Marlin_main.cpp 301 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #define VERSION_STRING "1.0.2"
  103. #include "ultralcd.h"
  104. #include "cmdqueue.h"
  105. // Macros for bit masks
  106. #define BIT(b) (1<<(b))
  107. #define TEST(n,b) (((n)&BIT(b))!=0)
  108. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  109. //Macro for print fan speed
  110. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  111. #define PRINTING_TYPE_SD 0
  112. #define PRINTING_TYPE_USB 1
  113. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  114. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  115. //Implemented Codes
  116. //-------------------
  117. // PRUSA CODES
  118. // P F - Returns FW versions
  119. // P R - Returns revision of printer
  120. // G0 -> G1
  121. // G1 - Coordinated Movement X Y Z E
  122. // G2 - CW ARC
  123. // G3 - CCW ARC
  124. // G4 - Dwell S<seconds> or P<milliseconds>
  125. // G10 - retract filament according to settings of M207
  126. // G11 - retract recover filament according to settings of M208
  127. // G28 - Home all Axis
  128. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  129. // G30 - Single Z Probe, probes bed at current XY location.
  130. // G31 - Dock sled (Z_PROBE_SLED only)
  131. // G32 - Undock sled (Z_PROBE_SLED only)
  132. // G80 - Automatic mesh bed leveling
  133. // G81 - Print bed profile
  134. // G90 - Use Absolute Coordinates
  135. // G91 - Use Relative Coordinates
  136. // G92 - Set current position to coordinates given
  137. // M Codes
  138. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  139. // M1 - Same as M0
  140. // M17 - Enable/Power all stepper motors
  141. // M18 - Disable all stepper motors; same as M84
  142. // M20 - List SD card
  143. // M21 - Init SD card
  144. // M22 - Release SD card
  145. // M23 - Select SD file (M23 filename.g)
  146. // M24 - Start/resume SD print
  147. // M25 - Pause SD print
  148. // M26 - Set SD position in bytes (M26 S12345)
  149. // M27 - Report SD print status
  150. // M28 - Start SD write (M28 filename.g)
  151. // M29 - Stop SD write
  152. // M30 - Delete file from SD (M30 filename.g)
  153. // M31 - Output time since last M109 or SD card start to serial
  154. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  155. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  156. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  157. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  158. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  159. // M73 - Show percent done and print time remaining
  160. // M80 - Turn on Power Supply
  161. // M81 - Turn off Power Supply
  162. // M82 - Set E codes absolute (default)
  163. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  164. // M84 - Disable steppers until next move,
  165. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  166. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  167. // M92 - Set axis_steps_per_unit - same syntax as G92
  168. // M104 - Set extruder target temp
  169. // M105 - Read current temp
  170. // M106 - Fan on
  171. // M107 - Fan off
  172. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  173. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  174. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  175. // M112 - Emergency stop
  176. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  177. // M114 - Output current position to serial port
  178. // M115 - Capabilities string
  179. // M117 - display message
  180. // M119 - Output Endstop status to serial port
  181. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  182. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  183. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  184. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M140 - Set bed target temp
  186. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  187. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  188. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  189. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  190. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  191. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  192. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  193. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  194. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  195. // M206 - set additional homing offset
  196. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  197. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  198. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  199. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  200. // M220 S<factor in percent>- set speed factor override percentage
  201. // M221 S<factor in percent>- set extrude factor override percentage
  202. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  203. // M240 - Trigger a camera to take a photograph
  204. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  205. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  206. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  207. // M301 - Set PID parameters P I and D
  208. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  209. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  210. // M304 - Set bed PID parameters P I and D
  211. // M400 - Finish all moves
  212. // M401 - Lower z-probe if present
  213. // M402 - Raise z-probe if present
  214. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  215. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  216. // M406 - Turn off Filament Sensor extrusion control
  217. // M407 - Displays measured filament diameter
  218. // M500 - stores parameters in EEPROM
  219. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  220. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  221. // M503 - print the current settings (from memory not from EEPROM)
  222. // M509 - force language selection on next restart
  223. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  225. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  226. // M860 - Wait for PINDA thermistor to reach target temperature.
  227. // M861 - Set / Read PINDA temperature compensation offsets
  228. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  229. // M907 - Set digital trimpot motor current using axis codes.
  230. // M908 - Control digital trimpot directly.
  231. // M350 - Set microstepping mode.
  232. // M351 - Toggle MS1 MS2 pins directly.
  233. // M928 - Start SD logging (M928 filename.g) - ended by M29
  234. // M999 - Restart after being stopped by error
  235. //Stepper Movement Variables
  236. //===========================================================================
  237. //=============================imported variables============================
  238. //===========================================================================
  239. //===========================================================================
  240. //=============================public variables=============================
  241. //===========================================================================
  242. #ifdef SDSUPPORT
  243. CardReader card;
  244. #endif
  245. unsigned long PingTime = millis();
  246. unsigned long NcTime;
  247. union Data
  248. {
  249. byte b[2];
  250. int value;
  251. };
  252. float homing_feedrate[] = HOMING_FEEDRATE;
  253. // Currently only the extruder axis may be switched to a relative mode.
  254. // Other axes are always absolute or relative based on the common relative_mode flag.
  255. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  256. int feedmultiply=100; //100->1 200->2
  257. int saved_feedmultiply;
  258. int extrudemultiply=100; //100->1 200->2
  259. int extruder_multiply[EXTRUDERS] = {100
  260. #if EXTRUDERS > 1
  261. , 100
  262. #if EXTRUDERS > 2
  263. , 100
  264. #endif
  265. #endif
  266. };
  267. int bowden_length[4] = {385, 385, 385, 385};
  268. bool is_usb_printing = false;
  269. bool homing_flag = false;
  270. bool temp_cal_active = false;
  271. unsigned long kicktime = millis()+100000;
  272. unsigned int usb_printing_counter;
  273. int lcd_change_fil_state = 0;
  274. int feedmultiplyBckp = 100;
  275. float HotendTempBckp = 0;
  276. int fanSpeedBckp = 0;
  277. float pause_lastpos[4];
  278. unsigned long pause_time = 0;
  279. unsigned long start_pause_print = millis();
  280. unsigned long t_fan_rising_edge = millis();
  281. static LongTimer safetyTimer;
  282. static LongTimer crashDetTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. int8_t FarmMode = 0;
  287. bool prusa_sd_card_upload = false;
  288. unsigned int status_number = 0;
  289. unsigned long total_filament_used;
  290. unsigned int heating_status;
  291. unsigned int heating_status_counter;
  292. bool custom_message;
  293. bool loading_flag = false;
  294. unsigned int custom_message_type;
  295. unsigned int custom_message_state;
  296. char snmm_filaments_used = 0;
  297. bool fan_state[2];
  298. int fan_edge_counter[2];
  299. int fan_speed[2];
  300. char dir_names[3][9];
  301. bool sortAlpha = false;
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 1
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 2
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #endif
  309. #endif
  310. };
  311. float extruder_multiplier[EXTRUDERS] = {1.0
  312. #if EXTRUDERS > 1
  313. , 1.0
  314. #if EXTRUDERS > 2
  315. , 1.0
  316. #endif
  317. #endif
  318. };
  319. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  320. float add_homing[3]={0,0,0};
  321. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  322. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  323. bool axis_known_position[3] = {false, false, false};
  324. float zprobe_zoffset;
  325. // Extruder offset
  326. #if EXTRUDERS > 1
  327. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  328. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  329. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  330. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  331. #endif
  332. };
  333. #endif
  334. uint8_t active_extruder = 0;
  335. int fanSpeed=0;
  336. #ifdef FWRETRACT
  337. bool autoretract_enabled=false;
  338. bool retracted[EXTRUDERS]={false
  339. #if EXTRUDERS > 1
  340. , false
  341. #if EXTRUDERS > 2
  342. , false
  343. #endif
  344. #endif
  345. };
  346. bool retracted_swap[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. float retract_length = RETRACT_LENGTH;
  355. float retract_length_swap = RETRACT_LENGTH_SWAP;
  356. float retract_feedrate = RETRACT_FEEDRATE;
  357. float retract_zlift = RETRACT_ZLIFT;
  358. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  359. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  360. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  361. #endif
  362. #ifdef ULTIPANEL
  363. #ifdef PS_DEFAULT_OFF
  364. bool powersupply = false;
  365. #else
  366. bool powersupply = true;
  367. #endif
  368. #endif
  369. bool cancel_heatup = false ;
  370. #ifdef HOST_KEEPALIVE_FEATURE
  371. int busy_state = NOT_BUSY;
  372. static long prev_busy_signal_ms = -1;
  373. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  374. #else
  375. #define host_keepalive();
  376. #define KEEPALIVE_STATE(n);
  377. #endif
  378. const char errormagic[] PROGMEM = "Error:";
  379. const char echomagic[] PROGMEM = "echo:";
  380. bool no_response = false;
  381. uint8_t important_status;
  382. uint8_t saved_filament_type;
  383. // save/restore printing
  384. bool saved_printing = false;
  385. // storing estimated time to end of print counted by slicer
  386. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  387. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  388. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  389. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  390. //===========================================================================
  391. //=============================Private Variables=============================
  392. //===========================================================================
  393. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  394. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  395. static float delta[3] = {0.0, 0.0, 0.0};
  396. // For tracing an arc
  397. static float offset[3] = {0.0, 0.0, 0.0};
  398. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  399. // Determines Absolute or Relative Coordinates.
  400. // Also there is bool axis_relative_modes[] per axis flag.
  401. static bool relative_mode = false;
  402. #ifndef _DISABLE_M42_M226
  403. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  404. #endif //_DISABLE_M42_M226
  405. //static float tt = 0;
  406. //static float bt = 0;
  407. //Inactivity shutdown variables
  408. static unsigned long previous_millis_cmd = 0;
  409. unsigned long max_inactive_time = 0;
  410. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  411. unsigned long starttime=0;
  412. unsigned long stoptime=0;
  413. unsigned long _usb_timer = 0;
  414. static uint8_t tmp_extruder;
  415. bool extruder_under_pressure = true;
  416. bool Stopped=false;
  417. #if NUM_SERVOS > 0
  418. Servo servos[NUM_SERVOS];
  419. #endif
  420. bool CooldownNoWait = true;
  421. bool target_direction;
  422. //Insert variables if CHDK is defined
  423. #ifdef CHDK
  424. unsigned long chdkHigh = 0;
  425. boolean chdkActive = false;
  426. #endif
  427. // save/restore printing
  428. static uint32_t saved_sdpos = 0;
  429. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  430. static float saved_pos[4] = { 0, 0, 0, 0 };
  431. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  432. static float saved_feedrate2 = 0;
  433. static uint8_t saved_active_extruder = 0;
  434. static bool saved_extruder_under_pressure = false;
  435. //===========================================================================
  436. //=============================Routines======================================
  437. //===========================================================================
  438. void get_arc_coordinates();
  439. bool setTargetedHotend(int code);
  440. void serial_echopair_P(const char *s_P, float v)
  441. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  442. void serial_echopair_P(const char *s_P, double v)
  443. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  444. void serial_echopair_P(const char *s_P, unsigned long v)
  445. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  446. #ifdef SDSUPPORT
  447. #include "SdFatUtil.h"
  448. int freeMemory() { return SdFatUtil::FreeRam(); }
  449. #else
  450. extern "C" {
  451. extern unsigned int __bss_end;
  452. extern unsigned int __heap_start;
  453. extern void *__brkval;
  454. int freeMemory() {
  455. int free_memory;
  456. if ((int)__brkval == 0)
  457. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  458. else
  459. free_memory = ((int)&free_memory) - ((int)__brkval);
  460. return free_memory;
  461. }
  462. }
  463. #endif //!SDSUPPORT
  464. void setup_killpin()
  465. {
  466. #if defined(KILL_PIN) && KILL_PIN > -1
  467. SET_INPUT(KILL_PIN);
  468. WRITE(KILL_PIN,HIGH);
  469. #endif
  470. }
  471. // Set home pin
  472. void setup_homepin(void)
  473. {
  474. #if defined(HOME_PIN) && HOME_PIN > -1
  475. SET_INPUT(HOME_PIN);
  476. WRITE(HOME_PIN,HIGH);
  477. #endif
  478. }
  479. void setup_photpin()
  480. {
  481. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  482. SET_OUTPUT(PHOTOGRAPH_PIN);
  483. WRITE(PHOTOGRAPH_PIN, LOW);
  484. #endif
  485. }
  486. void setup_powerhold()
  487. {
  488. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  489. SET_OUTPUT(SUICIDE_PIN);
  490. WRITE(SUICIDE_PIN, HIGH);
  491. #endif
  492. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  493. SET_OUTPUT(PS_ON_PIN);
  494. #if defined(PS_DEFAULT_OFF)
  495. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  496. #else
  497. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  498. #endif
  499. #endif
  500. }
  501. void suicide()
  502. {
  503. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  504. SET_OUTPUT(SUICIDE_PIN);
  505. WRITE(SUICIDE_PIN, LOW);
  506. #endif
  507. }
  508. void servo_init()
  509. {
  510. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  511. servos[0].attach(SERVO0_PIN);
  512. #endif
  513. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  514. servos[1].attach(SERVO1_PIN);
  515. #endif
  516. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  517. servos[2].attach(SERVO2_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  520. servos[3].attach(SERVO3_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 5)
  523. #error "TODO: enter initalisation code for more servos"
  524. #endif
  525. }
  526. void stop_and_save_print_to_ram(float z_move, float e_move);
  527. void restore_print_from_ram_and_continue(float e_move);
  528. bool fans_check_enabled = true;
  529. bool filament_autoload_enabled = true;
  530. #ifdef TMC2130
  531. extern int8_t CrashDetectMenu;
  532. void crashdet_enable()
  533. {
  534. // MYSERIAL.println("crashdet_enable");
  535. tmc2130_sg_stop_on_crash = true;
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  537. CrashDetectMenu = 1;
  538. }
  539. void crashdet_disable()
  540. {
  541. // MYSERIAL.println("crashdet_disable");
  542. tmc2130_sg_stop_on_crash = false;
  543. tmc2130_sg_crash = 0;
  544. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  545. CrashDetectMenu = 0;
  546. }
  547. void crashdet_stop_and_save_print()
  548. {
  549. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  550. }
  551. void crashdet_restore_print_and_continue()
  552. {
  553. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  554. // babystep_apply();
  555. }
  556. void crashdet_stop_and_save_print2()
  557. {
  558. cli();
  559. planner_abort_hard(); //abort printing
  560. cmdqueue_reset(); //empty cmdqueue
  561. card.sdprinting = false;
  562. card.closefile();
  563. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  564. st_reset_timer();
  565. sei();
  566. }
  567. void crashdet_detected(uint8_t mask)
  568. {
  569. // printf("CRASH_DETECTED");
  570. /* while (!is_buffer_empty())
  571. {
  572. process_commands();
  573. cmdqueue_pop_front();
  574. }*/
  575. st_synchronize();
  576. static uint8_t crashDet_counter = 0;
  577. bool automatic_recovery_after_crash = true;
  578. bool yesno;
  579. if (crashDet_counter++ == 0) {
  580. crashDetTimer.start();
  581. }
  582. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  583. crashDetTimer.stop();
  584. crashDet_counter = 0;
  585. }
  586. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  587. automatic_recovery_after_crash = false;
  588. crashDetTimer.stop();
  589. crashDet_counter = 0;
  590. }
  591. else {
  592. crashDetTimer.start();
  593. }
  594. lcd_update_enable(true);
  595. lcd_implementation_clear();
  596. lcd_update(2);
  597. if (mask & X_AXIS_MASK)
  598. {
  599. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  600. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  601. }
  602. if (mask & Y_AXIS_MASK)
  603. {
  604. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  605. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  606. }
  607. lcd_update_enable(true);
  608. lcd_update(2);
  609. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  610. gcode_G28(true, true, false, false); //home X and Y
  611. st_synchronize();
  612. if(automatic_recovery_after_crash)
  613. yesno = true;
  614. else
  615. yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  616. lcd_update_enable(true);
  617. if (yesno)
  618. {
  619. enquecommand_P(PSTR("CRASH_RECOVER"));
  620. }
  621. else
  622. {
  623. enquecommand_P(PSTR("CRASH_CANCEL"));
  624. }
  625. }
  626. void crashdet_recover()
  627. {
  628. crashdet_restore_print_and_continue();
  629. tmc2130_sg_stop_on_crash = true;
  630. }
  631. void crashdet_cancel()
  632. {
  633. tmc2130_sg_stop_on_crash = true;
  634. if (saved_printing_type == PRINTING_TYPE_SD) {
  635. lcd_print_stop();
  636. }else if(saved_printing_type == PRINTING_TYPE_USB){
  637. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  638. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  639. }
  640. }
  641. #endif //TMC2130
  642. void failstats_reset_print()
  643. {
  644. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  645. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  646. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  647. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  648. }
  649. #ifdef MESH_BED_LEVELING
  650. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  651. #endif
  652. // Factory reset function
  653. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  654. // Level input parameter sets depth of reset
  655. // Quiet parameter masks all waitings for user interact.
  656. int er_progress = 0;
  657. void factory_reset(char level, bool quiet)
  658. {
  659. lcd_implementation_clear();
  660. int cursor_pos = 0;
  661. switch (level) {
  662. // Level 0: Language reset
  663. case 0:
  664. WRITE(BEEPER, HIGH);
  665. _delay_ms(100);
  666. WRITE(BEEPER, LOW);
  667. lang_reset();
  668. break;
  669. //Level 1: Reset statistics
  670. case 1:
  671. WRITE(BEEPER, HIGH);
  672. _delay_ms(100);
  673. WRITE(BEEPER, LOW);
  674. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  675. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  676. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  677. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  678. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  680. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  681. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  682. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  684. lcd_menu_statistics();
  685. break;
  686. // Level 2: Prepare for shipping
  687. case 2:
  688. //lcd_printPGM(PSTR("Factory RESET"));
  689. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  690. // Force language selection at the next boot up.
  691. lang_reset();
  692. // Force the "Follow calibration flow" message at the next boot up.
  693. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  694. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  695. farm_no = 0;
  696. farm_mode = false;
  697. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  698. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  699. WRITE(BEEPER, HIGH);
  700. _delay_ms(100);
  701. WRITE(BEEPER, LOW);
  702. //_delay_ms(2000);
  703. break;
  704. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  705. case 3:
  706. lcd_printPGM(PSTR("Factory RESET"));
  707. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  708. WRITE(BEEPER, HIGH);
  709. _delay_ms(100);
  710. WRITE(BEEPER, LOW);
  711. er_progress = 0;
  712. lcd_print_at_PGM(3, 3, PSTR(" "));
  713. lcd_implementation_print_at(3, 3, er_progress);
  714. // Erase EEPROM
  715. for (int i = 0; i < 4096; i++) {
  716. eeprom_write_byte((uint8_t*)i, 0xFF);
  717. if (i % 41 == 0) {
  718. er_progress++;
  719. lcd_print_at_PGM(3, 3, PSTR(" "));
  720. lcd_implementation_print_at(3, 3, er_progress);
  721. lcd_printPGM(PSTR("%"));
  722. }
  723. }
  724. break;
  725. case 4:
  726. bowden_menu();
  727. break;
  728. default:
  729. break;
  730. }
  731. }
  732. #include "LiquidCrystal_Prusa.h"
  733. extern LiquidCrystal_Prusa lcd;
  734. FILE _lcdout = {0};
  735. int lcd_putchar(char c, FILE *stream)
  736. {
  737. lcd.write(c);
  738. return 0;
  739. }
  740. FILE _uartout = {0};
  741. int uart_putchar(char c, FILE *stream)
  742. {
  743. MYSERIAL.write(c);
  744. return 0;
  745. }
  746. void lcd_splash()
  747. {
  748. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  749. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  750. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  751. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  752. }
  753. void factory_reset()
  754. {
  755. KEEPALIVE_STATE(PAUSED_FOR_USER);
  756. if (!READ(BTN_ENC))
  757. {
  758. _delay_ms(1000);
  759. if (!READ(BTN_ENC))
  760. {
  761. lcd_implementation_clear();
  762. lcd_printPGM(PSTR("Factory RESET"));
  763. SET_OUTPUT(BEEPER);
  764. WRITE(BEEPER, HIGH);
  765. while (!READ(BTN_ENC));
  766. WRITE(BEEPER, LOW);
  767. _delay_ms(2000);
  768. char level = reset_menu();
  769. factory_reset(level, false);
  770. switch (level) {
  771. case 0: _delay_ms(0); break;
  772. case 1: _delay_ms(0); break;
  773. case 2: _delay_ms(0); break;
  774. case 3: _delay_ms(0); break;
  775. }
  776. // _delay_ms(100);
  777. /*
  778. #ifdef MESH_BED_LEVELING
  779. _delay_ms(2000);
  780. if (!READ(BTN_ENC))
  781. {
  782. WRITE(BEEPER, HIGH);
  783. _delay_ms(100);
  784. WRITE(BEEPER, LOW);
  785. _delay_ms(200);
  786. WRITE(BEEPER, HIGH);
  787. _delay_ms(100);
  788. WRITE(BEEPER, LOW);
  789. int _z = 0;
  790. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  791. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  792. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  793. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  794. }
  795. else
  796. {
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. }
  801. #endif // mesh */
  802. }
  803. }
  804. else
  805. {
  806. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  807. }
  808. KEEPALIVE_STATE(IN_HANDLER);
  809. }
  810. void show_fw_version_warnings() {
  811. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  812. switch (FW_DEV_VERSION) {
  813. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  814. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  815. case(FW_VERSION_DEVEL):
  816. case(FW_VERSION_DEBUG):
  817. lcd_update_enable(false);
  818. lcd_implementation_clear();
  819. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  820. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  821. #else
  822. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  823. #endif
  824. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  825. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  826. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  827. lcd_wait_for_click();
  828. break;
  829. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  830. }
  831. lcd_update_enable(true);
  832. }
  833. uint8_t check_printer_version()
  834. {
  835. uint8_t version_changed = 0;
  836. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  837. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  838. if (printer_type != PRINTER_TYPE) {
  839. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  840. else version_changed |= 0b10;
  841. }
  842. if (motherboard != MOTHERBOARD) {
  843. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  844. else version_changed |= 0b01;
  845. }
  846. return version_changed;
  847. }
  848. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  849. {
  850. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  851. }
  852. #if (LANG_MODE != 0) //secondary language support
  853. #ifdef W25X20CL
  854. #include "bootapp.h" //bootloader support
  855. // language update from external flash
  856. #define LANGBOOT_BLOCKSIZE 0x1000
  857. #define LANGBOOT_RAMBUFFER 0x0800
  858. void update_sec_lang_from_external_flash()
  859. {
  860. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  861. {
  862. uint8_t lang = boot_reserved >> 4;
  863. uint8_t state = boot_reserved & 0xf;
  864. lang_table_header_t header;
  865. uint32_t src_addr;
  866. if (lang_get_header(lang, &header, &src_addr))
  867. {
  868. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  869. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  870. delay(100);
  871. boot_reserved = (state + 1) | (lang << 4);
  872. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  873. {
  874. cli();
  875. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  876. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  877. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  878. if (state == 0)
  879. {
  880. //TODO - check header integrity
  881. }
  882. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  883. }
  884. else
  885. {
  886. //TODO - check sec lang data integrity
  887. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  888. }
  889. }
  890. }
  891. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  892. }
  893. #ifdef DEBUG_W25X20CL
  894. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  895. {
  896. lang_table_header_t header;
  897. uint8_t count = 0;
  898. uint32_t addr = 0x00000;
  899. while (1)
  900. {
  901. printf_P(_n("LANGTABLE%d:"), count);
  902. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  903. if (header.magic != LANG_MAGIC)
  904. {
  905. printf_P(_n("NG!\n"));
  906. break;
  907. }
  908. printf_P(_n("OK\n"));
  909. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  910. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  911. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  912. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  913. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  914. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  915. addr += header.size;
  916. codes[count] = header.code;
  917. count ++;
  918. }
  919. return count;
  920. }
  921. void list_sec_lang_from_external_flash()
  922. {
  923. uint16_t codes[8];
  924. uint8_t count = lang_xflash_enum_codes(codes);
  925. printf_P(_n("XFlash lang count = %hhd\n"), count);
  926. }
  927. #endif //DEBUG_W25X20CL
  928. #endif //W25X20CL
  929. #endif //(LANG_MODE != 0)
  930. // "Setup" function is called by the Arduino framework on startup.
  931. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  932. // are initialized by the main() routine provided by the Arduino framework.
  933. void setup()
  934. {
  935. lcd_init();
  936. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  937. spi_init();
  938. lcd_splash();
  939. #if (LANG_MODE != 0) //secondary language support
  940. #ifdef W25X20CL
  941. if (w25x20cl_init())
  942. update_sec_lang_from_external_flash();
  943. else
  944. kill(_i("External SPI flash W25X20CL not responding."));
  945. #endif //W25X20CL
  946. #endif //(LANG_MODE != 0)
  947. setup_killpin();
  948. setup_powerhold();
  949. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  950. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  951. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  952. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  953. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  954. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  955. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  956. if (farm_mode)
  957. {
  958. no_response = true; //we need confirmation by recieving PRUSA thx
  959. important_status = 8;
  960. prusa_statistics(8);
  961. selectedSerialPort = 1;
  962. }
  963. MYSERIAL.begin(BAUDRATE);
  964. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  965. stdout = uartout;
  966. SERIAL_PROTOCOLLNPGM("start");
  967. SERIAL_ECHO_START;
  968. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  969. #ifdef DEBUG_SEC_LANG
  970. lang_table_header_t header;
  971. uint32_t src_addr = 0x00000;
  972. if (lang_get_header(3, &header, &src_addr))
  973. {
  974. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  975. #define LT_PRINT_TEST 2
  976. // flash usage
  977. // total p.test
  978. //0 252718 t+c text code
  979. //1 253142 424 170 254
  980. //2 253040 322 164 158
  981. //3 253248 530 135 395
  982. #if (LT_PRINT_TEST==1) //not optimized printf
  983. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  984. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  985. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  986. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  987. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  988. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  989. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  990. #elif (LT_PRINT_TEST==2) //optimized printf
  991. printf_P(
  992. _n(
  993. " _src_addr = 0x%08lx\n"
  994. " _lt_magic = 0x%08lx %S\n"
  995. " _lt_size = 0x%04x (%d)\n"
  996. " _lt_count = 0x%04x (%d)\n"
  997. " _lt_chsum = 0x%04x\n"
  998. " _lt_code = 0x%04x (%c%c)\n"
  999. " _lt_resv1 = 0x%08lx\n"
  1000. ),
  1001. src_addr,
  1002. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1003. header.size, header.size,
  1004. header.count, header.count,
  1005. header.checksum,
  1006. header.code, header.code >> 8, header.code & 0xff,
  1007. header.reserved1
  1008. );
  1009. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1010. MYSERIAL.print(" _src_addr = 0x");
  1011. MYSERIAL.println(src_addr, 16);
  1012. MYSERIAL.print(" _lt_magic = 0x");
  1013. MYSERIAL.print(header.magic, 16);
  1014. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1015. MYSERIAL.print(" _lt_size = 0x");
  1016. MYSERIAL.print(header.size, 16);
  1017. MYSERIAL.print(" (");
  1018. MYSERIAL.print(header.size, 10);
  1019. MYSERIAL.println(")");
  1020. MYSERIAL.print(" _lt_count = 0x");
  1021. MYSERIAL.print(header.count, 16);
  1022. MYSERIAL.print(" (");
  1023. MYSERIAL.print(header.count, 10);
  1024. MYSERIAL.println(")");
  1025. MYSERIAL.print(" _lt_chsum = 0x");
  1026. MYSERIAL.println(header.checksum, 16);
  1027. MYSERIAL.print(" _lt_code = 0x");
  1028. MYSERIAL.print(header.code, 16);
  1029. MYSERIAL.print(" (");
  1030. MYSERIAL.print((char)(header.code >> 8), 0);
  1031. MYSERIAL.print((char)(header.code & 0xff), 0);
  1032. MYSERIAL.println(")");
  1033. MYSERIAL.print(" _lt_resv1 = 0x");
  1034. MYSERIAL.println(header.reserved1, 16);
  1035. #endif //(LT_PRINT_TEST==)
  1036. #undef LT_PRINT_TEST
  1037. #if 0
  1038. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1039. for (uint16_t i = 0; i < 1024; i++)
  1040. {
  1041. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1042. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1043. if ((i % 16) == 15) putchar('\n');
  1044. }
  1045. #endif
  1046. #if 1
  1047. for (uint16_t i = 0; i < 1024*10; i++)
  1048. {
  1049. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1050. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1051. if ((i % 16) == 15) putchar('\n');
  1052. }
  1053. #endif
  1054. }
  1055. else
  1056. printf_P(_n("lang_get_header failed!\n"));
  1057. #if 0
  1058. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1059. for (int i = 0; i < 4096; ++i) {
  1060. int b = eeprom_read_byte((unsigned char*)i);
  1061. if (b != 255) {
  1062. SERIAL_ECHO(i);
  1063. SERIAL_ECHO(":");
  1064. SERIAL_ECHO(b);
  1065. SERIAL_ECHOLN("");
  1066. }
  1067. }
  1068. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1069. #endif
  1070. #endif //DEBUG_SEC_LANG
  1071. // Check startup - does nothing if bootloader sets MCUSR to 0
  1072. byte mcu = MCUSR;
  1073. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1074. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1075. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1076. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1077. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1078. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1079. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1080. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1081. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1082. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1083. MCUSR = 0;
  1084. //SERIAL_ECHORPGM(MSG_MARLIN);
  1085. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1086. #ifdef STRING_VERSION_CONFIG_H
  1087. #ifdef STRING_CONFIG_H_AUTHOR
  1088. SERIAL_ECHO_START;
  1089. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1090. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1091. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1092. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1093. SERIAL_ECHOPGM("Compiled: ");
  1094. SERIAL_ECHOLNPGM(__DATE__);
  1095. #endif
  1096. #endif
  1097. SERIAL_ECHO_START;
  1098. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1099. SERIAL_ECHO(freeMemory());
  1100. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1101. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1102. //lcd_update_enable(false); // why do we need this?? - andre
  1103. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1104. bool previous_settings_retrieved = false;
  1105. uint8_t hw_changed = check_printer_version();
  1106. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1107. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1108. }
  1109. else { //printer version was changed so use default settings
  1110. Config_ResetDefault();
  1111. }
  1112. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1113. tp_init(); // Initialize temperature loop
  1114. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1115. plan_init(); // Initialize planner;
  1116. factory_reset();
  1117. #ifdef TMC2130
  1118. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1119. if (silentMode == 0xff) silentMode = 0;
  1120. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1121. tmc2130_mode = TMC2130_MODE_NORMAL;
  1122. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1123. if (crashdet && !farm_mode)
  1124. {
  1125. crashdet_enable();
  1126. MYSERIAL.println("CrashDetect ENABLED!");
  1127. }
  1128. else
  1129. {
  1130. crashdet_disable();
  1131. MYSERIAL.println("CrashDetect DISABLED");
  1132. }
  1133. #ifdef TMC2130_LINEARITY_CORRECTION
  1134. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1135. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1136. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1137. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1138. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1139. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1140. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1141. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1142. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1143. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1144. #endif //TMC2130_LINEARITY_CORRECTION
  1145. #ifdef TMC2130_VARIABLE_RESOLUTION
  1146. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1147. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1148. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1149. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1150. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1151. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1152. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1153. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1154. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1155. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1156. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1157. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1158. #else //TMC2130_VARIABLE_RESOLUTION
  1159. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1160. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1161. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1162. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1163. #endif //TMC2130_VARIABLE_RESOLUTION
  1164. #endif //TMC2130
  1165. st_init(); // Initialize stepper, this enables interrupts!
