mmu.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. #include "fsensor.h"
  10. #include "cardreader.h"
  11. #include "ultralcd.h"
  12. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  13. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  14. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  15. extern void lcd_return_to_status();
  16. extern void lcd_wait_for_heater();
  17. extern char choose_extruder_menu();
  18. #define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
  19. #define MMU_TODELAY 100
  20. #define MMU_TIMEOUT 10
  21. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  22. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  23. #define MMU_HWRESET
  24. #define MMU_RST_PIN 76
  25. #define MMU_REQUIRED_FW_BUILDNR 81
  26. bool mmu_enabled = false;
  27. bool mmu_ready = false;
  28. int8_t mmu_state = 0;
  29. uint8_t mmu_cmd = 0;
  30. uint8_t mmu_extruder = 0;
  31. uint8_t tmp_extruder = 0;
  32. int8_t mmu_finda = -1;
  33. int16_t mmu_version = -1;
  34. int16_t mmu_buildnr = -1;
  35. uint32_t mmu_last_request = 0;
  36. uint32_t mmu_last_response = 0;
  37. //clear rx buffer
  38. void mmu_clr_rx_buf(void)
  39. {
  40. while (fgetc(uart2io) >= 0);
  41. }
  42. //send command - puts
  43. int mmu_puts_P(const char* str)
  44. {
  45. mmu_clr_rx_buf(); //clear rx buffer
  46. int r = fputs_P(str, uart2io); //send command
  47. mmu_last_request = millis();
  48. return r;
  49. }
  50. //send command - printf
  51. int mmu_printf_P(const char* format, ...)
  52. {
  53. va_list args;
  54. va_start(args, format);
  55. mmu_clr_rx_buf(); //clear rx buffer
  56. int r = vfprintf_P(uart2io, format, args); //send command
  57. va_end(args);
  58. mmu_last_request = millis();
  59. return r;
  60. }
  61. //check 'ok' response
  62. int8_t mmu_rx_ok(void)
  63. {
  64. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  65. if (res == 1) mmu_last_response = millis();
  66. return res;
  67. }
  68. //check 'start' response
  69. int8_t mmu_rx_start(void)
  70. {
  71. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  72. if (res == 1) mmu_last_response = millis();
  73. return res;
  74. }
  75. //initialize mmu2 unit - first part - should be done at begining of startup process
  76. void mmu_init(void)
  77. {
  78. digitalWrite(MMU_RST_PIN, HIGH);
  79. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  80. uart2_init(); //init uart2
  81. _delay_ms(10); //wait 10ms for sure
  82. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  83. mmu_state = -1;
  84. }
  85. //mmu main loop - state machine processing
  86. void mmu_loop(void)
  87. {
  88. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  89. switch (mmu_state)
  90. {
  91. case 0:
  92. return;
  93. case -1:
  94. if (mmu_rx_start() > 0)
  95. {
  96. puts_P(PSTR("MMU => 'start'"));
  97. puts_P(PSTR("MMU <= 'S1'"));
  98. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  99. mmu_state = -2;
  100. }
  101. else if (millis() > 30000) //30sec after reset disable mmu
  102. {
  103. puts_P(PSTR("MMU not responding - DISABLED"));
  104. mmu_state = 0;
  105. }
  106. return;
  107. case -2:
  108. if (mmu_rx_ok() > 0)
  109. {
  110. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  111. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  112. puts_P(PSTR("MMU <= 'S2'"));
  113. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  114. mmu_state = -3;
  115. }
  116. return;
  117. case -3:
  118. if (mmu_rx_ok() > 0)
  119. {
  120. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  121. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  122. bool version_valid = mmu_check_version();
  123. if (!version_valid) mmu_show_warning();
  124. else puts_P(PSTR("MMU version valid"));
  125. puts_P(PSTR("MMU <= 'P0'"));
  126. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  127. mmu_state = -4;
  128. }
  129. return;
  130. case -4:
  131. if (mmu_rx_ok() > 0)
  132. {
  133. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  134. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  135. puts_P(PSTR("MMU - ENABLED"));
  136. mmu_enabled = true;
  137. mmu_state = 1;
  138. }
  139. return;
  140. case 1:
  141. if (mmu_cmd) //command request ?
