Marlin_main.cpp 248 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M114 - Output current position to serial port
  147. // M115 - Capabilities string
  148. // M117 - display message
  149. // M119 - Output Endstop status to serial port
  150. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  151. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  152. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M140 - Set bed target temp
  155. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  159. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  163. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. // M206 - set additional homing offset
  165. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  167. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. // M220 S<factor in percent>- set speed factor override percentage
  170. // M221 S<factor in percent>- set extrude factor override percentage
  171. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  172. // M240 - Trigger a camera to take a photograph
  173. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  175. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. // M301 - Set PID parameters P I and D
  177. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. // M304 - Set bed PID parameters P I and D
  180. // M400 - Finish all moves
  181. // M401 - Lower z-probe if present
  182. // M402 - Raise z-probe if present
  183. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  184. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  185. // M406 - Turn off Filament Sensor extrusion control
  186. // M407 - Displays measured filament diameter
  187. // M500 - stores parameters in EEPROM
  188. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  189. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  190. // M503 - print the current settings (from memory not from EEPROM)
  191. // M509 - force language selection on next restart
  192. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  193. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  194. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  195. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  196. // M907 - Set digital trimpot motor current using axis codes.
  197. // M908 - Control digital trimpot directly.
  198. // M350 - Set microstepping mode.
  199. // M351 - Toggle MS1 MS2 pins directly.
  200. // M928 - Start SD logging (M928 filename.g) - ended by M29
  201. // M999 - Restart after being stopped by error
  202. //Stepper Movement Variables
  203. //===========================================================================
  204. //=============================imported variables============================
  205. //===========================================================================
  206. //===========================================================================
  207. //=============================public variables=============================
  208. //===========================================================================
  209. #ifdef SDSUPPORT
  210. CardReader card;
  211. #endif
  212. unsigned long PingTime = millis();
  213. union Data
  214. {
  215. byte b[2];
  216. int value;
  217. };
  218. float homing_feedrate[] = HOMING_FEEDRATE;
  219. // Currently only the extruder axis may be switched to a relative mode.
  220. // Other axes are always absolute or relative based on the common relative_mode flag.
  221. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  222. int feedmultiply=100; //100->1 200->2
  223. int saved_feedmultiply;
  224. int extrudemultiply=100; //100->1 200->2
  225. int extruder_multiply[EXTRUDERS] = {100
  226. #if EXTRUDERS > 1
  227. , 100
  228. #if EXTRUDERS > 2
  229. , 100
  230. #endif
  231. #endif
  232. };
  233. int bowden_length[4];
  234. bool is_usb_printing = false;
  235. bool homing_flag = false;
  236. bool temp_cal_active = false;
  237. unsigned long kicktime = millis()+100000;
  238. unsigned int usb_printing_counter;
  239. int lcd_change_fil_state = 0;
  240. int feedmultiplyBckp = 100;
  241. float HotendTempBckp = 0;
  242. int fanSpeedBckp = 0;
  243. float pause_lastpos[4];
  244. unsigned long pause_time = 0;
  245. unsigned long start_pause_print = millis();
  246. unsigned long t_fan_rising_edge = millis();
  247. unsigned long load_filament_time;
  248. bool mesh_bed_leveling_flag = false;
  249. bool mesh_bed_run_from_menu = false;
  250. unsigned char lang_selected = 0;
  251. int8_t FarmMode = 0;
  252. bool prusa_sd_card_upload = false;
  253. unsigned int status_number = 0;
  254. unsigned long total_filament_used;
  255. unsigned int heating_status;
  256. unsigned int heating_status_counter;
  257. bool custom_message;
  258. bool loading_flag = false;
  259. unsigned int custom_message_type;
  260. unsigned int custom_message_state;
  261. char snmm_filaments_used = 0;
  262. float distance_from_min[3];
  263. float angleDiff;
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. bool volumetric_enabled = false;
  268. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  269. #if EXTRUDERS > 1
  270. , DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 2
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #endif
  274. #endif
  275. };
  276. float volumetric_multiplier[EXTRUDERS] = {1.0
  277. #if EXTRUDERS > 1
  278. , 1.0
  279. #if EXTRUDERS > 2
  280. , 1.0
  281. #endif
  282. #endif
  283. };
  284. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  285. float add_homing[3]={0,0,0};
  286. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  287. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  288. bool axis_known_position[3] = {false, false, false};
  289. float zprobe_zoffset;
  290. // Extruder offset
  291. #if EXTRUDERS > 1
  292. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  293. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  294. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  295. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  296. #endif
  297. };
  298. #endif
  299. uint8_t active_extruder = 0;
  300. int fanSpeed=0;
  301. #ifdef FWRETRACT
  302. bool autoretract_enabled=false;
  303. bool retracted[EXTRUDERS]={false
  304. #if EXTRUDERS > 1
  305. , false
  306. #if EXTRUDERS > 2
  307. , false
  308. #endif
  309. #endif
  310. };
  311. bool retracted_swap[EXTRUDERS]={false
  312. #if EXTRUDERS > 1
  313. , false
  314. #if EXTRUDERS > 2
  315. , false
  316. #endif
  317. #endif
  318. };
  319. float retract_length = RETRACT_LENGTH;
  320. float retract_length_swap = RETRACT_LENGTH_SWAP;
  321. float retract_feedrate = RETRACT_FEEDRATE;
  322. float retract_zlift = RETRACT_ZLIFT;
  323. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  324. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  325. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  326. #endif
  327. #ifdef ULTIPANEL
  328. #ifdef PS_DEFAULT_OFF
  329. bool powersupply = false;
  330. #else
  331. bool powersupply = true;
  332. #endif
  333. #endif
  334. bool cancel_heatup = false ;
  335. #ifdef FILAMENT_SENSOR
  336. //Variables for Filament Sensor input
  337. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  338. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  339. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  340. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  341. int delay_index1=0; //index into ring buffer
  342. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  343. float delay_dist=0; //delay distance counter
  344. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  345. #endif
  346. const char errormagic[] PROGMEM = "Error:";
  347. const char echomagic[] PROGMEM = "echo:";
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. static float delta[3] = {0.0, 0.0, 0.0};
  354. // For tracing an arc
  355. static float offset[3] = {0.0, 0.0, 0.0};
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. // Determines Absolute or Relative Coordinates.
  358. // Also there is bool axis_relative_modes[] per axis flag.
  359. static bool relative_mode = false;
  360. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  361. //static float tt = 0;
  362. //static float bt = 0;
  363. //Inactivity shutdown variables
  364. static unsigned long previous_millis_cmd = 0;
  365. unsigned long max_inactive_time = 0;
  366. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  367. unsigned long starttime=0;
  368. unsigned long stoptime=0;
  369. unsigned long _usb_timer = 0;
  370. static uint8_t tmp_extruder;
  371. bool extruder_under_pressure = true;
  372. bool Stopped=false;
  373. #if NUM_SERVOS > 0
  374. Servo servos[NUM_SERVOS];
  375. #endif
  376. bool CooldownNoWait = true;
  377. bool target_direction;
  378. //Insert variables if CHDK is defined
  379. #ifdef CHDK
  380. unsigned long chdkHigh = 0;
  381. boolean chdkActive = false;
  382. #endif
  383. //===========================================================================
  384. //=============================Routines======================================
  385. //===========================================================================
  386. void get_arc_coordinates();
  387. bool setTargetedHotend(int code);
  388. void serial_echopair_P(const char *s_P, float v)
  389. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  390. void serial_echopair_P(const char *s_P, double v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, unsigned long v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. #ifdef SDSUPPORT
  395. #include "SdFatUtil.h"
  396. int freeMemory() { return SdFatUtil::FreeRam(); }
  397. #else
  398. extern "C" {
  399. extern unsigned int __bss_end;
  400. extern unsigned int __heap_start;
  401. extern void *__brkval;
  402. int freeMemory() {
  403. int free_memory;
  404. if ((int)__brkval == 0)
  405. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  406. else
  407. free_memory = ((int)&free_memory) - ((int)__brkval);
  408. return free_memory;
  409. }
  410. }
  411. #endif //!SDSUPPORT
  412. void setup_killpin()
  413. {
  414. #if defined(KILL_PIN) && KILL_PIN > -1
  415. SET_INPUT(KILL_PIN);
  416. WRITE(KILL_PIN,HIGH);
  417. #endif
  418. }
  419. // Set home pin
  420. void setup_homepin(void)
  421. {
  422. #if defined(HOME_PIN) && HOME_PIN > -1
  423. SET_INPUT(HOME_PIN);
  424. WRITE(HOME_PIN,HIGH);
  425. #endif
  426. }
  427. void setup_photpin()
  428. {
  429. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  430. SET_OUTPUT(PHOTOGRAPH_PIN);
  431. WRITE(PHOTOGRAPH_PIN, LOW);
  432. #endif
  433. }
  434. void setup_powerhold()
  435. {
  436. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  437. SET_OUTPUT(SUICIDE_PIN);
  438. WRITE(SUICIDE_PIN, HIGH);
  439. #endif
  440. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  441. SET_OUTPUT(PS_ON_PIN);
  442. #if defined(PS_DEFAULT_OFF)
  443. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  444. #else
  445. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  446. #endif
  447. #endif
  448. }
  449. void suicide()
  450. {
  451. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  452. SET_OUTPUT(SUICIDE_PIN);
  453. WRITE(SUICIDE_PIN, LOW);
  454. #endif
  455. }
  456. void servo_init()
  457. {
  458. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  459. servos[0].attach(SERVO0_PIN);
  460. #endif
  461. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  462. servos[1].attach(SERVO1_PIN);
  463. #endif
  464. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  465. servos[2].attach(SERVO2_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  468. servos[3].attach(SERVO3_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 5)
  471. #error "TODO: enter initalisation code for more servos"
  472. #endif
  473. }
  474. static void lcd_language_menu();
  475. void stop_and_save_print_to_ram(float z_move, float e_move);
  476. void restore_print_from_ram_and_continue(float e_move);
  477. extern int8_t CrashDetectMenu;
  478. void crashdet_enable()
  479. {
  480. MYSERIAL.println("crashdet_enable");
  481. tmc2130_sg_stop_on_crash = true;
  482. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  483. CrashDetectMenu = 1;
  484. }
  485. void crashdet_disable()
  486. {
  487. MYSERIAL.println("crashdet_disable");
  488. tmc2130_sg_stop_on_crash = false;
  489. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  490. CrashDetectMenu = 0;
  491. }
  492. void crashdet_stop_and_save_print()
  493. {
  494. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  495. }
  496. void crashdet_restore_print_and_continue()
  497. {
  498. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  499. // babystep_apply();
  500. }
  501. void crashdet_stop_and_save_print2()
  502. {
  503. cli();
  504. planner_abort_hard(); //abort printing
  505. cmdqueue_reset(); //empty cmdqueue
  506. card.sdprinting = false;
  507. card.closefile();
  508. sei();
  509. }
  510. #ifdef MESH_BED_LEVELING
  511. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  512. #endif
  513. // Factory reset function
  514. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  515. // Level input parameter sets depth of reset
  516. // Quiet parameter masks all waitings for user interact.
  517. int er_progress = 0;
  518. void factory_reset(char level, bool quiet)
  519. {
  520. lcd_implementation_clear();
  521. int cursor_pos = 0;
  522. switch (level) {
  523. // Level 0: Language reset
  524. case 0:
  525. WRITE(BEEPER, HIGH);
  526. _delay_ms(100);
  527. WRITE(BEEPER, LOW);
  528. lcd_force_language_selection();
  529. break;
  530. //Level 1: Reset statistics
  531. case 1:
  532. WRITE(BEEPER, HIGH);
  533. _delay_ms(100);
  534. WRITE(BEEPER, LOW);
  535. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  536. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  537. lcd_menu_statistics();
  538. break;
  539. // Level 2: Prepare for shipping
  540. case 2:
  541. //lcd_printPGM(PSTR("Factory RESET"));
  542. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  543. // Force language selection at the next boot up.
  544. lcd_force_language_selection();
  545. // Force the "Follow calibration flow" message at the next boot up.
  546. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  547. farm_no = 0;
  548. farm_mode == false;
  549. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  550. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  551. WRITE(BEEPER, HIGH);
  552. _delay_ms(100);
  553. WRITE(BEEPER, LOW);
  554. //_delay_ms(2000);
  555. break;
  556. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  557. case 3:
  558. lcd_printPGM(PSTR("Factory RESET"));
  559. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  560. WRITE(BEEPER, HIGH);
  561. _delay_ms(100);
  562. WRITE(BEEPER, LOW);
  563. er_progress = 0;
  564. lcd_print_at_PGM(3, 3, PSTR(" "));
  565. lcd_implementation_print_at(3, 3, er_progress);
  566. // Erase EEPROM
  567. for (int i = 0; i < 4096; i++) {
  568. eeprom_write_byte((uint8_t*)i, 0xFF);
  569. if (i % 41 == 0) {
  570. er_progress++;
  571. lcd_print_at_PGM(3, 3, PSTR(" "));
  572. lcd_implementation_print_at(3, 3, er_progress);
  573. lcd_printPGM(PSTR("%"));
  574. }
  575. }
  576. break;
  577. case 4:
  578. bowden_menu();
  579. break;
  580. default:
  581. break;
  582. }
  583. }
  584. // "Setup" function is called by the Arduino framework on startup.
  585. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  586. // are initialized by the main() routine provided by the Arduino framework.
  587. void setup()
  588. {
  589. lcd_init();
  590. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  591. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  592. setup_killpin();
  593. setup_powerhold();
  594. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  595. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  596. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  597. if (farm_no == 0xFFFF) farm_no = 0;
  598. if (farm_mode)
  599. {
  600. prusa_statistics(8);
  601. selectedSerialPort = 1;
  602. }
  603. else
  604. selectedSerialPort = 0;
  605. MYSERIAL.begin(BAUDRATE);
  606. SERIAL_PROTOCOLLNPGM("start");
  607. SERIAL_ECHO_START;
  608. #if 0
  609. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  610. for (int i = 0; i < 4096; ++i) {
  611. int b = eeprom_read_byte((unsigned char*)i);
  612. if (b != 255) {
  613. SERIAL_ECHO(i);
  614. SERIAL_ECHO(":");
  615. SERIAL_ECHO(b);
  616. SERIAL_ECHOLN("");
  617. }
  618. }
  619. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  620. #endif
  621. // Check startup - does nothing if bootloader sets MCUSR to 0
  622. byte mcu = MCUSR;
  623. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  624. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  625. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  626. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  627. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  628. MCUSR = 0;
  629. //SERIAL_ECHORPGM(MSG_MARLIN);
  630. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  631. #ifdef STRING_VERSION_CONFIG_H
  632. #ifdef STRING_CONFIG_H_AUTHOR
  633. SERIAL_ECHO_START;
  634. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  635. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  636. SERIAL_ECHORPGM(MSG_AUTHOR);
  637. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  638. SERIAL_ECHOPGM("Compiled: ");
  639. SERIAL_ECHOLNPGM(__DATE__);
  640. #endif
  641. #endif
  642. SERIAL_ECHO_START;
  643. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  644. SERIAL_ECHO(freeMemory());
  645. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  646. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  647. //lcd_update_enable(false); // why do we need this?? - andre
  648. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  649. Config_RetrieveSettings(EEPROM_OFFSET);
  650. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  651. tp_init(); // Initialize temperature loop
  652. plan_init(); // Initialize planner;
  653. watchdog_init();
  654. #ifdef TMC2130
  655. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  656. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  657. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  658. if (crashdet)
  659. {
  660. crashdet_enable();
  661. MYSERIAL.println("CrashDetect ENABLED!");
  662. }
  663. else
  664. {
  665. crashdet_disable();
  666. MYSERIAL.println("CrashDetect DISABLED");
  667. }
  668. #endif //TMC2130
  669. #ifdef PAT9125
  670. MYSERIAL.print("PAT9125_init:");
  671. int pat9125 = pat9125_init(200, 200);
  672. MYSERIAL.println(pat9125);
  673. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  674. if (!pat9125) fsensor = 0; //disable sensor
  675. if (fsensor)
  676. {
  677. fsensor_enable();
  678. MYSERIAL.println("Filament Sensor ENABLED!");
  679. }
  680. else
  681. {
  682. fsensor_disable();
  683. MYSERIAL.println("Filament Sensor DISABLED");
  684. }
  685. #endif //PAT9125
  686. st_init(); // Initialize stepper, this enables interrupts!
  687. setup_photpin();
  688. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  689. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  690. servo_init();
  691. // Reset the machine correction matrix.
  692. // It does not make sense to load the correction matrix until the machine is homed.
  693. world2machine_reset();
  694. if (!READ(BTN_ENC))
  695. {
  696. _delay_ms(1000);
  697. if (!READ(BTN_ENC))
  698. {
  699. lcd_implementation_clear();
  700. lcd_printPGM(PSTR("Factory RESET"));
  701. SET_OUTPUT(BEEPER);
  702. WRITE(BEEPER, HIGH);
  703. while (!READ(BTN_ENC));
  704. WRITE(BEEPER, LOW);
  705. _delay_ms(2000);
  706. char level = reset_menu();
  707. factory_reset(level, false);
  708. switch (level) {
  709. case 0: _delay_ms(0); break;
  710. case 1: _delay_ms(0); break;
  711. case 2: _delay_ms(0); break;
  712. case 3: _delay_ms(0); break;
  713. }
  714. // _delay_ms(100);
  715. /*
  716. #ifdef MESH_BED_LEVELING
  717. _delay_ms(2000);
  718. if (!READ(BTN_ENC))
  719. {
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. _delay_ms(200);
  724. WRITE(BEEPER, HIGH);
  725. _delay_ms(100);
  726. WRITE(BEEPER, LOW);
  727. int _z = 0;
  728. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  729. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  730. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  731. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  732. }
  733. else
  734. {
  735. WRITE(BEEPER, HIGH);
  736. _delay_ms(100);
  737. WRITE(BEEPER, LOW);
  738. }
  739. #endif // mesh */
  740. }
  741. }
  742. else
  743. {
  744. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  745. }
  746. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  747. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  748. #endif
  749. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  750. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  751. #endif
  752. #ifdef DIGIPOT_I2C
  753. digipot_i2c_init();
  754. #endif
  755. setup_homepin();
  756. if (1) {
  757. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  758. // try to run to zero phase before powering the Z motor.
  759. // Move in negative direction
  760. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  761. // Round the current micro-micro steps to micro steps.
  762. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  763. // Until the phase counter is reset to zero.
  764. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  765. delay(2);
  766. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  767. delay(2);
  768. }
  769. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  770. }
  771. #if defined(Z_AXIS_ALWAYS_ON)
  772. enable_z();
  773. #endif
  774. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  775. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  776. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  777. if (farm_no == 0xFFFF) farm_no = 0;
  778. if (farm_mode)
  779. {
  780. prusa_statistics(8);
  781. }
  782. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  783. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  784. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  785. // but this times out if a blocking dialog is shown in setup().
  786. card.initsd();
  787. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  788. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  789. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  790. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  791. // where all the EEPROM entries are set to 0x0ff.
  792. // Once a firmware boots up, it forces at least a language selection, which changes
  793. // EEPROM_LANG to number lower than 0x0ff.
  794. // 1) Set a high power mode.
  795. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  796. }
  797. #ifdef SNMM
  798. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  799. int _z = BOWDEN_LENGTH;
  800. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  801. }
  802. #endif
  803. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  804. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  805. // is being written into the EEPROM, so the update procedure will be triggered only once.
  806. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  807. if (lang_selected >= LANG_NUM){
  808. lcd_mylang();
  809. }
  810. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  811. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  812. temp_cal_active = false;
  813. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  814. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  815. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  816. }
  817. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  818. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  819. }
  820. check_babystep(); //checking if Z babystep is in allowed range
  821. setup_uvlo_interrupt();
  822. setup_fan_interrupt();
  823. fsensor_setup_interrupt();
  824. #ifndef DEBUG_DISABLE_STARTMSGS
  825. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  826. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  827. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  828. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  829. // Show the message.
  830. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  831. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  832. // Show the message.
  833. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  834. lcd_update_enable(true);
  835. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  836. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  837. lcd_update_enable(true);
  838. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  839. // Show the message.
  840. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  841. }
  842. #endif //DEBUG_DISABLE_STARTMSGS
  843. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  844. lcd_update_enable(true);
  845. lcd_implementation_clear();
  846. lcd_update(2);
  847. // Store the currently running firmware into an eeprom,
  848. // so the next time the firmware gets updated, it will know from which version it has been updated.
  849. update_current_firmware_version_to_eeprom();
  850. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  851. /*
  852. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  853. else {
  854. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  855. lcd_update_enable(true);
  856. lcd_update(2);
  857. lcd_setstatuspgm(WELCOME_MSG);
  858. }
  859. */
  860. manage_heater(); // Update temperatures
  861. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  862. MYSERIAL.println("Power panic detected!");
  863. MYSERIAL.print("Current bed temp:");
  864. MYSERIAL.println(degBed());
  865. MYSERIAL.print("Saved bed temp:");
  866. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  867. #endif
  868. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  869. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  870. MYSERIAL.println("Automatic recovery!");
  871. #endif
  872. recover_print(1);
  873. }
  874. else{
  875. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  876. MYSERIAL.println("Normal recovery!");
  877. #endif
  878. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  879. else {
  880. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  881. lcd_update_enable(true);
  882. lcd_update(2);
  883. lcd_setstatuspgm(WELCOME_MSG);
  884. }
  885. }
  886. }
  887. }
  888. void trace();
  889. #define CHUNK_SIZE 64 // bytes
  890. #define SAFETY_MARGIN 1
  891. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  892. int chunkHead = 0;
  893. int serial_read_stream() {
  894. setTargetHotend(0, 0);
  895. setTargetBed(0);
  896. lcd_implementation_clear();
  897. lcd_printPGM(PSTR(" Upload in progress"));
  898. // first wait for how many bytes we will receive
  899. uint32_t bytesToReceive;
  900. // receive the four bytes
  901. char bytesToReceiveBuffer[4];
  902. for (int i=0; i<4; i++) {
  903. int data;
  904. while ((data = MYSERIAL.read()) == -1) {};
  905. bytesToReceiveBuffer[i] = data;
  906. }
  907. // make it a uint32
  908. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  909. // we're ready, notify the sender
  910. MYSERIAL.write('+');
  911. // lock in the routine
  912. uint32_t receivedBytes = 0;
  913. while (prusa_sd_card_upload) {
  914. int i;
  915. for (i=0; i<CHUNK_SIZE; i++) {
  916. int data;
  917. // check if we're not done
  918. if (receivedBytes == bytesToReceive) {
  919. break;
  920. }
  921. // read the next byte
  922. while ((data = MYSERIAL.read()) == -1) {};
  923. receivedBytes++;
  924. // save it to the chunk
  925. chunk[i] = data;
  926. }
  927. // write the chunk to SD
  928. card.write_command_no_newline(&chunk[0]);
  929. // notify the sender we're ready for more data
  930. MYSERIAL.write('+');
  931. // for safety
  932. manage_heater();
  933. // check if we're done
  934. if(receivedBytes == bytesToReceive) {
  935. trace(); // beep
  936. card.closefile();
  937. prusa_sd_card_upload = false;
  938. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  939. return 0;
  940. }
  941. }
  942. }
  943. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  944. // Before loop(), the setup() function is called by the main() routine.
  945. void loop()
  946. {
  947. bool stack_integrity = true;
  948. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  949. {
  950. is_usb_printing = true;
  951. usb_printing_counter--;
  952. _usb_timer = millis();
  953. }
  954. if (usb_printing_counter == 0)
  955. {
  956. is_usb_printing = false;
  957. }
  958. if (prusa_sd_card_upload)
  959. {
  960. //we read byte-by byte
  961. serial_read_stream();
  962. } else
  963. {
  964. get_command();
  965. #ifdef SDSUPPORT
  966. card.checkautostart(false);
  967. #endif
  968. if(buflen)
  969. {
  970. cmdbuffer_front_already_processed = false;
  971. #ifdef SDSUPPORT
  972. if(card.saving)
  973. {
  974. // Saving a G-code file onto an SD-card is in progress.
  975. // Saving starts with M28, saving until M29 is seen.