  1166. #ifdef TMC2130
  1167. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1168. tmc2130_init();
  1169. #endif //TMC2130
  1170. setup_photpin();
  1171. servo_init();
  1172. // Reset the machine correction matrix.
  1173. // It does not make sense to load the correction matrix until the machine is homed.
  1174. world2machine_reset();
  1175. #ifdef PAT9125
  1176. fsensor_init();
  1177. #endif //PAT9125
  1178. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1179. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1180. #endif
  1181. setup_homepin();
  1182. #ifdef TMC2130
  1183. if (1) {
  1184. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1185. // try to run to zero phase before powering the Z motor.
  1186. // Move in negative direction
  1187. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1188. // Round the current micro-micro steps to micro steps.
  1189. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1190. // Until the phase counter is reset to zero.
  1191. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1192. delay(2);
  1193. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1194. delay(2);
  1195. }
  1196. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1197. }
  1198. #endif //TMC2130
  1199. #if defined(Z_AXIS_ALWAYS_ON)
  1200. enable_z();
  1201. #endif
  1202. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1203. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1204. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1205. if (farm_no == 0xFFFF) farm_no = 0;
  1206. if (farm_mode)
  1207. {
  1208. prusa_statistics(8);
  1209. }
  1210. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1211. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1212. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1213. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1214. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1215. // where all the EEPROM entries are set to 0x0ff.
  1216. // Once a firmware boots up, it forces at least a language selection, which changes
  1217. // EEPROM_LANG to number lower than 0x0ff.
  1218. // 1) Set a high power mode.
  1219. #ifdef TMC2130
  1220. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1221. tmc2130_mode = TMC2130_MODE_NORMAL;
  1222. #endif //TMC2130
  1223. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1224. }
  1225. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1226. // but this times out if a blocking dialog is shown in setup().
  1227. card.initsd();
  1228. #ifdef DEBUG_SD_SPEED_TEST
  1229. if (card.cardOK)
  1230. {
  1231. uint8_t* buff = (uint8_t*)block_buffer;
  1232. uint32_t block = 0;
  1233. uint32_t sumr = 0;
  1234. uint32_t sumw = 0;
  1235. for (int i = 0; i < 1024; i++)
  1236. {
  1237. uint32_t u = micros();
  1238. bool res = card.card.readBlock(i, buff);
  1239. u = micros() - u;
  1240. if (res)
  1241. {
  1242. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1243. sumr += u;
  1244. u = micros();
  1245. res = card.card.writeBlock(i, buff);
  1246. u = micros() - u;
  1247. if (res)
  1248. {
  1249. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1250. sumw += u;
  1251. }
  1252. else
  1253. {
  1254. printf_P(PSTR("writeBlock %4d error\n"), i);
  1255. break;
  1256. }
  1257. }
  1258. else
  1259. {
  1260. printf_P(PSTR("readBlock %4d error\n"), i);
  1261. break;
  1262. }
  1263. }
  1264. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1265. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1266. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1267. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1268. }
  1269. else
  1270. printf_P(PSTR("Card NG!\n"));
  1271. #endif //DEBUG_SD_SPEED_TEST
  1272. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1273. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1274. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1275. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1276. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1277. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1278. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1279. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1280. #ifdef SNMM
  1281. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1282. int _z = BOWDEN_LENGTH;
  1283. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1284. }
  1285. #endif
  1286. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1287. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1288. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1289. #if (LANG_MODE != 0) //secondary language support
  1290. #ifdef DEBUG_W25X20CL
  1291. W25X20CL_SPI_ENTER();
  1292. uint8_t uid[8]; // 64bit unique id
  1293. w25x20cl_rd_uid(uid);
  1294. puts_P(_n("W25X20CL UID="));
  1295. for (uint8_t i = 0; i < 8; i ++)
  1296. printf_P(PSTR("%02hhx"), uid[i]);
  1297. putchar('\n');
  1298. list_sec_lang_from_external_flash();
  1299. #endif //DEBUG_W25X20CL
  1300. // lang_reset();
  1301. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1302. lcd_language();
  1303. #ifdef DEBUG_SEC_LANG
  1304. uint16_t sec_lang_code = lang_get_code(1);
  1305. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1306. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1307. // lang_print_sec_lang(uartout);
  1308. #endif //DEBUG_SEC_LANG
  1309. #endif //(LANG_MODE != 0)
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1311. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1312. temp_cal_active = false;
  1313. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1314. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1315. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1316. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1317. int16_t z_shift = 0;
  1318. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1319. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1320. temp_cal_active = false;
  1321. }
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1323. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1324. }
  1325. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1326. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1327. }
  1328. check_babystep(); //checking if Z babystep is in allowed range
  1329. #ifdef UVLO_SUPPORT
  1330. setup_uvlo_interrupt();
  1331. #endif //UVLO_SUPPORT
  1332. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1333. setup_fan_interrupt();
  1334. #endif //DEBUG_DISABLE_FANCHECK
  1335. #ifdef PAT9125
  1336. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1337. fsensor_setup_interrupt();
  1338. #endif //DEBUG_DISABLE_FSENSORCHECK
  1339. #endif //PAT9125
  1340. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1341. #ifndef DEBUG_DISABLE_STARTMSGS
  1342. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1343. show_fw_version_warnings();
  1344. switch (hw_changed) {
  1345. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1346. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1347. case(0b01):
  1348. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1349. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1350. break;
  1351. case(0b10):
  1352. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1353. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1354. break;
  1355. case(0b11):
  1356. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1357. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1358. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1359. break;
  1360. default: break; //no change, show no message
  1361. }
  1362. if (!previous_settings_retrieved) {
  1363. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1364. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1365. }
  1366. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1367. lcd_wizard(0);
  1368. }
  1369. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1370. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1371. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1372. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1373. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1374. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1375. // Show the message.
  1376. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1377. }
  1378. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1379. // Show the message.
  1380. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1381. lcd_update_enable(true);
  1382. }
  1383. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1384. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1385. lcd_update_enable(true);
  1386. }
  1387. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1388. // Show the message.
  1389. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1390. }
  1391. }
  1392. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1393. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1394. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1395. update_current_firmware_version_to_eeprom();
  1396. lcd_selftest();
  1397. }
  1398. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1399. KEEPALIVE_STATE(IN_PROCESS);
  1400. #endif //DEBUG_DISABLE_STARTMSGS
  1401. lcd_update_enable(true);
  1402. lcd_implementation_clear();
  1403. lcd_update(2);
  1404. // Store the currently running firmware into an eeprom,
  1405. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1406. update_current_firmware_version_to_eeprom();
  1407. #ifdef TMC2130
  1408. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1409. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1410. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1411. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1412. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1413. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1414. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1415. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1416. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1417. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1418. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1419. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1420. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1421. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1422. #endif //TMC2130
  1423. #ifdef UVLO_SUPPORT
  1424. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1425. /*
  1426. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1427. else {
  1428. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1429. lcd_update_enable(true);
  1430. lcd_update(2);
  1431. lcd_setstatuspgm(_T(WELCOME_MSG));
  1432. }
  1433. */
  1434. manage_heater(); // Update temperatures
  1435. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1436. MYSERIAL.println("Power panic detected!");
  1437. MYSERIAL.print("Current bed temp:");
  1438. MYSERIAL.println(degBed());
  1439. MYSERIAL.print("Saved bed temp:");
  1440. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1441. #endif
  1442. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1443. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1444. MYSERIAL.println("Automatic recovery!");
  1445. #endif
  1446. recover_print(1);
  1447. }
  1448. else{
  1449. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1450. MYSERIAL.println("Normal recovery!");
  1451. #endif
  1452. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1453. else {
  1454. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1455. lcd_update_enable(true);
  1456. lcd_update(2);
  1457. lcd_setstatuspgm(_T(WELCOME_MSG));
  1458. }
  1459. }
  1460. }
  1461. #endif //UVLO_SUPPORT
  1462. KEEPALIVE_STATE(NOT_BUSY);
  1463. #ifdef WATCHDOG
  1464. wdt_enable(WDTO_4S);
  1465. #endif //WATCHDOG
  1466. }
  1467. #ifdef PAT9125
  1468. void fsensor_init() {
  1469. int pat9125 = pat9125_init();
  1470. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1471. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1472. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1473. if (!pat9125)
  1474. {
  1475. fsensor = 0; //disable sensor
  1476. fsensor_not_responding = true;
  1477. }
  1478. else {
  1479. fsensor_not_responding = false;
  1480. }
  1481. puts_P(PSTR("FSensor "));
  1482. if (fsensor)
  1483. {
  1484. puts_P(PSTR("ENABLED\n"));
  1485. fsensor_enable();
  1486. }
  1487. else
  1488. {
  1489. puts_P(PSTR("DISABLED\n"));
  1490. fsensor_disable();
  1491. }
  1492. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1493. filament_autoload_enabled = false;
  1494. fsensor_disable();
  1495. #endif //DEBUG_DISABLE_FSENSORCHECK
  1496. }
  1497. #endif //PAT9125
  1498. void trace();
  1499. #define CHUNK_SIZE 64 // bytes
  1500. #define SAFETY_MARGIN 1
  1501. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1502. int chunkHead = 0;
  1503. int serial_read_stream() {
  1504. setTargetHotend(0, 0);
  1505. setTargetBed(0);
  1506. lcd_implementation_clear();
  1507. lcd_printPGM(PSTR(" Upload in progress"));
  1508. // first wait for how many bytes we will receive
  1509. uint32_t bytesToReceive;
  1510. // receive the four bytes
  1511. char bytesToReceiveBuffer[4];
  1512. for (int i=0; i<4; i++) {
  1513. int data;
  1514. while ((data = MYSERIAL.read()) == -1) {};
  1515. bytesToReceiveBuffer[i] = data;
  1516. }
  1517. // make it a uint32
  1518. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1519. // we're ready, notify the sender
  1520. MYSERIAL.write('+');
  1521. // lock in the routine
  1522. uint32_t receivedBytes = 0;
  1523. while (prusa_sd_card_upload) {
  1524. int i;
  1525. for (i=0; i<CHUNK_SIZE; i++) {
  1526. int data;
  1527. // check if we're not done
  1528. if (receivedBytes == bytesToReceive) {
  1529. break;
  1530. }
  1531. // read the next byte
  1532. while ((data = MYSERIAL.read()) == -1) {};
  1533. receivedBytes++;
  1534. // save it to the chunk
  1535. chunk[i] = data;
  1536. }
  1537. // write the chunk to SD
  1538. card.write_command_no_newline(&chunk[0]);
  1539. // notify the sender we're ready for more data
  1540. MYSERIAL.write('+');
  1541. // for safety
  1542. manage_heater();
  1543. // check if we're done
  1544. if(receivedBytes == bytesToReceive) {
  1545. trace(); // beep
  1546. card.closefile();
  1547. prusa_sd_card_upload = false;
  1548. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1549. return 0;
  1550. }
  1551. }
  1552. }
  1553. #ifdef HOST_KEEPALIVE_FEATURE
  1554. /**
  1555. * Output a "busy" message at regular intervals
  1556. * while the machine is not accepting commands.
  1557. */
  1558. void host_keepalive() {
  1559. if (farm_mode) return;
  1560. long ms = millis();
  1561. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1562. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1563. switch (busy_state) {
  1564. case IN_HANDLER:
  1565. case IN_PROCESS:
  1566. SERIAL_ECHO_START;
  1567. SERIAL_ECHOLNPGM("busy: processing");
  1568. break;
  1569. case PAUSED_FOR_USER:
  1570. SERIAL_ECHO_START;
  1571. SERIAL_ECHOLNPGM("busy: paused for user");
  1572. break;
  1573. case PAUSED_FOR_INPUT:
  1574. SERIAL_ECHO_START;
  1575. SERIAL_ECHOLNPGM("busy: paused for input");
  1576. break;
  1577. default:
  1578. break;
  1579. }
  1580. }
  1581. prev_busy_signal_ms = ms;
  1582. }
  1583. #endif
  1584. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1585. // Before loop(), the setup() function is called by the main() routine.
  1586. void loop()
  1587. {
  1588. KEEPALIVE_STATE(NOT_BUSY);
  1589. bool stack_integrity = true;
  1590. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1591. {
  1592. is_usb_printing = true;
  1593. usb_printing_counter--;
  1594. _usb_timer = millis();
  1595. }
  1596. if (usb_printing_counter == 0)
  1597. {
  1598. is_usb_printing = false;
  1599. }
  1600. if (prusa_sd_card_upload)
  1601. {
  1602. //we read byte-by byte
  1603. serial_read_stream();
  1604. } else
  1605. {
  1606. get_command();
  1607. #ifdef SDSUPPORT
  1608. card.checkautostart(false);
  1609. #endif
  1610. if(buflen)
  1611. {
  1612. cmdbuffer_front_already_processed = false;
  1613. #ifdef SDSUPPORT
  1614. if(card.saving)
  1615. {
  1616. // Saving a G-code file onto an SD-card is in progress.
  1617. // Saving starts with M28, saving until M29 is seen.
  1618. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1619. card.write_command(CMDBUFFER_CURRENT_STRING);
  1620. if(card.logging)
  1621. process_commands();
  1622. else
  1623. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1624. } else {
  1625. card.closefile();
  1626. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1627. }
  1628. } else {
  1629. process_commands();
  1630. }
  1631. #else
  1632. process_commands();
  1633. #endif //SDSUPPORT
  1634. if (! cmdbuffer_front_already_processed && buflen)
  1635. {
  1636. // ptr points to the start of the block currently being processed.
  1637. // The first character in the block is the block type.
  1638. char *ptr = cmdbuffer + bufindr;
  1639. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1640. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1641. union {
  1642. struct {
  1643. char lo;
  1644. char hi;
  1645. } lohi;
  1646. uint16_t value;
  1647. } sdlen;
  1648. sdlen.value = 0;
  1649. {
  1650. // This block locks the interrupts globally for 3.25 us,
  1651. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1652. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1653. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1654. cli();
  1655. // Reset the command to something, which will be ignored by the power panic routine,
  1656. // so this buffer length will not be counted twice.
  1657. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1658. // Extract the current buffer length.
  1659. sdlen.lohi.lo = *ptr ++;
  1660. sdlen.lohi.hi = *ptr;
  1661. // and pass it to the planner queue.
  1662. planner_add_sd_length(sdlen.value);
  1663. sei();
  1664. }
  1665. }
  1666. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1667. cli();
  1668. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1669. // and one for each command to previous block in the planner queue.
  1670. planner_add_sd_length(1);
  1671. sei();
  1672. }
  1673. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1674. // this block's SD card length will not be counted twice as its command type has been replaced
  1675. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1676. cmdqueue_pop_front();
  1677. }
  1678. host_keepalive();
  1679. }
  1680. }
  1681. //check heater every n milliseconds
  1682. manage_heater();
  1683. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1684. checkHitEndstops();
  1685. lcd_update();
  1686. #ifdef PAT9125
  1687. fsensor_update();
  1688. #endif //PAT9125
  1689. #ifdef TMC2130
  1690. tmc2130_check_overtemp();
  1691. if (tmc2130_sg_crash)
  1692. {
  1693. uint8_t crash = tmc2130_sg_crash;
  1694. tmc2130_sg_crash = 0;
  1695. // crashdet_stop_and_save_print();
  1696. switch (crash)
  1697. {
  1698. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1699. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1700. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1701. }
  1702. }
  1703. #endif //TMC2130
  1704. }
  1705. #define DEFINE_PGM_READ_ANY(type, reader) \
  1706. static inline type pgm_read_any(const type *p) \
  1707. { return pgm_read_##reader##_near(p); }
  1708. DEFINE_PGM_READ_ANY(float, float);
  1709. DEFINE_PGM_READ_ANY(signed char, byte);
  1710. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1711. static const PROGMEM type array##_P[3] = \
  1712. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1713. static inline type array(int axis) \
  1714. { return pgm_read_any(&array##_P[axis]); } \
  1715. type array##_ext(int axis) \
  1716. { return pgm_read_any(&array##_P[axis]); }
  1717. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1718. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1719. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1720. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1721. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1722. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1723. static void axis_is_at_home(int axis) {
  1724. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1725. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1726. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1727. }
  1728. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1729. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1730. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1731. saved_feedrate = feedrate;
  1732. saved_feedmultiply = feedmultiply;
  1733. feedmultiply = 100;
  1734. previous_millis_cmd = millis();
  1735. enable_endstops(enable_endstops_now);
  1736. }
  1737. static void clean_up_after_endstop_move() {
  1738. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1739. enable_endstops(false);
  1740. #endif
  1741. feedrate = saved_feedrate;
  1742. feedmultiply = saved_feedmultiply;
  1743. previous_millis_cmd = millis();
  1744. }
  1745. #ifdef ENABLE_AUTO_BED_LEVELING
  1746. #ifdef AUTO_BED_LEVELING_GRID
  1747. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1748. {
  1749. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1750. planeNormal.debug("planeNormal");
  1751. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1752. //bedLevel.debug("bedLevel");
  1753. //plan_bed_level_matrix.debug("bed level before");
  1754. //vector_3 uncorrected_position = plan_get_position_mm();
  1755. //uncorrected_position.debug("position before");
  1756. vector_3 corrected_position = plan_get_position();
  1757. // corrected_position.debug("position after");
  1758. current_position[X_AXIS] = corrected_position.x;
  1759. current_position[Y_AXIS] = corrected_position.y;
  1760. current_position[Z_AXIS] = corrected_position.z;
  1761. // put the bed at 0 so we don't go below it.
  1762. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. }
  1765. #else // not AUTO_BED_LEVELING_GRID
  1766. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1767. plan_bed_level_matrix.set_to_identity();
  1768. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1769. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1770. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1771. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1772. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1773. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1774. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1775. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1776. vector_3 corrected_position = plan_get_position();
  1777. current_position[X_AXIS] = corrected_position.x;
  1778. current_position[Y_AXIS] = corrected_position.y;
  1779. current_position[Z_AXIS] = corrected_position.z;
  1780. // put the bed at 0 so we don't go below it.
  1781. current_position[Z_AXIS] = zprobe_zoffset;
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. }
  1784. #endif // AUTO_BED_LEVELING_GRID
  1785. static void run_z_probe() {
  1786. plan_bed_level_matrix.set_to_identity();
  1787. feedrate = homing_feedrate[Z_AXIS];
  1788. // move down until you find the bed
  1789. float zPosition = -10;
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1791. st_synchronize();
  1792. // we have to let the planner know where we are right now as it is not where we said to go.
  1793. zPosition = st_get_position_mm(Z_AXIS);
  1794. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1795. // move up the retract distance
  1796. zPosition += home_retract_mm(Z_AXIS);
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1798. st_synchronize();
  1799. // move back down slowly to find bed
  1800. feedrate = homing_feedrate[Z_AXIS]/4;
  1801. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1803. st_synchronize();
  1804. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1805. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1806. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1807. }
  1808. static void do_blocking_move_to(float x, float y, float z) {
  1809. float oldFeedRate = feedrate;
  1810. feedrate = homing_feedrate[Z_AXIS];
  1811. current_position[Z_AXIS] = z;
  1812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. feedrate = XY_TRAVEL_SPEED;
  1815. current_position[X_AXIS] = x;
  1816. current_position[Y_AXIS] = y;
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1818. st_synchronize();
  1819. feedrate = oldFeedRate;
  1820. }
  1821. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1822. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1823. }
  1824. /// Probe bed height at position (x,y), returns the measured z value
  1825. static float probe_pt(float x, float y, float z_before) {
  1826. // move to right place
  1827. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1828. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1829. run_z_probe();
  1830. float measured_z = current_position[Z_AXIS];
  1831. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1832. SERIAL_PROTOCOLPGM(" x: ");
  1833. SERIAL_PROTOCOL(x);
  1834. SERIAL_PROTOCOLPGM(" y: ");
  1835. SERIAL_PROTOCOL(y);
  1836. SERIAL_PROTOCOLPGM(" z: ");
  1837. SERIAL_PROTOCOL(measured_z);
  1838. SERIAL_PROTOCOLPGM("\n");
  1839. return measured_z;
  1840. }
  1841. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1842. #ifdef LIN_ADVANCE
  1843. /**
  1844. * M900: Set and/or Get advance K factor and WH/D ratio
  1845. *
  1846. * K<factor> Set advance K factor
  1847. * R<ratio> Set ratio directly (overrides WH/D)
  1848. * W<width> H<height> D<diam> Set ratio from WH/D
  1849. */
  1850. inline void gcode_M900() {
  1851. st_synchronize();
  1852. const float newK = code_seen('K') ? code_value_float() : -1;
  1853. if (newK >= 0) extruder_advance_k = newK;
  1854. float newR = code_seen('R') ? code_value_float() : -1;
  1855. if (newR < 0) {
  1856. const float newD = code_seen('D') ? code_value_float() : -1,
  1857. newW = code_seen('W') ? code_value_float() : -1,
  1858. newH = code_seen('H') ? code_value_float() : -1;
  1859. if (newD >= 0 && newW >= 0 && newH >= 0)
  1860. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1861. }
  1862. if (newR >= 0) advance_ed_ratio = newR;
  1863. SERIAL_ECHO_START;
  1864. SERIAL_ECHOPGM("Advance K=");
  1865. SERIAL_ECHOLN(extruder_advance_k);
  1866. SERIAL_ECHOPGM(" E/D=");
  1867. const float ratio = advance_ed_ratio;
  1868. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1869. }
  1870. #endif // LIN_ADVANCE
  1871. bool check_commands() {
  1872. bool end_command_found = false;
  1873. while (buflen)
  1874. {
  1875. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1876. if (!cmdbuffer_front_already_processed)
  1877. cmdqueue_pop_front();
  1878. cmdbuffer_front_already_processed = false;
  1879. }
  1880. return end_command_found;
  1881. }
  1882. #ifdef TMC2130
  1883. bool calibrate_z_auto()
  1884. {
  1885. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1886. lcd_implementation_clear();
  1887. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1888. bool endstops_enabled = enable_endstops(true);
  1889. int axis_up_dir = -home_dir(Z_AXIS);
  1890. tmc2130_home_enter(Z_AXIS_MASK);
  1891. current_position[Z_AXIS] = 0;
  1892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1893. set_destination_to_current();
  1894. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1895. feedrate = homing_feedrate[Z_AXIS];
  1896. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1897. st_synchronize();
  1898. // current_position[axis] = 0;
  1899. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. tmc2130_home_exit();
  1901. enable_endstops(false);
  1902. current_position[Z_AXIS] = 0;
  1903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. set_destination_to_current();
  1905. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1906. feedrate = homing_feedrate[Z_AXIS] / 2;
  1907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1908. st_synchronize();
  1909. enable_endstops(endstops_enabled);
  1910. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. return true;
  1913. }
  1914. #endif //TMC2130
  1915. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1916. {
  1917. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1918. #define HOMEAXIS_DO(LETTER) \
  1919. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1920. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1921. {
  1922. int axis_home_dir = home_dir(axis);
  1923. feedrate = homing_feedrate[axis];
  1924. #ifdef TMC2130
  1925. tmc2130_home_enter(X_AXIS_MASK << axis);
  1926. #endif //TMC2130
  1927. // Move right a bit, so that the print head does not touch the left end position,
  1928. // and the following left movement has a chance to achieve the required velocity
  1929. // for the stall guard to work.
  1930. current_position[axis] = 0;
  1931. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1932. set_destination_to_current();
  1933. // destination[axis] = 11.f;
  1934. destination[axis] = 3.f;
  1935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1936. st_synchronize();
  1937. // Move left away from the possible collision with the collision detection disabled.
  1938. endstops_hit_on_purpose();
  1939. enable_endstops(false);
  1940. current_position[axis] = 0;
  1941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1942. destination[axis] = - 1.;
  1943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1944. st_synchronize();
  1945. // Now continue to move up to the left end stop with the collision detection enabled.
  1946. enable_endstops(true);
  1947. destination[axis] = - 1.1 * max_length(axis);
  1948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1949. st_synchronize();
  1950. for (uint8_t i = 0; i < cnt; i++)
  1951. {
  1952. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1953. endstops_hit_on_purpose();
  1954. enable_endstops(false);
  1955. current_position[axis] = 0;
  1956. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1957. destination[axis] = 10.f;
  1958. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1959. st_synchronize();
  1960. endstops_hit_on_purpose();
  1961. // Now move left up to the collision, this time with a repeatable velocity.