  142. {
  143. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  144. {
  145. int extruder = mmu_cmd - MMU_CMD_T0;
  146. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  147. mmu_printf_P(PSTR("T%d\n"), extruder);
  148. mmu_state = 3; // wait for response
  149. }
  150. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  151. {
  152. int filament = mmu_cmd - MMU_CMD_L0;
  153. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  154. mmu_printf_P(PSTR("L%d\n"), filament);
  155. mmu_state = 3; // wait for response
  156. }
  157. else if (mmu_cmd == MMU_CMD_C0)
  158. {
  159. printf_P(PSTR("MMU <= 'C0'\n"));
  160. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  161. mmu_state = 3;
  162. }
  163. else if (mmu_cmd == MMU_CMD_U0)
  164. {
  165. printf_P(PSTR("MMU <= 'U0'\n"));
  166. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  167. mmu_state = 3;
  168. }
  169. mmu_cmd = 0;
  170. }
  171. else if ((mmu_last_response + 300) < millis()) //request every 300ms
  172. {
  173. puts_P(PSTR("MMU <= 'P0'"));
  174. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  175. mmu_state = 2;
  176. }
  177. return;
  178. case 2: //response to command P0
  179. if (mmu_rx_ok() > 0)
  180. {
  181. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  182. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  183. //printf_P(PSTR("Eact: %d\n"), int(e_active()));
  184. if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
  185. fsensor_stop_and_save_print();
  186. enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
  187. if (lcd_autoDeplete) enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
  188. else enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  189. }
  190. mmu_state = 1;
  191. if (mmu_cmd == 0)
  192. mmu_ready = true;
  193. }
  194. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  195. { //resend request after timeout (30s)
  196. mmu_state = 1;
  197. }
  198. return;
  199. case 3: //response to commands T0-T4
  200. if (mmu_rx_ok() > 0)
  201. {
  202. printf_P(PSTR("MMU => 'ok'\n"));
  203. mmu_ready = true;
  204. mmu_state = 1;
  205. }
  206. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  207. { //resend request after timeout (5 min)
  208. mmu_state = 1;
  209. }
  210. return;
  211. }
  212. }
  213. void mmu_reset(void)
  214. {
  215. #ifdef MMU_HWRESET //HW - pulse reset pin
  216. digitalWrite(MMU_RST_PIN, LOW);
  217. _delay_us(100);
  218. digitalWrite(MMU_RST_PIN, HIGH);
  219. #else //SW - send X0 command
  220. mmu_puts_P(PSTR("X0\n"));
  221. #endif
  222. }
  223. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  224. {
  225. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  226. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  227. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  228. while ((mmu_rx_ok() <= 0) && (--timeout))
  229. delay_keep_alive(MMU_TODELAY);
  230. return timeout?1:0;
  231. }
  232. void mmu_command(uint8_t cmd)
  233. {
  234. mmu_cmd = cmd;
  235. mmu_ready = false;
  236. }
  237. bool mmu_get_response(void)
  238. {
  239. // printf_P(PSTR("mmu_get_response - begin\n"));
  240. KEEPALIVE_STATE(IN_PROCESS);
  241. while (mmu_cmd != 0)
  242. {
  243. // mmu_loop();
  244. delay_keep_alive(100);
  245. }
  246. while (!mmu_ready)
  247. {
  248. // mmu_loop();
  249. if (mmu_state != 3)
  250. break;
  251. delay_keep_alive(100);
  252. }
  253. bool ret = mmu_ready;
  254. mmu_ready = false;
  255. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  256. return ret;
  257. /* //waits for "ok" from mmu
  258. //function returns true if "ok" was received
  259. //if timeout is set to true function return false if there is no "ok" received before timeout
  260. bool response = true;
  261. LongTimer mmu_get_reponse_timeout;
  262. KEEPALIVE_STATE(IN_PROCESS);
  263. mmu_get_reponse_timeout.start();
  264. while (mmu_rx_ok() <= 0)
  265. {
  266. delay_keep_alive(100);
  267. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  268. { //5 minutes timeout
  269. response = false;
  270. break;
  271. }
  272. }
  273. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  274. return response;*/
  275. }
  276. void manage_response(bool move_axes, bool turn_off_nozzle)
  277. {
  278. bool response = false;
  279. mmu_print_saved = false;
  280. bool lcd_update_was_enabled = false;
  281. float hotend_temp_bckp = degTargetHotend(active_extruder);
  282. float z_position_bckp = current_position[Z_AXIS];
  283. float x_position_bckp = current_position[X_AXIS];
  284. float y_position_bckp = current_position[Y_AXIS];
  285. while(!response)
  286. {
  287. response = mmu_get_response(); //wait for "ok" from mmu
  288. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  289. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  290. if (lcd_update_enabled) {