  976. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  977. card.write_command(CMDBUFFER_CURRENT_STRING);
  978. if(card.logging)
  979. process_commands();
  980. else
  981. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  982. } else {
  983. card.closefile();
  984. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  985. }
  986. } else {
  987. process_commands();
  988. }
  989. #else
  990. process_commands();
  991. #endif //SDSUPPORT
  992. if (! cmdbuffer_front_already_processed && buflen)
  993. {
  994. cli();
  995. union {
  996. struct {
  997. char lo;
  998. char hi;
  999. } lohi;
  1000. uint16_t value;
  1001. } sdlen;
  1002. sdlen.value = 0;
  1003. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1004. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1005. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1006. }
  1007. cmdqueue_pop_front();
  1008. planner_add_sd_length(sdlen.value);
  1009. sei();
  1010. }
  1011. }
  1012. }
  1013. //check heater every n milliseconds
  1014. manage_heater();
  1015. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1016. checkHitEndstops();
  1017. lcd_update();
  1018. #ifdef PAT9125
  1019. fsensor_update();
  1020. #endif //PAT9125
  1021. #ifdef TMC2130
  1022. tmc2130_check_overtemp();
  1023. if (tmc2130_sg_crash)
  1024. {
  1025. tmc2130_sg_crash = false;
  1026. // crashdet_stop_and_save_print();
  1027. enquecommand_P((PSTR("D999")));
  1028. }
  1029. #endif //TMC2130
  1030. }
  1031. #define DEFINE_PGM_READ_ANY(type, reader) \
  1032. static inline type pgm_read_any(const type *p) \
  1033. { return pgm_read_##reader##_near(p); }
  1034. DEFINE_PGM_READ_ANY(float, float);
  1035. DEFINE_PGM_READ_ANY(signed char, byte);
  1036. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1037. static const PROGMEM type array##_P[3] = \
  1038. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1039. static inline type array(int axis) \
  1040. { return pgm_read_any(&array##_P[axis]); } \
  1041. type array##_ext(int axis) \
  1042. { return pgm_read_any(&array##_P[axis]); }
  1043. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1044. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1045. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1046. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1047. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1048. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1049. static void axis_is_at_home(int axis) {
  1050. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1051. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1052. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1053. }
  1054. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1055. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1056. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1057. saved_feedrate = feedrate;
  1058. saved_feedmultiply = feedmultiply;
  1059. feedmultiply = 100;
  1060. previous_millis_cmd = millis();
  1061. enable_endstops(enable_endstops_now);
  1062. }
  1063. static void clean_up_after_endstop_move() {
  1064. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1065. enable_endstops(false);
  1066. #endif
  1067. feedrate = saved_feedrate;
  1068. feedmultiply = saved_feedmultiply;
  1069. previous_millis_cmd = millis();
  1070. }
  1071. #ifdef ENABLE_AUTO_BED_LEVELING
  1072. #ifdef AUTO_BED_LEVELING_GRID
  1073. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1074. {
  1075. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1076. planeNormal.debug("planeNormal");
  1077. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1078. //bedLevel.debug("bedLevel");
  1079. //plan_bed_level_matrix.debug("bed level before");
  1080. //vector_3 uncorrected_position = plan_get_position_mm();
  1081. //uncorrected_position.debug("position before");
  1082. vector_3 corrected_position = plan_get_position();
  1083. // corrected_position.debug("position after");
  1084. current_position[X_AXIS] = corrected_position.x;
  1085. current_position[Y_AXIS] = corrected_position.y;
  1086. current_position[Z_AXIS] = corrected_position.z;
  1087. // put the bed at 0 so we don't go below it.
  1088. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1089. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1090. }
  1091. #else // not AUTO_BED_LEVELING_GRID
  1092. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1093. plan_bed_level_matrix.set_to_identity();
  1094. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1095. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1096. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1097. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1098. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1099. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1100. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1101. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1102. vector_3 corrected_position = plan_get_position();
  1103. current_position[X_AXIS] = corrected_position.x;
  1104. current_position[Y_AXIS] = corrected_position.y;
  1105. current_position[Z_AXIS] = corrected_position.z;
  1106. // put the bed at 0 so we don't go below it.
  1107. current_position[Z_AXIS] = zprobe_zoffset;
  1108. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1109. }
  1110. #endif // AUTO_BED_LEVELING_GRID
  1111. static void run_z_probe() {
  1112. plan_bed_level_matrix.set_to_identity();
  1113. feedrate = homing_feedrate[Z_AXIS];
  1114. // move down until you find the bed
  1115. float zPosition = -10;
  1116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1117. st_synchronize();
  1118. // we have to let the planner know where we are right now as it is not where we said to go.
  1119. zPosition = st_get_position_mm(Z_AXIS);
  1120. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1121. // move up the retract distance
  1122. zPosition += home_retract_mm(Z_AXIS);
  1123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1124. st_synchronize();
  1125. // move back down slowly to find bed
  1126. feedrate = homing_feedrate[Z_AXIS]/4;
  1127. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1129. st_synchronize();
  1130. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1131. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1133. }
  1134. static void do_blocking_move_to(float x, float y, float z) {
  1135. float oldFeedRate = feedrate;
  1136. feedrate = homing_feedrate[Z_AXIS];
  1137. current_position[Z_AXIS] = z;
  1138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1139. st_synchronize();
  1140. feedrate = XY_TRAVEL_SPEED;
  1141. current_position[X_AXIS] = x;
  1142. current_position[Y_AXIS] = y;
  1143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1144. st_synchronize();
  1145. feedrate = oldFeedRate;
  1146. }
  1147. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1148. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1149. }
  1150. /// Probe bed height at position (x,y), returns the measured z value
  1151. static float probe_pt(float x, float y, float z_before) {
  1152. // move to right place
  1153. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1154. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1155. run_z_probe();
  1156. float measured_z = current_position[Z_AXIS];
  1157. SERIAL_PROTOCOLRPGM(MSG_BED);
  1158. SERIAL_PROTOCOLPGM(" x: ");
  1159. SERIAL_PROTOCOL(x);
  1160. SERIAL_PROTOCOLPGM(" y: ");
  1161. SERIAL_PROTOCOL(y);
  1162. SERIAL_PROTOCOLPGM(" z: ");
  1163. SERIAL_PROTOCOL(measured_z);
  1164. SERIAL_PROTOCOLPGM("\n");
  1165. return measured_z;
  1166. }
  1167. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1168. #ifdef LIN_ADVANCE
  1169. /**
  1170. * M900: Set and/or Get advance K factor and WH/D ratio
  1171. *
  1172. * K<factor> Set advance K factor
  1173. * R<ratio> Set ratio directly (overrides WH/D)
  1174. * W<width> H<height> D<diam> Set ratio from WH/D
  1175. */
  1176. inline void gcode_M900() {
  1177. st_synchronize();
  1178. const float newK = code_seen('K') ? code_value_float() : -1;
  1179. if (newK >= 0) extruder_advance_k = newK;
  1180. float newR = code_seen('R') ? code_value_float() : -1;
  1181. if (newR < 0) {
  1182. const float newD = code_seen('D') ? code_value_float() : -1,
  1183. newW = code_seen('W') ? code_value_float() : -1,
  1184. newH = code_seen('H') ? code_value_float() : -1;
  1185. if (newD >= 0 && newW >= 0 && newH >= 0)
  1186. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1187. }
  1188. if (newR >= 0) advance_ed_ratio = newR;
  1189. SERIAL_ECHO_START;
  1190. SERIAL_ECHOPGM("Advance K=");
  1191. SERIAL_ECHOLN(extruder_advance_k);
  1192. SERIAL_ECHOPGM(" E/D=");
  1193. const float ratio = advance_ed_ratio;
  1194. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1195. }
  1196. #endif // LIN_ADVANCE
  1197. #ifdef TMC2130
  1198. bool calibrate_z_auto()
  1199. {
  1200. lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1201. bool endstops_enabled = enable_endstops(true);
  1202. int axis_up_dir = -home_dir(Z_AXIS);
  1203. tmc2130_home_enter(Z_AXIS_MASK);
  1204. current_position[Z_AXIS] = 0;
  1205. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1206. set_destination_to_current();
  1207. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1208. feedrate = homing_feedrate[Z_AXIS];
  1209. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1210. tmc2130_home_restart(Z_AXIS);
  1211. st_synchronize();
  1212. // current_position[axis] = 0;
  1213. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1214. tmc2130_home_exit();
  1215. enable_endstops(false);
  1216. current_position[Z_AXIS] = 0;
  1217. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1218. set_destination_to_current();
  1219. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1220. feedrate = homing_feedrate[Z_AXIS] / 2;
  1221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1222. st_synchronize();
  1223. enable_endstops(endstops_enabled);
  1224. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1225. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1226. return true;
  1227. }
  1228. #endif //TMC2130
  1229. void homeaxis(int axis)
  1230. {
  1231. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1232. #define HOMEAXIS_DO(LETTER) \
  1233. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1234. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1235. {
  1236. int axis_home_dir = home_dir(axis);
  1237. feedrate = homing_feedrate[axis];
  1238. #ifdef TMC2130
  1239. tmc2130_home_enter(X_AXIS_MASK << axis);
  1240. #endif
  1241. // Move right a bit, so that the print head does not touch the left end position,
  1242. // and the following left movement has a chance to achieve the required velocity
  1243. // for the stall guard to work.
  1244. current_position[axis] = 0;
  1245. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1246. // destination[axis] = 11.f;
  1247. destination[axis] = 3.f;
  1248. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1249. st_synchronize();
  1250. // Move left away from the possible collision with the collision detection disabled.
  1251. endstops_hit_on_purpose();
  1252. enable_endstops(false);
  1253. current_position[axis] = 0;
  1254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1255. destination[axis] = - 1.;
  1256. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1257. st_synchronize();
  1258. // Now continue to move up to the left end stop with the collision detection enabled.
  1259. enable_endstops(true);
  1260. destination[axis] = - 1.1 * max_length(axis);
  1261. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1262. st_synchronize();
  1263. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1264. endstops_hit_on_purpose();
  1265. enable_endstops(false);
  1266. current_position[axis] = 0;
  1267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1268. destination[axis] = 10.f;
  1269. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1270. st_synchronize();
  1271. endstops_hit_on_purpose();
  1272. // Now move left up to the collision, this time with a repeatable velocity.
  1273. enable_endstops(true);
  1274. destination[axis] = - 15.f;
  1275. feedrate = homing_feedrate[axis]/2;
  1276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1277. st_synchronize();
  1278. axis_is_at_home(axis);
  1279. axis_known_position[axis] = true;
  1280. #ifdef TMC2130
  1281. tmc2130_home_exit();
  1282. #endif
  1283. // Move the X carriage away from the collision.
  1284. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1285. endstops_hit_on_purpose();
  1286. enable_endstops(false);
  1287. {
  1288. // Two full periods (4 full steps).
  1289. float gap = 0.32f * 2.f;
  1290. current_position[axis] -= gap;
  1291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1292. current_position[axis] += gap;
  1293. }
  1294. destination[axis] = current_position[axis];
  1295. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1296. st_synchronize();
  1297. feedrate = 0.0;
  1298. }
  1299. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1300. {
  1301. int axis_home_dir = home_dir(axis);
  1302. current_position[axis] = 0;
  1303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1304. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1305. feedrate = homing_feedrate[axis];
  1306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1307. st_synchronize();
  1308. current_position[axis] = 0;
  1309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1310. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1311. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1312. st_synchronize();
  1313. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1314. feedrate = homing_feedrate[axis]/2 ;
  1315. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1316. st_synchronize();
  1317. axis_is_at_home(axis);
  1318. destination[axis] = current_position[axis];
  1319. feedrate = 0.0;
  1320. endstops_hit_on_purpose();
  1321. axis_known_position[axis] = true;
  1322. }
  1323. enable_endstops(endstops_enabled);
  1324. }
  1325. /**/
  1326. void home_xy()
  1327. {
  1328. set_destination_to_current();
  1329. homeaxis(X_AXIS);
  1330. homeaxis(Y_AXIS);
  1331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1332. endstops_hit_on_purpose();
  1333. }
  1334. void refresh_cmd_timeout(void)
  1335. {
  1336. previous_millis_cmd = millis();
  1337. }
  1338. #ifdef FWRETRACT
  1339. void retract(bool retracting, bool swapretract = false) {
  1340. if(retracting && !retracted[active_extruder]) {
  1341. destination[X_AXIS]=current_position[X_AXIS];
  1342. destination[Y_AXIS]=current_position[Y_AXIS];
  1343. destination[Z_AXIS]=current_position[Z_AXIS];
  1344. destination[E_AXIS]=current_position[E_AXIS];
  1345. if (swapretract) {
  1346. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1347. } else {
  1348. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1349. }
  1350. plan_set_e_position(current_position[E_AXIS]);
  1351. float oldFeedrate = feedrate;
  1352. feedrate=retract_feedrate*60;
  1353. retracted[active_extruder]=true;
  1354. prepare_move();
  1355. current_position[Z_AXIS]-=retract_zlift;
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. prepare_move();
  1358. feedrate = oldFeedrate;
  1359. } else if(!retracting && retracted[active_extruder]) {
  1360. destination[X_AXIS]=current_position[X_AXIS];
  1361. destination[Y_AXIS]=current_position[Y_AXIS];
  1362. destination[Z_AXIS]=current_position[Z_AXIS];
  1363. destination[E_AXIS]=current_position[E_AXIS];
  1364. current_position[Z_AXIS]+=retract_zlift;
  1365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1366. //prepare_move();
  1367. if (swapretract) {
  1368. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1369. } else {
  1370. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1371. }
  1372. plan_set_e_position(current_position[E_AXIS]);
  1373. float oldFeedrate = feedrate;
  1374. feedrate=retract_recover_feedrate*60;
  1375. retracted[active_extruder]=false;
  1376. prepare_move();
  1377. feedrate = oldFeedrate;
  1378. }
  1379. } //retract
  1380. #endif //FWRETRACT
  1381. void trace() {
  1382. tone(BEEPER, 440);
  1383. delay(25);
  1384. noTone(BEEPER);
  1385. delay(20);
  1386. }
  1387. /*
  1388. void ramming() {
  1389. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1390. if (current_temperature[0] < 230) {
  1391. //PLA
  1392. max_feedrate[E_AXIS] = 50;
  1393. //current_position[E_AXIS] -= 8;
  1394. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1395. //current_position[E_AXIS] += 8;
  1396. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1397. current_position[E_AXIS] += 5.4;
  1398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1399. current_position[E_AXIS] += 3.2;
  1400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1401. current_position[E_AXIS] += 3;
  1402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1403. st_synchronize();
  1404. max_feedrate[E_AXIS] = 80;
  1405. current_position[E_AXIS] -= 82;
  1406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1407. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1408. current_position[E_AXIS] -= 20;
  1409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1410. current_position[E_AXIS] += 5;
  1411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1412. current_position[E_AXIS] += 5;
  1413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1414. current_position[E_AXIS] -= 10;
  1415. st_synchronize();
  1416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1417. current_position[E_AXIS] += 10;
  1418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1419. current_position[E_AXIS] -= 10;
  1420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1421. current_position[E_AXIS] += 10;
  1422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1423. current_position[E_AXIS] -= 10;
  1424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1425. st_synchronize();
  1426. }
  1427. else {
  1428. //ABS
  1429. max_feedrate[E_AXIS] = 50;
  1430. //current_position[E_AXIS] -= 8;
  1431. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1432. //current_position[E_AXIS] += 8;
  1433. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1434. current_position[E_AXIS] += 3.1;
  1435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1436. current_position[E_AXIS] += 3.1;
  1437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1438. current_position[E_AXIS] += 4;
  1439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1440. st_synchronize();
  1441. //current_position[X_AXIS] += 23; //delay
  1442. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1443. //current_position[X_AXIS] -= 23; //delay
  1444. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1445. delay(4700);
  1446. max_feedrate[E_AXIS] = 80;
  1447. current_position[E_AXIS] -= 92;
  1448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1449. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1450. current_position[E_AXIS] -= 5;
  1451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1452. current_position[E_AXIS] += 5;
  1453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1454. current_position[E_AXIS] -= 5;
  1455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1456. st_synchronize();
  1457. current_position[E_AXIS] += 5;
  1458. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1459. current_position[E_AXIS] -= 5;
  1460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1461. current_position[E_AXIS] += 5;
  1462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1463. current_position[E_AXIS] -= 5;
  1464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1465. st_synchronize();
  1466. }
  1467. }
  1468. */
  1469. void process_commands()
  1470. {
  1471. #ifdef FILAMENT_RUNOUT_SUPPORT
  1472. SET_INPUT(FR_SENS);
  1473. #endif
  1474. #ifdef CMDBUFFER_DEBUG
  1475. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1476. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1477. SERIAL_ECHOLNPGM("");
  1478. SERIAL_ECHOPGM("In cmdqueue: ");
  1479. SERIAL_ECHO(buflen);
  1480. SERIAL_ECHOLNPGM("");
  1481. #endif /* CMDBUFFER_DEBUG */
  1482. unsigned long codenum; //throw away variable
  1483. char *starpos = NULL;
  1484. #ifdef ENABLE_AUTO_BED_LEVELING
  1485. float x_tmp, y_tmp, z_tmp, real_z;
  1486. #endif
  1487. // PRUSA GCODES
  1488. #ifdef SNMM
  1489. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1490. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1491. int8_t SilentMode;
  1492. #endif
  1493. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1494. starpos = (strchr(strchr_pointer + 5, '*'));
  1495. if (starpos != NULL)
  1496. *(starpos) = '\0';
  1497. lcd_setstatus(strchr_pointer + 5);
  1498. }
  1499. else if(code_seen("PRUSA")){
  1500. if (code_seen("Ping")) { //PRUSA Ping
  1501. if (farm_mode) {
  1502. PingTime = millis();
  1503. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1504. }
  1505. }
  1506. else if (code_seen("PRN")) {
  1507. MYSERIAL.println(status_number);
  1508. }else if (code_seen("FAN")) {
  1509. MYSERIAL.print("E0:");
  1510. MYSERIAL.print(60*fan_speed[0]);
  1511. MYSERIAL.println(" RPM");
  1512. MYSERIAL.print("PRN0:");
  1513. MYSERIAL.print(60*fan_speed[1]);
  1514. MYSERIAL.println(" RPM");
  1515. }else if (code_seen("fn")) {
  1516. if (farm_mode) {
  1517. MYSERIAL.println(farm_no);
  1518. }
  1519. else {
  1520. MYSERIAL.println("Not in farm mode.");
  1521. }
  1522. }else if (code_seen("fv")) {
  1523. // get file version
  1524. #ifdef SDSUPPORT
  1525. card.openFile(strchr_pointer + 3,true);
  1526. while (true) {
  1527. uint16_t readByte = card.get();
  1528. MYSERIAL.write(readByte);
  1529. if (readByte=='\n') {
  1530. break;
  1531. }
  1532. }
  1533. card.closefile();
  1534. #endif // SDSUPPORT
  1535. } else if (code_seen("M28")) {
  1536. trace();
  1537. prusa_sd_card_upload = true;
  1538. card.openFile(strchr_pointer+4,false);
  1539. } else if (code_seen("SN")) {
  1540. if (farm_mode) {
  1541. selectedSerialPort = 0;
  1542. MSerial.write(";S");
  1543. // S/N is:CZPX0917X003XC13518
  1544. int numbersRead = 0;
  1545. while (numbersRead < 19) {
  1546. while (MSerial.available() > 0) {
  1547. uint8_t serial_char = MSerial.read();
  1548. selectedSerialPort = 1;
  1549. MSerial.write(serial_char);
  1550. numbersRead++;
  1551. selectedSerialPort = 0;
  1552. }
  1553. }
  1554. selectedSerialPort = 1;
  1555. MSerial.write('\n');
  1556. /*for (int b = 0; b < 3; b++) {
  1557. tone(BEEPER, 110);
  1558. delay(50);
  1559. noTone(BEEPER);
  1560. delay(50);
  1561. }*/
  1562. } else {
  1563. MYSERIAL.println("Not in farm mode.");
  1564. }
  1565. } else if(code_seen("Fir")){
  1566. SERIAL_PROTOCOLLN(FW_version);
  1567. } else if(code_seen("Rev")){
  1568. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1569. } else if(code_seen("Lang")) {
  1570. lcd_force_language_selection();
  1571. } else if(code_seen("Lz")) {
  1572. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1573. } else if (code_seen("SERIAL LOW")) {
  1574. MYSERIAL.println("SERIAL LOW");
  1575. MYSERIAL.begin(BAUDRATE);
  1576. return;
  1577. } else if (code_seen("SERIAL HIGH")) {
  1578. MYSERIAL.println("SERIAL HIGH");
  1579. MYSERIAL.begin(1152000);
  1580. return;
  1581. } else if(code_seen("Beat")) {
  1582. // Kick farm link timer
  1583. kicktime = millis();
  1584. } else if(code_seen("FR")) {
  1585. // Factory full reset
  1586. factory_reset(0,true);
  1587. }
  1588. //else if (code_seen('Cal')) {
  1589. // lcd_calibration();
  1590. // }
  1591. }
  1592. else if (code_seen('^')) {
  1593. // nothing, this is a version line
  1594. } else if(code_seen('G'))
  1595. {
  1596. switch((int)code_value())
  1597. {
  1598. case 0: // G0 -> G1
  1599. case 1: // G1
  1600. if(Stopped == false) {
  1601. #ifdef FILAMENT_RUNOUT_SUPPORT
  1602. if(READ(FR_SENS)){
  1603. feedmultiplyBckp=feedmultiply;
  1604. float target[4];
  1605. float lastpos[4];
  1606. target[X_AXIS]=current_position[X_AXIS];
  1607. target[Y_AXIS]=current_position[Y_AXIS];
  1608. target[Z_AXIS]=current_position[Z_AXIS];
  1609. target[E_AXIS]=current_position[E_AXIS];
  1610. lastpos[X_AXIS]=current_position[X_AXIS];
  1611. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1612. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1613. lastpos[E_AXIS]=current_position[E_AXIS];
  1614. //retract by E
  1615. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1617. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1618. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1619. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1620. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1621. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1622. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1623. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1624. //finish moves
  1625. st_synchronize();
  1626. //disable extruder steppers so filament can be removed
  1627. disable_e0();
  1628. disable_e1();
  1629. disable_e2();
  1630. delay(100);
  1631. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1632. uint8_t cnt=0;
  1633. int counterBeep = 0;
  1634. lcd_wait_interact();
  1635. while(!lcd_clicked()){
  1636. cnt++;
  1637. manage_heater();
  1638. manage_inactivity(true);
  1639. //lcd_update();
  1640. if(cnt==0)
  1641. {
  1642. #if BEEPER > 0
  1643. if (counterBeep== 500){
  1644. counterBeep = 0;
  1645. }
  1646. SET_OUTPUT(BEEPER);
  1647. if (counterBeep== 0){
  1648. WRITE(BEEPER,HIGH);
  1649. }
  1650. if (counterBeep== 20){
  1651. WRITE(BEEPER,LOW);
  1652. }
  1653. counterBeep++;
  1654. #else
  1655. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1656. lcd_buzz(1000/6,100);
  1657. #else
  1658. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1659. #endif
  1660. #endif
  1661. }
  1662. }
  1663. WRITE(BEEPER,LOW);
  1664. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1666. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1668. lcd_change_fil_state = 0;
  1669. lcd_loading_filament();
  1670. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1671. lcd_change_fil_state = 0;
  1672. lcd_alright();
  1673. switch(lcd_change_fil_state){
  1674. case 2:
  1675. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1677. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1678. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1679. lcd_loading_filament();
  1680. break;
  1681. case 3:
  1682. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1684. lcd_loading_color();
  1685. break;
  1686. default:
  1687. lcd_change_success();
  1688. break;
  1689. }
  1690. }
  1691. target[E_AXIS]+= 5;
  1692. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1693. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1694. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1695. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1696. //plan_set_e_position(current_position[E_AXIS]);
  1697. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1698. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1699. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1700. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1701. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1702. plan_set_e_position(lastpos[E_AXIS]);
  1703. feedmultiply=feedmultiplyBckp;
  1704. char cmd[9];
  1705. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1706. enquecommand(cmd);
  1707. }
  1708. #endif
  1709. get_coordinates(); // For X Y Z E F
  1710. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1711. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1712. }
  1713. #ifdef FWRETRACT
  1714. if(autoretract_enabled)
  1715. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1716. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1717. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1718. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1719. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1720. retract(!retracted);
  1721. return;
  1722. }
  1723. }
  1724. #endif //FWRETRACT
  1725. prepare_move();
  1726. //ClearToSend();
  1727. }
  1728. break;
  1729. case 2: // G2 - CW ARC
  1730. if(Stopped == false) {
  1731. get_arc_coordinates();
  1732. prepare_arc_move(true);
  1733. }
  1734. break;
  1735. case 3: // G3 - CCW ARC
  1736. if(Stopped == false) {
  1737. get_arc_coordinates();
  1738. prepare_arc_move(false);
  1739. }
  1740. break;
  1741. case 4: // G4 dwell
  1742. codenum = 0;
  1743. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1744. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1745. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1746. st_synchronize();
  1747. codenum += millis(); // keep track of when we started waiting
  1748. previous_millis_cmd = millis();
  1749. while(millis() < codenum) {
  1750. manage_heater();
  1751. manage_inactivity();
  1752. lcd_update();
  1753. }
  1754. break;
  1755. #ifdef FWRETRACT
  1756. case 10: // G10 retract
  1757. #if EXTRUDERS > 1
  1758. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1759. retract(true,retracted_swap[active_extruder]);
  1760. #else
  1761. retract(true);
  1762. #endif
  1763. break;
  1764. case 11: // G11 retract_recover
  1765. #if EXTRUDERS > 1
  1766. retract(false,retracted_swap[active_extruder]);
  1767. #else
  1768. retract(false);
  1769. #endif
  1770. break;
  1771. #endif //FWRETRACT
  1772. case 28: //G28 Home all Axis one at a time
  1773. {
  1774. st_synchronize();
  1775. #if 1
  1776. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1777. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1778. #endif
  1779. // Flag for the display update routine and to disable the print cancelation during homing.