  1962. enable_endstops(true);
  1963. destination[axis] = - 11.f;
  1964. #ifdef TMC2130
  1965. feedrate = homing_feedrate[axis];
  1966. #else //TMC2130
  1967. feedrate = homing_feedrate[axis] / 2;
  1968. #endif //TMC2130
  1969. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1970. st_synchronize();
  1971. #ifdef TMC2130
  1972. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1973. if (pstep) pstep[i] = mscnt >> 4;
  1974. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1975. #endif //TMC2130
  1976. }
  1977. endstops_hit_on_purpose();
  1978. enable_endstops(false);
  1979. #ifdef TMC2130
  1980. uint8_t orig = tmc2130_home_origin[axis];
  1981. uint8_t back = tmc2130_home_bsteps[axis];
  1982. if (tmc2130_home_enabled && (orig <= 63))
  1983. {
  1984. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1985. if (back > 0)
  1986. tmc2130_do_steps(axis, back, 1, 1000);
  1987. }
  1988. else
  1989. tmc2130_do_steps(axis, 8, 2, 1000);
  1990. tmc2130_home_exit();
  1991. #endif //TMC2130
  1992. axis_is_at_home(axis);
  1993. axis_known_position[axis] = true;
  1994. // Move from minimum
  1995. #ifdef TMC2130
  1996. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1997. #else //TMC2130
  1998. float dist = 0.01f * 64;
  1999. #endif //TMC2130
  2000. current_position[axis] -= dist;
  2001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2002. current_position[axis] += dist;
  2003. destination[axis] = current_position[axis];
  2004. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2005. st_synchronize();
  2006. feedrate = 0.0;
  2007. }
  2008. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2009. {
  2010. #ifdef TMC2130
  2011. FORCE_HIGH_POWER_START;
  2012. #endif
  2013. int axis_home_dir = home_dir(axis);
  2014. current_position[axis] = 0;
  2015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2016. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2017. feedrate = homing_feedrate[axis];
  2018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2019. st_synchronize();
  2020. #ifdef TMC2130
  2021. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2022. FORCE_HIGH_POWER_END;
  2023. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2024. return;
  2025. }
  2026. #endif //TMC2130
  2027. current_position[axis] = 0;
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2030. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2031. st_synchronize();
  2032. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2033. feedrate = homing_feedrate[axis]/2 ;
  2034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2035. st_synchronize();
  2036. #ifdef TMC2130
  2037. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2038. FORCE_HIGH_POWER_END;
  2039. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2040. return;
  2041. }
  2042. #endif //TMC2130
  2043. axis_is_at_home(axis);
  2044. destination[axis] = current_position[axis];
  2045. feedrate = 0.0;
  2046. endstops_hit_on_purpose();
  2047. axis_known_position[axis] = true;
  2048. #ifdef TMC2130
  2049. FORCE_HIGH_POWER_END;
  2050. #endif
  2051. }
  2052. enable_endstops(endstops_enabled);
  2053. }
  2054. /**/
  2055. void home_xy()
  2056. {
  2057. set_destination_to_current();
  2058. homeaxis(X_AXIS);
  2059. homeaxis(Y_AXIS);
  2060. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2061. endstops_hit_on_purpose();
  2062. }
  2063. void refresh_cmd_timeout(void)
  2064. {
  2065. previous_millis_cmd = millis();
  2066. }
  2067. #ifdef FWRETRACT
  2068. void retract(bool retracting, bool swapretract = false) {
  2069. if(retracting && !retracted[active_extruder]) {
  2070. destination[X_AXIS]=current_position[X_AXIS];
  2071. destination[Y_AXIS]=current_position[Y_AXIS];
  2072. destination[Z_AXIS]=current_position[Z_AXIS];
  2073. destination[E_AXIS]=current_position[E_AXIS];
  2074. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2075. plan_set_e_position(current_position[E_AXIS]);
  2076. float oldFeedrate = feedrate;
  2077. feedrate=retract_feedrate*60;
  2078. retracted[active_extruder]=true;
  2079. prepare_move();
  2080. current_position[Z_AXIS]-=retract_zlift;
  2081. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2082. prepare_move();
  2083. feedrate = oldFeedrate;
  2084. } else if(!retracting && retracted[active_extruder]) {
  2085. destination[X_AXIS]=current_position[X_AXIS];
  2086. destination[Y_AXIS]=current_position[Y_AXIS];
  2087. destination[Z_AXIS]=current_position[Z_AXIS];
  2088. destination[E_AXIS]=current_position[E_AXIS];
  2089. current_position[Z_AXIS]+=retract_zlift;
  2090. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2091. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2092. plan_set_e_position(current_position[E_AXIS]);
  2093. float oldFeedrate = feedrate;
  2094. feedrate=retract_recover_feedrate*60;
  2095. retracted[active_extruder]=false;
  2096. prepare_move();
  2097. feedrate = oldFeedrate;
  2098. }
  2099. } //retract
  2100. #endif //FWRETRACT
  2101. void trace() {
  2102. tone(BEEPER, 440);
  2103. delay(25);
  2104. noTone(BEEPER);
  2105. delay(20);
  2106. }
  2107. /*
  2108. void ramming() {
  2109. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2110. if (current_temperature[0] < 230) {
  2111. //PLA
  2112. max_feedrate[E_AXIS] = 50;
  2113. //current_position[E_AXIS] -= 8;
  2114. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2115. //current_position[E_AXIS] += 8;
  2116. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2117. current_position[E_AXIS] += 5.4;
  2118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2119. current_position[E_AXIS] += 3.2;
  2120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2121. current_position[E_AXIS] += 3;
  2122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2123. st_synchronize();
  2124. max_feedrate[E_AXIS] = 80;
  2125. current_position[E_AXIS] -= 82;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2127. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2128. current_position[E_AXIS] -= 20;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2130. current_position[E_AXIS] += 5;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2132. current_position[E_AXIS] += 5;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2134. current_position[E_AXIS] -= 10;
  2135. st_synchronize();
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2137. current_position[E_AXIS] += 10;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2139. current_position[E_AXIS] -= 10;
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2141. current_position[E_AXIS] += 10;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2143. current_position[E_AXIS] -= 10;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2145. st_synchronize();
  2146. }
  2147. else {
  2148. //ABS
  2149. max_feedrate[E_AXIS] = 50;
  2150. //current_position[E_AXIS] -= 8;
  2151. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2152. //current_position[E_AXIS] += 8;
  2153. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2154. current_position[E_AXIS] += 3.1;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2156. current_position[E_AXIS] += 3.1;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2158. current_position[E_AXIS] += 4;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2160. st_synchronize();
  2161. //current_position[X_AXIS] += 23; //delay
  2162. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2163. //current_position[X_AXIS] -= 23; //delay
  2164. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2165. delay(4700);
  2166. max_feedrate[E_AXIS] = 80;
  2167. current_position[E_AXIS] -= 92;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2169. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2170. current_position[E_AXIS] -= 5;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2172. current_position[E_AXIS] += 5;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2174. current_position[E_AXIS] -= 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2176. st_synchronize();
  2177. current_position[E_AXIS] += 5;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2179. current_position[E_AXIS] -= 5;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2181. current_position[E_AXIS] += 5;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2183. current_position[E_AXIS] -= 5;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2185. st_synchronize();
  2186. }
  2187. }
  2188. */
  2189. #ifdef TMC2130
  2190. void force_high_power_mode(bool start_high_power_section) {
  2191. uint8_t silent;
  2192. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2193. if (silent == 1) {
  2194. //we are in silent mode, set to normal mode to enable crash detection
  2195. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2196. st_synchronize();
  2197. cli();
  2198. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2199. tmc2130_init();
  2200. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2201. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2202. st_reset_timer();
  2203. sei();
  2204. }
  2205. }
  2206. #endif //TMC2130
  2207. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2208. st_synchronize();
  2209. #if 0
  2210. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2211. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2212. #endif
  2213. // Flag for the display update routine and to disable the print cancelation during homing.
  2214. homing_flag = true;
  2215. // Either all X,Y,Z codes are present, or none of them.
  2216. bool home_all_axes = home_x == home_y && home_x == home_z;
  2217. if (home_all_axes)
  2218. // No X/Y/Z code provided means to home all axes.
  2219. home_x = home_y = home_z = true;
  2220. #ifdef ENABLE_AUTO_BED_LEVELING
  2221. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2222. #endif //ENABLE_AUTO_BED_LEVELING
  2223. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2224. // the planner will not perform any adjustments in the XY plane.
  2225. // Wait for the motors to stop and update the current position with the absolute values.
  2226. world2machine_revert_to_uncorrected();
  2227. // For mesh bed leveling deactivate the matrix temporarily.
  2228. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2229. // in a single axis only.
  2230. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2231. #ifdef MESH_BED_LEVELING
  2232. uint8_t mbl_was_active = mbl.active;
  2233. mbl.active = 0;
  2234. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2235. #endif
  2236. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2237. // consumed during the first movements following this statement.
  2238. if (home_z)
  2239. babystep_undo();
  2240. saved_feedrate = feedrate;
  2241. saved_feedmultiply = feedmultiply;
  2242. feedmultiply = 100;
  2243. previous_millis_cmd = millis();
  2244. enable_endstops(true);
  2245. memcpy(destination, current_position, sizeof(destination));
  2246. feedrate = 0.0;
  2247. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2248. if(home_z)
  2249. homeaxis(Z_AXIS);
  2250. #endif
  2251. #ifdef QUICK_HOME
  2252. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2253. if(home_x && home_y) //first diagonal move
  2254. {
  2255. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2256. int x_axis_home_dir = home_dir(X_AXIS);
  2257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2258. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2259. feedrate = homing_feedrate[X_AXIS];
  2260. if(homing_feedrate[Y_AXIS]<feedrate)
  2261. feedrate = homing_feedrate[Y_AXIS];
  2262. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2263. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2264. } else {
  2265. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2266. }
  2267. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2268. st_synchronize();
  2269. axis_is_at_home(X_AXIS);
  2270. axis_is_at_home(Y_AXIS);
  2271. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2272. destination[X_AXIS] = current_position[X_AXIS];
  2273. destination[Y_AXIS] = current_position[Y_AXIS];
  2274. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2275. feedrate = 0.0;
  2276. st_synchronize();
  2277. endstops_hit_on_purpose();
  2278. current_position[X_AXIS] = destination[X_AXIS];
  2279. current_position[Y_AXIS] = destination[Y_AXIS];
  2280. current_position[Z_AXIS] = destination[Z_AXIS];
  2281. }
  2282. #endif /* QUICK_HOME */
  2283. #ifdef TMC2130
  2284. if(home_x)
  2285. {
  2286. if (!calib)
  2287. homeaxis(X_AXIS);
  2288. else
  2289. tmc2130_home_calibrate(X_AXIS);
  2290. }
  2291. if(home_y)
  2292. {
  2293. if (!calib)
  2294. homeaxis(Y_AXIS);
  2295. else
  2296. tmc2130_home_calibrate(Y_AXIS);
  2297. }
  2298. #endif //TMC2130
  2299. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2300. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2301. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2302. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2303. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2304. #ifndef Z_SAFE_HOMING
  2305. if(home_z) {
  2306. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2307. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2308. feedrate = max_feedrate[Z_AXIS];
  2309. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2310. st_synchronize();
  2311. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2312. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2313. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2314. {
  2315. homeaxis(X_AXIS);
  2316. homeaxis(Y_AXIS);
  2317. }
  2318. // 1st mesh bed leveling measurement point, corrected.
  2319. world2machine_initialize();
  2320. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2321. world2machine_reset();
  2322. if (destination[Y_AXIS] < Y_MIN_POS)
  2323. destination[Y_AXIS] = Y_MIN_POS;
  2324. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2325. feedrate = homing_feedrate[Z_AXIS]/10;
  2326. current_position[Z_AXIS] = 0;
  2327. enable_endstops(false);
  2328. #ifdef DEBUG_BUILD
  2329. SERIAL_ECHOLNPGM("plan_set_position()");
  2330. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2331. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2332. #endif
  2333. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2334. #ifdef DEBUG_BUILD
  2335. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2336. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2337. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2338. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2339. #endif
  2340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2341. st_synchronize();
  2342. current_position[X_AXIS] = destination[X_AXIS];
  2343. current_position[Y_AXIS] = destination[Y_AXIS];
  2344. enable_endstops(true);
  2345. endstops_hit_on_purpose();
  2346. homeaxis(Z_AXIS);
  2347. #else // MESH_BED_LEVELING
  2348. homeaxis(Z_AXIS);
  2349. #endif // MESH_BED_LEVELING
  2350. }
  2351. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2352. if(home_all_axes) {
  2353. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2354. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2355. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2356. feedrate = XY_TRAVEL_SPEED/60;
  2357. current_position[Z_AXIS] = 0;
  2358. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2359. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2360. st_synchronize();
  2361. current_position[X_AXIS] = destination[X_AXIS];
  2362. current_position[Y_AXIS] = destination[Y_AXIS];
  2363. homeaxis(Z_AXIS);
  2364. }
  2365. // Let's see if X and Y are homed and probe is inside bed area.
  2366. if(home_z) {
  2367. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2368. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2369. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2370. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2371. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2372. current_position[Z_AXIS] = 0;
  2373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2374. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2375. feedrate = max_feedrate[Z_AXIS];
  2376. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2377. st_synchronize();
  2378. homeaxis(Z_AXIS);
  2379. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2380. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2381. SERIAL_ECHO_START;
  2382. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2383. } else {
  2384. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2385. SERIAL_ECHO_START;
  2386. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2387. }
  2388. }
  2389. #endif // Z_SAFE_HOMING
  2390. #endif // Z_HOME_DIR < 0
  2391. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2392. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2393. #ifdef ENABLE_AUTO_BED_LEVELING
  2394. if(home_z)
  2395. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2396. #endif
  2397. // Set the planner and stepper routine positions.
  2398. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2399. // contains the machine coordinates.
  2400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2401. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2402. enable_endstops(false);
  2403. #endif
  2404. feedrate = saved_feedrate;
  2405. feedmultiply = saved_feedmultiply;
  2406. previous_millis_cmd = millis();
  2407. endstops_hit_on_purpose();
  2408. #ifndef MESH_BED_LEVELING
  2409. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2410. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2411. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2412. lcd_adjust_z();
  2413. #endif
  2414. // Load the machine correction matrix
  2415. world2machine_initialize();
  2416. // and correct the current_position XY axes to match the transformed coordinate system.
  2417. world2machine_update_current();
  2418. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2419. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2420. {
  2421. if (! home_z && mbl_was_active) {
  2422. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2423. mbl.active = true;
  2424. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2425. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2426. }
  2427. }
  2428. else
  2429. {
  2430. st_synchronize();
  2431. homing_flag = false;
  2432. // Push the commands to the front of the message queue in the reverse order!
  2433. // There shall be always enough space reserved for these commands.
  2434. enquecommand_front_P((PSTR("G80")));
  2435. //goto case_G80;
  2436. }
  2437. #endif
  2438. if (farm_mode) { prusa_statistics(20); };
  2439. homing_flag = false;
  2440. #if 0
  2441. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2442. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2443. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2444. #endif
  2445. }
  2446. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2447. {
  2448. bool final_result = false;
  2449. #ifdef TMC2130
  2450. FORCE_HIGH_POWER_START;
  2451. #endif // TMC2130
  2452. // Only Z calibration?
  2453. if (!onlyZ)
  2454. {
  2455. setTargetBed(0);
  2456. setTargetHotend(0, 0);
  2457. setTargetHotend(0, 1);
  2458. setTargetHotend(0, 2);
  2459. adjust_bed_reset(); //reset bed level correction
  2460. }
  2461. // Disable the default update procedure of the display. We will do a modal dialog.
  2462. lcd_update_enable(false);
  2463. // Let the planner use the uncorrected coordinates.
  2464. mbl.reset();
  2465. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2466. // the planner will not perform any adjustments in the XY plane.
  2467. // Wait for the motors to stop and update the current position with the absolute values.
  2468. world2machine_revert_to_uncorrected();
  2469. // Reset the baby step value applied without moving the axes.
  2470. babystep_reset();
  2471. // Mark all axes as in a need for homing.
  2472. memset(axis_known_position, 0, sizeof(axis_known_position));
  2473. // Home in the XY plane.
  2474. //set_destination_to_current();
  2475. setup_for_endstop_move();
  2476. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2477. home_xy();
  2478. enable_endstops(false);
  2479. current_position[X_AXIS] += 5;
  2480. current_position[Y_AXIS] += 5;
  2481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2482. st_synchronize();
  2483. // Let the user move the Z axes up to the end stoppers.
  2484. #ifdef TMC2130
  2485. if (calibrate_z_auto())
  2486. {
  2487. #else //TMC2130
  2488. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2489. {
  2490. #endif //TMC2130
  2491. refresh_cmd_timeout();
  2492. #ifndef STEEL_SHEET
  2493. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2494. {
  2495. lcd_wait_for_cool_down();
  2496. }
  2497. #endif //STEEL_SHEET
  2498. if(!onlyZ)
  2499. {
  2500. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2501. #ifdef STEEL_SHEET
  2502. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2503. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2504. #endif //STEEL_SHEET
  2505. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2506. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2507. KEEPALIVE_STATE(IN_HANDLER);
  2508. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2509. lcd_implementation_print_at(0, 2, 1);
  2510. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2511. }
  2512. // Move the print head close to the bed.
  2513. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2514. bool endstops_enabled = enable_endstops(true);
  2515. #ifdef TMC2130
  2516. tmc2130_home_enter(Z_AXIS_MASK);
  2517. #endif //TMC2130
  2518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2519. st_synchronize();
  2520. #ifdef TMC2130
  2521. tmc2130_home_exit();
  2522. #endif //TMC2130
  2523. enable_endstops(endstops_enabled);
  2524. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2525. {
  2526. int8_t verbosity_level = 0;
  2527. if (code_seen('V'))
  2528. {
  2529. // Just 'V' without a number counts as V1.
  2530. char c = strchr_pointer[1];
  2531. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2532. }
  2533. if (onlyZ)
  2534. {
  2535. clean_up_after_endstop_move();
  2536. // Z only calibration.
  2537. // Load the machine correction matrix
  2538. world2machine_initialize();
  2539. // and correct the current_position to match the transformed coordinate system.
  2540. world2machine_update_current();
  2541. //FIXME
  2542. bool result = sample_mesh_and_store_reference();
  2543. if (result)
  2544. {
  2545. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2546. // Shipped, the nozzle height has been set already. The user can start printing now.
  2547. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2548. final_result = true;
  2549. // babystep_apply();
  2550. }
  2551. }
  2552. else
  2553. {
  2554. // Reset the baby step value and the baby step applied flag.
  2555. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2556. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2557. // Complete XYZ calibration.
  2558. uint8_t point_too_far_mask = 0;
  2559. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2560. clean_up_after_endstop_move();
  2561. // Print head up.
  2562. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2564. st_synchronize();
  2565. //#ifndef NEW_XYZCAL
  2566. if (result >= 0)
  2567. {
  2568. #ifdef HEATBED_V2
  2569. sample_z();
  2570. #else //HEATBED_V2
  2571. point_too_far_mask = 0;
  2572. // Second half: The fine adjustment.
  2573. // Let the planner use the uncorrected coordinates.
  2574. mbl.reset();
  2575. world2machine_reset();
  2576. // Home in the XY plane.
  2577. setup_for_endstop_move();
  2578. home_xy();
  2579. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2580. clean_up_after_endstop_move();
  2581. // Print head up.
  2582. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2584. st_synchronize();
  2585. // if (result >= 0) babystep_apply();
  2586. #endif //HEATBED_V2
  2587. }
  2588. //#endif //NEW_XYZCAL
  2589. lcd_update_enable(true);
  2590. lcd_update(2);
  2591. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2592. if (result >= 0)
  2593. {
  2594. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2595. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2596. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2597. final_result = true;
  2598. }
  2599. }
  2600. #ifdef TMC2130
  2601. tmc2130_home_exit();
  2602. #endif
  2603. }
  2604. else
  2605. {
  2606. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2607. final_result = false;
  2608. }
  2609. }
  2610. else
  2611. {
  2612. // Timeouted.
  2613. }
  2614. lcd_update_enable(true);
  2615. #ifdef TMC2130
  2616. FORCE_HIGH_POWER_END;
  2617. #endif // TMC2130
  2618. return final_result;
  2619. }
  2620. void gcode_M114()
  2621. {
  2622. SERIAL_PROTOCOLPGM("X:");
  2623. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2624. SERIAL_PROTOCOLPGM(" Y:");
  2625. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2626. SERIAL_PROTOCOLPGM(" Z:");
  2627. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2628. SERIAL_PROTOCOLPGM(" E:");
  2629. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2630. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2631. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2632. SERIAL_PROTOCOLPGM(" Y:");
  2633. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2634. SERIAL_PROTOCOLPGM(" Z:");
  2635. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2636. SERIAL_PROTOCOLPGM(" E:");
  2637. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2638. SERIAL_PROTOCOLLN("");
  2639. }
  2640. void gcode_M701()
  2641. {
  2642. #ifdef SNMM
  2643. extr_adj(snmm_extruder);//loads current extruder
  2644. #else
  2645. enable_z();
  2646. custom_message = true;
  2647. custom_message_type = 2;
  2648. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2649. current_position[E_AXIS] += 70;
  2650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2651. current_position[E_AXIS] += 25;
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2653. st_synchronize();
  2654. tone(BEEPER, 500);
  2655. delay_keep_alive(50);
  2656. noTone(BEEPER);
  2657. if (!farm_mode && loading_flag) {
  2658. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2659. while (!clean) {
  2660. lcd_update_enable(true);
  2661. lcd_update(2);
  2662. current_position[E_AXIS] += 25;
  2663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2664. st_synchronize();
  2665. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2666. }
  2667. }
  2668. lcd_update_enable(true);
  2669. lcd_update(2);
  2670. lcd_setstatuspgm(_T(WELCOME_MSG));
  2671. disable_z();
  2672. loading_flag = false;
  2673. custom_message = false;
  2674. custom_message_type = 0;
  2675. #endif
  2676. }
  2677. /**
  2678. * @brief Get serial number from 32U2 processor
  2679. *
  2680. * Typical format of S/N is:CZPX0917X003XC13518
  2681. *
  2682. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2683. *
  2684. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2685. * reply is transmitted to serial port 1 character by character.
  2686. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2687. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2688. * in any case.
  2689. */
  2690. static void gcode_PRUSA_SN()
  2691. {
  2692. if (farm_mode) {
  2693. selectedSerialPort = 0;
  2694. MSerial.write(";S");
  2695. int numbersRead = 0;
  2696. ShortTimer timeout;
  2697. timeout.start();
  2698. while (numbersRead < 19) {
  2699. while (MSerial.available() > 0) {
  2700. uint8_t serial_char = MSerial.read();
  2701. selectedSerialPort = 1;
  2702. MSerial.write(serial_char);
  2703. numbersRead++;
  2704. selectedSerialPort = 0;
  2705. }
  2706. if (timeout.expired(100u)) break;
  2707. }
  2708. selectedSerialPort = 1;
  2709. MSerial.write('\n');
  2710. #if 0
  2711. for (int b = 0; b < 3; b++) {
  2712. tone(BEEPER, 110);
  2713. delay(50);
  2714. noTone(BEEPER);
  2715. delay(50);
  2716. }
  2717. #endif
  2718. } else {
  2719. MYSERIAL.println("Not in farm mode.");
  2720. }
  2721. }
  2722. void process_commands()
  2723. {
  2724. if (!buflen) return; //empty command
  2725. #ifdef FILAMENT_RUNOUT_SUPPORT
  2726. SET_INPUT(FR_SENS);
  2727. #endif
  2728. #ifdef CMDBUFFER_DEBUG
  2729. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2730. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2731. SERIAL_ECHOLNPGM("");
  2732. SERIAL_ECHOPGM("In cmdqueue: ");
  2733. SERIAL_ECHO(buflen);
  2734. SERIAL_ECHOLNPGM("");
  2735. #endif /* CMDBUFFER_DEBUG */
  2736. unsigned long codenum; //throw away variable
  2737. char *starpos = NULL;
  2738. #ifdef ENABLE_AUTO_BED_LEVELING
  2739. float x_tmp, y_tmp, z_tmp, real_z;
  2740. #endif
  2741. // PRUSA GCODES
  2742. KEEPALIVE_STATE(IN_HANDLER);
  2743. #ifdef SNMM
  2744. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2745. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2746. int8_t SilentMode;
  2747. #endif
  2748. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2749. starpos = (strchr(strchr_pointer + 5, '*'));
  2750. if (starpos != NULL)
  2751. *(starpos) = '\0';
  2752. lcd_setstatus(strchr_pointer + 5);
  2753. }
  2754. #ifdef TMC2130
  2755. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2756. {
  2757. if(code_seen("CRASH_DETECTED"))
  2758. {
  2759. uint8_t mask = 0;
  2760. if (code_seen("X")) mask |= X_AXIS_MASK;
  2761. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2762. crashdet_detected(mask);
  2763. }
  2764. else if(code_seen("CRASH_RECOVER"))
  2765. crashdet_recover();
  2766. else if(code_seen("CRASH_CANCEL"))
  2767. crashdet_cancel();
  2768. }
  2769. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2770. {
  2771. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2772. {
  2773. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2774. tmc2130_set_wave(E_AXIS, 247, fac);
  2775. }
  2776. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2777. {
  2778. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2779. uint16_t res = tmc2130_get_res(E_AXIS);
  2780. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2781. }
  2782. }
  2783. #endif //TMC2130
  2784. else if(code_seen("PRUSA")){
  2785. if (code_seen("Ping")) { //PRUSA Ping
  2786. if (farm_mode) {
  2787. PingTime = millis();
  2788. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2789. }
  2790. }
  2791. else if (code_seen("PRN")) {
  2792. MYSERIAL.println(status_number);
  2793. }else if (code_seen("FAN")) {
  2794. MYSERIAL.print("E0:");
  2795. MYSERIAL.print(60*fan_speed[0]);
  2796. MYSERIAL.println(" RPM");
  2797. MYSERIAL.print("PRN0:");
  2798. MYSERIAL.print(60*fan_speed[1]);
  2799. MYSERIAL.println(" RPM");
  2800. }else if (code_seen("fn")) {
  2801. if (farm_mode) {
  2802. MYSERIAL.println(farm_no);
  2803. }
  2804. else {
  2805. MYSERIAL.println("Not in farm mode.");
  2806. }
  2807. }
  2808. else if (code_seen("thx")) {
  2809. no_response = false;
  2810. }else if (code_seen("fv")) {
  2811. // get file version
  2812. #ifdef SDSUPPORT
  2813. card.openFile(strchr_pointer + 3,true);
  2814. while (true) {
  2815. uint16_t readByte = card.get();
  2816. MYSERIAL.write(readByte);
  2817. if (readByte=='\n') {
  2818. break;
  2819. }
  2820. }
  2821. card.closefile();
  2822. #endif // SDSUPPORT
  2823. } else if (code_seen("M28")) {
  2824. trace();
  2825. prusa_sd_card_upload = true;
  2826. card.openFile(strchr_pointer+4,false);
  2827. } else if (code_seen("SN")) {
  2828. gcode_PRUSA_SN();
  2829. } else if(code_seen("Fir")){
  2830. SERIAL_PROTOCOLLN(FW_VERSION);
  2831. } else if(code_seen("Rev")){
  2832. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2833. } else if(code_seen("Lang")) {
  2834. lang_reset();
  2835. } else if(code_seen("Lz")) {
  2836. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2837. } else if(code_seen("Beat")) {
  2838. // Kick farm link timer
  2839. kicktime = millis();
  2840. } else if(code_seen("FR")) {
  2841. // Factory full reset
  2842. factory_reset(0,true);
  2843. }
  2844. //else if (code_seen('Cal')) {
  2845. // lcd_calibration();
  2846. // }
  2847. }
  2848. else if (code_seen('^')) {
  2849. // nothing, this is a version line
  2850. } else if(code_seen('G'))
  2851. {
  2852. switch((int)code_value())
  2853. {
  2854. case 0: // G0 -> G1
  2855. case 1: // G1
  2856. if(Stopped == false) {
  2857. #ifdef FILAMENT_RUNOUT_SUPPORT
  2858. if(READ(FR_SENS)){
  2859. feedmultiplyBckp=feedmultiply;
  2860. float target[4];
  2861. float lastpos[4];
  2862. target[X_AXIS]=current_position[X_AXIS];
  2863. target[Y_AXIS]=current_position[Y_AXIS];
  2864. target[Z_AXIS]=current_position[Z_AXIS];
  2865. target[E_AXIS]=current_position[E_AXIS];
  2866. lastpos[X_AXIS]=current_position[X_AXIS];
  2867. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2868. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2869. lastpos[E_AXIS]=current_position[E_AXIS];
  2870. //retract by E
  2871. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2872. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2873. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2874. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2875. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2876. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2877. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2878. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2879. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2880. //finish moves
  2881. st_synchronize();
  2882. //disable extruder steppers so filament can be removed
  2883. disable_e0();
  2884. disable_e1();
  2885. disable_e2();
  2886. delay(100);
  2887. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2888. uint8_t cnt=0;
  2889. int counterBeep = 0;
  2890. lcd_wait_interact();
  2891. while(!lcd_clicked()){
  2892. cnt++;
  2893. manage_heater();
  2894. manage_inactivity(true);
  2895. //lcd_update();
  2896. if(cnt==0)
  2897. {
  2898. #if BEEPER > 0
  2899. if (counterBeep== 500){
  2900. counterBeep = 0;
  2901. }
  2902. SET_OUTPUT(BEEPER);
  2903. if (counterBeep== 0){
  2904. WRITE(BEEPER,HIGH);
  2905. }
  2906. if (counterBeep== 20){
  2907. WRITE(BEEPER,LOW);
  2908. }
  2909. counterBeep++;
  2910. #else
  2911. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2912. lcd_buzz(1000/6,100);
  2913. #else
  2914. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2915. #endif
  2916. #endif
  2917. }
  2918. }
  2919. WRITE(BEEPER,LOW);
  2920. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2921. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2922. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2923. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2924. lcd_change_fil_state = 0;
  2925. lcd_loading_filament();
  2926. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2927. lcd_change_fil_state = 0;
  2928. lcd_alright();
  2929. switch(lcd_change_fil_state){
  2930. case 2:
  2931. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2932. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2933. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2934. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2935. lcd_loading_filament();
  2936. break;
  2937. case 3:
  2938. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2939. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2940. lcd_loading_color();
  2941. break;
  2942. default:
  2943. lcd_change_success();
  2944. break;
  2945. }
  2946. }
  2947. target[E_AXIS]+= 5;
  2948. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2949. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2950. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2951. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2952. //plan_set_e_position(current_position[E_AXIS]);
  2953. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2954. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2955. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2956. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2957. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2958. plan_set_e_position(lastpos[E_AXIS]);
  2959. feedmultiply=feedmultiplyBckp;
  2960. char cmd[9];
  2961. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2962. enquecommand(cmd);
  2963. }
  2964. #endif
  2965. get_coordinates(); // For X Y Z E F
  2966. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2967. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2968. }
  2969. #ifdef FWRETRACT
  2970. if(autoretract_enabled)
  2971. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2972. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2973. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2974. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2975. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2976. retract(!retracted[active_extruder]);
  2977. return;
  2978. }
  2979. }
  2980. #endif //FWRETRACT
  2981. prepare_move();
  2982. //ClearToSend();
  2983. }
  2984. break;
  2985. case 2: // G2 - CW ARC
  2986. if(Stopped == false) {
  2987. get_arc_coordinates();
  2988. prepare_arc_move(true);
  2989. }
  2990. break;
  2991. case 3: // G3 - CCW ARC
  2992. if(Stopped == false) {
  2993. get_arc_coordinates();
  2994. prepare_arc_move(false);
  2995. }
  2996. break;
  2997. case 4: // G4 dwell
  2998. codenum = 0;
  2999. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3000. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3001. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3002. st_synchronize();
  3003. codenum += millis(); // keep track of when we started waiting
  3004. previous_millis_cmd = millis();
  3005. while(millis() < codenum) {
  3006. manage_heater();
  3007. manage_inactivity();
  3008. lcd_update();
  3009. }
  3010. break;
  3011. #ifdef FWRETRACT
  3012. case 10: // G10 retract
  3013. #if EXTRUDERS > 1
  3014. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3015. retract(true,retracted_swap[active_extruder]);
  3016. #else
  3017. retract(true);
  3018. #endif
  3019. break;
  3020. case 11: // G11 retract_recover
  3021. #if EXTRUDERS > 1
  3022. retract(false,retracted_swap[active_extruder]);
  3023. #else
  3024. retract(false);
  3025. #endif
  3026. break;
  3027. #endif //FWRETRACT
  3028. case 28: //G28 Home all Axis one at a time
  3029. {
  3030. // Which axes should be homed?
  3031. bool home_x = code_seen(axis_codes[X_AXIS]);
  3032. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3033. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3034. // calibrate?
