Marlin_main.cpp 232 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  180. // M907 - Set digital trimpot motor current using axis codes.
  181. // M908 - Control digital trimpot directly.
  182. // M350 - Set microstepping mode.
  183. // M351 - Toggle MS1 MS2 pins directly.
  184. // M928 - Start SD logging (M928 filename.g) - ended by M29
  185. // M999 - Restart after being stopped by error
  186. //Stepper Movement Variables
  187. //===========================================================================
  188. //=============================imported variables============================
  189. //===========================================================================
  190. //===========================================================================
  191. //=============================public variables=============================
  192. //===========================================================================
  193. #ifdef SDSUPPORT
  194. CardReader card;
  195. #endif
  196. unsigned long TimeSent = millis();
  197. unsigned long TimeNow = millis();
  198. unsigned long PingTime = millis();
  199. unsigned long NcTime;
  200. union Data
  201. {
  202. byte b[2];
  203. int value;
  204. };
  205. float homing_feedrate[] = HOMING_FEEDRATE;
  206. // Currently only the extruder axis may be switched to a relative mode.
  207. // Other axes are always absolute or relative based on the common relative_mode flag.
  208. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  209. int feedmultiply=100; //100->1 200->2
  210. int saved_feedmultiply;
  211. int extrudemultiply=100; //100->1 200->2
  212. int extruder_multiply[EXTRUDERS] = {100
  213. #if EXTRUDERS > 1
  214. , 100
  215. #if EXTRUDERS > 2
  216. , 100
  217. #endif
  218. #endif
  219. };
  220. int bowden_length[4];
  221. bool is_usb_printing = false;
  222. bool homing_flag = false;
  223. bool temp_cal_active = false;
  224. unsigned long kicktime = millis()+100000;
  225. unsigned int usb_printing_counter;
  226. int lcd_change_fil_state = 0;
  227. int feedmultiplyBckp = 100;
  228. float HotendTempBckp = 0;
  229. int fanSpeedBckp = 0;
  230. float pause_lastpos[4];
  231. unsigned long pause_time = 0;
  232. unsigned long start_pause_print = millis();
  233. unsigned long load_filament_time;
  234. bool mesh_bed_leveling_flag = false;
  235. bool mesh_bed_run_from_menu = false;
  236. unsigned char lang_selected = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. uint8_t selectedSerialPort;
  248. float distance_from_min[3];
  249. bool sortAlpha = false;
  250. bool volumetric_enabled = false;
  251. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  252. #if EXTRUDERS > 1
  253. , DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 2
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #endif
  257. #endif
  258. };
  259. float volumetric_multiplier[EXTRUDERS] = {1.0
  260. #if EXTRUDERS > 1
  261. , 1.0
  262. #if EXTRUDERS > 2
  263. , 1.0
  264. #endif
  265. #endif
  266. };
  267. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  268. float add_homing[3]={0,0,0};
  269. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  270. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  271. bool axis_known_position[3] = {false, false, false};
  272. float zprobe_zoffset;
  273. // Extruder offset
  274. #if EXTRUDERS > 1
  275. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  276. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  277. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  278. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  279. #endif
  280. };
  281. #endif
  282. uint8_t active_extruder = 0;
  283. int fanSpeed=0;
  284. #ifdef FWRETRACT
  285. bool autoretract_enabled=false;
  286. bool retracted[EXTRUDERS]={false
  287. #if EXTRUDERS > 1
  288. , false
  289. #if EXTRUDERS > 2
  290. , false
  291. #endif
  292. #endif
  293. };
  294. bool retracted_swap[EXTRUDERS]={false
  295. #if EXTRUDERS > 1
  296. , false
  297. #if EXTRUDERS > 2
  298. , false
  299. #endif
  300. #endif
  301. };
  302. float retract_length = RETRACT_LENGTH;
  303. float retract_length_swap = RETRACT_LENGTH_SWAP;
  304. float retract_feedrate = RETRACT_FEEDRATE;
  305. float retract_zlift = RETRACT_ZLIFT;
  306. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  307. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  308. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  309. #endif
  310. #ifdef ULTIPANEL
  311. #ifdef PS_DEFAULT_OFF
  312. bool powersupply = false;
  313. #else
  314. bool powersupply = true;
  315. #endif
  316. #endif
  317. bool cancel_heatup = false ;
  318. #ifdef HOST_KEEPALIVE_FEATURE
  319. MarlinBusyState busy_state = NOT_BUSY;
  320. static long prev_busy_signal_ms = -1;
  321. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  322. #else
  323. #define host_keepalive();
  324. #define KEEPALIVE_STATE(n);
  325. #endif
  326. #ifdef FILAMENT_SENSOR
  327. //Variables for Filament Sensor input
  328. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  329. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  330. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  331. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  332. int delay_index1=0; //index into ring buffer
  333. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  334. float delay_dist=0; //delay distance counter
  335. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  336. #endif
  337. const char errormagic[] PROGMEM = "Error:";
  338. const char echomagic[] PROGMEM = "echo:";
  339. bool no_response = false;
  340. uint8_t important_status;
  341. uint8_t saved_filament_type;
  342. //===========================================================================
  343. //=============================Private Variables=============================
  344. //===========================================================================
  345. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  346. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  347. // For tracing an arc
  348. static float offset[3] = {0.0, 0.0, 0.0};
  349. static bool home_all_axis = true;
  350. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  351. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  352. // Determines Absolute or Relative Coordinates.
  353. // Also there is bool axis_relative_modes[] per axis flag.
  354. static bool relative_mode = false;
  355. // String circular buffer. Commands may be pushed to the buffer from both sides:
  356. // Chained commands will be pushed to the front, interactive (from LCD menu)
  357. // and printing commands (from serial line or from SD card) are pushed to the tail.
  358. // First character of each entry indicates the type of the entry:
  359. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  360. // Command in cmdbuffer was sent over USB.
  361. #define CMDBUFFER_CURRENT_TYPE_USB 1
  362. // Command in cmdbuffer was read from SDCARD.
  363. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  364. // Command in cmdbuffer was generated by the UI.
  365. #define CMDBUFFER_CURRENT_TYPE_UI 3
  366. // Command in cmdbuffer was generated by another G-code.
  367. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  368. // How much space to reserve for the chained commands
  369. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  370. // which are pushed to the front of the queue?
  371. // Maximum 5 commands of max length 20 + null terminator.
  372. #define CMDBUFFER_RESERVE_FRONT (5*21)
  373. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  374. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  375. // Head of the circular buffer, where to read.
  376. static int bufindr = 0;
  377. // Tail of the buffer, where to write.
  378. static int bufindw = 0;
  379. // Number of lines in cmdbuffer.
  380. static int buflen = 0;
  381. // Flag for processing the current command inside the main Arduino loop().
