined
  409. #ifdef CHDK
  410. unsigned long chdkHigh = 0;
  411. boolean chdkActive = false;
  412. #endif
  413. static int saved_feedmultiply_mm = 100;
  414. //===========================================================================
  415. //=============================Routines======================================
  416. //===========================================================================
  417. static void print_time_remaining_init();
  418. void get_arc_coordinates();
  419. bool setTargetedHotend(int code);
  420. void serial_echopair_P(const char *s_P, float v)
  421. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. void serial_echopair_P(const char *s_P, double v)
  423. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  424. void serial_echopair_P(const char *s_P, unsigned long v)
  425. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. #ifdef SDSUPPORT
  427. #include "SdFatUtil.h"
  428. int freeMemory() { return SdFatUtil::FreeRam(); }
  429. #else
  430. extern "C" {
  431. extern unsigned int __bss_end;
  432. extern unsigned int __heap_start;
  433. extern void *__brkval;
  434. int freeMemory() {
  435. int free_memory;
  436. if ((int)__brkval == 0)
  437. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  438. else
  439. free_memory = ((int)&free_memory) - ((int)__brkval);
  440. return free_memory;
  441. }
  442. }
  443. #endif //!SDSUPPORT
  444. // Pop the currently processed command from the queue.
  445. // It is expected, that there is at least one command in the queue.
  446. bool cmdqueue_pop_front()
  447. {
  448. if (buflen > 0) {
  449. #ifdef CMDBUFFER_DEBUG
  450. SERIAL_ECHOPGM("Dequeing ");
  451. SERIAL_ECHO(cmdbuffer+bufindr+1);
  452. SERIAL_ECHOLNPGM("");
  453. SERIAL_ECHOPGM("Old indices: buflen ");
  454. SERIAL_ECHO(buflen);
  455. SERIAL_ECHOPGM(", bufindr ");
  456. SERIAL_ECHO(bufindr);
  457. SERIAL_ECHOPGM(", bufindw ");
  458. SERIAL_ECHO(bufindw);
  459. SERIAL_ECHOPGM(", serial_count ");
  460. SERIAL_ECHO(serial_count);
  461. SERIAL_ECHOPGM(", bufsize ");
  462. SERIAL_ECHO(sizeof(cmdbuffer));
  463. SERIAL_ECHOLNPGM("");
  464. #endif /* CMDBUFFER_DEBUG */
  465. if (-- buflen == 0) {
  466. // Empty buffer.
  467. if (serial_count == 0)
  468. // No serial communication is pending. Reset both pointers to zero.
  469. bufindw = 0;
  470. bufindr = bufindw;
  471. } else {
  472. // There is at least one ready line in the buffer.
  473. // First skip the current command ID and iterate up to the end of the string.
  474. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  475. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  476. for (++ bufindr; (bufindr < (int)sizeof(cmdbuffer)) && (cmdbuffer[bufindr] == 0); ++ bufindr) ;
  477. // If the end of the buffer was empty,
  478. if (bufindr == sizeof(cmdbuffer)) {
  479. // skip to the start and find the nonzero command.
  480. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  481. }
  482. #ifdef CMDBUFFER_DEBUG
  483. SERIAL_ECHOPGM("New indices: buflen ");
  484. SERIAL_ECHO(buflen);
  485. SERIAL_ECHOPGM(", bufindr ");
  486. SERIAL_ECHO(bufindr);
  487. SERIAL_ECHOPGM(", bufindw ");
  488. SERIAL_ECHO(bufindw);
  489. SERIAL_ECHOPGM(", serial_count ");
  490. SERIAL_ECHO(serial_count);
  491. SERIAL_ECHOPGM(" new command on the top: ");
  492. SERIAL_ECHO(cmdbuffer+bufindr+1);
  493. SERIAL_ECHOLNPGM("");
  494. #endif /* CMDBUFFER_DEBUG */
  495. }
  496. return true;
  497. }
  498. return false;
  499. }
  500. void cmdqueue_reset()
  501. {
  502. while (cmdqueue_pop_front()) ;
  503. }
  504. // How long a string could be pushed to the front of the command queue?
  505. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  506. // len_asked does not contain the zero terminator size.
  507. bool cmdqueue_could_enqueue_front(int len_asked)
  508. {
  509. // MAX_CMD_SIZE has to accommodate the zero terminator.
  510. if (len_asked >= MAX_CMD_SIZE)
  511. return false;
  512. // Remove the currently processed command from the queue.
  513. if (! cmdbuffer_front_already_processed) {
  514. cmdqueue_pop_front();
  515. cmdbuffer_front_already_processed = true;
  516. }
  517. if (bufindr == bufindw && buflen > 0)
  518. // Full buffer.
  519. return false;
  520. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  521. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  522. if (bufindw < bufindr) {
  523. int bufindr_new = bufindr - len_asked - 2;
  524. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  525. if (endw <= bufindr_new) {
  526. bufindr = bufindr_new;
  527. return true;
  528. }
  529. } else {
  530. // Otherwise the free space is split between the start and end.
  531. if (len_asked + 2 <= bufindr) {
  532. // Could fit at the start.
  533. bufindr -= len_asked + 2;
  534. return true;
  535. }
  536. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  537. if (endw <= bufindr_new) {
  538. memset(cmdbuffer, 0, bufindr);
  539. bufindr = bufindr_new;
  540. return true;
  541. }
  542. }
  543. return false;
  544. }
  545. // Could one enqueue a command of lenthg len_asked into the buffer,
  546. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  547. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  548. // len_asked does not contain the zero terminator size.
  549. bool cmdqueue_could_enqueue_back(int len_asked)
  550. {
  551. // MAX_CMD_SIZE has to accommodate the zero terminator.
  552. if (len_asked >= MAX_CMD_SIZE)
  553. return false;
  554. if (bufindr == bufindw && buflen > 0)
  555. // Full buffer.
  556. return false;
  557. if (serial_count > 0) {
  558. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  559. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  560. // serial data.
  561. // How much memory to reserve for the commands pushed to the front?
  562. // End of the queue, when pushing to the end.
  563. int endw = bufindw + len_asked + 2;
  564. if (bufindw < bufindr)
  565. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  566. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  567. // Otherwise the free space is split between the start and end.
  568. if (// Could one fit to the end, including the reserve?
  569. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  570. // Could one fit to the end, and the reserve to the start?
  571. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  572. return true;
  573. // Could one fit both to the start?
  574. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  575. // Mark the rest of the buffer as used.
  576. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  577. // and point to the start.
  578. bufindw = 0;
  579. return true;
  580. }
  581. } else {
  582. // How much memory to reserve for the commands pushed to the front?
  583. // End of the queue, when pushing to the end.
  584. int endw = bufindw + len_asked + 2;
  585. if (bufindw < bufindr)
  586. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  587. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  588. // Otherwise the free space is split between the start and end.
  589. if (// Could one fit to the end, including the reserve?
  590. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  591. // Could one fit to the end, and the reserve to the start?
  592. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  593. return true;
  594. // Could one fit both to the start?
  595. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  596. // Mark the rest of the buffer as used.
  597. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  598. // and point to the start.
  599. bufindw = 0;
  600. return true;
  601. }
  602. }
  603. return false;
  604. }
  605. #ifdef CMDBUFFER_DEBUG
  606. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  607. {
  608. SERIAL_ECHOPGM("Entry nr: ");
  609. SERIAL_ECHO(nr);
  610. SERIAL_ECHOPGM(", type: ");
  611. SERIAL_ECHO(int(*p));
  612. SERIAL_ECHOPGM(", cmd: ");
  613. SERIAL_ECHO(p+1);
  614. SERIAL_ECHOLNPGM("");
  615. }
  616. static void cmdqueue_dump_to_serial()
  617. {
  618. if (buflen == 0) {
  619. SERIAL_ECHOLNPGM("The command buffer is empty.");
  620. } else {
  621. SERIAL_ECHOPGM("Content of the buffer: entries ");
  622. SERIAL_ECHO(buflen);
  623. SERIAL_ECHOPGM(", indr ");
  624. SERIAL_ECHO(bufindr);
  625. SERIAL_ECHOPGM(", indw ");
  626. SERIAL_ECHO(bufindw);
  627. SERIAL_ECHOLNPGM("");
  628. int nr = 0;
  629. if (bufindr < bufindw) {
  630. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  631. cmdqueue_dump_to_serial_single_line(nr, p);
  632. // Skip the command.
  633. for (++p; *p != 0; ++ p);
  634. // Skip the gaps.
  635. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  636. }
  637. } else {
  638. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  639. cmdqueue_dump_to_serial_single_line(nr, p);
  640. // Skip the command.
  641. for (++p; *p != 0; ++ p);
  642. // Skip the gaps.
  643. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  644. }
  645. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  646. cmdqueue_dump_to_serial_single_line(nr, p);
  647. // Skip the command.
  648. for (++p; *p != 0; ++ p);
  649. // Skip the gaps.
  650. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  651. }
  652. }
  653. SERIAL_ECHOLNPGM("End of the buffer.");
  654. }
  655. }
  656. #endif /* CMDBUFFER_DEBUG */
  657. //adds an command to the main command buffer
  658. //thats really done in a non-safe way.
  659. //needs overworking someday
  660. // Currently the maximum length of a command piped through this function is around 20 characters
  661. void enquecommand(const char *cmd, bool from_progmem)
  662. {
  663. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  664. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  665. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  666. if (cmdqueue_could_enqueue_back(len)) {
  667. // This is dangerous if a mixing of serial and this happens
  668. // This may easily be tested: If serial_count > 0, we have a problem.
  669. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  670. if (from_progmem)
  671. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  672. else
  673. strcpy(cmdbuffer + bufindw + 1, cmd);
  674. if (!farm_mode) {
  675. SERIAL_ECHO_START;
  676. SERIAL_ECHORPGM(MSG_Enqueing);
  677. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  678. SERIAL_ECHOLNPGM("\"");
  679. }
  680. bufindw += len + 2;
  681. if (bufindw == sizeof(cmdbuffer))
  682. bufindw = 0;
  683. ++ buflen;
  684. #ifdef CMDBUFFER_DEBUG
  685. cmdqueue_dump_to_serial();
  686. #endif /* CMDBUFFER_DEBUG */
  687. } else {
  688. SERIAL_ERROR_START;
  689. SERIAL_ECHORPGM(MSG_Enqueing);
  690. if (from_progmem)
  691. SERIAL_PROTOCOLRPGM(cmd);
  692. else
  693. SERIAL_ECHO(cmd);
  694. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  695. #ifdef CMDBUFFER_DEBUG
  696. cmdqueue_dump_to_serial();
  697. #endif /* CMDBUFFER_DEBUG */
  698. }
  699. }
  700. bool cmd_buffer_empty()
  701. {
  702. return (buflen == 0);
  703. }
  704. void enquecommand_front(const char *cmd, bool from_progmem)
  705. {
  706. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  707. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  708. if (cmdqueue_could_enqueue_front(len)) {
  709. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  710. if (from_progmem)
  711. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  712. else
  713. strcpy(cmdbuffer + bufindr + 1, cmd);
  714. ++ buflen;
  715. if (!farm_mode) {
  716. SERIAL_ECHO_START;
  717. SERIAL_ECHOPGM("Enqueing to the front: \"");
  718. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  719. SERIAL_ECHOLNPGM("\"");
  720. }
  721. #ifdef CMDBUFFER_DEBUG
  722. cmdqueue_dump_to_serial();
  723. #endif /* CMDBUFFER_DEBUG */
  724. } else {
  725. SERIAL_ERROR_START;
  726. SERIAL_ECHOPGM("Enqueing to the front: \"");
  727. if (from_progmem)
  728. SERIAL_PROTOCOLRPGM(cmd);
  729. else
  730. SERIAL_ECHO(cmd);
  731. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  732. #ifdef CMDBUFFER_DEBUG
  733. cmdqueue_dump_to_serial();
  734. #endif /* CMDBUFFER_DEBUG */
  735. }
  736. }
  737. // Mark the command at the top of the command queue as new.
  738. // Therefore it will not be removed from the queue.
  739. void repeatcommand_front()
  740. {
  741. cmdbuffer_front_already_processed = true;
  742. }
  743. bool is_buffer_empty()
  744. {
  745. if (buflen == 0) return true;
  746. else return false;
  747. }
  748. void setup_killpin()
  749. {
  750. #if defined(KILL_PIN) && KILL_PIN > -1
  751. SET_INPUT(KILL_PIN);
  752. WRITE(KILL_PIN,HIGH);
  753. #endif
  754. }
  755. // Set home pin
  756. void setup_homepin(void)
  757. {
  758. #if defined(HOME_PIN) && HOME_PIN > -1
  759. SET_INPUT(HOME_PIN);
  760. WRITE(HOME_PIN,HIGH);
  761. #endif
  762. }
  763. void setup_photpin()
  764. {
  765. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  766. SET_OUTPUT(PHOTOGRAPH_PIN);
  767. WRITE(PHOTOGRAPH_PIN, LOW);
  768. #endif
  769. }
  770. void setup_powerhold()
  771. {
  772. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  773. SET_OUTPUT(SUICIDE_PIN);
  774. WRITE(SUICIDE_PIN, HIGH);
  775. #endif
  776. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  777. SET_OUTPUT(PS_ON_PIN);
  778. #if defined(PS_DEFAULT_OFF)
  779. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  780. #else
  781. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  782. #endif
  783. #endif
  784. }
  785. void suicide()
  786. {
  787. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  788. SET_OUTPUT(SUICIDE_PIN);
  789. WRITE(SUICIDE_PIN, LOW);
  790. #endif
  791. }
  792. void servo_init()
  793. {
  794. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  795. servos[0].attach(SERVO0_PIN);
  796. #endif
  797. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  798. servos[1].attach(SERVO1_PIN);
  799. #endif
  800. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  801. servos[2].attach(SERVO2_PIN);
  802. #endif
  803. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  804. servos[3].attach(SERVO3_PIN);
  805. #endif
  806. #if (NUM_SERVOS >= 5)
  807. #error "TODO: enter initalisation code for more servos"
  808. #endif
  809. }
  810. #ifdef MESH_BED_LEVELING
  811. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  812. #endif
  813. // Factory reset function
  814. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  815. // Level input parameter sets depth of reset
  816. // Quiet parameter masks all waitings for user interact.
  817. int er_progress = 0;
  818. void factory_reset(char level, bool quiet)
  819. {
  820. lcd_implementation_clear();
  821. switch (level) {
  822. // Level 0: Language reset
  823. case 0:
  824. WRITE(BEEPER, HIGH);
  825. _delay_ms(100);
  826. WRITE(BEEPER, LOW);
  827. lcd_force_language_selection();
  828. break;
  829. //Level 1: Reset statistics
  830. case 1:
  831. WRITE(BEEPER, HIGH);
  832. _delay_ms(100);
  833. WRITE(BEEPER, LOW);
  834. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  835. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  836. lcd_menu_statistics();
  837. break;
  838. // Level 2: Prepare for shipping
  839. case 2:
  840. //lcd_printPGM(PSTR("Factory RESET"));
  841. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  842. // Force language selection at the next boot up.
  843. lcd_force_language_selection();
  844. // Force the "Follow calibration flow" message at the next boot up.
  845. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  846. farm_no = 0;
  847. farm_mode = 0;
  848. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  849. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  850. WRITE(BEEPER, HIGH);
  851. _delay_ms(100);
  852. WRITE(BEEPER, LOW);
  853. //_delay_ms(2000);
  854. break;
  855. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  856. case 3:
  857. lcd_printPGM(PSTR("Factory RESET"));
  858. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  859. WRITE(BEEPER, HIGH);
  860. _delay_ms(100);
  861. WRITE(BEEPER, LOW);
  862. er_progress = 0;
  863. lcd_print_at_PGM(3, 3, PSTR(" "));
  864. lcd_implementation_print_at(3, 3, er_progress);
  865. // Erase EEPROM
  866. for (int i = 0; i < 4096; i++) {
  867. eeprom_write_byte((uint8_t*)i, 0xFF);
  868. if (i % 41 == 0) {
  869. er_progress++;
  870. lcd_print_at_PGM(3, 3, PSTR(" "));
  871. lcd_implementation_print_at(3, 3, er_progress);
  872. lcd_printPGM(PSTR("%"));
  873. }
  874. }
  875. break;
  876. case 4:
  877. bowden_menu();
  878. break;
  879. default:
  880. break;
  881. }
  882. }
  883. // "Setup" function is called by the Arduino framework on startup.
  884. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  885. // are initialized by the main() routine provided by the Arduino framework.
  886. void setup()
  887. {
  888. lcd_init();
  889. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  890. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  891. setup_killpin();
  892. setup_powerhold();
  893. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  894. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  895. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  896. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  897. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  898. if (farm_mode)
  899. {
  900. prusa_statistics(8);
  901. no_response = true; //we need confirmation by recieving PRUSA thx
  902. important_status = 8;
  903. selectedSerialPort = 1;
  904. } else {
  905. selectedSerialPort = 0;
  906. }
  907. MYSERIAL.begin(BAUDRATE);
  908. SERIAL_PROTOCOLLNPGM("start");
  909. SERIAL_ECHO_START;
  910. #if 0
  911. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  912. for (int i = 0; i < 4096; ++i) {
  913. int b = eeprom_read_byte((unsigned char*)i);
  914. if (b != 255) {
  915. SERIAL_ECHO(i);
  916. SERIAL_ECHO(":");
  917. SERIAL_ECHO(b);
  918. SERIAL_ECHOLN("");
  919. }
  920. }
  921. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  922. #endif
  923. // Check startup - does nothing if bootloader sets MCUSR to 0
  924. byte mcu = MCUSR;
  925. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  926. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  927. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  928. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  929. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  930. MCUSR = 0;
  931. //SERIAL_ECHORPGM(MSG_MARLIN);
  932. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  933. #ifdef STRING_VERSION_CONFIG_H
  934. #ifdef STRING_CONFIG_H_AUTHOR
  935. SERIAL_ECHO_START;
  936. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  937. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  938. SERIAL_ECHORPGM(MSG_AUTHOR);
  939. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  940. SERIAL_ECHOPGM("Compiled: ");
  941. SERIAL_ECHOLNPGM(__DATE__);
  942. #endif
  943. #endif
  944. SERIAL_ECHO_START;
  945. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  946. SERIAL_ECHO(freeMemory());
  947. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  948. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  949. lcd_update_enable(false);
  950. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  951. bool previous_settings_retrieved = Config_RetrieveSettings();
  952. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  953. tp_init(); // Initialize temperature loop
  954. plan_init(); // Initialize planner;
  955. watchdog_init();
  956. st_init(); // Initialize stepper, this enables interrupts!
  957. setup_photpin();
  958. servo_init();
  959. // Reset the machine correction matrix.
  960. // It does not make sense to load the correction matrix until the machine is homed.
  961. world2machine_reset();
  962. lcd_init();
  963. KEEPALIVE_STATE(PAUSED_FOR_USER);
  964. if (!READ(BTN_ENC))
  965. {
  966. _delay_ms(1000);
  967. if (!READ(BTN_ENC))
  968. {
  969. lcd_implementation_clear();
  970. lcd_printPGM(PSTR("Factory RESET"));
  971. SET_OUTPUT(BEEPER);
  972. WRITE(BEEPER, HIGH);
  973. while (!READ(BTN_ENC));
  974. WRITE(BEEPER, LOW);
  975. _delay_ms(2000);
  976. char level = reset_menu();
  977. factory_reset(level, false);
  978. switch (level) {
  979. case 0: _delay_ms(0); break;
  980. case 1: _delay_ms(0); break;
  981. case 2: _delay_ms(0); break;
  982. case 3: _delay_ms(0); break;
  983. }
  984. // _delay_ms(100);
  985. /*
  986. #ifdef MESH_BED_LEVELING
  987. _delay_ms(2000);
  988. if (!READ(BTN_ENC))
  989. {
  990. WRITE(BEEPER, HIGH);
  991. _delay_ms(100);
  992. WRITE(BEEPER, LOW);
  993. _delay_ms(200);
  994. WRITE(BEEPER, HIGH);
  995. _delay_ms(100);
  996. WRITE(BEEPER, LOW);
  997. int _z = 0;
  998. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  999. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1000. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1001. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1002. }
  1003. else
  1004. {
  1005. WRITE(BEEPER, HIGH);
  1006. _delay_ms(100);
  1007. WRITE(BEEPER, LOW);
  1008. }
  1009. #endif // mesh */
  1010. }
  1011. }
  1012. else
  1013. {
  1014. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1015. }
  1016. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1017. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1018. #endif
  1019. #ifdef DIGIPOT_I2C
  1020. digipot_i2c_init();
  1021. #endif
  1022. setup_homepin();
  1023. #if defined(Z_AXIS_ALWAYS_ON)
  1024. enable_z();
  1025. #endif
  1026. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1027. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1028. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1029. // but this times out if a blocking dialog is shown in setup().
  1030. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  1031. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  1032. card.initsd();
  1033. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1034. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1035. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1036. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1037. // where all the EEPROM entries are set to 0x0ff.
  1038. // Once a firmware boots up, it forces at least a language selection, which changes
  1039. // EEPROM_LANG to number lower than 0x0ff.
  1040. // 1) Set a high power mode.
  1041. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1042. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1043. }
  1044. #ifdef SNMM
  1045. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1046. int _z = BOWDEN_LENGTH;
  1047. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1048. }
  1049. #endif
  1050. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1051. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1052. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1053. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1054. if (lang_selected >= LANG_NUM){
  1055. lcd_mylang();
  1056. }
  1057. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1058. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1059. temp_cal_active = false;
  1060. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1061. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1062. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1063. }
  1064. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1065. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1066. }
  1067. #ifndef DEBUG_DISABLE_STARTMSGS
  1068. check_babystep(); //checking if Z babystep is in allowed range
  1069. for (int i = 0; i < 4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1070. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1071. lcd_wizard(0);
  1072. }
  1073. else if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1074. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1075. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1076. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION){
  1077. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1078. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1079. // Show the message.
  1080. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1081. }
  1082. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1083. // Show the message.
  1084. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1085. lcd_update_enable(true);
  1086. }
  1087. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1088. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1089. lcd_update_enable(true);
  1090. }
  1091. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1092. // Show the message.