  1780. homing_flag = true;
  1781. // Which axes should be homed?
  1782. bool home_x = code_seen(axis_codes[X_AXIS]);
  1783. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1784. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1785. // Either all X,Y,Z codes are present, or none of them.
  1786. bool home_all_axes = home_x == home_y && home_x == home_z;
  1787. if (home_all_axes)
  1788. // No X/Y/Z code provided means to home all axes.
  1789. home_x = home_y = home_z = true;
  1790. #ifdef ENABLE_AUTO_BED_LEVELING
  1791. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1792. #endif //ENABLE_AUTO_BED_LEVELING
  1793. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1794. // the planner will not perform any adjustments in the XY plane.
  1795. // Wait for the motors to stop and update the current position with the absolute values.
  1796. world2machine_revert_to_uncorrected();
  1797. // For mesh bed leveling deactivate the matrix temporarily.
  1798. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1799. // in a single axis only.
  1800. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1801. #ifdef MESH_BED_LEVELING
  1802. uint8_t mbl_was_active = mbl.active;
  1803. mbl.active = 0;
  1804. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1805. #endif
  1806. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1807. // consumed during the first movements following this statement.
  1808. if (home_z)
  1809. babystep_undo();
  1810. saved_feedrate = feedrate;
  1811. saved_feedmultiply = feedmultiply;
  1812. feedmultiply = 100;
  1813. previous_millis_cmd = millis();
  1814. enable_endstops(true);
  1815. memcpy(destination, current_position, sizeof(destination));
  1816. feedrate = 0.0;
  1817. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1818. if(home_z)
  1819. homeaxis(Z_AXIS);
  1820. #endif
  1821. #ifdef QUICK_HOME
  1822. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1823. if(home_x && home_y) //first diagonal move
  1824. {
  1825. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1826. int x_axis_home_dir = home_dir(X_AXIS);
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1828. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1829. feedrate = homing_feedrate[X_AXIS];
  1830. if(homing_feedrate[Y_AXIS]<feedrate)
  1831. feedrate = homing_feedrate[Y_AXIS];
  1832. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1833. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1834. } else {
  1835. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1836. }
  1837. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1838. st_synchronize();
  1839. axis_is_at_home(X_AXIS);
  1840. axis_is_at_home(Y_AXIS);
  1841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1842. destination[X_AXIS] = current_position[X_AXIS];
  1843. destination[Y_AXIS] = current_position[Y_AXIS];
  1844. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1845. feedrate = 0.0;
  1846. st_synchronize();
  1847. endstops_hit_on_purpose();
  1848. current_position[X_AXIS] = destination[X_AXIS];
  1849. current_position[Y_AXIS] = destination[Y_AXIS];
  1850. current_position[Z_AXIS] = destination[Z_AXIS];
  1851. }
  1852. #endif /* QUICK_HOME */
  1853. if(home_x)
  1854. homeaxis(X_AXIS);
  1855. if(home_y)
  1856. homeaxis(Y_AXIS);
  1857. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1858. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1859. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1860. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1861. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1862. #ifndef Z_SAFE_HOMING
  1863. if(home_z) {
  1864. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1865. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1866. feedrate = max_feedrate[Z_AXIS];
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1868. st_synchronize();
  1869. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1870. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1871. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1872. {
  1873. homeaxis(X_AXIS);
  1874. homeaxis(Y_AXIS);
  1875. }
  1876. // 1st mesh bed leveling measurement point, corrected.
  1877. world2machine_initialize();
  1878. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1879. world2machine_reset();
  1880. if (destination[Y_AXIS] < Y_MIN_POS)
  1881. destination[Y_AXIS] = Y_MIN_POS;
  1882. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1883. feedrate = homing_feedrate[Z_AXIS]/10;
  1884. current_position[Z_AXIS] = 0;
  1885. enable_endstops(false);
  1886. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1887. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1888. st_synchronize();
  1889. current_position[X_AXIS] = destination[X_AXIS];
  1890. current_position[Y_AXIS] = destination[Y_AXIS];
  1891. enable_endstops(true);
  1892. endstops_hit_on_purpose();
  1893. homeaxis(Z_AXIS);
  1894. #else // MESH_BED_LEVELING
  1895. homeaxis(Z_AXIS);
  1896. #endif // MESH_BED_LEVELING
  1897. }
  1898. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1899. if(home_all_axes) {
  1900. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1901. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1902. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1903. feedrate = XY_TRAVEL_SPEED/60;
  1904. current_position[Z_AXIS] = 0;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1907. st_synchronize();
  1908. current_position[X_AXIS] = destination[X_AXIS];
  1909. current_position[Y_AXIS] = destination[Y_AXIS];
  1910. homeaxis(Z_AXIS);
  1911. }
  1912. // Let's see if X and Y are homed and probe is inside bed area.
  1913. if(home_z) {
  1914. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1915. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1916. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1917. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1918. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1919. current_position[Z_AXIS] = 0;
  1920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1921. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1922. feedrate = max_feedrate[Z_AXIS];
  1923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1924. st_synchronize();
  1925. homeaxis(Z_AXIS);
  1926. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1927. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1928. SERIAL_ECHO_START;
  1929. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1930. } else {
  1931. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1932. SERIAL_ECHO_START;
  1933. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1934. }
  1935. }
  1936. #endif // Z_SAFE_HOMING
  1937. #endif // Z_HOME_DIR < 0
  1938. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1939. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1940. #ifdef ENABLE_AUTO_BED_LEVELING
  1941. if(home_z)
  1942. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1943. #endif
  1944. // Set the planner and stepper routine positions.
  1945. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  1946. // contains the machine coordinates.
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1949. enable_endstops(false);
  1950. #endif
  1951. feedrate = saved_feedrate;
  1952. feedmultiply = saved_feedmultiply;
  1953. previous_millis_cmd = millis();
  1954. endstops_hit_on_purpose();
  1955. #ifndef MESH_BED_LEVELING
  1956. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1957. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1958. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1959. lcd_adjust_z();
  1960. #endif
  1961. // Load the machine correction matrix
  1962. world2machine_initialize();
  1963. // and correct the current_position XY axes to match the transformed coordinate system.
  1964. world2machine_update_current();
  1965. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  1966. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1967. {
  1968. if (! home_z && mbl_was_active) {
  1969. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  1970. mbl.active = true;
  1971. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  1972. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  1973. }
  1974. }
  1975. else
  1976. {
  1977. st_synchronize();
  1978. homing_flag = false;
  1979. // Push the commands to the front of the message queue in the reverse order!
  1980. // There shall be always enough space reserved for these commands.
  1981. // enquecommand_front_P((PSTR("G80")));
  1982. goto case_G80;
  1983. }
  1984. #endif
  1985. if (farm_mode) { prusa_statistics(20); };
  1986. homing_flag = false;
  1987. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  1988. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  1989. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  1990. break;
  1991. }
  1992. #ifdef ENABLE_AUTO_BED_LEVELING
  1993. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1994. {
  1995. #if Z_MIN_PIN == -1
  1996. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1997. #endif
  1998. // Prevent user from running a G29 without first homing in X and Y
  1999. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2000. {
  2001. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2002. SERIAL_ECHO_START;
  2003. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2004. break; // abort G29, since we don't know where we are
  2005. }
  2006. st_synchronize();
  2007. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2008. //vector_3 corrected_position = plan_get_position_mm();
  2009. //corrected_position.debug("position before G29");
  2010. plan_bed_level_matrix.set_to_identity();
  2011. vector_3 uncorrected_position = plan_get_position();
  2012. //uncorrected_position.debug("position durring G29");
  2013. current_position[X_AXIS] = uncorrected_position.x;
  2014. current_position[Y_AXIS] = uncorrected_position.y;
  2015. current_position[Z_AXIS] = uncorrected_position.z;
  2016. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2017. setup_for_endstop_move();
  2018. feedrate = homing_feedrate[Z_AXIS];
  2019. #ifdef AUTO_BED_LEVELING_GRID
  2020. // probe at the points of a lattice grid
  2021. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2022. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2023. // solve the plane equation ax + by + d = z
  2024. // A is the matrix with rows [x y 1] for all the probed points
  2025. // B is the vector of the Z positions
  2026. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2027. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2028. // "A" matrix of the linear system of equations
  2029. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2030. // "B" vector of Z points
  2031. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2032. int probePointCounter = 0;
  2033. bool zig = true;
  2034. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2035. {
  2036. int xProbe, xInc;
  2037. if (zig)
  2038. {
  2039. xProbe = LEFT_PROBE_BED_POSITION;
  2040. //xEnd = RIGHT_PROBE_BED_POSITION;
  2041. xInc = xGridSpacing;
  2042. zig = false;
  2043. } else // zag
  2044. {
  2045. xProbe = RIGHT_PROBE_BED_POSITION;
  2046. //xEnd = LEFT_PROBE_BED_POSITION;
  2047. xInc = -xGridSpacing;
  2048. zig = true;
  2049. }
  2050. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2051. {
  2052. float z_before;
  2053. if (probePointCounter == 0)
  2054. {
  2055. // raise before probing
  2056. z_before = Z_RAISE_BEFORE_PROBING;
  2057. } else
  2058. {
  2059. // raise extruder
  2060. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2061. }
  2062. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2063. eqnBVector[probePointCounter] = measured_z;
  2064. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2065. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2066. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2067. probePointCounter++;
  2068. xProbe += xInc;
  2069. }
  2070. }
  2071. clean_up_after_endstop_move();
  2072. // solve lsq problem
  2073. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2074. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2075. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2076. SERIAL_PROTOCOLPGM(" b: ");
  2077. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2078. SERIAL_PROTOCOLPGM(" d: ");
  2079. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2080. set_bed_level_equation_lsq(plane_equation_coefficients);
  2081. free(plane_equation_coefficients);
  2082. #else // AUTO_BED_LEVELING_GRID not defined
  2083. // Probe at 3 arbitrary points
  2084. // probe 1
  2085. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2086. // probe 2
  2087. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2088. // probe 3
  2089. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2090. clean_up_after_endstop_move();
  2091. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2092. #endif // AUTO_BED_LEVELING_GRID
  2093. st_synchronize();
  2094. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2095. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2096. // When the bed is uneven, this height must be corrected.
  2097. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2098. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2099. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2100. z_tmp = current_position[Z_AXIS];
  2101. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2102. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2104. }
  2105. break;
  2106. #ifndef Z_PROBE_SLED
  2107. case 30: // G30 Single Z Probe
  2108. {
  2109. st_synchronize();
  2110. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2111. setup_for_endstop_move();
  2112. feedrate = homing_feedrate[Z_AXIS];
  2113. run_z_probe();
  2114. SERIAL_PROTOCOLPGM(MSG_BED);
  2115. SERIAL_PROTOCOLPGM(" X: ");
  2116. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2117. SERIAL_PROTOCOLPGM(" Y: ");
  2118. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2119. SERIAL_PROTOCOLPGM(" Z: ");
  2120. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2121. SERIAL_PROTOCOLPGM("\n");
  2122. clean_up_after_endstop_move();
  2123. }
  2124. break;
  2125. #else
  2126. case 31: // dock the sled
  2127. dock_sled(true);
  2128. break;
  2129. case 32: // undock the sled
  2130. dock_sled(false);
  2131. break;
  2132. #endif // Z_PROBE_SLED
  2133. #endif // ENABLE_AUTO_BED_LEVELING
  2134. #ifdef MESH_BED_LEVELING
  2135. case 30: // G30 Single Z Probe
  2136. {
  2137. st_synchronize();
  2138. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2139. setup_for_endstop_move();
  2140. feedrate = homing_feedrate[Z_AXIS];
  2141. find_bed_induction_sensor_point_z(-10.f, 3);
  2142. SERIAL_PROTOCOLRPGM(MSG_BED);
  2143. SERIAL_PROTOCOLPGM(" X: ");
  2144. MYSERIAL.print(current_position[X_AXIS], 5);
  2145. SERIAL_PROTOCOLPGM(" Y: ");
  2146. MYSERIAL.print(current_position[Y_AXIS], 5);
  2147. SERIAL_PROTOCOLPGM(" Z: ");
  2148. MYSERIAL.print(current_position[Z_AXIS], 5);
  2149. SERIAL_PROTOCOLPGM("\n");
  2150. clean_up_after_endstop_move();
  2151. }
  2152. break;
  2153. case 75:
  2154. {
  2155. for (int i = 40; i <= 110; i++) {
  2156. MYSERIAL.print(i);
  2157. MYSERIAL.print(" ");
  2158. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2159. }
  2160. }
  2161. break;
  2162. case 76: //PINDA probe temperature calibration
  2163. {
  2164. #ifdef PINDA_THERMISTOR
  2165. if (true)
  2166. {
  2167. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2168. // We don't know where we are! HOME!
  2169. // Push the commands to the front of the message queue in the reverse order!
  2170. // There shall be always enough space reserved for these commands.
  2171. repeatcommand_front(); // repeat G76 with all its parameters
  2172. enquecommand_front_P((PSTR("G28 W0")));
  2173. break;
  2174. }
  2175. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2176. float zero_z;
  2177. int z_shift = 0; //unit: steps
  2178. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2179. if (start_temp < 35) start_temp = 35;
  2180. if (start_temp < current_temperature_pinda) start_temp += 5;
  2181. SERIAL_ECHOPGM("start temperature: ");
  2182. MYSERIAL.println(start_temp);
  2183. // setTargetHotend(200, 0);
  2184. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2185. custom_message = true;
  2186. custom_message_type = 4;
  2187. custom_message_state = 1;
  2188. custom_message = MSG_TEMP_CALIBRATION;
  2189. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2190. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2191. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2193. st_synchronize();
  2194. while (current_temperature_pinda < start_temp)
  2195. {
  2196. delay_keep_alive(1000);
  2197. serialecho_temperatures();
  2198. }
  2199. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2200. current_position[Z_AXIS] = 5;
  2201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2202. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2203. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2205. st_synchronize();
  2206. find_bed_induction_sensor_point_z(-1.f);
  2207. zero_z = current_position[Z_AXIS];
  2208. //current_position[Z_AXIS]
  2209. SERIAL_ECHOLNPGM("");
  2210. SERIAL_ECHOPGM("ZERO: ");
  2211. MYSERIAL.print(current_position[Z_AXIS]);
  2212. SERIAL_ECHOLNPGM("");
  2213. int i = -1; for (; i < 5; i++)
  2214. {
  2215. float temp = (40 + i * 5);
  2216. SERIAL_ECHOPGM("Step: ");
  2217. MYSERIAL.print(i + 2);
  2218. SERIAL_ECHOLNPGM("/6 (skipped)");
  2219. SERIAL_ECHOPGM("PINDA temperature: ");
  2220. MYSERIAL.print((40 + i*5));
  2221. SERIAL_ECHOPGM(" Z shift (mm):");
  2222. MYSERIAL.print(0);
  2223. SERIAL_ECHOLNPGM("");
  2224. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2225. if (start_temp <= temp) break;
  2226. }
  2227. for (i++; i < 5; i++)
  2228. {
  2229. float temp = (40 + i * 5);
  2230. SERIAL_ECHOPGM("Step: ");
  2231. MYSERIAL.print(i + 2);
  2232. SERIAL_ECHOLNPGM("/6");
  2233. custom_message_state = i + 2;
  2234. setTargetBed(50 + 10 * (temp - 30) / 5);
  2235. // setTargetHotend(255, 0);
  2236. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2237. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2238. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2240. st_synchronize();
  2241. while (current_temperature_pinda < temp)
  2242. {
  2243. delay_keep_alive(1000);
  2244. serialecho_temperatures();
  2245. }
  2246. current_position[Z_AXIS] = 5;
  2247. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2248. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2249. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2251. st_synchronize();
  2252. find_bed_induction_sensor_point_z(-1.f);
  2253. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2254. SERIAL_ECHOLNPGM("");
  2255. SERIAL_ECHOPGM("PINDA temperature: ");
  2256. MYSERIAL.print(current_temperature_pinda);
  2257. SERIAL_ECHOPGM(" Z shift (mm):");
  2258. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2259. SERIAL_ECHOLNPGM("");
  2260. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2261. }
  2262. custom_message_type = 0;
  2263. custom_message = false;
  2264. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2265. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2266. disable_x();
  2267. disable_y();
  2268. disable_z();
  2269. disable_e0();
  2270. disable_e1();
  2271. disable_e2();
  2272. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2273. lcd_update_enable(true);
  2274. lcd_update(2);
  2275. setTargetBed(0); //set bed target temperature back to 0
  2276. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2277. break;
  2278. }
  2279. #endif //PINDA_THERMISTOR
  2280. setTargetBed(PINDA_MIN_T);
  2281. float zero_z;
  2282. int z_shift = 0; //unit: steps
  2283. int t_c; // temperature
  2284. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2285. // We don't know where we are! HOME!
  2286. // Push the commands to the front of the message queue in the reverse order!
  2287. // There shall be always enough space reserved for these commands.
  2288. repeatcommand_front(); // repeat G76 with all its parameters
  2289. enquecommand_front_P((PSTR("G28 W0")));
  2290. break;
  2291. }
  2292. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2293. custom_message = true;
  2294. custom_message_type = 4;
  2295. custom_message_state = 1;
  2296. custom_message = MSG_TEMP_CALIBRATION;
  2297. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2298. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2299. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2301. st_synchronize();
  2302. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2303. delay_keep_alive(1000);
  2304. serialecho_temperatures();
  2305. }
  2306. //enquecommand_P(PSTR("M190 S50"));
  2307. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2308. delay_keep_alive(1000);
  2309. serialecho_temperatures();
  2310. }
  2311. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2312. current_position[Z_AXIS] = 5;
  2313. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2314. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2315. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2317. st_synchronize();
  2318. find_bed_induction_sensor_point_z(-1.f);
  2319. zero_z = current_position[Z_AXIS];
  2320. //current_position[Z_AXIS]
  2321. SERIAL_ECHOLNPGM("");
  2322. SERIAL_ECHOPGM("ZERO: ");
  2323. MYSERIAL.print(current_position[Z_AXIS]);
  2324. SERIAL_ECHOLNPGM("");
  2325. for (int i = 0; i<5; i++) {
  2326. SERIAL_ECHOPGM("Step: ");
  2327. MYSERIAL.print(i+2);
  2328. SERIAL_ECHOLNPGM("/6");
  2329. custom_message_state = i + 2;
  2330. t_c = 60 + i * 10;
  2331. setTargetBed(t_c);
  2332. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2333. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2334. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2336. st_synchronize();
  2337. while (degBed() < t_c) {
  2338. delay_keep_alive(1000);
  2339. serialecho_temperatures();
  2340. }
  2341. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2342. delay_keep_alive(1000);
  2343. serialecho_temperatures();
  2344. }
  2345. current_position[Z_AXIS] = 5;
  2346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2347. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2348. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2349. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2350. st_synchronize();
  2351. find_bed_induction_sensor_point_z(-1.f);
  2352. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2353. SERIAL_ECHOLNPGM("");
  2354. SERIAL_ECHOPGM("Temperature: ");
  2355. MYSERIAL.print(t_c);
  2356. SERIAL_ECHOPGM(" Z shift (mm):");
  2357. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2358. SERIAL_ECHOLNPGM("");
  2359. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2360. }
  2361. custom_message_type = 0;
  2362. custom_message = false;
  2363. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2364. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2365. disable_x();
  2366. disable_y();
  2367. disable_z();
  2368. disable_e0();
  2369. disable_e1();
  2370. disable_e2();
  2371. setTargetBed(0); //set bed target temperature back to 0
  2372. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2373. lcd_update_enable(true);
  2374. lcd_update(2);
  2375. }
  2376. break;
  2377. #ifdef DIS
  2378. case 77:
  2379. {
  2380. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2381. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2382. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2383. float dimension_x = 40;
  2384. float dimension_y = 40;
  2385. int points_x = 40;
  2386. int points_y = 40;
  2387. float offset_x = 74;
  2388. float offset_y = 33;
  2389. if (code_seen('X')) dimension_x = code_value();
  2390. if (code_seen('Y')) dimension_y = code_value();
  2391. if (code_seen('XP')) points_x = code_value();
  2392. if (code_seen('YP')) points_y = code_value();
  2393. if (code_seen('XO')) offset_x = code_value();
  2394. if (code_seen('YO')) offset_y = code_value();
  2395. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2396. } break;
  2397. #endif
  2398. case 79: {
  2399. for (int i = 255; i > 0; i = i - 5) {
  2400. fanSpeed = i;
  2401. //delay_keep_alive(2000);
  2402. for (int j = 0; j < 100; j++) {
  2403. delay_keep_alive(100);
  2404. }
  2405. fan_speed[1];
  2406. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2407. }
  2408. }break;
  2409. /**
  2410. * G80: Mesh-based Z probe, probes a grid and produces a
  2411. * mesh to compensate for variable bed height
  2412. *
  2413. * The S0 report the points as below
  2414. *
  2415. * +----> X-axis
  2416. * |
  2417. * |
  2418. * v Y-axis
  2419. *
  2420. */
  2421. case 80:
  2422. #ifdef MK1BP
  2423. break;
  2424. #endif //MK1BP
  2425. case_G80:
  2426. {
  2427. mesh_bed_leveling_flag = true;
  2428. int8_t verbosity_level = 0;
  2429. static bool run = false;
  2430. if (code_seen('V')) {
  2431. // Just 'V' without a number counts as V1.
  2432. char c = strchr_pointer[1];
  2433. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2434. }
  2435. // Firstly check if we know where we are
  2436. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2437. // We don't know where we are! HOME!
  2438. // Push the commands to the front of the message queue in the reverse order!
  2439. // There shall be always enough space reserved for these commands.
  2440. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2441. repeatcommand_front(); // repeat G80 with all its parameters
  2442. enquecommand_front_P((PSTR("G28 W0")));
  2443. }
  2444. else {
  2445. mesh_bed_leveling_flag = false;
  2446. }
  2447. break;
  2448. }
  2449. bool temp_comp_start = true;
  2450. #ifdef PINDA_THERMISTOR
  2451. temp_comp_start = false;
  2452. #endif //PINDA_THERMISTOR
  2453. if (temp_comp_start)
  2454. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2455. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2456. temp_compensation_start();
  2457. run = true;
  2458. repeatcommand_front(); // repeat G80 with all its parameters
  2459. enquecommand_front_P((PSTR("G28 W0")));
  2460. }
  2461. else {
  2462. mesh_bed_leveling_flag = false;
  2463. }
  2464. break;
  2465. }
  2466. run = false;
  2467. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2468. mesh_bed_leveling_flag = false;
  2469. break;
  2470. }
  2471. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2472. bool custom_message_old = custom_message;
  2473. unsigned int custom_message_type_old = custom_message_type;
  2474. unsigned int custom_message_state_old = custom_message_state;
  2475. custom_message = true;
  2476. custom_message_type = 1;
  2477. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2478. lcd_update(1);
  2479. mbl.reset(); //reset mesh bed leveling
  2480. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2481. // consumed during the first movements following this statement.