  291. lcd_update_was_enabled = true;
  292. lcd_update_enable(false);
  293. }
  294. st_synchronize();
  295. mmu_print_saved = true;
  296. printf_P(PSTR("MMU not responding\n"));
  297. hotend_temp_bckp = degTargetHotend(active_extruder);
  298. if (move_axes) {
  299. z_position_bckp = current_position[Z_AXIS];
  300. x_position_bckp = current_position[X_AXIS];
  301. y_position_bckp = current_position[Y_AXIS];
  302. //lift z
  303. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  304. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  306. st_synchronize();
  307. //Move XY to side
  308. current_position[X_AXIS] = X_PAUSE_POS;
  309. current_position[Y_AXIS] = Y_PAUSE_POS;
  310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  311. st_synchronize();
  312. }
  313. if (turn_off_nozzle) {
  314. //set nozzle target temperature to 0
  315. setAllTargetHotends(0);
  316. }
  317. }
  318. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  319. delay_keep_alive(1000);
  320. }
  321. else if (mmu_print_saved) {
  322. printf_P(PSTR("MMU starts responding\n"));
  323. if (turn_off_nozzle)
  324. {
  325. lcd_clear();
  326. setTargetHotend(hotend_temp_bckp, active_extruder);
  327. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  328. delay_keep_alive(3000);
  329. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  330. {
  331. delay_keep_alive(1000);
  332. lcd_wait_for_heater();
  333. }
  334. }
  335. if (move_axes) {
  336. lcd_clear();
  337. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  338. current_position[X_AXIS] = x_position_bckp;
  339. current_position[Y_AXIS] = y_position_bckp;
  340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  341. st_synchronize();
  342. current_position[Z_AXIS] = z_position_bckp;
  343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  344. st_synchronize();
  345. }
  346. else {
  347. lcd_clear();
  348. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  349. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  350. }
  351. }
  352. }
  353. if (lcd_update_was_enabled) lcd_update_enable(true);
  354. }
  355. void mmu_load_to_nozzle()
  356. {
  357. st_synchronize();
  358. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  359. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  360. current_position[E_AXIS] += 7.2f;
  361. float feedrate = 562;
  362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  363. st_synchronize();
  364. current_position[E_AXIS] += 14.4f;
  365. feedrate = 871;
  366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  367. st_synchronize();
  368. current_position[E_AXIS] += 36.0f;
  369. feedrate = 1393;
  370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  371. st_synchronize();
  372. current_position[E_AXIS] += 14.4f;
  373. feedrate = 871;
  374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  375. st_synchronize();
  376. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  377. }
  378. void mmu_M600_load_filament(bool automatic)
  379. {
  380. //load filament for mmu v2
  381. bool response = false;
  382. bool yes = false;
  383. tmp_extruder = mmu_extruder;
  384. if (!automatic) {
  385. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  386. if(yes) tmp_extruder = choose_extruder_menu();
  387. }
  388. else {
  389. tmp_extruder = (tmp_extruder+1)%5;
  390. }
  391. lcd_update_enable(false);
  392. lcd_clear();
  393. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  394. lcd_print(" ");
  395. lcd_print(tmp_extruder + 1);
  396. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  397. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  398. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  399. mmu_command(MMU_CMD_T0 + tmp_extruder);
  400. manage_response(false, true);
  401. mmu_command(MMU_CMD_C0);
  402. mmu_extruder = tmp_extruder; //filament change is finished
  403. mmu_load_to_nozzle();
  404. st_synchronize();
  405. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  407. }
  408. void extr_mov(float shift, float feed_rate)
  409. { //move extruder no matter what the current heater temperature is
  410. set_extrude_min_temp(.0);
  411. current_position[E_AXIS] += shift;
  412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  413. set_extrude_min_temp(EXTRUDE_MINTEMP);
  414. }
  415. void change_extr(int extr) { //switches multiplexer for extruders
  416. #ifdef SNMM
  417. st_synchronize();
  418. delay(100);
  419. disable_e0();
  420. disable_e1();
  421. disable_e2();
  422. mmu_extruder = extr;
  423. pinMode(E_MUX0_PIN, OUTPUT);
  424. pinMode(E_MUX1_PIN, OUTPUT);
  425. switch (extr) {
  426. case 1:
  427. WRITE(E_MUX0_PIN, HIGH);
  428. WRITE(E_MUX1_PIN, LOW);
  429. break;
  430. case 2:
  431. WRITE(E_MUX0_PIN, LOW);