  1093. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1094. }
  1095. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1096. if (!previous_settings_retrieved) {
  1097. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1098. }
  1099. }
  1100. #endif //DEBUG_DISABLE_STARTMSGS
  1101. lcd_update_enable(true);
  1102. // Store the currently running firmware into an eeprom,
  1103. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1104. update_current_firmware_version_to_eeprom();
  1105. KEEPALIVE_STATE(NOT_BUSY);
  1106. }
  1107. void trace();
  1108. #define CHUNK_SIZE 64 // bytes
  1109. #define SAFETY_MARGIN 1
  1110. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1111. int chunkHead = 0;
  1112. void serial_read_stream() {
  1113. setTargetHotend(0, 0);
  1114. setTargetBed(0);
  1115. lcd_implementation_clear();
  1116. lcd_printPGM(PSTR(" Upload in progress"));
  1117. // first wait for how many bytes we will receive
  1118. uint32_t bytesToReceive;
  1119. // receive the four bytes
  1120. char bytesToReceiveBuffer[4];
  1121. for (int i=0; i<4; i++) {
  1122. int data;
  1123. while ((data = MYSERIAL.read()) == -1) {};
  1124. bytesToReceiveBuffer[i] = data;
  1125. }
  1126. // make it a uint32
  1127. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1128. // we're ready, notify the sender
  1129. MYSERIAL.write('+');
  1130. // lock in the routine
  1131. uint32_t receivedBytes = 0;
  1132. while (prusa_sd_card_upload) {
  1133. int i;
  1134. for (i=0; i<CHUNK_SIZE; i++) {
  1135. int data;
  1136. // check if we're not done
  1137. if (receivedBytes == bytesToReceive) {
  1138. break;
  1139. }
  1140. // read the next byte
  1141. while ((data = MYSERIAL.read()) == -1) {};
  1142. receivedBytes++;
  1143. // save it to the chunk
  1144. chunk[i] = data;
  1145. }
  1146. // write the chunk to SD
  1147. card.write_command_no_newline(&chunk[0]);
  1148. // notify the sender we're ready for more data
  1149. MYSERIAL.write('+');
  1150. // for safety
  1151. manage_heater();
  1152. // check if we're done
  1153. if(receivedBytes == bytesToReceive) {
  1154. trace(); // beep
  1155. card.closefile();
  1156. prusa_sd_card_upload = false;
  1157. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1158. return;
  1159. }
  1160. }
  1161. }
  1162. #ifdef HOST_KEEPALIVE_FEATURE
  1163. /**
  1164. * Output a "busy" message at regular intervals
  1165. * while the machine is not accepting commands.
  1166. */
  1167. void host_keepalive() {
  1168. if (farm_mode) return;
  1169. long ms = millis();
  1170. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1171. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1172. switch (busy_state) {
  1173. case IN_HANDLER:
  1174. case IN_PROCESS:
  1175. SERIAL_ECHO_START;
  1176. SERIAL_ECHOLNPGM("busy: processing");
  1177. break;
  1178. case PAUSED_FOR_USER:
  1179. SERIAL_ECHO_START;
  1180. SERIAL_ECHOLNPGM("busy: paused for user");
  1181. break;
  1182. case PAUSED_FOR_INPUT:
  1183. SERIAL_ECHO_START;
  1184. SERIAL_ECHOLNPGM("busy: paused for input");
  1185. break;
  1186. default:
  1187. break;
  1188. }
  1189. }
  1190. prev_busy_signal_ms = ms;
  1191. }
  1192. #endif
  1193. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1194. // Before loop(), the setup() function is called by the main() routine.
  1195. void loop()
  1196. {
  1197. KEEPALIVE_STATE(NOT_BUSY);
  1198. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1199. {
  1200. is_usb_printing = true;
  1201. usb_printing_counter--;
  1202. _usb_timer = millis();
  1203. }
  1204. if (usb_printing_counter == 0)
  1205. {
  1206. is_usb_printing = false;
  1207. }
  1208. if (prusa_sd_card_upload)
  1209. {
  1210. //we read byte-by byte
  1211. serial_read_stream();
  1212. } else
  1213. {
  1214. get_command();
  1215. #ifdef SDSUPPORT
  1216. card.checkautostart(false);
  1217. #endif
  1218. if(buflen)
  1219. {
  1220. #ifdef SDSUPPORT
  1221. if(card.saving)
  1222. {
  1223. // Saving a G-code file onto an SD-card is in progress.
  1224. // Saving starts with M28, saving until M29 is seen.
  1225. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1226. card.write_command(CMDBUFFER_CURRENT_STRING);
  1227. if(card.logging)
  1228. process_commands();
  1229. else
  1230. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1231. } else {
  1232. card.closefile();
  1233. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1234. }
  1235. } else {
  1236. process_commands();
  1237. }
  1238. #else
  1239. process_commands();
  1240. #endif //SDSUPPORT
  1241. if (! cmdbuffer_front_already_processed)
  1242. cmdqueue_pop_front();
  1243. cmdbuffer_front_already_processed = false;
  1244. host_keepalive();
  1245. }
  1246. }
  1247. //check heater every n milliseconds
  1248. manage_heater();
  1249. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1250. checkHitEndstops();
  1251. lcd_update();
  1252. }
  1253. void proc_commands() {
  1254. if (buflen)
  1255. {
  1256. process_commands();
  1257. if (!cmdbuffer_front_already_processed)
  1258. cmdqueue_pop_front();
  1259. cmdbuffer_front_already_processed = false;
  1260. }
  1261. }
  1262. void get_command()
  1263. {
  1264. // Test and reserve space for the new command string.
  1265. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1266. return;
  1267. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1268. while (MYSERIAL.available() > 0) {
  1269. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1270. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1271. rx_buffer_full = true; //sets flag that buffer was full
  1272. }
  1273. char serial_char = MYSERIAL.read();
  1274. if (selectedSerialPort == 1) {
  1275. selectedSerialPort = 0;
  1276. MYSERIAL.write(serial_char);
  1277. selectedSerialPort = 1;
  1278. }
  1279. TimeSent = millis();
  1280. TimeNow = millis();
  1281. if (serial_char < 0)
  1282. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1283. // and Marlin does not support such file names anyway.
  1284. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1285. // to a hang-up of the print process from an SD card.
  1286. continue;
  1287. if(serial_char == '\n' ||
  1288. serial_char == '\r' ||
  1289. (serial_char == ':' && comment_mode == false) ||
  1290. serial_count >= (MAX_CMD_SIZE - 1) )
  1291. {
  1292. if(!serial_count) { //if empty line
  1293. comment_mode = false; //for new command
  1294. return;
  1295. }
  1296. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1297. if(!comment_mode){
  1298. // Line numbers must be first in buffer
  1299. if ((strstr(cmdbuffer+bufindw+1, "PRUSA") == NULL) &&
  1300. (cmdbuffer[bufindw + 1] == 'N')) {
  1301. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1302. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1303. gcode_N = (strtol(cmdbuffer + bufindw + 2, NULL, 10));
  1304. if ((gcode_N != gcode_LastN + 1) &&
  1305. (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL))
  1306. {
  1307. // Line numbers not sent in succession.
  1308. SERIAL_ERROR_START;
  1309. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1310. SERIAL_ERRORLN(gcode_LastN);
  1311. //Serial.println(gcode_N);
  1312. FlushSerialRequestResend();
  1313. serial_count = 0;
  1314. return;
  1315. }
  1316. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1317. {
  1318. byte checksum = 0;
  1319. char *p = cmdbuffer+bufindw+1;
  1320. while (p != strchr_pointer)
  1321. checksum = checksum^(*p++);
  1322. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1323. SERIAL_ERROR_START;
  1324. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1325. SERIAL_ERRORLN(gcode_LastN);
  1326. FlushSerialRequestResend();
  1327. serial_count = 0;
  1328. return;
  1329. }
  1330. // If no errors, remove the checksum and continue parsing.
  1331. *strchr_pointer = 0;
  1332. }
  1333. else
  1334. {
  1335. SERIAL_ERROR_START;
  1336. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1337. SERIAL_ERRORLN(gcode_LastN);
  1338. FlushSerialRequestResend();
  1339. serial_count = 0;
  1340. return;
  1341. }
  1342. // Don't parse N again with code_seen('N')
  1343. cmdbuffer[bufindw + 1] = '$';
  1344. //if no errors, continue parsing
  1345. gcode_LastN = gcode_N;
  1346. }
  1347. // if we don't receive 'N' but still see '*'
  1348. if((cmdbuffer[bufindw + 1] != 'N') && (cmdbuffer[bufindw + 1] != '$') &&
  1349. (strchr(cmdbuffer + bufindw + 1, '*') != NULL))
  1350. {
  1351. SERIAL_ERROR_START;
  1352. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1353. SERIAL_ERRORLN(gcode_LastN);
  1354. serial_count = 0;
  1355. return;
  1356. }
  1357. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1358. if (! IS_SD_PRINTING) {
  1359. usb_printing_counter = 10;
  1360. is_usb_printing = true;
  1361. }
  1362. if (Stopped == true) {
  1363. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1364. if (gcode >= 0 && gcode <= 3) {
  1365. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1366. LCD_MESSAGERPGM(MSG_STOPPED);
  1367. }
  1368. }
  1369. } // end of 'G' command
  1370. //If command was e-stop process now
  1371. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1372. kill();
  1373. // Store the current line into buffer, move to the next line.
  1374. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1375. #ifdef CMDBUFFER_DEBUG
  1376. SERIAL_ECHO_START;
  1377. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1378. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1379. SERIAL_ECHOLNPGM("");
  1380. #endif /* CMDBUFFER_DEBUG */
  1381. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1382. if (bufindw == sizeof(cmdbuffer))
  1383. bufindw = 0;
  1384. ++ buflen;
  1385. #ifdef CMDBUFFER_DEBUG
  1386. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1387. SERIAL_ECHO(buflen);
  1388. SERIAL_ECHOLNPGM("");
  1389. #endif /* CMDBUFFER_DEBUG */
  1390. } // end of 'not comment mode'
  1391. serial_count = 0; //clear buffer
  1392. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1393. // in the queue, as this function will reserve the memory.
  1394. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1395. return;
  1396. } // end of "end of line" processing
  1397. else {
  1398. // Not an "end of line" symbol. Store the new character into a buffer.
  1399. if(serial_char == ';') comment_mode = true;
  1400. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1401. }
  1402. } // end of serial line processing loop
  1403. if(farm_mode){
  1404. TimeNow = millis();
  1405. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1406. cmdbuffer[bufindw+serial_count+1] = 0;
  1407. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1408. if (bufindw == sizeof(cmdbuffer))
  1409. bufindw = 0;
  1410. ++ buflen;
  1411. serial_count = 0;
  1412. SERIAL_ECHOPGM("TIMEOUT:");
  1413. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1414. return;
  1415. }
  1416. }
  1417. //add comment
  1418. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1419. rx_buffer_full = false;
  1420. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1421. serial_count = 0;
  1422. }
  1423. #ifdef SDSUPPORT
  1424. if(!card.sdprinting || serial_count!=0){
  1425. // If there is a half filled buffer from serial line, wait until return before
  1426. // continuing with the serial line.
  1427. return;
  1428. }
  1429. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1430. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1431. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1432. static bool stop_buffering=false;
  1433. if(buflen==0) stop_buffering=false;
  1434. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1435. while( !card.eof() && !stop_buffering) {
  1436. int16_t n=card.get();
  1437. char serial_char = (char)n;
  1438. if(serial_char == '\n' ||
  1439. serial_char == '\r' ||
  1440. (serial_char == '#' && comment_mode == false) ||
  1441. (serial_char == ':' && comment_mode == false) ||
  1442. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1443. {
  1444. if(card.eof()){
  1445. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1446. stoptime=millis();
  1447. char time[30];
  1448. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1449. pause_time = 0;
  1450. int hours, minutes;
  1451. minutes=(t/60)%60;
  1452. hours=t/60/60;
  1453. save_statistics(total_filament_used, t);
  1454. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1455. SERIAL_ECHO_START;
  1456. SERIAL_ECHOLN(time);
  1457. lcd_setstatus(time);
  1458. card.printingHasFinished();
  1459. card.checkautostart(true);
  1460. if (farm_mode)
  1461. {
  1462. prusa_statistics(6);
  1463. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1464. }
  1465. }
  1466. if(serial_char=='#')
  1467. stop_buffering=true;
  1468. if(!serial_count)
  1469. {
  1470. comment_mode = false; //for new command
  1471. return; //if empty line
  1472. }
  1473. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1474. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1475. ++ buflen;
  1476. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1477. if (bufindw == sizeof(cmdbuffer))
  1478. bufindw = 0;
  1479. comment_mode = false; //for new command
  1480. serial_count = 0; //clear buffer
  1481. // The following line will reserve buffer space if available.
  1482. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1483. return;
  1484. }
  1485. else
  1486. {
  1487. if(serial_char == ';') comment_mode = true;
  1488. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1489. }
  1490. }
  1491. #endif //SDSUPPORT
  1492. }
  1493. // Return True if a character was found
  1494. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1495. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1496. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1497. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1498. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1499. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1500. static inline float code_value_float() {
  1501. char* e = strchr(strchr_pointer, 'E');
  1502. if (!e) return strtod(strchr_pointer + 1, NULL);
  1503. *e = 0;
  1504. float ret = strtod(strchr_pointer + 1, NULL);
  1505. *e = 'E';
  1506. return ret;
  1507. }
  1508. #define DEFINE_PGM_READ_ANY(type, reader) \
  1509. static inline type pgm_read_any(const type *p) \
  1510. { return pgm_read_##reader##_near(p); }
  1511. DEFINE_PGM_READ_ANY(float, float);
  1512. DEFINE_PGM_READ_ANY(signed char, byte);
  1513. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1514. static const PROGMEM type array##_P[3] = \
  1515. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1516. static inline type array(int axis) \
  1517. { return pgm_read_any(&array##_P[axis]); } \
  1518. type array##_ext(int axis) \
  1519. { return pgm_read_any(&array##_P[axis]); }
  1520. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1521. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1522. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1523. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1524. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1525. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1526. static void axis_is_at_home(int axis) {
  1527. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1528. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1529. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1530. }
  1531. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1532. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1533. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1534. saved_feedrate = feedrate;
  1535. saved_feedmultiply = feedmultiply;
  1536. feedmultiply = 100;
  1537. previous_millis_cmd = millis();
  1538. enable_endstops(enable_endstops_now);
  1539. }
  1540. static void clean_up_after_endstop_move() {
  1541. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1542. enable_endstops(false);
  1543. #endif
  1544. feedrate = saved_feedrate;
  1545. feedmultiply = saved_feedmultiply;
  1546. previous_millis_cmd = millis();
  1547. }
  1548. #ifdef ENABLE_AUTO_BED_LEVELING
  1549. #ifdef AUTO_BED_LEVELING_GRID
  1550. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1551. {
  1552. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1553. planeNormal.debug("planeNormal");
  1554. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1555. //bedLevel.debug("bedLevel");
  1556. //plan_bed_level_matrix.debug("bed level before");
  1557. //vector_3 uncorrected_position = plan_get_position_mm();
  1558. //uncorrected_position.debug("position before");
  1559. vector_3 corrected_position = plan_get_position();
  1560. // corrected_position.debug("position after");
  1561. current_position[X_AXIS] = corrected_position.x;
  1562. current_position[Y_AXIS] = corrected_position.y;
  1563. current_position[Z_AXIS] = corrected_position.z;
  1564. // put the bed at 0 so we don't go below it.
  1565. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1566. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1567. }
  1568. #else // not AUTO_BED_LEVELING_GRID
  1569. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1570. plan_bed_level_matrix.set_to_identity();
  1571. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1572. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1573. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1574. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1575. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1576. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1577. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1578. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1579. vector_3 corrected_position = plan_get_position();
  1580. current_position[X_AXIS] = corrected_position.x;
  1581. current_position[Y_AXIS] = corrected_position.y;
  1582. current_position[Z_AXIS] = corrected_position.z;
  1583. // put the bed at 0 so we don't go below it.
  1584. current_position[Z_AXIS] = zprobe_zoffset;
  1585. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1586. }
  1587. #endif // AUTO_BED_LEVELING_GRID
  1588. static void run_z_probe() {
  1589. plan_bed_level_matrix.set_to_identity();
  1590. feedrate = homing_feedrate[Z_AXIS];
  1591. // move down until you find the bed
  1592. float zPosition = -10;
  1593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1594. st_synchronize();
  1595. // we have to let the planner know where we are right now as it is not where we said to go.
  1596. zPosition = st_get_position_mm(Z_AXIS);
  1597. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1598. // move up the retract distance
  1599. zPosition += home_retract_mm(Z_AXIS);
  1600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1601. st_synchronize();
  1602. // move back down slowly to find bed
  1603. feedrate = homing_feedrate[Z_AXIS]/4;
  1604. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1606. st_synchronize();
  1607. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1608. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1610. }
  1611. static void do_blocking_move_to(float x, float y, float z) {
  1612. float oldFeedRate = feedrate;
  1613. feedrate = homing_feedrate[Z_AXIS];
  1614. current_position[Z_AXIS] = z;
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1616. st_synchronize();
  1617. feedrate = XY_TRAVEL_SPEED;
  1618. current_position[X_AXIS] = x;
  1619. current_position[Y_AXIS] = y;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1621. st_synchronize();
  1622. feedrate = oldFeedRate;
  1623. }
  1624. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1625. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1626. }
  1627. /// Probe bed height at position (x,y), returns the measured z value
  1628. static float probe_pt(float x, float y, float z_before) {
  1629. // move to right place
  1630. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1631. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1632. run_z_probe();
  1633. float measured_z = current_position[Z_AXIS];
  1634. SERIAL_PROTOCOLRPGM(MSG_BED);
  1635. SERIAL_PROTOCOLPGM(" x: ");
  1636. SERIAL_PROTOCOL(x);
  1637. SERIAL_PROTOCOLPGM(" y: ");
  1638. SERIAL_PROTOCOL(y);
  1639. SERIAL_PROTOCOLPGM(" z: ");
  1640. SERIAL_PROTOCOL(measured_z);
  1641. SERIAL_PROTOCOLPGM("\n");
  1642. return measured_z;
  1643. }
  1644. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1645. #ifdef LIN_ADVANCE
  1646. /**
  1647. * M900: Set and/or Get advance K factor and WH/D ratio
  1648. *
  1649. * K<factor> Set advance K factor
  1650. * R<ratio> Set ratio directly (overrides WH/D)
  1651. * W<width> H<height> D<diam> Set ratio from WH/D
  1652. */
  1653. inline void gcode_M900() {
  1654. st_synchronize();
  1655. const float newK = code_seen('K') ? code_value_float() : -1;
  1656. if (newK >= 0) extruder_advance_k = newK;
  1657. float newR = code_seen('R') ? code_value_float() : -1;
  1658. if (newR < 0) {
  1659. const float newD = code_seen('D') ? code_value_float() : -1,
  1660. newW = code_seen('W') ? code_value_float() : -1,
  1661. newH = code_seen('H') ? code_value_float() : -1;
  1662. if (newD >= 0 && newW >= 0 && newH >= 0)
  1663. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1664. }
  1665. if (newR >= 0) advance_ed_ratio = newR;
  1666. SERIAL_ECHO_START;
  1667. SERIAL_ECHOPGM("Advance K=");
  1668. SERIAL_ECHOLN(extruder_advance_k);
  1669. SERIAL_ECHOPGM(" E/D=");
  1670. const float ratio = advance_ed_ratio;
  1671. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1672. }
  1673. #endif // LIN_ADVANCE
  1674. bool check_commands() {
  1675. bool end_command_found = false;
  1676. while (buflen)
  1677. {
  1678. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1679. if (!cmdbuffer_front_already_processed)
  1680. cmdqueue_pop_front();
  1681. cmdbuffer_front_already_processed = false;
  1682. }
  1683. return end_command_found;
  1684. }
  1685. void homeaxis(int axis) {
  1686. #define HOMEAXIS_DO(LETTER) \
  1687. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1688. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1689. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1690. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1691. 0) {
  1692. int axis_home_dir = home_dir(axis);
  1693. current_position[axis] = 0;
  1694. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1695. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1696. feedrate = homing_feedrate[axis];
  1697. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1698. st_synchronize();
  1699. current_position[axis] = 0;
  1700. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1701. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1702. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1703. st_synchronize();
  1704. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1705. feedrate = homing_feedrate[axis]/2 ;
  1706. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1707. st_synchronize();
  1708. axis_is_at_home(axis);
  1709. destination[axis] = current_position[axis];
  1710. feedrate = 0.0;
  1711. endstops_hit_on_purpose();
  1712. axis_known_position[axis] = true;
  1713. }
  1714. }
  1715. void home_xy()
  1716. {
  1717. set_destination_to_current();
  1718. homeaxis(X_AXIS);
  1719. homeaxis(Y_AXIS);
  1720. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1721. endstops_hit_on_purpose();
  1722. }
  1723. void refresh_cmd_timeout(void)
  1724. {
  1725. previous_millis_cmd = millis();
  1726. }
  1727. #ifdef FWRETRACT
  1728. void retract(bool retracting, bool swapretract = false) {
  1729. if(retracting && !retracted[active_extruder]) {
  1730. destination[X_AXIS]=current_position[X_AXIS];
  1731. destination[Y_AXIS]=current_position[Y_AXIS];
  1732. destination[Z_AXIS]=current_position[Z_AXIS];
  1733. destination[E_AXIS]=current_position[E_AXIS];
  1734. if (swapretract) {
  1735. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1736. } else {
  1737. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1738. }
  1739. plan_set_e_position(current_position[E_AXIS]);
  1740. float oldFeedrate = feedrate;
  1741. feedrate=retract_feedrate*60;
  1742. retracted[active_extruder]=true;
  1743. prepare_move();
  1744. current_position[Z_AXIS]-=retract_zlift;
  1745. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1746. prepare_move();
  1747. feedrate = oldFeedrate;
  1748. } else if(!retracting && retracted[active_extruder]) {
  1749. destination[X_AXIS]=current_position[X_AXIS];
  1750. destination[Y_AXIS]=current_position[Y_AXIS];
  1751. destination[Z_AXIS]=current_position[Z_AXIS];
  1752. destination[E_AXIS]=current_position[E_AXIS];
  1753. current_position[Z_AXIS]+=retract_zlift;
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. //prepare_move();
  1756. if (swapretract) {
  1757. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1758. } else {
  1759. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1760. }
  1761. plan_set_e_position(current_position[E_AXIS]);
  1762. float oldFeedrate = feedrate;
  1763. feedrate=retract_recover_feedrate*60;
  1764. retracted[active_extruder]=false;
  1765. prepare_move();
  1766. feedrate = oldFeedrate;
  1767. }
  1768. } //retract
  1769. #endif //FWRETRACT
  1770. void trace() {
  1771. tone(BEEPER, 440);
  1772. delay(25);
  1773. noTone(BEEPER);
  1774. delay(20);
  1775. }
  1776. /*
  1777. void ramming() {
  1778. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1779. if (current_temperature[0] < 230) {
  1780. //PLA
  1781. max_feedrate[E_AXIS] = 50;
  1782. //current_position[E_AXIS] -= 8;
  1783. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1784. //current_position[E_AXIS] += 8;
  1785. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1786. current_position[E_AXIS] += 5.4;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1788. current_position[E_AXIS] += 3.2;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1790. current_position[E_AXIS] += 3;
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1792. st_synchronize();
  1793. max_feedrate[E_AXIS] = 80;
  1794. current_position[E_AXIS] -= 82;
  1795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1796. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1797. current_position[E_AXIS] -= 20;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1799. current_position[E_AXIS] += 5;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1801. current_position[E_AXIS] += 5;
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1803. current_position[E_AXIS] -= 10;
  1804. st_synchronize();
  1805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1806. current_position[E_AXIS] += 10;
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1808. current_position[E_AXIS] -= 10;
  1809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1810. current_position[E_AXIS] += 10;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1812. current_position[E_AXIS] -= 10;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1814. st_synchronize();
  1815. }
  1816. else {
  1817. //ABS
  1818. max_feedrate[E_AXIS] = 50;
  1819. //current_position[E_AXIS] -= 8;
  1820. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1821. //current_position[E_AXIS] += 8;
  1822. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1823. current_position[E_AXIS] += 3.1;
  1824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1825. current_position[E_AXIS] += 3.1;
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1827. current_position[E_AXIS] += 4;
  1828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1829. st_synchronize();
  1830. //current_position[X_AXIS] += 23; //delay
  1831. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1832. //current_position[X_AXIS] -= 23; //delay
  1833. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1834. delay(4700);
  1835. max_feedrate[E_AXIS] = 80;
  1836. current_position[E_AXIS] -= 92;
  1837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1838. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1839. current_position[E_AXIS] -= 5;
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1841. current_position[E_AXIS] += 5;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1843. current_position[E_AXIS] -= 5;
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1845. st_synchronize();
  1846. current_position[E_AXIS] += 5;
  1847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1848. current_position[E_AXIS] -= 5;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1850. current_position[E_AXIS] += 5;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1852. current_position[E_AXIS] -= 5;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1854. st_synchronize();
  1855. }
  1856. }
  1857. */
  1858. void gcode_M701() {
  1859. #ifdef SNMM
  1860. extr_adj(snmm_extruder);//loads current extruder
  1861. #else
  1862. enable_z();
  1863. custom_message = true;
  1864. custom_message_type = 2;
  1865. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1866. current_position[E_AXIS] += 70;
  1867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1868. current_position[E_AXIS] += 25;
  1869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1870. st_synchronize();
  1871. if (!farm_mode && loading_flag) {
  1872. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1873. while (!clean) {
  1874. lcd_update_enable(true);
  1875. lcd_update(2);
  1876. current_position[E_AXIS] += 25;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1878. st_synchronize();
  1879. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1880. }
  1881. }
  1882. lcd_update_enable(true);
  1883. lcd_update(2);
  1884. lcd_setstatuspgm(WELCOME_MSG);
  1885. disable_z();
  1886. loading_flag = false;
  1887. custom_message = false;
  1888. custom_message_type = 0;
  1889. #endif
  1890. }
  1891. bool gcode_M45(bool onlyZ) {
  1892. bool final_result = false;
  1893. if (!onlyZ) {
  1894. setTargetBed(0);
  1895. setTargetHotend(0, 0);
  1896. setTargetHotend(0, 1);
  1897. setTargetHotend(0, 2);
  1898. adjust_bed_reset(); //reset bed level correction
  1899. }
  1900. // Disable the default update procedure of the display. We will do a modal dialog.