  2482. babystep_undo();
  2483. // Cycle through all points and probe them
  2484. // First move up. During this first movement, the babystepping will be reverted.
  2485. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2487. // The move to the first calibration point.
  2488. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2489. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2490. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2491. if (verbosity_level >= 1) {
  2492. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2493. }
  2494. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2496. // Wait until the move is finished.
  2497. st_synchronize();
  2498. int mesh_point = 0; //index number of calibration point
  2499. int ix = 0;
  2500. int iy = 0;
  2501. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2502. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2503. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2504. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2505. if (verbosity_level >= 1) {
  2506. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2507. }
  2508. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2509. const char *kill_message = NULL;
  2510. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2511. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2512. // Get coords of a measuring point.
  2513. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2514. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2515. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2516. float z0 = 0.f;
  2517. if (has_z && mesh_point > 0) {
  2518. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2519. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2520. //#if 0
  2521. if (verbosity_level >= 1) {
  2522. SERIAL_ECHOPGM("Bed leveling, point: ");
  2523. MYSERIAL.print(mesh_point);
  2524. SERIAL_ECHOPGM(", calibration z: ");
  2525. MYSERIAL.print(z0, 5);
  2526. SERIAL_ECHOLNPGM("");
  2527. }
  2528. //#endif
  2529. }
  2530. // Move Z up to MESH_HOME_Z_SEARCH.
  2531. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2533. st_synchronize();
  2534. // Move to XY position of the sensor point.
  2535. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2536. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2537. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2538. if (verbosity_level >= 1) {
  2539. SERIAL_PROTOCOL(mesh_point);
  2540. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2541. }
  2542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2543. st_synchronize();
  2544. // Go down until endstop is hit
  2545. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2546. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2547. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2548. break;
  2549. }
  2550. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2551. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2552. break;
  2553. }
  2554. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2555. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2556. break;
  2557. }
  2558. if (verbosity_level >= 10) {
  2559. SERIAL_ECHOPGM("X: ");
  2560. MYSERIAL.print(current_position[X_AXIS], 5);
  2561. SERIAL_ECHOLNPGM("");
  2562. SERIAL_ECHOPGM("Y: ");
  2563. MYSERIAL.print(current_position[Y_AXIS], 5);
  2564. SERIAL_PROTOCOLPGM("\n");
  2565. }
  2566. float offset_z = 0;
  2567. #ifdef PINDA_THERMISTOR
  2568. offset_z = temp_compensation_pinda_thermistor_offset();
  2569. #endif //PINDA_THERMISTOR
  2570. if (verbosity_level >= 1) {
  2571. SERIAL_ECHOPGM("mesh bed leveling: ");
  2572. MYSERIAL.print(current_position[Z_AXIS], 5);
  2573. SERIAL_ECHOPGM(" offset: ");
  2574. MYSERIAL.print(offset_z, 5);
  2575. SERIAL_ECHOLNPGM("");
  2576. }
  2577. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2578. custom_message_state--;
  2579. mesh_point++;
  2580. lcd_update(1);
  2581. }
  2582. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2583. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2584. if (verbosity_level >= 20) {
  2585. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2586. MYSERIAL.print(current_position[Z_AXIS], 5);
  2587. }
  2588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2589. st_synchronize();
  2590. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2591. kill(kill_message);
  2592. SERIAL_ECHOLNPGM("killed");
  2593. }
  2594. clean_up_after_endstop_move();
  2595. SERIAL_ECHOLNPGM("clean up finished ");
  2596. bool apply_temp_comp = true;
  2597. #ifdef PINDA_THERMISTOR
  2598. apply_temp_comp = false;
  2599. #endif
  2600. if (apply_temp_comp)
  2601. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2602. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2603. SERIAL_ECHOLNPGM("babystep applied");
  2604. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2605. if (verbosity_level >= 1) {
  2606. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2607. }
  2608. for (uint8_t i = 0; i < 4; ++i) {
  2609. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2610. long correction = 0;
  2611. if (code_seen(codes[i]))
  2612. correction = code_value_long();
  2613. else if (eeprom_bed_correction_valid) {
  2614. unsigned char *addr = (i < 2) ?
  2615. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2616. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2617. correction = eeprom_read_int8(addr);
  2618. }
  2619. if (correction == 0)
  2620. continue;
  2621. float offset = float(correction) * 0.001f;
  2622. if (fabs(offset) > 0.101f) {
  2623. SERIAL_ERROR_START;
  2624. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2625. SERIAL_ECHO(offset);
  2626. SERIAL_ECHOLNPGM(" microns");
  2627. }
  2628. else {
  2629. switch (i) {
  2630. case 0:
  2631. for (uint8_t row = 0; row < 3; ++row) {
  2632. mbl.z_values[row][1] += 0.5f * offset;
  2633. mbl.z_values[row][0] += offset;
  2634. }
  2635. break;
  2636. case 1:
  2637. for (uint8_t row = 0; row < 3; ++row) {
  2638. mbl.z_values[row][1] += 0.5f * offset;
  2639. mbl.z_values[row][2] += offset;
  2640. }
  2641. break;
  2642. case 2:
  2643. for (uint8_t col = 0; col < 3; ++col) {
  2644. mbl.z_values[1][col] += 0.5f * offset;
  2645. mbl.z_values[0][col] += offset;
  2646. }
  2647. break;
  2648. case 3:
  2649. for (uint8_t col = 0; col < 3; ++col) {
  2650. mbl.z_values[1][col] += 0.5f * offset;
  2651. mbl.z_values[2][col] += offset;
  2652. }
  2653. break;
  2654. }
  2655. }
  2656. }
  2657. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2658. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2659. SERIAL_ECHOLNPGM("Upsample finished");
  2660. mbl.active = 1; //activate mesh bed leveling
  2661. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2662. go_home_with_z_lift();
  2663. SERIAL_ECHOLNPGM("Go home finished");
  2664. //unretract (after PINDA preheat retraction)
  2665. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2666. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2668. }
  2669. // Restore custom message state
  2670. custom_message = custom_message_old;
  2671. custom_message_type = custom_message_type_old;
  2672. custom_message_state = custom_message_state_old;
  2673. mesh_bed_leveling_flag = false;
  2674. mesh_bed_run_from_menu = false;
  2675. lcd_update(2);
  2676. }
  2677. break;
  2678. /**
  2679. * G81: Print mesh bed leveling status and bed profile if activated
  2680. */
  2681. case 81:
  2682. if (mbl.active) {
  2683. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2684. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2685. SERIAL_PROTOCOLPGM(",");
  2686. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2687. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2688. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2689. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2690. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2691. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2692. SERIAL_PROTOCOLPGM(" ");
  2693. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2694. }
  2695. SERIAL_PROTOCOLPGM("\n");
  2696. }
  2697. }
  2698. else
  2699. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2700. break;
  2701. #if 0
  2702. /**
  2703. * G82: Single Z probe at current location
  2704. *
  2705. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2706. *
  2707. */
  2708. case 82:
  2709. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2710. setup_for_endstop_move();
  2711. find_bed_induction_sensor_point_z();
  2712. clean_up_after_endstop_move();
  2713. SERIAL_PROTOCOLPGM("Bed found at: ");
  2714. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2715. SERIAL_PROTOCOLPGM("\n");
  2716. break;
  2717. /**
  2718. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2719. */
  2720. case 83:
  2721. {
  2722. int babystepz = code_seen('S') ? code_value() : 0;
  2723. int BabyPosition = code_seen('P') ? code_value() : 0;
  2724. if (babystepz != 0) {
  2725. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2726. // Is the axis indexed starting with zero or one?
  2727. if (BabyPosition > 4) {
  2728. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2729. }else{
  2730. // Save it to the eeprom
  2731. babystepLoadZ = babystepz;
  2732. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2733. // adjust the Z
  2734. babystepsTodoZadd(babystepLoadZ);
  2735. }
  2736. }
  2737. }
  2738. break;
  2739. /**
  2740. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2741. */
  2742. case 84:
  2743. babystepsTodoZsubtract(babystepLoadZ);
  2744. // babystepLoadZ = 0;
  2745. break;
  2746. /**
  2747. * G85: Prusa3D specific: Pick best babystep
  2748. */
  2749. case 85:
  2750. lcd_pick_babystep();
  2751. break;
  2752. #endif
  2753. /**
  2754. * G86: Prusa3D specific: Disable babystep correction after home.
  2755. * This G-code will be performed at the start of a calibration script.
  2756. */
  2757. case 86:
  2758. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2759. break;
  2760. /**
  2761. * G87: Prusa3D specific: Enable babystep correction after home
  2762. * This G-code will be performed at the end of a calibration script.
  2763. */
  2764. case 87:
  2765. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2766. break;
  2767. /**
  2768. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2769. */
  2770. case 88:
  2771. break;
  2772. #endif // ENABLE_MESH_BED_LEVELING
  2773. case 90: // G90
  2774. relative_mode = false;
  2775. break;
  2776. case 91: // G91
  2777. relative_mode = true;
  2778. break;
  2779. case 92: // G92
  2780. if(!code_seen(axis_codes[E_AXIS]))
  2781. st_synchronize();
  2782. for(int8_t i=0; i < NUM_AXIS; i++) {
  2783. if(code_seen(axis_codes[i])) {
  2784. if(i == E_AXIS) {
  2785. current_position[i] = code_value();
  2786. plan_set_e_position(current_position[E_AXIS]);
  2787. }
  2788. else {
  2789. current_position[i] = code_value()+add_homing[i];
  2790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2791. }
  2792. }
  2793. }
  2794. break;
  2795. case 98: //activate farm mode
  2796. farm_mode = 1;
  2797. PingTime = millis();
  2798. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2799. break;
  2800. case 99: //deactivate farm mode
  2801. farm_mode = 0;
  2802. lcd_printer_connected();
  2803. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2804. lcd_update(2);
  2805. break;
  2806. }
  2807. } // end if(code_seen('G'))
  2808. else if(code_seen('M'))
  2809. {
  2810. int index;
  2811. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2812. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2813. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2814. SERIAL_ECHOLNPGM("Invalid M code");
  2815. } else
  2816. switch((int)code_value())
  2817. {
  2818. #ifdef ULTIPANEL
  2819. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2820. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2821. {
  2822. char *src = strchr_pointer + 2;
  2823. codenum = 0;
  2824. bool hasP = false, hasS = false;
  2825. if (code_seen('P')) {
  2826. codenum = code_value(); // milliseconds to wait
  2827. hasP = codenum > 0;
  2828. }
  2829. if (code_seen('S')) {
  2830. codenum = code_value() * 1000; // seconds to wait
  2831. hasS = codenum > 0;
  2832. }
  2833. starpos = strchr(src, '*');
  2834. if (starpos != NULL) *(starpos) = '\0';
  2835. while (*src == ' ') ++src;
  2836. if (!hasP && !hasS && *src != '\0') {
  2837. lcd_setstatus(src);
  2838. } else {
  2839. LCD_MESSAGERPGM(MSG_USERWAIT);
  2840. }
  2841. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2842. st_synchronize();
  2843. previous_millis_cmd = millis();
  2844. if (codenum > 0){
  2845. codenum += millis(); // keep track of when we started waiting
  2846. while(millis() < codenum && !lcd_clicked()){
  2847. manage_heater();
  2848. manage_inactivity(true);
  2849. lcd_update();
  2850. }
  2851. lcd_ignore_click(false);
  2852. }else{
  2853. if (!lcd_detected())
  2854. break;
  2855. while(!lcd_clicked()){
  2856. manage_heater();
  2857. manage_inactivity(true);
  2858. lcd_update();
  2859. }
  2860. }
  2861. if (IS_SD_PRINTING)
  2862. LCD_MESSAGERPGM(MSG_RESUMING);
  2863. else
  2864. LCD_MESSAGERPGM(WELCOME_MSG);
  2865. }
  2866. break;
  2867. #endif
  2868. case 17:
  2869. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2870. enable_x();
  2871. enable_y();
  2872. enable_z();
  2873. enable_e0();
  2874. enable_e1();
  2875. enable_e2();
  2876. break;
  2877. #ifdef SDSUPPORT
  2878. case 20: // M20 - list SD card
  2879. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2880. card.ls();
  2881. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2882. break;
  2883. case 21: // M21 - init SD card
  2884. card.initsd();
  2885. break;
  2886. case 22: //M22 - release SD card
  2887. card.release();
  2888. break;
  2889. case 23: //M23 - Select file
  2890. starpos = (strchr(strchr_pointer + 4,'*'));
  2891. if(starpos!=NULL)
  2892. *(starpos)='\0';
  2893. card.openFile(strchr_pointer + 4,true);
  2894. break;
  2895. case 24: //M24 - Start SD print
  2896. card.startFileprint();
  2897. starttime=millis();
  2898. break;
  2899. case 25: //M25 - Pause SD print
  2900. card.pauseSDPrint();
  2901. break;
  2902. case 26: //M26 - Set SD index
  2903. if(card.cardOK && code_seen('S')) {
  2904. card.setIndex(code_value_long());
  2905. }
  2906. break;
  2907. case 27: //M27 - Get SD status
  2908. card.getStatus();
  2909. break;
  2910. case 28: //M28 - Start SD write
  2911. starpos = (strchr(strchr_pointer + 4,'*'));
  2912. if(starpos != NULL){
  2913. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2914. strchr_pointer = strchr(npos,' ') + 1;
  2915. *(starpos) = '\0';
  2916. }
  2917. card.openFile(strchr_pointer+4,false);
  2918. break;
  2919. case 29: //M29 - Stop SD write
  2920. //processed in write to file routine above
  2921. //card,saving = false;
  2922. break;
  2923. case 30: //M30 <filename> Delete File
  2924. if (card.cardOK){
  2925. card.closefile();
  2926. starpos = (strchr(strchr_pointer + 4,'*'));
  2927. if(starpos != NULL){
  2928. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2929. strchr_pointer = strchr(npos,' ') + 1;
  2930. *(starpos) = '\0';
  2931. }
  2932. card.removeFile(strchr_pointer + 4);
  2933. }
  2934. break;
  2935. case 32: //M32 - Select file and start SD print
  2936. {
  2937. if(card.sdprinting) {
  2938. st_synchronize();
  2939. }
  2940. starpos = (strchr(strchr_pointer + 4,'*'));
  2941. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2942. if(namestartpos==NULL)
  2943. {
  2944. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2945. }
  2946. else
  2947. namestartpos++; //to skip the '!'
  2948. if(starpos!=NULL)
  2949. *(starpos)='\0';
  2950. bool call_procedure=(code_seen('P'));
  2951. if(strchr_pointer>namestartpos)
  2952. call_procedure=false; //false alert, 'P' found within filename
  2953. if( card.cardOK )
  2954. {
  2955. card.openFile(namestartpos,true,!call_procedure);
  2956. if(code_seen('S'))
  2957. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2958. card.setIndex(code_value_long());
  2959. card.startFileprint();
  2960. if(!call_procedure)
  2961. starttime=millis(); //procedure calls count as normal print time.
  2962. }
  2963. } break;
  2964. case 928: //M928 - Start SD write
  2965. starpos = (strchr(strchr_pointer + 5,'*'));
  2966. if(starpos != NULL){
  2967. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2968. strchr_pointer = strchr(npos,' ') + 1;
  2969. *(starpos) = '\0';
  2970. }
  2971. card.openLogFile(strchr_pointer+5);
  2972. break;
  2973. #endif //SDSUPPORT
  2974. case 31: //M31 take time since the start of the SD print or an M109 command
  2975. {
  2976. stoptime=millis();
  2977. char time[30];
  2978. unsigned long t=(stoptime-starttime)/1000;
  2979. int sec,min;
  2980. min=t/60;
  2981. sec=t%60;
  2982. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2983. SERIAL_ECHO_START;
  2984. SERIAL_ECHOLN(time);
  2985. lcd_setstatus(time);
  2986. autotempShutdown();
  2987. }
  2988. break;
  2989. case 42: //M42 -Change pin status via gcode
  2990. if (code_seen('S'))
  2991. {
  2992. int pin_status = code_value();
  2993. int pin_number = LED_PIN;
  2994. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2995. pin_number = code_value();
  2996. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2997. {
  2998. if (sensitive_pins[i] == pin_number)
  2999. {
  3000. pin_number = -1;
  3001. break;
  3002. }
  3003. }
  3004. #if defined(FAN_PIN) && FAN_PIN > -1
  3005. if (pin_number == FAN_PIN)
  3006. fanSpeed = pin_status;
  3007. #endif
  3008. if (pin_number > -1)
  3009. {
  3010. pinMode(pin_number, OUTPUT);
  3011. digitalWrite(pin_number, pin_status);
  3012. analogWrite(pin_number, pin_status);
  3013. }
  3014. }
  3015. break;
  3016. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3017. // Reset the baby step value and the baby step applied flag.
  3018. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3019. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3020. // Reset the skew and offset in both RAM and EEPROM.
  3021. reset_bed_offset_and_skew();
  3022. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3023. // the planner will not perform any adjustments in the XY plane.
  3024. // Wait for the motors to stop and update the current position with the absolute values.
  3025. world2machine_revert_to_uncorrected();
  3026. break;
  3027. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3028. {
  3029. // Only Z calibration?
  3030. bool onlyZ = code_seen('Z');
  3031. if (!onlyZ) {
  3032. setTargetBed(0);
  3033. setTargetHotend(0, 0);
  3034. setTargetHotend(0, 1);
  3035. setTargetHotend(0, 2);
  3036. adjust_bed_reset(); //reset bed level correction
  3037. }
  3038. // Disable the default update procedure of the display. We will do a modal dialog.
  3039. lcd_update_enable(false);
  3040. // Let the planner use the uncorrected coordinates.
  3041. mbl.reset();
  3042. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3043. // the planner will not perform any adjustments in the XY plane.
  3044. // Wait for the motors to stop and update the current position with the absolute values.
  3045. world2machine_revert_to_uncorrected();
  3046. // Reset the baby step value applied without moving the axes.
  3047. babystep_reset();
  3048. // Mark all axes as in a need for homing.
  3049. memset(axis_known_position, 0, sizeof(axis_known_position));
  3050. // Home in the XY plane.
  3051. //set_destination_to_current();
  3052. setup_for_endstop_move();
  3053. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3054. home_xy();
  3055. // Let the user move the Z axes up to the end stoppers.
  3056. #ifdef TMC2130
  3057. if (calibrate_z_auto()) {
  3058. #else //TMC2130
  3059. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3060. #endif //TMC2130
  3061. refresh_cmd_timeout();
  3062. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3063. lcd_wait_for_cool_down();
  3064. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3065. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3066. lcd_implementation_print_at(0, 2, 1);
  3067. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3068. }
  3069. // Move the print head close to the bed.
  3070. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3072. st_synchronize();
  3073. //#ifdef TMC2130
  3074. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3075. //#endif
  3076. int8_t verbosity_level = 0;
  3077. if (code_seen('V')) {
  3078. // Just 'V' without a number counts as V1.
  3079. char c = strchr_pointer[1];
  3080. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3081. }
  3082. if (onlyZ) {
  3083. clean_up_after_endstop_move();
  3084. // Z only calibration.
  3085. // Load the machine correction matrix
  3086. world2machine_initialize();
  3087. // and correct the current_position to match the transformed coordinate system.
  3088. world2machine_update_current();
  3089. //FIXME
  3090. bool result = sample_mesh_and_store_reference();
  3091. if (result) {
  3092. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3093. // Shipped, the nozzle height has been set already. The user can start printing now.
  3094. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3095. // babystep_apply();
  3096. }
  3097. } else {
  3098. // Reset the baby step value and the baby step applied flag.
  3099. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3100. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3101. // Complete XYZ calibration.
  3102. uint8_t point_too_far_mask = 0;
  3103. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3104. clean_up_after_endstop_move();
  3105. // Print head up.
  3106. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3108. st_synchronize();
  3109. if (result >= 0) {
  3110. point_too_far_mask = 0;
  3111. // Second half: The fine adjustment.
  3112. // Let the planner use the uncorrected coordinates.
  3113. mbl.reset();
  3114. world2machine_reset();
  3115. // Home in the XY plane.
  3116. setup_for_endstop_move();
  3117. home_xy();
  3118. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3119. clean_up_after_endstop_move();
  3120. // Print head up.
  3121. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3123. st_synchronize();
  3124. // if (result >= 0) babystep_apply();
  3125. }
  3126. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3127. if (result >= 0) {
  3128. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3129. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3130. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3131. }
  3132. }
  3133. #ifdef TMC2130
  3134. tmc2130_home_exit();
  3135. #endif
  3136. } else {
  3137. // Timeouted.
  3138. }
  3139. lcd_update_enable(true);
  3140. break;
  3141. }
  3142. /*
  3143. case 46:
  3144. {
  3145. // M46: Prusa3D: Show the assigned IP address.
  3146. uint8_t ip[4];
  3147. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3148. if (hasIP) {
  3149. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3150. SERIAL_ECHO(int(ip[0]));
  3151. SERIAL_ECHOPGM(".");
  3152. SERIAL_ECHO(int(ip[1]));
  3153. SERIAL_ECHOPGM(".");
  3154. SERIAL_ECHO(int(ip[2]));
  3155. SERIAL_ECHOPGM(".");
  3156. SERIAL_ECHO(int(ip[3]));
  3157. SERIAL_ECHOLNPGM("");
  3158. } else {
  3159. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3160. }
  3161. break;
  3162. }
  3163. */
  3164. case 47:
  3165. // M47: Prusa3D: Show end stops dialog on the display.
  3166. lcd_diag_show_end_stops();
  3167. break;
  3168. #if 0
  3169. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3170. {
  3171. // Disable the default update procedure of the display. We will do a modal dialog.
  3172. lcd_update_enable(false);
  3173. // Let the planner use the uncorrected coordinates.
  3174. mbl.reset();
  3175. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3176. // the planner will not perform any adjustments in the XY plane.
  3177. // Wait for the motors to stop and update the current position with the absolute values.
  3178. world2machine_revert_to_uncorrected();
  3179. // Move the print head close to the bed.
  3180. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3182. st_synchronize();
  3183. // Home in the XY plane.
  3184. set_destination_to_current();
  3185. setup_for_endstop_move();
  3186. home_xy();
  3187. int8_t verbosity_level = 0;
  3188. if (code_seen('V')) {
  3189. // Just 'V' without a number counts as V1.
  3190. char c = strchr_pointer[1];
  3191. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3192. }
  3193. bool success = scan_bed_induction_points(verbosity_level);
  3194. clean_up_after_endstop_move();
  3195. // Print head up.
  3196. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3198. st_synchronize();
  3199. lcd_update_enable(true);
  3200. break;
  3201. }
  3202. #endif
  3203. // M48 Z-Probe repeatability measurement function.
  3204. //
  3205. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3206. //
  3207. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3208. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3209. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3210. // regenerated.
  3211. //
  3212. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3213. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3214. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3215. //
  3216. #ifdef ENABLE_AUTO_BED_LEVELING
  3217. #ifdef Z_PROBE_REPEATABILITY_TEST
  3218. case 48: // M48 Z-Probe repeatability
  3219. {
  3220. #if Z_MIN_PIN == -1
  3221. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3222. #endif
  3223. double sum=0.0;
  3224. double mean=0.0;
  3225. double sigma=0.0;
  3226. double sample_set[50];
  3227. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3228. double X_current, Y_current, Z_current;
  3229. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3230. if (code_seen('V') || code_seen('v')) {
  3231. verbose_level = code_value();
  3232. if (verbose_level<0 || verbose_level>4 ) {
  3233. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3234. goto Sigma_Exit;
  3235. }
  3236. }
  3237. if (verbose_level > 0) {
  3238. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3239. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3240. }
  3241. if (code_seen('n')) {
  3242. n_samples = code_value();
  3243. if (n_samples<4 || n_samples>50 ) {
  3244. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3245. goto Sigma_Exit;
  3246. }
  3247. }
  3248. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3249. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3250. Z_current = st_get_position_mm(Z_AXIS);
  3251. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3252. ext_position = st_get_position_mm(E_AXIS);
  3253. if (code_seen('X') || code_seen('x') ) {
  3254. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3255. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3256. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3257. goto Sigma_Exit;
  3258. }
  3259. }
  3260. if (code_seen('Y') || code_seen('y') ) {
  3261. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3262. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3263. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3264. goto Sigma_Exit;
  3265. }
  3266. }
  3267. if (code_seen('L') || code_seen('l') ) {
  3268. n_legs = code_value();
  3269. if ( n_legs==1 )
  3270. n_legs = 2;
  3271. if ( n_legs<0 || n_legs>15 ) {
  3272. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3273. goto Sigma_Exit;
  3274. }
  3275. }
  3276. //
  3277. // Do all the preliminary setup work. First raise the probe.