  382. // If a new command was pushed to the front of a command buffer while
  383. // processing another command, this replaces the command on the top.
  384. // Therefore don't remove the command from the queue in the loop() function.
  385. static bool cmdbuffer_front_already_processed = false;
  386. // Type of a command, which is to be executed right now.
  387. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  388. // String of a command, which is to be executed right now.
  389. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  390. // Enable debugging of the command buffer.
  391. // Debugging information will be sent to serial line.
  392. // #define CMDBUFFER_DEBUG
  393. static int serial_count = 0; //index of character read from serial line
  394. static boolean comment_mode = false;
  395. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  396. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  397. //static float tt = 0;
  398. //static float bt = 0;
  399. //Inactivity shutdown variables
  400. static unsigned long previous_millis_cmd = 0;
  401. unsigned long max_inactive_time = 0;
  402. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  403. unsigned long starttime=0;
  404. unsigned long stoptime=0;
  405. unsigned long _usb_timer = 0;
  406. static uint8_t tmp_extruder;
  407. bool Stopped=false;
  408. #if NUM_SERVOS > 0
  409. Servo servos[NUM_SERVOS];
  410. #endif
  411. bool CooldownNoWait = true;
  412. bool target_direction;
  413. //Insert variables if CHDK is defined
  414. #ifdef CHDK
  415. unsigned long chdkHigh = 0;
  416. boolean chdkActive = false;
  417. #endif
  418. static int saved_feedmultiply_mm = 100;
  419. //===========================================================================
  420. //=============================Routines======================================
  421. //===========================================================================
  422. void get_arc_coordinates();
  423. bool setTargetedHotend(int code);
  424. void serial_echopair_P(const char *s_P, float v)
  425. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char *s_P, double v)
  427. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char *s_P, unsigned long v)
  429. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. #ifdef SDSUPPORT
  431. #include "SdFatUtil.h"
  432. int freeMemory() { return SdFatUtil::FreeRam(); }
  433. #else
  434. extern "C" {
  435. extern unsigned int __bss_end;
  436. extern unsigned int __heap_start;
  437. extern void *__brkval;
  438. int freeMemory() {
  439. int free_memory;
  440. if ((int)__brkval == 0)
  441. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  442. else
  443. free_memory = ((int)&free_memory) - ((int)__brkval);
  444. return free_memory;
  445. }
  446. }
  447. #endif //!SDSUPPORT
  448. // Pop the currently processed command from the queue.
  449. // It is expected, that there is at least one command in the queue.
  450. bool cmdqueue_pop_front()
  451. {
  452. if (buflen > 0) {
  453. #ifdef CMDBUFFER_DEBUG
  454. SERIAL_ECHOPGM("Dequeing ");
  455. SERIAL_ECHO(cmdbuffer+bufindr+1);
  456. SERIAL_ECHOLNPGM("");
  457. SERIAL_ECHOPGM("Old indices: buflen ");
  458. SERIAL_ECHO(buflen);
  459. SERIAL_ECHOPGM(", bufindr ");
  460. SERIAL_ECHO(bufindr);
  461. SERIAL_ECHOPGM(", bufindw ");
  462. SERIAL_ECHO(bufindw);
  463. SERIAL_ECHOPGM(", serial_count ");
  464. SERIAL_ECHO(serial_count);
  465. SERIAL_ECHOPGM(", bufsize ");
  466. SERIAL_ECHO(sizeof(cmdbuffer));
  467. SERIAL_ECHOLNPGM("");
  468. #endif /* CMDBUFFER_DEBUG */
  469. if (-- buflen == 0) {
  470. // Empty buffer.
  471. if (serial_count == 0)
  472. // No serial communication is pending. Reset both pointers to zero.
  473. bufindw = 0;
  474. bufindr = bufindw;
  475. } else {
  476. // There is at least one ready line in the buffer.
  477. // First skip the current command ID and iterate up to the end of the string.
  478. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  479. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  480. for (++ bufindr; (bufindr < (int)sizeof(cmdbuffer)) && (cmdbuffer[bufindr] == 0); ++ bufindr) ;
  481. // If the end of the buffer was empty,
  482. if (bufindr == sizeof(cmdbuffer)) {
  483. // skip to the start and find the nonzero command.
  484. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  485. }
  486. #ifdef CMDBUFFER_DEBUG
  487. SERIAL_ECHOPGM("New indices: buflen ");
  488. SERIAL_ECHO(buflen);
  489. SERIAL_ECHOPGM(", bufindr ");
  490. SERIAL_ECHO(bufindr);
  491. SERIAL_ECHOPGM(", bufindw ");
  492. SERIAL_ECHO(bufindw);
  493. SERIAL_ECHOPGM(", serial_count ");
  494. SERIAL_ECHO(serial_count);
  495. SERIAL_ECHOPGM(" new command on the top: ");
  496. SERIAL_ECHO(cmdbuffer+bufindr+1);
  497. SERIAL_ECHOLNPGM("");
  498. #endif /* CMDBUFFER_DEBUG */
  499. }
  500. return true;
  501. }
  502. return false;
  503. }
  504. void cmdqueue_reset()
  505. {
  506. while (cmdqueue_pop_front()) ;
  507. }
  508. // How long a string could be pushed to the front of the command queue?
  509. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  510. // len_asked does not contain the zero terminator size.
  511. bool cmdqueue_could_enqueue_front(int len_asked)
  512. {
  513. // MAX_CMD_SIZE has to accommodate the zero terminator.
  514. if (len_asked >= MAX_CMD_SIZE)
  515. return false;
  516. // Remove the currently processed command from the queue.
  517. if (! cmdbuffer_front_already_processed) {
  518. cmdqueue_pop_front();
  519. cmdbuffer_front_already_processed = true;
  520. }
  521. if (bufindr == bufindw && buflen > 0)
  522. // Full buffer.
  523. return false;
  524. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  525. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  526. if (bufindw < bufindr) {
  527. int bufindr_new = bufindr - len_asked - 2;
  528. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  529. if (endw <= bufindr_new) {
  530. bufindr = bufindr_new;
  531. return true;
  532. }
  533. } else {
  534. // Otherwise the free space is split between the start and end.
  535. if (len_asked + 2 <= bufindr) {
  536. // Could fit at the start.
  537. bufindr -= len_asked + 2;
  538. return true;
  539. }
  540. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  541. if (endw <= bufindr_new) {
  542. memset(cmdbuffer, 0, bufindr);
  543. bufindr = bufindr_new;
  544. return true;
  545. }
  546. }
  547. return false;
  548. }
  549. // Could one enqueue a command of lenthg len_asked into the buffer,
  550. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  551. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  552. // len_asked does not contain the zero terminator size.