  1901. lcd_update_enable(false);
  1902. // Let the planner use the uncorrected coordinates.
  1903. mbl.reset();
  1904. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1905. // the planner will not perform any adjustments in the XY plane.
  1906. // Wait for the motors to stop and update the current position with the absolute values.
  1907. world2machine_revert_to_uncorrected();
  1908. // Reset the baby step value applied without moving the axes.
  1909. babystep_reset();
  1910. // Mark all axes as in a need for homing.
  1911. memset(axis_known_position, 0, sizeof(axis_known_position));
  1912. // Let the user move the Z axes up to the end stoppers.
  1913. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1914. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1915. KEEPALIVE_STATE(IN_HANDLER);
  1916. refresh_cmd_timeout();
  1917. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1918. lcd_wait_for_cool_down();
  1919. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1920. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1921. lcd_implementation_print_at(0, 3, 1);
  1922. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1923. }
  1924. // Move the print head close to the bed.
  1925. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1927. st_synchronize();
  1928. // Home in the XY plane.
  1929. set_destination_to_current();
  1930. setup_for_endstop_move();
  1931. home_xy();
  1932. int8_t verbosity_level = 0;
  1933. if (code_seen('V')) {
  1934. // Just 'V' without a number counts as V1.
  1935. char c = strchr_pointer[1];
  1936. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1937. }
  1938. if (onlyZ) {
  1939. clean_up_after_endstop_move();
  1940. // Z only calibration.
  1941. // Load the machine correction matrix
  1942. world2machine_initialize();
  1943. // and correct the current_position to match the transformed coordinate system.
  1944. world2machine_update_current();
  1945. //FIXME
  1946. bool result = sample_mesh_and_store_reference();
  1947. if (result) {
  1948. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1949. // Shipped, the nozzle height has been set already. The user can start printing now.
  1950. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1951. // babystep_apply();
  1952. final_result = true;
  1953. }
  1954. }
  1955. else {
  1956. //if wizard is active and selftest was succefully completed, we dont want to loose information about it
  1957. if (calibration_status() != 250 || eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) {
  1958. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1959. }
  1960. // Reset the baby step value and the baby step applied flag.
  1961. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1962. // Complete XYZ calibration.
  1963. uint8_t point_too_far_mask = 0;
  1964. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1965. clean_up_after_endstop_move();
  1966. // Print head up.
  1967. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1969. st_synchronize();
  1970. if (result >= 0) {
  1971. point_too_far_mask = 0;
  1972. // Second half: The fine adjustment.
  1973. // Let the planner use the uncorrected coordinates.
  1974. mbl.reset();
  1975. world2machine_reset();
  1976. // Home in the XY plane.
  1977. setup_for_endstop_move();
  1978. home_xy();
  1979. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1980. clean_up_after_endstop_move();
  1981. // Print head up.
  1982. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1984. st_synchronize();
  1985. // if (result >= 0) babystep_apply();
  1986. }
  1987. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1988. if (result >= 0) {
  1989. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1990. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1991. if(eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1992. final_result = true;
  1993. }
  1994. }
  1995. }
  1996. else {
  1997. // Timeouted.
  1998. KEEPALIVE_STATE(IN_HANDLER);
  1999. }
  2000. lcd_update_enable(true);
  2001. return final_result;
  2002. }
  2003. void process_commands()
  2004. {
  2005. #ifdef FILAMENT_RUNOUT_SUPPORT
  2006. SET_INPUT(FR_SENS);
  2007. #endif
  2008. #ifdef CMDBUFFER_DEBUG
  2009. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2010. SERIAL_ECHO(cmdbuffer+bufindr+1);
  2011. SERIAL_ECHOLNPGM("");
  2012. SERIAL_ECHOPGM("In cmdqueue: ");
  2013. SERIAL_ECHO(buflen);
  2014. SERIAL_ECHOLNPGM("");
  2015. #endif /* CMDBUFFER_DEBUG */
  2016. unsigned long codenum; //throw away variable
  2017. char *starpos = NULL;
  2018. #ifdef ENABLE_AUTO_BED_LEVELING
  2019. float x_tmp, y_tmp, z_tmp, real_z;
  2020. #endif
  2021. // PRUSA GCODES
  2022. KEEPALIVE_STATE(IN_HANDLER);
  2023. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2024. custom_message = true; //fixes using M117 during SD print, but needs to be be updated in future
  2025. custom_message_type = 2; //fixes using M117 during SD print, but needs to be be updated in future
  2026. starpos = (strchr(strchr_pointer + 5, '*'));
  2027. if (starpos != NULL)
  2028. *(starpos) = '\0';
  2029. lcd_setstatus(strchr_pointer + 5);
  2030. custom_message = false;
  2031. custom_message_type = 0;
  2032. }
  2033. else if(code_seen("PRUSA")){
  2034. if (code_seen("Ping")) { //PRUSA Ping
  2035. if (farm_mode) {
  2036. PingTime = millis();
  2037. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2038. }
  2039. } else if (code_seen("PRN")) {
  2040. MYSERIAL.println(status_number);
  2041. } else if (code_seen("RESET")) {
  2042. // careful!
  2043. if (farm_mode) {
  2044. asm volatile(" jmp 0x3E000");
  2045. }
  2046. else {
  2047. MYSERIAL.println("Not in farm mode.");
  2048. }
  2049. } else if (code_seen("fn")) {
  2050. if (farm_mode) {
  2051. MYSERIAL.println(farm_no);
  2052. }
  2053. else {
  2054. MYSERIAL.println("Not in farm mode.");
  2055. }
  2056. }
  2057. else if (code_seen("thx")) {
  2058. no_response = false;
  2059. }else if (code_seen("fv")) {
  2060. // get file version
  2061. #ifdef SDSUPPORT
  2062. card.openFile(strchr_pointer + 3,true);
  2063. while (true) {
  2064. uint16_t readByte = card.get();
  2065. MYSERIAL.write(readByte);
  2066. if (readByte=='\n') {
  2067. break;
  2068. }
  2069. }
  2070. card.closefile();
  2071. #endif // SDSUPPORT
  2072. } else if (code_seen("M28")) {
  2073. trace();
  2074. prusa_sd_card_upload = true;
  2075. card.openFile(strchr_pointer+4,false);
  2076. } else if (code_seen("SN")) {
  2077. if (farm_mode) {
  2078. selectedSerialPort = 0;
  2079. MSerial.write(";S");
  2080. // S/N is:CZPX0917X003XC13518
  2081. int numbersRead = 0;
  2082. while (numbersRead < 19) {
  2083. while (MSerial.available() > 0) {
  2084. uint8_t serial_char = MSerial.read();
  2085. selectedSerialPort = 1;
  2086. MSerial.write(serial_char);
  2087. numbersRead++;
  2088. selectedSerialPort = 0;
  2089. }
  2090. }
  2091. selectedSerialPort = 1;
  2092. MSerial.write('\n');
  2093. /*for (int b = 0; b < 3; b++) {
  2094. tone(BEEPER, 110);
  2095. delay(50);
  2096. noTone(BEEPER);
  2097. delay(50);
  2098. }*/
  2099. } else {
  2100. MYSERIAL.println("Not in farm mode.");
  2101. }
  2102. } else if(code_seen("Fir")){
  2103. SERIAL_PROTOCOLLN(FW_version);
  2104. } else if(code_seen("Rev")){
  2105. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2106. } else if(code_seen("Lang")) {
  2107. lcd_force_language_selection();
  2108. } else if(code_seen("Lz")) {
  2109. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2110. } else if (code_seen("SERIAL LOW")) {
  2111. MYSERIAL.println("SERIAL LOW");
  2112. MYSERIAL.begin(BAUDRATE);
  2113. return;
  2114. } else if (code_seen("SERIAL HIGH")) {
  2115. MYSERIAL.println("SERIAL HIGH");
  2116. MYSERIAL.begin(115200);
  2117. return;
  2118. } else if(code_seen("Beat")) {
  2119. // Kick farm link timer
  2120. kicktime = millis();
  2121. } else if(code_seen("FR")) {
  2122. // Factory full reset
  2123. factory_reset(0,true);
  2124. }
  2125. //else if (code_seen('Cal')) {
  2126. // lcd_calibration();
  2127. // }
  2128. }
  2129. else if (code_seen('^')) {
  2130. // nothing, this is a version line
  2131. } else if(code_seen('G'))
  2132. {
  2133. switch((int)code_value())
  2134. {
  2135. case 0: // G0 -> G1
  2136. case 1: // G1
  2137. if(Stopped == false) {
  2138. #ifdef FILAMENT_RUNOUT_SUPPORT
  2139. if(READ(FR_SENS)){
  2140. enquecommand_front_P((PSTR(FILAMENT_RUNOUT_SCRIPT)));
  2141. /* feedmultiplyBckp=feedmultiply;
  2142. float target[4];
  2143. float lastpos[4];
  2144. target[X_AXIS]=current_position[X_AXIS];
  2145. target[Y_AXIS]=current_position[Y_AXIS];
  2146. target[Z_AXIS]=current_position[Z_AXIS];
  2147. target[E_AXIS]=current_position[E_AXIS];
  2148. lastpos[X_AXIS]=current_position[X_AXIS];
  2149. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2150. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2151. lastpos[E_AXIS]=current_position[E_AXIS];
  2152. //retract by E
  2153. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2155. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2157. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2158. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2160. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2161. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2162. //finish moves
  2163. st_synchronize();
  2164. //disable extruder steppers so filament can be removed
  2165. disable_e0();
  2166. disable_e1();
  2167. disable_e2();
  2168. delay(100);
  2169. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2170. uint8_t cnt=0;
  2171. int counterBeep = 0;
  2172. lcd_wait_interact();
  2173. while(!lcd_clicked()){
  2174. cnt++;
  2175. manage_heater();
  2176. manage_inactivity(true);
  2177. //lcd_update();
  2178. if(cnt==0)
  2179. {
  2180. #if BEEPER > 0
  2181. if (counterBeep== 500){
  2182. counterBeep = 0;
  2183. }
  2184. SET_OUTPUT(BEEPER);
  2185. if (counterBeep== 0){
  2186. WRITE(BEEPER,HIGH);
  2187. }
  2188. if (counterBeep== 20){
  2189. WRITE(BEEPER,LOW);
  2190. }
  2191. counterBeep++;
  2192. #else
  2193. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2194. lcd_buzz(1000/6,100);
  2195. #else
  2196. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2197. #endif
  2198. #endif
  2199. }
  2200. }
  2201. WRITE(BEEPER,LOW);
  2202. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2203. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2204. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2205. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2206. lcd_change_fil_state = 0;
  2207. lcd_loading_filament();
  2208. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2209. lcd_change_fil_state = 0;
  2210. lcd_alright();
  2211. switch(lcd_change_fil_state){
  2212. case 2:
  2213. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2214. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2215. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2216. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2217. lcd_loading_filament();
  2218. break;
  2219. case 3:
  2220. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2221. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2222. lcd_loading_color();
  2223. break;
  2224. default:
  2225. lcd_change_success();
  2226. break;
  2227. }
  2228. }
  2229. target[E_AXIS]+= 5;
  2230. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2231. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2232. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2233. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2234. //plan_set_e_position(current_position[E_AXIS]);
  2235. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2236. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2237. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2238. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2239. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2240. plan_set_e_position(lastpos[E_AXIS]);
  2241. feedmultiply=feedmultiplyBckp;
  2242. char cmd[9];
  2243. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2244. enquecommand(cmd);
  2245. */
  2246. }
  2247. #endif
  2248. get_coordinates(); // For X Y Z E F
  2249. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2250. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2251. }
  2252. #ifdef FWRETRACT
  2253. if(autoretract_enabled)
  2254. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2255. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2256. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2257. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2258. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2259. retract(!retracted[active_extruder]);
  2260. return;
  2261. }
  2262. }
  2263. #endif //FWRETRACT
  2264. prepare_move();
  2265. //ClearToSend();
  2266. }
  2267. break;
  2268. case 2: // G2 - CW ARC
  2269. if(Stopped == false) {
  2270. get_arc_coordinates();
  2271. prepare_arc_move(true);
  2272. }
  2273. break;
  2274. case 3: // G3 - CCW ARC
  2275. if(Stopped == false) {
  2276. get_arc_coordinates();
  2277. prepare_arc_move(false);
  2278. }
  2279. break;
  2280. case 4: // G4 dwell
  2281. codenum = 0;
  2282. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2283. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2284. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2285. st_synchronize();
  2286. codenum += millis(); // keep track of when we started waiting
  2287. previous_millis_cmd = millis();
  2288. while(millis() < codenum) {
  2289. manage_heater();
  2290. manage_inactivity();
  2291. lcd_update();
  2292. }
  2293. break;
  2294. #ifdef FWRETRACT
  2295. case 10: // G10 retract
  2296. #if EXTRUDERS > 1
  2297. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2298. retract(true,retracted_swap[active_extruder]);
  2299. #else
  2300. retract(true);
  2301. #endif
  2302. break;
  2303. case 11: // G11 retract_recover
  2304. #if EXTRUDERS > 1
  2305. retract(false,retracted_swap[active_extruder]);
  2306. #else
  2307. retract(false);
  2308. #endif
  2309. break;
  2310. #endif //FWRETRACT
  2311. case 28: //G28 Home all Axis one at a time
  2312. homing_flag = true;
  2313. #ifdef ENABLE_AUTO_BED_LEVELING
  2314. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2315. #endif //ENABLE_AUTO_BED_LEVELING
  2316. // For mesh bed leveling deactivate the matrix temporarily
  2317. #ifdef MESH_BED_LEVELING
  2318. mbl.active = 0;
  2319. #endif
  2320. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2321. // the planner will not perform any adjustments in the XY plane.
  2322. // Wait for the motors to stop and update the current position with the absolute values.
  2323. world2machine_revert_to_uncorrected();
  2324. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2325. // consumed during the first movements following this statement.
  2326. babystep_undo();
  2327. saved_feedrate = feedrate;
  2328. saved_feedmultiply = feedmultiply;
  2329. feedmultiply = 100;
  2330. previous_millis_cmd = millis();
  2331. enable_endstops(true);
  2332. for(int8_t i=0; i < NUM_AXIS; i++)
  2333. destination[i] = current_position[i];
  2334. feedrate = 0.0;
  2335. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2336. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2337. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2338. homeaxis(Z_AXIS);
  2339. }
  2340. #endif
  2341. #ifdef QUICK_HOME
  2342. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2343. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2344. {
  2345. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2346. int x_axis_home_dir = home_dir(X_AXIS);
  2347. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2348. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2349. feedrate = homing_feedrate[X_AXIS];
  2350. if(homing_feedrate[Y_AXIS]<feedrate)
  2351. feedrate = homing_feedrate[Y_AXIS];
  2352. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2353. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2354. } else {
  2355. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2356. }
  2357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2358. st_synchronize();
  2359. axis_is_at_home(X_AXIS);
  2360. axis_is_at_home(Y_AXIS);
  2361. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2362. destination[X_AXIS] = current_position[X_AXIS];
  2363. destination[Y_AXIS] = current_position[Y_AXIS];
  2364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2365. feedrate = 0.0;
  2366. st_synchronize();
  2367. endstops_hit_on_purpose();
  2368. current_position[X_AXIS] = destination[X_AXIS];
  2369. current_position[Y_AXIS] = destination[Y_AXIS];
  2370. current_position[Z_AXIS] = destination[Z_AXIS];
  2371. }
  2372. #endif /* QUICK_HOME */
  2373. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2374. homeaxis(X_AXIS);
  2375. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2376. homeaxis(Y_AXIS);
  2377. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2378. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2379. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2380. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2381. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2382. #ifndef Z_SAFE_HOMING
  2383. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2384. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2385. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2386. feedrate = max_feedrate[Z_AXIS];
  2387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2388. st_synchronize();
  2389. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2390. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2391. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2392. {
  2393. homeaxis(X_AXIS);
  2394. homeaxis(Y_AXIS);
  2395. }
  2396. // 1st mesh bed leveling measurement point, corrected.
  2397. world2machine_initialize();
  2398. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2399. world2machine_reset();
  2400. if (destination[Y_AXIS] < Y_MIN_POS)
  2401. destination[Y_AXIS] = Y_MIN_POS;
  2402. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2403. feedrate = homing_feedrate[Z_AXIS]/10;
  2404. current_position[Z_AXIS] = 0;
  2405. enable_endstops(false);
  2406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2408. st_synchronize();
  2409. current_position[X_AXIS] = destination[X_AXIS];
  2410. current_position[Y_AXIS] = destination[Y_AXIS];
  2411. enable_endstops(true);
  2412. endstops_hit_on_purpose();
  2413. homeaxis(Z_AXIS);
  2414. #else // MESH_BED_LEVELING
  2415. homeaxis(Z_AXIS);
  2416. #endif // MESH_BED_LEVELING
  2417. }
  2418. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2419. if(home_all_axis) {
  2420. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2421. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2422. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2423. feedrate = XY_TRAVEL_SPEED/60;
  2424. current_position[Z_AXIS] = 0;
  2425. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2426. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2427. st_synchronize();
  2428. current_position[X_AXIS] = destination[X_AXIS];
  2429. current_position[Y_AXIS] = destination[Y_AXIS];
  2430. homeaxis(Z_AXIS);
  2431. }
  2432. // Let's see if X and Y are homed and probe is inside bed area.
  2433. if(code_seen(axis_codes[Z_AXIS])) {
  2434. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2435. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2436. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2437. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2438. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2439. current_position[Z_AXIS] = 0;
  2440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2441. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2442. feedrate = max_feedrate[Z_AXIS];
  2443. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2444. st_synchronize();
  2445. homeaxis(Z_AXIS);
  2446. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2447. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2448. SERIAL_ECHO_START;
  2449. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2450. } else {
  2451. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2452. SERIAL_ECHO_START;
  2453. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2454. }
  2455. }
  2456. #endif // Z_SAFE_HOMING
  2457. #endif // Z_HOME_DIR < 0
  2458. if(code_seen(axis_codes[Z_AXIS])) {
  2459. if(code_value_long() != 0) {
  2460. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2461. }
  2462. }
  2463. #ifdef ENABLE_AUTO_BED_LEVELING
  2464. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2465. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2466. }
  2467. #endif
  2468. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2469. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2470. enable_endstops(false);
  2471. #endif
  2472. feedrate = saved_feedrate;
  2473. feedmultiply = saved_feedmultiply;
  2474. previous_millis_cmd = millis();
  2475. endstops_hit_on_purpose();
  2476. #ifndef MESH_BED_LEVELING
  2477. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2478. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2479. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2480. lcd_adjust_z();
  2481. #endif
  2482. // Load the machine correction matrix
  2483. world2machine_initialize();
  2484. // and correct the current_position to match the transformed coordinate system.
  2485. world2machine_update_current();
  2486. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2487. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2488. {
  2489. }
  2490. else
  2491. {
  2492. st_synchronize();
  2493. homing_flag = false;
  2494. // Push the commands to the front of the message queue in the reverse order!
  2495. // There shall be always enough space reserved for these commands.