  3035. bool calib = code_seen('C');
  3036. gcode_G28(home_x, home_y, home_z, calib);
  3037. break;
  3038. }
  3039. #ifdef ENABLE_AUTO_BED_LEVELING
  3040. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3041. {
  3042. #if Z_MIN_PIN == -1
  3043. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3044. #endif
  3045. // Prevent user from running a G29 without first homing in X and Y
  3046. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3047. {
  3048. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3049. SERIAL_ECHO_START;
  3050. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3051. break; // abort G29, since we don't know where we are
  3052. }
  3053. st_synchronize();
  3054. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3055. //vector_3 corrected_position = plan_get_position_mm();
  3056. //corrected_position.debug("position before G29");
  3057. plan_bed_level_matrix.set_to_identity();
  3058. vector_3 uncorrected_position = plan_get_position();
  3059. //uncorrected_position.debug("position durring G29");
  3060. current_position[X_AXIS] = uncorrected_position.x;
  3061. current_position[Y_AXIS] = uncorrected_position.y;
  3062. current_position[Z_AXIS] = uncorrected_position.z;
  3063. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3064. setup_for_endstop_move();
  3065. feedrate = homing_feedrate[Z_AXIS];
  3066. #ifdef AUTO_BED_LEVELING_GRID
  3067. // probe at the points of a lattice grid
  3068. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3069. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3070. // solve the plane equation ax + by + d = z
  3071. // A is the matrix with rows [x y 1] for all the probed points
  3072. // B is the vector of the Z positions
  3073. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3074. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3075. // "A" matrix of the linear system of equations
  3076. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3077. // "B" vector of Z points
  3078. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3079. int probePointCounter = 0;
  3080. bool zig = true;
  3081. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3082. {
  3083. int xProbe, xInc;
  3084. if (zig)
  3085. {
  3086. xProbe = LEFT_PROBE_BED_POSITION;
  3087. //xEnd = RIGHT_PROBE_BED_POSITION;
  3088. xInc = xGridSpacing;
  3089. zig = false;
  3090. } else // zag
  3091. {
  3092. xProbe = RIGHT_PROBE_BED_POSITION;
  3093. //xEnd = LEFT_PROBE_BED_POSITION;
  3094. xInc = -xGridSpacing;
  3095. zig = true;
  3096. }
  3097. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3098. {
  3099. float z_before;
  3100. if (probePointCounter == 0)
  3101. {
  3102. // raise before probing
  3103. z_before = Z_RAISE_BEFORE_PROBING;
  3104. } else
  3105. {
  3106. // raise extruder
  3107. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3108. }
  3109. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3110. eqnBVector[probePointCounter] = measured_z;
  3111. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3112. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3113. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3114. probePointCounter++;
  3115. xProbe += xInc;
  3116. }
  3117. }
  3118. clean_up_after_endstop_move();
  3119. // solve lsq problem
  3120. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3121. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3122. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3123. SERIAL_PROTOCOLPGM(" b: ");
  3124. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3125. SERIAL_PROTOCOLPGM(" d: ");
  3126. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3127. set_bed_level_equation_lsq(plane_equation_coefficients);
  3128. free(plane_equation_coefficients);
  3129. #else // AUTO_BED_LEVELING_GRID not defined
  3130. // Probe at 3 arbitrary points
  3131. // probe 1
  3132. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3133. // probe 2
  3134. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3135. // probe 3
  3136. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3137. clean_up_after_endstop_move();
  3138. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3139. #endif // AUTO_BED_LEVELING_GRID
  3140. st_synchronize();
  3141. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3142. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3143. // When the bed is uneven, this height must be corrected.
  3144. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3145. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3146. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3147. z_tmp = current_position[Z_AXIS];
  3148. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3149. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3150. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3151. }
  3152. break;
  3153. #ifndef Z_PROBE_SLED
  3154. case 30: // G30 Single Z Probe
  3155. {
  3156. st_synchronize();
  3157. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3158. setup_for_endstop_move();
  3159. feedrate = homing_feedrate[Z_AXIS];
  3160. run_z_probe();
  3161. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3162. SERIAL_PROTOCOLPGM(" X: ");
  3163. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3164. SERIAL_PROTOCOLPGM(" Y: ");
  3165. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3166. SERIAL_PROTOCOLPGM(" Z: ");
  3167. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3168. SERIAL_PROTOCOLPGM("\n");
  3169. clean_up_after_endstop_move();
  3170. }
  3171. break;
  3172. #else
  3173. case 31: // dock the sled
  3174. dock_sled(true);
  3175. break;
  3176. case 32: // undock the sled
  3177. dock_sled(false);
  3178. break;
  3179. #endif // Z_PROBE_SLED
  3180. #endif // ENABLE_AUTO_BED_LEVELING
  3181. #ifdef MESH_BED_LEVELING
  3182. case 30: // G30 Single Z Probe
  3183. {
  3184. st_synchronize();
  3185. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3186. setup_for_endstop_move();
  3187. feedrate = homing_feedrate[Z_AXIS];
  3188. find_bed_induction_sensor_point_z(-10.f, 3);
  3189. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3190. SERIAL_PROTOCOLPGM(" X: ");
  3191. MYSERIAL.print(current_position[X_AXIS], 5);
  3192. SERIAL_PROTOCOLPGM(" Y: ");
  3193. MYSERIAL.print(current_position[Y_AXIS], 5);
  3194. SERIAL_PROTOCOLPGM(" Z: ");
  3195. MYSERIAL.print(current_position[Z_AXIS], 5);
  3196. SERIAL_PROTOCOLPGM("\n");
  3197. clean_up_after_endstop_move();
  3198. }
  3199. break;
  3200. case 75:
  3201. {
  3202. for (int i = 40; i <= 110; i++) {
  3203. MYSERIAL.print(i);
  3204. MYSERIAL.print(" ");
  3205. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3206. }
  3207. }
  3208. break;
  3209. case 76: //PINDA probe temperature calibration
  3210. {
  3211. #ifdef PINDA_THERMISTOR
  3212. if (true)
  3213. {
  3214. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3215. //we need to know accurate position of first calibration point
  3216. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3217. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3218. break;
  3219. }
  3220. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3221. {
  3222. // We don't know where we are! HOME!
  3223. // Push the commands to the front of the message queue in the reverse order!
  3224. // There shall be always enough space reserved for these commands.
  3225. repeatcommand_front(); // repeat G76 with all its parameters
  3226. enquecommand_front_P((PSTR("G28 W0")));
  3227. break;
  3228. }
  3229. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3230. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3231. if (result)
  3232. {
  3233. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3234. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3235. current_position[Z_AXIS] = 50;
  3236. current_position[Y_AXIS] = 180;
  3237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3238. st_synchronize();
  3239. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3240. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3241. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3242. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3243. st_synchronize();
  3244. gcode_G28(false, false, true, false);
  3245. }
  3246. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3247. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3248. current_position[Z_AXIS] = 100;
  3249. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3250. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3251. lcd_temp_cal_show_result(false);
  3252. break;
  3253. }
  3254. }
  3255. lcd_update_enable(true);
  3256. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3257. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3258. float zero_z;
  3259. int z_shift = 0; //unit: steps
  3260. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3261. if (start_temp < 35) start_temp = 35;
  3262. if (start_temp < current_temperature_pinda) start_temp += 5;
  3263. SERIAL_ECHOPGM("start temperature: ");
  3264. MYSERIAL.println(start_temp);
  3265. // setTargetHotend(200, 0);
  3266. setTargetBed(70 + (start_temp - 30));
  3267. custom_message = true;
  3268. custom_message_type = 4;
  3269. custom_message_state = 1;
  3270. custom_message = _T(MSG_TEMP_CALIBRATION);
  3271. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3273. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3274. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3275. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3276. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3278. st_synchronize();
  3279. while (current_temperature_pinda < start_temp)
  3280. {
  3281. delay_keep_alive(1000);
  3282. serialecho_temperatures();
  3283. }
  3284. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3285. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3287. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3288. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3290. st_synchronize();
  3291. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3292. if (find_z_result == false) {
  3293. lcd_temp_cal_show_result(find_z_result);
  3294. break;
  3295. }
  3296. zero_z = current_position[Z_AXIS];
  3297. //current_position[Z_AXIS]
  3298. SERIAL_ECHOLNPGM("");
  3299. SERIAL_ECHOPGM("ZERO: ");
  3300. MYSERIAL.print(current_position[Z_AXIS]);
  3301. SERIAL_ECHOLNPGM("");
  3302. int i = -1; for (; i < 5; i++)
  3303. {
  3304. float temp = (40 + i * 5);
  3305. SERIAL_ECHOPGM("Step: ");
  3306. MYSERIAL.print(i + 2);
  3307. SERIAL_ECHOLNPGM("/6 (skipped)");
  3308. SERIAL_ECHOPGM("PINDA temperature: ");
  3309. MYSERIAL.print((40 + i*5));
  3310. SERIAL_ECHOPGM(" Z shift (mm):");
  3311. MYSERIAL.print(0);
  3312. SERIAL_ECHOLNPGM("");
  3313. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3314. if (start_temp <= temp) break;
  3315. }
  3316. for (i++; i < 5; i++)
  3317. {
  3318. float temp = (40 + i * 5);
  3319. SERIAL_ECHOPGM("Step: ");
  3320. MYSERIAL.print(i + 2);
  3321. SERIAL_ECHOLNPGM("/6");
  3322. custom_message_state = i + 2;
  3323. setTargetBed(50 + 10 * (temp - 30) / 5);
  3324. // setTargetHotend(255, 0);
  3325. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3327. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3328. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3330. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3332. st_synchronize();
  3333. while (current_temperature_pinda < temp)
  3334. {
  3335. delay_keep_alive(1000);
  3336. serialecho_temperatures();
  3337. }
  3338. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3340. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3341. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3343. st_synchronize();
  3344. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3345. if (find_z_result == false) {
  3346. lcd_temp_cal_show_result(find_z_result);
  3347. break;
  3348. }
  3349. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3350. SERIAL_ECHOLNPGM("");
  3351. SERIAL_ECHOPGM("PINDA temperature: ");
  3352. MYSERIAL.print(current_temperature_pinda);
  3353. SERIAL_ECHOPGM(" Z shift (mm):");
  3354. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3355. SERIAL_ECHOLNPGM("");
  3356. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3357. }
  3358. lcd_temp_cal_show_result(true);
  3359. break;
  3360. }
  3361. #endif //PINDA_THERMISTOR
  3362. setTargetBed(PINDA_MIN_T);
  3363. float zero_z;
  3364. int z_shift = 0; //unit: steps
  3365. int t_c; // temperature
  3366. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3367. // We don't know where we are! HOME!
  3368. // Push the commands to the front of the message queue in the reverse order!
  3369. // There shall be always enough space reserved for these commands.
  3370. repeatcommand_front(); // repeat G76 with all its parameters
  3371. enquecommand_front_P((PSTR("G28 W0")));
  3372. break;
  3373. }
  3374. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3375. custom_message = true;
  3376. custom_message_type = 4;
  3377. custom_message_state = 1;
  3378. custom_message = _T(MSG_TEMP_CALIBRATION);
  3379. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3380. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3381. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3383. st_synchronize();
  3384. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3385. delay_keep_alive(1000);
  3386. serialecho_temperatures();
  3387. }
  3388. //enquecommand_P(PSTR("M190 S50"));
  3389. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3390. delay_keep_alive(1000);
  3391. serialecho_temperatures();
  3392. }
  3393. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3394. current_position[Z_AXIS] = 5;
  3395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3396. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3397. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3399. st_synchronize();
  3400. find_bed_induction_sensor_point_z(-1.f);
  3401. zero_z = current_position[Z_AXIS];
  3402. //current_position[Z_AXIS]
  3403. SERIAL_ECHOLNPGM("");
  3404. SERIAL_ECHOPGM("ZERO: ");
  3405. MYSERIAL.print(current_position[Z_AXIS]);
  3406. SERIAL_ECHOLNPGM("");
  3407. for (int i = 0; i<5; i++) {
  3408. SERIAL_ECHOPGM("Step: ");
  3409. MYSERIAL.print(i+2);
  3410. SERIAL_ECHOLNPGM("/6");
  3411. custom_message_state = i + 2;
  3412. t_c = 60 + i * 10;
  3413. setTargetBed(t_c);
  3414. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3415. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3416. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3418. st_synchronize();
  3419. while (degBed() < t_c) {
  3420. delay_keep_alive(1000);
  3421. serialecho_temperatures();
  3422. }
  3423. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3424. delay_keep_alive(1000);
  3425. serialecho_temperatures();
  3426. }
  3427. current_position[Z_AXIS] = 5;
  3428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3429. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3430. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3432. st_synchronize();
  3433. find_bed_induction_sensor_point_z(-1.f);
  3434. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3435. SERIAL_ECHOLNPGM("");
  3436. SERIAL_ECHOPGM("Temperature: ");
  3437. MYSERIAL.print(t_c);
  3438. SERIAL_ECHOPGM(" Z shift (mm):");
  3439. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3440. SERIAL_ECHOLNPGM("");
  3441. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3442. }
  3443. custom_message_type = 0;
  3444. custom_message = false;
  3445. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3446. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3447. disable_x();
  3448. disable_y();
  3449. disable_z();
  3450. disable_e0();
  3451. disable_e1();
  3452. disable_e2();
  3453. setTargetBed(0); //set bed target temperature back to 0
  3454. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3455. temp_cal_active = true;
  3456. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3457. lcd_update_enable(true);
  3458. lcd_update(2);
  3459. }
  3460. break;
  3461. #ifdef DIS
  3462. case 77:
  3463. {
  3464. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3465. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3466. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3467. float dimension_x = 40;
  3468. float dimension_y = 40;
  3469. int points_x = 40;
  3470. int points_y = 40;
  3471. float offset_x = 74;
  3472. float offset_y = 33;
  3473. if (code_seen('X')) dimension_x = code_value();
  3474. if (code_seen('Y')) dimension_y = code_value();
  3475. if (code_seen('XP')) points_x = code_value();
  3476. if (code_seen('YP')) points_y = code_value();
  3477. if (code_seen('XO')) offset_x = code_value();
  3478. if (code_seen('YO')) offset_y = code_value();
  3479. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3480. } break;
  3481. #endif
  3482. case 79: {
  3483. for (int i = 255; i > 0; i = i - 5) {
  3484. fanSpeed = i;
  3485. //delay_keep_alive(2000);
  3486. for (int j = 0; j < 100; j++) {
  3487. delay_keep_alive(100);
  3488. }
  3489. fan_speed[1];
  3490. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3491. }
  3492. }break;
  3493. /**
  3494. * G80: Mesh-based Z probe, probes a grid and produces a
  3495. * mesh to compensate for variable bed height
  3496. *
  3497. * The S0 report the points as below
  3498. *
  3499. * +----> X-axis
  3500. * |
  3501. * |
  3502. * v Y-axis
  3503. *
  3504. */
  3505. case 80:
  3506. #ifdef MK1BP
  3507. break;
  3508. #endif //MK1BP
  3509. case_G80:
  3510. {
  3511. mesh_bed_leveling_flag = true;
  3512. int8_t verbosity_level = 0;
  3513. static bool run = false;
  3514. if (code_seen('V')) {
  3515. // Just 'V' without a number counts as V1.
  3516. char c = strchr_pointer[1];
  3517. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3518. }
  3519. // Firstly check if we know where we are
  3520. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3521. // We don't know where we are! HOME!
  3522. // Push the commands to the front of the message queue in the reverse order!
  3523. // There shall be always enough space reserved for these commands.
  3524. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3525. repeatcommand_front(); // repeat G80 with all its parameters
  3526. enquecommand_front_P((PSTR("G28 W0")));
  3527. }
  3528. else {
  3529. mesh_bed_leveling_flag = false;
  3530. }
  3531. break;
  3532. }
  3533. bool temp_comp_start = true;
  3534. #ifdef PINDA_THERMISTOR
  3535. temp_comp_start = false;
  3536. #endif //PINDA_THERMISTOR
  3537. if (temp_comp_start)
  3538. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3539. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3540. temp_compensation_start();
  3541. run = true;
  3542. repeatcommand_front(); // repeat G80 with all its parameters
  3543. enquecommand_front_P((PSTR("G28 W0")));
  3544. }
  3545. else {
  3546. mesh_bed_leveling_flag = false;
  3547. }
  3548. break;
  3549. }
  3550. run = false;
  3551. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3552. mesh_bed_leveling_flag = false;
  3553. break;
  3554. }
  3555. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3556. bool custom_message_old = custom_message;
  3557. unsigned int custom_message_type_old = custom_message_type;
  3558. unsigned int custom_message_state_old = custom_message_state;
  3559. custom_message = true;
  3560. custom_message_type = 1;
  3561. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3562. lcd_update(1);
  3563. mbl.reset(); //reset mesh bed leveling
  3564. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3565. // consumed during the first movements following this statement.
  3566. babystep_undo();
  3567. // Cycle through all points and probe them
  3568. // First move up. During this first movement, the babystepping will be reverted.
  3569. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3571. // The move to the first calibration point.
  3572. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3573. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3574. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3575. #ifdef SUPPORT_VERBOSITY
  3576. if (verbosity_level >= 1) {
  3577. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3578. }
  3579. #endif //SUPPORT_VERBOSITY
  3580. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3581. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3582. // Wait until the move is finished.
  3583. st_synchronize();
  3584. int mesh_point = 0; //index number of calibration point
  3585. int ix = 0;
  3586. int iy = 0;
  3587. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3588. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3589. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3590. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3591. #ifdef SUPPORT_VERBOSITY
  3592. if (verbosity_level >= 1) {
  3593. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3594. }
  3595. #endif // SUPPORT_VERBOSITY
  3596. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3597. const char *kill_message = NULL;
  3598. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3599. // Get coords of a measuring point.
  3600. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3601. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3602. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3603. float z0 = 0.f;
  3604. if (has_z && mesh_point > 0) {
  3605. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3606. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3607. //#if 0
  3608. #ifdef SUPPORT_VERBOSITY
  3609. if (verbosity_level >= 1) {
  3610. SERIAL_ECHOLNPGM("");
  3611. SERIAL_ECHOPGM("Bed leveling, point: ");
  3612. MYSERIAL.print(mesh_point);
  3613. SERIAL_ECHOPGM(", calibration z: ");
  3614. MYSERIAL.print(z0, 5);
  3615. SERIAL_ECHOLNPGM("");
  3616. }
  3617. #endif // SUPPORT_VERBOSITY
  3618. //#endif
  3619. }
  3620. // Move Z up to MESH_HOME_Z_SEARCH.
  3621. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3623. st_synchronize();
  3624. // Move to XY position of the sensor point.
  3625. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3626. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3627. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3628. #ifdef SUPPORT_VERBOSITY
  3629. if (verbosity_level >= 1) {
  3630. SERIAL_PROTOCOL(mesh_point);
  3631. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3632. }
  3633. #endif // SUPPORT_VERBOSITY
  3634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3635. st_synchronize();
  3636. // Go down until endstop is hit
  3637. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3638. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3639. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3640. break;
  3641. }
  3642. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3643. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3644. break;
  3645. }
  3646. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3647. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3648. break;
  3649. }
  3650. #ifdef SUPPORT_VERBOSITY
  3651. if (verbosity_level >= 10) {
  3652. SERIAL_ECHOPGM("X: ");
  3653. MYSERIAL.print(current_position[X_AXIS], 5);
  3654. SERIAL_ECHOLNPGM("");
  3655. SERIAL_ECHOPGM("Y: ");
  3656. MYSERIAL.print(current_position[Y_AXIS], 5);
  3657. SERIAL_PROTOCOLPGM("\n");
  3658. }
  3659. #endif // SUPPORT_VERBOSITY
  3660. float offset_z = 0;
  3661. #ifdef PINDA_THERMISTOR
  3662. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3663. #endif //PINDA_THERMISTOR
  3664. // #ifdef SUPPORT_VERBOSITY
  3665. /* if (verbosity_level >= 1)
  3666. {
  3667. SERIAL_ECHOPGM("mesh bed leveling: ");
  3668. MYSERIAL.print(current_position[Z_AXIS], 5);
  3669. SERIAL_ECHOPGM(" offset: ");
  3670. MYSERIAL.print(offset_z, 5);
  3671. SERIAL_ECHOLNPGM("");
  3672. }*/
  3673. // #endif // SUPPORT_VERBOSITY
  3674. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3675. custom_message_state--;
  3676. mesh_point++;
  3677. lcd_update(1);
  3678. }
  3679. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3680. #ifdef SUPPORT_VERBOSITY
  3681. if (verbosity_level >= 20) {
  3682. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3683. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3684. MYSERIAL.print(current_position[Z_AXIS], 5);
  3685. }
  3686. #endif // SUPPORT_VERBOSITY
  3687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3688. st_synchronize();
  3689. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3690. kill(kill_message);
  3691. SERIAL_ECHOLNPGM("killed");
  3692. }
  3693. clean_up_after_endstop_move();
  3694. // SERIAL_ECHOLNPGM("clean up finished ");
  3695. bool apply_temp_comp = true;
  3696. #ifdef PINDA_THERMISTOR
  3697. apply_temp_comp = false;
  3698. #endif
  3699. if (apply_temp_comp)
  3700. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3701. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3702. // SERIAL_ECHOLNPGM("babystep applied");
  3703. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3704. #ifdef SUPPORT_VERBOSITY
  3705. if (verbosity_level >= 1) {
  3706. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3707. }
  3708. #endif // SUPPORT_VERBOSITY
  3709. for (uint8_t i = 0; i < 4; ++i) {
  3710. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3711. long correction = 0;
  3712. if (code_seen(codes[i]))
  3713. correction = code_value_long();
  3714. else if (eeprom_bed_correction_valid) {
  3715. unsigned char *addr = (i < 2) ?
  3716. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3717. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3718. correction = eeprom_read_int8(addr);
  3719. }
  3720. if (correction == 0)
  3721. continue;
  3722. float offset = float(correction) * 0.001f;
  3723. if (fabs(offset) > 0.101f) {
  3724. SERIAL_ERROR_START;
  3725. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3726. SERIAL_ECHO(offset);
  3727. SERIAL_ECHOLNPGM(" microns");
  3728. }
  3729. else {
  3730. switch (i) {
  3731. case 0:
  3732. for (uint8_t row = 0; row < 3; ++row) {
  3733. mbl.z_values[row][1] += 0.5f * offset;
  3734. mbl.z_values[row][0] += offset;
  3735. }
  3736. break;
  3737. case 1:
  3738. for (uint8_t row = 0; row < 3; ++row) {
  3739. mbl.z_values[row][1] += 0.5f * offset;
  3740. mbl.z_values[row][2] += offset;
  3741. }
  3742. break;
  3743. case 2:
  3744. for (uint8_t col = 0; col < 3; ++col) {
  3745. mbl.z_values[1][col] += 0.5f * offset;
  3746. mbl.z_values[0][col] += offset;
  3747. }
  3748. break;
  3749. case 3:
  3750. for (uint8_t col = 0; col < 3; ++col) {
  3751. mbl.z_values[1][col] += 0.5f * offset;
  3752. mbl.z_values[2][col] += offset;
  3753. }
  3754. break;
  3755. }
  3756. }
  3757. }
  3758. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3759. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3760. // SERIAL_ECHOLNPGM("Upsample finished");
  3761. mbl.active = 1; //activate mesh bed leveling
  3762. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3763. go_home_with_z_lift();
  3764. // SERIAL_ECHOLNPGM("Go home finished");
  3765. //unretract (after PINDA preheat retraction)
  3766. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3767. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3769. }
  3770. KEEPALIVE_STATE(NOT_BUSY);
  3771. // Restore custom message state
  3772. custom_message = custom_message_old;
  3773. custom_message_type = custom_message_type_old;
  3774. custom_message_state = custom_message_state_old;
  3775. mesh_bed_leveling_flag = false;
  3776. mesh_bed_run_from_menu = false;
  3777. lcd_update(2);
  3778. }
  3779. break;
  3780. /**
  3781. * G81: Print mesh bed leveling status and bed profile if activated
  3782. */
  3783. case 81:
  3784. if (mbl.active) {
  3785. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3786. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3787. SERIAL_PROTOCOLPGM(",");
  3788. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3789. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3790. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3791. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3792. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3793. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3794. SERIAL_PROTOCOLPGM(" ");
  3795. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3796. }
  3797. SERIAL_PROTOCOLPGM("\n");
  3798. }
  3799. }
  3800. else
  3801. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3802. break;
  3803. #if 0
  3804. /**
  3805. * G82: Single Z probe at current location
  3806. *
  3807. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3808. *
  3809. */
  3810. case 82:
  3811. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3812. setup_for_endstop_move();
  3813. find_bed_induction_sensor_point_z();
  3814. clean_up_after_endstop_move();
  3815. SERIAL_PROTOCOLPGM("Bed found at: ");
  3816. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3817. SERIAL_PROTOCOLPGM("\n");
  3818. break;
  3819. /**
  3820. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3821. */
  3822. case 83:
  3823. {
  3824. int babystepz = code_seen('S') ? code_value() : 0;
  3825. int BabyPosition = code_seen('P') ? code_value() : 0;
  3826. if (babystepz != 0) {
  3827. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3828. // Is the axis indexed starting with zero or one?
  3829. if (BabyPosition > 4) {
  3830. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3831. }else{
  3832. // Save it to the eeprom
  3833. babystepLoadZ = babystepz;
  3834. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3835. // adjust the Z
  3836. babystepsTodoZadd(babystepLoadZ);
  3837. }
  3838. }
  3839. }
  3840. break;
  3841. /**
  3842. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3843. */
  3844. case 84:
  3845. babystepsTodoZsubtract(babystepLoadZ);
  3846. // babystepLoadZ = 0;
  3847. break;
  3848. /**
  3849. * G85: Prusa3D specific: Pick best babystep
  3850. */
  3851. case 85:
  3852. lcd_pick_babystep();
  3853. break;
  3854. #endif
  3855. /**
  3856. * G86: Prusa3D specific: Disable babystep correction after home.
  3857. * This G-code will be performed at the start of a calibration script.
  3858. */
  3859. case 86:
  3860. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3861. break;
  3862. /**
  3863. * G87: Prusa3D specific: Enable babystep correction after home
  3864. * This G-code will be performed at the end of a calibration script.
  3865. */
  3866. case 87:
  3867. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3868. break;
  3869. /**
  3870. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3871. */
  3872. case 88:
  3873. break;
  3874. #endif // ENABLE_MESH_BED_LEVELING
  3875. case 90: // G90
  3876. relative_mode = false;
  3877. break;
  3878. case 91: // G91
  3879. relative_mode = true;
  3880. break;
  3881. case 92: // G92
  3882. if(!code_seen(axis_codes[E_AXIS]))
  3883. st_synchronize();
  3884. for(int8_t i=0; i < NUM_AXIS; i++) {
  3885. if(code_seen(axis_codes[i])) {
  3886. if(i == E_AXIS) {
  3887. current_position[i] = code_value();
  3888. plan_set_e_position(current_position[E_AXIS]);
  3889. }
  3890. else {
  3891. current_position[i] = code_value()+add_homing[i];
  3892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3893. }
  3894. }
  3895. }
  3896. break;
  3897. case 98: // G98 (activate farm mode)
  3898. farm_mode = 1;
  3899. PingTime = millis();
  3900. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3901. SilentModeMenu = SILENT_MODE_OFF;
  3902. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3903. break;
  3904. case 99: // G99 (deactivate farm mode)
  3905. farm_mode = 0;
  3906. lcd_printer_connected();
  3907. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3908. lcd_update(2);
  3909. break;
  3910. default:
  3911. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3912. }
  3913. } // end if(code_seen('G'))
  3914. else if(code_seen('M'))
  3915. {
  3916. int index;
  3917. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3918. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3919. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3920. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3921. } else
  3922. switch((int)code_value())
  3923. {
  3924. #ifdef ULTIPANEL
  3925. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3926. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3927. {
  3928. char *src = strchr_pointer + 2;
  3929. codenum = 0;
  3930. bool hasP = false, hasS = false;
  3931. if (code_seen('P')) {
  3932. codenum = code_value(); // milliseconds to wait
  3933. hasP = codenum > 0;
  3934. }
  3935. if (code_seen('S')) {
  3936. codenum = code_value() * 1000; // seconds to wait
  3937. hasS = codenum > 0;
  3938. }
  3939. starpos = strchr(src, '*');
  3940. if (starpos != NULL) *(starpos) = '\0';
  3941. while (*src == ' ') ++src;
  3942. if (!hasP && !hasS && *src != '\0') {
  3943. lcd_setstatus(src);
  3944. } else {
  3945. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3946. }
  3947. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3948. st_synchronize();
  3949. previous_millis_cmd = millis();
  3950. if (codenum > 0){
  3951. codenum += millis(); // keep track of when we started waiting
  3952. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3953. while(millis() < codenum && !lcd_clicked()){
  3954. manage_heater();
  3955. manage_inactivity(true);
  3956. lcd_update();
  3957. }
  3958. KEEPALIVE_STATE(IN_HANDLER);
  3959. lcd_ignore_click(false);
  3960. }else{
  3961. if (!lcd_detected())
  3962. break;
  3963. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3964. while(!lcd_clicked()){
  3965. manage_heater();
  3966. manage_inactivity(true);
  3967. lcd_update();
  3968. }
  3969. KEEPALIVE_STATE(IN_HANDLER);
  3970. }
  3971. if (IS_SD_PRINTING)
  3972. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3973. else
  3974. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3975. }
  3976. break;
  3977. #endif
  3978. case 17:
  3979. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3980. enable_x();
  3981. enable_y();
  3982. enable_z();
  3983. enable_e0();
  3984. enable_e1();
  3985. enable_e2();
  3986. break;
  3987. #ifdef SDSUPPORT
  3988. case 20: // M20 - list SD card
  3989. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3990. card.ls();
  3991. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3992. break;
  3993. case 21: // M21 - init SD card
  3994. card.initsd();
  3995. break;
  3996. case 22: //M22 - release SD card
  3997. card.release();
  3998. break;
  3999. case 23: //M23 - Select file
  4000. starpos = (strchr(strchr_pointer + 4,'*'));
  4001. if(starpos!=NULL)
  4002. *(starpos)='\0';
  4003. card.openFile(strchr_pointer + 4,true);
  4004. break;
  4005. case 24: //M24 - Start SD print
  4006. if (!card.paused)
  4007. failstats_reset_print();
  4008. card.startFileprint();
  4009. starttime=millis();
  4010. break;
  4011. case 25: //M25 - Pause SD print
  4012. card.pauseSDPrint();
  4013. break;
  4014. case 26: //M26 - Set SD index
  4015. if(card.cardOK && code_seen('S')) {
  4016. card.setIndex(code_value_long());
  4017. }
  4018. break;
  4019. case 27: //M27 - Get SD status
  4020. card.getStatus();
  4021. break;
  4022. case 28: //M28 - Start SD write
  4023. starpos = (strchr(strchr_pointer + 4,'*'));
  4024. if(starpos != NULL){
  4025. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4026. strchr_pointer = strchr(npos,' ') + 1;
  4027. *(starpos) = '\0';
  4028. }
  4029. card.openFile(strchr_pointer+4,false);
  4030. break;
  4031. case 29: //M29 - Stop SD write
  4032. //processed in write to file routine above
  4033. //card,saving = false;
  4034. break;
  4035. case 30: //M30 <filename> Delete File
  4036. if (card.cardOK){
  4037. card.closefile();
  4038. starpos = (strchr(strchr_pointer + 4,'*'));
  4039. if(starpos != NULL){
  4040. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4041. strchr_pointer = strchr(npos,' ') + 1;
  4042. *(starpos) = '\0';
  4043. }
  4044. card.removeFile(strchr_pointer + 4);
  4045. }
  4046. break;
  4047. case 32: //M32 - Select file and start SD print
  4048. {
  4049. if(card.sdprinting) {
  4050. st_synchronize();
  4051. }
  4052. starpos = (strchr(strchr_pointer + 4,'*'));
  4053. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4054. if(namestartpos==NULL)
  4055. {
  4056. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4057. }
  4058. else
  4059. namestartpos++; //to skip the '!'
