fsensor.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. #include "Marlin.h"
  2. #include "fsensor.h"
  3. #include "pat9125.h"
  4. #include "stepper.h"
  5. #include "planner.h"
  6. #include "fastio.h"
  7. #include "cmdqueue.h"
  8. //Basic params
  9. #define FSENSOR_CHUNK_LEN 180 //filament sensor chunk length in steps - 0.64mm
  10. #define FSENSOR_ERR_MAX 10 //filament sensor maximum error count for runout detection
  11. //Optical quality meassurement params
  12. #define FSENSOR_OQ_MAX_ER 5 //maximum error count for loading (~150mm)
  13. #define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk
  14. #define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk
  15. #define FSENSOR_OQ_MAX_PD 3 //maximum positive deviation (= yd_max/yd_avg)
  16. #define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min)
  17. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  18. #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
  19. #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
  20. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  21. extern void restore_print_from_ram_and_continue(float e_move);
  22. extern int8_t FSensorStateMenu;
  23. void fsensor_stop_and_save_print(void)
  24. {
  25. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  26. }
  27. void fsensor_restore_print_and_continue(void)
  28. {
  29. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  30. }
  31. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  32. uint8_t fsensor_int_pin_old = 0;
  33. int16_t fsensor_chunk_len = FSENSOR_CHUNK_LEN;
  34. //enabled = initialized and sampled every chunk event
  35. bool fsensor_enabled = true;
  36. //runout watching is done in fsensor_update (called from main loop)
  37. bool fsensor_watch_runout = true;
  38. //not responding - is set if any communication error occured durring initialization or readout
  39. bool fsensor_not_responding = false;
  40. //number of errors, updated in ISR
  41. uint8_t fsensor_err_cnt = 0;
  42. //variable for accumolating step count
  43. int16_t fsensor_st_cnt = 0;
  44. //log flag: 0=log disabled, 1=log enabled
  45. uint8_t fsensor_log = 1;
  46. ////////////////////////////////////////////////////////////////////////////////
  47. //filament autoload variables
  48. //autoload feature enabled
  49. bool fsensor_autoload_enabled = true;
  50. //autoload watching enable/disable flag
  51. bool fsensor_watch_autoload = false;
  52. //
  53. uint16_t fsensor_autoload_y;
  54. //
  55. uint8_t fsensor_autoload_c;
  56. //
  57. uint32_t fsensor_autoload_last_millis;
  58. //
  59. uint8_t fsensor_autoload_sum;
  60. ////////////////////////////////////////////////////////////////////////////////
  61. //filament optical quality meassurement variables
  62. //meassurement enable/disable flag
  63. bool fsensor_oq_meassure = false;
  64. //skip-chunk counter, for accurate meassurement is necesary to skip first chunk...
  65. uint8_t fsensor_oq_skipchunk;
  66. //sum of steps in positive direction movements
  67. uint16_t fsensor_oq_st_sum;
  68. //sum of deltas in positive direction movements
  69. uint16_t fsensor_oq_yd_sum;
  70. //sum of errors durring meassurement
  71. uint16_t fsensor_oq_er_sum;
  72. //max error counter value durring meassurement
  73. uint8_t fsensor_oq_er_max;
  74. //minimum delta value
  75. uint16_t fsensor_oq_yd_min;
  76. //maximum delta value
  77. uint16_t fsensor_oq_yd_max;
  78. void fsensor_init(void)
  79. {
  80. int pat9125 = pat9125_init();
  81. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  82. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  83. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  84. if (!pat9125)
  85. {
  86. fsensor = 0; //disable sensor
  87. fsensor_not_responding = true;
  88. }
  89. else
  90. {
  91. fsensor_not_responding = false;
  92. }
  93. puts_P(PSTR("FSensor "));
  94. if (fsensor)
  95. {
  96. fsensor_enable();
  97. puts_P(PSTR("ENABLED\n"));
  98. }
  99. else
  100. {
  101. fsensor_disable();
  102. puts_P(PSTR("DISABLED\n"));
  103. }
  104. }
  105. bool fsensor_enable(void)
  106. {
  107. uint8_t pat9125 = pat9125_init();
  108. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  109. if (pat9125)
  110. fsensor_not_responding = false;
  111. else
  112. fsensor_not_responding = true;