  2496. // enquecommand_front_P((PSTR("G80")));
  2497. goto case_G80;
  2498. }
  2499. #endif
  2500. if (farm_mode) { prusa_statistics(20); };
  2501. homing_flag = false;
  2502. break;
  2503. #ifdef ENABLE_AUTO_BED_LEVELING
  2504. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2505. {
  2506. #if Z_MIN_PIN == -1
  2507. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2508. #endif
  2509. // Prevent user from running a G29 without first homing in X and Y
  2510. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2511. {
  2512. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2513. SERIAL_ECHO_START;
  2514. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2515. break; // abort G29, since we don't know where we are
  2516. }
  2517. st_synchronize();
  2518. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2519. //vector_3 corrected_position = plan_get_position_mm();
  2520. //corrected_position.debug("position before G29");
  2521. plan_bed_level_matrix.set_to_identity();
  2522. vector_3 uncorrected_position = plan_get_position();
  2523. //uncorrected_position.debug("position durring G29");
  2524. current_position[X_AXIS] = uncorrected_position.x;
  2525. current_position[Y_AXIS] = uncorrected_position.y;
  2526. current_position[Z_AXIS] = uncorrected_position.z;
  2527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2528. setup_for_endstop_move();
  2529. feedrate = homing_feedrate[Z_AXIS];
  2530. #ifdef AUTO_BED_LEVELING_GRID
  2531. // probe at the points of a lattice grid
  2532. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2533. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2534. // solve the plane equation ax + by + d = z
  2535. // A is the matrix with rows [x y 1] for all the probed points
  2536. // B is the vector of the Z positions
  2537. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2538. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2539. // "A" matrix of the linear system of equations
  2540. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2541. // "B" vector of Z points
  2542. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2543. int probePointCounter = 0;
  2544. bool zig = true;
  2545. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2546. {
  2547. int xProbe, xInc;
  2548. if (zig)
  2549. {
  2550. xProbe = LEFT_PROBE_BED_POSITION;
  2551. //xEnd = RIGHT_PROBE_BED_POSITION;
  2552. xInc = xGridSpacing;
  2553. zig = false;
  2554. } else // zag
  2555. {
  2556. xProbe = RIGHT_PROBE_BED_POSITION;
  2557. //xEnd = LEFT_PROBE_BED_POSITION;
  2558. xInc = -xGridSpacing;
  2559. zig = true;
  2560. }
  2561. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2562. {
  2563. float z_before;
  2564. if (probePointCounter == 0)
  2565. {
  2566. // raise before probing
  2567. z_before = Z_RAISE_BEFORE_PROBING;
  2568. } else
  2569. {
  2570. // raise extruder
  2571. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2572. }
  2573. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2574. eqnBVector[probePointCounter] = measured_z;
  2575. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2576. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2577. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2578. probePointCounter++;
  2579. xProbe += xInc;
  2580. }
  2581. }
  2582. clean_up_after_endstop_move();
  2583. // solve lsq problem
  2584. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2585. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2586. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2587. SERIAL_PROTOCOLPGM(" b: ");
  2588. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2589. SERIAL_PROTOCOLPGM(" d: ");
  2590. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2591. set_bed_level_equation_lsq(plane_equation_coefficients);
  2592. free(plane_equation_coefficients);
  2593. #else // AUTO_BED_LEVELING_GRID not defined
  2594. // Probe at 3 arbitrary points
  2595. // probe 1
  2596. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2597. // probe 2
  2598. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2599. // probe 3
  2600. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2601. clean_up_after_endstop_move();
  2602. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2603. #endif // AUTO_BED_LEVELING_GRID
  2604. st_synchronize();
  2605. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2606. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2607. // When the bed is uneven, this height must be corrected.
  2608. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2609. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2610. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2611. z_tmp = current_position[Z_AXIS];
  2612. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2613. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2614. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2615. }
  2616. break;
  2617. #ifndef Z_PROBE_SLED
  2618. case 30: // G30 Single Z Probe
  2619. {
  2620. st_synchronize();
  2621. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2622. setup_for_endstop_move();
  2623. feedrate = homing_feedrate[Z_AXIS];
  2624. run_z_probe();
  2625. SERIAL_PROTOCOLPGM(MSG_BED);
  2626. SERIAL_PROTOCOLPGM(" X: ");
  2627. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2628. SERIAL_PROTOCOLPGM(" Y: ");
  2629. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2630. SERIAL_PROTOCOLPGM(" Z: ");
  2631. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2632. SERIAL_PROTOCOLPGM("\n");
  2633. clean_up_after_endstop_move();
  2634. }
  2635. break;
  2636. #else
  2637. case 31: // dock the sled
  2638. dock_sled(true);
  2639. break;
  2640. case 32: // undock the sled
  2641. dock_sled(false);
  2642. break;
  2643. #endif // Z_PROBE_SLED
  2644. #endif // ENABLE_AUTO_BED_LEVELING
  2645. #ifdef MESH_BED_LEVELING
  2646. case 30: // G30 Single Z Probe
  2647. {
  2648. st_synchronize();
  2649. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2650. setup_for_endstop_move();
  2651. feedrate = homing_feedrate[Z_AXIS];
  2652. find_bed_induction_sensor_point_z(-10.f, 3);
  2653. SERIAL_PROTOCOLRPGM(MSG_BED);
  2654. SERIAL_PROTOCOLPGM(" X: ");
  2655. MYSERIAL.print(current_position[X_AXIS], 5);
  2656. SERIAL_PROTOCOLPGM(" Y: ");
  2657. MYSERIAL.print(current_position[Y_AXIS], 5);
  2658. SERIAL_PROTOCOLPGM(" Z: ");
  2659. MYSERIAL.print(current_position[Z_AXIS], 5);
  2660. SERIAL_PROTOCOLPGM("\n");
  2661. clean_up_after_endstop_move();
  2662. }
  2663. break;
  2664. case 75:
  2665. {
  2666. for (int i = 40; i <= 110; i++) {
  2667. MYSERIAL.print(i);
  2668. MYSERIAL.print(" ");
  2669. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2670. }
  2671. }
  2672. break;
  2673. case 76: //PINDA probe temperature calibration
  2674. {
  2675. setTargetBed(PINDA_MIN_T);
  2676. float zero_z;
  2677. int z_shift = 0; //unit: steps
  2678. int t_c; // temperature
  2679. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2680. // We don't know where we are! HOME!
  2681. // Push the commands to the front of the message queue in the reverse order!
  2682. // There shall be always enough space reserved for these commands.
  2683. repeatcommand_front(); // repeat G76 with all its parameters
  2684. enquecommand_front_P((PSTR("G28 W0")));
  2685. break;
  2686. }
  2687. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2688. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2689. custom_message = true;
  2690. custom_message_type = 4;
  2691. custom_message_state = 1;
  2692. custom_message = MSG_TEMP_CALIBRATION;
  2693. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2694. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2695. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2697. st_synchronize();
  2698. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2699. delay_keep_alive(1000);
  2700. serialecho_temperatures();
  2701. }
  2702. //enquecommand_P(PSTR("M190 S50"));
  2703. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2704. delay_keep_alive(1000);
  2705. serialecho_temperatures();
  2706. }
  2707. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2708. current_position[Z_AXIS] = 5;
  2709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2710. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2711. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2713. st_synchronize();
  2714. find_bed_induction_sensor_point_z(-1.f);
  2715. zero_z = current_position[Z_AXIS];
  2716. //current_position[Z_AXIS]
  2717. SERIAL_ECHOLNPGM("");
  2718. SERIAL_ECHOPGM("ZERO: ");
  2719. MYSERIAL.print(current_position[Z_AXIS]);
  2720. SERIAL_ECHOLNPGM("");
  2721. for (int i = 0; i<5; i++) {
  2722. SERIAL_ECHOPGM("Step: ");
  2723. MYSERIAL.print(i+2);
  2724. SERIAL_ECHOLNPGM("/6");
  2725. custom_message_state = i + 2;
  2726. t_c = 60 + i * 10;
  2727. setTargetBed(t_c);
  2728. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2729. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2730. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2732. st_synchronize();
  2733. while (degBed() < t_c) {
  2734. delay_keep_alive(1000);
  2735. serialecho_temperatures();
  2736. }
  2737. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2738. delay_keep_alive(1000);
  2739. serialecho_temperatures();
  2740. }
  2741. current_position[Z_AXIS] = 5;
  2742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2743. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2744. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2746. st_synchronize();
  2747. find_bed_induction_sensor_point_z(-1.f);
  2748. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2749. SERIAL_ECHOLNPGM("");
  2750. SERIAL_ECHOPGM("Temperature: ");
  2751. MYSERIAL.print(t_c);
  2752. SERIAL_ECHOPGM(" Z shift (mm):");
  2753. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2754. SERIAL_ECHOLNPGM("");
  2755. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2756. }
  2757. custom_message_type = 0;
  2758. custom_message = false;
  2759. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2760. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2761. disable_x();
  2762. disable_y();
  2763. disable_z();
  2764. disable_e0();
  2765. disable_e1();
  2766. disable_e2();
  2767. setTargetBed(0); //set bed target temperature back to 0
  2768. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2769. lcd_update_enable(true);
  2770. lcd_update(2);
  2771. }
  2772. break;
  2773. #ifdef DIS
  2774. case 77:
  2775. {
  2776. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2777. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2778. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2779. float dimension_x = 40;
  2780. float dimension_y = 40;
  2781. int points_x = 40;
  2782. int points_y = 40;
  2783. float offset_x = 74;
  2784. float offset_y = 33;
  2785. if (code_seen('X')) dimension_x = code_value();
  2786. if (code_seen('Y')) dimension_y = code_value();
  2787. if (code_seen('XP')) points_x = code_value();
  2788. if (code_seen('YP')) points_y = code_value();
  2789. if (code_seen('XO')) offset_x = code_value();
  2790. if (code_seen('YO')) offset_y = code_value();
  2791. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2792. } break;
  2793. #endif
  2794. /**
  2795. * G80: Mesh-based Z probe, probes a grid and produces a
  2796. * mesh to compensate for variable bed height
  2797. *
  2798. * The S0 report the points as below
  2799. *
  2800. * +----> X-axis
  2801. * |
  2802. * |
  2803. * v Y-axis
  2804. *
  2805. */
  2806. case 80:
  2807. #ifdef MK1BP
  2808. break;
  2809. #endif //MK1BP
  2810. case_G80:
  2811. {
  2812. mesh_bed_leveling_flag = true;
  2813. int8_t verbosity_level = 0;
  2814. static bool run = false;
  2815. if (code_seen('V')) {
  2816. // Just 'V' without a number counts as V1.
  2817. char c = strchr_pointer[1];
  2818. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2819. }
  2820. // Firstly check if we know where we are
  2821. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2822. // We don't know where we are! HOME!
  2823. // Push the commands to the front of the message queue in the reverse order!
  2824. // There shall be always enough space reserved for these commands.
  2825. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2826. repeatcommand_front(); // repeat G80 with all its parameters
  2827. enquecommand_front_P((PSTR("G28 W0")));
  2828. }
  2829. else {
  2830. mesh_bed_leveling_flag = false;
  2831. }
  2832. break;
  2833. }
  2834. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2835. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2836. temp_compensation_start();
  2837. run = true;
  2838. repeatcommand_front(); // repeat G80 with all its parameters
  2839. enquecommand_front_P((PSTR("G28 W0")));
  2840. }
  2841. else {
  2842. mesh_bed_leveling_flag = false;
  2843. }
  2844. break;
  2845. }
  2846. run = false;
  2847. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2848. mesh_bed_leveling_flag = false;
  2849. break;
  2850. }
  2851. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2852. bool custom_message_old = custom_message;
  2853. unsigned int custom_message_type_old = custom_message_type;
  2854. unsigned int custom_message_state_old = custom_message_state;
  2855. custom_message = true;
  2856. custom_message_type = 1;
  2857. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2858. lcd_update(1);
  2859. mbl.reset(); //reset mesh bed leveling
  2860. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2861. // consumed during the first movements following this statement.
  2862. babystep_undo();
  2863. // Cycle through all points and probe them
  2864. // First move up. During this first movement, the babystepping will be reverted.
  2865. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2867. // The move to the first calibration point.
  2868. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2869. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2870. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2871. #ifdef SUPPORT_VERBOSITY
  2872. if (verbosity_level >= 1) {
  2873. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2874. }
  2875. #endif // SUPPORT_VERBOSITY
  2876. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2878. // Wait until the move is finished.
  2879. st_synchronize();
  2880. int mesh_point = 0; //index number of calibration point
  2881. int ix = 0;
  2882. int iy = 0;
  2883. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2884. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2885. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2886. #ifdef SUPPORT_VERBOSITY
  2887. if (verbosity_level >= 1) {
  2888. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2889. }
  2890. #endif // SUPPORT_VERBOSITY
  2891. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2892. const char *kill_message = NULL;
  2893. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2894. #ifdef SUPPORT_VERBOSITY
  2895. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2896. #endif // SUPPORT_VERBOSITY
  2897. // Get coords of a measuring point.
  2898. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2899. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2900. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2901. float z0 = 0.f;
  2902. if (has_z && mesh_point > 0) {
  2903. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2904. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2905. #ifdef SUPPORT_VERBOSITY
  2906. if (verbosity_level >= 1) {
  2907. SERIAL_ECHOPGM("Bed leveling, point: ");
  2908. MYSERIAL.print(mesh_point);
  2909. SERIAL_ECHOPGM(", calibration z: ");
  2910. MYSERIAL.print(z0, 5);
  2911. SERIAL_ECHOLNPGM("");
  2912. }
  2913. #endif // SUPPORT_VERBOSITY
  2914. }
  2915. // Move Z up to MESH_HOME_Z_SEARCH.
  2916. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2918. st_synchronize();
  2919. // Move to XY position of the sensor point.
  2920. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2921. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2922. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2923. #ifdef SUPPORT_VERBOSITY
  2924. if (verbosity_level >= 1) {
  2925. SERIAL_PROTOCOL(mesh_point);
  2926. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2927. }
  2928. #endif // SUPPORT_VERBOSITY
  2929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2930. st_synchronize();
  2931. // Go down until endstop is hit
  2932. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2933. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2934. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2935. break;
  2936. }
  2937. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2938. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2939. break;
  2940. }
  2941. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2942. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2943. break;
  2944. }
  2945. #ifdef SUPPORT_VERBOSITY
  2946. if (verbosity_level >= 10) {
  2947. SERIAL_ECHOPGM("X: ");
  2948. MYSERIAL.print(current_position[X_AXIS], 5);
  2949. SERIAL_ECHOLNPGM("");
  2950. SERIAL_ECHOPGM("Y: ");
  2951. MYSERIAL.print(current_position[Y_AXIS], 5);
  2952. SERIAL_PROTOCOLPGM("\n");
  2953. }
  2954. if (verbosity_level >= 1) {
  2955. SERIAL_ECHOPGM("mesh bed leveling: ");
  2956. MYSERIAL.print(current_position[Z_AXIS], 5);
  2957. SERIAL_ECHOLNPGM("");
  2958. }
  2959. #endif // SUPPORT_VERBOSITY
  2960. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2961. custom_message_state--;
  2962. mesh_point++;
  2963. lcd_update(1);
  2964. }
  2965. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2966. #ifdef SUPPORT_VERBOSITY
  2967. if (verbosity_level >= 20) {
  2968. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2969. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2970. MYSERIAL.print(current_position[Z_AXIS], 5);
  2971. }
  2972. #endif // SUPPORT_VERBOSITY
  2973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2974. st_synchronize();
  2975. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2976. kill(kill_message);
  2977. SERIAL_ECHOLNPGM("killed");
  2978. }
  2979. clean_up_after_endstop_move();
  2980. SERIAL_ECHOLNPGM("clean up finished ");
  2981. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2982. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2983. SERIAL_ECHOLNPGM("babystep applied");
  2984. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2985. #ifdef SUPPORT_VERBOSITY
  2986. if (verbosity_level >= 1) {
  2987. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2988. }
  2989. #endif // SUPPORT_VERBOSITY
  2990. for (uint8_t i = 0; i < 4; ++i) {
  2991. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2992. long correction = 0;
  2993. if (code_seen(codes[i]))
  2994. correction = code_value_long();
  2995. else if (eeprom_bed_correction_valid) {
  2996. unsigned char *addr = (i < 2) ?
  2997. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2998. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2999. correction = eeprom_read_int8(addr);
  3000. }
  3001. if (correction == 0)
  3002. continue;
  3003. float offset = float(correction) * 0.001f;
  3004. if (fabs(offset) > 0.101f) {
  3005. SERIAL_ERROR_START;
  3006. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3007. SERIAL_ECHO(offset);
  3008. SERIAL_ECHOLNPGM(" microns");
  3009. }
  3010. else {
  3011. switch (i) {
  3012. case 0:
  3013. for (uint8_t row = 0; row < 3; ++row) {
  3014. mbl.z_values[row][1] += 0.5f * offset;
  3015. mbl.z_values[row][0] += offset;
  3016. }
  3017. break;
  3018. case 1:
  3019. for (uint8_t row = 0; row < 3; ++row) {
  3020. mbl.z_values[row][1] += 0.5f * offset;
  3021. mbl.z_values[row][2] += offset;
  3022. }
  3023. break;
  3024. case 2:
  3025. for (uint8_t col = 0; col < 3; ++col) {
  3026. mbl.z_values[1][col] += 0.5f * offset;
  3027. mbl.z_values[0][col] += offset;
  3028. }
  3029. break;
  3030. case 3:
  3031. for (uint8_t col = 0; col < 3; ++col) {
  3032. mbl.z_values[1][col] += 0.5f * offset;
  3033. mbl.z_values[2][col] += offset;
  3034. }
  3035. break;
  3036. }
  3037. }
  3038. }
  3039. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3040. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3041. SERIAL_ECHOLNPGM("Upsample finished");
  3042. mbl.active = 1; //activate mesh bed leveling
  3043. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3044. go_home_with_z_lift();
  3045. SERIAL_ECHOLNPGM("Go home finished");
  3046. //unretract (after PINDA preheat retraction)
  3047. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3048. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3050. }
  3051. KEEPALIVE_STATE(NOT_BUSY);
  3052. // Restore custom message state
  3053. custom_message = custom_message_old;
  3054. custom_message_type = custom_message_type_old;
  3055. custom_message_state = custom_message_state_old;
  3056. mesh_bed_leveling_flag = false;
  3057. mesh_bed_run_from_menu = false;
  3058. lcd_update(2);
  3059. }
  3060. break;
  3061. /**
  3062. * G81: Print mesh bed leveling status and bed profile if activated
  3063. */
  3064. case 81:
  3065. if (mbl.active) {
  3066. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3067. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3068. SERIAL_PROTOCOLPGM(",");
  3069. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3070. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3071. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3072. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3073. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3074. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3075. SERIAL_PROTOCOLPGM(" ");
  3076. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3077. }
  3078. SERIAL_PROTOCOLPGM("\n");
  3079. }
  3080. }
  3081. else
  3082. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3083. break;
  3084. #if 0
  3085. /**
  3086. * G82: Single Z probe at current location
  3087. *
  3088. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3089. *
  3090. */
  3091. case 82:
  3092. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3093. setup_for_endstop_move();
  3094. find_bed_induction_sensor_point_z();
  3095. clean_up_after_endstop_move();
  3096. SERIAL_PROTOCOLPGM("Bed found at: ");
  3097. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3098. SERIAL_PROTOCOLPGM("\n");
  3099. break;
  3100. /**
  3101. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3102. */
  3103. case 83:
  3104. {
  3105. int babystepz = code_seen('S') ? code_value() : 0;
  3106. int BabyPosition = code_seen('P') ? code_value() : 0;
  3107. if (babystepz != 0) {
  3108. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3109. // Is the axis indexed starting with zero or one?
  3110. if (BabyPosition > 4) {
  3111. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3112. }else{
  3113. // Save it to the eeprom
  3114. babystepLoadZ = babystepz;
  3115. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3116. // adjust the Z
  3117. babystepsTodoZadd(babystepLoadZ);
  3118. }
  3119. }
  3120. }
  3121. break;
  3122. /**
  3123. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3124. */
  3125. case 84:
  3126. babystepsTodoZsubtract(babystepLoadZ);
  3127. // babystepLoadZ = 0;
  3128. break;
  3129. /**
  3130. * G85: Prusa3D specific: Pick best babystep
  3131. */
  3132. case 85:
  3133. lcd_pick_babystep();
  3134. break;
  3135. #endif
  3136. /**
  3137. * G86: Prusa3D specific: Disable babystep correction after home.
  3138. * This G-code will be performed at the start of a calibration script.
  3139. */
  3140. case 86:
  3141. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3142. break;
  3143. /**
  3144. * G87: Prusa3D specific: Enable babystep correction after home
  3145. * This G-code will be performed at the end of a calibration script.