  4060. if(starpos!=NULL)
  4061. *(starpos)='\0';
  4062. bool call_procedure=(code_seen('P'));
  4063. if(strchr_pointer>namestartpos)
  4064. call_procedure=false; //false alert, 'P' found within filename
  4065. if( card.cardOK )
  4066. {
  4067. card.openFile(namestartpos,true,!call_procedure);
  4068. if(code_seen('S'))
  4069. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4070. card.setIndex(code_value_long());
  4071. card.startFileprint();
  4072. if(!call_procedure)
  4073. starttime=millis(); //procedure calls count as normal print time.
  4074. }
  4075. } break;
  4076. case 928: //M928 - Start SD write
  4077. starpos = (strchr(strchr_pointer + 5,'*'));
  4078. if(starpos != NULL){
  4079. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4080. strchr_pointer = strchr(npos,' ') + 1;
  4081. *(starpos) = '\0';
  4082. }
  4083. card.openLogFile(strchr_pointer+5);
  4084. break;
  4085. #endif //SDSUPPORT
  4086. case 31: //M31 take time since the start of the SD print or an M109 command
  4087. {
  4088. stoptime=millis();
  4089. char time[30];
  4090. unsigned long t=(stoptime-starttime)/1000;
  4091. int sec,min;
  4092. min=t/60;
  4093. sec=t%60;
  4094. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4095. SERIAL_ECHO_START;
  4096. SERIAL_ECHOLN(time);
  4097. lcd_setstatus(time);
  4098. autotempShutdown();
  4099. }
  4100. break;
  4101. #ifndef _DISABLE_M42_M226
  4102. case 42: //M42 -Change pin status via gcode
  4103. if (code_seen('S'))
  4104. {
  4105. int pin_status = code_value();
  4106. int pin_number = LED_PIN;
  4107. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4108. pin_number = code_value();
  4109. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4110. {
  4111. if (sensitive_pins[i] == pin_number)
  4112. {
  4113. pin_number = -1;
  4114. break;
  4115. }
  4116. }
  4117. #if defined(FAN_PIN) && FAN_PIN > -1
  4118. if (pin_number == FAN_PIN)
  4119. fanSpeed = pin_status;
  4120. #endif
  4121. if (pin_number > -1)
  4122. {
  4123. pinMode(pin_number, OUTPUT);
  4124. digitalWrite(pin_number, pin_status);
  4125. analogWrite(pin_number, pin_status);
  4126. }
  4127. }
  4128. break;
  4129. #endif //_DISABLE_M42_M226
  4130. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4131. // Reset the baby step value and the baby step applied flag.
  4132. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4133. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4134. // Reset the skew and offset in both RAM and EEPROM.
  4135. reset_bed_offset_and_skew();
  4136. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4137. // the planner will not perform any adjustments in the XY plane.
  4138. // Wait for the motors to stop and update the current position with the absolute values.
  4139. world2machine_revert_to_uncorrected();
  4140. break;
  4141. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4142. {
  4143. int8_t verbosity_level = 0;
  4144. bool only_Z = code_seen('Z');
  4145. #ifdef SUPPORT_VERBOSITY
  4146. if (code_seen('V'))
  4147. {
  4148. // Just 'V' without a number counts as V1.
  4149. char c = strchr_pointer[1];
  4150. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4151. }
  4152. #endif //SUPPORT_VERBOSITY
  4153. gcode_M45(only_Z, verbosity_level);
  4154. }
  4155. break;
  4156. /*
  4157. case 46:
  4158. {
  4159. // M46: Prusa3D: Show the assigned IP address.
  4160. uint8_t ip[4];
  4161. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4162. if (hasIP) {
  4163. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4164. SERIAL_ECHO(int(ip[0]));
  4165. SERIAL_ECHOPGM(".");
  4166. SERIAL_ECHO(int(ip[1]));
  4167. SERIAL_ECHOPGM(".");
  4168. SERIAL_ECHO(int(ip[2]));
  4169. SERIAL_ECHOPGM(".");
  4170. SERIAL_ECHO(int(ip[3]));
  4171. SERIAL_ECHOLNPGM("");
  4172. } else {
  4173. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4174. }
  4175. break;
  4176. }
  4177. */
  4178. case 47:
  4179. // M47: Prusa3D: Show end stops dialog on the display.
  4180. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4181. lcd_diag_show_end_stops();
  4182. KEEPALIVE_STATE(IN_HANDLER);
  4183. break;
  4184. #if 0
  4185. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4186. {
  4187. // Disable the default update procedure of the display. We will do a modal dialog.
  4188. lcd_update_enable(false);
  4189. // Let the planner use the uncorrected coordinates.
  4190. mbl.reset();
  4191. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4192. // the planner will not perform any adjustments in the XY plane.
  4193. // Wait for the motors to stop and update the current position with the absolute values.
  4194. world2machine_revert_to_uncorrected();
  4195. // Move the print head close to the bed.
  4196. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4198. st_synchronize();
  4199. // Home in the XY plane.
  4200. set_destination_to_current();
  4201. setup_for_endstop_move();
  4202. home_xy();
  4203. int8_t verbosity_level = 0;
  4204. if (code_seen('V')) {
  4205. // Just 'V' without a number counts as V1.
  4206. char c = strchr_pointer[1];
  4207. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4208. }
  4209. bool success = scan_bed_induction_points(verbosity_level);
  4210. clean_up_after_endstop_move();
  4211. // Print head up.
  4212. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4213. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4214. st_synchronize();
  4215. lcd_update_enable(true);
  4216. break;
  4217. }
  4218. #endif
  4219. // M48 Z-Probe repeatability measurement function.
  4220. //
  4221. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4222. //
  4223. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4224. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4225. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4226. // regenerated.
  4227. //
  4228. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4229. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4230. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4231. //
  4232. #ifdef ENABLE_AUTO_BED_LEVELING
  4233. #ifdef Z_PROBE_REPEATABILITY_TEST
  4234. case 48: // M48 Z-Probe repeatability
  4235. {
  4236. #if Z_MIN_PIN == -1
  4237. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4238. #endif
  4239. double sum=0.0;
  4240. double mean=0.0;
  4241. double sigma=0.0;
  4242. double sample_set[50];
  4243. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4244. double X_current, Y_current, Z_current;
  4245. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4246. if (code_seen('V') || code_seen('v')) {
  4247. verbose_level = code_value();
  4248. if (verbose_level<0 || verbose_level>4 ) {
  4249. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4250. goto Sigma_Exit;
  4251. }
  4252. }
  4253. if (verbose_level > 0) {
  4254. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4255. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4256. }
  4257. if (code_seen('n')) {
  4258. n_samples = code_value();
  4259. if (n_samples<4 || n_samples>50 ) {
  4260. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4261. goto Sigma_Exit;
  4262. }
  4263. }
  4264. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4265. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4266. Z_current = st_get_position_mm(Z_AXIS);
  4267. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4268. ext_position = st_get_position_mm(E_AXIS);
  4269. if (code_seen('X') || code_seen('x') ) {
  4270. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4271. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4272. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4273. goto Sigma_Exit;
  4274. }
  4275. }
  4276. if (code_seen('Y') || code_seen('y') ) {
  4277. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4278. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4279. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4280. goto Sigma_Exit;
  4281. }
  4282. }
  4283. if (code_seen('L') || code_seen('l') ) {
  4284. n_legs = code_value();
  4285. if ( n_legs==1 )
  4286. n_legs = 2;
  4287. if ( n_legs<0 || n_legs>15 ) {
  4288. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4289. goto Sigma_Exit;
  4290. }
  4291. }
  4292. //
  4293. // Do all the preliminary setup work. First raise the probe.
  4294. //
  4295. st_synchronize();
  4296. plan_bed_level_matrix.set_to_identity();
  4297. plan_buffer_line( X_current, Y_current, Z_start_location,
  4298. ext_position,
  4299. homing_feedrate[Z_AXIS]/60,
  4300. active_extruder);
  4301. st_synchronize();
  4302. //
  4303. // Now get everything to the specified probe point So we can safely do a probe to
  4304. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4305. // use that as a starting point for each probe.
  4306. //
  4307. if (verbose_level > 2)
  4308. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4309. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4310. ext_position,
  4311. homing_feedrate[X_AXIS]/60,
  4312. active_extruder);
  4313. st_synchronize();
  4314. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4315. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4316. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4317. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4318. //
  4319. // OK, do the inital probe to get us close to the bed.
  4320. // Then retrace the right amount and use that in subsequent probes
  4321. //
  4322. setup_for_endstop_move();
  4323. run_z_probe();
  4324. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4325. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4326. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4327. ext_position,
  4328. homing_feedrate[X_AXIS]/60,
  4329. active_extruder);
  4330. st_synchronize();
  4331. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4332. for( n=0; n<n_samples; n++) {
  4333. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4334. if ( n_legs) {
  4335. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4336. int rotational_direction, l;
  4337. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4338. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4339. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4340. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4341. //SERIAL_ECHOPAIR(" theta: ",theta);
  4342. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4343. //SERIAL_PROTOCOLLNPGM("");
  4344. for( l=0; l<n_legs-1; l++) {
  4345. if (rotational_direction==1)
  4346. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4347. else
  4348. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4349. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4350. if ( radius<0.0 )
  4351. radius = -radius;
  4352. X_current = X_probe_location + cos(theta) * radius;
  4353. Y_current = Y_probe_location + sin(theta) * radius;
  4354. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4355. X_current = X_MIN_POS;
  4356. if ( X_current>X_MAX_POS)
  4357. X_current = X_MAX_POS;
  4358. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4359. Y_current = Y_MIN_POS;
  4360. if ( Y_current>Y_MAX_POS)
  4361. Y_current = Y_MAX_POS;
  4362. if (verbose_level>3 ) {
  4363. SERIAL_ECHOPAIR("x: ", X_current);
  4364. SERIAL_ECHOPAIR("y: ", Y_current);
  4365. SERIAL_PROTOCOLLNPGM("");
  4366. }
  4367. do_blocking_move_to( X_current, Y_current, Z_current );
  4368. }
  4369. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4370. }
  4371. setup_for_endstop_move();
  4372. run_z_probe();
  4373. sample_set[n] = current_position[Z_AXIS];
  4374. //
  4375. // Get the current mean for the data points we have so far
  4376. //
  4377. sum=0.0;
  4378. for( j=0; j<=n; j++) {
  4379. sum = sum + sample_set[j];
  4380. }
  4381. mean = sum / (double (n+1));
  4382. //
  4383. // Now, use that mean to calculate the standard deviation for the
  4384. // data points we have so far
  4385. //
  4386. sum=0.0;
  4387. for( j=0; j<=n; j++) {
  4388. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4389. }
  4390. sigma = sqrt( sum / (double (n+1)) );
  4391. if (verbose_level > 1) {
  4392. SERIAL_PROTOCOL(n+1);
  4393. SERIAL_PROTOCOL(" of ");
  4394. SERIAL_PROTOCOL(n_samples);
  4395. SERIAL_PROTOCOLPGM(" z: ");
  4396. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4397. }
  4398. if (verbose_level > 2) {
  4399. SERIAL_PROTOCOL(" mean: ");
  4400. SERIAL_PROTOCOL_F(mean,6);
  4401. SERIAL_PROTOCOL(" sigma: ");
  4402. SERIAL_PROTOCOL_F(sigma,6);
  4403. }
  4404. if (verbose_level > 0)
  4405. SERIAL_PROTOCOLPGM("\n");
  4406. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4407. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4408. st_synchronize();
  4409. }
  4410. delay(1000);
  4411. clean_up_after_endstop_move();
  4412. // enable_endstops(true);
  4413. if (verbose_level > 0) {
  4414. SERIAL_PROTOCOLPGM("Mean: ");
  4415. SERIAL_PROTOCOL_F(mean, 6);
  4416. SERIAL_PROTOCOLPGM("\n");
  4417. }
  4418. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4419. SERIAL_PROTOCOL_F(sigma, 6);
  4420. SERIAL_PROTOCOLPGM("\n\n");
  4421. Sigma_Exit:
  4422. break;
  4423. }
  4424. #endif // Z_PROBE_REPEATABILITY_TEST
  4425. #endif // ENABLE_AUTO_BED_LEVELING
  4426. case 73: //M73 show percent done and time remaining
  4427. if(code_seen('P')) print_percent_done_normal = code_value();
  4428. if(code_seen('R')) print_time_remaining_normal = code_value();
  4429. if(code_seen('Q')) print_percent_done_silent = code_value();
  4430. if(code_seen('S')) print_time_remaining_silent = code_value();
  4431. SERIAL_ECHOPGM("NORMAL MODE: Percent done: ");
  4432. MYSERIAL.print(int(print_percent_done_normal));
  4433. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4434. MYSERIAL.println(print_time_remaining_normal);
  4435. SERIAL_ECHOPGM("SILENT MODE: Percent done: ");
  4436. MYSERIAL.print(int(print_percent_done_silent));
  4437. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4438. MYSERIAL.println(print_time_remaining_silent);
  4439. break;
  4440. case 104: // M104
  4441. if(setTargetedHotend(104)){
  4442. break;
  4443. }
  4444. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4445. setWatch();
  4446. break;
  4447. case 112: // M112 -Emergency Stop
  4448. kill(_n(""), 3);
  4449. break;
  4450. case 140: // M140 set bed temp
  4451. if (code_seen('S')) setTargetBed(code_value());
  4452. break;
  4453. case 105 : // M105
  4454. if(setTargetedHotend(105)){
  4455. break;
  4456. }
  4457. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4458. SERIAL_PROTOCOLPGM("ok T:");
  4459. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4460. SERIAL_PROTOCOLPGM(" /");
  4461. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4462. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4463. SERIAL_PROTOCOLPGM(" B:");
  4464. SERIAL_PROTOCOL_F(degBed(),1);
  4465. SERIAL_PROTOCOLPGM(" /");
  4466. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4467. #endif //TEMP_BED_PIN
  4468. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4469. SERIAL_PROTOCOLPGM(" T");
  4470. SERIAL_PROTOCOL(cur_extruder);
  4471. SERIAL_PROTOCOLPGM(":");
  4472. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4473. SERIAL_PROTOCOLPGM(" /");
  4474. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4475. }
  4476. #else
  4477. SERIAL_ERROR_START;
  4478. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4479. #endif
  4480. SERIAL_PROTOCOLPGM(" @:");
  4481. #ifdef EXTRUDER_WATTS
  4482. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4483. SERIAL_PROTOCOLPGM("W");
  4484. #else
  4485. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4486. #endif
  4487. SERIAL_PROTOCOLPGM(" B@:");
  4488. #ifdef BED_WATTS
  4489. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4490. SERIAL_PROTOCOLPGM("W");
  4491. #else
  4492. SERIAL_PROTOCOL(getHeaterPower(-1));
  4493. #endif
  4494. #ifdef PINDA_THERMISTOR
  4495. SERIAL_PROTOCOLPGM(" P:");
  4496. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4497. #endif //PINDA_THERMISTOR
  4498. #ifdef AMBIENT_THERMISTOR
  4499. SERIAL_PROTOCOLPGM(" A:");
  4500. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4501. #endif //AMBIENT_THERMISTOR
  4502. #ifdef SHOW_TEMP_ADC_VALUES
  4503. {float raw = 0.0;
  4504. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4505. SERIAL_PROTOCOLPGM(" ADC B:");
  4506. SERIAL_PROTOCOL_F(degBed(),1);
  4507. SERIAL_PROTOCOLPGM("C->");
  4508. raw = rawBedTemp();
  4509. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4510. SERIAL_PROTOCOLPGM(" Rb->");
  4511. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4512. SERIAL_PROTOCOLPGM(" Rxb->");
  4513. SERIAL_PROTOCOL_F(raw, 5);
  4514. #endif
  4515. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4516. SERIAL_PROTOCOLPGM(" T");
  4517. SERIAL_PROTOCOL(cur_extruder);
  4518. SERIAL_PROTOCOLPGM(":");
  4519. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4520. SERIAL_PROTOCOLPGM("C->");
  4521. raw = rawHotendTemp(cur_extruder);
  4522. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4523. SERIAL_PROTOCOLPGM(" Rt");
  4524. SERIAL_PROTOCOL(cur_extruder);
  4525. SERIAL_PROTOCOLPGM("->");
  4526. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4527. SERIAL_PROTOCOLPGM(" Rx");
  4528. SERIAL_PROTOCOL(cur_extruder);
  4529. SERIAL_PROTOCOLPGM("->");
  4530. SERIAL_PROTOCOL_F(raw, 5);
  4531. }}
  4532. #endif
  4533. SERIAL_PROTOCOLLN("");
  4534. KEEPALIVE_STATE(NOT_BUSY);
  4535. return;
  4536. break;
  4537. case 109:
  4538. {// M109 - Wait for extruder heater to reach target.
  4539. if(setTargetedHotend(109)){
  4540. break;
  4541. }
  4542. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4543. heating_status = 1;
  4544. if (farm_mode) { prusa_statistics(1); };
  4545. #ifdef AUTOTEMP
  4546. autotemp_enabled=false;
  4547. #endif
  4548. if (code_seen('S')) {
  4549. setTargetHotend(code_value(), tmp_extruder);
  4550. CooldownNoWait = true;
  4551. } else if (code_seen('R')) {
  4552. setTargetHotend(code_value(), tmp_extruder);
  4553. CooldownNoWait = false;
  4554. }
  4555. #ifdef AUTOTEMP
  4556. if (code_seen('S')) autotemp_min=code_value();
  4557. if (code_seen('B')) autotemp_max=code_value();
  4558. if (code_seen('F'))
  4559. {
  4560. autotemp_factor=code_value();
  4561. autotemp_enabled=true;
  4562. }
  4563. #endif
  4564. setWatch();
  4565. codenum = millis();
  4566. /* See if we are heating up or cooling down */
  4567. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4568. KEEPALIVE_STATE(NOT_BUSY);
  4569. cancel_heatup = false;
  4570. wait_for_heater(codenum); //loops until target temperature is reached
  4571. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4572. KEEPALIVE_STATE(IN_HANDLER);
  4573. heating_status = 2;
  4574. if (farm_mode) { prusa_statistics(2); };
  4575. //starttime=millis();
  4576. previous_millis_cmd = millis();
  4577. }
  4578. break;
  4579. case 190: // M190 - Wait for bed heater to reach target.
  4580. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4581. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4582. heating_status = 3;
  4583. if (farm_mode) { prusa_statistics(1); };
  4584. if (code_seen('S'))
  4585. {
  4586. setTargetBed(code_value());
  4587. CooldownNoWait = true;
  4588. }
  4589. else if (code_seen('R'))
  4590. {
  4591. setTargetBed(code_value());
  4592. CooldownNoWait = false;
  4593. }
  4594. codenum = millis();
  4595. cancel_heatup = false;
  4596. target_direction = isHeatingBed(); // true if heating, false if cooling
  4597. KEEPALIVE_STATE(NOT_BUSY);
  4598. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4599. {
  4600. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4601. {
  4602. if (!farm_mode) {
  4603. float tt = degHotend(active_extruder);
  4604. SERIAL_PROTOCOLPGM("T:");
  4605. SERIAL_PROTOCOL(tt);
  4606. SERIAL_PROTOCOLPGM(" E:");
  4607. SERIAL_PROTOCOL((int)active_extruder);
  4608. SERIAL_PROTOCOLPGM(" B:");
  4609. SERIAL_PROTOCOL_F(degBed(), 1);
  4610. SERIAL_PROTOCOLLN("");
  4611. }
  4612. codenum = millis();
  4613. }
  4614. manage_heater();
  4615. manage_inactivity();
  4616. lcd_update();
  4617. }
  4618. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4619. KEEPALIVE_STATE(IN_HANDLER);
  4620. heating_status = 4;
  4621. previous_millis_cmd = millis();
  4622. #endif
  4623. break;
  4624. #if defined(FAN_PIN) && FAN_PIN > -1
  4625. case 106: //M106 Fan On
  4626. if (code_seen('S')){
  4627. fanSpeed=constrain(code_value(),0,255);
  4628. }
  4629. else {
  4630. fanSpeed=255;
  4631. }
  4632. break;
  4633. case 107: //M107 Fan Off
  4634. fanSpeed = 0;
  4635. break;
  4636. #endif //FAN_PIN
  4637. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4638. case 80: // M80 - Turn on Power Supply
  4639. SET_OUTPUT(PS_ON_PIN); //GND
  4640. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4641. // If you have a switch on suicide pin, this is useful
  4642. // if you want to start another print with suicide feature after
  4643. // a print without suicide...
  4644. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4645. SET_OUTPUT(SUICIDE_PIN);
  4646. WRITE(SUICIDE_PIN, HIGH);
  4647. #endif
  4648. #ifdef ULTIPANEL
  4649. powersupply = true;
  4650. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4651. lcd_update();
  4652. #endif
  4653. break;
  4654. #endif
  4655. case 81: // M81 - Turn off Power Supply
  4656. disable_heater();
  4657. st_synchronize();
  4658. disable_e0();
  4659. disable_e1();
  4660. disable_e2();
  4661. finishAndDisableSteppers();
  4662. fanSpeed = 0;
  4663. delay(1000); // Wait a little before to switch off
  4664. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4665. st_synchronize();
  4666. suicide();
  4667. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4668. SET_OUTPUT(PS_ON_PIN);
  4669. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4670. #endif
  4671. #ifdef ULTIPANEL
  4672. powersupply = false;
  4673. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4674. lcd_update();
  4675. #endif
  4676. break;
  4677. case 82:
  4678. axis_relative_modes[3] = false;
  4679. break;
  4680. case 83:
  4681. axis_relative_modes[3] = true;
  4682. break;
  4683. case 18: //compatibility
  4684. case 84: // M84
  4685. if(code_seen('S')){
  4686. stepper_inactive_time = code_value() * 1000;
  4687. }
  4688. else
  4689. {
  4690. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4691. if(all_axis)
  4692. {
  4693. st_synchronize();
  4694. disable_e0();
  4695. disable_e1();
  4696. disable_e2();
  4697. finishAndDisableSteppers();
  4698. }
  4699. else
  4700. {
  4701. st_synchronize();
  4702. if (code_seen('X')) disable_x();
  4703. if (code_seen('Y')) disable_y();
  4704. if (code_seen('Z')) disable_z();
  4705. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4706. if (code_seen('E')) {
  4707. disable_e0();
  4708. disable_e1();
  4709. disable_e2();
  4710. }
  4711. #endif
  4712. }
  4713. }
  4714. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4715. print_time_remaining_init();
  4716. snmm_filaments_used = 0;
  4717. break;
  4718. case 85: // M85
  4719. if(code_seen('S')) {
  4720. max_inactive_time = code_value() * 1000;
  4721. }
  4722. break;
  4723. case 92: // M92
  4724. for(int8_t i=0; i < NUM_AXIS; i++)
  4725. {
  4726. if(code_seen(axis_codes[i]))
  4727. {
  4728. if(i == 3) { // E
  4729. float value = code_value();
  4730. if(value < 20.0) {
  4731. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4732. max_jerk[E_AXIS] *= factor;
  4733. max_feedrate[i] *= factor;
  4734. axis_steps_per_sqr_second[i] *= factor;
  4735. }
  4736. axis_steps_per_unit[i] = value;
  4737. }
  4738. else {
  4739. axis_steps_per_unit[i] = code_value();
  4740. }
  4741. }
  4742. }
  4743. break;
  4744. case 110: // M110 - reset line pos
  4745. if (code_seen('N'))
  4746. gcode_LastN = code_value_long();
  4747. break;
  4748. #ifdef HOST_KEEPALIVE_FEATURE
  4749. case 113: // M113 - Get or set Host Keepalive interval
  4750. if (code_seen('S')) {
  4751. host_keepalive_interval = (uint8_t)code_value_short();
  4752. // NOMORE(host_keepalive_interval, 60);
  4753. }
  4754. else {
  4755. SERIAL_ECHO_START;
  4756. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4757. SERIAL_PROTOCOLLN("");
  4758. }
  4759. break;
  4760. #endif
  4761. case 115: // M115
  4762. if (code_seen('V')) {
  4763. // Report the Prusa version number.
  4764. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4765. } else if (code_seen('U')) {
  4766. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4767. // pause the print and ask the user to upgrade the firmware.