  113. fsensor_enabled = pat9125?true:false;
  114. fsensor_watch_runout = true;
  115. fsensor_oq_meassure = false;
  116. fsensor_err_cnt = 0;
  117. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  118. FSensorStateMenu = fsensor_enabled?1:0;
  119. return fsensor_enabled;
  120. }
  121. void fsensor_disable(void)
  122. {
  123. fsensor_enabled = false;
  124. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  125. FSensorStateMenu = 0;
  126. }
  127. void fsensor_autoload_set(bool State)
  128. {
  129. fsensor_autoload_enabled = State;
  130. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  131. }
  132. void pciSetup(byte pin)
  133. {
  134. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  135. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  136. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  137. }
  138. void fsensor_autoload_check_start(void)
  139. {
  140. // puts_P(_N("fsensor_autoload_check_start\n"));
  141. if (!fsensor_enabled) return;
  142. if (!fsensor_autoload_enabled) return;
  143. if (fsensor_watch_autoload) return;
  144. if (!pat9125_update_y()) //update sensor
  145. {
  146. fsensor_disable();
  147. fsensor_not_responding = true;
  148. fsensor_watch_autoload = false;
  149. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  150. return;
  151. }
  152. puts_P(_N(" autoload enabled\n"));
  153. fsensor_autoload_y = pat9125_y; //save current y value
  154. fsensor_autoload_c = 0; //reset number of changes counter
  155. fsensor_autoload_sum = 0;
  156. fsensor_autoload_last_millis = millis();
  157. fsensor_watch_runout = false;
  158. fsensor_watch_autoload = true;
  159. fsensor_err_cnt = 0;
  160. }
  161. void fsensor_autoload_check_stop(void)
  162. {
  163. // puts_P(_N("fsensor_autoload_check_stop\n"));
  164. if (!fsensor_enabled) return;
  165. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  166. if (!fsensor_autoload_enabled) return;
  167. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  168. if (!fsensor_watch_autoload) return;
  169. puts_P(_N(" autoload disabled\n"));
  170. fsensor_autoload_sum = 0;
  171. fsensor_watch_autoload = false;
  172. fsensor_watch_runout = true;
  173. fsensor_err_cnt = 0;
  174. }
  175. bool fsensor_check_autoload(void)
  176. {
  177. if (!fsensor_enabled) return false;
  178. if (!fsensor_autoload_enabled) return false;
  179. if (!fsensor_watch_autoload)
  180. {
  181. fsensor_autoload_check_start();
  182. return false;
  183. }
  184. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  185. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  186. fsensor_autoload_last_millis = millis();
  187. if (!pat9125_update_y()) //update sensor
  188. {
  189. fsensor_disable();
  190. fsensor_not_responding = true;
  191. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  192. return false;
  193. }
  194. int16_t dy = pat9125_y - fsensor_autoload_y;
  195. if (dy) //? dy value is nonzero
  196. {
  197. if (dy > 0) //? delta-y value is positive (inserting)
  198. {
  199. fsensor_autoload_sum += dy;
  200. fsensor_autoload_c += 3; //increment change counter by 3
  201. }
  202. else if (fsensor_autoload_c > 1)
  203. fsensor_autoload_c -= 2; //decrement change counter by 2
  204. fsensor_autoload_y = pat9125_y; //save current value
  205. }
  206. else if (fsensor_autoload_c > 0)
  207. fsensor_autoload_c--;
  208. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  209. // puts_P(_N("fsensor_check_autoload\n"));
  210. if (fsensor_autoload_c != fsensor_autoload_c_old)
  211. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  212. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  213. if ((fsensor_autoload_c >= 10) && (fsensor_autoload_sum > 20))
  214. {
  215. puts_P(_N("fsensor_check_autoload = true !!!\n"));
  216. return true;
  217. }
  218. return false;
  219. }
  220. void fsensor_oq_meassure_start(void)
  221. {
  222. fsensor_oq_skipchunk = 1;
  223. fsensor_oq_st_sum = 0;
  224. fsensor_oq_yd_sum = 0;
  225. fsensor_oq_er_sum = 0;
  226. fsensor_oq_er_max = 0;
  227. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  228. fsensor_oq_yd_max = 0;
  229. pat9125_update_y();
  230. pat9125_y = 0;
  231. fsensor_watch_runout = false;
  232. fsensor_oq_meassure = true;
  233. }
  234. void fsensor_oq_meassure_stop(void)
  235. {