  3278. //
  3279. st_synchronize();
  3280. plan_bed_level_matrix.set_to_identity();
  3281. plan_buffer_line( X_current, Y_current, Z_start_location,
  3282. ext_position,
  3283. homing_feedrate[Z_AXIS]/60,
  3284. active_extruder);
  3285. st_synchronize();
  3286. //
  3287. // Now get everything to the specified probe point So we can safely do a probe to
  3288. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3289. // use that as a starting point for each probe.
  3290. //
  3291. if (verbose_level > 2)
  3292. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3293. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3294. ext_position,
  3295. homing_feedrate[X_AXIS]/60,
  3296. active_extruder);
  3297. st_synchronize();
  3298. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3299. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3300. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3301. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3302. //
  3303. // OK, do the inital probe to get us close to the bed.
  3304. // Then retrace the right amount and use that in subsequent probes
  3305. //
  3306. setup_for_endstop_move();
  3307. run_z_probe();
  3308. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3309. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3310. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3311. ext_position,
  3312. homing_feedrate[X_AXIS]/60,
  3313. active_extruder);
  3314. st_synchronize();
  3315. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3316. for( n=0; n<n_samples; n++) {
  3317. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3318. if ( n_legs) {
  3319. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3320. int rotational_direction, l;
  3321. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3322. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3323. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3324. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3325. //SERIAL_ECHOPAIR(" theta: ",theta);
  3326. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3327. //SERIAL_PROTOCOLLNPGM("");
  3328. for( l=0; l<n_legs-1; l++) {
  3329. if (rotational_direction==1)
  3330. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3331. else
  3332. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3333. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3334. if ( radius<0.0 )
  3335. radius = -radius;
  3336. X_current = X_probe_location + cos(theta) * radius;
  3337. Y_current = Y_probe_location + sin(theta) * radius;
  3338. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3339. X_current = X_MIN_POS;
  3340. if ( X_current>X_MAX_POS)
  3341. X_current = X_MAX_POS;
  3342. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3343. Y_current = Y_MIN_POS;
  3344. if ( Y_current>Y_MAX_POS)
  3345. Y_current = Y_MAX_POS;
  3346. if (verbose_level>3 ) {
  3347. SERIAL_ECHOPAIR("x: ", X_current);
  3348. SERIAL_ECHOPAIR("y: ", Y_current);
  3349. SERIAL_PROTOCOLLNPGM("");
  3350. }
  3351. do_blocking_move_to( X_current, Y_current, Z_current );
  3352. }
  3353. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3354. }
  3355. setup_for_endstop_move();
  3356. run_z_probe();
  3357. sample_set[n] = current_position[Z_AXIS];
  3358. //
  3359. // Get the current mean for the data points we have so far
  3360. //
  3361. sum=0.0;
  3362. for( j=0; j<=n; j++) {
  3363. sum = sum + sample_set[j];
  3364. }
  3365. mean = sum / (double (n+1));
  3366. //
  3367. // Now, use that mean to calculate the standard deviation for the
  3368. // data points we have so far
  3369. //
  3370. sum=0.0;
  3371. for( j=0; j<=n; j++) {
  3372. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3373. }
  3374. sigma = sqrt( sum / (double (n+1)) );
  3375. if (verbose_level > 1) {
  3376. SERIAL_PROTOCOL(n+1);
  3377. SERIAL_PROTOCOL(" of ");
  3378. SERIAL_PROTOCOL(n_samples);
  3379. SERIAL_PROTOCOLPGM(" z: ");
  3380. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3381. }
  3382. if (verbose_level > 2) {
  3383. SERIAL_PROTOCOL(" mean: ");
  3384. SERIAL_PROTOCOL_F(mean,6);
  3385. SERIAL_PROTOCOL(" sigma: ");
  3386. SERIAL_PROTOCOL_F(sigma,6);
  3387. }
  3388. if (verbose_level > 0)
  3389. SERIAL_PROTOCOLPGM("\n");
  3390. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3391. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3392. st_synchronize();
  3393. }
  3394. delay(1000);
  3395. clean_up_after_endstop_move();
  3396. // enable_endstops(true);
  3397. if (verbose_level > 0) {
  3398. SERIAL_PROTOCOLPGM("Mean: ");
  3399. SERIAL_PROTOCOL_F(mean, 6);
  3400. SERIAL_PROTOCOLPGM("\n");
  3401. }
  3402. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3403. SERIAL_PROTOCOL_F(sigma, 6);
  3404. SERIAL_PROTOCOLPGM("\n\n");
  3405. Sigma_Exit:
  3406. break;
  3407. }
  3408. #endif // Z_PROBE_REPEATABILITY_TEST
  3409. #endif // ENABLE_AUTO_BED_LEVELING
  3410. case 104: // M104
  3411. if(setTargetedHotend(104)){
  3412. break;
  3413. }
  3414. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3415. setWatch();
  3416. break;
  3417. case 112: // M112 -Emergency Stop
  3418. kill("", 3);
  3419. break;
  3420. case 140: // M140 set bed temp
  3421. if (code_seen('S')) setTargetBed(code_value());
  3422. break;
  3423. case 105 : // M105
  3424. if(setTargetedHotend(105)){
  3425. break;
  3426. }
  3427. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3428. SERIAL_PROTOCOLPGM("ok T:");
  3429. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3430. SERIAL_PROTOCOLPGM(" /");
  3431. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3432. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3433. SERIAL_PROTOCOLPGM(" B:");
  3434. SERIAL_PROTOCOL_F(degBed(),1);
  3435. SERIAL_PROTOCOLPGM(" /");
  3436. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3437. #endif //TEMP_BED_PIN
  3438. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3439. SERIAL_PROTOCOLPGM(" T");
  3440. SERIAL_PROTOCOL(cur_extruder);
  3441. SERIAL_PROTOCOLPGM(":");
  3442. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3443. SERIAL_PROTOCOLPGM(" /");
  3444. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3445. }
  3446. #else
  3447. SERIAL_ERROR_START;
  3448. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3449. #endif
  3450. SERIAL_PROTOCOLPGM(" @:");
  3451. #ifdef EXTRUDER_WATTS
  3452. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3453. SERIAL_PROTOCOLPGM("W");
  3454. #else
  3455. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3456. #endif
  3457. SERIAL_PROTOCOLPGM(" B@:");
  3458. #ifdef BED_WATTS
  3459. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3460. SERIAL_PROTOCOLPGM("W");
  3461. #else
  3462. SERIAL_PROTOCOL(getHeaterPower(-1));
  3463. #endif
  3464. #ifdef PINDA_THERMISTOR
  3465. SERIAL_PROTOCOLPGM(" P:");
  3466. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3467. #endif //PINDA_THERMISTOR
  3468. #ifdef AMBIENT_THERMISTOR
  3469. SERIAL_PROTOCOLPGM(" A:");
  3470. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3471. #endif //AMBIENT_THERMISTOR
  3472. #ifdef SHOW_TEMP_ADC_VALUES
  3473. {float raw = 0.0;
  3474. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3475. SERIAL_PROTOCOLPGM(" ADC B:");
  3476. SERIAL_PROTOCOL_F(degBed(),1);
  3477. SERIAL_PROTOCOLPGM("C->");
  3478. raw = rawBedTemp();
  3479. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3480. SERIAL_PROTOCOLPGM(" Rb->");
  3481. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3482. SERIAL_PROTOCOLPGM(" Rxb->");
  3483. SERIAL_PROTOCOL_F(raw, 5);
  3484. #endif
  3485. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3486. SERIAL_PROTOCOLPGM(" T");
  3487. SERIAL_PROTOCOL(cur_extruder);
  3488. SERIAL_PROTOCOLPGM(":");
  3489. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3490. SERIAL_PROTOCOLPGM("C->");
  3491. raw = rawHotendTemp(cur_extruder);
  3492. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3493. SERIAL_PROTOCOLPGM(" Rt");
  3494. SERIAL_PROTOCOL(cur_extruder);
  3495. SERIAL_PROTOCOLPGM("->");
  3496. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3497. SERIAL_PROTOCOLPGM(" Rx");
  3498. SERIAL_PROTOCOL(cur_extruder);
  3499. SERIAL_PROTOCOLPGM("->");
  3500. SERIAL_PROTOCOL_F(raw, 5);
  3501. }}
  3502. #endif
  3503. SERIAL_PROTOCOLLN("");
  3504. return;
  3505. break;
  3506. case 109:
  3507. {// M109 - Wait for extruder heater to reach target.
  3508. if(setTargetedHotend(109)){
  3509. break;
  3510. }
  3511. LCD_MESSAGERPGM(MSG_HEATING);
  3512. heating_status = 1;
  3513. if (farm_mode) { prusa_statistics(1); };
  3514. #ifdef AUTOTEMP
  3515. autotemp_enabled=false;
  3516. #endif
  3517. if (code_seen('S')) {
  3518. setTargetHotend(code_value(), tmp_extruder);
  3519. CooldownNoWait = true;
  3520. } else if (code_seen('R')) {
  3521. setTargetHotend(code_value(), tmp_extruder);
  3522. CooldownNoWait = false;
  3523. }
  3524. #ifdef AUTOTEMP
  3525. if (code_seen('S')) autotemp_min=code_value();
  3526. if (code_seen('B')) autotemp_max=code_value();
  3527. if (code_seen('F'))
  3528. {
  3529. autotemp_factor=code_value();
  3530. autotemp_enabled=true;
  3531. }
  3532. #endif
  3533. setWatch();
  3534. codenum = millis();
  3535. /* See if we are heating up or cooling down */
  3536. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3537. cancel_heatup = false;
  3538. wait_for_heater(codenum); //loops until target temperature is reached
  3539. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3540. heating_status = 2;
  3541. if (farm_mode) { prusa_statistics(2); };
  3542. //starttime=millis();
  3543. previous_millis_cmd = millis();
  3544. }
  3545. break;
  3546. case 190: // M190 - Wait for bed heater to reach target.
  3547. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3548. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3549. heating_status = 3;
  3550. if (farm_mode) { prusa_statistics(1); };
  3551. if (code_seen('S'))
  3552. {
  3553. setTargetBed(code_value());
  3554. CooldownNoWait = true;
  3555. }
  3556. else if (code_seen('R'))
  3557. {
  3558. setTargetBed(code_value());
  3559. CooldownNoWait = false;
  3560. }
  3561. codenum = millis();
  3562. cancel_heatup = false;
  3563. target_direction = isHeatingBed(); // true if heating, false if cooling
  3564. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3565. {
  3566. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3567. {
  3568. if (!farm_mode) {
  3569. float tt = degHotend(active_extruder);
  3570. SERIAL_PROTOCOLPGM("T:");
  3571. SERIAL_PROTOCOL(tt);
  3572. SERIAL_PROTOCOLPGM(" E:");
  3573. SERIAL_PROTOCOL((int)active_extruder);
  3574. SERIAL_PROTOCOLPGM(" B:");
  3575. SERIAL_PROTOCOL_F(degBed(), 1);
  3576. SERIAL_PROTOCOLLN("");
  3577. }
  3578. codenum = millis();
  3579. }
  3580. manage_heater();
  3581. manage_inactivity();
  3582. lcd_update();
  3583. }
  3584. LCD_MESSAGERPGM(MSG_BED_DONE);
  3585. heating_status = 4;
  3586. previous_millis_cmd = millis();
  3587. #endif
  3588. break;
  3589. #if defined(FAN_PIN) && FAN_PIN > -1
  3590. case 106: //M106 Fan On
  3591. if (code_seen('S')){
  3592. fanSpeed=constrain(code_value(),0,255);
  3593. }
  3594. else {
  3595. fanSpeed=255;
  3596. }
  3597. break;
  3598. case 107: //M107 Fan Off
  3599. fanSpeed = 0;
  3600. break;
  3601. #endif //FAN_PIN
  3602. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3603. case 80: // M80 - Turn on Power Supply
  3604. SET_OUTPUT(PS_ON_PIN); //GND
  3605. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3606. // If you have a switch on suicide pin, this is useful
  3607. // if you want to start another print with suicide feature after
  3608. // a print without suicide...
  3609. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3610. SET_OUTPUT(SUICIDE_PIN);
  3611. WRITE(SUICIDE_PIN, HIGH);
  3612. #endif
  3613. #ifdef ULTIPANEL
  3614. powersupply = true;
  3615. LCD_MESSAGERPGM(WELCOME_MSG);
  3616. lcd_update();
  3617. #endif
  3618. break;
  3619. #endif
  3620. case 81: // M81 - Turn off Power Supply
  3621. disable_heater();
  3622. st_synchronize();
  3623. disable_e0();
  3624. disable_e1();
  3625. disable_e2();
  3626. finishAndDisableSteppers();
  3627. fanSpeed = 0;
  3628. delay(1000); // Wait a little before to switch off
  3629. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3630. st_synchronize();
  3631. suicide();
  3632. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3633. SET_OUTPUT(PS_ON_PIN);
  3634. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3635. #endif
  3636. #ifdef ULTIPANEL
  3637. powersupply = false;
  3638. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3639. /*
  3640. MACHNAME = "Prusa i3"
  3641. MSGOFF = "Vypnuto"
  3642. "Prusai3"" ""vypnuto""."
  3643. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3644. */
  3645. lcd_update();
  3646. #endif
  3647. break;
  3648. case 82:
  3649. axis_relative_modes[3] = false;
  3650. break;
  3651. case 83:
  3652. axis_relative_modes[3] = true;
  3653. break;
  3654. case 18: //compatibility
  3655. case 84: // M84
  3656. if(code_seen('S')){
  3657. stepper_inactive_time = code_value() * 1000;
  3658. }
  3659. else
  3660. {
  3661. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3662. if(all_axis)
  3663. {
  3664. st_synchronize();
  3665. disable_e0();
  3666. disable_e1();
  3667. disable_e2();
  3668. finishAndDisableSteppers();
  3669. }
  3670. else
  3671. {
  3672. st_synchronize();
  3673. if (code_seen('X')) disable_x();
  3674. if (code_seen('Y')) disable_y();
  3675. if (code_seen('Z')) disable_z();
  3676. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3677. if (code_seen('E')) {
  3678. disable_e0();
  3679. disable_e1();
  3680. disable_e2();
  3681. }
  3682. #endif
  3683. }
  3684. }
  3685. snmm_filaments_used = 0;
  3686. break;
  3687. case 85: // M85
  3688. if(code_seen('S')) {
  3689. max_inactive_time = code_value() * 1000;
  3690. }
  3691. break;
  3692. case 92: // M92
  3693. for(int8_t i=0; i < NUM_AXIS; i++)
  3694. {
  3695. if(code_seen(axis_codes[i]))
  3696. {
  3697. if(i == 3) { // E
  3698. float value = code_value();
  3699. if(value < 20.0) {
  3700. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3701. max_jerk[E_AXIS] *= factor;
  3702. max_feedrate[i] *= factor;
  3703. axis_steps_per_sqr_second[i] *= factor;
  3704. }
  3705. axis_steps_per_unit[i] = value;
  3706. }
  3707. else {
  3708. axis_steps_per_unit[i] = code_value();
  3709. }
  3710. }
  3711. }
  3712. break;
  3713. case 115: // M115
  3714. if (code_seen('V')) {
  3715. // Report the Prusa version number.
  3716. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3717. } else if (code_seen('U')) {
  3718. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3719. // pause the print and ask the user to upgrade the firmware.
  3720. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3721. } else {
  3722. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3723. }
  3724. break;
  3725. /* case 117: // M117 display message
  3726. starpos = (strchr(strchr_pointer + 5,'*'));
  3727. if(starpos!=NULL)
  3728. *(starpos)='\0';
  3729. lcd_setstatus(strchr_pointer + 5);
  3730. break;*/
  3731. case 114: // M114
  3732. SERIAL_PROTOCOLPGM("X:");
  3733. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3734. SERIAL_PROTOCOLPGM(" Y:");
  3735. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3736. SERIAL_PROTOCOLPGM(" Z:");
  3737. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3738. SERIAL_PROTOCOLPGM(" E:");
  3739. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3740. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3741. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3742. SERIAL_PROTOCOLPGM(" Y:");
  3743. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3744. SERIAL_PROTOCOLPGM(" Z:");
  3745. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3746. SERIAL_PROTOCOLPGM(" E:");
  3747. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3748. SERIAL_PROTOCOLLN("");
  3749. break;
  3750. case 120: // M120
  3751. enable_endstops(false) ;
  3752. break;
  3753. case 121: // M121
  3754. enable_endstops(true) ;
  3755. break;
  3756. case 119: // M119
  3757. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3758. SERIAL_PROTOCOLLN("");
  3759. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3760. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3761. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3762. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3763. }else{
  3764. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3765. }
  3766. SERIAL_PROTOCOLLN("");
  3767. #endif
  3768. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3769. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3770. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3771. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3772. }else{
  3773. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3774. }
  3775. SERIAL_PROTOCOLLN("");
  3776. #endif
  3777. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3778. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3779. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3780. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3781. }else{
  3782. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3783. }
  3784. SERIAL_PROTOCOLLN("");
  3785. #endif
  3786. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3787. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3788. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3789. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3790. }else{
  3791. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3792. }
  3793. SERIAL_PROTOCOLLN("");
  3794. #endif
  3795. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3796. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3797. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3799. }else{
  3800. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3801. }
  3802. SERIAL_PROTOCOLLN("");
  3803. #endif
  3804. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3805. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3806. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3807. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3808. }else{
  3809. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3810. }
  3811. SERIAL_PROTOCOLLN("");
  3812. #endif
  3813. break;
  3814. //TODO: update for all axis, use for loop
  3815. #ifdef BLINKM
  3816. case 150: // M150
  3817. {
  3818. byte red;
  3819. byte grn;
  3820. byte blu;
  3821. if(code_seen('R')) red = code_value();
  3822. if(code_seen('U')) grn = code_value();
  3823. if(code_seen('B')) blu = code_value();
  3824. SendColors(red,grn,blu);
  3825. }
  3826. break;
  3827. #endif //BLINKM
  3828. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3829. {
  3830. tmp_extruder = active_extruder;
  3831. if(code_seen('T')) {
  3832. tmp_extruder = code_value();
  3833. if(tmp_extruder >= EXTRUDERS) {
  3834. SERIAL_ECHO_START;
  3835. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3836. break;
  3837. }
  3838. }
  3839. float area = .0;
  3840. if(code_seen('D')) {
  3841. float diameter = (float)code_value();
  3842. if (diameter == 0.0) {
  3843. // setting any extruder filament size disables volumetric on the assumption that
  3844. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3845. // for all extruders
  3846. volumetric_enabled = false;
  3847. } else {
  3848. filament_size[tmp_extruder] = (float)code_value();
  3849. // make sure all extruders have some sane value for the filament size
  3850. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3851. #if EXTRUDERS > 1
  3852. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3853. #if EXTRUDERS > 2
  3854. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3855. #endif
  3856. #endif
  3857. volumetric_enabled = true;
  3858. }
  3859. } else {
  3860. //reserved for setting filament diameter via UFID or filament measuring device
  3861. break;
  3862. }
  3863. calculate_volumetric_multipliers();
  3864. }
  3865. break;
  3866. case 201: // M201
  3867. for(int8_t i=0; i < NUM_AXIS; i++)
  3868. {
  3869. if(code_seen(axis_codes[i]))
  3870. {
  3871. max_acceleration_units_per_sq_second[i] = code_value();
  3872. }
  3873. }
  3874. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3875. reset_acceleration_rates();
  3876. break;
  3877. #if 0 // Not used for Sprinter/grbl gen6
  3878. case 202: // M202
  3879. for(int8_t i=0; i < NUM_AXIS; i++) {
  3880. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3881. }
  3882. break;
  3883. #endif
  3884. case 203: // M203 max feedrate mm/sec
  3885. for(int8_t i=0; i < NUM_AXIS; i++) {
  3886. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3887. }
  3888. break;
  3889. case 204: // M204 acclereration S normal moves T filmanent only moves
  3890. {
  3891. if(code_seen('S')) acceleration = code_value() ;
  3892. if(code_seen('T')) retract_acceleration = code_value() ;
  3893. }
  3894. break;
  3895. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3896. {
  3897. if(code_seen('S')) minimumfeedrate = code_value();
  3898. if(code_seen('T')) mintravelfeedrate = code_value();
  3899. if(code_seen('B')) minsegmenttime = code_value() ;
  3900. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3901. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3902. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3903. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3904. }
  3905. break;
  3906. case 206: // M206 additional homing offset
  3907. for(int8_t i=0; i < 3; i++)
  3908. {
  3909. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3910. }
  3911. break;
  3912. #ifdef FWRETRACT
  3913. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3914. {
  3915. if(code_seen('S'))
  3916. {
  3917. retract_length = code_value() ;
  3918. }
  3919. if(code_seen('F'))
  3920. {
  3921. retract_feedrate = code_value()/60 ;
  3922. }
  3923. if(code_seen('Z'))
  3924. {
  3925. retract_zlift = code_value() ;
  3926. }
  3927. }break;