  432. WRITE(E_MUX1_PIN, HIGH);
  433. break;
  434. case 3:
  435. WRITE(E_MUX0_PIN, HIGH);
  436. WRITE(E_MUX1_PIN, HIGH);
  437. break;
  438. default:
  439. WRITE(E_MUX0_PIN, LOW);
  440. WRITE(E_MUX1_PIN, LOW);
  441. break;
  442. }
  443. delay(100);
  444. #endif
  445. }
  446. int get_ext_nr()
  447. { //reads multiplexer input pins and return current extruder number (counted from 0)
  448. #ifndef SNMM
  449. return(mmu_extruder); //update needed
  450. #else
  451. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  452. #endif
  453. }
  454. void display_loading()
  455. {
  456. switch (mmu_extruder)
  457. {
  458. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  459. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  460. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  461. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  462. }
  463. }
  464. void extr_adj(int extruder) //loading filament for SNMM
  465. {
  466. #ifndef SNMM
  467. uint8_t cmd = MMU_CMD_L0 + extruder;
  468. if (cmd > MMU_CMD_L4)
  469. {
  470. printf_P(PSTR("Filament out of range %d \n"),extruder);
  471. return;
  472. }
  473. mmu_command(cmd);
  474. //show which filament is currently loaded
  475. lcd_update_enable(false);
  476. lcd_clear();
  477. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  478. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  479. //else lcd.print(" ");
  480. lcd_print(" ");
  481. lcd_print(extruder + 1);
  482. // get response
  483. manage_response(false, false);
  484. lcd_update_enable(true);
  485. //lcd_return_to_status();
  486. #else
  487. bool correct;
  488. max_feedrate[E_AXIS] =80;
  489. //max_feedrate[E_AXIS] = 50;
  490. START:
  491. lcd_clear();
  492. lcd_set_cursor(0, 0);
  493. switch (extruder) {
  494. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  495. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  496. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  497. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  498. }
  499. KEEPALIVE_STATE(PAUSED_FOR_USER);
  500. do{
  501. extr_mov(0.001,1000);
  502. delay_keep_alive(2);
  503. } while (!lcd_clicked());
  504. //delay_keep_alive(500);
  505. KEEPALIVE_STATE(IN_HANDLER);
  506. st_synchronize();
  507. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  508. //if (!correct) goto START;
  509. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  510. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  511. extr_mov(bowden_length[extruder], 500);
  512. lcd_clear();
  513. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  514. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  515. else lcd_print(" ");
  516. lcd_print(mmu_extruder + 1);
  517. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  518. st_synchronize();
  519. max_feedrate[E_AXIS] = 50;
  520. lcd_update_enable(true);
  521. lcd_return_to_status();
  522. lcdDrawUpdate = 2;
  523. #endif
  524. }
  525. void extr_unload()
  526. { //unload just current filament for multimaterial printers
  527. #ifdef SNMM
  528. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  529. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  530. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  531. #endif
  532. if (degHotend0() > EXTRUDE_MINTEMP)
  533. {
  534. #ifndef SNMM
  535. st_synchronize();
  536. //show which filament is currently unloaded
  537. lcd_update_enable(false);
  538. lcd_clear();
  539. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  540. lcd_print(" ");
  541. lcd_print(mmu_extruder + 1);
  542. current_position[E_AXIS] -= 80;
  543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  544. st_synchronize();
  545. mmu_command(MMU_CMD_U0);
  546. // get response
  547. manage_response(false, true);
  548. lcd_update_enable(true);
  549. #else //SNMM
  550. lcd_clear();
  551. lcd_display_message_fullscreen_P(PSTR(""));
  552. max_feedrate[E_AXIS] = 50;
  553. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  554. lcd_print(" ");
  555. lcd_print(mmu_extruder + 1);
  556. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  557. if (current_position[Z_AXIS] < 15) {
  558. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  560. }
  561. current_position[E_AXIS] += 10; //extrusion
  562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  563. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  564. if (current_temperature[0] < 230) { //PLA & all other filaments
  565. current_position[E_AXIS] += 5.4;
  566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  567. current_position[E_AXIS] += 3.2;
  568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  569. current_position[E_AXIS] += 3;
  570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  571. }
  572. else { //ABS
  573. current_position[E_AXIS] += 3.1;