  236. printf_P(PSTR("fsensor_oq_meassure_stop\n"));
  237. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  238. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum));
  239. fsensor_oq_meassure = false;
  240. fsensor_err_cnt = 0;
  241. fsensor_watch_runout = true;
  242. }
  243. bool fsensor_oq_result(void)
  244. {
  245. printf(_N("fsensor_oq_result\n"));
  246. if (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ER) return false;
  247. printf(_N(" er_sum OK\n"));
  248. uint8_t yd_avg = (uint16_t)((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum);
  249. if ((yd_avg < FSENSOR_OQ_MIN_YD) || (yd_avg > FSENSOR_OQ_MAX_YD)) return false;
  250. printf(_N(" yd_avg OK\n"));
  251. if (fsensor_oq_yd_max > (yd_avg * FSENSOR_OQ_MAX_PD)) return false;
  252. printf(_N(" yd_max OK\n"));
  253. if (fsensor_oq_yd_min < (yd_avg / FSENSOR_OQ_MAX_ND)) return false;
  254. printf(_N(" yd_min OK\n"));
  255. return true;
  256. }
  257. ISR(PCINT2_vect)
  258. {
  259. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  260. fsensor_int_pin_old = PINK;
  261. static bool _lock = false;
  262. if (_lock) return;
  263. _lock = true;
  264. int st_cnt = fsensor_st_cnt;
  265. fsensor_st_cnt = 0;
  266. sei();
  267. uint8_t old_err_cnt = fsensor_err_cnt;
  268. if (!pat9125_update_y())
  269. {
  270. fsensor_disable();
  271. fsensor_not_responding = true;
  272. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  273. }
  274. if (st_cnt != 0)
  275. { //movement
  276. if (st_cnt > 0) //positive movement
  277. {
  278. if (pat9125_y <= 0)
  279. {
  280. fsensor_err_cnt++;
  281. }
  282. else
  283. {
  284. if (fsensor_err_cnt)
  285. fsensor_err_cnt--;
  286. }
  287. if (fsensor_oq_meassure)
  288. {
  289. if (fsensor_oq_skipchunk)
  290. fsensor_oq_skipchunk--;
  291. else
  292. {
  293. if (st_cnt == FSENSOR_CHUNK_LEN)
  294. {
  295. if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  296. if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  297. }
  298. fsensor_oq_st_sum += st_cnt;
  299. fsensor_oq_yd_sum += pat9125_y;
  300. if (fsensor_err_cnt > old_err_cnt)
  301. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  302. if (fsensor_oq_er_max < fsensor_err_cnt)
  303. fsensor_oq_er_max = fsensor_err_cnt;
  304. }
  305. }
  306. }
  307. else //negative movement
  308. {
  309. }
  310. }
  311. else
  312. { //no movement
  313. }
  314. #ifdef DEBUG_FSENSOR_LOG
  315. if (fsensor_log)
  316. {
  317. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  318. printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  319. }
  320. #endif //DEBUG_FSENSOR_LOG
  321. pat9125_y = 0;
  322. _lock = false;
  323. return;
  324. }
  325. void fsensor_st_block_begin(block_t* bl)
  326. {
  327. if (!fsensor_enabled) return;
  328. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  329. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  330. {
  331. if (_READ(63)) _WRITE(63, LOW);
  332. else _WRITE(63, HIGH);
  333. }
  334. }
  335. void fsensor_st_block_chunk(block_t* bl, int cnt)
  336. {
  337. if (!fsensor_enabled) return;
  338. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  339. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  340. {
  341. if (_READ(63)) _WRITE(63, LOW);
  342. else _WRITE(63, HIGH);
  343. }
  344. }
  345. void fsensor_update(void)
  346. {
  347. if (fsensor_enabled && fsensor_watch_runout)
  348. if (fsensor_err_cnt > FSENSOR_ERR_MAX)
  349. {
  350. fsensor_stop_and_save_print();
  351. fsensor_err_cnt = 0;
  352. enquecommand_front_P((PSTR("G1 E-3 F200")));
  353. process_commands();
  354. cmdqueue_pop_front();
  355. st_synchronize();
  356. enquecommand_front_P((PSTR("G1 E3 F200")));
  357. process_commands();
  358. cmdqueue_pop_front();
  359. st_synchronize();
  360. if (fsensor_err_cnt == 0)
  361. {
  362. fsensor_restore_print_and_continue();
  363. }
  364. else
  365. {
  366. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  367. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  368. enquecommand_front_P((PSTR("M600")));
  369. fsensor_watch_runout = false;
  370. }
  371. }
  372. }
  373. void fsensor_setup_interrupt(void)
  374. {
  375. pinMode(FSENSOR_INT_PIN, OUTPUT);
  376. digitalWrite(FSENSOR_INT_PIN, LOW);
  377. fsensor_int_pin_old = 0;
  378. pciSetup(FSENSOR_INT_PIN);
  379. }