  3928. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3929. {
  3930. if(code_seen('S'))
  3931. {
  3932. retract_recover_length = code_value() ;
  3933. }
  3934. if(code_seen('F'))
  3935. {
  3936. retract_recover_feedrate = code_value()/60 ;
  3937. }
  3938. }break;
  3939. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3940. {
  3941. if(code_seen('S'))
  3942. {
  3943. int t= code_value() ;
  3944. switch(t)
  3945. {
  3946. case 0:
  3947. {
  3948. autoretract_enabled=false;
  3949. retracted[0]=false;
  3950. #if EXTRUDERS > 1
  3951. retracted[1]=false;
  3952. #endif
  3953. #if EXTRUDERS > 2
  3954. retracted[2]=false;
  3955. #endif
  3956. }break;
  3957. case 1:
  3958. {
  3959. autoretract_enabled=true;
  3960. retracted[0]=false;
  3961. #if EXTRUDERS > 1
  3962. retracted[1]=false;
  3963. #endif
  3964. #if EXTRUDERS > 2
  3965. retracted[2]=false;
  3966. #endif
  3967. }break;
  3968. default:
  3969. SERIAL_ECHO_START;
  3970. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3971. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3972. SERIAL_ECHOLNPGM("\"(1)");
  3973. }
  3974. }
  3975. }break;
  3976. #endif // FWRETRACT
  3977. #if EXTRUDERS > 1
  3978. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3979. {
  3980. if(setTargetedHotend(218)){
  3981. break;
  3982. }
  3983. if(code_seen('X'))
  3984. {
  3985. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3986. }
  3987. if(code_seen('Y'))
  3988. {
  3989. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3990. }
  3991. SERIAL_ECHO_START;
  3992. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3993. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3994. {
  3995. SERIAL_ECHO(" ");
  3996. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3997. SERIAL_ECHO(",");
  3998. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3999. }
  4000. SERIAL_ECHOLN("");
  4001. }break;
  4002. #endif
  4003. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4004. {
  4005. if(code_seen('S'))
  4006. {
  4007. feedmultiply = code_value() ;
  4008. }
  4009. }
  4010. break;
  4011. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4012. {
  4013. if(code_seen('S'))
  4014. {
  4015. int tmp_code = code_value();
  4016. if (code_seen('T'))
  4017. {
  4018. if(setTargetedHotend(221)){
  4019. break;
  4020. }
  4021. extruder_multiply[tmp_extruder] = tmp_code;
  4022. }
  4023. else
  4024. {
  4025. extrudemultiply = tmp_code ;
  4026. }
  4027. }
  4028. }
  4029. break;
  4030. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4031. {
  4032. if(code_seen('P')){
  4033. int pin_number = code_value(); // pin number
  4034. int pin_state = -1; // required pin state - default is inverted
  4035. if(code_seen('S')) pin_state = code_value(); // required pin state
  4036. if(pin_state >= -1 && pin_state <= 1){
  4037. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4038. {
  4039. if (sensitive_pins[i] == pin_number)
  4040. {
  4041. pin_number = -1;
  4042. break;
  4043. }
  4044. }
  4045. if (pin_number > -1)
  4046. {
  4047. int target = LOW;
  4048. st_synchronize();
  4049. pinMode(pin_number, INPUT);
  4050. switch(pin_state){
  4051. case 1:
  4052. target = HIGH;
  4053. break;
  4054. case 0:
  4055. target = LOW;
  4056. break;
  4057. case -1:
  4058. target = !digitalRead(pin_number);
  4059. break;
  4060. }
  4061. while(digitalRead(pin_number) != target){
  4062. manage_heater();
  4063. manage_inactivity();
  4064. lcd_update();
  4065. }
  4066. }
  4067. }
  4068. }
  4069. }
  4070. break;
  4071. #if NUM_SERVOS > 0
  4072. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4073. {
  4074. int servo_index = -1;
  4075. int servo_position = 0;
  4076. if (code_seen('P'))
  4077. servo_index = code_value();
  4078. if (code_seen('S')) {
  4079. servo_position = code_value();
  4080. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4081. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4082. servos[servo_index].attach(0);
  4083. #endif
  4084. servos[servo_index].write(servo_position);
  4085. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4086. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4087. servos[servo_index].detach();
  4088. #endif
  4089. }
  4090. else {
  4091. SERIAL_ECHO_START;
  4092. SERIAL_ECHO("Servo ");
  4093. SERIAL_ECHO(servo_index);
  4094. SERIAL_ECHOLN(" out of range");
  4095. }
  4096. }
  4097. else if (servo_index >= 0) {
  4098. SERIAL_PROTOCOL(MSG_OK);
  4099. SERIAL_PROTOCOL(" Servo ");
  4100. SERIAL_PROTOCOL(servo_index);
  4101. SERIAL_PROTOCOL(": ");
  4102. SERIAL_PROTOCOL(servos[servo_index].read());
  4103. SERIAL_PROTOCOLLN("");
  4104. }
  4105. }
  4106. break;
  4107. #endif // NUM_SERVOS > 0
  4108. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4109. case 300: // M300
  4110. {
  4111. int beepS = code_seen('S') ? code_value() : 110;
  4112. int beepP = code_seen('P') ? code_value() : 1000;
  4113. if (beepS > 0)
  4114. {
  4115. #if BEEPER > 0
  4116. tone(BEEPER, beepS);
  4117. delay(beepP);
  4118. noTone(BEEPER);
  4119. #elif defined(ULTRALCD)
  4120. lcd_buzz(beepS, beepP);
  4121. #elif defined(LCD_USE_I2C_BUZZER)
  4122. lcd_buzz(beepP, beepS);
  4123. #endif
  4124. }
  4125. else
  4126. {
  4127. delay(beepP);
  4128. }
  4129. }
  4130. break;
  4131. #endif // M300
  4132. #ifdef PIDTEMP
  4133. case 301: // M301
  4134. {
  4135. if(code_seen('P')) Kp = code_value();
  4136. if(code_seen('I')) Ki = scalePID_i(code_value());
  4137. if(code_seen('D')) Kd = scalePID_d(code_value());
  4138. #ifdef PID_ADD_EXTRUSION_RATE
  4139. if(code_seen('C')) Kc = code_value();
  4140. #endif
  4141. updatePID();
  4142. SERIAL_PROTOCOLRPGM(MSG_OK);
  4143. SERIAL_PROTOCOL(" p:");
  4144. SERIAL_PROTOCOL(Kp);
  4145. SERIAL_PROTOCOL(" i:");
  4146. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4147. SERIAL_PROTOCOL(" d:");
  4148. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4149. #ifdef PID_ADD_EXTRUSION_RATE
  4150. SERIAL_PROTOCOL(" c:");
  4151. //Kc does not have scaling applied above, or in resetting defaults
  4152. SERIAL_PROTOCOL(Kc);
  4153. #endif
  4154. SERIAL_PROTOCOLLN("");
  4155. }
  4156. break;
  4157. #endif //PIDTEMP
  4158. #ifdef PIDTEMPBED
  4159. case 304: // M304
  4160. {
  4161. if(code_seen('P')) bedKp = code_value();
  4162. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4163. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4164. updatePID();
  4165. SERIAL_PROTOCOLRPGM(MSG_OK);
  4166. SERIAL_PROTOCOL(" p:");
  4167. SERIAL_PROTOCOL(bedKp);
  4168. SERIAL_PROTOCOL(" i:");
  4169. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4170. SERIAL_PROTOCOL(" d:");
  4171. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4172. SERIAL_PROTOCOLLN("");
  4173. }
  4174. break;
  4175. #endif //PIDTEMP
  4176. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4177. {
  4178. #ifdef CHDK
  4179. SET_OUTPUT(CHDK);
  4180. WRITE(CHDK, HIGH);
  4181. chdkHigh = millis();
  4182. chdkActive = true;
  4183. #else
  4184. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4185. const uint8_t NUM_PULSES=16;
  4186. const float PULSE_LENGTH=0.01524;
  4187. for(int i=0; i < NUM_PULSES; i++) {
  4188. WRITE(PHOTOGRAPH_PIN, HIGH);
  4189. _delay_ms(PULSE_LENGTH);
  4190. WRITE(PHOTOGRAPH_PIN, LOW);
  4191. _delay_ms(PULSE_LENGTH);
  4192. }
  4193. delay(7.33);
  4194. for(int i=0; i < NUM_PULSES; i++) {
  4195. WRITE(PHOTOGRAPH_PIN, HIGH);
  4196. _delay_ms(PULSE_LENGTH);
  4197. WRITE(PHOTOGRAPH_PIN, LOW);
  4198. _delay_ms(PULSE_LENGTH);
  4199. }
  4200. #endif
  4201. #endif //chdk end if
  4202. }
  4203. break;
  4204. #ifdef DOGLCD
  4205. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4206. {
  4207. if (code_seen('C')) {
  4208. lcd_setcontrast( ((int)code_value())&63 );
  4209. }
  4210. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4211. SERIAL_PROTOCOL(lcd_contrast);
  4212. SERIAL_PROTOCOLLN("");
  4213. }
  4214. break;
  4215. #endif
  4216. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4217. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4218. {
  4219. float temp = .0;
  4220. if (code_seen('S')) temp=code_value();
  4221. set_extrude_min_temp(temp);
  4222. }
  4223. break;
  4224. #endif
  4225. case 303: // M303 PID autotune
  4226. {
  4227. float temp = 150.0;
  4228. int e=0;
  4229. int c=5;
  4230. if (code_seen('E')) e=code_value();
  4231. if (e<0)
  4232. temp=70;
  4233. if (code_seen('S')) temp=code_value();
  4234. if (code_seen('C')) c=code_value();
  4235. PID_autotune(temp, e, c);
  4236. }
  4237. break;
  4238. case 400: // M400 finish all moves
  4239. {
  4240. st_synchronize();
  4241. }
  4242. break;
  4243. #ifdef FILAMENT_SENSOR
  4244. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4245. {
  4246. #if (FILWIDTH_PIN > -1)
  4247. if(code_seen('N')) filament_width_nominal=code_value();
  4248. else{
  4249. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4250. SERIAL_PROTOCOLLN(filament_width_nominal);
  4251. }
  4252. #endif
  4253. }
  4254. break;
  4255. case 405: //M405 Turn on filament sensor for control
  4256. {
  4257. if(code_seen('D')) meas_delay_cm=code_value();
  4258. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4259. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4260. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4261. {
  4262. int temp_ratio = widthFil_to_size_ratio();
  4263. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4264. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4265. }
  4266. delay_index1=0;
  4267. delay_index2=0;
  4268. }
  4269. filament_sensor = true ;
  4270. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4271. //SERIAL_PROTOCOL(filament_width_meas);
  4272. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4273. //SERIAL_PROTOCOL(extrudemultiply);
  4274. }
  4275. break;
  4276. case 406: //M406 Turn off filament sensor for control
  4277. {
  4278. filament_sensor = false ;
  4279. }
  4280. break;
  4281. case 407: //M407 Display measured filament diameter
  4282. {
  4283. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4284. SERIAL_PROTOCOLLN(filament_width_meas);
  4285. }
  4286. break;
  4287. #endif
  4288. case 500: // M500 Store settings in EEPROM
  4289. {
  4290. Config_StoreSettings(EEPROM_OFFSET);
  4291. }
  4292. break;
  4293. case 501: // M501 Read settings from EEPROM
  4294. {
  4295. Config_RetrieveSettings(EEPROM_OFFSET);
  4296. }
  4297. break;
  4298. case 502: // M502 Revert to default settings
  4299. {
  4300. Config_ResetDefault();
  4301. }
  4302. break;
  4303. case 503: // M503 print settings currently in memory
  4304. {
  4305. Config_PrintSettings();
  4306. }
  4307. break;
  4308. case 509: //M509 Force language selection
  4309. {
  4310. lcd_force_language_selection();
  4311. SERIAL_ECHO_START;
  4312. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4313. }
  4314. break;
  4315. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4316. case 540:
  4317. {
  4318. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4319. }
  4320. break;
  4321. #endif
  4322. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4323. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4324. {
  4325. float value;
  4326. if (code_seen('Z'))
  4327. {
  4328. value = code_value();
  4329. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4330. {
  4331. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4332. SERIAL_ECHO_START;
  4333. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4334. SERIAL_PROTOCOLLN("");
  4335. }
  4336. else
  4337. {
  4338. SERIAL_ECHO_START;
  4339. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4340. SERIAL_ECHORPGM(MSG_Z_MIN);
  4341. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4342. SERIAL_ECHORPGM(MSG_Z_MAX);
  4343. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4344. SERIAL_PROTOCOLLN("");
  4345. }
  4346. }
  4347. else
  4348. {
  4349. SERIAL_ECHO_START;
  4350. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4351. SERIAL_ECHO(-zprobe_zoffset);
  4352. SERIAL_PROTOCOLLN("");
  4353. }
  4354. break;
  4355. }
  4356. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4357. #ifdef FILAMENTCHANGEENABLE
  4358. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4359. {
  4360. MYSERIAL.println("!!!!M600!!!!");
  4361. st_synchronize();
  4362. float target[4];
  4363. float lastpos[4];
  4364. if (farm_mode)
  4365. {
  4366. prusa_statistics(22);
  4367. }
  4368. feedmultiplyBckp=feedmultiply;
  4369. int8_t TooLowZ = 0;
  4370. target[X_AXIS]=current_position[X_AXIS];
  4371. target[Y_AXIS]=current_position[Y_AXIS];
  4372. target[Z_AXIS]=current_position[Z_AXIS];
  4373. target[E_AXIS]=current_position[E_AXIS];
  4374. lastpos[X_AXIS]=current_position[X_AXIS];
  4375. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4376. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4377. lastpos[E_AXIS]=current_position[E_AXIS];
  4378. //Restract extruder
  4379. if(code_seen('E'))
  4380. {
  4381. target[E_AXIS]+= code_value();
  4382. }
  4383. else
  4384. {
  4385. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4386. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4387. #endif
  4388. }
  4389. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4390. //Lift Z
  4391. if(code_seen('Z'))
  4392. {
  4393. target[Z_AXIS]+= code_value();
  4394. }
  4395. else
  4396. {
  4397. #ifdef FILAMENTCHANGE_ZADD
  4398. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4399. if(target[Z_AXIS] < 10){
  4400. target[Z_AXIS]+= 10 ;
  4401. TooLowZ = 1;
  4402. }else{
  4403. TooLowZ = 0;
  4404. }
  4405. #endif
  4406. }
  4407. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4408. //Move XY to side
  4409. if(code_seen('X'))
  4410. {
  4411. target[X_AXIS]+= code_value();
  4412. }
  4413. else
  4414. {
  4415. #ifdef FILAMENTCHANGE_XPOS
  4416. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4417. #endif
  4418. }
  4419. if(code_seen('Y'))
  4420. {
  4421. target[Y_AXIS]= code_value();
  4422. }
  4423. else
  4424. {
  4425. #ifdef FILAMENTCHANGE_YPOS
  4426. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4427. #endif
  4428. }
  4429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4430. st_synchronize();
  4431. custom_message = true;
  4432. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4433. // Unload filament
  4434. if(code_seen('L'))
  4435. {
  4436. target[E_AXIS]+= code_value();
  4437. }
  4438. else
  4439. {
  4440. #ifdef SNMM
  4441. #else
  4442. #ifdef FILAMENTCHANGE_FINALRETRACT
  4443. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4444. #endif
  4445. #endif // SNMM
  4446. }
  4447. #ifdef SNMM
  4448. target[E_AXIS] += 12;
  4449. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4450. target[E_AXIS] += 6;
  4451. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4452. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4454. st_synchronize();
  4455. target[E_AXIS] += (FIL_COOLING);
  4456. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4457. target[E_AXIS] += (FIL_COOLING*-1);
  4458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4459. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4461. st_synchronize();
  4462. #else
  4463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4464. #endif // SNMM
  4465. //finish moves
  4466. st_synchronize();
  4467. //disable extruder steppers so filament can be removed
  4468. disable_e0();
  4469. disable_e1();
  4470. disable_e2();
  4471. delay(100);
  4472. //Wait for user to insert filament
  4473. uint8_t cnt=0;
  4474. int counterBeep = 0;
  4475. lcd_wait_interact();
  4476. load_filament_time = millis();
  4477. while(!lcd_clicked()){
  4478. cnt++;
  4479. manage_heater();
  4480. manage_inactivity(true);
  4481. /*#ifdef SNMM
  4482. target[E_AXIS] += 0.002;
  4483. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4484. #endif // SNMM*/
  4485. if(cnt==0)
  4486. {
  4487. #if BEEPER > 0
  4488. if (counterBeep== 500){
  4489. counterBeep = 0;
  4490. }
  4491. SET_OUTPUT(BEEPER);
  4492. if (counterBeep== 0){
  4493. WRITE(BEEPER,HIGH);
  4494. }
  4495. if (counterBeep== 20){
  4496. WRITE(BEEPER,LOW);
  4497. }
  4498. counterBeep++;
  4499. #else
  4500. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4501. lcd_buzz(1000/6,100);
  4502. #else
  4503. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4504. #endif
  4505. #endif
  4506. }
  4507. }
  4508. #ifdef SNMM
  4509. display_loading();
  4510. do {
  4511. target[E_AXIS] += 0.002;
  4512. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4513. delay_keep_alive(2);
  4514. } while (!lcd_clicked());
  4515. /*if (millis() - load_filament_time > 2) {
  4516. load_filament_time = millis();
  4517. target[E_AXIS] += 0.001;
  4518. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4519. }*/
  4520. #endif
  4521. //Filament inserted
  4522. WRITE(BEEPER,LOW);
  4523. //Feed the filament to the end of nozzle quickly
  4524. #ifdef SNMM
  4525. st_synchronize();
  4526. target[E_AXIS] += bowden_length[snmm_extruder];
  4527. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4528. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4529. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4530. target[E_AXIS] += 40;
  4531. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4532. target[E_AXIS] += 10;
  4533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4534. #else
  4535. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4537. #endif // SNMM
  4538. //Extrude some filament
  4539. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4540. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4541. //Wait for user to check the state
  4542. lcd_change_fil_state = 0;
  4543. lcd_loading_filament();
  4544. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4545. lcd_change_fil_state = 0;
  4546. lcd_alright();
  4547. switch(lcd_change_fil_state){
  4548. // Filament failed to load so load it again
  4549. case 2:
  4550. #ifdef SNMM
  4551. display_loading();
  4552. do {
  4553. target[E_AXIS] += 0.002;
  4554. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4555. delay_keep_alive(2);
  4556. } while (!lcd_clicked());
  4557. st_synchronize();
  4558. target[E_AXIS] += bowden_length[snmm_extruder];
  4559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4560. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4561. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4562. target[E_AXIS] += 40;
  4563. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4564. target[E_AXIS] += 10;
  4565. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4566. #else
  4567. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4568. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4569. #endif
  4570. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4571. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4572. lcd_loading_filament();
  4573. break;
  4574. // Filament loaded properly but color is not clear
  4575. case 3:
  4576. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4578. lcd_loading_color();
  4579. break;
  4580. // Everything good
  4581. default:
  4582. lcd_change_success();
  4583. lcd_update_enable(true);
  4584. break;
  4585. }
  4586. }
  4587. //Not let's go back to print
  4588. //Feed a little of filament to stabilize pressure
  4589. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4591. //Retract
  4592. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4593. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4594. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4595. //Move XY back
  4596. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4597. //Move Z back
  4598. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4599. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4600. //Unretract
  4601. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4602. //Set E position to original
  4603. plan_set_e_position(lastpos[E_AXIS]);
  4604. //Recover feed rate
  4605. feedmultiply=feedmultiplyBckp;
  4606. char cmd[9];
  4607. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4608. enquecommand(cmd);
  4609. lcd_setstatuspgm(WELCOME_MSG);
  4610. custom_message = false;
  4611. custom_message_type = 0;
  4612. #ifdef PAT9125
  4613. if (fsensor_M600)
  4614. {
  4615. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4616. st_synchronize();
  4617. while (!is_buffer_empty())
  4618. {
  4619. process_commands();
  4620. cmdqueue_pop_front();
  4621. }
  4622. fsensor_enable();
  4623. fsensor_restore_print_and_continue();
  4624. }
  4625. #endif //PAT9125
  4626. }
  4627. break;
  4628. #endif //FILAMENTCHANGEENABLE
  4629. case 601: {
  4630. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4631. }
  4632. break;
  4633. case 602: {
  4634. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4635. }
  4636. break;
  4637. #ifdef LIN_ADVANCE
  4638. case 900: // M900: Set LIN_ADVANCE options.
  4639. gcode_M900();
  4640. break;
  4641. #endif
  4642. case 907: // M907 Set digital trimpot motor current using axis codes.
  4643. {
  4644. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4645. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4646. if(code_seen('B')) digipot_current(4,code_value());
  4647. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4648. #endif
  4649. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4650. if(code_seen('X')) digipot_current(0, code_value());
  4651. #endif
  4652. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4653. if(code_seen('Z')) digipot_current(1, code_value());
  4654. #endif
  4655. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4656. if(code_seen('E')) digipot_current(2, code_value());
  4657. #endif
  4658. #ifdef DIGIPOT_I2C
  4659. // this one uses actual amps in floating point
  4660. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4661. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4662. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4663. #endif
  4664. }
  4665. break;
  4666. case 908: // M908 Control digital trimpot directly.