  3146. */
  3147. case 87:
  3148. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3149. break;
  3150. /*case 88: //just for test
  3151. SERIAL_ECHOPGM("Calibration status:");
  3152. MYSERIAL.println(int(calibration_status()));
  3153. if (code_seen('S')) codenum = code_value();
  3154. calibration_status_store(codenum);
  3155. SERIAL_ECHOPGM("Calibration status:");
  3156. MYSERIAL.println(int(calibration_status()));
  3157. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  3158. break;
  3159. */
  3160. #endif // ENABLE_MESH_BED_LEVELING
  3161. case 90: // G90
  3162. relative_mode = false;
  3163. break;
  3164. case 91: // G91
  3165. relative_mode = true;
  3166. break;
  3167. case 92: // G92
  3168. if(!code_seen(axis_codes[E_AXIS]))
  3169. st_synchronize();
  3170. for(int8_t i=0; i < NUM_AXIS; i++) {
  3171. if(code_seen(axis_codes[i])) {
  3172. if(i == E_AXIS) {
  3173. current_position[i] = code_value();
  3174. plan_set_e_position(current_position[E_AXIS]);
  3175. }
  3176. else {
  3177. current_position[i] = code_value()+add_homing[i];
  3178. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3179. }
  3180. }
  3181. }
  3182. break;
  3183. case 98: //activate farm mode
  3184. farm_mode = 1;
  3185. PingTime = millis();
  3186. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3187. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3188. break;
  3189. case 99: //deactivate farm mode
  3190. farm_mode = 0;
  3191. lcd_printer_connected();
  3192. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3193. lcd_update(2);
  3194. break;
  3195. }
  3196. } // end if(code_seen('G'))
  3197. else if(code_seen('M'))
  3198. {
  3199. int index;
  3200. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3201. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3202. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3203. SERIAL_ECHOLNPGM("Invalid M code");
  3204. } else
  3205. switch((int)code_value())
  3206. {
  3207. #ifdef ULTIPANEL
  3208. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3209. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3210. {
  3211. custom_message = true; //fixes using M1 during SD print, but needs to be be updated in future
  3212. custom_message_type = 2; //fixes using M1 during SD print, but needs to be be updated in future
  3213. char *src = strchr_pointer + 2;
  3214. codenum = 0;
  3215. bool hasP = false, hasS = false;
  3216. if (code_seen('P')) {
  3217. codenum = code_value(); // milliseconds to wait
  3218. hasP = codenum > 0;
  3219. }
  3220. if (code_seen('S')) {
  3221. codenum = code_value() * 1000; // seconds to wait
  3222. hasS = codenum > 0;
  3223. }
  3224. starpos = strchr(src, '*');
  3225. if (starpos != NULL) *(starpos) = '\0';
  3226. while (*src == ' ') ++src;
  3227. if (!hasP && !hasS && *src != '\0') {
  3228. lcd_setstatus(src);
  3229. } else {
  3230. LCD_MESSAGERPGM(MSG_USERWAIT);
  3231. }
  3232. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3233. st_synchronize();
  3234. previous_millis_cmd = millis();
  3235. if (codenum > 0){
  3236. codenum += millis(); // keep track of when we started waiting
  3237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3238. while(millis() < codenum && !lcd_clicked()){
  3239. manage_heater();
  3240. manage_inactivity(true);
  3241. lcd_update();
  3242. }
  3243. KEEPALIVE_STATE(IN_HANDLER);
  3244. lcd_ignore_click(false);
  3245. }else{
  3246. if (!lcd_detected())
  3247. break;
  3248. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3249. while(!lcd_clicked()){
  3250. manage_heater();
  3251. manage_inactivity(true);
  3252. lcd_update();
  3253. }
  3254. KEEPALIVE_STATE(IN_HANDLER);
  3255. }
  3256. if (IS_SD_PRINTING)
  3257. LCD_MESSAGERPGM(MSG_RESUMING);
  3258. else
  3259. LCD_MESSAGERPGM(WELCOME_MSG);
  3260. custom_message = false;
  3261. custom_message_type = 0;
  3262. }
  3263. break;
  3264. #endif
  3265. case 17:
  3266. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3267. enable_x();
  3268. enable_y();
  3269. enable_z();
  3270. enable_e0();
  3271. enable_e1();
  3272. enable_e2();
  3273. break;
  3274. #ifdef SDSUPPORT
  3275. case 20: // M20 - list SD card
  3276. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3277. card.ls();
  3278. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3279. break;
  3280. case 21: // M21 - init SD card
  3281. card.initsd();
  3282. break;
  3283. case 22: //M22 - release SD card
  3284. card.release();
  3285. break;
  3286. case 23: //M23 - Select file
  3287. starpos = (strchr(strchr_pointer + 4,'*'));
  3288. if(starpos!=NULL)
  3289. *(starpos)='\0';
  3290. card.openFile(strchr_pointer + 4,true);
  3291. break;
  3292. case 24: //M24 - Start SD print
  3293. card.startFileprint();
  3294. starttime=millis();
  3295. break;
  3296. case 25: //M25 - Pause SD print
  3297. card.pauseSDPrint();
  3298. break;
  3299. case 26: //M26 - Set SD index
  3300. if(card.cardOK && code_seen('S')) {
  3301. card.setIndex(code_value_long());
  3302. }
  3303. break;
  3304. case 27: //M27 - Get SD status
  3305. card.getStatus();
  3306. break;
  3307. case 28: //M28 - Start SD write
  3308. starpos = (strchr(strchr_pointer + 4,'*'));
  3309. if(starpos != NULL){
  3310. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3311. strchr_pointer = strchr(npos,' ') + 1;
  3312. *(starpos) = '\0';
  3313. }
  3314. card.openFile(strchr_pointer+4,false);
  3315. break;
  3316. case 29: //M29 - Stop SD write
  3317. //processed in write to file routine above
  3318. //card,saving = false;
  3319. break;
  3320. case 30: //M30 <filename> Delete File
  3321. if (card.cardOK){
  3322. card.closefile();
  3323. starpos = (strchr(strchr_pointer + 4,'*'));
  3324. if(starpos != NULL){
  3325. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3326. strchr_pointer = strchr(npos,' ') + 1;
  3327. *(starpos) = '\0';
  3328. }
  3329. card.removeFile(strchr_pointer + 4);
  3330. }
  3331. break;
  3332. case 32: //M32 - Select file and start SD print
  3333. {
  3334. if(card.sdprinting) {
  3335. st_synchronize();
  3336. }
  3337. starpos = (strchr(strchr_pointer + 4,'*'));
  3338. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3339. if(namestartpos==NULL)
  3340. {
  3341. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3342. }
  3343. else
  3344. namestartpos++; //to skip the '!'
  3345. if(starpos!=NULL)
  3346. *(starpos)='\0';
  3347. bool call_procedure=(code_seen('P'));
  3348. if(strchr_pointer>namestartpos)
  3349. call_procedure=false; //false alert, 'P' found within filename
  3350. if( card.cardOK )
  3351. {
  3352. card.openFile(namestartpos,true,!call_procedure);
  3353. if(code_seen('S'))
  3354. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3355. card.setIndex(code_value_long());
  3356. card.startFileprint();
  3357. if(!call_procedure)
  3358. starttime=millis(); //procedure calls count as normal print time.
  3359. }
  3360. } break;
  3361. case 928: //M928 - Start SD write
  3362. starpos = (strchr(strchr_pointer + 5,'*'));
  3363. if(starpos != NULL){
  3364. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3365. strchr_pointer = strchr(npos,' ') + 1;
  3366. *(starpos) = '\0';
  3367. }
  3368. card.openLogFile(strchr_pointer+5);
  3369. break;
  3370. #endif //SDSUPPORT
  3371. case 31: //M31 take time since the start of the SD print or an M109 command
  3372. {
  3373. stoptime=millis();
  3374. char time[30];
  3375. unsigned long t=(stoptime-starttime)/1000;
  3376. int sec,min;
  3377. min=t/60;
  3378. sec=t%60;
  3379. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3380. SERIAL_ECHO_START;
  3381. SERIAL_ECHOLN(time);
  3382. lcd_setstatus(time);
  3383. autotempShutdown();
  3384. }
  3385. break;
  3386. case 42: //M42 -Change pin status via gcode
  3387. if (code_seen('S'))
  3388. {
  3389. int pin_status = code_value();
  3390. int pin_number = LED_PIN;
  3391. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3392. pin_number = code_value();
  3393. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3394. {
  3395. if (sensitive_pins[i] == pin_number)
  3396. {
  3397. pin_number = -1;
  3398. break;
  3399. }
  3400. }
  3401. #if defined(FAN_PIN) && FAN_PIN > -1
  3402. if (pin_number == FAN_PIN)
  3403. fanSpeed = pin_status;
  3404. #endif
  3405. if (pin_number > -1)
  3406. {
  3407. pinMode(pin_number, OUTPUT);
  3408. digitalWrite(pin_number, pin_status);
  3409. analogWrite(pin_number, pin_status);
  3410. }
  3411. }
  3412. break;
  3413. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3414. // Reset the baby step value and the baby step applied flag.
  3415. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3416. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3417. // Reset the skew and offset in both RAM and EEPROM.
  3418. reset_bed_offset_and_skew();
  3419. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3420. // the planner will not perform any adjustments in the XY plane.
  3421. // Wait for the motors to stop and update the current position with the absolute values.
  3422. world2machine_revert_to_uncorrected();
  3423. break;
  3424. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3425. {
  3426. // Only Z calibration?
  3427. bool only_Z = code_seen('Z');
  3428. gcode_M45(only_Z);
  3429. break;
  3430. }
  3431. /*
  3432. case 46:
  3433. {
  3434. // M46: Prusa3D: Show the assigned IP address.
  3435. uint8_t ip[4];
  3436. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3437. if (hasIP) {
  3438. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3439. SERIAL_ECHO(int(ip[0]));
  3440. SERIAL_ECHOPGM(".");
  3441. SERIAL_ECHO(int(ip[1]));
  3442. SERIAL_ECHOPGM(".");
  3443. SERIAL_ECHO(int(ip[2]));
  3444. SERIAL_ECHOPGM(".");
  3445. SERIAL_ECHO(int(ip[3]));
  3446. SERIAL_ECHOLNPGM("");
  3447. } else {
  3448. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3449. }
  3450. break;
  3451. }
  3452. */
  3453. case 47:
  3454. // M47: Prusa3D: Show end stops dialog on the display.
  3455. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3456. lcd_diag_show_end_stops();
  3457. KEEPALIVE_STATE(IN_HANDLER);
  3458. break;
  3459. #if 0
  3460. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3461. {
  3462. // Disable the default update procedure of the display. We will do a modal dialog.
  3463. lcd_update_enable(false);
  3464. // Let the planner use the uncorrected coordinates.
  3465. mbl.reset();
  3466. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3467. // the planner will not perform any adjustments in the XY plane.
  3468. // Wait for the motors to stop and update the current position with the absolute values.
  3469. world2machine_revert_to_uncorrected();
  3470. // Move the print head close to the bed.
  3471. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3473. st_synchronize();
  3474. // Home in the XY plane.
  3475. set_destination_to_current();
  3476. setup_for_endstop_move();
  3477. home_xy();
  3478. int8_t verbosity_level = 0;
  3479. if (code_seen('V')) {
  3480. // Just 'V' without a number counts as V1.
  3481. char c = strchr_pointer[1];
  3482. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3483. }
  3484. bool success = scan_bed_induction_points(verbosity_level);
  3485. clean_up_after_endstop_move();
  3486. // Print head up.
  3487. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3489. st_synchronize();
  3490. lcd_update_enable(true);
  3491. break;
  3492. }
  3493. #endif
  3494. // M48 Z-Probe repeatability measurement function.
  3495. //
  3496. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3497. //
  3498. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3499. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3500. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3501. // regenerated.
  3502. //
  3503. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3504. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3505. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3506. //
  3507. #ifdef ENABLE_AUTO_BED_LEVELING
  3508. #ifdef Z_PROBE_REPEATABILITY_TEST
  3509. case 48: // M48 Z-Probe repeatability
  3510. {
  3511. #if Z_MIN_PIN == -1
  3512. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3513. #endif
  3514. double sum=0.0;
  3515. double mean=0.0;
  3516. double sigma=0.0;
  3517. double sample_set[50];
  3518. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3519. double X_current, Y_current, Z_current;
  3520. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3521. if (code_seen('V') || code_seen('v')) {
  3522. verbose_level = code_value();
  3523. if (verbose_level<0 || verbose_level>4 ) {
  3524. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3525. goto Sigma_Exit;
  3526. }
  3527. }
  3528. if (verbose_level > 0) {
  3529. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3530. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3531. }
  3532. if (code_seen('n')) {
  3533. n_samples = code_value();
  3534. if (n_samples<4 || n_samples>50 ) {
  3535. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3536. goto Sigma_Exit;
  3537. }
  3538. }
  3539. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3540. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3541. Z_current = st_get_position_mm(Z_AXIS);
  3542. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3543. ext_position = st_get_position_mm(E_AXIS);
  3544. if (code_seen('X') || code_seen('x') ) {
  3545. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3546. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3547. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3548. goto Sigma_Exit;
  3549. }
  3550. }
  3551. if (code_seen('Y') || code_seen('y') ) {
  3552. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3553. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3554. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3555. goto Sigma_Exit;
  3556. }
  3557. }
  3558. if (code_seen('L') || code_seen('l') ) {
  3559. n_legs = code_value();
  3560. if ( n_legs==1 )
  3561. n_legs = 2;
  3562. if ( n_legs<0 || n_legs>15 ) {
  3563. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3564. goto Sigma_Exit;
  3565. }
  3566. }
  3567. //
  3568. // Do all the preliminary setup work. First raise the probe.
  3569. //
  3570. st_synchronize();
  3571. plan_bed_level_matrix.set_to_identity();
  3572. plan_buffer_line( X_current, Y_current, Z_start_location,
  3573. ext_position,
  3574. homing_feedrate[Z_AXIS]/60,
  3575. active_extruder);
  3576. st_synchronize();
  3577. //
  3578. // Now get everything to the specified probe point So we can safely do a probe to
  3579. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3580. // use that as a starting point for each probe.
  3581. //
  3582. if (verbose_level > 2)
  3583. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3584. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3585. ext_position,
  3586. homing_feedrate[X_AXIS]/60,
  3587. active_extruder);
  3588. st_synchronize();
  3589. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3590. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3591. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3592. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3593. //
  3594. // OK, do the inital probe to get us close to the bed.
  3595. // Then retrace the right amount and use that in subsequent probes
  3596. //
  3597. setup_for_endstop_move();
  3598. run_z_probe();
  3599. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3600. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3601. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3602. ext_position,
  3603. homing_feedrate[X_AXIS]/60,
  3604. active_extruder);
  3605. st_synchronize();
  3606. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3607. for( n=0; n<n_samples; n++) {
  3608. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3609. if ( n_legs) {
  3610. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3611. int rotational_direction, l;
  3612. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3613. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3614. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3615. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3616. //SERIAL_ECHOPAIR(" theta: ",theta);
  3617. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3618. //SERIAL_PROTOCOLLNPGM("");
  3619. for( l=0; l<n_legs-1; l++) {
  3620. if (rotational_direction==1)
  3621. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3622. else
  3623. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3624. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3625. if ( radius<0.0 )
  3626. radius = -radius;
  3627. X_current = X_probe_location + cos(theta) * radius;
  3628. Y_current = Y_probe_location + sin(theta) * radius;
  3629. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3630. X_current = X_MIN_POS;
  3631. if ( X_current>X_MAX_POS)
  3632. X_current = X_MAX_POS;
  3633. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3634. Y_current = Y_MIN_POS;
  3635. if ( Y_current>Y_MAX_POS)
  3636. Y_current = Y_MAX_POS;
  3637. if (verbose_level>3 ) {
  3638. SERIAL_ECHOPAIR("x: ", X_current);
  3639. SERIAL_ECHOPAIR("y: ", Y_current);
  3640. SERIAL_PROTOCOLLNPGM("");
  3641. }
  3642. do_blocking_move_to( X_current, Y_current, Z_current );
  3643. }
  3644. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3645. }
  3646. setup_for_endstop_move();
  3647. run_z_probe();
  3648. sample_set[n] = current_position[Z_AXIS];
  3649. //
  3650. // Get the current mean for the data points we have so far
  3651. //
  3652. sum=0.0;
  3653. for( j=0; j<=n; j++) {
  3654. sum = sum + sample_set[j];
  3655. }
  3656. mean = sum / (double (n+1));
  3657. //
  3658. // Now, use that mean to calculate the standard deviation for the
  3659. // data points we have so far
  3660. //
  3661. sum=0.0;
  3662. for( j=0; j<=n; j++) {
  3663. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3664. }
  3665. sigma = sqrt( sum / (double (n+1)) );
  3666. if (verbose_level > 1) {
  3667. SERIAL_PROTOCOL(n+1);
  3668. SERIAL_PROTOCOL(" of ");
  3669. SERIAL_PROTOCOL(n_samples);
  3670. SERIAL_PROTOCOLPGM(" z: ");
  3671. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3672. }
  3673. if (verbose_level > 2) {
  3674. SERIAL_PROTOCOL(" mean: ");
  3675. SERIAL_PROTOCOL_F(mean,6);
  3676. SERIAL_PROTOCOL(" sigma: ");
  3677. SERIAL_PROTOCOL_F(sigma,6);
  3678. }
  3679. if (verbose_level > 0)
  3680. SERIAL_PROTOCOLPGM("\n");
  3681. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3682. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3683. st_synchronize();
  3684. }
  3685. delay(1000);
  3686. clean_up_after_endstop_move();
  3687. // enable_endstops(true);
  3688. if (verbose_level > 0) {
  3689. SERIAL_PROTOCOLPGM("Mean: ");
  3690. SERIAL_PROTOCOL_F(mean, 6);
  3691. SERIAL_PROTOCOLPGM("\n");
  3692. }
  3693. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3694. SERIAL_PROTOCOL_F(sigma, 6);
  3695. SERIAL_PROTOCOLPGM("\n\n");
  3696. Sigma_Exit:
  3697. break;
  3698. }
  3699. #endif // Z_PROBE_REPEATABILITY_TEST
  3700. #endif // ENABLE_AUTO_BED_LEVELING
  3701. case 73: //M73 show percent done and time remaining
  3702. if(code_seen('P')) print_percent_done_normal = code_value();
  3703. if(code_seen('R')) print_time_remaining_normal = code_value();
  3704. if(code_seen('Q')) print_percent_done_silent = code_value();
  3705. if(code_seen('S')) print_time_remaining_silent = code_value();
  3706. SERIAL_ECHOPGM("NORMAL MODE: Percent done: ");
  3707. MYSERIAL.print(int(print_percent_done_normal));
  3708. SERIAL_ECHOPGM("; print time remaining in mins: ");
  3709. MYSERIAL.println(print_time_remaining_normal);
  3710. SERIAL_ECHOPGM("SILENT MODE: Percent done: ");
  3711. MYSERIAL.print(int(print_percent_done_silent));
  3712. SERIAL_ECHOPGM("; print time remaining in mins: ");
  3713. MYSERIAL.println(print_time_remaining_silent);
  3714. break;
  3715. case 104: // M104
  3716. if(setTargetedHotend(104)){
  3717. break;
  3718. }
  3719. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3720. setWatch();
  3721. break;
  3722. case 112: // M112 -Emergency Stop
  3723. kill();
  3724. break;
  3725. case 140: // M140 set bed temp
  3726. if (code_seen('S')) setTargetBed(code_value());
  3727. break;
  3728. case 105 : // M105
  3729. if(setTargetedHotend(105)){
  3730. break;
  3731. }
  3732. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3733. SERIAL_PROTOCOLPGM("ok T:");
  3734. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3735. SERIAL_PROTOCOLPGM(" /");
  3736. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3737. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3738. SERIAL_PROTOCOLPGM(" B:");
  3739. SERIAL_PROTOCOL_F(degBed(),1);
  3740. SERIAL_PROTOCOLPGM(" /");
  3741. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3742. #endif //TEMP_BED_PIN
  3743. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3744. SERIAL_PROTOCOLPGM(" T");
  3745. SERIAL_PROTOCOL(cur_extruder);
  3746. SERIAL_PROTOCOLPGM(":");
  3747. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3748. SERIAL_PROTOCOLPGM(" /");
  3749. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3750. }
  3751. #else
  3752. SERIAL_ERROR_START;
  3753. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3754. #endif
  3755. SERIAL_PROTOCOLPGM(" @:");
  3756. #ifdef EXTRUDER_WATTS
  3757. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3758. SERIAL_PROTOCOLPGM("W");
  3759. #else
  3760. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3761. #endif
  3762. SERIAL_PROTOCOLPGM(" B@:");
  3763. #ifdef BED_WATTS
  3764. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3765. SERIAL_PROTOCOLPGM("W");
  3766. #else
  3767. SERIAL_PROTOCOL(getHeaterPower(-1));
  3768. #endif
  3769. #ifdef SHOW_TEMP_ADC_VALUES
  3770. {float raw = 0.0;
  3771. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3772. SERIAL_PROTOCOLPGM(" ADC B:");
  3773. SERIAL_PROTOCOL_F(degBed(),1);
  3774. SERIAL_PROTOCOLPGM("C->");
  3775. raw = rawBedTemp();
  3776. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3777. SERIAL_PROTOCOLPGM(" Rb->");
  3778. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3779. SERIAL_PROTOCOLPGM(" Rxb->");
  3780. SERIAL_PROTOCOL_F(raw, 5);
  3781. #endif
  3782. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3783. SERIAL_PROTOCOLPGM(" T");
  3784. SERIAL_PROTOCOL(cur_extruder);
  3785. SERIAL_PROTOCOLPGM(":");
  3786. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3787. SERIAL_PROTOCOLPGM("C->");
  3788. raw = rawHotendTemp(cur_extruder);
  3789. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3790. SERIAL_PROTOCOLPGM(" Rt");
  3791. SERIAL_PROTOCOL(cur_extruder);
  3792. SERIAL_PROTOCOLPGM("->");
  3793. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3794. SERIAL_PROTOCOLPGM(" Rx");
  3795. SERIAL_PROTOCOL(cur_extruder);
  3796. SERIAL_PROTOCOLPGM("->");
  3797. SERIAL_PROTOCOL_F(raw, 5);
  3798. }}
  3799. #endif
  3800. SERIAL_PROTOCOLLN("");
  3801. KEEPALIVE_STATE(NOT_BUSY);
  3802. return;
  3803. break;
  3804. case 109:
  3805. {// M109 - Wait for extruder heater to reach target.
  3806. if(setTargetedHotend(109)){
  3807. break;
  3808. }
  3809. LCD_MESSAGERPGM(MSG_HEATING);
  3810. heating_status = 1;
  3811. if (farm_mode) { prusa_statistics(1); };
  3812. #ifdef AUTOTEMP
  3813. autotemp_enabled=false;
  3814. #endif
  3815. if (code_seen('S')) {
  3816. setTargetHotend(code_value(), tmp_extruder);
  3817. CooldownNoWait = true;
  3818. } else if (code_seen('R')) {
  3819. setTargetHotend(code_value(), tmp_extruder);
  3820. CooldownNoWait = false;
  3821. }
  3822. #ifdef AUTOTEMP
  3823. if (code_seen('S')) autotemp_min=code_value();
  3824. if (code_seen('B')) autotemp_max=code_value();
  3825. if (code_seen('F'))
  3826. {
  3827. autotemp_factor=code_value();
  3828. autotemp_enabled=true;
  3829. }
  3830. #endif
  3831. setWatch();
  3832. codenum = millis();
  3833. /* See if we are heating up or cooling down */
  3834. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3835. KEEPALIVE_STATE(NOT_BUSY);
  3836. cancel_heatup = false;
  3837. wait_for_heater(codenum); //loops until target temperature is reached
  3838. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3839. KEEPALIVE_STATE(IN_HANDLER);
  3840. heating_status = 2;
  3841. if (farm_mode) { prusa_statistics(2); };
  3842. //starttime=millis();
  3843. previous_millis_cmd = millis();
  3844. }
  3845. break;
  3846. case 190: // M190 - Wait for bed heater to reach target.
  3847. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3848. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3849. heating_status = 3;
  3850. if (farm_mode) { prusa_statistics(1); };
  3851. if (code_seen('S'))
  3852. {
  3853. setTargetBed(code_value());
  3854. CooldownNoWait = true;
  3855. }
  3856. else if (code_seen('R'))
  3857. {
  3858. setTargetBed(code_value());
  3859. CooldownNoWait = false;
  3860. }
  3861. codenum = millis();
  3862. cancel_heatup = false;
  3863. target_direction = isHeatingBed(); // true if heating, false if cooling
  3864. KEEPALIVE_STATE(NOT_BUSY);
  3865. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3866. {
  3867. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3868. {
  3869. if (!farm_mode) {
  3870. float tt = degHotend(active_extruder);
  3871. SERIAL_PROTOCOLPGM("T:");
  3872. SERIAL_PROTOCOL(tt);
  3873. SERIAL_PROTOCOLPGM(" E:");
  3874. SERIAL_PROTOCOL((int)active_extruder);
  3875. SERIAL_PROTOCOLPGM(" B:");
  3876. SERIAL_PROTOCOL_F(degBed(), 1);
  3877. SERIAL_PROTOCOLLN("");
  3878. }
  3879. codenum = millis();
  3880. }
  3881. manage_heater();
  3882. manage_inactivity();
  3883. lcd_update();
  3884. }
  3885. LCD_MESSAGERPGM(MSG_BED_DONE);
  3886. KEEPALIVE_STATE(IN_HANDLER);
  3887. heating_status = 4;
  3888. previous_millis_cmd = millis();
  3889. #endif
  3890. break;
  3891. #if defined(FAN_PIN) && FAN_PIN > -1
  3892. case 106: //M106 Fan On
  3893. if (code_seen('S')){
  3894. fanSpeed=constrain(code_value(),0,255);
  3895. }
  3896. else {
  3897. fanSpeed=255;
  3898. }
  3899. break;
  3900. case 107: //M107 Fan Off
  3901. fanSpeed = 0;
  3902. break;
  3903. #endif //FAN_PIN
  3904. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3905. case 80: // M80 - Turn on Power Supply
  3906. SET_OUTPUT(PS_ON_PIN); //GND
  3907. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3908. // If you have a switch on suicide pin, this is useful
  3909. // if you want to start another print with suicide feature after
  3910. // a print without suicide...