  553. bool cmdqueue_could_enqueue_back(int len_asked)
  554. {
  555. // MAX_CMD_SIZE has to accommodate the zero terminator.
  556. if (len_asked >= MAX_CMD_SIZE)
  557. return false;
  558. if (bufindr == bufindw && buflen > 0)
  559. // Full buffer.
  560. return false;
  561. if (serial_count > 0) {
  562. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  563. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  564. // serial data.
  565. // How much memory to reserve for the commands pushed to the front?
  566. // End of the queue, when pushing to the end.
  567. int endw = bufindw + len_asked + 2;
  568. if (bufindw < bufindr)
  569. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  570. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  571. // Otherwise the free space is split between the start and end.
  572. if (// Could one fit to the end, including the reserve?
  573. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  574. // Could one fit to the end, and the reserve to the start?
  575. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  576. return true;
  577. // Could one fit both to the start?
  578. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  579. // Mark the rest of the buffer as used.
  580. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  581. // and point to the start.
  582. bufindw = 0;
  583. return true;
  584. }
  585. } else {
  586. // How much memory to reserve for the commands pushed to the front?
  587. // End of the queue, when pushing to the end.
  588. int endw = bufindw + len_asked + 2;
  589. if (bufindw < bufindr)
  590. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  591. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  592. // Otherwise the free space is split between the start and end.
  593. if (// Could one fit to the end, including the reserve?
  594. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  595. // Could one fit to the end, and the reserve to the start?
  596. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  597. return true;
  598. // Could one fit both to the start?
  599. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  600. // Mark the rest of the buffer as used.
  601. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  602. // and point to the start.
  603. bufindw = 0;
  604. return true;
  605. }
  606. }
  607. return false;
  608. }
  609. #ifdef CMDBUFFER_DEBUG
  610. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  611. {
  612. SERIAL_ECHOPGM("Entry nr: ");
  613. SERIAL_ECHO(nr);
  614. SERIAL_ECHOPGM(", type: ");
  615. SERIAL_ECHO(int(*p));
  616. SERIAL_ECHOPGM(", cmd: ");
  617. SERIAL_ECHO(p+1);
  618. SERIAL_ECHOLNPGM("");
  619. }
  620. static void cmdqueue_dump_to_serial()
  621. {
  622. if (buflen == 0) {
  623. SERIAL_ECHOLNPGM("The command buffer is empty.");
  624. } else {
  625. SERIAL_ECHOPGM("Content of the buffer: entries ");
  626. SERIAL_ECHO(buflen);
  627. SERIAL_ECHOPGM(", indr ");
  628. SERIAL_ECHO(bufindr);
  629. SERIAL_ECHOPGM(", indw ");
  630. SERIAL_ECHO(bufindw);
  631. SERIAL_ECHOLNPGM("");
  632. int nr = 0;
  633. if (bufindr < bufindw) {
  634. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  640. }
  641. } else {
  642. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  643. cmdqueue_dump_to_serial_single_line(nr, p);
  644. // Skip the command.
  645. for (++p; *p != 0; ++ p);
  646. // Skip the gaps.
  647. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  648. }
  649. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  650. cmdqueue_dump_to_serial_single_line(nr, p);
  651. // Skip the command.
  652. for (++p; *p != 0; ++ p);
  653. // Skip the gaps.
  654. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  655. }
  656. }
  657. SERIAL_ECHOLNPGM("End of the buffer.");
  658. }
  659. }
  660. #endif /* CMDBUFFER_DEBUG */
  661. //adds an command to the main command buffer
  662. //thats really done in a non-safe way.
  663. //needs overworking someday
  664. // Currently the maximum length of a command piped through this function is around 20 characters
  665. void enquecommand(const char *cmd, bool from_progmem)
  666. {
  667. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  668. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  669. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  670. if (cmdqueue_could_enqueue_back(len)) {
  671. // This is dangerous if a mixing of serial and this happens
  672. // This may easily be tested: If serial_count > 0, we have a problem.
  673. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  674. if (from_progmem)
  675. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  676. else
  677. strcpy(cmdbuffer + bufindw + 1, cmd);
  678. if (!farm_mode) {
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHORPGM(MSG_Enqueing);
  681. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  682. SERIAL_ECHOLNPGM("\"");
  683. }
  684. bufindw += len + 2;
  685. if (bufindw == sizeof(cmdbuffer))
  686. bufindw = 0;
  687. ++ buflen;
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. } else {
  692. SERIAL_ERROR_START;
  693. SERIAL_ECHORPGM(MSG_Enqueing);
  694. if (from_progmem)
  695. SERIAL_PROTOCOLRPGM(cmd);
  696. else
  697. SERIAL_ECHO(cmd);
  698. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. }
  703. }
  704. bool cmd_buffer_empty()
  705. {
  706. return (buflen == 0);
  707. }
  708. void enquecommand_front(const char *cmd, bool from_progmem)
  709. {
  710. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  711. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  712. if (cmdqueue_could_enqueue_front(len)) {
  713. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  714. if (from_progmem)
  715. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  716. else
  717. strcpy(cmdbuffer + bufindr + 1, cmd);
  718. ++ buflen;
  719. if (!farm_mode) {
  720. SERIAL_ECHO_START;
  721. SERIAL_ECHOPGM("Enqueing to the front: \"");
  722. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  723. SERIAL_ECHOLNPGM("\"");
  724. }
  725. #ifdef CMDBUFFER_DEBUG
  726. cmdqueue_dump_to_serial();
  727. #endif /* CMDBUFFER_DEBUG */
  728. } else {
  729. SERIAL_ERROR_START;
  730. SERIAL_ECHOPGM("Enqueing to the front: \"");
  731. if (from_progmem)
  732. SERIAL_PROTOCOLRPGM(cmd);
  733. else
  734. SERIAL_ECHO(cmd);
  735. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  736. #ifdef CMDBUFFER_DEBUG
  737. cmdqueue_dump_to_serial();
  738. #endif /* CMDBUFFER_DEBUG */
  739. }
  740. }
  741. // Mark the command at the top of the command queue as new.
  742. // Therefore it will not be removed from the queue.