  4768. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4769. } else {
  4770. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4771. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4772. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4773. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4774. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4775. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4776. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4777. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4778. SERIAL_ECHOPGM(" UUID:");
  4779. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4780. }
  4781. break;
  4782. /* case 117: // M117 display message
  4783. starpos = (strchr(strchr_pointer + 5,'*'));
  4784. if(starpos!=NULL)
  4785. *(starpos)='\0';
  4786. lcd_setstatus(strchr_pointer + 5);
  4787. break;*/
  4788. case 114: // M114
  4789. gcode_M114();
  4790. break;
  4791. case 120: // M120
  4792. enable_endstops(false) ;
  4793. break;
  4794. case 121: // M121
  4795. enable_endstops(true) ;
  4796. break;
  4797. case 119: // M119
  4798. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4799. SERIAL_PROTOCOLLN("");
  4800. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4801. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4802. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4803. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4804. }else{
  4805. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4806. }
  4807. SERIAL_PROTOCOLLN("");
  4808. #endif
  4809. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4810. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4811. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4812. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4813. }else{
  4814. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4815. }
  4816. SERIAL_PROTOCOLLN("");
  4817. #endif
  4818. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4819. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4820. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4821. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4822. }else{
  4823. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4824. }
  4825. SERIAL_PROTOCOLLN("");
  4826. #endif
  4827. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4828. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4829. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4830. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4831. }else{
  4832. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4833. }
  4834. SERIAL_PROTOCOLLN("");
  4835. #endif
  4836. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4837. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4838. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4839. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4840. }else{
  4841. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4842. }
  4843. SERIAL_PROTOCOLLN("");
  4844. #endif
  4845. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4846. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4847. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4848. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4849. }else{
  4850. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4851. }
  4852. SERIAL_PROTOCOLLN("");
  4853. #endif
  4854. break;
  4855. //TODO: update for all axis, use for loop
  4856. #ifdef BLINKM
  4857. case 150: // M150
  4858. {
  4859. byte red;
  4860. byte grn;
  4861. byte blu;
  4862. if(code_seen('R')) red = code_value();
  4863. if(code_seen('U')) grn = code_value();
  4864. if(code_seen('B')) blu = code_value();
  4865. SendColors(red,grn,blu);
  4866. }
  4867. break;
  4868. #endif //BLINKM
  4869. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4870. {
  4871. tmp_extruder = active_extruder;
  4872. if(code_seen('T')) {
  4873. tmp_extruder = code_value();
  4874. if(tmp_extruder >= EXTRUDERS) {
  4875. SERIAL_ECHO_START;
  4876. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4877. break;
  4878. }
  4879. }
  4880. float area = .0;
  4881. if(code_seen('D')) {
  4882. float diameter = (float)code_value();
  4883. if (diameter == 0.0) {
  4884. // setting any extruder filament size disables volumetric on the assumption that
  4885. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4886. // for all extruders
  4887. volumetric_enabled = false;
  4888. } else {
  4889. filament_size[tmp_extruder] = (float)code_value();
  4890. // make sure all extruders have some sane value for the filament size
  4891. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4892. #if EXTRUDERS > 1
  4893. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4894. #if EXTRUDERS > 2
  4895. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4896. #endif
  4897. #endif
  4898. volumetric_enabled = true;
  4899. }
  4900. } else {
  4901. //reserved for setting filament diameter via UFID or filament measuring device
  4902. break;
  4903. }
  4904. calculate_extruder_multipliers();
  4905. }
  4906. break;
  4907. case 201: // M201
  4908. for(int8_t i=0; i < NUM_AXIS; i++)
  4909. {
  4910. if(code_seen(axis_codes[i]))
  4911. {
  4912. max_acceleration_units_per_sq_second[i] = code_value();
  4913. }
  4914. }
  4915. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4916. reset_acceleration_rates();
  4917. break;
  4918. #if 0 // Not used for Sprinter/grbl gen6
  4919. case 202: // M202
  4920. for(int8_t i=0; i < NUM_AXIS; i++) {
  4921. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4922. }
  4923. break;
  4924. #endif
  4925. case 203: // M203 max feedrate mm/sec
  4926. for(int8_t i=0; i < NUM_AXIS; i++) {
  4927. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4928. }
  4929. break;
  4930. case 204: // M204 acclereration S normal moves T filmanent only moves
  4931. {
  4932. if(code_seen('S')) acceleration = code_value() ;
  4933. if(code_seen('T')) retract_acceleration = code_value() ;
  4934. }
  4935. break;
  4936. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4937. {
  4938. if(code_seen('S')) minimumfeedrate = code_value();
  4939. if(code_seen('T')) mintravelfeedrate = code_value();
  4940. if(code_seen('B')) minsegmenttime = code_value() ;
  4941. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4942. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4943. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4944. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4945. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4946. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4947. }
  4948. break;
  4949. case 206: // M206 additional homing offset
  4950. for(int8_t i=0; i < 3; i++)
  4951. {
  4952. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4953. }
  4954. break;
  4955. #ifdef FWRETRACT
  4956. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4957. {
  4958. if(code_seen('S'))
  4959. {
  4960. retract_length = code_value() ;
  4961. }
  4962. if(code_seen('F'))
  4963. {
  4964. retract_feedrate = code_value()/60 ;
  4965. }
  4966. if(code_seen('Z'))
  4967. {
  4968. retract_zlift = code_value() ;
  4969. }
  4970. }break;
  4971. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4972. {
  4973. if(code_seen('S'))
  4974. {
  4975. retract_recover_length = code_value() ;
  4976. }
  4977. if(code_seen('F'))
  4978. {
  4979. retract_recover_feedrate = code_value()/60 ;
  4980. }
  4981. }break;
  4982. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4983. {
  4984. if(code_seen('S'))
  4985. {
  4986. int t= code_value() ;
  4987. switch(t)
  4988. {
  4989. case 0:
  4990. {
  4991. autoretract_enabled=false;
  4992. retracted[0]=false;
  4993. #if EXTRUDERS > 1
  4994. retracted[1]=false;
  4995. #endif
  4996. #if EXTRUDERS > 2
  4997. retracted[2]=false;
  4998. #endif
  4999. }break;
  5000. case 1:
  5001. {
  5002. autoretract_enabled=true;
  5003. retracted[0]=false;
  5004. #if EXTRUDERS > 1
  5005. retracted[1]=false;
  5006. #endif
  5007. #if EXTRUDERS > 2
  5008. retracted[2]=false;
  5009. #endif
  5010. }break;
  5011. default:
  5012. SERIAL_ECHO_START;
  5013. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5014. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5015. SERIAL_ECHOLNPGM("\"(1)");
  5016. }
  5017. }
  5018. }break;
  5019. #endif // FWRETRACT
  5020. #if EXTRUDERS > 1
  5021. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5022. {
  5023. if(setTargetedHotend(218)){
  5024. break;
  5025. }
  5026. if(code_seen('X'))
  5027. {
  5028. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5029. }
  5030. if(code_seen('Y'))
  5031. {
  5032. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5033. }
  5034. SERIAL_ECHO_START;
  5035. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5036. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5037. {
  5038. SERIAL_ECHO(" ");
  5039. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5040. SERIAL_ECHO(",");
  5041. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5042. }
  5043. SERIAL_ECHOLN("");
  5044. }break;
  5045. #endif
  5046. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5047. {
  5048. if(code_seen('S'))
  5049. {
  5050. feedmultiply = code_value() ;
  5051. }
  5052. }
  5053. break;
  5054. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5055. {
  5056. if(code_seen('S'))
  5057. {
  5058. int tmp_code = code_value();
  5059. if (code_seen('T'))
  5060. {
  5061. if(setTargetedHotend(221)){
  5062. break;
  5063. }
  5064. extruder_multiply[tmp_extruder] = tmp_code;
  5065. }
  5066. else
  5067. {
  5068. extrudemultiply = tmp_code ;
  5069. }
  5070. }
  5071. calculate_extruder_multipliers();
  5072. }
  5073. break;
  5074. #ifndef _DISABLE_M42_M226
  5075. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5076. {
  5077. if(code_seen('P')){
  5078. int pin_number = code_value(); // pin number
  5079. int pin_state = -1; // required pin state - default is inverted
  5080. if(code_seen('S')) pin_state = code_value(); // required pin state
  5081. if(pin_state >= -1 && pin_state <= 1){
  5082. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5083. {
  5084. if (sensitive_pins[i] == pin_number)
  5085. {
  5086. pin_number = -1;
  5087. break;
  5088. }
  5089. }
  5090. if (pin_number > -1)
  5091. {
  5092. int target = LOW;
  5093. st_synchronize();
  5094. pinMode(pin_number, INPUT);
  5095. switch(pin_state){
  5096. case 1:
  5097. target = HIGH;
  5098. break;
  5099. case 0:
  5100. target = LOW;
  5101. break;
  5102. case -1:
  5103. target = !digitalRead(pin_number);
  5104. break;
  5105. }
  5106. while(digitalRead(pin_number) != target){
  5107. manage_heater();
  5108. manage_inactivity();
  5109. lcd_update();
  5110. }
  5111. }
  5112. }
  5113. }
  5114. }
  5115. break;
  5116. #endif //_DISABLE_M42_M226
  5117. #if NUM_SERVOS > 0
  5118. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5119. {
  5120. int servo_index = -1;
  5121. int servo_position = 0;
  5122. if (code_seen('P'))
  5123. servo_index = code_value();
  5124. if (code_seen('S')) {
  5125. servo_position = code_value();
  5126. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5127. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5128. servos[servo_index].attach(0);
  5129. #endif
  5130. servos[servo_index].write(servo_position);
  5131. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5132. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5133. servos[servo_index].detach();
  5134. #endif
  5135. }
  5136. else {
  5137. SERIAL_ECHO_START;
  5138. SERIAL_ECHO("Servo ");
  5139. SERIAL_ECHO(servo_index);
  5140. SERIAL_ECHOLN(" out of range");
  5141. }
  5142. }
  5143. else if (servo_index >= 0) {
  5144. SERIAL_PROTOCOL(_T(MSG_OK));
  5145. SERIAL_PROTOCOL(" Servo ");
  5146. SERIAL_PROTOCOL(servo_index);
  5147. SERIAL_PROTOCOL(": ");
  5148. SERIAL_PROTOCOL(servos[servo_index].read());
  5149. SERIAL_PROTOCOLLN("");
  5150. }
  5151. }
  5152. break;
  5153. #endif // NUM_SERVOS > 0
  5154. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5155. case 300: // M300
  5156. {
  5157. int beepS = code_seen('S') ? code_value() : 110;
  5158. int beepP = code_seen('P') ? code_value() : 1000;
  5159. if (beepS > 0)
  5160. {
  5161. #if BEEPER > 0
  5162. tone(BEEPER, beepS);
  5163. delay(beepP);
  5164. noTone(BEEPER);
  5165. #elif defined(ULTRALCD)
  5166. lcd_buzz(beepS, beepP);
  5167. #elif defined(LCD_USE_I2C_BUZZER)
  5168. lcd_buzz(beepP, beepS);
  5169. #endif
  5170. }
  5171. else
  5172. {
  5173. delay(beepP);
  5174. }
  5175. }
  5176. break;
  5177. #endif // M300
  5178. #ifdef PIDTEMP
  5179. case 301: // M301
  5180. {
  5181. if(code_seen('P')) Kp = code_value();
  5182. if(code_seen('I')) Ki = scalePID_i(code_value());
  5183. if(code_seen('D')) Kd = scalePID_d(code_value());
  5184. #ifdef PID_ADD_EXTRUSION_RATE
  5185. if(code_seen('C')) Kc = code_value();
  5186. #endif
  5187. updatePID();
  5188. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5189. SERIAL_PROTOCOL(" p:");
  5190. SERIAL_PROTOCOL(Kp);
  5191. SERIAL_PROTOCOL(" i:");
  5192. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5193. SERIAL_PROTOCOL(" d:");
  5194. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5195. #ifdef PID_ADD_EXTRUSION_RATE
  5196. SERIAL_PROTOCOL(" c:");
  5197. //Kc does not have scaling applied above, or in resetting defaults
  5198. SERIAL_PROTOCOL(Kc);
  5199. #endif
  5200. SERIAL_PROTOCOLLN("");
  5201. }
  5202. break;
  5203. #endif //PIDTEMP
  5204. #ifdef PIDTEMPBED
  5205. case 304: // M304
  5206. {
  5207. if(code_seen('P')) bedKp = code_value();
  5208. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5209. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5210. updatePID();
  5211. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5212. SERIAL_PROTOCOL(" p:");
  5213. SERIAL_PROTOCOL(bedKp);
  5214. SERIAL_PROTOCOL(" i:");
  5215. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5216. SERIAL_PROTOCOL(" d:");
  5217. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5218. SERIAL_PROTOCOLLN("");
  5219. }
  5220. break;
  5221. #endif //PIDTEMP
  5222. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5223. {
  5224. #ifdef CHDK
  5225. SET_OUTPUT(CHDK);
  5226. WRITE(CHDK, HIGH);
  5227. chdkHigh = millis();
  5228. chdkActive = true;
  5229. #else
  5230. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5231. const uint8_t NUM_PULSES=16;
  5232. const float PULSE_LENGTH=0.01524;
  5233. for(int i=0; i < NUM_PULSES; i++) {
  5234. WRITE(PHOTOGRAPH_PIN, HIGH);
  5235. _delay_ms(PULSE_LENGTH);
  5236. WRITE(PHOTOGRAPH_PIN, LOW);
  5237. _delay_ms(PULSE_LENGTH);
  5238. }
  5239. delay(7.33);
  5240. for(int i=0; i < NUM_PULSES; i++) {
  5241. WRITE(PHOTOGRAPH_PIN, HIGH);
  5242. _delay_ms(PULSE_LENGTH);
  5243. WRITE(PHOTOGRAPH_PIN, LOW);
  5244. _delay_ms(PULSE_LENGTH);
  5245. }
  5246. #endif
  5247. #endif //chdk end if
  5248. }
  5249. break;
  5250. #ifdef DOGLCD
  5251. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5252. {
  5253. if (code_seen('C')) {
  5254. lcd_setcontrast( ((int)code_value())&63 );
  5255. }
  5256. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5257. SERIAL_PROTOCOL(lcd_contrast);
  5258. SERIAL_PROTOCOLLN("");
  5259. }
  5260. break;
  5261. #endif
  5262. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5263. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5264. {
  5265. float temp = .0;
  5266. if (code_seen('S')) temp=code_value();
  5267. set_extrude_min_temp(temp);
  5268. }
  5269. break;
  5270. #endif
  5271. case 303: // M303 PID autotune
  5272. {
  5273. float temp = 150.0;
  5274. int e=0;
  5275. int c=5;
  5276. if (code_seen('E')) e=code_value();
  5277. if (e<0)
  5278. temp=70;
  5279. if (code_seen('S')) temp=code_value();
  5280. if (code_seen('C')) c=code_value();
  5281. PID_autotune(temp, e, c);
  5282. }
  5283. break;
  5284. case 400: // M400 finish all moves
  5285. {
  5286. st_synchronize();
  5287. }
  5288. break;
  5289. case 500: // M500 Store settings in EEPROM
  5290. {
  5291. Config_StoreSettings(EEPROM_OFFSET);
  5292. }
  5293. break;
  5294. case 501: // M501 Read settings from EEPROM
  5295. {
  5296. Config_RetrieveSettings(EEPROM_OFFSET);
  5297. }
  5298. break;
  5299. case 502: // M502 Revert to default settings
  5300. {
  5301. Config_ResetDefault();
  5302. }
  5303. break;
  5304. case 503: // M503 print settings currently in memory
  5305. {
  5306. Config_PrintSettings();
  5307. }
  5308. break;
  5309. case 509: //M509 Force language selection
  5310. {
  5311. lang_reset();
  5312. SERIAL_ECHO_START;
  5313. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5314. }
  5315. break;
  5316. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5317. case 540:
  5318. {
  5319. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5320. }
  5321. break;
  5322. #endif
  5323. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5324. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5325. {
  5326. float value;
  5327. if (code_seen('Z'))
  5328. {
  5329. value = code_value();
  5330. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5331. {
  5332. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5333. SERIAL_ECHO_START;
  5334. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5335. SERIAL_PROTOCOLLN("");
  5336. }
  5337. else
  5338. {
  5339. SERIAL_ECHO_START;
  5340. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5341. SERIAL_ECHORPGM(MSG_Z_MIN);
  5342. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5343. SERIAL_ECHORPGM(MSG_Z_MAX);
  5344. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5345. SERIAL_PROTOCOLLN("");
  5346. }
  5347. }
  5348. else
  5349. {
  5350. SERIAL_ECHO_START;
  5351. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5352. SERIAL_ECHO(-zprobe_zoffset);
  5353. SERIAL_PROTOCOLLN("");
  5354. }
  5355. break;
  5356. }
  5357. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5358. #ifdef FILAMENTCHANGEENABLE
  5359. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5360. {
  5361. #ifdef PAT9125
  5362. bool old_fsensor_enabled = fsensor_enabled;
  5363. fsensor_enabled = false; //temporary solution for unexpected restarting
  5364. #endif //PAT9125
  5365. st_synchronize();
  5366. float target[4];
  5367. float lastpos[4];
  5368. if (farm_mode)
  5369. {
  5370. prusa_statistics(22);
  5371. }
  5372. feedmultiplyBckp=feedmultiply;
  5373. int8_t TooLowZ = 0;
  5374. float HotendTempBckp = degTargetHotend(active_extruder);
  5375. int fanSpeedBckp = fanSpeed;
  5376. target[X_AXIS]=current_position[X_AXIS];
  5377. target[Y_AXIS]=current_position[Y_AXIS];
  5378. target[Z_AXIS]=current_position[Z_AXIS];
  5379. target[E_AXIS]=current_position[E_AXIS];
  5380. lastpos[X_AXIS]=current_position[X_AXIS];
  5381. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5382. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5383. lastpos[E_AXIS]=current_position[E_AXIS];
  5384. //Restract extruder
  5385. if(code_seen('E'))
  5386. {
  5387. target[E_AXIS]+= code_value();
  5388. }
  5389. else
  5390. {
  5391. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5392. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5393. #endif
  5394. }
  5395. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5396. //Lift Z
  5397. if(code_seen('Z'))
  5398. {
  5399. target[Z_AXIS]+= code_value();
  5400. }
  5401. else
  5402. {
  5403. #ifdef FILAMENTCHANGE_ZADD
  5404. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5405. if(target[Z_AXIS] < 10){
  5406. target[Z_AXIS]+= 10 ;
  5407. TooLowZ = 1;
  5408. }else{
  5409. TooLowZ = 0;
  5410. }
  5411. #endif
  5412. }
  5413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5414. //Move XY to side
  5415. if(code_seen('X'))
  5416. {
  5417. target[X_AXIS]+= code_value();
  5418. }
  5419. else
  5420. {
  5421. #ifdef FILAMENTCHANGE_XPOS
  5422. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5423. #endif
  5424. }
  5425. if(code_seen('Y'))
  5426. {
  5427. target[Y_AXIS]= code_value();
  5428. }
  5429. else
  5430. {
  5431. #ifdef FILAMENTCHANGE_YPOS
  5432. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5433. #endif
  5434. }
  5435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5436. st_synchronize();
  5437. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5438. uint8_t cnt = 0;
  5439. int counterBeep = 0;
  5440. fanSpeed = 0;
  5441. unsigned long waiting_start_time = millis();
  5442. uint8_t wait_for_user_state = 0;
  5443. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5444. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5445. //cnt++;
  5446. manage_heater();
  5447. manage_inactivity(true);
  5448. /*#ifdef SNMM
  5449. target[E_AXIS] += 0.002;
  5450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5451. #endif // SNMM*/
  5452. //if (cnt == 0)
  5453. {
  5454. #if BEEPER > 0
  5455. if (counterBeep == 500) {
  5456. counterBeep = 0;
  5457. }
  5458. SET_OUTPUT(BEEPER);
  5459. if (counterBeep == 0) {
  5460. WRITE(BEEPER, HIGH);
  5461. }
  5462. if (counterBeep == 20) {
  5463. WRITE(BEEPER, LOW);
  5464. }
  5465. counterBeep++;
  5466. #else
  5467. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5468. lcd_buzz(1000 / 6, 100);
  5469. #else
  5470. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5471. #endif
  5472. #endif
  5473. }
  5474. switch (wait_for_user_state) {
  5475. case 0:
  5476. delay_keep_alive(4);
  5477. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5478. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5479. wait_for_user_state = 1;
  5480. setTargetHotend(0, 0);
  5481. setTargetHotend(0, 1);
  5482. setTargetHotend(0, 2);
  5483. st_synchronize();
  5484. disable_e0();
  5485. disable_e1();
  5486. disable_e2();
  5487. }
  5488. break;
  5489. case 1:
  5490. delay_keep_alive(4);
  5491. if (lcd_clicked()) {
  5492. setTargetHotend(HotendTempBckp, active_extruder);
  5493. lcd_wait_for_heater();
  5494. wait_for_user_state = 2;
  5495. }
  5496. break;
  5497. case 2:
  5498. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5499. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5500. waiting_start_time = millis();
  5501. wait_for_user_state = 0;
  5502. }
  5503. else {
  5504. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5505. lcd.setCursor(1, 4);
  5506. lcd.print(ftostr3(degHotend(active_extruder)));
  5507. }
  5508. break;
  5509. }
  5510. }
  5511. WRITE(BEEPER, LOW);
  5512. lcd_change_fil_state = 0;
  5513. // Unload filament
  5514. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5515. KEEPALIVE_STATE(IN_HANDLER);
  5516. custom_message = true;
  5517. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5518. if (code_seen('L'))
  5519. {
  5520. target[E_AXIS] += code_value();
  5521. }
  5522. else
  5523. {
  5524. #ifdef SNMM
  5525. #else
  5526. #ifdef FILAMENTCHANGE_FINALRETRACT
  5527. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5528. #endif
  5529. #endif // SNMM
  5530. }
  5531. #ifdef SNMM
  5532. target[E_AXIS] += 12;
  5533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5534. target[E_AXIS] += 6;
  5535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5536. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5538. st_synchronize();
  5539. target[E_AXIS] += (FIL_COOLING);
  5540. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5541. target[E_AXIS] += (FIL_COOLING*-1);
  5542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5543. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5544. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5545. st_synchronize();
  5546. #else
  5547. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5548. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5549. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5550. st_synchronize();
  5551. #ifdef TMC2130
  5552. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5553. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5554. #else
  5555. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5556. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5557. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5558. #endif //TMC2130
  5559. target[E_AXIS] -= 45;
  5560. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5561. st_synchronize();
  5562. target[E_AXIS] -= 15;
  5563. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5564. st_synchronize();
  5565. target[E_AXIS] -= 20;
  5566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5567. st_synchronize();
  5568. #ifdef TMC2130
  5569. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5570. #else
  5571. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5572. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5573. else st_current_set(2, tmp_motor_loud[2]);
  5574. #endif //TMC2130
  5575. #endif // SNMM
  5576. //finish moves
  5577. st_synchronize();
  5578. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5579. //disable extruder steppers so filament can be removed
  5580. disable_e0();
  5581. disable_e1();
  5582. disable_e2();
  5583. delay(100);
  5584. WRITE(BEEPER, HIGH);
  5585. counterBeep = 0;
  5586. while(!lcd_clicked() && (counterBeep < 50)) {
  5587. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5588. delay_keep_alive(100);
  5589. counterBeep++;
  5590. }
  5591. WRITE(BEEPER, LOW);
  5592. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5593. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5594. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5595. //lcd_return_to_status();
  5596. lcd_update_enable(true);
  5597. //Wait for user to insert filament
  5598. lcd_wait_interact();
  5599. //load_filament_time = millis();
  5600. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5601. #ifdef PAT9125
  5602. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5603. #endif //PAT9125
  5604. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5605. while(!lcd_clicked())
  5606. {
  5607. manage_heater();
  5608. manage_inactivity(true);
  5609. #ifdef PAT9125
  5610. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5611. {
  5612. tone(BEEPER, 1000);
  5613. delay_keep_alive(50);
  5614. noTone(BEEPER);
  5615. break;
  5616. }
  5617. #endif //PAT9125
  5618. /*#ifdef SNMM
  5619. target[E_AXIS] += 0.002;
  5620. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5621. #endif // SNMM*/
  5622. }
  5623. #ifdef PAT9125
  5624. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5625. #endif //PAT9125
  5626. //WRITE(BEEPER, LOW);
  5627. KEEPALIVE_STATE(IN_HANDLER);
  5628. #ifdef SNMM
  5629. display_loading();
  5630. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5631. do {
  5632. target[E_AXIS] += 0.002;
  5633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5634. delay_keep_alive(2);
  5635. } while (!lcd_clicked());
  5636. KEEPALIVE_STATE(IN_HANDLER);
  5637. /*if (millis() - load_filament_time > 2) {
  5638. load_filament_time = millis();
  5639. target[E_AXIS] += 0.001;
  5640. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5641. }*/
  5642. //Filament inserted
  5643. //Feed the filament to the end of nozzle quickly
  5644. st_synchronize();
  5645. target[E_AXIS] += bowden_length[snmm_extruder];
  5646. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5647. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5649. target[E_AXIS] += 40;
  5650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5651. target[E_AXIS] += 10;
  5652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5653. #else
  5654. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5655. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5656. #endif // SNMM
  5657. //Extrude some filament
  5658. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5660. //Wait for user to check the state
  5661. lcd_change_fil_state = 0;
  5662. lcd_loading_filament();
  5663. tone(BEEPER, 500);
  5664. delay_keep_alive(50);
  5665. noTone(BEEPER);
  5666. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5667. lcd_change_fil_state = 0;
  5668. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5669. lcd_alright();
  5670. KEEPALIVE_STATE(IN_HANDLER);
  5671. switch(lcd_change_fil_state){
  5672. // Filament failed to load so load it again
  5673. case 2:
  5674. #ifdef SNMM
  5675. display_loading();
  5676. do {
  5677. target[E_AXIS] += 0.002;
  5678. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5679. delay_keep_alive(2);
  5680. } while (!lcd_clicked());
  5681. st_synchronize();
  5682. target[E_AXIS] += bowden_length[snmm_extruder];
  5683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5684. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5686. target[E_AXIS] += 40;
  5687. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5688. target[E_AXIS] += 10;
  5689. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5690. #else
  5691. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5692. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5693. #endif
  5694. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5696. lcd_loading_filament();
  5697. break;
  5698. // Filament loaded properly but color is not clear
  5699. case 3:
  5700. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5702. lcd_loading_color();
  5703. break;
  5704. // Everything good
  5705. default:
  5706. lcd_change_success();
  5707. lcd_update_enable(true);
  5708. break;
  5709. }
  5710. }
  5711. //Not let's go back to print
  5712. fanSpeed = fanSpeedBckp;
  5713. //Feed a little of filament to stabilize pressure
  5714. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5715. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5716. //Retract
  5717. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5718. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5719. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5720. //Move XY back
  5721. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5722. //Move Z back
  5723. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5724. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5725. //Unretract
  5726. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5727. //Set E position to original
  5728. plan_set_e_position(lastpos[E_AXIS]);
  5729. //Recover feed rate
  5730. feedmultiply=feedmultiplyBckp;
  5731. char cmd[9];
  5732. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5733. enquecommand(cmd);
  5734. lcd_setstatuspgm(_T(WELCOME_MSG));
  5735. custom_message = false;
  5736. custom_message_type = 0;
  5737. #ifdef PAT9125
  5738. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5739. if (fsensor_M600)
  5740. {
  5741. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5742. st_synchronize();
  5743. while (!is_buffer_empty())
  5744. {
  5745. process_commands();
  5746. cmdqueue_pop_front();
  5747. }
  5748. fsensor_enable();
  5749. fsensor_restore_print_and_continue();
  5750. }
  5751. #endif //PAT9125
  5752. }
  5753. break;
  5754. #endif //FILAMENTCHANGEENABLE
  5755. case 601: {
  5756. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5757. }
  5758. break;
  5759. case 602: {
  5760. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5761. }
  5762. break;
  5763. #ifdef PINDA_THERMISTOR
  5764. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5765. {
  5766. int set_target_pinda = 0;
  5767. if (code_seen('S')) {
  5768. set_target_pinda = code_value();
  5769. }
  5770. else {
  5771. break;
  5772. }
  5773. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5774. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5775. SERIAL_PROTOCOL(set_target_pinda);
  5776. SERIAL_PROTOCOLLN("");
  5777. codenum = millis();
  5778. cancel_heatup = false;
  5779. bool is_pinda_cooling = false;
  5780. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5781. is_pinda_cooling = true;
  5782. }
  5783. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5784. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5785. {
  5786. SERIAL_PROTOCOLPGM("P:");
  5787. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5788. SERIAL_PROTOCOLPGM("/");
  5789. SERIAL_PROTOCOL(set_target_pinda);
  5790. SERIAL_PROTOCOLLN("");
  5791. codenum = millis();
  5792. }
  5793. manage_heater();
  5794. manage_inactivity();
  5795. lcd_update();
  5796. }
  5797. LCD_MESSAGERPGM(_T(MSG_OK));
  5798. break;
  5799. }
  5800. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5801. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5802. uint8_t cal_status = calibration_status_pinda();
  5803. int16_t usteps = 0;
  5804. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5805. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5806. for (uint8_t i = 0; i < 6; i++)
  5807. {
  5808. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5809. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5810. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5811. SERIAL_PROTOCOLPGM(", ");
  5812. SERIAL_PROTOCOL(35 + (i * 5));
  5813. SERIAL_PROTOCOLPGM(", ");
  5814. SERIAL_PROTOCOL(usteps);
  5815. SERIAL_PROTOCOLPGM(", ");
  5816. SERIAL_PROTOCOL(mm * 1000);
  5817. SERIAL_PROTOCOLLN("");
  5818. }
  5819. }
  5820. else if (code_seen('!')) { // ! - Set factory default values
  5821. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5822. int16_t z_shift = 8; //40C - 20um - 8usteps
  5823. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5824. z_shift = 24; //45C - 60um - 24usteps
  5825. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5826. z_shift = 48; //50C - 120um - 48usteps
  5827. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5828. z_shift = 80; //55C - 200um - 80usteps
  5829. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5830. z_shift = 120; //60C - 300um - 120usteps
  5831. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5832. SERIAL_PROTOCOLLN("factory restored");
  5833. }
  5834. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5835. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5836. int16_t z_shift = 0;
  5837. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5838. SERIAL_PROTOCOLLN("zerorized");
  5839. }
  5840. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5841. int16_t usteps = code_value();
  5842. if (code_seen('I')) {
  5843. byte index = code_value();
  5844. if ((index >= 0) && (index < 5)) {
  5845. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5846. SERIAL_PROTOCOLLN("OK");
  5847. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5848. for (uint8_t i = 0; i < 6; i++)
  5849. {
  5850. usteps = 0;
  5851. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5852. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5853. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5854. SERIAL_PROTOCOLPGM(", ");
  5855. SERIAL_PROTOCOL(35 + (i * 5));
  5856. SERIAL_PROTOCOLPGM(", ");
  5857. SERIAL_PROTOCOL(usteps);
  5858. SERIAL_PROTOCOLPGM(", ");
  5859. SERIAL_PROTOCOL(mm * 1000);
  5860. SERIAL_PROTOCOLLN("");
  5861. }
  5862. }
  5863. }
  5864. }
  5865. else {
  5866. SERIAL_PROTOCOLPGM("no valid command");
  5867. }
  5868. break;
  5869. #endif //PINDA_THERMISTOR
  5870. #ifdef LIN_ADVANCE
  5871. case 900: // M900: Set LIN_ADVANCE options.
  5872. gcode_M900();
  5873. break;
  5874. #endif
  5875. case 907: // M907 Set digital trimpot motor current using axis codes.
  5876. {
  5877. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5878. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5879. if(code_seen('B')) st_current_set(4,code_value());
  5880. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5881. #endif
  5882. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5883. if(code_seen('X')) st_current_set(0, code_value());
  5884. #endif
  5885. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5886. if(code_seen('Z')) st_current_set(1, code_value());
  5887. #endif
  5888. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5889. if(code_seen('E')) st_current_set(2, code_value());
  5890. #endif
  5891. }
  5892. break;
  5893. case 908: // M908 Control digital trimpot directly.