  3911. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3912. SET_OUTPUT(SUICIDE_PIN);
  3913. WRITE(SUICIDE_PIN, HIGH);
  3914. #endif
  3915. #ifdef ULTIPANEL
  3916. powersupply = true;
  3917. LCD_MESSAGERPGM(WELCOME_MSG);
  3918. lcd_update();
  3919. #endif
  3920. break;
  3921. #endif
  3922. case 81: // M81 - Turn off Power Supply
  3923. disable_heater();
  3924. st_synchronize();
  3925. disable_e0();
  3926. disable_e1();
  3927. disable_e2();
  3928. finishAndDisableSteppers();
  3929. fanSpeed = 0;
  3930. delay(1000); // Wait a little before to switch off
  3931. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3932. st_synchronize();
  3933. suicide();
  3934. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3935. SET_OUTPUT(PS_ON_PIN);
  3936. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3937. #endif
  3938. #ifdef ULTIPANEL
  3939. powersupply = false;
  3940. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3941. /*
  3942. MACHNAME = "Prusa i3"
  3943. MSGOFF = "Vypnuto"
  3944. "Prusai3"" ""vypnuto""."
  3945. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3946. */
  3947. lcd_update();
  3948. #endif
  3949. break;
  3950. case 82:
  3951. axis_relative_modes[3] = false;
  3952. break;
  3953. case 83:
  3954. axis_relative_modes[3] = true;
  3955. break;
  3956. case 18: //compatibility
  3957. case 84: // M84
  3958. if(code_seen('S')){
  3959. stepper_inactive_time = code_value() * 1000;
  3960. }
  3961. else
  3962. {
  3963. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3964. if(all_axis)
  3965. {
  3966. st_synchronize();
  3967. disable_e0();
  3968. disable_e1();
  3969. disable_e2();
  3970. finishAndDisableSteppers();
  3971. }
  3972. else
  3973. {
  3974. st_synchronize();
  3975. if (code_seen('X')) disable_x();
  3976. if (code_seen('Y')) disable_y();
  3977. if (code_seen('Z')) disable_z();
  3978. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3979. if (code_seen('E')) {
  3980. disable_e0();
  3981. disable_e1();
  3982. disable_e2();
  3983. }
  3984. #endif
  3985. }
  3986. }
  3987. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  3988. print_time_remaining_init();
  3989. snmm_filaments_used = 0;
  3990. break;
  3991. case 85: // M85
  3992. if(code_seen('S')) {
  3993. max_inactive_time = code_value() * 1000;
  3994. }
  3995. break;
  3996. case 92: // M92
  3997. for(int8_t i=0; i < NUM_AXIS; i++)
  3998. {
  3999. if(code_seen(axis_codes[i]))
  4000. {
  4001. if(i == 3) { // E
  4002. float value = code_value();
  4003. if(value < 20.0) {
  4004. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4005. max_jerk[E_AXIS] *= factor;
  4006. max_feedrate[i] *= factor;
  4007. axis_steps_per_sqr_second[i] *= factor;
  4008. }
  4009. axis_steps_per_unit[i] = value;
  4010. }
  4011. else {
  4012. axis_steps_per_unit[i] = code_value();
  4013. }
  4014. }
  4015. }
  4016. break;
  4017. case 110: // M110 - reset line pos
  4018. if (code_seen('N'))
  4019. gcode_LastN = code_value_long();
  4020. break;
  4021. #ifdef HOST_KEEPALIVE_FEATURE
  4022. case 113: // M113 - Get or set Host Keepalive interval
  4023. if (code_seen('S')) {
  4024. host_keepalive_interval = (uint8_t)code_value_short();
  4025. NOMORE(host_keepalive_interval, 60);
  4026. } else {
  4027. SERIAL_ECHO_START;
  4028. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4029. SERIAL_PROTOCOLLN("");
  4030. }
  4031. break;
  4032. #endif
  4033. case 115: // M115
  4034. if (code_seen('V')) {
  4035. // Report the Prusa version number.
  4036. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4037. } else if (code_seen('U')) {
  4038. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4039. // pause the print and ask the user to upgrade the firmware.
  4040. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4041. } else {
  4042. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4043. }
  4044. break;
  4045. /* case 117: // M117 display message
  4046. starpos = (strchr(strchr_pointer + 5,'*'));
  4047. if(starpos!=NULL)
  4048. *(starpos)='\0';
  4049. lcd_setstatus(strchr_pointer + 5);
  4050. break;*/
  4051. case 114: // M114
  4052. SERIAL_PROTOCOLPGM("X:");
  4053. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4054. SERIAL_PROTOCOLPGM(" Y:");
  4055. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4056. SERIAL_PROTOCOLPGM(" Z:");
  4057. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4058. SERIAL_PROTOCOLPGM(" E:");
  4059. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4060. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4061. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4062. SERIAL_PROTOCOLPGM(" Y:");
  4063. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4064. SERIAL_PROTOCOLPGM(" Z:");
  4065. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4066. SERIAL_PROTOCOLLN("");
  4067. break;
  4068. case 120: // M120
  4069. enable_endstops(false) ;
  4070. break;
  4071. case 121: // M121
  4072. enable_endstops(true) ;
  4073. break;
  4074. case 119: // M119
  4075. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4076. SERIAL_PROTOCOLLN("");
  4077. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4078. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4079. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4080. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4081. }else{
  4082. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4083. }
  4084. SERIAL_PROTOCOLLN("");
  4085. #endif
  4086. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4087. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4088. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4089. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4090. }else{
  4091. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4092. }
  4093. SERIAL_PROTOCOLLN("");
  4094. #endif
  4095. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4096. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4097. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4098. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4099. }else{
  4100. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4101. }
  4102. SERIAL_PROTOCOLLN("");
  4103. #endif
  4104. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4105. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4106. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4107. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4108. }else{
  4109. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4110. }
  4111. SERIAL_PROTOCOLLN("");
  4112. #endif
  4113. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4114. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4115. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4116. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4117. }else{
  4118. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4119. }
  4120. SERIAL_PROTOCOLLN("");
  4121. #endif
  4122. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4123. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4124. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4125. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4126. }else{
  4127. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4128. }
  4129. SERIAL_PROTOCOLLN("");
  4130. #endif
  4131. break;
  4132. //TODO: update for all axis, use for loop
  4133. #ifdef BLINKM
  4134. case 150: // M150
  4135. {
  4136. byte red;
  4137. byte grn;
  4138. byte blu;
  4139. if(code_seen('R')) red = code_value();
  4140. if(code_seen('U')) grn = code_value();
  4141. if(code_seen('B')) blu = code_value();
  4142. SendColors(red,grn,blu);
  4143. }
  4144. break;
  4145. #endif //BLINKM
  4146. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4147. {
  4148. tmp_extruder = active_extruder;
  4149. if(code_seen('T')) {
  4150. tmp_extruder = code_value();
  4151. if(tmp_extruder >= EXTRUDERS) {
  4152. SERIAL_ECHO_START;
  4153. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4154. break;
  4155. }
  4156. }
  4157. if(code_seen('D')) {
  4158. float diameter = (float)code_value();
  4159. if (diameter == 0.0) {
  4160. // setting any extruder filament size disables volumetric on the assumption that
  4161. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4162. // for all extruders
  4163. volumetric_enabled = false;
  4164. } else {
  4165. filament_size[tmp_extruder] = (float)code_value();
  4166. // make sure all extruders have some sane value for the filament size
  4167. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4168. #if EXTRUDERS > 1
  4169. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4170. #if EXTRUDERS > 2
  4171. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4172. #endif
  4173. #endif
  4174. volumetric_enabled = true;
  4175. }
  4176. } else {
  4177. //reserved for setting filament diameter via UFID or filament measuring device
  4178. break;
  4179. }
  4180. calculate_volumetric_multipliers();
  4181. }
  4182. break;
  4183. case 201: // M201
  4184. for(int8_t i=0; i < NUM_AXIS; i++)
  4185. {
  4186. if(code_seen(axis_codes[i]))
  4187. {
  4188. max_acceleration_units_per_sq_second[i] = code_value();
  4189. }
  4190. }
  4191. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4192. reset_acceleration_rates();
  4193. break;
  4194. #if 0 // Not used for Sprinter/grbl gen6
  4195. case 202: // M202
  4196. for(int8_t i=0; i < NUM_AXIS; i++) {
  4197. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4198. }
  4199. break;
  4200. #endif
  4201. case 203: // M203 max feedrate mm/sec
  4202. for(int8_t i=0; i < NUM_AXIS; i++) {
  4203. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4204. }
  4205. break;
  4206. case 204: // M204 acclereration S normal moves T filmanent only moves
  4207. {
  4208. if(code_seen('S')) acceleration = code_value() ;
  4209. if(code_seen('T')) retract_acceleration = code_value() ;
  4210. }
  4211. break;
  4212. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4213. {
  4214. if(code_seen('S')) minimumfeedrate = code_value();
  4215. if(code_seen('T')) mintravelfeedrate = code_value();
  4216. if(code_seen('B')) minsegmenttime = code_value() ;
  4217. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4218. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4219. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4220. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4221. }
  4222. break;
  4223. case 206: // M206 additional homing offset
  4224. for(int8_t i=0; i < 3; i++)
  4225. {
  4226. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4227. }
  4228. break;
  4229. #ifdef FWRETRACT
  4230. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4231. {
  4232. if(code_seen('S'))
  4233. {
  4234. retract_length = code_value() ;
  4235. }
  4236. if(code_seen('F'))
  4237. {
  4238. retract_feedrate = code_value()/60 ;
  4239. }
  4240. if(code_seen('Z'))
  4241. {
  4242. retract_zlift = code_value() ;
  4243. }
  4244. }break;
  4245. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4246. {
  4247. if(code_seen('S'))
  4248. {
  4249. retract_recover_length = code_value() ;
  4250. }
  4251. if(code_seen('F'))
  4252. {
  4253. retract_recover_feedrate = code_value()/60 ;
  4254. }
  4255. }break;
  4256. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4257. {
  4258. if(code_seen('S'))
  4259. {
  4260. int t= code_value() ;
  4261. switch(t)
  4262. {
  4263. case 0:
  4264. {
  4265. autoretract_enabled=false;
  4266. retracted[0]=false;
  4267. #if EXTRUDERS > 1
  4268. retracted[1]=false;
  4269. #endif
  4270. #if EXTRUDERS > 2
  4271. retracted[2]=false;
  4272. #endif
  4273. }break;
  4274. case 1:
  4275. {
  4276. autoretract_enabled=true;
  4277. retracted[0]=false;
  4278. #if EXTRUDERS > 1
  4279. retracted[1]=false;
  4280. #endif
  4281. #if EXTRUDERS > 2
  4282. retracted[2]=false;
  4283. #endif
  4284. }break;
  4285. default:
  4286. SERIAL_ECHO_START;
  4287. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4288. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4289. SERIAL_ECHOLNPGM("\"");
  4290. }
  4291. }
  4292. }break;
  4293. #endif // FWRETRACT
  4294. #if EXTRUDERS > 1
  4295. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4296. {
  4297. if(setTargetedHotend(218)){
  4298. break;
  4299. }
  4300. if(code_seen('X'))
  4301. {
  4302. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4303. }
  4304. if(code_seen('Y'))
  4305. {
  4306. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4307. }
  4308. SERIAL_ECHO_START;
  4309. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4310. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4311. {
  4312. SERIAL_ECHO(" ");
  4313. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4314. SERIAL_ECHO(",");
  4315. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4316. }
  4317. SERIAL_ECHOLN("");
  4318. }break;
  4319. #endif
  4320. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4321. {
  4322. if (code_seen('B')) //backup current speed factor
  4323. {
  4324. saved_feedmultiply_mm = feedmultiply;
  4325. }
  4326. if(code_seen('S'))
  4327. {
  4328. feedmultiply = code_value() ;
  4329. }
  4330. if (code_seen('R')) { //restore previous feedmultiply
  4331. feedmultiply = saved_feedmultiply_mm;
  4332. }
  4333. }
  4334. break;
  4335. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4336. {
  4337. if(code_seen('S'))
  4338. {
  4339. int tmp_code = code_value();
  4340. if (code_seen('T'))
  4341. {
  4342. if(setTargetedHotend(221)){
  4343. break;
  4344. }
  4345. extruder_multiply[tmp_extruder] = tmp_code;
  4346. }
  4347. else
  4348. {
  4349. extrudemultiply = tmp_code ;
  4350. }
  4351. }
  4352. }
  4353. break;
  4354. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4355. {
  4356. if(code_seen('P')){
  4357. int pin_number = code_value(); // pin number
  4358. int pin_state = -1; // required pin state - default is inverted
  4359. if(code_seen('S')) pin_state = code_value(); // required pin state
  4360. if(pin_state >= -1 && pin_state <= 1){
  4361. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4362. {
  4363. if (sensitive_pins[i] == pin_number)
  4364. {
  4365. pin_number = -1;
  4366. break;
  4367. }
  4368. }
  4369. if (pin_number > -1)
  4370. {
  4371. int target = LOW;
  4372. st_synchronize();
  4373. pinMode(pin_number, INPUT);
  4374. switch(pin_state){
  4375. case 1:
  4376. target = HIGH;
  4377. break;
  4378. case 0:
  4379. target = LOW;
  4380. break;
  4381. case -1:
  4382. target = !digitalRead(pin_number);
  4383. break;
  4384. }
  4385. while(digitalRead(pin_number) != target){
  4386. manage_heater();
  4387. manage_inactivity();
  4388. lcd_update();
  4389. }
  4390. }
  4391. }
  4392. }
  4393. }
  4394. break;
  4395. #if NUM_SERVOS > 0
  4396. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4397. {
  4398. int servo_index = -1;
  4399. int servo_position = 0;
  4400. if (code_seen('P'))
  4401. servo_index = code_value();
  4402. if (code_seen('S')) {
  4403. servo_position = code_value();
  4404. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4405. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4406. servos[servo_index].attach(0);
  4407. #endif
  4408. servos[servo_index].write(servo_position);
  4409. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4410. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4411. servos[servo_index].detach();
  4412. #endif
  4413. }
  4414. else {
  4415. SERIAL_ECHO_START;
  4416. SERIAL_ECHO("Servo ");
  4417. SERIAL_ECHO(servo_index);
  4418. SERIAL_ECHOLN(" out of range");
  4419. }
  4420. }
  4421. else if (servo_index >= 0) {
  4422. SERIAL_PROTOCOL(MSG_OK);
  4423. SERIAL_PROTOCOL(" Servo ");
  4424. SERIAL_PROTOCOL(servo_index);
  4425. SERIAL_PROTOCOL(": ");
  4426. SERIAL_PROTOCOL(servos[servo_index].read());
  4427. SERIAL_PROTOCOLLN("");
  4428. }
  4429. }
  4430. break;
  4431. #endif // NUM_SERVOS > 0
  4432. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4433. case 300: // M300
  4434. {
  4435. int beepS = code_seen('S') ? code_value() : 110;
  4436. int beepP = code_seen('P') ? code_value() : 1000;
  4437. if (beepS > 0)
  4438. {
  4439. #if BEEPER > 0
  4440. tone(BEEPER, beepS);
  4441. delay(beepP);
  4442. noTone(BEEPER);
  4443. #elif defined(ULTRALCD)
  4444. lcd_buzz(beepS, beepP);
  4445. #elif defined(LCD_USE_I2C_BUZZER)
  4446. lcd_buzz(beepP, beepS);
  4447. #endif
  4448. }
  4449. else
  4450. {
  4451. delay(beepP);
  4452. }
  4453. }
  4454. break;
  4455. #endif // M300
  4456. #ifdef PIDTEMP
  4457. case 301: // M301
  4458. {
  4459. if(code_seen('P')) Kp = code_value();
  4460. if(code_seen('I')) Ki = scalePID_i(code_value());
  4461. if(code_seen('D')) Kd = scalePID_d(code_value());
  4462. #ifdef PID_ADD_EXTRUSION_RATE
  4463. if(code_seen('C')) Kc = code_value();
  4464. #endif
  4465. updatePID();
  4466. SERIAL_PROTOCOLRPGM(MSG_OK);
  4467. SERIAL_PROTOCOL(" p:");
  4468. SERIAL_PROTOCOL(Kp);
  4469. SERIAL_PROTOCOL(" i:");
  4470. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4471. SERIAL_PROTOCOL(" d:");
  4472. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4473. #ifdef PID_ADD_EXTRUSION_RATE
  4474. SERIAL_PROTOCOL(" c:");
  4475. //Kc does not have scaling applied above, or in resetting defaults
  4476. SERIAL_PROTOCOL(Kc);
  4477. #endif
  4478. SERIAL_PROTOCOLLN("");
  4479. }
  4480. break;
  4481. #endif //PIDTEMP
  4482. #ifdef PIDTEMPBED
  4483. case 304: // M304
  4484. {
  4485. if(code_seen('P')) bedKp = code_value();
  4486. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4487. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4488. updatePID();
  4489. SERIAL_PROTOCOLRPGM(MSG_OK);
  4490. SERIAL_PROTOCOL(" p:");
  4491. SERIAL_PROTOCOL(bedKp);
  4492. SERIAL_PROTOCOL(" i:");
  4493. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4494. SERIAL_PROTOCOL(" d:");
  4495. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4496. SERIAL_PROTOCOLLN("");
  4497. }
  4498. break;
  4499. #endif //PIDTEMP
  4500. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4501. {
  4502. #ifdef CHDK
  4503. SET_OUTPUT(CHDK);
  4504. WRITE(CHDK, HIGH);
  4505. chdkHigh = millis();
  4506. chdkActive = true;
  4507. #else
  4508. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4509. const uint8_t NUM_PULSES=16;
  4510. const float PULSE_LENGTH=0.01524;
  4511. for(int i=0; i < NUM_PULSES; i++) {
  4512. WRITE(PHOTOGRAPH_PIN, HIGH);
  4513. _delay_ms(PULSE_LENGTH);
  4514. WRITE(PHOTOGRAPH_PIN, LOW);
  4515. _delay_ms(PULSE_LENGTH);
  4516. }
  4517. delay(7.33);
  4518. for(int i=0; i < NUM_PULSES; i++) {
  4519. WRITE(PHOTOGRAPH_PIN, HIGH);
  4520. _delay_ms(PULSE_LENGTH);
  4521. WRITE(PHOTOGRAPH_PIN, LOW);
  4522. _delay_ms(PULSE_LENGTH);
  4523. }
  4524. #endif
  4525. #endif //chdk end if
  4526. }
  4527. break;
  4528. #ifdef DOGLCD
  4529. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4530. {
  4531. if (code_seen('C')) {
  4532. lcd_setcontrast( ((int)code_value())&63 );
  4533. }
  4534. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4535. SERIAL_PROTOCOL(lcd_contrast);
  4536. SERIAL_PROTOCOLLN("");
  4537. }
  4538. break;
  4539. #endif
  4540. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4541. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4542. {
  4543. float temp = .0;
  4544. if (code_seen('S')) temp=code_value();
  4545. set_extrude_min_temp(temp);
  4546. }
  4547. break;
  4548. #endif
  4549. case 303: // M303 PID autotune
  4550. {
  4551. float temp = 150.0;
  4552. int e=0;
  4553. int c=5;
  4554. if (code_seen('E')) e=code_value();
  4555. if (e<0)
  4556. temp=70;
  4557. if (code_seen('S')) temp=code_value();
  4558. if (code_seen('C')) c=code_value();
  4559. PID_autotune(temp, e, c);
  4560. }
  4561. break;
  4562. case 400: // M400 finish all moves
  4563. {
  4564. st_synchronize();
  4565. }
  4566. break;
  4567. #ifdef FILAMENT_SENSOR
  4568. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4569. {
  4570. #if (FILWIDTH_PIN > -1)
  4571. if(code_seen('N')) filament_width_nominal=code_value();
  4572. else{
  4573. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4574. SERIAL_PROTOCOLLN(filament_width_nominal);
  4575. }
  4576. #endif
  4577. }
  4578. break;
  4579. case 405: //M405 Turn on filament sensor for control
  4580. {
  4581. if(code_seen('D')) meas_delay_cm=code_value();
  4582. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4583. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4584. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4585. {
  4586. int temp_ratio = widthFil_to_size_ratio();
  4587. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4588. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4589. }
  4590. delay_index1=0;
  4591. delay_index2=0;
  4592. }
  4593. filament_sensor = true ;
  4594. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4595. //SERIAL_PROTOCOL(filament_width_meas);
  4596. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4597. //SERIAL_PROTOCOL(extrudemultiply);
  4598. }
  4599. break;
  4600. case 406: //M406 Turn off filament sensor for control
  4601. {
  4602. filament_sensor = false ;
  4603. }
  4604. break;
  4605. case 407: //M407 Display measured filament diameter
  4606. {
  4607. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4608. SERIAL_PROTOCOLLN(filament_width_meas);
  4609. }
  4610. break;
  4611. #endif
  4612. case 500: // M500 Store settings in EEPROM
  4613. {
  4614. Config_StoreSettings();
  4615. }
  4616. break;
  4617. case 501: // M501 Read settings from EEPROM
  4618. {
  4619. Config_RetrieveSettings();
  4620. }
  4621. break;
  4622. case 502: // M502 Revert to default settings
  4623. {
  4624. Config_ResetDefault();
  4625. }
  4626. break;
  4627. case 503: // M503 print settings currently in memory
  4628. {
  4629. Config_PrintSettings();
  4630. }
  4631. break;
  4632. case 509: //M509 Force language selection
  4633. {
  4634. lcd_force_language_selection();
  4635. SERIAL_ECHO_START;
  4636. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4637. }
  4638. break;
  4639. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4640. case 540:
  4641. {
  4642. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4643. }
  4644. break;
  4645. #endif
  4646. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4647. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4648. {
  4649. float value;
  4650. if (code_seen('Z'))
  4651. {
  4652. value = code_value();
  4653. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4654. {
  4655. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4656. SERIAL_ECHO_START;
  4657. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4658. SERIAL_PROTOCOLLN("");
  4659. }
  4660. else
  4661. {
  4662. SERIAL_ECHO_START;
  4663. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4664. SERIAL_ECHORPGM(MSG_Z_MIN);
  4665. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4666. SERIAL_ECHORPGM(MSG_Z_MAX);
  4667. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4668. SERIAL_PROTOCOLLN("");