  743. void repeatcommand_front()
  744. {
  745. cmdbuffer_front_already_processed = true;
  746. }
  747. bool is_buffer_empty()
  748. {
  749. if (buflen == 0) return true;
  750. else return false;
  751. }
  752. void setup_killpin()
  753. {
  754. #if defined(KILL_PIN) && KILL_PIN > -1
  755. SET_INPUT(KILL_PIN);
  756. WRITE(KILL_PIN,HIGH);
  757. #endif
  758. }
  759. // Set home pin
  760. void setup_homepin(void)
  761. {
  762. #if defined(HOME_PIN) && HOME_PIN > -1
  763. SET_INPUT(HOME_PIN);
  764. WRITE(HOME_PIN,HIGH);
  765. #endif
  766. }
  767. void setup_photpin()
  768. {
  769. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  770. SET_OUTPUT(PHOTOGRAPH_PIN);
  771. WRITE(PHOTOGRAPH_PIN, LOW);
  772. #endif
  773. }
  774. void setup_powerhold()
  775. {
  776. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  777. SET_OUTPUT(SUICIDE_PIN);
  778. WRITE(SUICIDE_PIN, HIGH);
  779. #endif
  780. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  781. SET_OUTPUT(PS_ON_PIN);
  782. #if defined(PS_DEFAULT_OFF)
  783. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  784. #else
  785. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  786. #endif
  787. #endif
  788. }
  789. void suicide()
  790. {
  791. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  792. SET_OUTPUT(SUICIDE_PIN);
  793. WRITE(SUICIDE_PIN, LOW);
  794. #endif
  795. }
  796. void servo_init()
  797. {
  798. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  799. servos[0].attach(SERVO0_PIN);
  800. #endif
  801. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  802. servos[1].attach(SERVO1_PIN);
  803. #endif
  804. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  805. servos[2].attach(SERVO2_PIN);
  806. #endif
  807. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  808. servos[3].attach(SERVO3_PIN);
  809. #endif
  810. #if (NUM_SERVOS >= 5)
  811. #error "TODO: enter initalisation code for more servos"
  812. #endif
  813. }
  814. #ifdef MESH_BED_LEVELING
  815. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  816. #endif
  817. // Factory reset function
  818. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  819. // Level input parameter sets depth of reset
  820. // Quiet parameter masks all waitings for user interact.
  821. int er_progress = 0;
  822. void factory_reset(char level, bool quiet)
  823. {
  824. lcd_implementation_clear();
  825. switch (level) {
  826. // Level 0: Language reset
  827. case 0:
  828. WRITE(BEEPER, HIGH);
  829. _delay_ms(100);
  830. WRITE(BEEPER, LOW);
  831. lcd_force_language_selection();
  832. break;
  833. //Level 1: Reset statistics
  834. case 1:
  835. WRITE(BEEPER, HIGH);
  836. _delay_ms(100);
  837. WRITE(BEEPER, LOW);
  838. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  839. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  840. lcd_menu_statistics();
  841. break;
  842. // Level 2: Prepare for shipping
  843. case 2:
  844. //lcd_printPGM(PSTR("Factory RESET"));
  845. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  846. // Force language selection at the next boot up.
  847. lcd_force_language_selection();
  848. // Force the "Follow calibration flow" message at the next boot up.
  849. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  850. farm_no = 0;
  851. farm_mode = 0;
  852. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  853. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  854. WRITE(BEEPER, HIGH);
  855. _delay_ms(100);
  856. WRITE(BEEPER, LOW);
  857. //_delay_ms(2000);
  858. break;
  859. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  860. case 3:
  861. lcd_printPGM(PSTR("Factory RESET"));
  862. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  863. WRITE(BEEPER, HIGH);
  864. _delay_ms(100);
  865. WRITE(BEEPER, LOW);
  866. er_progress = 0;
  867. lcd_print_at_PGM(3, 3, PSTR(" "));
  868. lcd_implementation_print_at(3, 3, er_progress);
  869. // Erase EEPROM
  870. for (int i = 0; i < 4096; i++) {
  871. eeprom_write_byte((uint8_t*)i, 0xFF);
  872. if (i % 41 == 0) {
  873. er_progress++;
  874. lcd_print_at_PGM(3, 3, PSTR(" "));
  875. lcd_implementation_print_at(3, 3, er_progress);
  876. lcd_printPGM(PSTR("%"));
  877. }
  878. }
  879. break;
  880. case 4:
  881. bowden_menu();
  882. break;
  883. default:
  884. break;
  885. }
  886. }
  887. // "Setup" function is called by the Arduino framework on startup.
  888. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  889. // are initialized by the main() routine provided by the Arduino framework.
  890. void setup()
  891. {
  892. lcd_init();
  893. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  894. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  895. setup_killpin();
  896. setup_powerhold();
  897. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  898. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  899. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  900. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  901. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  902. if (farm_mode)
  903. {
  904. prusa_statistics(8);
  905. no_response = true; //we need confirmation by recieving PRUSA thx
  906. important_status = 8;
  907. selectedSerialPort = 1;
  908. } else {
  909. selectedSerialPort = 0;
  910. }
  911. MYSERIAL.begin(BAUDRATE);
  912. SERIAL_PROTOCOLLNPGM("start");
  913. SERIAL_ECHO_START;
  914. #if 0
  915. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  916. for (int i = 0; i < 4096; ++i) {
  917. int b = eeprom_read_byte((unsigned char*)i);
  918. if (b != 255) {
  919. SERIAL_ECHO(i);
  920. SERIAL_ECHO(":");
  921. SERIAL_ECHO(b);
  922. SERIAL_ECHOLN("");
  923. }
  924. }
  925. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  926. #endif
  927. // Check startup - does nothing if bootloader sets MCUSR to 0
  928. byte mcu = MCUSR;
  929. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  930. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  931. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  932. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  933. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  934. MCUSR = 0;
  935. //SERIAL_ECHORPGM(MSG_MARLIN);
  936. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  937. #ifdef STRING_VERSION_CONFIG_H
  938. #ifdef STRING_CONFIG_H_AUTHOR
  939. SERIAL_ECHO_START;
  940. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  941. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  942. SERIAL_ECHORPGM(MSG_AUTHOR);
  943. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  944. SERIAL_ECHOPGM("Compiled: ");
  945. SERIAL_ECHOLNPGM(__DATE__);
  946. #endif
  947. #endif
  948. SERIAL_ECHO_START;
  949. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  950. SERIAL_ECHO(freeMemory());
  951. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  952. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  953. lcd_update_enable(false);
  954. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  955. bool previous_settings_retrieved = Config_RetrieveSettings();
  956. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  957. tp_init(); // Initialize temperature loop
  958. plan_init(); // Initialize planner;
  959. watchdog_init();
  960. st_init(); // Initialize stepper, this enables interrupts!
  961. setup_photpin();
  962. servo_init();
  963. // Reset the machine correction matrix.
  964. // It does not make sense to load the correction matrix until the machine is homed.