  5894. {
  5895. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5896. uint8_t channel,current;
  5897. if(code_seen('P')) channel=code_value();
  5898. if(code_seen('S')) current=code_value();
  5899. digitalPotWrite(channel, current);
  5900. #endif
  5901. }
  5902. break;
  5903. #ifdef TMC2130
  5904. case 910: // M910 TMC2130 init
  5905. {
  5906. tmc2130_init();
  5907. }
  5908. break;
  5909. case 911: // M911 Set TMC2130 holding currents
  5910. {
  5911. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5912. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5913. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5914. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5915. }
  5916. break;
  5917. case 912: // M912 Set TMC2130 running currents
  5918. {
  5919. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5920. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5921. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5922. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5923. }
  5924. break;
  5925. case 913: // M913 Print TMC2130 currents
  5926. {
  5927. tmc2130_print_currents();
  5928. }
  5929. break;
  5930. case 914: // M914 Set normal mode
  5931. {
  5932. tmc2130_mode = TMC2130_MODE_NORMAL;
  5933. tmc2130_init();
  5934. }
  5935. break;
  5936. case 915: // M915 Set silent mode
  5937. {
  5938. tmc2130_mode = TMC2130_MODE_SILENT;
  5939. tmc2130_init();
  5940. }
  5941. break;
  5942. case 916: // M916 Set sg_thrs
  5943. {
  5944. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5945. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5946. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5947. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5948. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5949. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5950. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5951. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5952. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5953. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5954. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5955. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5956. }
  5957. break;
  5958. case 917: // M917 Set TMC2130 pwm_ampl
  5959. {
  5960. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5961. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5962. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5963. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5964. }
  5965. break;
  5966. case 918: // M918 Set TMC2130 pwm_grad
  5967. {
  5968. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5969. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5970. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5971. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5972. }
  5973. break;
  5974. #endif //TMC2130
  5975. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5976. {
  5977. #ifdef TMC2130
  5978. if(code_seen('E'))
  5979. {
  5980. uint16_t res_new = code_value();
  5981. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5982. {
  5983. st_synchronize();
  5984. uint8_t axis = E_AXIS;
  5985. uint16_t res = tmc2130_get_res(axis);
  5986. tmc2130_set_res(axis, res_new);
  5987. if (res_new > res)
  5988. {
  5989. uint16_t fac = (res_new / res);
  5990. axis_steps_per_unit[axis] *= fac;
  5991. position[E_AXIS] *= fac;
  5992. }
  5993. else
  5994. {
  5995. uint16_t fac = (res / res_new);
  5996. axis_steps_per_unit[axis] /= fac;
  5997. position[E_AXIS] /= fac;
  5998. }
  5999. }
  6000. }
  6001. #else //TMC2130
  6002. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6003. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6004. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6005. if(code_seen('B')) microstep_mode(4,code_value());
  6006. microstep_readings();
  6007. #endif
  6008. #endif //TMC2130
  6009. }
  6010. break;
  6011. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6012. {
  6013. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6014. if(code_seen('S')) switch((int)code_value())
  6015. {
  6016. case 1:
  6017. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6018. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6019. break;
  6020. case 2:
  6021. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6022. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6023. break;
  6024. }
  6025. microstep_readings();
  6026. #endif
  6027. }
  6028. break;
  6029. case 701: //M701: load filament
  6030. {
  6031. gcode_M701();
  6032. }
  6033. break;
  6034. case 702:
  6035. {
  6036. #ifdef SNMM
  6037. if (code_seen('U')) {
  6038. extr_unload_used(); //unload all filaments which were used in current print
  6039. }
  6040. else if (code_seen('C')) {
  6041. extr_unload(); //unload just current filament
  6042. }
  6043. else {
  6044. extr_unload_all(); //unload all filaments
  6045. }
  6046. #else
  6047. #ifdef PAT9125
  6048. bool old_fsensor_enabled = fsensor_enabled;
  6049. fsensor_enabled = false;
  6050. #endif //PAT9125
  6051. custom_message = true;
  6052. custom_message_type = 2;
  6053. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6054. // extr_unload2();
  6055. current_position[E_AXIS] -= 45;
  6056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6057. st_synchronize();
  6058. current_position[E_AXIS] -= 15;
  6059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6060. st_synchronize();
  6061. current_position[E_AXIS] -= 20;
  6062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6063. st_synchronize();
  6064. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6065. //disable extruder steppers so filament can be removed
  6066. disable_e0();
  6067. disable_e1();
  6068. disable_e2();
  6069. delay(100);
  6070. WRITE(BEEPER, HIGH);
  6071. uint8_t counterBeep = 0;
  6072. while (!lcd_clicked() && (counterBeep < 50)) {
  6073. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6074. delay_keep_alive(100);
  6075. counterBeep++;
  6076. }
  6077. WRITE(BEEPER, LOW);
  6078. st_synchronize();
  6079. while (lcd_clicked()) delay_keep_alive(100);
  6080. lcd_update_enable(true);
  6081. lcd_setstatuspgm(_T(WELCOME_MSG));
  6082. custom_message = false;
  6083. custom_message_type = 0;
  6084. #ifdef PAT9125
  6085. fsensor_enabled = old_fsensor_enabled;
  6086. #endif //PAT9125
  6087. #endif
  6088. }
  6089. break;
  6090. case 999: // M999: Restart after being stopped
  6091. Stopped = false;
  6092. lcd_reset_alert_level();
  6093. gcode_LastN = Stopped_gcode_LastN;
  6094. FlushSerialRequestResend();
  6095. break;
  6096. default:
  6097. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6098. }
  6099. } // end if(code_seen('M')) (end of M codes)
  6100. else if(code_seen('T'))
  6101. {
  6102. int index;
  6103. st_synchronize();
  6104. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6105. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6106. SERIAL_ECHOLNPGM("Invalid T code.");
  6107. }
  6108. else {
  6109. if (*(strchr_pointer + index) == '?') {
  6110. tmp_extruder = choose_extruder_menu();
  6111. }
  6112. else {
  6113. tmp_extruder = code_value();
  6114. }
  6115. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6116. #ifdef SNMM
  6117. #ifdef LIN_ADVANCE
  6118. if (snmm_extruder != tmp_extruder)
  6119. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6120. #endif
  6121. snmm_extruder = tmp_extruder;
  6122. delay(100);
  6123. disable_e0();
  6124. disable_e1();
  6125. disable_e2();
  6126. pinMode(E_MUX0_PIN, OUTPUT);
  6127. pinMode(E_MUX1_PIN, OUTPUT);
  6128. delay(100);
  6129. SERIAL_ECHO_START;
  6130. SERIAL_ECHO("T:");
  6131. SERIAL_ECHOLN((int)tmp_extruder);
  6132. switch (tmp_extruder) {
  6133. case 1:
  6134. WRITE(E_MUX0_PIN, HIGH);
  6135. WRITE(E_MUX1_PIN, LOW);
  6136. break;
  6137. case 2:
  6138. WRITE(E_MUX0_PIN, LOW);
  6139. WRITE(E_MUX1_PIN, HIGH);
  6140. break;
  6141. case 3:
  6142. WRITE(E_MUX0_PIN, HIGH);
  6143. WRITE(E_MUX1_PIN, HIGH);
  6144. break;
  6145. default:
  6146. WRITE(E_MUX0_PIN, LOW);
  6147. WRITE(E_MUX1_PIN, LOW);
  6148. break;
  6149. }
  6150. delay(100);
  6151. #else
  6152. if (tmp_extruder >= EXTRUDERS) {
  6153. SERIAL_ECHO_START;
  6154. SERIAL_ECHOPGM("T");
  6155. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6156. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6157. }
  6158. else {
  6159. boolean make_move = false;
  6160. if (code_seen('F')) {
  6161. make_move = true;
  6162. next_feedrate = code_value();
  6163. if (next_feedrate > 0.0) {
  6164. feedrate = next_feedrate;
  6165. }
  6166. }
  6167. #if EXTRUDERS > 1
  6168. if (tmp_extruder != active_extruder) {
  6169. // Save current position to return to after applying extruder offset
  6170. memcpy(destination, current_position, sizeof(destination));
  6171. // Offset extruder (only by XY)
  6172. int i;
  6173. for (i = 0; i < 2; i++) {
  6174. current_position[i] = current_position[i] -
  6175. extruder_offset[i][active_extruder] +
  6176. extruder_offset[i][tmp_extruder];
  6177. }
  6178. // Set the new active extruder and position
  6179. active_extruder = tmp_extruder;
  6180. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6181. // Move to the old position if 'F' was in the parameters
  6182. if (make_move && Stopped == false) {
  6183. prepare_move();
  6184. }
  6185. }
  6186. #endif
  6187. SERIAL_ECHO_START;
  6188. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6189. SERIAL_PROTOCOLLN((int)active_extruder);
  6190. }
  6191. #endif
  6192. }
  6193. } // end if(code_seen('T')) (end of T codes)
  6194. #ifdef DEBUG_DCODES
  6195. else if (code_seen('D')) // D codes (debug)
  6196. {
  6197. switch((int)code_value())
  6198. {
  6199. case -1: // D-1 - Endless loop
  6200. dcode__1(); break;
  6201. case 0: // D0 - Reset
  6202. dcode_0(); break;
  6203. case 1: // D1 - Clear EEPROM
  6204. dcode_1(); break;
  6205. case 2: // D2 - Read/Write RAM
  6206. dcode_2(); break;
  6207. case 3: // D3 - Read/Write EEPROM
  6208. dcode_3(); break;
  6209. case 4: // D4 - Read/Write PIN
  6210. dcode_4(); break;
  6211. case 5: // D5 - Read/Write FLASH
  6212. // dcode_5(); break;
  6213. break;
  6214. case 6: // D6 - Read/Write external FLASH
  6215. dcode_6(); break;
  6216. case 7: // D7 - Read/Write Bootloader
  6217. dcode_7(); break;
  6218. case 8: // D8 - Read/Write PINDA
  6219. dcode_8(); break;
  6220. case 9: // D9 - Read/Write ADC
  6221. dcode_9(); break;
  6222. case 10: // D10 - XYZ calibration = OK
  6223. dcode_10(); break;
  6224. #ifdef TMC2130
  6225. case 2130: // D9125 - TMC2130
  6226. dcode_2130(); break;
  6227. #endif //TMC2130
  6228. #ifdef PAT9125
  6229. case 9125: // D9125 - PAT9125
  6230. dcode_9125(); break;
  6231. #endif //PAT9125
  6232. }
  6233. }
  6234. #endif //DEBUG_DCODES
  6235. else
  6236. {
  6237. SERIAL_ECHO_START;
  6238. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6239. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6240. SERIAL_ECHOLNPGM("\"(2)");
  6241. }
  6242. KEEPALIVE_STATE(NOT_BUSY);
  6243. ClearToSend();
  6244. }
  6245. void FlushSerialRequestResend()
  6246. {
  6247. //char cmdbuffer[bufindr][100]="Resend:";
  6248. MYSERIAL.flush();
  6249. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6250. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6251. previous_millis_cmd = millis();
  6252. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6253. }
  6254. // Confirm the execution of a command, if sent from a serial line.
  6255. // Execution of a command from a SD card will not be confirmed.
  6256. void ClearToSend()
  6257. {
  6258. previous_millis_cmd = millis();
  6259. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6260. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6261. }
  6262. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6263. void update_currents() {
  6264. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6265. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6266. float tmp_motor[3];
  6267. //SERIAL_ECHOLNPGM("Currents updated: ");
  6268. if (destination[Z_AXIS] < Z_SILENT) {
  6269. //SERIAL_ECHOLNPGM("LOW");
  6270. for (uint8_t i = 0; i < 3; i++) {
  6271. st_current_set(i, current_low[i]);
  6272. /*MYSERIAL.print(int(i));
  6273. SERIAL_ECHOPGM(": ");
  6274. MYSERIAL.println(current_low[i]);*/
  6275. }
  6276. }
  6277. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6278. //SERIAL_ECHOLNPGM("HIGH");
  6279. for (uint8_t i = 0; i < 3; i++) {
  6280. st_current_set(i, current_high[i]);
  6281. /*MYSERIAL.print(int(i));
  6282. SERIAL_ECHOPGM(": ");
  6283. MYSERIAL.println(current_high[i]);*/
  6284. }
  6285. }
  6286. else {
  6287. for (uint8_t i = 0; i < 3; i++) {
  6288. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6289. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6290. st_current_set(i, tmp_motor[i]);
  6291. /*MYSERIAL.print(int(i));
  6292. SERIAL_ECHOPGM(": ");
  6293. MYSERIAL.println(tmp_motor[i]);*/
  6294. }
  6295. }
  6296. }
  6297. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6298. void get_coordinates()
  6299. {
  6300. bool seen[4]={false,false,false,false};
  6301. for(int8_t i=0; i < NUM_AXIS; i++) {
  6302. if(code_seen(axis_codes[i]))
  6303. {
  6304. bool relative = axis_relative_modes[i] || relative_mode;
  6305. destination[i] = (float)code_value();
  6306. if (i == E_AXIS) {
  6307. float emult = extruder_multiplier[active_extruder];
  6308. if (emult != 1.) {
  6309. if (! relative) {
  6310. destination[i] -= current_position[i];
  6311. relative = true;
  6312. }
  6313. destination[i] *= emult;
  6314. }
  6315. }
  6316. if (relative)
  6317. destination[i] += current_position[i];
  6318. seen[i]=true;
  6319. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6320. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6321. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6322. }
  6323. else destination[i] = current_position[i]; //Are these else lines really needed?
  6324. }
  6325. if(code_seen('F')) {
  6326. next_feedrate = code_value();
  6327. #ifdef MAX_SILENT_FEEDRATE
  6328. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6329. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6330. #endif //MAX_SILENT_FEEDRATE
  6331. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6332. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6333. {
  6334. // float e_max_speed =
  6335. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6336. }
  6337. }
  6338. }
  6339. void get_arc_coordinates()
  6340. {
  6341. #ifdef SF_ARC_FIX
  6342. bool relative_mode_backup = relative_mode;
  6343. relative_mode = true;
  6344. #endif
  6345. get_coordinates();
  6346. #ifdef SF_ARC_FIX
  6347. relative_mode=relative_mode_backup;
  6348. #endif
  6349. if(code_seen('I')) {
  6350. offset[0] = code_value();
  6351. }
  6352. else {
  6353. offset[0] = 0.0;
  6354. }
  6355. if(code_seen('J')) {
  6356. offset[1] = code_value();
  6357. }
  6358. else {
  6359. offset[1] = 0.0;
  6360. }
  6361. }
  6362. void clamp_to_software_endstops(float target[3])
  6363. {
  6364. #ifdef DEBUG_DISABLE_SWLIMITS
  6365. return;
  6366. #endif //DEBUG_DISABLE_SWLIMITS
  6367. world2machine_clamp(target[0], target[1]);
  6368. // Clamp the Z coordinate.
  6369. if (min_software_endstops) {
  6370. float negative_z_offset = 0;
  6371. #ifdef ENABLE_AUTO_BED_LEVELING
  6372. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6373. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6374. #endif
  6375. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6376. }
  6377. if (max_software_endstops) {
  6378. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6379. }
  6380. }
  6381. #ifdef MESH_BED_LEVELING
  6382. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6383. float dx = x - current_position[X_AXIS];
  6384. float dy = y - current_position[Y_AXIS];
  6385. float dz = z - current_position[Z_AXIS];
  6386. int n_segments = 0;
  6387. if (mbl.active) {
  6388. float len = abs(dx) + abs(dy);
  6389. if (len > 0)
  6390. // Split to 3cm segments or shorter.
  6391. n_segments = int(ceil(len / 30.f));
  6392. }
  6393. if (n_segments > 1) {
  6394. float de = e - current_position[E_AXIS];
  6395. for (int i = 1; i < n_segments; ++ i) {
  6396. float t = float(i) / float(n_segments);
  6397. plan_buffer_line(
  6398. current_position[X_AXIS] + t * dx,
  6399. current_position[Y_AXIS] + t * dy,
  6400. current_position[Z_AXIS] + t * dz,
  6401. current_position[E_AXIS] + t * de,
  6402. feed_rate, extruder);
  6403. }
  6404. }
  6405. // The rest of the path.
  6406. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6407. current_position[X_AXIS] = x;
  6408. current_position[Y_AXIS] = y;
  6409. current_position[Z_AXIS] = z;
  6410. current_position[E_AXIS] = e;
  6411. }
  6412. #endif // MESH_BED_LEVELING
  6413. void prepare_move()
  6414. {
  6415. clamp_to_software_endstops(destination);
  6416. previous_millis_cmd = millis();
  6417. // Do not use feedmultiply for E or Z only moves
  6418. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6419. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6420. }
  6421. else {
  6422. #ifdef MESH_BED_LEVELING
  6423. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6424. #else
  6425. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6426. #endif
  6427. }
  6428. for(int8_t i=0; i < NUM_AXIS; i++) {
  6429. current_position[i] = destination[i];
  6430. }
  6431. }
  6432. void prepare_arc_move(char isclockwise) {
  6433. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6434. // Trace the arc
  6435. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6436. // As far as the parser is concerned, the position is now == target. In reality the
  6437. // motion control system might still be processing the action and the real tool position
  6438. // in any intermediate location.
  6439. for(int8_t i=0; i < NUM_AXIS; i++) {
  6440. current_position[i] = destination[i];
  6441. }
  6442. previous_millis_cmd = millis();
  6443. }
  6444. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6445. #if defined(FAN_PIN)
  6446. #if CONTROLLERFAN_PIN == FAN_PIN
  6447. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6448. #endif
  6449. #endif
  6450. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6451. unsigned long lastMotorCheck = 0;
  6452. void controllerFan()
  6453. {
  6454. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6455. {
  6456. lastMotorCheck = millis();
  6457. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6458. #if EXTRUDERS > 2
  6459. || !READ(E2_ENABLE_PIN)
  6460. #endif
  6461. #if EXTRUDER > 1
  6462. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6463. || !READ(X2_ENABLE_PIN)
  6464. #endif
  6465. || !READ(E1_ENABLE_PIN)
  6466. #endif
  6467. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6468. {
  6469. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6470. }
  6471. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6472. {
  6473. digitalWrite(CONTROLLERFAN_PIN, 0);
  6474. analogWrite(CONTROLLERFAN_PIN, 0);
  6475. }
  6476. else
  6477. {
  6478. // allows digital or PWM fan output to be used (see M42 handling)
  6479. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6480. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6481. }
  6482. }
  6483. }
  6484. #endif
  6485. #ifdef TEMP_STAT_LEDS
  6486. static bool blue_led = false;
  6487. static bool red_led = false;
  6488. static uint32_t stat_update = 0;
  6489. void handle_status_leds(void) {
  6490. float max_temp = 0.0;
  6491. if(millis() > stat_update) {
  6492. stat_update += 500; // Update every 0.5s
  6493. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6494. max_temp = max(max_temp, degHotend(cur_extruder));
  6495. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6496. }
  6497. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6498. max_temp = max(max_temp, degTargetBed());
  6499. max_temp = max(max_temp, degBed());
  6500. #endif
  6501. if((max_temp > 55.0) && (red_led == false)) {
  6502. digitalWrite(STAT_LED_RED, 1);
  6503. digitalWrite(STAT_LED_BLUE, 0);
  6504. red_led = true;
  6505. blue_led = false;
  6506. }
  6507. if((max_temp < 54.0) && (blue_led == false)) {
  6508. digitalWrite(STAT_LED_RED, 0);
  6509. digitalWrite(STAT_LED_BLUE, 1);
  6510. red_led = false;
  6511. blue_led = true;
  6512. }
  6513. }
  6514. }
  6515. #endif
  6516. #ifdef SAFETYTIMER
  6517. /**
  6518. * @brief Turn off heating after 30 minutes of inactivity
  6519. *
  6520. * Full screen blocking notification message is shown after heater turning off.
  6521. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6522. * damage print.
  6523. */
  6524. static void handleSafetyTimer()
  6525. {
  6526. #if (EXTRUDERS > 1)
  6527. #error Implemented only for one extruder.
  6528. #endif //(EXTRUDERS > 1)
  6529. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)))
  6530. {
  6531. safetyTimer.stop();
  6532. }
  6533. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6534. {
  6535. safetyTimer.start();
  6536. }
  6537. else if (safetyTimer.expired(1800000ul)) //30 min
  6538. {
  6539. setTargetBed(0);
  6540. setTargetHotend(0, 0);
  6541. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6542. }
  6543. }
  6544. #endif //SAFETYTIMER
  6545. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6546. {
  6547. #ifdef PAT9125
  6548. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6549. {
  6550. if (fsensor_autoload_enabled)
  6551. {
  6552. if (fsensor_check_autoload())
  6553. {
  6554. if (degHotend0() > EXTRUDE_MINTEMP)
  6555. {
  6556. fsensor_autoload_check_stop();
  6557. tone(BEEPER, 1000);
  6558. delay_keep_alive(50);
  6559. noTone(BEEPER);
  6560. loading_flag = true;
  6561. enquecommand_front_P((PSTR("M701")));
  6562. }
  6563. else
  6564. {
  6565. lcd_update_enable(false);
  6566. lcd_implementation_clear();
  6567. lcd.setCursor(0, 0);
  6568. lcd_printPGM(_T(MSG_ERROR));
  6569. lcd.setCursor(0, 2);
  6570. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6571. delay(2000);
  6572. lcd_implementation_clear();
  6573. lcd_update_enable(true);
  6574. }
  6575. }
  6576. }
  6577. else
  6578. fsensor_autoload_check_start();
  6579. }
  6580. else
  6581. if (fsensor_autoload_enabled)
  6582. fsensor_autoload_check_stop();
  6583. #endif //PAT9125
  6584. #ifdef SAFETYTIMER
  6585. handleSafetyTimer();
  6586. #endif //SAFETYTIMER
  6587. #if defined(KILL_PIN) && KILL_PIN > -1
  6588. static int killCount = 0; // make the inactivity button a bit less responsive
  6589. const int KILL_DELAY = 10000;
  6590. #endif
  6591. if(buflen < (BUFSIZE-1)){
  6592. get_command();
  6593. }
  6594. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6595. if(max_inactive_time)
  6596. kill(_n(""), 4);
  6597. if(stepper_inactive_time) {
  6598. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6599. {
  6600. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6601. disable_x();
  6602. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6603. disable_y();
  6604. disable_z();
  6605. disable_e0();
  6606. disable_e1();
  6607. disable_e2();
  6608. }
  6609. }
  6610. }
  6611. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6612. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6613. {
  6614. chdkActive = false;
  6615. WRITE(CHDK, LOW);
  6616. }
  6617. #endif
  6618. #if defined(KILL_PIN) && KILL_PIN > -1
  6619. // Check if the kill button was pressed and wait just in case it was an accidental
  6620. // key kill key press
  6621. // -------------------------------------------------------------------------------
  6622. if( 0 == READ(KILL_PIN) )
  6623. {
  6624. killCount++;
  6625. }
  6626. else if (killCount > 0)
  6627. {
  6628. killCount--;
  6629. }
  6630. // Exceeded threshold and we can confirm that it was not accidental
  6631. // KILL the machine
  6632. // ----------------------------------------------------------------
  6633. if ( killCount >= KILL_DELAY)
  6634. {
  6635. kill("", 5);
  6636. }
  6637. #endif
  6638. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6639. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6640. #endif
  6641. #ifdef EXTRUDER_RUNOUT_PREVENT
  6642. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6643. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6644. {
  6645. bool oldstatus=READ(E0_ENABLE_PIN);
  6646. enable_e0();
  6647. float oldepos=current_position[E_AXIS];
  6648. float oldedes=destination[E_AXIS];
  6649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6650. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6651. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6652. current_position[E_AXIS]=oldepos;
  6653. destination[E_AXIS]=oldedes;
  6654. plan_set_e_position(oldepos);
  6655. previous_millis_cmd=millis();
  6656. st_synchronize();
  6657. WRITE(E0_ENABLE_PIN,oldstatus);
  6658. }
  6659. #endif
  6660. #ifdef TEMP_STAT_LEDS
  6661. handle_status_leds();
  6662. #endif
  6663. check_axes_activity();
  6664. }
  6665. void kill(const char *full_screen_message, unsigned char id)
  6666. {
  6667. SERIAL_ECHOPGM("KILL: ");
  6668. MYSERIAL.println(int(id));
  6669. //return;
  6670. cli(); // Stop interrupts
  6671. disable_heater();
  6672. disable_x();
  6673. // SERIAL_ECHOLNPGM("kill - disable Y");
  6674. disable_y();
  6675. disable_z();
  6676. disable_e0();
  6677. disable_e1();
  6678. disable_e2();
  6679. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6680. pinMode(PS_ON_PIN,INPUT);
  6681. #endif
  6682. SERIAL_ERROR_START;
  6683. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6684. if (full_screen_message != NULL) {
  6685. SERIAL_ERRORLNRPGM(full_screen_message);
  6686. lcd_display_message_fullscreen_P(full_screen_message);
  6687. } else {
  6688. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6689. }
  6690. // FMC small patch to update the LCD before ending
  6691. sei(); // enable interrupts
  6692. for ( int i=5; i--; lcd_update())
  6693. {
  6694. delay(200);
  6695. }
  6696. cli(); // disable interrupts
  6697. suicide();
  6698. while(1)
  6699. {
  6700. #ifdef WATCHDOG
  6701. wdt_reset();
  6702. #endif //WATCHDOG
  6703. /* Intentionally left empty */
  6704. } // Wait for reset
  6705. }
  6706. void Stop()
  6707. {
  6708. disable_heater();
  6709. if(Stopped == false) {
  6710. Stopped = true;
  6711. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6712. SERIAL_ERROR_START;
  6713. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6714. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6715. }
  6716. }
  6717. bool IsStopped() { return Stopped; };
  6718. #ifdef FAST_PWM_FAN
  6719. void setPwmFrequency(uint8_t pin, int val)
  6720. {
  6721. val &= 0x07;
  6722. switch(digitalPinToTimer(pin))
  6723. {
  6724. #if defined(TCCR0A)
  6725. case TIMER0A:
  6726. case TIMER0B:
  6727. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6728. // TCCR0B |= val;
  6729. break;
  6730. #endif
  6731. #if defined(TCCR1A)
  6732. case TIMER1A:
  6733. case TIMER1B:
  6734. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6735. // TCCR1B |= val;
  6736. break;
  6737. #endif
  6738. #if defined(TCCR2)
  6739. case TIMER2:
  6740. case TIMER2:
  6741. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6742. TCCR2 |= val;
  6743. break;
  6744. #endif
  6745. #if defined(TCCR2A)
  6746. case TIMER2A:
  6747. case TIMER2B:
  6748. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6749. TCCR2B |= val;
  6750. break;
  6751. #endif
  6752. #if defined(TCCR3A)
  6753. case TIMER3A:
  6754. case TIMER3B:
  6755. case TIMER3C:
  6756. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6757. TCCR3B |= val;
  6758. break;
  6759. #endif
  6760. #if defined(TCCR4A)
  6761. case TIMER4A:
  6762. case TIMER4B:
  6763. case TIMER4C:
  6764. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6765. TCCR4B |= val;
  6766. break;
  6767. #endif
  6768. #if defined(TCCR5A)
  6769. case TIMER5A:
  6770. case TIMER5B:
  6771. case TIMER5C:
  6772. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6773. TCCR5B |= val;
  6774. break;
  6775. #endif
  6776. }
  6777. }
  6778. #endif //FAST_PWM_FAN
  6779. bool setTargetedHotend(int code){
  6780. tmp_extruder = active_extruder;
  6781. if(code_seen('T')) {
  6782. tmp_extruder = code_value();
  6783. if(tmp_extruder >= EXTRUDERS) {
  6784. SERIAL_ECHO_START;
  6785. switch(code){
  6786. case 104:
  6787. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6788. break;
  6789. case 105:
  6790. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6791. break;
  6792. case 109:
  6793. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6794. break;
  6795. case 218:
  6796. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6797. break;
  6798. case 221:
  6799. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6800. break;
  6801. }
  6802. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6803. return true;
  6804. }
  6805. }
  6806. return false;
  6807. }
  6808. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6809. {
  6810. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6811. {
  6812. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6813. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6814. }
  6815. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6816. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6817. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6818. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6819. total_filament_used = 0;
  6820. }
  6821. float calculate_extruder_multiplier(float diameter) {
  6822. float out = 1.f;
  6823. if (volumetric_enabled && diameter > 0.f) {
  6824. float area = M_PI * diameter * diameter * 0.25;
  6825. out = 1.f / area;
  6826. }
  6827. if (extrudemultiply != 100)
  6828. out *= float(extrudemultiply) * 0.01f;
  6829. return out;
  6830. }
  6831. void calculate_extruder_multipliers() {
  6832. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6833. #if EXTRUDERS > 1
  6834. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6835. #if EXTRUDERS > 2
  6836. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6837. #endif
  6838. #endif
  6839. }
  6840. void delay_keep_alive(unsigned int ms)
  6841. {
  6842. for (;;) {
  6843. manage_heater();
  6844. // Manage inactivity, but don't disable steppers on timeout.
  6845. manage_inactivity(true);
  6846. lcd_update();
  6847. if (ms == 0)
  6848. break;
  6849. else if (ms >= 50) {
  6850. delay(50);
  6851. ms -= 50;
  6852. } else {
  6853. delay(ms);
  6854. ms = 0;
  6855. }
  6856. }
  6857. }
  6858. void wait_for_heater(long codenum) {
  6859. #ifdef TEMP_RESIDENCY_TIME
  6860. long residencyStart;
  6861. residencyStart = -1;
  6862. /* continue to loop until we have reached the target temp
  6863. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6864. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6865. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6866. #else
  6867. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6868. #endif //TEMP_RESIDENCY_TIME
  6869. if ((millis() - codenum) > 1000UL)
  6870. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6871. if (!farm_mode) {
  6872. SERIAL_PROTOCOLPGM("T:");
  6873. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6874. SERIAL_PROTOCOLPGM(" E:");
  6875. SERIAL_PROTOCOL((int)tmp_extruder);
  6876. #ifdef TEMP_RESIDENCY_TIME
  6877. SERIAL_PROTOCOLPGM(" W:");
  6878. if (residencyStart > -1)
  6879. {
  6880. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6881. SERIAL_PROTOCOLLN(codenum);
  6882. }
  6883. else
  6884. {
  6885. SERIAL_PROTOCOLLN("?");
  6886. }
  6887. }
  6888. #else
  6889. SERIAL_PROTOCOLLN("");
  6890. #endif
  6891. codenum = millis();
  6892. }
  6893. manage_heater();
  6894. manage_inactivity();
  6895. lcd_update();
  6896. #ifdef TEMP_RESIDENCY_TIME
  6897. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6898. or when current temp falls outside the hysteresis after target temp was reached */
  6899. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6900. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6901. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6902. {
  6903. residencyStart = millis();
  6904. }
  6905. #endif //TEMP_RESIDENCY_TIME
  6906. }
  6907. }
  6908. void check_babystep() {
  6909. int babystep_z;
  6910. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6911. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6912. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6913. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6914. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6915. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6916. lcd_update_enable(true);
  6917. }
  6918. }
  6919. #ifdef DIS
  6920. void d_setup()
  6921. {
  6922. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6923. pinMode(D_DATA, INPUT_PULLUP);
  6924. pinMode(D_REQUIRE, OUTPUT);
  6925. digitalWrite(D_REQUIRE, HIGH);
  6926. }
  6927. float d_ReadData()
  6928. {
  6929. int digit[13];
  6930. String mergeOutput;
  6931. float output;
  6932. digitalWrite(D_REQUIRE, HIGH);
  6933. for (int i = 0; i<13; i++)
  6934. {
  6935. for (int j = 0; j < 4; j++)
  6936. {
  6937. while (digitalRead(D_DATACLOCK) == LOW) {}
  6938. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6939. bitWrite(digit[i], j, digitalRead(D_DATA));
  6940. }
  6941. }
  6942. digitalWrite(D_REQUIRE, LOW);
  6943. mergeOutput = "";
  6944. output = 0;
  6945. for (int r = 5; r <= 10; r++) //Merge digits
  6946. {
  6947. mergeOutput += digit[r];
  6948. }
  6949. output = mergeOutput.toFloat();
  6950. if (digit[4] == 8) //Handle sign
  6951. {
  6952. output *= -1;
  6953. }
  6954. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6955. {
  6956. output /= 10;
  6957. }
  6958. return output;
  6959. }
  6960. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6961. int t1 = 0;
  6962. int t_delay = 0;
  6963. int digit[13];
  6964. int m;
  6965. char str[3];
  6966. //String mergeOutput;
  6967. char mergeOutput[15];
  6968. float output;
  6969. int mesh_point = 0; //index number of calibration point
  6970. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6971. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6972. float mesh_home_z_search = 4;
  6973. float row[x_points_num];
  6974. int ix = 0;
  6975. int iy = 0;
  6976. char* filename_wldsd = "wldsd.txt";
  6977. char data_wldsd[70];
  6978. char numb_wldsd[10];
  6979. d_setup();
  6980. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6981. // We don't know where we are! HOME!