  4669. }
  4670. }
  4671. else
  4672. {
  4673. SERIAL_ECHO_START;
  4674. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4675. SERIAL_ECHO(-zprobe_zoffset);
  4676. SERIAL_PROTOCOLLN("");
  4677. }
  4678. break;
  4679. }
  4680. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4681. #ifdef FILAMENTCHANGEENABLE
  4682. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4683. {
  4684. st_synchronize();
  4685. float target[4];
  4686. float lastpos[4];
  4687. if (farm_mode)
  4688. {
  4689. prusa_statistics(22);
  4690. }
  4691. feedmultiplyBckp=feedmultiply;
  4692. target[X_AXIS]=current_position[X_AXIS];
  4693. target[Y_AXIS]=current_position[Y_AXIS];
  4694. target[Z_AXIS]=current_position[Z_AXIS];
  4695. target[E_AXIS]=current_position[E_AXIS];
  4696. lastpos[X_AXIS]=current_position[X_AXIS];
  4697. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4698. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4699. lastpos[E_AXIS]=current_position[E_AXIS];
  4700. //Retract extruder
  4701. if(code_seen('E'))
  4702. {
  4703. target[E_AXIS]+= code_value();
  4704. }
  4705. else
  4706. {
  4707. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4708. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4709. #endif
  4710. }
  4711. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4712. //Lift Z
  4713. if(code_seen('Z'))
  4714. {
  4715. target[Z_AXIS]+= code_value();
  4716. }
  4717. else
  4718. {
  4719. #ifdef FILAMENTCHANGE_ZADD
  4720. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4721. // XXX: Removed unused var 'TooLowZ'
  4722. if(target[Z_AXIS] < 10){
  4723. target[Z_AXIS]+= 10 ;
  4724. }
  4725. #endif
  4726. }
  4727. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4728. //Move XY to side
  4729. if(code_seen('X'))
  4730. {
  4731. target[X_AXIS]+= code_value();
  4732. }
  4733. else
  4734. {
  4735. #ifdef FILAMENTCHANGE_XPOS
  4736. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4737. #endif
  4738. }
  4739. if(code_seen('Y'))
  4740. {
  4741. target[Y_AXIS]= code_value();
  4742. }
  4743. else
  4744. {
  4745. #ifdef FILAMENTCHANGE_YPOS
  4746. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4747. #endif
  4748. }
  4749. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4750. st_synchronize();
  4751. custom_message = true;
  4752. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4753. // Unload filament
  4754. if(code_seen('L'))
  4755. {
  4756. target[E_AXIS]+= code_value();
  4757. }
  4758. else
  4759. {
  4760. #ifdef SNMM
  4761. #else
  4762. #ifdef FILAMENTCHANGE_FINALRETRACT
  4763. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4764. #endif
  4765. #endif // SNMM
  4766. }
  4767. #ifdef SNMM
  4768. target[E_AXIS] += 12;
  4769. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4770. target[E_AXIS] += 6;
  4771. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4772. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4774. st_synchronize();
  4775. target[E_AXIS] += (FIL_COOLING);
  4776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4777. target[E_AXIS] += (FIL_COOLING*-1);
  4778. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4779. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4780. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4781. st_synchronize();
  4782. #else
  4783. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4784. #endif // SNMM
  4785. //finish moves
  4786. st_synchronize();
  4787. //disable extruder steppers so filament can be removed
  4788. disable_e0();
  4789. disable_e1();
  4790. disable_e2();
  4791. delay(100);
  4792. //Wait for user to insert filament
  4793. uint8_t cnt=0;
  4794. int counterBeep = 0;
  4795. lcd_wait_interact();
  4796. load_filament_time = millis();
  4797. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4798. while(!lcd_clicked()){
  4799. cnt++;
  4800. manage_heater();
  4801. manage_inactivity(true);
  4802. /*#ifdef SNMM
  4803. target[E_AXIS] += 0.002;
  4804. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4805. #endif // SNMM*/
  4806. if(cnt==0)
  4807. {
  4808. #if BEEPER > 0
  4809. if (counterBeep== 500){
  4810. counterBeep = 0;
  4811. }
  4812. SET_OUTPUT(BEEPER);
  4813. if (counterBeep== 0){
  4814. WRITE(BEEPER,HIGH);
  4815. }
  4816. if (counterBeep== 20){
  4817. WRITE(BEEPER,LOW);
  4818. }
  4819. counterBeep++;
  4820. #else
  4821. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4822. lcd_buzz(1000/6,100);
  4823. #else
  4824. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4825. #endif
  4826. #endif
  4827. }
  4828. }
  4829. KEEPALIVE_STATE(IN_HANDLER);
  4830. WRITE(BEEPER, LOW);
  4831. #ifdef SNMM
  4832. display_loading();
  4833. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4834. do {
  4835. target[E_AXIS] += 0.002;
  4836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4837. delay_keep_alive(2);
  4838. } while (!lcd_clicked());
  4839. KEEPALIVE_STATE(IN_HANDLER);
  4840. /*if (millis() - load_filament_time > 2) {
  4841. load_filament_time = millis();
  4842. target[E_AXIS] += 0.001;
  4843. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4844. }*/
  4845. #endif
  4846. //Filament inserted
  4847. //Feed the filament to the end of nozzle quickly
  4848. #ifdef SNMM
  4849. st_synchronize();
  4850. target[E_AXIS] += bowden_length[snmm_extruder];
  4851. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4852. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4854. target[E_AXIS] += 40;
  4855. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4856. target[E_AXIS] += 10;
  4857. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4858. #else
  4859. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4860. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4861. #endif // SNMM
  4862. //Extrude some filament
  4863. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4864. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4865. //Wait for user to check the state
  4866. lcd_change_fil_state = 0;
  4867. lcd_loading_filament();
  4868. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4869. lcd_change_fil_state = 0;
  4870. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4871. lcd_alright();
  4872. KEEPALIVE_STATE(IN_HANDLER);
  4873. switch(lcd_change_fil_state){
  4874. // Filament failed to load so load it again
  4875. case 2:
  4876. #ifdef SNMM
  4877. display_loading();
  4878. do {
  4879. target[E_AXIS] += 0.002;
  4880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4881. delay_keep_alive(2);
  4882. } while (!lcd_clicked());
  4883. st_synchronize();
  4884. target[E_AXIS] += bowden_length[snmm_extruder];
  4885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4886. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4888. target[E_AXIS] += 40;
  4889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4890. target[E_AXIS] += 10;
  4891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4892. #else
  4893. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4894. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4895. #endif
  4896. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4897. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4898. lcd_loading_filament();
  4899. break;
  4900. // Filament loaded properly but color is not clear
  4901. case 3:
  4902. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4903. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4904. lcd_loading_color();
  4905. break;
  4906. // Everything good
  4907. default:
  4908. lcd_change_success();
  4909. lcd_update_enable(true);
  4910. break;
  4911. }
  4912. }
  4913. //Not let's go back to print
  4914. //Feed a little of filament to stabilize pressure
  4915. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4917. //Retract
  4918. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4919. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4920. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4921. //Move XY back
  4922. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4923. //Move Z back
  4924. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4925. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4926. //Unretract
  4927. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4928. //Set E position to original
  4929. plan_set_e_position(lastpos[E_AXIS]);
  4930. //Recover feed rate
  4931. feedmultiply=feedmultiplyBckp;
  4932. char cmd[9];
  4933. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4934. enquecommand(cmd);
  4935. lcd_setstatuspgm(WELCOME_MSG);
  4936. custom_message = false;
  4937. custom_message_type = 0;
  4938. }
  4939. break;
  4940. #endif //FILAMENTCHANGEENABLE
  4941. case 601: {
  4942. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4943. }
  4944. break;
  4945. case 602: {
  4946. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4947. }
  4948. break;
  4949. #ifdef LIN_ADVANCE
  4950. case 900: // M900: Set LIN_ADVANCE options.
  4951. gcode_M900();
  4952. break;
  4953. #endif
  4954. case 907: // M907 Set digital trimpot motor current using axis codes.
  4955. {
  4956. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4957. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4958. if(code_seen('B')) digipot_current(4,code_value());
  4959. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4960. #endif
  4961. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4962. if(code_seen('X')) digipot_current(0, code_value());
  4963. #endif
  4964. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4965. if(code_seen('Z')) digipot_current(1, code_value());
  4966. #endif
  4967. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4968. if(code_seen('E')) digipot_current(2, code_value());
  4969. #endif
  4970. #ifdef DIGIPOT_I2C
  4971. // this one uses actual amps in floating point
  4972. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4973. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4974. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4975. #endif
  4976. }
  4977. break;
  4978. case 908: // M908 Control digital trimpot directly.
  4979. {
  4980. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4981. uint8_t channel,current;
  4982. if(code_seen('P')) channel=code_value();
  4983. if(code_seen('S')) current=code_value();
  4984. digitalPotWrite(channel, current);
  4985. #endif
  4986. }
  4987. break;
  4988. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4989. {
  4990. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4991. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4992. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4993. if(code_seen('B')) microstep_mode(4,code_value());
  4994. microstep_readings();
  4995. #endif
  4996. }
  4997. break;
  4998. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4999. {
  5000. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5001. if(code_seen('S')) switch((int)code_value())
  5002. {
  5003. case 1:
  5004. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5005. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5006. break;
  5007. case 2:
  5008. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5009. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5010. break;
  5011. }
  5012. microstep_readings();
  5013. #endif
  5014. }
  5015. break;
  5016. case 701: //M701: load filament
  5017. {
  5018. gcode_M701();
  5019. }
  5020. break;
  5021. case 702:
  5022. {
  5023. #ifdef SNMM
  5024. if (code_seen('U')) {
  5025. extr_unload_used(); //unload all filaments which were used in current print
  5026. }
  5027. else if (code_seen('C')) {
  5028. extr_unload(); //unload just current filament
  5029. }
  5030. else {
  5031. extr_unload_all(); //unload all filaments
  5032. }
  5033. #else
  5034. custom_message = true;
  5035. custom_message_type = 2;
  5036. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5037. current_position[E_AXIS] -= 80;
  5038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5039. st_synchronize();
  5040. lcd_setstatuspgm(WELCOME_MSG);
  5041. custom_message = false;
  5042. custom_message_type = 0;
  5043. #endif
  5044. }
  5045. break;
  5046. case 999: // M999: Restart after being stopped
  5047. Stopped = false;
  5048. lcd_reset_alert_level();
  5049. gcode_LastN = Stopped_gcode_LastN;
  5050. FlushSerialRequestResend();
  5051. break;
  5052. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5053. }
  5054. } // end if(code_seen('M')) (end of M codes)
  5055. else if(code_seen('T'))
  5056. {
  5057. int index;
  5058. st_synchronize();
  5059. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5060. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5061. SERIAL_ECHOLNPGM("Invalid T code.");
  5062. }
  5063. else {
  5064. if (*(strchr_pointer + index) == '?') {
  5065. tmp_extruder = choose_extruder_menu();
  5066. }
  5067. else {
  5068. tmp_extruder = code_value();
  5069. }
  5070. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5071. #ifdef SNMM
  5072. #ifdef LIN_ADVANCE
  5073. if (snmm_extruder != tmp_extruder)
  5074. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5075. #endif
  5076. snmm_extruder = tmp_extruder;
  5077. delay(100);
  5078. disable_e0();
  5079. disable_e1();
  5080. disable_e2();
  5081. pinMode(E_MUX0_PIN, OUTPUT);
  5082. pinMode(E_MUX1_PIN, OUTPUT);
  5083. delay(100);
  5084. SERIAL_ECHO_START;
  5085. SERIAL_ECHO("T:");
  5086. SERIAL_ECHOLN((int)tmp_extruder);
  5087. switch (tmp_extruder) {
  5088. case 1:
  5089. WRITE(E_MUX0_PIN, HIGH);
  5090. WRITE(E_MUX1_PIN, LOW);
  5091. break;
  5092. case 2:
  5093. WRITE(E_MUX0_PIN, LOW);
  5094. WRITE(E_MUX1_PIN, HIGH);
  5095. break;
  5096. case 3:
  5097. WRITE(E_MUX0_PIN, HIGH);
  5098. WRITE(E_MUX1_PIN, HIGH);
  5099. break;
  5100. default:
  5101. WRITE(E_MUX0_PIN, LOW);
  5102. WRITE(E_MUX1_PIN, LOW);
  5103. break;
  5104. }
  5105. delay(100);
  5106. #else
  5107. if (tmp_extruder >= EXTRUDERS) {
  5108. SERIAL_ECHO_START;
  5109. SERIAL_ECHOPGM("T");
  5110. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5111. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5112. }
  5113. else {
  5114. #if EXTRUDERS == 1
  5115. if (code_seen('F')) {
  5116. next_feedrate = code_value();
  5117. if (next_feedrate > 0.0) {
  5118. feedrate = next_feedrate;
  5119. }
  5120. }
  5121. #else
  5122. boolean make_move = false;
  5123. if (code_seen('F')) {
  5124. make_move = true;
  5125. next_feedrate = code_value();
  5126. if (next_feedrate > 0.0) {
  5127. feedrate = next_feedrate;
  5128. }
  5129. }
  5130. if (tmp_extruder != active_extruder) {
  5131. // Save current position to return to after applying extruder offset
  5132. memcpy(destination, current_position, sizeof(destination));
  5133. // Offset extruder (only by XY)
  5134. int i;
  5135. for (i = 0; i < 2; i++) {
  5136. current_position[i] = current_position[i] -
  5137. extruder_offset[i][active_extruder] +
  5138. extruder_offset[i][tmp_extruder];
  5139. }
  5140. // Set the new active extruder and position
  5141. active_extruder = tmp_extruder;
  5142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5143. // Move to the old position if 'F' was in the parameters
  5144. if (make_move && Stopped == false) {
  5145. prepare_move();
  5146. }
  5147. }
  5148. #endif
  5149. SERIAL_ECHO_START;
  5150. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5151. SERIAL_PROTOCOLLN((int)active_extruder);
  5152. }
  5153. #endif
  5154. }
  5155. } // end if(code_seen('T')) (end of T codes)
  5156. #ifdef DEBUG_DCODES
  5157. else if (code_seen('D')) // D codes (debug)
  5158. {
  5159. switch((int)code_value_uint8())
  5160. {
  5161. case 0: // D0 - Reset
  5162. if (*(strchr_pointer + 1) == 0) break;
  5163. MYSERIAL.println("D0 - Reset");
  5164. asm volatile("jmp 0x00000");
  5165. break;
  5166. case 1: // D1 - Clear EEPROM
  5167. {
  5168. MYSERIAL.println("D1 - Clear EEPROM");
  5169. cli();
  5170. for (int i = 0; i < 4096; i++)
  5171. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5172. sei();
  5173. }
  5174. break;
  5175. case 2: // D2 - Read/Write PIN
  5176. {
  5177. if (code_seen('P')) // Pin (0-255)
  5178. {
  5179. int pin = (int)code_value();
  5180. if ((pin >= 0) && (pin <= 255))
  5181. {
  5182. if (code_seen('F')) // Function in/out (0/1)
  5183. {
  5184. int fnc = (int)code_value();
  5185. if (fnc == 0) pinMode(pin, INPUT);
  5186. else if (fnc == 1) pinMode(pin, OUTPUT);
  5187. }
  5188. if (code_seen('V')) // Value (0/1)
  5189. {
  5190. int val = (int)code_value();
  5191. if (val == 0) digitalWrite(pin, LOW);
  5192. else if (val == 1) digitalWrite(pin, HIGH);
  5193. }
  5194. else
  5195. {
  5196. int val = (digitalRead(pin) != LOW)?1:0;
  5197. MYSERIAL.print("PIN");
  5198. MYSERIAL.print(pin);
  5199. MYSERIAL.print("=");
  5200. MYSERIAL.println(val);
  5201. }
  5202. }
  5203. }
  5204. }
  5205. break;
  5206. }
  5207. }
  5208. #endif //DEBUG_DCODES
  5209. else
  5210. {
  5211. SERIAL_ECHO_START;
  5212. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5213. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5214. SERIAL_ECHOLNPGM("\"");
  5215. }
  5216. KEEPALIVE_STATE(NOT_BUSY);
  5217. ClearToSend();
  5218. }
  5219. void FlushSerialRequestResend()
  5220. {
  5221. //char cmdbuffer[bufindr][100]="Resend:";
  5222. MYSERIAL.flush();
  5223. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5224. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5225. ClearToSend();
  5226. }
  5227. // Confirm the execution of a command, if sent from a serial line.
  5228. // Execution of a command from a SD card will not be confirmed.
  5229. void ClearToSend()
  5230. {
  5231. previous_millis_cmd = millis();
  5232. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5233. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5234. }
  5235. void update_currents() {
  5236. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5237. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5238. float tmp_motor[3];
  5239. //SERIAL_ECHOLNPGM("Currents updated: ");
  5240. if (destination[Z_AXIS] < Z_SILENT) {
  5241. //SERIAL_ECHOLNPGM("LOW");
  5242. for (uint8_t i = 0; i < 3; i++) {
  5243. digipot_current(i, current_low[i]);
  5244. /*MYSERIAL.print(int(i));
  5245. SERIAL_ECHOPGM(": ");
  5246. MYSERIAL.println(current_low[i]);*/
  5247. }
  5248. }
  5249. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5250. //SERIAL_ECHOLNPGM("HIGH");
  5251. for (uint8_t i = 0; i < 3; i++) {
  5252. digipot_current(i, current_high[i]);
  5253. /*MYSERIAL.print(int(i));
  5254. SERIAL_ECHOPGM(": ");
  5255. MYSERIAL.println(current_high[i]);*/
  5256. }
  5257. }
  5258. else {
  5259. for (uint8_t i = 0; i < 3; i++) {
  5260. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5261. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5262. digipot_current(i, tmp_motor[i]);
  5263. /*MYSERIAL.print(int(i));
  5264. SERIAL_ECHOPGM(": ");
  5265. MYSERIAL.println(tmp_motor[i]);*/
  5266. }
  5267. }
  5268. }
  5269. void get_coordinates()
  5270. {
  5271. // XXX: Unused var (set but not ref)
  5272. // bool seen[4]={false,false,false,false};
  5273. for(int8_t i=0; i < NUM_AXIS; i++) {
  5274. if(code_seen(axis_codes[i]))
  5275. {
  5276. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5277. // seen[i]=true;
  5278. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5279. }
  5280. else destination[i] = current_position[i]; //Are these else lines really needed?
  5281. }
  5282. if(code_seen('F')) {
  5283. next_feedrate = code_value();
  5284. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5285. }
  5286. }
  5287. void get_arc_coordinates()
  5288. {
  5289. #ifdef SF_ARC_FIX
  5290. bool relative_mode_backup = relative_mode;
  5291. relative_mode = true;
  5292. #endif
  5293. get_coordinates();
  5294. #ifdef SF_ARC_FIX
  5295. relative_mode=relative_mode_backup;
  5296. #endif
  5297. if(code_seen('I')) {
  5298. offset[0] = code_value();
  5299. }
  5300. else {
  5301. offset[0] = 0.0;
  5302. }
  5303. if(code_seen('J')) {
  5304. offset[1] = code_value();
  5305. }
  5306. else {
  5307. offset[1] = 0.0;
  5308. }
  5309. }
  5310. void clamp_to_software_endstops(float target[3])
  5311. {
  5312. #ifdef DEBUG_DISABLE_SWLIMITS
  5313. return;
  5314. #endif //DEBUG_DISABLE_SWLIMITS
  5315. world2machine_clamp(target[0], target[1]);
  5316. // Clamp the Z coordinate.
  5317. if (min_software_endstops) {
  5318. float negative_z_offset = 0;
  5319. #ifdef ENABLE_AUTO_BED_LEVELING
  5320. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5321. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5322. #endif
  5323. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5324. }
  5325. if (max_software_endstops) {
  5326. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5327. }
  5328. }
  5329. #ifdef MESH_BED_LEVELING
  5330. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5331. float dx = x - current_position[X_AXIS];
  5332. float dy = y - current_position[Y_AXIS];
  5333. float dz = z - current_position[Z_AXIS];
  5334. int n_segments = 0;
  5335. if (mbl.active) {
  5336. float len = abs(dx) + abs(dy);
  5337. if (len > 0)
  5338. // Split to 3cm segments or shorter.
  5339. n_segments = int(ceil(len / 30.f));
  5340. }
  5341. if (n_segments > 1) {
  5342. float de = e - current_position[E_AXIS];
  5343. for (int i = 1; i < n_segments; ++ i) {
  5344. float t = float(i) / float(n_segments);
  5345. if (mbl.active == false) return;
  5346. plan_buffer_line(
  5347. current_position[X_AXIS] + t * dx,
  5348. current_position[Y_AXIS] + t * dy,
  5349. current_position[Z_AXIS] + t * dz,
  5350. current_position[E_AXIS] + t * de,
  5351. feed_rate, extruder);
  5352. }
  5353. }
  5354. // The rest of the path.
  5355. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5356. current_position[X_AXIS] = x;
  5357. current_position[Y_AXIS] = y;
  5358. current_position[Z_AXIS] = z;
  5359. current_position[E_AXIS] = e;
  5360. }
  5361. #endif // MESH_BED_LEVELING
  5362. void prepare_move()
  5363. {
  5364. clamp_to_software_endstops(destination);
  5365. previous_millis_cmd = millis();
  5366. // Do not use feedmultiply for E or Z only moves
  5367. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5368. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5369. }
  5370. else {
  5371. #ifdef MESH_BED_LEVELING
  5372. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5373. #else
  5374. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5375. #endif
  5376. }
  5377. for(int8_t i=0; i < NUM_AXIS; i++) {
  5378. current_position[i] = destination[i];
  5379. }
  5380. }
  5381. void prepare_arc_move(char isclockwise) {
  5382. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5383. // Trace the arc
  5384. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5385. // As far as the parser is concerned, the position is now == target. In reality the
  5386. // motion control system might still be processing the action and the real tool position
  5387. // in any intermediate location.