  574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  575. current_position[E_AXIS] += 3.1;
  576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  577. current_position[E_AXIS] += 4;
  578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  579. /*current_position[X_AXIS] += 23; //delay
  580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  581. current_position[X_AXIS] -= 23; //delay
  582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  583. delay_keep_alive(4700);
  584. }
  585. max_feedrate[E_AXIS] = 80;
  586. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  588. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  590. st_synchronize();
  591. //st_current_init();
  592. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  593. else st_current_set(2, tmp_motor_loud[2]);
  594. lcd_update_enable(true);
  595. lcd_return_to_status();
  596. max_feedrate[E_AXIS] = 50;
  597. #endif //SNMM
  598. }
  599. else
  600. {
  601. lcd_clear();
  602. lcd_set_cursor(0, 0);
  603. lcd_puts_P(_T(MSG_ERROR));
  604. lcd_set_cursor(0, 2);
  605. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  606. delay(2000);
  607. lcd_clear();
  608. }
  609. //lcd_return_to_status();
  610. }
  611. //wrapper functions for loading filament
  612. void extr_adj_0()
  613. {
  614. #ifndef SNMM
  615. enquecommand_P(PSTR("M701 E0"));
  616. #else
  617. change_extr(0);
  618. extr_adj(0);
  619. #endif
  620. }
  621. void extr_adj_1()
  622. {
  623. #ifndef SNMM
  624. enquecommand_P(PSTR("M701 E1"));
  625. #else
  626. change_extr(1);
  627. extr_adj(1);
  628. #endif
  629. }
  630. void extr_adj_2()
  631. {
  632. #ifndef SNMM
  633. enquecommand_P(PSTR("M701 E2"));
  634. #else
  635. change_extr(2);
  636. extr_adj(2);
  637. #endif
  638. }
  639. void extr_adj_3()
  640. {
  641. #ifndef SNMM
  642. enquecommand_P(PSTR("M701 E3"));
  643. #else
  644. change_extr(3);
  645. extr_adj(3);
  646. #endif
  647. }
  648. void extr_adj_4()
  649. {
  650. #ifndef SNMM
  651. enquecommand_P(PSTR("M701 E4"));
  652. #else
  653. change_extr(4);
  654. extr_adj(4);
  655. #endif
  656. }
  657. void load_all()
  658. {
  659. #ifndef SNMM
  660. enquecommand_P(PSTR("M701 E0"));
  661. enquecommand_P(PSTR("M701 E1"));
  662. enquecommand_P(PSTR("M701 E2"));
  663. enquecommand_P(PSTR("M701 E3"));
  664. enquecommand_P(PSTR("M701 E4"));
  665. #else
  666. for (int i = 0; i < 4; i++)
  667. {
  668. change_extr(i);
  669. extr_adj(i);
  670. }
  671. #endif
  672. }
  673. //wrapper functions for changing extruders
  674. void extr_change_0()
  675. {
  676. change_extr(0);
  677. lcd_return_to_status();
  678. }
  679. void extr_change_1()
  680. {
  681. change_extr(1);
  682. lcd_return_to_status();
  683. }
  684. void extr_change_2()
  685. {
  686. change_extr(2);
  687. lcd_return_to_status();
  688. }
  689. void extr_change_3()
  690. {
  691. change_extr(3);
  692. lcd_return_to_status();
  693. }
  694. //wrapper functions for unloading filament
  695. void extr_unload_all()
  696. {
  697. if (degHotend0() > EXTRUDE_MINTEMP)
  698. {
  699. for (int i = 0; i < 4; i++)
  700. {
  701. change_extr(i);
  702. extr_unload();
  703. }
  704. }
  705. else
  706. {
  707. lcd_clear();
  708. lcd_set_cursor(0, 0);
  709. lcd_puts_P(_T(MSG_ERROR));
  710. lcd_set_cursor(0, 2);
  711. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  712. delay(2000);
  713. lcd_clear();
  714. lcd_return_to_status();
  715. }
  716. }
  717. //unloading just used filament (for snmm)
  718. void extr_unload_used()
  719. {
  720. if (degHotend0() > EXTRUDE_MINTEMP) {
  721. for (int i = 0; i < 4; i++) {
  722. if (snmm_filaments_used & (1 << i)) {
  723. change_extr(i);
  724. extr_unload();
  725. }
  726. }
  727. snmm_filaments_used = 0;
  728. }
  729. else {
  730. lcd_clear();
  731. lcd_set_cursor(0, 0);
  732. lcd_puts_P(_T(MSG_ERROR));
  733. lcd_set_cursor(0, 2);
  734. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  735. delay(2000);
  736. lcd_clear();
  737. lcd_return_to_status();
  738. }
  739. }
  740. void extr_unload_0()
  741. {
  742. change_extr(0);
  743. extr_unload();
  744. }
  745. void extr_unload_1()
  746. {
  747. change_extr(1);
  748. extr_unload();
  749. }
  750. void extr_unload_2()
  751. {
  752. change_extr(2);
  753. extr_unload();
  754. }
  755. void extr_unload_3()
  756. {
  757. change_extr(3);
  758. extr_unload();
  759. }
  760. void extr_unload_4()
  761. {
  762. change_extr(4);
  763. extr_unload();
  764. }
  765. bool mmu_check_version()
  766. {
  767. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  768. }
  769. void mmu_show_warning()
  770. {
  771. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  772. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  773. }