  965. world2machine_reset();
  966. lcd_init();
  967. KEEPALIVE_STATE(PAUSED_FOR_USER);
  968. if (!READ(BTN_ENC))
  969. {
  970. _delay_ms(1000);
  971. if (!READ(BTN_ENC))
  972. {
  973. lcd_implementation_clear();
  974. lcd_printPGM(PSTR("Factory RESET"));
  975. SET_OUTPUT(BEEPER);
  976. WRITE(BEEPER, HIGH);
  977. while (!READ(BTN_ENC));
  978. WRITE(BEEPER, LOW);
  979. _delay_ms(2000);
  980. char level = reset_menu();
  981. factory_reset(level, false);
  982. switch (level) {
  983. case 0: _delay_ms(0); break;
  984. case 1: _delay_ms(0); break;
  985. case 2: _delay_ms(0); break;
  986. case 3: _delay_ms(0); break;
  987. }
  988. // _delay_ms(100);
  989. /*
  990. #ifdef MESH_BED_LEVELING
  991. _delay_ms(2000);
  992. if (!READ(BTN_ENC))
  993. {
  994. WRITE(BEEPER, HIGH);
  995. _delay_ms(100);
  996. WRITE(BEEPER, LOW);
  997. _delay_ms(200);
  998. WRITE(BEEPER, HIGH);
  999. _delay_ms(100);
  1000. WRITE(BEEPER, LOW);
  1001. int _z = 0;
  1002. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1003. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1004. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1005. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1006. }
  1007. else
  1008. {
  1009. WRITE(BEEPER, HIGH);
  1010. _delay_ms(100);
  1011. WRITE(BEEPER, LOW);
  1012. }
  1013. #endif // mesh */
  1014. }
  1015. }
  1016. else
  1017. {
  1018. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1019. }
  1020. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1021. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1022. #endif
  1023. #ifdef DIGIPOT_I2C
  1024. digipot_i2c_init();
  1025. #endif
  1026. setup_homepin();
  1027. #if defined(Z_AXIS_ALWAYS_ON)
  1028. enable_z();
  1029. #endif
  1030. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1031. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1032. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1033. // but this times out if a blocking dialog is shown in setup().
  1034. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  1035. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  1036. card.initsd();
  1037. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1038. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1039. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1040. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1041. // where all the EEPROM entries are set to 0x0ff.
  1042. // Once a firmware boots up, it forces at least a language selection, which changes
  1043. // EEPROM_LANG to number lower than 0x0ff.
  1044. // 1) Set a high power mode.
  1045. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1046. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1047. }
  1048. #ifdef SNMM
  1049. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1050. int _z = BOWDEN_LENGTH;
  1051. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1052. }
  1053. #endif
  1054. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1055. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1056. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1057. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1058. if (lang_selected >= LANG_NUM){
  1059. lcd_mylang();
  1060. }
  1061. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1062. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1063. temp_cal_active = false;
  1064. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1065. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1066. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1067. }
  1068. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1069. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1070. }
  1071. #ifndef DEBUG_DISABLE_STARTMSGS
  1072. check_babystep(); //checking if Z babystep is in allowed range
  1073. for (int i = 0; i < 4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1074. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1075. lcd_wizard(0);
  1076. }
  1077. else if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1078. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1079. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1080. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION){
  1081. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1082. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1083. // Show the message.
  1084. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1085. }
  1086. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1087. // Show the message.
  1088. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1089. lcd_update_enable(true);
  1090. }
  1091. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1092. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1093. lcd_update_enable(true);
  1094. }
  1095. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1096. // Show the message.
  1097. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1098. }
  1099. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1100. if (!previous_settings_retrieved) {
  1101. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1102. }
  1103. }
  1104. #endif //DEBUG_DISABLE_STARTMSGS
  1105. lcd_update_enable(true);
  1106. // Store the currently running firmware into an eeprom,
  1107. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1108. update_current_firmware_version_to_eeprom();
  1109. KEEPALIVE_STATE(NOT_BUSY);
  1110. }
  1111. void trace();
  1112. #define CHUNK_SIZE 64 // bytes
  1113. #define SAFETY_MARGIN 1
  1114. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1115. int chunkHead = 0;
  1116. void serial_read_stream() {
  1117. setTargetHotend(0, 0);
  1118. setTargetBed(0);
  1119. lcd_implementation_clear();
  1120. lcd_printPGM(PSTR(" Upload in progress"));
  1121. // first wait for how many bytes we will receive
  1122. uint32_t bytesToReceive;
  1123. // receive the four bytes
  1124. char bytesToReceiveBuffer[4];
  1125. for (int i=0; i<4; i++) {
  1126. int data;
  1127. while ((data = MYSERIAL.read()) == -1) {};
  1128. bytesToReceiveBuffer[i] = data;
  1129. }
  1130. // make it a uint32
  1131. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1132. // we're ready, notify the sender
  1133. MYSERIAL.write('+');
  1134. // lock in the routine
  1135. uint32_t receivedBytes = 0;
  1136. while (prusa_sd_card_upload) {
  1137. int i;
  1138. for (i=0; i<CHUNK_SIZE; i++) {
  1139. int data;
  1140. // check if we're not done
  1141. if (receivedBytes == bytesToReceive) {
  1142. break;
  1143. }
  1144. // read the next byte
  1145. while ((data = MYSERIAL.read()) == -1) {};
  1146. receivedBytes++;
  1147. // save it to the chunk
  1148. chunk[i] = data;
  1149. }
  1150. // write the chunk to SD
  1151. card.write_command_no_newline(&chunk[0]);
  1152. // notify the sender we're ready for more data
  1153. MYSERIAL.write('+');
  1154. // for safety
  1155. manage_heater();
  1156. // check if we're done
  1157. if(receivedBytes == bytesToReceive) {
  1158. trace(); // beep
  1159. card.closefile();
  1160. prusa_sd_card_upload = false;
  1161. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1162. return;
  1163. }
  1164. }
  1165. }
  1166. #ifdef HOST_KEEPALIVE_FEATURE
  1167. /**
  1168. * Output a "busy" message at regular intervals
  1169. * while the machine is not accepting commands.
  1170. */
  1171. void host_keepalive() {
  1172. if (farm_mode) return;
  1173. long ms = millis();
  1174. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1175. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1176. switch (busy_state) {
  1177. case IN_HANDLER:
  1178. case IN_PROCESS:
  1179. SERIAL_ECHO_START;
  1180. SERIAL_ECHOLNPGM("busy: processing");
  1181. break;
  1182. case PAUSED_FOR_USER:
  1183. SERIAL_ECHO_START;
  1184. SERIAL_ECHOLNPGM("busy: paused for user");
  1185. break;
  1186. case PAUSED_FOR_INPUT:
  1187. SERIAL_ECHO_START;
  1188. SERIAL_ECHOLNPGM("busy: paused for input");
  1189. break;
  1190. default:
  1191. break;
  1192. }
  1193. }
  1194. prev_busy_signal_ms = ms;
  1195. }
  1196. #endif
  1197. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1198. // Before loop(), the setup() function is called by the main() routine.