  5388. for(int8_t i=0; i < NUM_AXIS; i++) {
  5389. current_position[i] = destination[i];
  5390. }
  5391. previous_millis_cmd = millis();
  5392. }
  5393. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5394. #if defined(FAN_PIN)
  5395. #if CONTROLLERFAN_PIN == FAN_PIN
  5396. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5397. #endif
  5398. #endif
  5399. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5400. unsigned long lastMotorCheck = 0;
  5401. void controllerFan()
  5402. {
  5403. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5404. {
  5405. lastMotorCheck = millis();
  5406. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5407. #if EXTRUDERS > 2
  5408. || !READ(E2_ENABLE_PIN)
  5409. #endif
  5410. #if EXTRUDER > 1
  5411. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5412. || !READ(X2_ENABLE_PIN)
  5413. #endif
  5414. || !READ(E1_ENABLE_PIN)
  5415. #endif
  5416. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5417. {
  5418. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5419. }
  5420. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5421. {
  5422. digitalWrite(CONTROLLERFAN_PIN, 0);
  5423. analogWrite(CONTROLLERFAN_PIN, 0);
  5424. }
  5425. else
  5426. {
  5427. // allows digital or PWM fan output to be used (see M42 handling)
  5428. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5429. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5430. }
  5431. }
  5432. }
  5433. #endif
  5434. #ifdef TEMP_STAT_LEDS
  5435. static bool blue_led = false;
  5436. static bool red_led = false;
  5437. static uint32_t stat_update = 0;
  5438. void handle_status_leds(void) {
  5439. float max_temp = 0.0;
  5440. if(millis() > stat_update) {
  5441. stat_update += 500; // Update every 0.5s
  5442. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5443. max_temp = max(max_temp, degHotend(cur_extruder));
  5444. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5445. }
  5446. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5447. max_temp = max(max_temp, degTargetBed());
  5448. max_temp = max(max_temp, degBed());
  5449. #endif
  5450. if((max_temp > 55.0) && (red_led == false)) {
  5451. digitalWrite(STAT_LED_RED, 1);
  5452. digitalWrite(STAT_LED_BLUE, 0);
  5453. red_led = true;
  5454. blue_led = false;
  5455. }
  5456. if((max_temp < 54.0) && (blue_led == false)) {
  5457. digitalWrite(STAT_LED_RED, 0);
  5458. digitalWrite(STAT_LED_BLUE, 1);
  5459. red_led = false;
  5460. blue_led = true;
  5461. }
  5462. }
  5463. }
  5464. #endif
  5465. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5466. {
  5467. #if defined(KILL_PIN) && KILL_PIN > -1
  5468. static int killCount = 0; // make the inactivity button a bit less responsive
  5469. const int KILL_DELAY = 10000;
  5470. #endif
  5471. if(buflen < (BUFSIZE-1)){
  5472. get_command();
  5473. }
  5474. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5475. if(max_inactive_time)
  5476. kill();
  5477. if(stepper_inactive_time) {
  5478. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5479. {
  5480. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5481. disable_x();
  5482. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5483. disable_y();
  5484. disable_z();
  5485. disable_e0();
  5486. disable_e1();
  5487. disable_e2();
  5488. }
  5489. }
  5490. }
  5491. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5492. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5493. {
  5494. chdkActive = false;
  5495. WRITE(CHDK, LOW);
  5496. }
  5497. #endif
  5498. #if defined(KILL_PIN) && KILL_PIN > -1
  5499. // Check if the kill button was pressed and wait just in case it was an accidental
  5500. // key kill key press
  5501. // -------------------------------------------------------------------------------
  5502. if( 0 == READ(KILL_PIN) )
  5503. {
  5504. killCount++;
  5505. }
  5506. else if (killCount > 0)
  5507. {
  5508. killCount--;
  5509. }
  5510. // Exceeded threshold and we can confirm that it was not accidental
  5511. // KILL the machine
  5512. // ----------------------------------------------------------------
  5513. if ( killCount >= KILL_DELAY)
  5514. {
  5515. kill();
  5516. }
  5517. #endif
  5518. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5519. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5520. #endif
  5521. #ifdef EXTRUDER_RUNOUT_PREVENT
  5522. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5523. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5524. {
  5525. bool oldstatus=READ(E0_ENABLE_PIN);
  5526. enable_e0();
  5527. float oldepos=current_position[E_AXIS];
  5528. float oldedes=destination[E_AXIS];
  5529. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5530. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5531. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5532. current_position[E_AXIS]=oldepos;
  5533. destination[E_AXIS]=oldedes;
  5534. plan_set_e_position(oldepos);
  5535. previous_millis_cmd=millis();
  5536. st_synchronize();
  5537. WRITE(E0_ENABLE_PIN,oldstatus);
  5538. }
  5539. #endif
  5540. #ifdef TEMP_STAT_LEDS
  5541. handle_status_leds();
  5542. #endif
  5543. check_axes_activity();
  5544. }
  5545. void kill(const char *full_screen_message)
  5546. {
  5547. cli(); // Stop interrupts
  5548. disable_heater();
  5549. disable_x();
  5550. // SERIAL_ECHOLNPGM("kill - disable Y");
  5551. disable_y();
  5552. disable_z();
  5553. disable_e0();
  5554. disable_e1();
  5555. disable_e2();
  5556. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5557. pinMode(PS_ON_PIN,INPUT);
  5558. #endif
  5559. SERIAL_ERROR_START;
  5560. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5561. if (full_screen_message != NULL) {
  5562. SERIAL_ERRORLNRPGM(full_screen_message);
  5563. lcd_display_message_fullscreen_P(full_screen_message);
  5564. } else {
  5565. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5566. }
  5567. // FMC small patch to update the LCD before ending
  5568. sei(); // enable interrupts
  5569. for ( int i=5; i--; lcd_update())
  5570. {
  5571. delay(200);
  5572. }
  5573. cli(); // disable interrupts
  5574. suicide();
  5575. while(1) { /* Intentionally left empty */ } // Wait for reset
  5576. }
  5577. void Stop()
  5578. {
  5579. disable_heater();
  5580. if(Stopped == false) {
  5581. Stopped = true;
  5582. lcd_print_stop();
  5583. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5584. SERIAL_ERROR_START;
  5585. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5586. LCD_MESSAGERPGM(MSG_STOPPED);
  5587. }
  5588. }
  5589. bool IsStopped() { return Stopped; };
  5590. #ifdef FAST_PWM_FAN
  5591. void setPwmFrequency(uint8_t pin, int val)
  5592. {
  5593. val &= 0x07;
  5594. switch(digitalPinToTimer(pin))
  5595. {
  5596. #if defined(TCCR0A)
  5597. case TIMER0A:
  5598. case TIMER0B:
  5599. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5600. // TCCR0B |= val;
  5601. break;
  5602. #endif
  5603. #if defined(TCCR1A)
  5604. case TIMER1A:
  5605. case TIMER1B:
  5606. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5607. // TCCR1B |= val;
  5608. break;
  5609. #endif
  5610. #if defined(TCCR2)
  5611. case TIMER2:
  5612. case TIMER2:
  5613. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5614. TCCR2 |= val;
  5615. break;
  5616. #endif
  5617. #if defined(TCCR2A)
  5618. case TIMER2A:
  5619. case TIMER2B:
  5620. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5621. TCCR2B |= val;
  5622. break;
  5623. #endif
  5624. #if defined(TCCR3A)
  5625. case TIMER3A:
  5626. case TIMER3B:
  5627. case TIMER3C:
  5628. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5629. TCCR3B |= val;
  5630. break;
  5631. #endif
  5632. #if defined(TCCR4A)
  5633. case TIMER4A:
  5634. case TIMER4B:
  5635. case TIMER4C:
  5636. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5637. TCCR4B |= val;
  5638. break;
  5639. #endif
  5640. #if defined(TCCR5A)
  5641. case TIMER5A:
  5642. case TIMER5B:
  5643. case TIMER5C:
  5644. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5645. TCCR5B |= val;
  5646. break;
  5647. #endif
  5648. }
  5649. }
  5650. #endif //FAST_PWM_FAN
  5651. bool setTargetedHotend(int code){
  5652. tmp_extruder = active_extruder;
  5653. if(code_seen('T')) {
  5654. tmp_extruder = code_value();
  5655. if(tmp_extruder >= EXTRUDERS) {
  5656. SERIAL_ECHO_START;
  5657. switch(code){
  5658. case 104:
  5659. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5660. break;
  5661. case 105:
  5662. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5663. break;
  5664. case 109:
  5665. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5666. break;
  5667. case 218:
  5668. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5669. break;
  5670. case 221:
  5671. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5672. break;
  5673. }
  5674. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5675. return true;
  5676. }
  5677. }
  5678. return false;
  5679. }
  5680. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5681. {
  5682. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5683. {
  5684. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5685. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5686. }
  5687. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5688. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5689. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5690. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5691. total_filament_used = 0;
  5692. }
  5693. float calculate_volumetric_multiplier(float diameter) {
  5694. float area = .0;
  5695. float radius = .0;
  5696. radius = diameter * .5;
  5697. if (! volumetric_enabled || radius == 0) {
  5698. area = 1;
  5699. }
  5700. else {
  5701. area = M_PI * pow(radius, 2);
  5702. }
  5703. return 1.0 / area;
  5704. }
  5705. void calculate_volumetric_multipliers() {
  5706. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5707. #if EXTRUDERS > 1
  5708. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5709. #if EXTRUDERS > 2
  5710. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5711. #endif
  5712. #endif
  5713. }
  5714. void delay_keep_alive(unsigned int ms)
  5715. {
  5716. for (;;) {
  5717. manage_heater();
  5718. // Manage inactivity, but don't disable steppers on timeout.
  5719. manage_inactivity(true);
  5720. lcd_update();
  5721. if (ms == 0)
  5722. break;
  5723. else if (ms >= 50) {
  5724. delay(50);
  5725. ms -= 50;
  5726. } else {
  5727. delay(ms);
  5728. ms = 0;
  5729. }
  5730. }
  5731. }
  5732. void wait_for_heater(long codenum) {
  5733. #ifdef TEMP_RESIDENCY_TIME
  5734. long residencyStart;
  5735. residencyStart = -1;
  5736. /* continue to loop until we have reached the target temp
  5737. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5738. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5739. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5740. #else
  5741. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5742. #endif //TEMP_RESIDENCY_TIME
  5743. if ((millis() - codenum) > 1000UL)
  5744. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5745. if (!farm_mode) {
  5746. SERIAL_PROTOCOLPGM("T:");
  5747. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5748. SERIAL_PROTOCOLPGM(" E:");
  5749. SERIAL_PROTOCOL((int)tmp_extruder);
  5750. #ifdef TEMP_RESIDENCY_TIME
  5751. SERIAL_PROTOCOLPGM(" W:");
  5752. if (residencyStart > -1)
  5753. {
  5754. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5755. SERIAL_PROTOCOLLN(codenum);
  5756. }
  5757. else
  5758. {
  5759. SERIAL_PROTOCOLLN("?");
  5760. }
  5761. }
  5762. #else
  5763. SERIAL_PROTOCOLLN("");
  5764. #endif
  5765. codenum = millis();
  5766. }
  5767. manage_heater();
  5768. manage_inactivity();
  5769. lcd_update();
  5770. #ifdef TEMP_RESIDENCY_TIME
  5771. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5772. or when current temp falls outside the hysteresis after target temp was reached */
  5773. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5774. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5775. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5776. {
  5777. residencyStart = millis();
  5778. }
  5779. #endif //TEMP_RESIDENCY_TIME
  5780. }
  5781. }
  5782. void check_babystep() {
  5783. int babystep_z;
  5784. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5785. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5786. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5787. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5788. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5789. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5790. lcd_update_enable(true);
  5791. }
  5792. }
  5793. #ifdef DIS
  5794. void d_setup()
  5795. {
  5796. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5797. pinMode(D_DATA, INPUT_PULLUP);
  5798. pinMode(D_REQUIRE, OUTPUT);
  5799. digitalWrite(D_REQUIRE, HIGH);
  5800. }
  5801. float d_ReadData()
  5802. {
  5803. int digit[13];
  5804. String mergeOutput;
  5805. float output;
  5806. digitalWrite(D_REQUIRE, HIGH);
  5807. for (int i = 0; i<13; i++)
  5808. {
  5809. for (int j = 0; j < 4; j++)
  5810. {
  5811. while (digitalRead(D_DATACLOCK) == LOW) {}
  5812. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5813. bitWrite(digit[i], j, digitalRead(D_DATA));
  5814. }
  5815. }
  5816. digitalWrite(D_REQUIRE, LOW);
  5817. mergeOutput = "";
  5818. output = 0;
  5819. for (int r = 5; r <= 10; r++) //Merge digits
  5820. {
  5821. mergeOutput += digit[r];
  5822. }
  5823. output = mergeOutput.toFloat();
  5824. if (digit[4] == 8) //Handle sign
  5825. {
  5826. output *= -1;
  5827. }
  5828. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5829. {
  5830. output /= 10;
  5831. }
  5832. return output;
  5833. }
  5834. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5835. int t1 = 0;
  5836. int t_delay = 0;
  5837. int digit[13];
  5838. int m;
  5839. char str[3];
  5840. //String mergeOutput;
  5841. char mergeOutput[15];
  5842. float output;
  5843. int mesh_point = 0; //index number of calibration point
  5844. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5845. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5846. float mesh_home_z_search = 4;
  5847. float row[x_points_num];
  5848. int ix = 0;
  5849. int iy = 0;
  5850. char* filename_wldsd = "wldsd.txt";
  5851. char data_wldsd[70];
  5852. char numb_wldsd[10];
  5853. d_setup();
  5854. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5855. // We don't know where we are! HOME!
  5856. // Push the commands to the front of the message queue in the reverse order!
  5857. // There shall be always enough space reserved for these commands.
  5858. repeatcommand_front(); // repeat G80 with all its parameters
  5859. enquecommand_front_P((PSTR("G28 W0")));
  5860. enquecommand_front_P((PSTR("G1 Z5")));
  5861. return;
  5862. }
  5863. bool custom_message_old = custom_message;
  5864. unsigned int custom_message_type_old = custom_message_type;
  5865. unsigned int custom_message_state_old = custom_message_state;
  5866. custom_message = true;
  5867. custom_message_type = 1;
  5868. custom_message_state = (x_points_num * y_points_num) + 10;
  5869. lcd_update(1);
  5870. mbl.reset();
  5871. babystep_undo();
  5872. card.openFile(filename_wldsd, false);
  5873. current_position[Z_AXIS] = mesh_home_z_search;
  5874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5875. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5876. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5877. setup_for_endstop_move(false);
  5878. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5879. SERIAL_PROTOCOL(x_points_num);
  5880. SERIAL_PROTOCOLPGM(",");
  5881. SERIAL_PROTOCOL(y_points_num);
  5882. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5883. SERIAL_PROTOCOL(mesh_home_z_search);
  5884. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5885. SERIAL_PROTOCOL(x_dimension);
  5886. SERIAL_PROTOCOLPGM(",");
  5887. SERIAL_PROTOCOL(y_dimension);
  5888. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5889. while (mesh_point != x_points_num * y_points_num) {
  5890. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5891. iy = mesh_point / x_points_num;
  5892. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5893. float z0 = 0.f;
  5894. current_position[Z_AXIS] = mesh_home_z_search;
  5895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5896. st_synchronize();
  5897. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5898. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5900. st_synchronize();
  5901. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5902. break;
  5903. card.closefile();
  5904. }
  5905. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5906. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5907. //strcat(data_wldsd, numb_wldsd);
  5908. //MYSERIAL.println(data_wldsd);
  5909. //delay(1000);
  5910. //delay(3000);
  5911. //t1 = millis();
  5912. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5913. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5914. memset(digit, 0, sizeof(digit));
  5915. //cli();
  5916. digitalWrite(D_REQUIRE, LOW);
  5917. for (int i = 0; i<13; i++)
  5918. {
  5919. //t1 = millis();
  5920. for (int j = 0; j < 4; j++)
  5921. {
  5922. while (digitalRead(D_DATACLOCK) == LOW) {}
  5923. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5924. bitWrite(digit[i], j, digitalRead(D_DATA));
  5925. }
  5926. //t_delay = (millis() - t1);
  5927. //SERIAL_PROTOCOLPGM(" ");
  5928. //SERIAL_PROTOCOL_F(t_delay, 5);
  5929. //SERIAL_PROTOCOLPGM(" ");
  5930. }
  5931. //sei();
  5932. digitalWrite(D_REQUIRE, HIGH);
  5933. mergeOutput[0] = '\0';
  5934. output = 0;
  5935. for (int r = 5; r <= 10; r++) //Merge digits
  5936. {
  5937. sprintf(str, "%d", digit[r]);
  5938. strcat(mergeOutput, str);
  5939. }
  5940. output = atof(mergeOutput);
  5941. if (digit[4] == 8) //Handle sign
  5942. {
  5943. output *= -1;
  5944. }
  5945. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5946. {
  5947. output *= 0.1;
  5948. }
  5949. //output = d_ReadData();
  5950. //row[ix] = current_position[Z_AXIS];
  5951. memset(data_wldsd, 0, sizeof(data_wldsd));
  5952. for (int i = 0; i <3; i++) {
  5953. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5954. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5955. strcat(data_wldsd, numb_wldsd);
  5956. strcat(data_wldsd, ";");
  5957. }
  5958. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5959. dtostrf(output, 8, 5, numb_wldsd);
  5960. strcat(data_wldsd, numb_wldsd);
  5961. //strcat(data_wldsd, ";");
  5962. card.write_command(data_wldsd);
  5963. //row[ix] = d_ReadData();
  5964. row[ix] = output; // current_position[Z_AXIS];
  5965. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5966. for (int i = 0; i < x_points_num; i++) {
  5967. SERIAL_PROTOCOLPGM(" ");
  5968. SERIAL_PROTOCOL_F(row[i], 5);
  5969. }
  5970. SERIAL_PROTOCOLPGM("\n");
  5971. }
  5972. custom_message_state--;
  5973. mesh_point++;
  5974. lcd_update(1);
  5975. }
  5976. card.closefile();
  5977. }
  5978. #endif
  5979. void temp_compensation_start() {
  5980. custom_message = true;
  5981. custom_message_type = 5;
  5982. custom_message_state = PINDA_HEAT_T + 1;
  5983. lcd_update(2);
  5984. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5985. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5986. }
  5987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5988. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5989. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5990. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5992. st_synchronize();
  5993. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5994. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5995. delay_keep_alive(1000);
  5996. custom_message_state = PINDA_HEAT_T - i;
  5997. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5998. else lcd_update(1);
  5999. }
  6000. custom_message_type = 0;
  6001. custom_message_state = 0;
  6002. custom_message = false;
  6003. }
  6004. void temp_compensation_apply() {
  6005. int i_add;
  6006. int z_shift = 0;
  6007. float z_shift_mm;
  6008. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6009. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6010. i_add = (target_temperature_bed - 60) / 10;
  6011. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6012. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6013. }else {
  6014. //interpolation
  6015. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6016. }
  6017. SERIAL_PROTOCOLPGM("\n");
  6018. SERIAL_PROTOCOLPGM("Z shift applied:");
  6019. MYSERIAL.print(z_shift_mm);
  6020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6021. st_synchronize();
  6022. plan_set_z_position(current_position[Z_AXIS]);
  6023. }
  6024. else {
  6025. //we have no temp compensation data
  6026. }
  6027. }
  6028. float temp_comp_interpolation(float inp_temperature) {
  6029. //cubic spline interpolation
  6030. int n, i, j;
  6031. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6032. int shift[10];
  6033. int temp_C[10];
  6034. n = 6; //number of measured points
  6035. shift[0] = 0;
  6036. for (i = 0; i < n; i++) {
  6037. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6038. temp_C[i] = 50 + i * 10; //temperature in C
  6039. x[i] = (float)temp_C[i];
  6040. f[i] = (float)shift[i];
  6041. }
  6042. if (inp_temperature < x[0]) return 0;
  6043. for (i = n - 1; i>0; i--) {
  6044. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6045. h[i - 1] = x[i] - x[i - 1];
  6046. }
  6047. //*********** formation of h, s , f matrix **************
  6048. for (i = 1; i<n - 1; i++) {
  6049. m[i][i] = 2 * (h[i - 1] + h[i]);
  6050. if (i != 1) {
  6051. m[i][i - 1] = h[i - 1];
  6052. m[i - 1][i] = h[i - 1];
  6053. }
  6054. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6055. }
  6056. //*********** forward elimination **************
  6057. for (i = 1; i<n - 2; i++) {
  6058. temp = (m[i + 1][i] / m[i][i]);
  6059. for (j = 1; j <= n - 1; j++)
  6060. m[i + 1][j] -= temp*m[i][j];
  6061. }
  6062. //*********** backward substitution *********
  6063. for (i = n - 2; i>0; i--) {
  6064. sum = 0;
  6065. for (j = i; j <= n - 2; j++)
  6066. sum += m[i][j] * s[j];
  6067. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6068. }
  6069. for (i = 0; i<n - 1; i++)
  6070. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6071. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6072. b = s[i] / 2;
  6073. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6074. d = f[i];
  6075. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6076. }
  6077. return sum;
  6078. }
  6079. void long_pause() //long pause print
  6080. {
  6081. st_synchronize();
  6082. //save currently set parameters to global variables
  6083. saved_feedmultiply = feedmultiply;
  6084. HotendTempBckp = degTargetHotend(active_extruder);
  6085. fanSpeedBckp = fanSpeed;
  6086. start_pause_print = millis();
  6087. //save position
  6088. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6089. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6090. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6091. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6092. //retract
  6093. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6095. //lift z
  6096. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6097. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6099. //set nozzle target temperature to 0
  6100. setTargetHotend(0, 0);
  6101. setTargetHotend(0, 1);
  6102. setTargetHotend(0, 2);
  6103. //Move XY to side
  6104. current_position[X_AXIS] = X_PAUSE_POS;
  6105. current_position[Y_AXIS] = Y_PAUSE_POS;
  6106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6107. // Turn off the print fan
  6108. fanSpeed = 0;
  6109. st_synchronize();
  6110. }
  6111. void serialecho_temperatures() {
  6112. float tt = degHotend(active_extruder);
  6113. SERIAL_PROTOCOLPGM("T:");
  6114. SERIAL_PROTOCOL(tt);
  6115. SERIAL_PROTOCOLPGM(" E:");
  6116. SERIAL_PROTOCOL((int)active_extruder);
  6117. SERIAL_PROTOCOLPGM(" B:");
  6118. SERIAL_PROTOCOL_F(degBed(), 1);
  6119. SERIAL_PROTOCOLLN("");
  6120. }
  6121. uint16_t print_time_remaining() {
  6122. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  6123. print_t = print_time_remaining_normal;
  6124. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  6125. return print_t;
  6126. }
  6127. uint8_t print_percent_done() {
  6128. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  6129. uint8_t percent_done = 0;
  6130. if (print_percent_done_normal <= 100) {
  6131. percent_done = print_percent_done_normal;
  6132. }
  6133. else {
  6134. percent_done = card.percentDone();
  6135. }
  6136. return percent_done;
  6137. }
  6138. static void print_time_remaining_init() {
  6139. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  6140. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  6141. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  6142. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  6143. }