| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 | 
							- /*
 
-   motion_control.c - high level interface for issuing motion commands
 
-   Part of Grbl
 
-   Copyright (c) 2009-2011 Simen Svale Skogsrud
 
-   Copyright (c) 2011 Sungeun K. Jeon
 
-   
 
-   Grbl is free software: you can redistribute it and/or modify
 
-   it under the terms of the GNU General Public License as published by
 
-   the Free Software Foundation, either version 3 of the License, or
 
-   (at your option) any later version.
 
-   Grbl is distributed in the hope that it will be useful,
 
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
 
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
-   GNU General Public License for more details.
 
-   You should have received a copy of the GNU General Public License
 
-   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 
- */
 
- #include "Marlin.h"
 
- #include "stepper.h"
 
- #include "planner.h"
 
- // The arc is approximated by generating a huge number of tiny, linear segments. The length of each 
 
- // segment is configured in settings.mm_per_arc_segment.  
 
- void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, 
 
-   uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
 
- {      
 
-   //   int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
 
-   //   plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
 
-   float center_axis0 = position[axis_0] + offset[axis_0];
 
-   float center_axis1 = position[axis_1] + offset[axis_1];
 
-   float linear_travel = target[axis_linear] - position[axis_linear];
 
-   float extruder_travel = target[E_AXIS] - position[E_AXIS];
 
-   float r_axis0 = -offset[axis_0];  // Radius vector from center to current location
 
-   float r_axis1 = -offset[axis_1];
 
-   float rt_axis0 = target[axis_0] - center_axis0;
 
-   float rt_axis1 = target[axis_1] - center_axis1;
 
-   
 
-   // CCW angle between position and target from circle center. Only one atan2() trig computation required.
 
-   float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
 
-   if (angular_travel < 0) { angular_travel += 2*M_PI; }
 
-   if (isclockwise) { angular_travel -= 2*M_PI; }
 
-   
 
-   //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
 
-   //to compensate when start pos = target pos && angle is zero -> angle = 2Pi
 
-   if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0)
 
-   {
 
- 	  angular_travel += 2*M_PI;
 
-   }
 
-   //end fix G03
 
-   
 
-   float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
 
-   if (millimeters_of_travel < 0.001) { return; }
 
-   uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
 
-   if(segments == 0) segments = 1;
 
-   
 
-   /*  
 
-     // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
 
-     // by a number of discrete segments. The inverse feed_rate should be correct for the sum of 
 
-     // all segments.
 
-     if (invert_feed_rate) { feed_rate *= segments; }
 
-   */
 
-   float theta_per_segment = angular_travel/segments;
 
-   float linear_per_segment = linear_travel/segments;
 
-   float extruder_per_segment = extruder_travel/segments;
 
-   
 
-   /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
 
-      and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
 
-          r_T = [cos(phi) -sin(phi);
 
-                 sin(phi)  cos(phi] * r ;
 
-      
 
-      For arc generation, the center of the circle is the axis of rotation and the radius vector is 
 
-      defined from the circle center to the initial position. Each line segment is formed by successive
 
-      vector rotations. This requires only two cos() and sin() computations to form the rotation
 
-      matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
 
-      all double numbers are single precision on the Arduino. (True double precision will not have
 
-      round off issues for CNC applications.) Single precision error can accumulate to be greater than
 
-      tool precision in some cases. Therefore, arc path correction is implemented. 
 
-      Small angle approximation may be used to reduce computation overhead further. This approximation
 
-      holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
 
-      theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
 
-      to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for 
 
-      numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
 
-      issue for CNC machines with the single precision Arduino calculations.
 
-      
 
-      This approximation also allows mc_arc to immediately insert a line segment into the planner 
 
-      without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
 
-      a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. 
 
-      This is important when there are successive arc motions. 
 
-   */
 
-   // Vector rotation matrix values
 
-   float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
 
-   float sin_T = theta_per_segment;
 
-   
 
-   float arc_target[4];
 
-   float sin_Ti;
 
-   float cos_Ti;
 
-   float r_axisi;
 
-   uint16_t i;
 
-   int8_t count = 0;
 
-   // Initialize the linear axis
 
-   arc_target[axis_linear] = position[axis_linear];
 
-   
 
-   // Initialize the extruder axis
 
-   arc_target[E_AXIS] = position[E_AXIS];
 
-   for (i = 1; i<segments; i++) { // Increment (segments-1)
 
-     
 
-     if (count < N_ARC_CORRECTION) {
 
-       // Apply vector rotation matrix 
 
-       r_axisi = r_axis0*sin_T + r_axis1*cos_T;
 
-       r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
 
-       r_axis1 = r_axisi;
 
-       count++;
 
-     } else {
 
-       // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 
-       // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 
-       cos_Ti = cos(i*theta_per_segment);
 
-       sin_Ti = sin(i*theta_per_segment);
 
-       r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
 
-       r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
 
-       count = 0;
 
-     }
 
-     // Update arc_target location
 
-     arc_target[axis_0] = center_axis0 + r_axis0;
 
-     arc_target[axis_1] = center_axis1 + r_axis1;
 
-     arc_target[axis_linear] += linear_per_segment;
 
-     arc_target[E_AXIS] += extruder_per_segment;
 
-     clamp_to_software_endstops(arc_target);
 
-     plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder);
 
-     
 
-   }
 
-   // Ensure last segment arrives at target location.
 
-   plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
 
-   //   plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
 
- }
 
 
  |