  1199. void loop()
  1200. {
  1201. KEEPALIVE_STATE(NOT_BUSY);
  1202. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1203. {
  1204. is_usb_printing = true;
  1205. usb_printing_counter--;
  1206. _usb_timer = millis();
  1207. }
  1208. if (usb_printing_counter == 0)
  1209. {
  1210. is_usb_printing = false;
  1211. }
  1212. if (prusa_sd_card_upload)
  1213. {
  1214. //we read byte-by byte
  1215. serial_read_stream();
  1216. } else
  1217. {
  1218. get_command();
  1219. #ifdef SDSUPPORT
  1220. card.checkautostart(false);
  1221. #endif
  1222. if(buflen)
  1223. {
  1224. #ifdef SDSUPPORT
  1225. if(card.saving)
  1226. {
  1227. // Saving a G-code file onto an SD-card is in progress.
  1228. // Saving starts with M28, saving until M29 is seen.
  1229. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1230. card.write_command(CMDBUFFER_CURRENT_STRING);
  1231. if(card.logging)
  1232. process_commands();
  1233. else
  1234. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1235. } else {
  1236. card.closefile();
  1237. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1238. }
  1239. } else {
  1240. process_commands();
  1241. }
  1242. #else
  1243. process_commands();
  1244. #endif //SDSUPPORT
  1245. if (! cmdbuffer_front_already_processed)
  1246. cmdqueue_pop_front();
  1247. cmdbuffer_front_already_processed = false;
  1248. host_keepalive();
  1249. }
  1250. }
  1251. //check heater every n milliseconds
  1252. manage_heater();
  1253. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1254. checkHitEndstops();
  1255. lcd_update();
  1256. }
  1257. void proc_commands() {
  1258. if (buflen)
  1259. {
  1260. process_commands();
  1261. if (!cmdbuffer_front_already_processed)
  1262. cmdqueue_pop_front();
  1263. cmdbuffer_front_already_processed = false;
  1264. }
  1265. }
  1266. void get_command()
  1267. {
  1268. // Test and reserve space for the new command string.
  1269. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1270. return;
  1271. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1272. while (MYSERIAL.available() > 0) {
  1273. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1274. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1275. rx_buffer_full = true; //sets flag that buffer was full
  1276. }
  1277. char serial_char = MYSERIAL.read();
  1278. if (selectedSerialPort == 1) {
  1279. selectedSerialPort = 0;
  1280. MYSERIAL.write(serial_char);
  1281. selectedSerialPort = 1;
  1282. }
  1283. TimeSent = millis();
  1284. TimeNow = millis();
  1285. if (serial_char < 0)
  1286. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1287. // and Marlin does not support such file names anyway.
  1288. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1289. // to a hang-up of the print process from an SD card.
  1290. continue;
  1291. if(serial_char == '\n' ||
  1292. serial_char == '\r' ||
  1293. (serial_char == ':' && comment_mode == false) ||
  1294. serial_count >= (MAX_CMD_SIZE - 1) )
  1295. {
  1296. if(!serial_count) { //if empty line
  1297. comment_mode = false; //for new command
  1298. return;
  1299. }
  1300. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1301. if(!comment_mode){
  1302. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1303. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1304. {
  1305. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1306. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1307. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1308. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1309. // M110 - set current line number.
  1310. // Line numbers not sent in succession.
  1311. SERIAL_ERROR_START;
  1312. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1313. SERIAL_ERRORLN(gcode_LastN);
  1314. //Serial.println(gcode_N);
  1315. FlushSerialRequestResend();
  1316. serial_count = 0;
  1317. return;
  1318. }
  1319. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1320. {
  1321. byte checksum = 0;
  1322. char *p = cmdbuffer+bufindw+1;
  1323. while (p != strchr_pointer)
  1324. checksum = checksum^(*p++);
  1325. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1326. SERIAL_ERROR_START;
  1327. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1328. SERIAL_ERRORLN(gcode_LastN);
  1329. FlushSerialRequestResend();
  1330. serial_count = 0;
  1331. return;
  1332. }
  1333. // If no errors, remove the checksum and continue parsing.
  1334. *strchr_pointer = 0;
  1335. }
  1336. else
  1337. {
  1338. SERIAL_ERROR_START;
  1339. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1340. SERIAL_ERRORLN(gcode_LastN);
  1341. FlushSerialRequestResend();
  1342. serial_count = 0;
  1343. return;
  1344. }
  1345. gcode_LastN = gcode_N;
  1346. //if no errors, continue parsing
  1347. } // end of 'N' command
  1348. }
  1349. else // if we don't receive 'N' but still see '*'
  1350. {
  1351. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1352. {
  1353. SERIAL_ERROR_START;
  1354. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1355. SERIAL_ERRORLN(gcode_LastN);
  1356. serial_count = 0;
  1357. return;
  1358. }
  1359. } // end of '*' command
  1360. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1361. if (! IS_SD_PRINTING) {
  1362. usb_printing_counter = 10;
  1363. is_usb_printing = true;
  1364. }
  1365. if (Stopped == true) {
  1366. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1367. if (gcode >= 0 && gcode <= 3) {
  1368. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1369. LCD_MESSAGERPGM(MSG_STOPPED);
  1370. }
  1371. }
  1372. } // end of 'G' command
  1373. //If command was e-stop process now
  1374. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1375. kill();
  1376. // Store the current line into buffer, move to the next line.
  1377. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1378. #ifdef CMDBUFFER_DEBUG
  1379. SERIAL_ECHO_START;
  1380. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1381. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1382. SERIAL_ECHOLNPGM("");
  1383. #endif /* CMDBUFFER_DEBUG */
  1384. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1385. if (bufindw == sizeof(cmdbuffer))
  1386. bufindw = 0;
  1387. ++ buflen;
  1388. #ifdef CMDBUFFER_DEBUG
  1389. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1390. SERIAL_ECHO(buflen);
  1391. SERIAL_ECHOLNPGM("");
  1392. #endif /* CMDBUFFER_DEBUG */
  1393. } // end of 'not comment mode'
  1394. serial_count = 0; //clear buffer
  1395. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1396. // in the queue, as this function will reserve the memory.
  1397. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1398. return;
  1399. } // end of "end of line" processing
  1400. else {
  1401. // Not an "end of line" symbol. Store the new character into a buffer.