  4667. {
  4668. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4669. uint8_t channel,current;
  4670. if(code_seen('P')) channel=code_value();
  4671. if(code_seen('S')) current=code_value();
  4672. digitalPotWrite(channel, current);
  4673. #endif
  4674. }
  4675. break;
  4676. case 910: // M910 TMC2130 init
  4677. {
  4678. tmc2130_init();
  4679. }
  4680. break;
  4681. case 911: // M911 Set TMC2130 holding currents
  4682. {
  4683. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4684. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4685. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4686. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4687. }
  4688. break;
  4689. case 912: // M912 Set TMC2130 running currents
  4690. {
  4691. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4692. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4693. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4694. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4695. }
  4696. break;
  4697. case 913: // M913 Print TMC2130 currents
  4698. {
  4699. tmc2130_print_currents();
  4700. }
  4701. break;
  4702. case 914: // M914 Set normal mode
  4703. {
  4704. tmc2130_mode = TMC2130_MODE_NORMAL;
  4705. tmc2130_init();
  4706. }
  4707. break;
  4708. case 915: // M915 Set silent mode
  4709. {
  4710. tmc2130_mode = TMC2130_MODE_SILENT;
  4711. tmc2130_init();
  4712. }
  4713. break;
  4714. case 916: // M916 Set sg_thrs
  4715. {
  4716. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4717. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4718. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4719. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4720. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4721. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4722. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4723. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4724. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4725. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4726. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4727. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4728. }
  4729. break;
  4730. case 917: // M917 Set TMC2130 pwm_ampl
  4731. {
  4732. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4733. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4734. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4735. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4736. }
  4737. break;
  4738. case 918: // M918 Set TMC2130 pwm_grad
  4739. {
  4740. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4741. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4742. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4743. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4744. }
  4745. break;
  4746. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4747. {
  4748. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4749. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4750. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4751. if(code_seen('B')) microstep_mode(4,code_value());
  4752. microstep_readings();
  4753. #endif
  4754. }
  4755. break;
  4756. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4757. {
  4758. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4759. if(code_seen('S')) switch((int)code_value())
  4760. {
  4761. case 1:
  4762. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4763. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4764. break;
  4765. case 2:
  4766. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4767. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4768. break;
  4769. }
  4770. microstep_readings();
  4771. #endif
  4772. }
  4773. break;
  4774. case 701: //M701: load filament
  4775. {
  4776. enable_z();
  4777. custom_message = true;
  4778. custom_message_type = 2;
  4779. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4780. current_position[E_AXIS] += 70;
  4781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4782. current_position[E_AXIS] += 25;
  4783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4784. st_synchronize();
  4785. if (!farm_mode && loading_flag) {
  4786. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4787. while (!clean) {
  4788. lcd_update_enable(true);
  4789. lcd_update(2);
  4790. current_position[E_AXIS] += 25;
  4791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4792. st_synchronize();
  4793. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4794. }
  4795. }
  4796. lcd_update_enable(true);
  4797. lcd_update(2);
  4798. lcd_setstatuspgm(WELCOME_MSG);
  4799. disable_z();
  4800. loading_flag = false;
  4801. custom_message = false;
  4802. custom_message_type = 0;
  4803. }
  4804. break;
  4805. case 702:
  4806. {
  4807. #ifdef SNMM
  4808. if (code_seen('U')) {
  4809. extr_unload_used(); //unload all filaments which were used in current print
  4810. }
  4811. else if (code_seen('C')) {
  4812. extr_unload(); //unload just current filament
  4813. }
  4814. else {
  4815. extr_unload_all(); //unload all filaments
  4816. }
  4817. #else
  4818. custom_message = true;
  4819. custom_message_type = 2;
  4820. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4821. current_position[E_AXIS] -= 80;
  4822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4823. st_synchronize();
  4824. lcd_setstatuspgm(WELCOME_MSG);
  4825. custom_message = false;
  4826. custom_message_type = 0;
  4827. #endif
  4828. }
  4829. break;
  4830. case 999: // M999: Restart after being stopped
  4831. Stopped = false;
  4832. lcd_reset_alert_level();
  4833. gcode_LastN = Stopped_gcode_LastN;
  4834. FlushSerialRequestResend();
  4835. break;
  4836. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4837. }
  4838. } // end if(code_seen('M')) (end of M codes)
  4839. else if(code_seen('T'))
  4840. {
  4841. int index;
  4842. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4843. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4844. SERIAL_ECHOLNPGM("Invalid T code.");
  4845. }
  4846. else {
  4847. if (*(strchr_pointer + index) == '?') {
  4848. tmp_extruder = choose_extruder_menu();
  4849. }
  4850. else {
  4851. tmp_extruder = code_value();
  4852. }
  4853. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4854. #ifdef SNMM
  4855. #ifdef LIN_ADVANCE
  4856. if (snmm_extruder != tmp_extruder)
  4857. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4858. #endif
  4859. snmm_extruder = tmp_extruder;
  4860. st_synchronize();
  4861. delay(100);
  4862. disable_e0();
  4863. disable_e1();
  4864. disable_e2();
  4865. pinMode(E_MUX0_PIN, OUTPUT);
  4866. pinMode(E_MUX1_PIN, OUTPUT);
  4867. pinMode(E_MUX2_PIN, OUTPUT);
  4868. delay(100);
  4869. SERIAL_ECHO_START;
  4870. SERIAL_ECHO("T:");
  4871. SERIAL_ECHOLN((int)tmp_extruder);
  4872. switch (tmp_extruder) {
  4873. case 1:
  4874. WRITE(E_MUX0_PIN, HIGH);
  4875. WRITE(E_MUX1_PIN, LOW);
  4876. WRITE(E_MUX2_PIN, LOW);
  4877. break;
  4878. case 2:
  4879. WRITE(E_MUX0_PIN, LOW);
  4880. WRITE(E_MUX1_PIN, HIGH);
  4881. WRITE(E_MUX2_PIN, LOW);
  4882. break;
  4883. case 3:
  4884. WRITE(E_MUX0_PIN, HIGH);
  4885. WRITE(E_MUX1_PIN, HIGH);
  4886. WRITE(E_MUX2_PIN, LOW);
  4887. break;
  4888. default:
  4889. WRITE(E_MUX0_PIN, LOW);
  4890. WRITE(E_MUX1_PIN, LOW);
  4891. WRITE(E_MUX2_PIN, LOW);
  4892. break;
  4893. }
  4894. delay(100);
  4895. #else
  4896. if (tmp_extruder >= EXTRUDERS) {
  4897. SERIAL_ECHO_START;
  4898. SERIAL_ECHOPGM("T");
  4899. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4900. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4901. }
  4902. else {
  4903. boolean make_move = false;
  4904. if (code_seen('F')) {
  4905. make_move = true;
  4906. next_feedrate = code_value();
  4907. if (next_feedrate > 0.0) {
  4908. feedrate = next_feedrate;
  4909. }
  4910. }
  4911. #if EXTRUDERS > 1
  4912. if (tmp_extruder != active_extruder) {
  4913. // Save current position to return to after applying extruder offset
  4914. memcpy(destination, current_position, sizeof(destination));
  4915. // Offset extruder (only by XY)
  4916. int i;
  4917. for (i = 0; i < 2; i++) {
  4918. current_position[i] = current_position[i] -
  4919. extruder_offset[i][active_extruder] +
  4920. extruder_offset[i][tmp_extruder];
  4921. }
  4922. // Set the new active extruder and position
  4923. active_extruder = tmp_extruder;
  4924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4925. // Move to the old position if 'F' was in the parameters
  4926. if (make_move && Stopped == false) {
  4927. prepare_move();
  4928. }
  4929. }
  4930. #endif
  4931. SERIAL_ECHO_START;
  4932. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4933. SERIAL_PROTOCOLLN((int)active_extruder);
  4934. }
  4935. #endif
  4936. }
  4937. } // end if(code_seen('T')) (end of T codes)
  4938. #ifdef DEBUG_DCODES
  4939. else if (code_seen('D')) // D codes (debug)
  4940. {
  4941. switch((int)code_value())
  4942. {
  4943. case 0: // D0 - Reset
  4944. dcode_0(); break;
  4945. case 1: // D1 - Clear EEPROM
  4946. dcode_1(); break;
  4947. case 2: // D2 - Read/Write RAM
  4948. dcode_2(); break;
  4949. case 3: // D3 - Read/Write EEPROM
  4950. dcode_3(); break;
  4951. case 4: // D4 - Read/Write PIN
  4952. dcode_4(); break;
  4953. case 9125: // D9125 - PAT9125
  4954. dcode_9125(); break;
  4955. case 5:
  4956. MYSERIAL.println("D5 - Test");
  4957. if (code_seen('P'))
  4958. selectedSerialPort = (int)code_value();
  4959. MYSERIAL.print("selectedSerialPort = ");
  4960. MYSERIAL.println(selectedSerialPort, DEC);
  4961. break;
  4962. case 10: // D10 - Tell the printer that XYZ calibration went OK
  4963. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4964. break;
  4965. case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
  4966. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
  4967. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
  4968. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
  4969. case 999:
  4970. {
  4971. MYSERIAL.println("D999 - crash");
  4972. /* while (!is_buffer_empty())
  4973. {
  4974. process_commands();
  4975. cmdqueue_pop_front();
  4976. }*/
  4977. st_synchronize();
  4978. lcd_update_enable(true);
  4979. lcd_implementation_clear();
  4980. lcd_update(2);
  4981. // Increment crash counter
  4982. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  4983. crash_count++;
  4984. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  4985. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  4986. bool yesno = true;
  4987. #else
  4988. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  4989. #endif
  4990. lcd_update_enable(true);
  4991. lcd_update(2);
  4992. lcd_setstatuspgm(WELCOME_MSG);
  4993. if (yesno)
  4994. {
  4995. enquecommand_P(PSTR("G28 X"));
  4996. enquecommand_P(PSTR("G28 Y"));
  4997. enquecommand_P(PSTR("D1000"));
  4998. }
  4999. else
  5000. {
  5001. enquecommand_P(PSTR("D1001"));
  5002. }
  5003. }
  5004. break;
  5005. case 1000:
  5006. crashdet_restore_print_and_continue();
  5007. tmc2130_sg_stop_on_crash = true;
  5008. break;
  5009. case 1001:
  5010. card.sdprinting = false;
  5011. card.closefile();
  5012. tmc2130_sg_stop_on_crash = true;
  5013. break;
  5014. /* case 4:
  5015. {
  5016. MYSERIAL.println("D4 - Test");
  5017. uint8_t data[16];
  5018. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5019. MYSERIAL.println(cnt, DEC);
  5020. for (int i = 0; i < cnt; i++)
  5021. {
  5022. serial_print_hex_byte(data[i]);
  5023. MYSERIAL.write(' ');
  5024. }
  5025. MYSERIAL.write('\n');
  5026. }
  5027. break;
  5028. /* case 3:
  5029. if (code_seen('L')) // lcd pwm (0-255)
  5030. {
  5031. lcdSoftPwm = (int)code_value();
  5032. }
  5033. if (code_seen('B')) // lcd blink delay (0-255)
  5034. {
  5035. lcdBlinkDelay = (int)code_value();
  5036. }
  5037. // calibrate_z_auto();
  5038. /* MYSERIAL.print("fsensor_enable()");
  5039. #ifdef PAT9125
  5040. fsensor_enable();
  5041. #endif*/
  5042. break;
  5043. // case 4:
  5044. // lcdBlinkDelay = 10;
  5045. /* MYSERIAL.print("fsensor_disable()");
  5046. #ifdef PAT9125
  5047. fsensor_disable();
  5048. #endif
  5049. break;*/
  5050. // break;
  5051. /* case 5:
  5052. {
  5053. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5054. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5055. MYSERIAL.println(val);
  5056. homeaxis(0);
  5057. }
  5058. break;*/
  5059. case 6:
  5060. {
  5061. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5062. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5063. MYSERIAL.println(val);*/
  5064. homeaxis(1);
  5065. }
  5066. break;
  5067. case 7:
  5068. {
  5069. MYSERIAL.print("pat9125_init=");
  5070. MYSERIAL.println(pat9125_init(200, 200));
  5071. }
  5072. break;
  5073. case 8:
  5074. {
  5075. MYSERIAL.print("swi2c_check=");
  5076. MYSERIAL.println(swi2c_check(0x75));
  5077. }
  5078. break;
  5079. }
  5080. }
  5081. #endif //DEBUG_DCODES
  5082. else
  5083. {
  5084. SERIAL_ECHO_START;
  5085. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5086. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5087. SERIAL_ECHOLNPGM("\"(2)");
  5088. }
  5089. ClearToSend();
  5090. }
  5091. void FlushSerialRequestResend()
  5092. {
  5093. //char cmdbuffer[bufindr][100]="Resend:";
  5094. MYSERIAL.flush();
  5095. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5096. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5097. ClearToSend();
  5098. }
  5099. // Confirm the execution of a command, if sent from a serial line.
  5100. // Execution of a command from a SD card will not be confirmed.
  5101. void ClearToSend()
  5102. {
  5103. previous_millis_cmd = millis();
  5104. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5105. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5106. }
  5107. void get_coordinates()
  5108. {
  5109. bool seen[4]={false,false,false,false};
  5110. for(int8_t i=0; i < NUM_AXIS; i++) {
  5111. if(code_seen(axis_codes[i]))
  5112. {
  5113. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5114. seen[i]=true;
  5115. }
  5116. else destination[i] = current_position[i]; //Are these else lines really needed?
  5117. }
  5118. if(code_seen('F')) {
  5119. next_feedrate = code_value();
  5120. #ifdef MAX_SILENT_FEEDRATE
  5121. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5122. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5123. #endif //MAX_SILENT_FEEDRATE
  5124. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5125. }
  5126. }
  5127. void get_arc_coordinates()
  5128. {
  5129. #ifdef SF_ARC_FIX
  5130. bool relative_mode_backup = relative_mode;
  5131. relative_mode = true;
  5132. #endif
  5133. get_coordinates();
  5134. #ifdef SF_ARC_FIX
  5135. relative_mode=relative_mode_backup;
  5136. #endif
  5137. if(code_seen('I')) {
  5138. offset[0] = code_value();
  5139. }
  5140. else {
  5141. offset[0] = 0.0;
  5142. }
  5143. if(code_seen('J')) {
  5144. offset[1] = code_value();
  5145. }
  5146. else {
  5147. offset[1] = 0.0;
  5148. }
  5149. }
  5150. void clamp_to_software_endstops(float target[3])
  5151. {
  5152. #ifdef DEBUG_DISABLE_SWLIMITS
  5153. return;
  5154. #endif //DEBUG_DISABLE_SWLIMITS
  5155. world2machine_clamp(target[0], target[1]);
  5156. // Clamp the Z coordinate.
  5157. if (min_software_endstops) {
  5158. float negative_z_offset = 0;
  5159. #ifdef ENABLE_AUTO_BED_LEVELING
  5160. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5161. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5162. #endif
  5163. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5164. }
  5165. if (max_software_endstops) {
  5166. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5167. }
  5168. }
  5169. #ifdef MESH_BED_LEVELING
  5170. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5171. float dx = x - current_position[X_AXIS];
  5172. float dy = y - current_position[Y_AXIS];
  5173. float dz = z - current_position[Z_AXIS];
  5174. int n_segments = 0;
  5175. if (mbl.active) {
  5176. float len = abs(dx) + abs(dy);
  5177. if (len > 0)
  5178. // Split to 3cm segments or shorter.
  5179. n_segments = int(ceil(len / 30.f));
  5180. }
  5181. if (n_segments > 1) {
  5182. float de = e - current_position[E_AXIS];
  5183. for (int i = 1; i < n_segments; ++ i) {
  5184. float t = float(i) / float(n_segments);
  5185. plan_buffer_line(
  5186. current_position[X_AXIS] + t * dx,
  5187. current_position[Y_AXIS] + t * dy,
  5188. current_position[Z_AXIS] + t * dz,
  5189. current_position[E_AXIS] + t * de,
  5190. feed_rate, extruder);
  5191. }
  5192. }
  5193. // The rest of the path.
  5194. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5195. current_position[X_AXIS] = x;
  5196. current_position[Y_AXIS] = y;
  5197. current_position[Z_AXIS] = z;
  5198. current_position[E_AXIS] = e;
  5199. }
  5200. #endif // MESH_BED_LEVELING
  5201. void prepare_move()
  5202. {
  5203. clamp_to_software_endstops(destination);
  5204. previous_millis_cmd = millis();
  5205. // Do not use feedmultiply for E or Z only moves
  5206. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5207. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5208. }
  5209. else {
  5210. #ifdef MESH_BED_LEVELING
  5211. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5212. #else
  5213. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5214. #endif
  5215. }
  5216. for(int8_t i=0; i < NUM_AXIS; i++) {
  5217. current_position[i] = destination[i];
  5218. }
  5219. }
  5220. void prepare_arc_move(char isclockwise) {
  5221. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5222. // Trace the arc
  5223. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5224. // As far as the parser is concerned, the position is now == target. In reality the
  5225. // motion control system might still be processing the action and the real tool position
  5226. // in any intermediate location.
  5227. for(int8_t i=0; i < NUM_AXIS; i++) {
  5228. current_position[i] = destination[i];
  5229. }
  5230. previous_millis_cmd = millis();
  5231. }
  5232. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5233. #if defined(FAN_PIN)
  5234. #if CONTROLLERFAN_PIN == FAN_PIN
  5235. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5236. #endif
  5237. #endif
  5238. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5239. unsigned long lastMotorCheck = 0;
  5240. void controllerFan()
  5241. {
  5242. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5243. {
  5244. lastMotorCheck = millis();
  5245. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5246. #if EXTRUDERS > 2
  5247. || !READ(E2_ENABLE_PIN)
  5248. #endif
  5249. #if EXTRUDER > 1
  5250. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5251. || !READ(X2_ENABLE_PIN)
  5252. #endif
  5253. || !READ(E1_ENABLE_PIN)
  5254. #endif
  5255. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5256. {
  5257. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5258. }
  5259. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5260. {
  5261. digitalWrite(CONTROLLERFAN_PIN, 0);
  5262. analogWrite(CONTROLLERFAN_PIN, 0);
  5263. }
  5264. else
  5265. {
  5266. // allows digital or PWM fan output to be used (see M42 handling)
  5267. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5268. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5269. }
  5270. }
  5271. }
  5272. #endif
  5273. #ifdef TEMP_STAT_LEDS
  5274. static bool blue_led = false;
  5275. static bool red_led = false;
  5276. static uint32_t stat_update = 0;
  5277. void handle_status_leds(void) {
  5278. float max_temp = 0.0;
  5279. if(millis() > stat_update) {
  5280. stat_update += 500; // Update every 0.5s
  5281. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5282. max_temp = max(max_temp, degHotend(cur_extruder));
  5283. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5284. }
  5285. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5286. max_temp = max(max_temp, degTargetBed());
  5287. max_temp = max(max_temp, degBed());
  5288. #endif
  5289. if((max_temp > 55.0) && (red_led == false)) {
  5290. digitalWrite(STAT_LED_RED, 1);
  5291. digitalWrite(STAT_LED_BLUE, 0);
  5292. red_led = true;
  5293. blue_led = false;
  5294. }
  5295. if((max_temp < 54.0) && (blue_led == false)) {
  5296. digitalWrite(STAT_LED_RED, 0);
  5297. digitalWrite(STAT_LED_BLUE, 1);
  5298. red_led = false;
  5299. blue_led = true;
  5300. }
  5301. }
  5302. }
  5303. #endif
  5304. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5305. {
  5306. #if defined(KILL_PIN) && KILL_PIN > -1
  5307. static int killCount = 0; // make the inactivity button a bit less responsive
  5308. const int KILL_DELAY = 10000;
  5309. #endif
  5310. if(buflen < (BUFSIZE-1)){
  5311. get_command();
  5312. }
  5313. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5314. if(max_inactive_time)
  5315. kill("", 4);
  5316. if(stepper_inactive_time) {
  5317. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5318. {
  5319. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5320. disable_x();
  5321. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5322. disable_y();
  5323. disable_z();
  5324. disable_e0();
  5325. disable_e1();
  5326. disable_e2();
  5327. }
  5328. }
  5329. }
  5330. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5331. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5332. {
  5333. chdkActive = false;
  5334. WRITE(CHDK, LOW);
  5335. }
  5336. #endif
  5337. #if defined(KILL_PIN) && KILL_PIN > -1
  5338. // Check if the kill button was pressed and wait just in case it was an accidental
  5339. // key kill key press
  5340. // -------------------------------------------------------------------------------
  5341. if( 0 == READ(KILL_PIN) )
  5342. {
  5343. killCount++;
  5344. }
  5345. else if (killCount > 0)
  5346. {
  5347. killCount--;
  5348. }
  5349. // Exceeded threshold and we can confirm that it was not accidental
  5350. // KILL the machine
  5351. // ----------------------------------------------------------------
  5352. if ( killCount >= KILL_DELAY)
  5353. {
  5354. kill("", 5);
  5355. }
  5356. #endif
  5357. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5358. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5359. #endif
  5360. #ifdef EXTRUDER_RUNOUT_PREVENT
  5361. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5362. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5363. {
  5364. bool oldstatus=READ(E0_ENABLE_PIN);
  5365. enable_e0();
  5366. float oldepos=current_position[E_AXIS];
  5367. float oldedes=destination[E_AXIS];
  5368. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5369. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5370. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5371. current_position[E_AXIS]=oldepos;
  5372. destination[E_AXIS]=oldedes;
  5373. plan_set_e_position(oldepos);
  5374. previous_millis_cmd=millis();
  5375. st_synchronize();
  5376. WRITE(E0_ENABLE_PIN,oldstatus);
  5377. }
  5378. #endif
  5379. #ifdef TEMP_STAT_LEDS
  5380. handle_status_leds();
  5381. #endif
  5382. check_axes_activity();
  5383. }
  5384. void kill(const char *full_screen_message, unsigned char id)
  5385. {
  5386. SERIAL_ECHOPGM("KILL: ");
  5387. MYSERIAL.println(int(id));
  5388. //return;
  5389. cli(); // Stop interrupts
  5390. disable_heater();
  5391. disable_x();
  5392. // SERIAL_ECHOLNPGM("kill - disable Y");
  5393. disable_y();
  5394. disable_z();
  5395. disable_e0();
  5396. disable_e1();
  5397. disable_e2();
  5398. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5399. pinMode(PS_ON_PIN,INPUT);
  5400. #endif
  5401. SERIAL_ERROR_START;
  5402. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5403. if (full_screen_message != NULL) {
  5404. SERIAL_ERRORLNRPGM(full_screen_message);
  5405. lcd_display_message_fullscreen_P(full_screen_message);
  5406. } else {
  5407. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5408. }
  5409. // FMC small patch to update the LCD before ending
  5410. sei(); // enable interrupts
  5411. for ( int i=5; i--; lcd_update())
  5412. {
  5413. delay(200);
  5414. }
  5415. cli(); // disable interrupts
  5416. suicide();
  5417. while(1) { /* Intentionally left empty */ } // Wait for reset
  5418. }
  5419. void Stop()
  5420. {
  5421. disable_heater();
  5422. if(Stopped == false) {
  5423. Stopped = true;
  5424. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5425. SERIAL_ERROR_START;
  5426. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5427. LCD_MESSAGERPGM(MSG_STOPPED);
  5428. }
  5429. }
  5430. bool IsStopped() { return Stopped; };
  5431. #ifdef FAST_PWM_FAN
  5432. void setPwmFrequency(uint8_t pin, int val)
  5433. {
  5434. val &= 0x07;
  5435. switch(digitalPinToTimer(pin))
  5436. {
  5437. #if defined(TCCR0A)
  5438. case TIMER0A:
  5439. case TIMER0B:
  5440. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5441. // TCCR0B |= val;
  5442. break;
  5443. #endif
  5444. #if defined(TCCR1A)
  5445. case TIMER1A:
  5446. case TIMER1B:
  5447. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5448. // TCCR1B |= val;
  5449. break;
  5450. #endif
  5451. #if defined(TCCR2)
  5452. case TIMER2:
  5453. case TIMER2:
  5454. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5455. TCCR2 |= val;
  5456. break;
  5457. #endif
  5458. #if defined(TCCR2A)
  5459. case TIMER2A:
  5460. case TIMER2B:
  5461. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5462. TCCR2B |= val;
  5463. break;
  5464. #endif
  5465. #if defined(TCCR3A)
  5466. case TIMER3A:
  5467. case TIMER3B:
  5468. case TIMER3C:
  5469. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5470. TCCR3B |= val;
  5471. break;
  5472. #endif
  5473. #if defined(TCCR4A)
  5474. case TIMER4A:
  5475. case TIMER4B:
  5476. case TIMER4C:
  5477. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5478. TCCR4B |= val;
  5479. break;
  5480. #endif
  5481. #if defined(TCCR5A)
  5482. case TIMER5A:
  5483. case TIMER5B:
  5484. case TIMER5C:
  5485. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5486. TCCR5B |= val;
  5487. break;
  5488. #endif
  5489. }
  5490. }
  5491. #endif //FAST_PWM_FAN
  5492. bool setTargetedHotend(int code){
  5493. tmp_extruder = active_extruder;
  5494. if(code_seen('T')) {
  5495. tmp_extruder = code_value();
  5496. if(tmp_extruder >= EXTRUDERS) {
  5497. SERIAL_ECHO_START;
  5498. switch(code){
  5499. case 104:
  5500. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5501. break;
  5502. case 105:
  5503. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5504. break;
  5505. case 109:
  5506. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5507. break;
  5508. case 218:
  5509. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5510. break;
  5511. case 221:
  5512. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5513. break;
  5514. }
  5515. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5516. return true;
  5517. }
  5518. }
  5519. return false;
  5520. }
  5521. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5522. {
  5523. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5524. {
  5525. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5526. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5527. }
  5528. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5529. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5530. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5531. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5532. total_filament_used = 0;
  5533. }
  5534. float calculate_volumetric_multiplier(float diameter) {
  5535. float area = .0;
  5536. float radius = .0;
  5537. radius = diameter * .5;
  5538. if (! volumetric_enabled || radius == 0) {
  5539. area = 1;
  5540. }
  5541. else {
  5542. area = M_PI * pow(radius, 2);
  5543. }
  5544. return 1.0 / area;
  5545. }
  5546. void calculate_volumetric_multipliers() {
  5547. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5548. #if EXTRUDERS > 1
  5549. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5550. #if EXTRUDERS > 2
  5551. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5552. #endif
  5553. #endif
  5554. }
  5555. void delay_keep_alive(unsigned int ms)
  5556. {
  5557. for (;;) {
  5558. manage_heater();
  5559. // Manage inactivity, but don't disable steppers on timeout.
  5560. manage_inactivity(true);
  5561. lcd_update();
  5562. if (ms == 0)
  5563. break;
  5564. else if (ms >= 50) {
  5565. delay(50);
  5566. ms -= 50;
  5567. } else {
  5568. delay(ms);
  5569. ms = 0;
  5570. }
  5571. }
  5572. }
  5573. void wait_for_heater(long codenum) {
  5574. #ifdef TEMP_RESIDENCY_TIME
  5575. long residencyStart;
  5576. residencyStart = -1;
  5577. /* continue to loop until we have reached the target temp
  5578. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5579. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5580. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5581. #else
  5582. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5583. #endif //TEMP_RESIDENCY_TIME
  5584. if ((millis() - codenum) > 1000UL)
  5585. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5586. if (!farm_mode) {
  5587. SERIAL_PROTOCOLPGM("T:");
  5588. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5589. SERIAL_PROTOCOLPGM(" E:");
  5590. SERIAL_PROTOCOL((int)tmp_extruder);
  5591. #ifdef TEMP_RESIDENCY_TIME
  5592. SERIAL_PROTOCOLPGM(" W:");
  5593. if (residencyStart > -1)
  5594. {
  5595. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5596. SERIAL_PROTOCOLLN(codenum);
  5597. }
  5598. else
  5599. {
  5600. SERIAL_PROTOCOLLN("?");
  5601. }
  5602. }
  5603. #else
  5604. SERIAL_PROTOCOLLN("");
  5605. #endif
  5606. codenum = millis();
  5607. }
  5608. manage_heater();
  5609. manage_inactivity();
  5610. lcd_update();
  5611. #ifdef TEMP_RESIDENCY_TIME
  5612. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5613. or when current temp falls outside the hysteresis after target temp was reached */
  5614. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5615. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5616. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5617. {
  5618. residencyStart = millis();
  5619. }
  5620. #endif //TEMP_RESIDENCY_TIME
  5621. }
  5622. }
  5623. void check_babystep() {
  5624. int babystep_z;
  5625. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5626. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5627. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5628. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5629. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5630. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5631. lcd_update_enable(true);
  5632. }
  5633. }
  5634. #ifdef DIS
  5635. void d_setup()
  5636. {
  5637. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5638. pinMode(D_DATA, INPUT_PULLUP);
  5639. pinMode(D_REQUIRE, OUTPUT);
  5640. digitalWrite(D_REQUIRE, HIGH);
  5641. }
  5642. float d_ReadData()
  5643. {
  5644. int digit[13];
  5645. String mergeOutput;
  5646. float output;
  5647. digitalWrite(D_REQUIRE, HIGH);
  5648. for (int i = 0; i<13; i++)
  5649. {
  5650. for (int j = 0; j < 4; j++)
  5651. {
  5652. while (digitalRead(D_DATACLOCK) == LOW) {}
  5653. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5654. bitWrite(digit[i], j, digitalRead(D_DATA));
  5655. }
  5656. }
  5657. digitalWrite(D_REQUIRE, LOW);
  5658. mergeOutput = "";
  5659. output = 0;
  5660. for (int r = 5; r <= 10; r++) //Merge digits
  5661. {
  5662. mergeOutput += digit[r];
  5663. }
  5664. output = mergeOutput.toFloat();
  5665. if (digit[4] == 8) //Handle sign
  5666. {
  5667. output *= -1;
  5668. }
  5669. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5670. {
  5671. output /= 10;
  5672. }
  5673. return output;
  5674. }
  5675. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5676. int t1 = 0;
  5677. int t_delay = 0;
  5678. int digit[13];
  5679. int m;
  5680. char str[3];
  5681. //String mergeOutput;
  5682. char mergeOutput[15];
  5683. float output;
  5684. int mesh_point = 0; //index number of calibration point
  5685. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5686. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5687. float mesh_home_z_search = 4;
  5688. float row[x_points_num];
  5689. int ix = 0;
  5690. int iy = 0;
  5691. char* filename_wldsd = "wldsd.txt";
  5692. char data_wldsd[70];
  5693. char numb_wldsd[10];
  5694. d_setup();
  5695. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5696. // We don't know where we are! HOME!