  6982. // Push the commands to the front of the message queue in the reverse order!
  6983. // There shall be always enough space reserved for these commands.
  6984. repeatcommand_front(); // repeat G80 with all its parameters
  6985. enquecommand_front_P((PSTR("G28 W0")));
  6986. enquecommand_front_P((PSTR("G1 Z5")));
  6987. return;
  6988. }
  6989. bool custom_message_old = custom_message;
  6990. unsigned int custom_message_type_old = custom_message_type;
  6991. unsigned int custom_message_state_old = custom_message_state;
  6992. custom_message = true;
  6993. custom_message_type = 1;
  6994. custom_message_state = (x_points_num * y_points_num) + 10;
  6995. lcd_update(1);
  6996. mbl.reset();
  6997. babystep_undo();
  6998. card.openFile(filename_wldsd, false);
  6999. current_position[Z_AXIS] = mesh_home_z_search;
  7000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7001. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7002. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7003. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7004. setup_for_endstop_move(false);
  7005. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7006. SERIAL_PROTOCOL(x_points_num);
  7007. SERIAL_PROTOCOLPGM(",");
  7008. SERIAL_PROTOCOL(y_points_num);
  7009. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7010. SERIAL_PROTOCOL(mesh_home_z_search);
  7011. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7012. SERIAL_PROTOCOL(x_dimension);
  7013. SERIAL_PROTOCOLPGM(",");
  7014. SERIAL_PROTOCOL(y_dimension);
  7015. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7016. while (mesh_point != x_points_num * y_points_num) {
  7017. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7018. iy = mesh_point / x_points_num;
  7019. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7020. float z0 = 0.f;
  7021. current_position[Z_AXIS] = mesh_home_z_search;
  7022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7023. st_synchronize();
  7024. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7025. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7027. st_synchronize();
  7028. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7029. break;
  7030. card.closefile();
  7031. }
  7032. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7033. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7034. //strcat(data_wldsd, numb_wldsd);
  7035. //MYSERIAL.println(data_wldsd);
  7036. //delay(1000);
  7037. //delay(3000);
  7038. //t1 = millis();
  7039. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7040. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7041. memset(digit, 0, sizeof(digit));
  7042. //cli();
  7043. digitalWrite(D_REQUIRE, LOW);
  7044. for (int i = 0; i<13; i++)
  7045. {
  7046. //t1 = millis();
  7047. for (int j = 0; j < 4; j++)
  7048. {
  7049. while (digitalRead(D_DATACLOCK) == LOW) {}
  7050. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7051. bitWrite(digit[i], j, digitalRead(D_DATA));
  7052. }
  7053. //t_delay = (millis() - t1);
  7054. //SERIAL_PROTOCOLPGM(" ");
  7055. //SERIAL_PROTOCOL_F(t_delay, 5);
  7056. //SERIAL_PROTOCOLPGM(" ");
  7057. }
  7058. //sei();
  7059. digitalWrite(D_REQUIRE, HIGH);
  7060. mergeOutput[0] = '\0';
  7061. output = 0;
  7062. for (int r = 5; r <= 10; r++) //Merge digits
  7063. {
  7064. sprintf(str, "%d", digit[r]);
  7065. strcat(mergeOutput, str);
  7066. }
  7067. output = atof(mergeOutput);
  7068. if (digit[4] == 8) //Handle sign
  7069. {
  7070. output *= -1;
  7071. }
  7072. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7073. {
  7074. output *= 0.1;
  7075. }
  7076. //output = d_ReadData();
  7077. //row[ix] = current_position[Z_AXIS];
  7078. memset(data_wldsd, 0, sizeof(data_wldsd));
  7079. for (int i = 0; i <3; i++) {
  7080. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7081. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7082. strcat(data_wldsd, numb_wldsd);
  7083. strcat(data_wldsd, ";");
  7084. }
  7085. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7086. dtostrf(output, 8, 5, numb_wldsd);
  7087. strcat(data_wldsd, numb_wldsd);
  7088. //strcat(data_wldsd, ";");
  7089. card.write_command(data_wldsd);
  7090. //row[ix] = d_ReadData();
  7091. row[ix] = output; // current_position[Z_AXIS];
  7092. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7093. for (int i = 0; i < x_points_num; i++) {
  7094. SERIAL_PROTOCOLPGM(" ");
  7095. SERIAL_PROTOCOL_F(row[i], 5);
  7096. }
  7097. SERIAL_PROTOCOLPGM("\n");
  7098. }
  7099. custom_message_state--;
  7100. mesh_point++;
  7101. lcd_update(1);
  7102. }
  7103. card.closefile();
  7104. }
  7105. #endif
  7106. void temp_compensation_start() {
  7107. custom_message = true;
  7108. custom_message_type = 5;
  7109. custom_message_state = PINDA_HEAT_T + 1;
  7110. lcd_update(2);
  7111. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7112. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7113. }
  7114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7115. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7116. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7117. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7119. st_synchronize();
  7120. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7121. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7122. delay_keep_alive(1000);
  7123. custom_message_state = PINDA_HEAT_T - i;
  7124. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7125. else lcd_update(1);
  7126. }
  7127. custom_message_type = 0;
  7128. custom_message_state = 0;
  7129. custom_message = false;
  7130. }
  7131. void temp_compensation_apply() {
  7132. int i_add;
  7133. int compensation_value;
  7134. int z_shift = 0;
  7135. float z_shift_mm;
  7136. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7137. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7138. i_add = (target_temperature_bed - 60) / 10;
  7139. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7140. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7141. }else {
  7142. //interpolation
  7143. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7144. }
  7145. SERIAL_PROTOCOLPGM("\n");
  7146. SERIAL_PROTOCOLPGM("Z shift applied:");
  7147. MYSERIAL.print(z_shift_mm);
  7148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7149. st_synchronize();
  7150. plan_set_z_position(current_position[Z_AXIS]);
  7151. }
  7152. else {
  7153. //we have no temp compensation data
  7154. }
  7155. }
  7156. float temp_comp_interpolation(float inp_temperature) {
  7157. //cubic spline interpolation
  7158. int n, i, j, k;
  7159. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7160. int shift[10];
  7161. int temp_C[10];
  7162. n = 6; //number of measured points
  7163. shift[0] = 0;
  7164. for (i = 0; i < n; i++) {
  7165. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7166. temp_C[i] = 50 + i * 10; //temperature in C
  7167. #ifdef PINDA_THERMISTOR
  7168. temp_C[i] = 35 + i * 5; //temperature in C
  7169. #else
  7170. temp_C[i] = 50 + i * 10; //temperature in C
  7171. #endif
  7172. x[i] = (float)temp_C[i];
  7173. f[i] = (float)shift[i];
  7174. }
  7175. if (inp_temperature < x[0]) return 0;
  7176. for (i = n - 1; i>0; i--) {
  7177. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7178. h[i - 1] = x[i] - x[i - 1];
  7179. }
  7180. //*********** formation of h, s , f matrix **************
  7181. for (i = 1; i<n - 1; i++) {
  7182. m[i][i] = 2 * (h[i - 1] + h[i]);
  7183. if (i != 1) {
  7184. m[i][i - 1] = h[i - 1];
  7185. m[i - 1][i] = h[i - 1];
  7186. }
  7187. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7188. }
  7189. //*********** forward elimination **************
  7190. for (i = 1; i<n - 2; i++) {
  7191. temp = (m[i + 1][i] / m[i][i]);
  7192. for (j = 1; j <= n - 1; j++)
  7193. m[i + 1][j] -= temp*m[i][j];
  7194. }
  7195. //*********** backward substitution *********
  7196. for (i = n - 2; i>0; i--) {
  7197. sum = 0;
  7198. for (j = i; j <= n - 2; j++)
  7199. sum += m[i][j] * s[j];
  7200. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7201. }
  7202. for (i = 0; i<n - 1; i++)
  7203. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7204. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7205. b = s[i] / 2;
  7206. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7207. d = f[i];
  7208. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7209. }
  7210. return sum;
  7211. }
  7212. #ifdef PINDA_THERMISTOR
  7213. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7214. {
  7215. if (!temp_cal_active) return 0;
  7216. if (!calibration_status_pinda()) return 0;
  7217. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7218. }
  7219. #endif //PINDA_THERMISTOR
  7220. void long_pause() //long pause print
  7221. {
  7222. st_synchronize();
  7223. //save currently set parameters to global variables
  7224. saved_feedmultiply = feedmultiply;
  7225. HotendTempBckp = degTargetHotend(active_extruder);
  7226. fanSpeedBckp = fanSpeed;
  7227. start_pause_print = millis();
  7228. //save position
  7229. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7230. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7231. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7232. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7233. //retract
  7234. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7236. //lift z
  7237. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7238. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7240. //set nozzle target temperature to 0
  7241. setTargetHotend(0, 0);
  7242. setTargetHotend(0, 1);
  7243. setTargetHotend(0, 2);
  7244. //Move XY to side
  7245. current_position[X_AXIS] = X_PAUSE_POS;
  7246. current_position[Y_AXIS] = Y_PAUSE_POS;
  7247. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7248. // Turn off the print fan
  7249. fanSpeed = 0;
  7250. st_synchronize();
  7251. }
  7252. void serialecho_temperatures() {
  7253. float tt = degHotend(active_extruder);
  7254. SERIAL_PROTOCOLPGM("T:");
  7255. SERIAL_PROTOCOL(tt);
  7256. SERIAL_PROTOCOLPGM(" E:");
  7257. SERIAL_PROTOCOL((int)active_extruder);
  7258. SERIAL_PROTOCOLPGM(" B:");
  7259. SERIAL_PROTOCOL_F(degBed(), 1);
  7260. SERIAL_PROTOCOLLN("");
  7261. }
  7262. extern uint32_t sdpos_atomic;
  7263. #ifdef UVLO_SUPPORT
  7264. void uvlo_()
  7265. {
  7266. unsigned long time_start = millis();
  7267. bool sd_print = card.sdprinting;
  7268. // Conserve power as soon as possible.
  7269. disable_x();
  7270. disable_y();
  7271. #ifdef TMC2130
  7272. tmc2130_set_current_h(Z_AXIS, 20);
  7273. tmc2130_set_current_r(Z_AXIS, 20);
  7274. tmc2130_set_current_h(E_AXIS, 20);
  7275. tmc2130_set_current_r(E_AXIS, 20);
  7276. #endif //TMC2130
  7277. // Indicate that the interrupt has been triggered.
  7278. // SERIAL_ECHOLNPGM("UVLO");
  7279. // Read out the current Z motor microstep counter. This will be later used
  7280. // for reaching the zero full step before powering off.
  7281. uint16_t z_microsteps = 0;
  7282. #ifdef TMC2130
  7283. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7284. #endif //TMC2130
  7285. // Calculate the file position, from which to resume this print.
  7286. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7287. {
  7288. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7289. sd_position -= sdlen_planner;
  7290. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7291. sd_position -= sdlen_cmdqueue;
  7292. if (sd_position < 0) sd_position = 0;
  7293. }
  7294. // Backup the feedrate in mm/min.
  7295. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7296. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7297. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7298. // are in action.
  7299. planner_abort_hard();
  7300. // Store the current extruder position.
  7301. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7302. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7303. // Clean the input command queue.
  7304. cmdqueue_reset();
  7305. card.sdprinting = false;
  7306. // card.closefile();
  7307. // Enable stepper driver interrupt to move Z axis.
  7308. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7309. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7310. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7311. sei();
  7312. plan_buffer_line(
  7313. current_position[X_AXIS],
  7314. current_position[Y_AXIS],
  7315. current_position[Z_AXIS],
  7316. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7317. 95, active_extruder);
  7318. st_synchronize();
  7319. disable_e0();
  7320. plan_buffer_line(
  7321. current_position[X_AXIS],
  7322. current_position[Y_AXIS],
  7323. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7324. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7325. 40, active_extruder);
  7326. st_synchronize();
  7327. disable_e0();
  7328. plan_buffer_line(
  7329. current_position[X_AXIS],
  7330. current_position[Y_AXIS],
  7331. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7332. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7333. 40, active_extruder);
  7334. st_synchronize();
  7335. disable_e0();
  7336. disable_z();
  7337. // Move Z up to the next 0th full step.
  7338. // Write the file position.
  7339. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7340. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7341. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7342. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7343. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7344. // Scale the z value to 1u resolution.
  7345. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7346. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7347. }
  7348. // Read out the current Z motor microstep counter. This will be later used
  7349. // for reaching the zero full step before powering off.
  7350. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7351. // Store the current position.
  7352. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7353. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7354. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7355. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7356. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7357. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7358. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7359. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7360. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7361. #if EXTRUDERS > 1
  7362. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7363. #if EXTRUDERS > 2
  7364. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7365. #endif
  7366. #endif
  7367. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7368. // Finaly store the "power outage" flag.
  7369. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7370. st_synchronize();
  7371. SERIAL_ECHOPGM("stps");
  7372. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7373. disable_z();
  7374. // Increment power failure counter
  7375. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7376. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7377. SERIAL_ECHOLNPGM("UVLO - end");
  7378. MYSERIAL.println(millis() - time_start);
  7379. #if 0
  7380. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7381. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7383. st_synchronize();
  7384. #endif
  7385. cli();
  7386. volatile unsigned int ppcount = 0;
  7387. SET_OUTPUT(BEEPER);
  7388. WRITE(BEEPER, HIGH);
  7389. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7390. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7391. }
  7392. WRITE(BEEPER, LOW);
  7393. while(1){
  7394. #if 1
  7395. WRITE(BEEPER, LOW);
  7396. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7397. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7398. }
  7399. #endif
  7400. };
  7401. }
  7402. #endif //UVLO_SUPPORT
  7403. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7404. void setup_fan_interrupt() {
  7405. //INT7
  7406. DDRE &= ~(1 << 7); //input pin
  7407. PORTE &= ~(1 << 7); //no internal pull-up
  7408. //start with sensing rising edge
  7409. EICRB &= ~(1 << 6);
  7410. EICRB |= (1 << 7);
  7411. //enable INT7 interrupt
  7412. EIMSK |= (1 << 7);
  7413. }
  7414. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7415. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7416. ISR(INT7_vect) {
  7417. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7418. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7419. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7420. t_fan_rising_edge = millis_nc();
  7421. }
  7422. else { //interrupt was triggered by falling edge
  7423. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7424. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7425. }
  7426. }
  7427. EICRB ^= (1 << 6); //change edge
  7428. }
  7429. #endif
  7430. #ifdef UVLO_SUPPORT
  7431. void setup_uvlo_interrupt() {
  7432. DDRE &= ~(1 << 4); //input pin
  7433. PORTE &= ~(1 << 4); //no internal pull-up
  7434. //sensing falling edge
  7435. EICRB |= (1 << 0);
  7436. EICRB &= ~(1 << 1);
  7437. //enable INT4 interrupt
  7438. EIMSK |= (1 << 4);
  7439. }
  7440. ISR(INT4_vect) {
  7441. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7442. SERIAL_ECHOLNPGM("INT4");
  7443. if (IS_SD_PRINTING) uvlo_();
  7444. }
  7445. void recover_print(uint8_t automatic) {
  7446. char cmd[30];
  7447. lcd_update_enable(true);
  7448. lcd_update(2);
  7449. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7450. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7451. // Lift the print head, so one may remove the excess priming material.
  7452. if (current_position[Z_AXIS] < 25)
  7453. enquecommand_P(PSTR("G1 Z25 F800"));
  7454. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7455. enquecommand_P(PSTR("G28 X Y"));
  7456. // Set the target bed and nozzle temperatures and wait.
  7457. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7458. enquecommand(cmd);
  7459. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7460. enquecommand(cmd);
  7461. enquecommand_P(PSTR("M83")); //E axis relative mode
  7462. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7463. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7464. if(automatic == 0){
  7465. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7466. }
  7467. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7468. // Mark the power panic status as inactive.
  7469. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7470. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7471. delay_keep_alive(1000);
  7472. }*/
  7473. SERIAL_ECHOPGM("After waiting for temp:");
  7474. SERIAL_ECHOPGM("Current position X_AXIS:");
  7475. MYSERIAL.println(current_position[X_AXIS]);
  7476. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7477. MYSERIAL.println(current_position[Y_AXIS]);
  7478. // Restart the print.
  7479. restore_print_from_eeprom();
  7480. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7481. MYSERIAL.print(current_position[Z_AXIS]);
  7482. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7483. MYSERIAL.print(current_position[E_AXIS]);
  7484. }
  7485. void recover_machine_state_after_power_panic()
  7486. {
  7487. char cmd[30];
  7488. // 1) Recover the logical cordinates at the time of the power panic.
  7489. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7490. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7491. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7492. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7493. // The current position after power panic is moved to the next closest 0th full step.
  7494. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7495. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7496. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7497. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7498. sprintf_P(cmd, PSTR("G92 E"));
  7499. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7500. enquecommand(cmd);
  7501. }
  7502. memcpy(destination, current_position, sizeof(destination));
  7503. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7504. print_world_coordinates();
  7505. // 2) Initialize the logical to physical coordinate system transformation.
  7506. world2machine_initialize();
  7507. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7508. mbl.active = false;
  7509. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7510. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7511. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7512. // Scale the z value to 10u resolution.
  7513. int16_t v;
  7514. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7515. if (v != 0)
  7516. mbl.active = true;
  7517. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7518. }
  7519. if (mbl.active)
  7520. mbl.upsample_3x3();
  7521. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7522. // print_mesh_bed_leveling_table();
  7523. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7524. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7525. babystep_load();
  7526. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7528. // 6) Power up the motors, mark their positions as known.
  7529. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7530. axis_known_position[X_AXIS] = true; enable_x();
  7531. axis_known_position[Y_AXIS] = true; enable_y();
  7532. axis_known_position[Z_AXIS] = true; enable_z();
  7533. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7534. print_physical_coordinates();
  7535. // 7) Recover the target temperatures.
  7536. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7537. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7538. // 8) Recover extruder multipilers
  7539. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7540. #if EXTRUDERS > 1
  7541. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7542. #if EXTRUDERS > 2
  7543. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7544. #endif
  7545. #endif
  7546. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7547. }
  7548. void restore_print_from_eeprom() {
  7549. float x_rec, y_rec, z_pos;
  7550. int feedrate_rec;
  7551. uint8_t fan_speed_rec;
  7552. char cmd[30];
  7553. char* c;
  7554. char filename[13];
  7555. uint8_t depth = 0;
  7556. char dir_name[9];
  7557. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7558. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7559. SERIAL_ECHOPGM("Feedrate:");
  7560. MYSERIAL.println(feedrate_rec);
  7561. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7562. MYSERIAL.println(int(depth));
  7563. for (int i = 0; i < depth; i++) {
  7564. for (int j = 0; j < 8; j++) {
  7565. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7566. }
  7567. dir_name[8] = '\0';
  7568. MYSERIAL.println(dir_name);
  7569. card.chdir(dir_name);
  7570. }
  7571. for (int i = 0; i < 8; i++) {
  7572. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7573. }
  7574. filename[8] = '\0';
  7575. MYSERIAL.print(filename);
  7576. strcat_P(filename, PSTR(".gco"));
  7577. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7578. for (c = &cmd[4]; *c; c++)
  7579. *c = tolower(*c);
  7580. enquecommand(cmd);
  7581. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7582. SERIAL_ECHOPGM("Position read from eeprom:");
  7583. MYSERIAL.println(position);
  7584. // E axis relative mode.
  7585. enquecommand_P(PSTR("M83"));
  7586. // Move to the XY print position in logical coordinates, where the print has been killed.
  7587. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7588. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7589. strcat_P(cmd, PSTR(" F2000"));
  7590. enquecommand(cmd);
  7591. // Move the Z axis down to the print, in logical coordinates.
  7592. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7593. enquecommand(cmd);
  7594. // Unretract.
  7595. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7596. // Set the feedrate saved at the power panic.
  7597. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7598. enquecommand(cmd);
  7599. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7600. {
  7601. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7602. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7603. }
  7604. // Set the fan speed saved at the power panic.
  7605. strcpy_P(cmd, PSTR("M106 S"));
  7606. strcat(cmd, itostr3(int(fan_speed_rec)));
  7607. enquecommand(cmd);
  7608. // Set a position in the file.
  7609. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7610. enquecommand(cmd);
  7611. // Start SD print.
  7612. enquecommand_P(PSTR("M24"));
  7613. }
  7614. #endif //UVLO_SUPPORT
  7615. ////////////////////////////////////////////////////////////////////////////////
  7616. // save/restore printing
  7617. void stop_and_save_print_to_ram(float z_move, float e_move)
  7618. {
  7619. if (saved_printing) return;
  7620. unsigned char nplanner_blocks;
  7621. unsigned char nlines;
  7622. uint16_t sdlen_planner;
  7623. uint16_t sdlen_cmdqueue;
  7624. cli();
  7625. if (card.sdprinting) {
  7626. nplanner_blocks = number_of_blocks();
  7627. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7628. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7629. saved_sdpos -= sdlen_planner;
  7630. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7631. saved_sdpos -= sdlen_cmdqueue;
  7632. saved_printing_type = PRINTING_TYPE_SD;
  7633. }
  7634. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7635. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7636. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7637. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7638. saved_sdpos -= nlines;
  7639. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7640. saved_printing_type = PRINTING_TYPE_USB;
  7641. }
  7642. else {
  7643. //not sd printing nor usb printing
  7644. }
  7645. #if 0
  7646. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7647. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7648. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7649. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7650. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7651. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7652. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7653. {
  7654. card.setIndex(saved_sdpos);
  7655. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7656. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7657. MYSERIAL.print(char(card.get()));
  7658. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7659. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7660. MYSERIAL.print(char(card.get()));
  7661. SERIAL_ECHOLNPGM("End of command buffer");
  7662. }
  7663. {
  7664. // Print the content of the planner buffer, line by line:
  7665. card.setIndex(saved_sdpos);
  7666. int8_t iline = 0;
  7667. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7668. SERIAL_ECHOPGM("Planner line (from file): ");
  7669. MYSERIAL.print(int(iline), DEC);
  7670. SERIAL_ECHOPGM(", length: ");
  7671. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7672. SERIAL_ECHOPGM(", steps: (");
  7673. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7674. SERIAL_ECHOPGM(",");
  7675. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7676. SERIAL_ECHOPGM(",");
  7677. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7678. SERIAL_ECHOPGM(",");
  7679. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7680. SERIAL_ECHOPGM("), events: ");
  7681. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7682. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7683. MYSERIAL.print(char(card.get()));
  7684. }
  7685. }
  7686. {
  7687. // Print the content of the command buffer, line by line:
  7688. int8_t iline = 0;
  7689. union {
  7690. struct {
  7691. char lo;
  7692. char hi;
  7693. } lohi;
  7694. uint16_t value;
  7695. } sdlen_single;
  7696. int _bufindr = bufindr;
  7697. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7698. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7699. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7700. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7701. }
  7702. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7703. MYSERIAL.print(int(iline), DEC);
  7704. SERIAL_ECHOPGM(", type: ");
  7705. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7706. SERIAL_ECHOPGM(", len: ");
  7707. MYSERIAL.println(sdlen_single.value, DEC);
  7708. // Print the content of the buffer line.
  7709. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7710. SERIAL_ECHOPGM("Buffer line (from file): ");
  7711. MYSERIAL.print(int(iline), DEC);
  7712. MYSERIAL.println(int(iline), DEC);
  7713. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7714. MYSERIAL.print(char(card.get()));
  7715. if (-- _buflen == 0)
  7716. break;
  7717. // First skip the current command ID and iterate up to the end of the string.
  7718. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7719. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7720. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7721. // If the end of the buffer was empty,
  7722. if (_bufindr == sizeof(cmdbuffer)) {
  7723. // skip to the start and find the nonzero command.
  7724. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7725. }
  7726. }
  7727. }
  7728. #endif
  7729. #if 0
  7730. saved_feedrate2 = feedrate; //save feedrate
  7731. #else
  7732. // Try to deduce the feedrate from the first block of the planner.
  7733. // Speed is in mm/min.
  7734. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7735. #endif
  7736. planner_abort_hard(); //abort printing
  7737. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7738. saved_active_extruder = active_extruder; //save active_extruder
  7739. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7740. cmdqueue_reset(); //empty cmdqueue
  7741. card.sdprinting = false;
  7742. // card.closefile();
  7743. saved_printing = true;
  7744. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7745. st_reset_timer();
  7746. sei();
  7747. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7748. #if 1
  7749. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7750. char buf[48];
  7751. // First unretract (relative extrusion)
  7752. strcpy_P(buf, PSTR("G1 E"));
  7753. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7754. strcat_P(buf, PSTR(" F"));
  7755. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7756. enquecommand(buf, false);
  7757. // Then lift Z axis
  7758. strcpy_P(buf, PSTR("G1 Z"));
  7759. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7760. strcat_P(buf, PSTR(" F"));
  7761. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7762. // At this point the command queue is empty.
  7763. enquecommand(buf, false);
  7764. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7765. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7766. repeatcommand_front();
  7767. #else
  7768. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7769. st_synchronize(); //wait moving
  7770. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7771. memcpy(destination, current_position, sizeof(destination));
  7772. #endif
  7773. }
  7774. }
  7775. void restore_print_from_ram_and_continue(float e_move)
  7776. {
  7777. if (!saved_printing) return;
  7778. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7779. // current_position[axis] = st_get_position_mm(axis);
  7780. active_extruder = saved_active_extruder; //restore active_extruder
  7781. feedrate = saved_feedrate2; //restore feedrate
  7782. float e = saved_pos[E_AXIS] - e_move;
  7783. plan_set_e_position(e);
  7784. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7785. st_synchronize();
  7786. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7787. memcpy(destination, current_position, sizeof(destination));
  7788. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7789. card.setIndex(saved_sdpos);
  7790. sdpos_atomic = saved_sdpos;
  7791. card.sdprinting = true;
  7792. }
  7793. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7794. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7795. FlushSerialRequestResend();
  7796. }
  7797. else {
  7798. //not sd printing nor usb printing
  7799. }
  7800. saved_printing = false;
  7801. }
  7802. void print_world_coordinates()
  7803. {
  7804. SERIAL_ECHOPGM("world coordinates: (");
  7805. MYSERIAL.print(current_position[X_AXIS], 3);
  7806. SERIAL_ECHOPGM(", ");
  7807. MYSERIAL.print(current_position[Y_AXIS], 3);
  7808. SERIAL_ECHOPGM(", ");
  7809. MYSERIAL.print(current_position[Z_AXIS], 3);
  7810. SERIAL_ECHOLNPGM(")");
  7811. }
  7812. void print_physical_coordinates()
  7813. {
  7814. SERIAL_ECHOPGM("physical coordinates: (");
  7815. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7816. SERIAL_ECHOPGM(", ");
  7817. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7818. SERIAL_ECHOPGM(", ");
  7819. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7820. SERIAL_ECHOLNPGM(")");
  7821. }
  7822. void print_mesh_bed_leveling_table()
  7823. {
  7824. SERIAL_ECHOPGM("mesh bed leveling: ");
  7825. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7826. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7827. MYSERIAL.print(mbl.z_values[y][x], 3);
  7828. SERIAL_ECHOPGM(" ");
  7829. }
  7830. SERIAL_ECHOLNPGM("");
  7831. }
  7832. uint16_t print_time_remaining() {
  7833. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7834. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7835. else print_t = print_time_remaining_silent;
  7836. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7837. return print_t;
  7838. }
  7839. uint8_t print_percent_done() {
  7840. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7841. uint8_t percent_done = 0;
  7842. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7843. percent_done = print_percent_done_normal;
  7844. }
  7845. else if (print_percent_done_silent <= 100) {
  7846. percent_done = print_percent_done_silent;
  7847. }
  7848. else {
  7849. percent_done = card.percentDone();
  7850. }
  7851. return percent_done;
  7852. }
  7853. static void print_time_remaining_init() {
  7854. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7855. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7856. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7857. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7858. }
  7859. #define FIL_LOAD_LENGTH 60