  1402. if(serial_char == ';') comment_mode = true;
  1403. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1404. }
  1405. } // end of serial line processing loop
  1406. if(farm_mode){
  1407. TimeNow = millis();
  1408. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1409. cmdbuffer[bufindw+serial_count+1] = 0;
  1410. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1411. if (bufindw == sizeof(cmdbuffer))
  1412. bufindw = 0;
  1413. ++ buflen;
  1414. serial_count = 0;
  1415. SERIAL_ECHOPGM("TIMEOUT:");
  1416. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1417. return;
  1418. }
  1419. }
  1420. //add comment
  1421. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1422. rx_buffer_full = false;
  1423. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1424. serial_count = 0;
  1425. }
  1426. #ifdef SDSUPPORT
  1427. if(!card.sdprinting || serial_count!=0){
  1428. // If there is a half filled buffer from serial line, wait until return before
  1429. // continuing with the serial line.
  1430. return;
  1431. }
  1432. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1433. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1434. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1435. static bool stop_buffering=false;
  1436. if(buflen==0) stop_buffering=false;
  1437. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1438. while( !card.eof() && !stop_buffering) {
  1439. int16_t n=card.get();
  1440. char serial_char = (char)n;
  1441. if(serial_char == '\n' ||
  1442. serial_char == '\r' ||
  1443. (serial_char == '#' && comment_mode == false) ||
  1444. (serial_char == ':' && comment_mode == false) ||
  1445. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1446. {
  1447. if(card.eof()){
  1448. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1449. stoptime=millis();
  1450. char time[30];
  1451. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1452. pause_time = 0;
  1453. int hours, minutes;
  1454. minutes=(t/60)%60;
  1455. hours=t/60/60;
  1456. save_statistics(total_filament_used, t);
  1457. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1458. SERIAL_ECHO_START;
  1459. SERIAL_ECHOLN(time);
  1460. lcd_setstatus(time);
  1461. card.printingHasFinished();
  1462. card.checkautostart(true);
  1463. if (farm_mode)
  1464. {
  1465. prusa_statistics(6);
  1466. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1467. }
  1468. }
  1469. if(serial_char=='#')
  1470. stop_buffering=true;
  1471. if(!serial_count)
  1472. {
  1473. comment_mode = false; //for new command
  1474. return; //if empty line
  1475. }
  1476. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1477. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1478. ++ buflen;
  1479. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1480. if (bufindw == sizeof(cmdbuffer))
  1481. bufindw = 0;
  1482. comment_mode = false; //for new command
  1483. serial_count = 0; //clear buffer
  1484. // The following line will reserve buffer space if available.
  1485. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1486. return;
  1487. }
  1488. else
  1489. {
  1490. if(serial_char == ';') comment_mode = true;
  1491. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1492. }
  1493. }
  1494. #endif //SDSUPPORT
  1495. }
  1496. // Return True if a character was found
  1497. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1498. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1499. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1500. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1501. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1502. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1503. static inline float code_value_float() {
  1504. char* e = strchr(strchr_pointer, 'E');
  1505. if (!e) return strtod(strchr_pointer + 1, NULL);
  1506. *e = 0;
  1507. float ret = strtod(strchr_pointer + 1, NULL);
  1508. *e = 'E';
  1509. return ret;
  1510. }
  1511. #define DEFINE_PGM_READ_ANY(type, reader) \
  1512. static inline type pgm_read_any(const type *p) \
  1513. { return pgm_read_##reader##_near(p); }
  1514. DEFINE_PGM_READ_ANY(float, float);
  1515. DEFINE_PGM_READ_ANY(signed char, byte);
  1516. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1517. static const PROGMEM type array##_P[3] = \
  1518. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1519. static inline type array(int axis) \
  1520. { return pgm_read_any(&array##_P[axis]); } \
  1521. type array##_ext(int axis) \
  1522. { return pgm_read_any(&array##_P[axis]); }
  1523. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1524. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1525. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1526. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1527. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1528. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1529. static void axis_is_at_home(int axis) {
  1530. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1531. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1532. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1533. }
  1534. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1535. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1536. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1537. saved_feedrate = feedrate;
  1538. saved_feedmultiply = feedmultiply;
  1539. feedmultiply = 100;
  1540. previous_millis_cmd = millis();
  1541. enable_endstops(enable_endstops_now);
  1542. }
  1543. static void clean_up_after_endstop_move() {
  1544. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1545. enable_endstops(false);
  1546. #endif
  1547. feedrate = saved_feedrate;
  1548. feedmultiply = saved_feedmultiply;
  1549. previous_millis_cmd = millis();
  1550. }
  1551. #ifdef ENABLE_AUTO_BED_LEVELING
  1552. #ifdef AUTO_BED_LEVELING_GRID
  1553. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1554. {
  1555. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1556. planeNormal.debug("planeNormal");
  1557. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1558. //bedLevel.debug("bedLevel");
  1559. //plan_bed_level_matrix.debug("bed level before");
  1560. //vector_3 uncorrected_position = plan_get_position_mm();
  1561. //uncorrected_position.debug("position before");
  1562. vector_3 corrected_position = plan_get_position();
  1563. // corrected_position.debug("position after");
  1564. current_position[X_AXIS] = corrected_position.x;
  1565. current_position[Y_AXIS] = corrected_position.y;
  1566. current_position[Z_AXIS] = corrected_position.z;
  1567. // put the bed at 0 so we don't go below it.
  1568. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1570. }
  1571. #else // not AUTO_BED_LEVELING_GRID
  1572. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1573. plan_bed_level_matrix.set_to_identity();
  1574. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1575. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1576. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1577. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1578. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1579. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1580. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1581. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1582. vector_3 corrected_position = plan_get_position();
  1583. current_position[X_AXIS] = corrected_position.x;
  1584. current_position[Y_AXIS] = corrected_position.y;
  1585. current_position[Z_AXIS] = corrected_position.z;
  1586. // put the bed at 0 so we don't go below it.
  1587. current_position[Z_AXIS] = zprobe_zoffset;
  1588. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1589. }
  1590. #endif // AUTO_BED_LEVELING_GRID
  1591. static void run_z_probe() {
  1592. plan_bed_level_matrix.set_to_identity();
  1593. feedrate = homing_feedrate[Z_AXIS];
  1594. // move down until you find the bed
  1595. float zPosition = -10;
  1596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1597. st_synchronize();
  1598. // we have to let the planner know where we are right now as it is not where we said to go.