  5697. // Push the commands to the front of the message queue in the reverse order!
  5698. // There shall be always enough space reserved for these commands.
  5699. repeatcommand_front(); // repeat G80 with all its parameters
  5700. enquecommand_front_P((PSTR("G28 W0")));
  5701. enquecommand_front_P((PSTR("G1 Z5")));
  5702. return;
  5703. }
  5704. bool custom_message_old = custom_message;
  5705. unsigned int custom_message_type_old = custom_message_type;
  5706. unsigned int custom_message_state_old = custom_message_state;
  5707. custom_message = true;
  5708. custom_message_type = 1;
  5709. custom_message_state = (x_points_num * y_points_num) + 10;
  5710. lcd_update(1);
  5711. mbl.reset();
  5712. babystep_undo();
  5713. card.openFile(filename_wldsd, false);
  5714. current_position[Z_AXIS] = mesh_home_z_search;
  5715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5716. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5717. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5718. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5719. setup_for_endstop_move(false);
  5720. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5721. SERIAL_PROTOCOL(x_points_num);
  5722. SERIAL_PROTOCOLPGM(",");
  5723. SERIAL_PROTOCOL(y_points_num);
  5724. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5725. SERIAL_PROTOCOL(mesh_home_z_search);
  5726. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5727. SERIAL_PROTOCOL(x_dimension);
  5728. SERIAL_PROTOCOLPGM(",");
  5729. SERIAL_PROTOCOL(y_dimension);
  5730. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5731. while (mesh_point != x_points_num * y_points_num) {
  5732. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5733. iy = mesh_point / x_points_num;
  5734. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5735. float z0 = 0.f;
  5736. current_position[Z_AXIS] = mesh_home_z_search;
  5737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5738. st_synchronize();
  5739. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5740. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5742. st_synchronize();
  5743. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5744. break;
  5745. card.closefile();
  5746. }
  5747. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5748. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5749. //strcat(data_wldsd, numb_wldsd);
  5750. //MYSERIAL.println(data_wldsd);
  5751. //delay(1000);
  5752. //delay(3000);
  5753. //t1 = millis();
  5754. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5755. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5756. memset(digit, 0, sizeof(digit));
  5757. //cli();
  5758. digitalWrite(D_REQUIRE, LOW);
  5759. for (int i = 0; i<13; i++)
  5760. {
  5761. //t1 = millis();
  5762. for (int j = 0; j < 4; j++)
  5763. {
  5764. while (digitalRead(D_DATACLOCK) == LOW) {}
  5765. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5766. bitWrite(digit[i], j, digitalRead(D_DATA));
  5767. }
  5768. //t_delay = (millis() - t1);
  5769. //SERIAL_PROTOCOLPGM(" ");
  5770. //SERIAL_PROTOCOL_F(t_delay, 5);
  5771. //SERIAL_PROTOCOLPGM(" ");
  5772. }
  5773. //sei();
  5774. digitalWrite(D_REQUIRE, HIGH);
  5775. mergeOutput[0] = '\0';
  5776. output = 0;
  5777. for (int r = 5; r <= 10; r++) //Merge digits
  5778. {
  5779. sprintf(str, "%d", digit[r]);
  5780. strcat(mergeOutput, str);
  5781. }
  5782. output = atof(mergeOutput);
  5783. if (digit[4] == 8) //Handle sign
  5784. {
  5785. output *= -1;
  5786. }
  5787. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5788. {
  5789. output *= 0.1;
  5790. }
  5791. //output = d_ReadData();
  5792. //row[ix] = current_position[Z_AXIS];
  5793. memset(data_wldsd, 0, sizeof(data_wldsd));
  5794. for (int i = 0; i <3; i++) {
  5795. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5796. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5797. strcat(data_wldsd, numb_wldsd);
  5798. strcat(data_wldsd, ";");
  5799. }
  5800. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5801. dtostrf(output, 8, 5, numb_wldsd);
  5802. strcat(data_wldsd, numb_wldsd);
  5803. //strcat(data_wldsd, ";");
  5804. card.write_command(data_wldsd);
  5805. //row[ix] = d_ReadData();
  5806. row[ix] = output; // current_position[Z_AXIS];
  5807. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5808. for (int i = 0; i < x_points_num; i++) {
  5809. SERIAL_PROTOCOLPGM(" ");
  5810. SERIAL_PROTOCOL_F(row[i], 5);
  5811. }
  5812. SERIAL_PROTOCOLPGM("\n");
  5813. }
  5814. custom_message_state--;
  5815. mesh_point++;
  5816. lcd_update(1);
  5817. }
  5818. card.closefile();
  5819. }
  5820. #endif
  5821. void temp_compensation_start() {
  5822. custom_message = true;
  5823. custom_message_type = 5;
  5824. custom_message_state = PINDA_HEAT_T + 1;
  5825. lcd_update(2);
  5826. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5827. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5828. }
  5829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5830. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5831. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5832. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5833. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5834. st_synchronize();
  5835. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5836. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5837. delay_keep_alive(1000);
  5838. custom_message_state = PINDA_HEAT_T - i;
  5839. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5840. else lcd_update(1);
  5841. }
  5842. custom_message_type = 0;
  5843. custom_message_state = 0;
  5844. custom_message = false;
  5845. }
  5846. void temp_compensation_apply() {
  5847. int i_add;
  5848. int compensation_value;
  5849. int z_shift = 0;
  5850. float z_shift_mm;
  5851. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5852. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5853. i_add = (target_temperature_bed - 60) / 10;
  5854. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5855. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5856. }else {
  5857. //interpolation
  5858. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5859. }
  5860. SERIAL_PROTOCOLPGM("\n");
  5861. SERIAL_PROTOCOLPGM("Z shift applied:");
  5862. MYSERIAL.print(z_shift_mm);
  5863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5864. st_synchronize();
  5865. plan_set_z_position(current_position[Z_AXIS]);
  5866. }
  5867. else {
  5868. //we have no temp compensation data
  5869. }
  5870. }
  5871. float temp_comp_interpolation(float inp_temperature) {
  5872. //cubic spline interpolation
  5873. int n, i, j, k;
  5874. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5875. int shift[10];
  5876. int temp_C[10];
  5877. n = 6; //number of measured points
  5878. shift[0] = 0;
  5879. for (i = 0; i < n; i++) {
  5880. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5881. temp_C[i] = 50 + i * 10; //temperature in C
  5882. #ifdef PINDA_THERMISTOR
  5883. temp_C[i] = 35 + i * 5; //temperature in C
  5884. #else
  5885. temp_C[i] = 50 + i * 10; //temperature in C
  5886. #endif
  5887. x[i] = (float)temp_C[i];
  5888. f[i] = (float)shift[i];
  5889. }
  5890. if (inp_temperature < x[0]) return 0;
  5891. for (i = n - 1; i>0; i--) {
  5892. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5893. h[i - 1] = x[i] - x[i - 1];
  5894. }
  5895. //*********** formation of h, s , f matrix **************
  5896. for (i = 1; i<n - 1; i++) {
  5897. m[i][i] = 2 * (h[i - 1] + h[i]);
  5898. if (i != 1) {
  5899. m[i][i - 1] = h[i - 1];
  5900. m[i - 1][i] = h[i - 1];
  5901. }
  5902. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5903. }
  5904. //*********** forward elimination **************
  5905. for (i = 1; i<n - 2; i++) {
  5906. temp = (m[i + 1][i] / m[i][i]);
  5907. for (j = 1; j <= n - 1; j++)
  5908. m[i + 1][j] -= temp*m[i][j];
  5909. }
  5910. //*********** backward substitution *********
  5911. for (i = n - 2; i>0; i--) {
  5912. sum = 0;
  5913. for (j = i; j <= n - 2; j++)
  5914. sum += m[i][j] * s[j];
  5915. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5916. }
  5917. for (i = 0; i<n - 1; i++)
  5918. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5919. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5920. b = s[i] / 2;
  5921. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5922. d = f[i];
  5923. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5924. }
  5925. return sum;
  5926. }
  5927. #ifdef PINDA_THERMISTOR
  5928. float temp_compensation_pinda_thermistor_offset()
  5929. {
  5930. if (!temp_cal_active) return 0;
  5931. if (!calibration_status_pinda()) return 0;
  5932. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  5933. }
  5934. #endif //PINDA_THERMISTOR
  5935. void long_pause() //long pause print
  5936. {
  5937. st_synchronize();
  5938. //save currently set parameters to global variables
  5939. saved_feedmultiply = feedmultiply;
  5940. HotendTempBckp = degTargetHotend(active_extruder);
  5941. fanSpeedBckp = fanSpeed;
  5942. start_pause_print = millis();
  5943. //save position
  5944. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5945. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5946. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5947. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5948. //retract
  5949. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5951. //lift z
  5952. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5953. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5955. //set nozzle target temperature to 0
  5956. setTargetHotend(0, 0);
  5957. setTargetHotend(0, 1);
  5958. setTargetHotend(0, 2);
  5959. //Move XY to side
  5960. current_position[X_AXIS] = X_PAUSE_POS;
  5961. current_position[Y_AXIS] = Y_PAUSE_POS;
  5962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5963. // Turn off the print fan
  5964. fanSpeed = 0;
  5965. st_synchronize();
  5966. }
  5967. void serialecho_temperatures() {
  5968. float tt = degHotend(active_extruder);
  5969. SERIAL_PROTOCOLPGM("T:");
  5970. SERIAL_PROTOCOL(tt);
  5971. SERIAL_PROTOCOLPGM(" E:");
  5972. SERIAL_PROTOCOL((int)active_extruder);
  5973. SERIAL_PROTOCOLPGM(" B:");
  5974. SERIAL_PROTOCOL_F(degBed(), 1);
  5975. SERIAL_PROTOCOLLN("");
  5976. }
  5977. extern uint32_t sdpos_atomic;
  5978. void uvlo_()
  5979. {
  5980. // Conserve power as soon as possible.
  5981. disable_x();
  5982. disable_y();
  5983. // Indicate that the interrupt has been triggered.
  5984. SERIAL_ECHOLNPGM("UVLO");
  5985. // Read out the current Z motor microstep counter. This will be later used
  5986. // for reaching the zero full step before powering off.
  5987. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  5988. // Calculate the file position, from which to resume this print.
  5989. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  5990. {
  5991. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  5992. sd_position -= sdlen_planner;
  5993. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  5994. sd_position -= sdlen_cmdqueue;
  5995. if (sd_position < 0) sd_position = 0;
  5996. }
  5997. // Backup the feedrate in mm/min.
  5998. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  5999. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6000. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6001. // are in action.
  6002. planner_abort_hard();
  6003. // Clean the input command queue.
  6004. cmdqueue_reset();
  6005. card.sdprinting = false;
  6006. // card.closefile();
  6007. // Enable stepper driver interrupt to move Z axis.
  6008. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6009. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6010. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6011. sei();
  6012. plan_buffer_line(
  6013. current_position[X_AXIS],
  6014. current_position[Y_AXIS],
  6015. current_position[Z_AXIS],
  6016. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6017. 400, active_extruder);
  6018. plan_buffer_line(
  6019. current_position[X_AXIS],
  6020. current_position[Y_AXIS],
  6021. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6022. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6023. 40, active_extruder);
  6024. // Move Z up to the next 0th full step.
  6025. // Write the file position.
  6026. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6027. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6028. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6029. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6030. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6031. // Scale the z value to 1u resolution.
  6032. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6033. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6034. }
  6035. // Read out the current Z motor microstep counter. This will be later used
  6036. // for reaching the zero full step before powering off.
  6037. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6038. // Store the current position.
  6039. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6040. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6041. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6042. // Store the current feed rate, temperatures and fan speed.
  6043. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6044. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6045. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6046. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6047. // Finaly store the "power outage" flag.
  6048. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6049. st_synchronize();
  6050. SERIAL_ECHOPGM("stps");
  6051. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6052. #if 0
  6053. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6054. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6056. st_synchronize();
  6057. #endif
  6058. disable_z();
  6059. // Increment power failure counter
  6060. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6061. power_count++;
  6062. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6063. SERIAL_ECHOLNPGM("UVLO - end");
  6064. cli();
  6065. while(1);
  6066. }
  6067. void setup_fan_interrupt() {
  6068. //INT7
  6069. DDRE &= ~(1 << 7); //input pin
  6070. PORTE &= ~(1 << 7); //no internal pull-up
  6071. //start with sensing rising edge
  6072. EICRB &= ~(1 << 6);
  6073. EICRB |= (1 << 7);
  6074. //enable INT7 interrupt
  6075. EIMSK |= (1 << 7);
  6076. }
  6077. ISR(INT7_vect) {
  6078. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6079. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6080. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6081. t_fan_rising_edge = millis();
  6082. }
  6083. else { //interrupt was triggered by falling edge
  6084. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6085. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6086. }
  6087. }
  6088. EICRB ^= (1 << 6); //change edge
  6089. }
  6090. void setup_uvlo_interrupt() {
  6091. DDRE &= ~(1 << 4); //input pin
  6092. PORTE &= ~(1 << 4); //no internal pull-up
  6093. //sensing falling edge
  6094. EICRB |= (1 << 0);
  6095. EICRB &= ~(1 << 1);
  6096. //enable INT4 interrupt
  6097. EIMSK |= (1 << 4);
  6098. }
  6099. ISR(INT4_vect) {
  6100. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6101. SERIAL_ECHOLNPGM("INT4");
  6102. if (IS_SD_PRINTING) uvlo_();
  6103. }
  6104. void recover_print(uint8_t automatic) {
  6105. char cmd[30];
  6106. lcd_update_enable(true);
  6107. lcd_update(2);
  6108. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6109. recover_machine_state_after_power_panic();
  6110. // Set the target bed and nozzle temperatures.
  6111. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6112. enquecommand(cmd);
  6113. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6114. enquecommand(cmd);
  6115. // Lift the print head, so one may remove the excess priming material.
  6116. if (current_position[Z_AXIS] < 25)
  6117. enquecommand_P(PSTR("G1 Z25 F800"));
  6118. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6119. enquecommand_P(PSTR("G28 X Y"));
  6120. // Set the target bed and nozzle temperatures and wait.
  6121. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6122. enquecommand(cmd);
  6123. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6124. enquecommand(cmd);
  6125. enquecommand_P(PSTR("M83")); //E axis relative mode
  6126. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6127. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6128. if(automatic == 0){
  6129. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6130. }
  6131. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6132. // Mark the power panic status as inactive.
  6133. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6134. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6135. delay_keep_alive(1000);
  6136. }*/
  6137. SERIAL_ECHOPGM("After waiting for temp:");
  6138. SERIAL_ECHOPGM("Current position X_AXIS:");
  6139. MYSERIAL.println(current_position[X_AXIS]);
  6140. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6141. MYSERIAL.println(current_position[Y_AXIS]);
  6142. // Restart the print.
  6143. restore_print_from_eeprom();
  6144. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6145. MYSERIAL.print(current_position[Z_AXIS]);
  6146. }
  6147. void recover_machine_state_after_power_panic()
  6148. {
  6149. // 1) Recover the logical cordinates at the time of the power panic.
  6150. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6151. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6152. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6153. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6154. // The current position after power panic is moved to the next closest 0th full step.
  6155. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6156. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6157. memcpy(destination, current_position, sizeof(destination));
  6158. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6159. print_world_coordinates();
  6160. // 2) Initialize the logical to physical coordinate system transformation.
  6161. world2machine_initialize();
  6162. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6163. mbl.active = false;
  6164. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6165. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6166. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6167. // Scale the z value to 10u resolution.
  6168. int16_t v;
  6169. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6170. if (v != 0)
  6171. mbl.active = true;
  6172. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6173. }
  6174. if (mbl.active)
  6175. mbl.upsample_3x3();
  6176. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6177. print_mesh_bed_leveling_table();
  6178. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6179. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6180. babystep_load();
  6181. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6182. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6183. // 6) Power up the motors, mark their positions as known.
  6184. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6185. axis_known_position[X_AXIS] = true; enable_x();
  6186. axis_known_position[Y_AXIS] = true; enable_y();
  6187. axis_known_position[Z_AXIS] = true; enable_z();
  6188. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6189. print_physical_coordinates();
  6190. // 7) Recover the target temperatures.
  6191. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6192. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6193. }
  6194. void restore_print_from_eeprom() {
  6195. float x_rec, y_rec, z_pos;
  6196. int feedrate_rec;
  6197. uint8_t fan_speed_rec;
  6198. char cmd[30];
  6199. char* c;
  6200. char filename[13];
  6201. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6202. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6203. SERIAL_ECHOPGM("Feedrate:");
  6204. MYSERIAL.println(feedrate_rec);
  6205. for (int i = 0; i < 8; i++) {
  6206. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6207. }
  6208. filename[8] = '\0';
  6209. MYSERIAL.print(filename);
  6210. strcat_P(filename, PSTR(".gco"));
  6211. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6212. for (c = &cmd[4]; *c; c++)
  6213. *c = tolower(*c);
  6214. enquecommand(cmd);
  6215. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6216. SERIAL_ECHOPGM("Position read from eeprom:");
  6217. MYSERIAL.println(position);
  6218. // E axis relative mode.
  6219. enquecommand_P(PSTR("M83"));
  6220. // Move to the XY print position in logical coordinates, where the print has been killed.
  6221. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6222. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6223. strcat_P(cmd, PSTR(" F2000"));
  6224. enquecommand(cmd);
  6225. // Move the Z axis down to the print, in logical coordinates.
  6226. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6227. enquecommand(cmd);
  6228. // Unretract.
  6229. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6230. // Set the feedrate saved at the power panic.
  6231. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6232. enquecommand(cmd);
  6233. // Set the fan speed saved at the power panic.
  6234. strcpy_P(cmd, PSTR("M106 S"));
  6235. strcat(cmd, itostr3(int(fan_speed_rec)));
  6236. enquecommand(cmd);
  6237. // Set a position in the file.
  6238. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6239. enquecommand(cmd);
  6240. // Start SD print.
  6241. enquecommand_P(PSTR("M24"));
  6242. }
  6243. ////////////////////////////////////////////////////////////////////////////////
  6244. // new save/restore printing
  6245. //extern uint32_t sdpos_atomic;
  6246. bool saved_printing = false;
  6247. uint32_t saved_sdpos = 0;
  6248. float saved_pos[4] = {0, 0, 0, 0};
  6249. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6250. float saved_feedrate2 = 0;
  6251. uint8_t saved_active_extruder = 0;
  6252. bool saved_extruder_under_pressure = false;
  6253. void stop_and_save_print_to_ram(float z_move, float e_move)
  6254. {
  6255. if (saved_printing) return;
  6256. cli();
  6257. unsigned char nplanner_blocks = number_of_blocks();
  6258. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6259. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6260. saved_sdpos -= sdlen_planner;
  6261. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6262. saved_sdpos -= sdlen_cmdqueue;
  6263. #if 0
  6264. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6265. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6266. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6267. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6268. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6269. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6270. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6271. {
  6272. card.setIndex(saved_sdpos);
  6273. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6274. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6275. MYSERIAL.print(char(card.get()));
  6276. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6277. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6278. MYSERIAL.print(char(card.get()));
  6279. SERIAL_ECHOLNPGM("End of command buffer");
  6280. }
  6281. {
  6282. // Print the content of the planner buffer, line by line:
  6283. card.setIndex(saved_sdpos);
  6284. int8_t iline = 0;
  6285. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6286. SERIAL_ECHOPGM("Planner line (from file): ");
  6287. MYSERIAL.print(int(iline), DEC);
  6288. SERIAL_ECHOPGM(", length: ");
  6289. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6290. SERIAL_ECHOPGM(", steps: (");
  6291. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6292. SERIAL_ECHOPGM(",");
  6293. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6294. SERIAL_ECHOPGM(",");
  6295. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6296. SERIAL_ECHOPGM(",");
  6297. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6298. SERIAL_ECHOPGM("), events: ");
  6299. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6300. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6301. MYSERIAL.print(char(card.get()));
  6302. }
  6303. }
  6304. {
  6305. // Print the content of the command buffer, line by line:
  6306. int8_t iline = 0;
  6307. union {
  6308. struct {
  6309. char lo;
  6310. char hi;
  6311. } lohi;
  6312. uint16_t value;
  6313. } sdlen_single;
  6314. int _bufindr = bufindr;
  6315. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6316. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6317. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6318. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6319. }
  6320. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6321. MYSERIAL.print(int(iline), DEC);
  6322. SERIAL_ECHOPGM(", type: ");
  6323. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6324. SERIAL_ECHOPGM(", len: ");
  6325. MYSERIAL.println(sdlen_single.value, DEC);
  6326. // Print the content of the buffer line.
  6327. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6328. SERIAL_ECHOPGM("Buffer line (from file): ");
  6329. MYSERIAL.print(int(iline), DEC);
  6330. MYSERIAL.println(int(iline), DEC);
  6331. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6332. MYSERIAL.print(char(card.get()));
  6333. if (-- _buflen == 0)
  6334. break;
  6335. // First skip the current command ID and iterate up to the end of the string.
  6336. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6337. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6338. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6339. // If the end of the buffer was empty,
  6340. if (_bufindr == sizeof(cmdbuffer)) {
  6341. // skip to the start and find the nonzero command.
  6342. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6343. }
  6344. }
  6345. }
  6346. #endif
  6347. #if 0
  6348. saved_feedrate2 = feedrate; //save feedrate
  6349. #else
  6350. // Try to deduce the feedrate from the first block of the planner.
  6351. // Speed is in mm/min.
  6352. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6353. #endif
  6354. planner_abort_hard(); //abort printing
  6355. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6356. saved_active_extruder = active_extruder; //save active_extruder
  6357. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6358. cmdqueue_reset(); //empty cmdqueue
  6359. card.sdprinting = false;
  6360. // card.closefile();
  6361. saved_printing = true;
  6362. sei();
  6363. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6364. #if 1
  6365. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6366. char buf[48];
  6367. strcpy_P(buf, PSTR("G1 Z"));
  6368. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6369. strcat_P(buf, PSTR(" E"));
  6370. // Relative extrusion
  6371. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6372. strcat_P(buf, PSTR(" F"));
  6373. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6374. // At this point the command queue is empty.
  6375. enquecommand(buf, false);
  6376. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6377. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6378. repeatcommand_front();
  6379. #else
  6380. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6381. st_synchronize(); //wait moving
  6382. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6383. memcpy(destination, current_position, sizeof(destination));
  6384. #endif
  6385. }
  6386. }
  6387. void restore_print_from_ram_and_continue(float e_move)
  6388. {
  6389. if (!saved_printing) return;
  6390. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6391. // current_position[axis] = st_get_position_mm(axis);
  6392. active_extruder = saved_active_extruder; //restore active_extruder
  6393. feedrate = saved_feedrate2; //restore feedrate
  6394. float e = saved_pos[E_AXIS] - e_move;
  6395. plan_set_e_position(e);
  6396. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6397. st_synchronize();
  6398. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6399. memcpy(destination, current_position, sizeof(destination));
  6400. card.setIndex(saved_sdpos);
  6401. sdpos_atomic = saved_sdpos;
  6402. card.sdprinting = true;
  6403. saved_printing = false;
  6404. }
  6405. void print_world_coordinates()
  6406. {
  6407. SERIAL_ECHOPGM("world coordinates: (");
  6408. MYSERIAL.print(current_position[X_AXIS], 3);
  6409. SERIAL_ECHOPGM(", ");
  6410. MYSERIAL.print(current_position[Y_AXIS], 3);
  6411. SERIAL_ECHOPGM(", ");
  6412. MYSERIAL.print(current_position[Z_AXIS], 3);
  6413. SERIAL_ECHOLNPGM(")");
  6414. }
  6415. void print_physical_coordinates()
  6416. {
  6417. SERIAL_ECHOPGM("physical coordinates: (");
  6418. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6419. SERIAL_ECHOPGM(", ");
  6420. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6421. SERIAL_ECHOPGM(", ");
  6422. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6423. SERIAL_ECHOLNPGM(")");
  6424. }
  6425. void print_mesh_bed_leveling_table()
  6426. {
  6427. SERIAL_ECHOPGM("mesh bed leveling: ");
  6428. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6429. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6430. MYSERIAL.print(mbl.z_values[y][x], 3);
  6431. SERIAL_ECHOPGM(" ");
  6432. }
  6433. SERIAL_ECHOLNPGM("");
  6434. }