  1599. zPosition = st_get_position_mm(Z_AXIS);
  1600. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1601. // move up the retract distance
  1602. zPosition += home_retract_mm(Z_AXIS);
  1603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1604. st_synchronize();
  1605. // move back down slowly to find bed
  1606. feedrate = homing_feedrate[Z_AXIS]/4;
  1607. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1609. st_synchronize();
  1610. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1611. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1612. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1613. }
  1614. static void do_blocking_move_to(float x, float y, float z) {
  1615. float oldFeedRate = feedrate;
  1616. feedrate = homing_feedrate[Z_AXIS];
  1617. current_position[Z_AXIS] = z;
  1618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1619. st_synchronize();
  1620. feedrate = XY_TRAVEL_SPEED;
  1621. current_position[X_AXIS] = x;
  1622. current_position[Y_AXIS] = y;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1624. st_synchronize();
  1625. feedrate = oldFeedRate;
  1626. }
  1627. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1628. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1629. }
  1630. /// Probe bed height at position (x,y), returns the measured z value
  1631. static float probe_pt(float x, float y, float z_before) {
  1632. // move to right place
  1633. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1634. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1635. run_z_probe();
  1636. float measured_z = current_position[Z_AXIS];
  1637. SERIAL_PROTOCOLRPGM(MSG_BED);
  1638. SERIAL_PROTOCOLPGM(" x: ");
  1639. SERIAL_PROTOCOL(x);
  1640. SERIAL_PROTOCOLPGM(" y: ");
  1641. SERIAL_PROTOCOL(y);
  1642. SERIAL_PROTOCOLPGM(" z: ");
  1643. SERIAL_PROTOCOL(measured_z);
  1644. SERIAL_PROTOCOLPGM("\n");
  1645. return measured_z;
  1646. }
  1647. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1648. #ifdef LIN_ADVANCE
  1649. /**
  1650. * M900: Set and/or Get advance K factor and WH/D ratio
  1651. *
  1652. * K<factor> Set advance K factor
  1653. * R<ratio> Set ratio directly (overrides WH/D)
  1654. * W<width> H<height> D<diam> Set ratio from WH/D
  1655. */
  1656. inline void gcode_M900() {
  1657. st_synchronize();
  1658. const float newK = code_seen('K') ? code_value_float() : -1;
  1659. if (newK >= 0) extruder_advance_k = newK;
  1660. float newR = code_seen('R') ? code_value_float() : -1;
  1661. if (newR < 0) {
  1662. const float newD = code_seen('D') ? code_value_float() : -1,
  1663. newW = code_seen('W') ? code_value_float() : -1,
  1664. newH = code_seen('H') ? code_value_float() : -1;
  1665. if (newD >= 0 && newW >= 0 && newH >= 0)
  1666. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1667. }
  1668. if (newR >= 0) advance_ed_ratio = newR;
  1669. SERIAL_ECHO_START;
  1670. SERIAL_ECHOPGM("Advance K=");
  1671. SERIAL_ECHOLN(extruder_advance_k);
  1672. SERIAL_ECHOPGM(" E/D=");
  1673. const float ratio = advance_ed_ratio;
  1674. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1675. }
  1676. #endif // LIN_ADVANCE
  1677. bool check_commands() {
  1678. bool end_command_found = false;
  1679. if (buflen)
  1680. {
  1681. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1682. if (!cmdbuffer_front_already_processed)
  1683. cmdqueue_pop_front();
  1684. cmdbuffer_front_already_processed = false;
  1685. }
  1686. return end_command_found;
  1687. }
  1688. void homeaxis(int axis) {
  1689. #define HOMEAXIS_DO(LETTER) \
  1690. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1691. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1692. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1693. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1694. 0) {
  1695. int axis_home_dir = home_dir(axis);
  1696. current_position[axis] = 0;
  1697. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1698. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1699. feedrate = homing_feedrate[axis];
  1700. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1701. st_synchronize();
  1702. current_position[axis] = 0;
  1703. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1704. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1705. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1706. st_synchronize();
  1707. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1708. feedrate = homing_feedrate[axis]/2 ;
  1709. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1710. st_synchronize();
  1711. axis_is_at_home(axis);
  1712. destination[axis] = current_position[axis];
  1713. feedrate = 0.0;
  1714. endstops_hit_on_purpose();
  1715. axis_known_position[axis] = true;
  1716. }
  1717. }
  1718. void home_xy()
  1719. {
  1720. set_destination_to_current();
  1721. homeaxis(X_AXIS);
  1722. homeaxis(Y_AXIS);
  1723. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1724. endstops_hit_on_purpose();
  1725. }
  1726. void refresh_cmd_timeout(void)
  1727. {
  1728. previous_millis_cmd = millis();
  1729. }
  1730. #ifdef FWRETRACT
  1731. void retract(bool retracting, bool swapretract = false) {
  1732. if(retracting && !retracted[active_extruder]) {
  1733. destination[X_AXIS]=current_position[X_AXIS];
  1734. destination[Y_AXIS]=current_position[Y_AXIS];
  1735. destination[Z_AXIS]=current_position[Z_AXIS];
  1736. destination[E_AXIS]=current_position[E_AXIS];
  1737. if (swapretract) {
  1738. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1739. } else {
  1740. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1741. }
  1742. plan_set_e_position(current_position[E_AXIS]);
  1743. float oldFeedrate = feedrate;
  1744. feedrate=retract_feedrate*60;
  1745. retracted[active_extruder]=true;
  1746. prepare_move();
  1747. current_position[Z_AXIS]-=retract_zlift;
  1748. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1749. prepare_move();
  1750. feedrate = oldFeedrate;
  1751. } else if(!retracting && retracted[active_extruder]) {
  1752. destination[X_AXIS]=current_position[X_AXIS];
  1753. destination[Y_AXIS]=current_position[Y_AXIS];
  1754. destination[Z_AXIS]=current_position[Z_AXIS];
  1755. destination[E_AXIS]=current_position[E_AXIS];
  1756. current_position[Z_AXIS]+=retract_zlift;
  1757. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1758. //prepare_move();
  1759. if (swapretract) {
  1760. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1761. } else {
  1762. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1763. }
  1764. plan_set_e_position(current_position[E_AXIS]);
  1765. float oldFeedrate = feedrate;
  1766. feedrate=retract_recover_feedrate*60;
  1767. retracted[active_extruder]=false;
  1768. prepare_move();
  1769. feedrate = oldFeedrate;
  1770. }
  1771. } //retract
  1772. #endif //FWRETRACT
  1773. void trace() {
  1774. tone(BEEPER, 440);
  1775. delay(25);
  1776. noTone(BEEPER);
  1777. delay(20);
  1778. }
  1779. /*
  1780. void ramming() {
  1781. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1782. if (current_temperature[0] < 230) {
  1783. //PLA
  1784. max_feedrate[E_AXIS] = 50;
  1785. //current_position[E_AXIS] -= 8;
  1786. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1787. //current_position[E_AXIS] += 8;
  1788. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1789. current_position[E_AXIS] += 5.4;
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1791. current_position[E_AXIS] += 3.2;
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1793. current_position[E_AXIS] += 3;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1795. st_synchronize();
  1796. max_feedrate[E_AXIS] = 80;
  1797. current_position[E_AXIS] -= 82;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1799. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1800. current_position[E_AXIS] -= 20;
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1802. current_position[E_AXIS] += 5;
  1803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1804. current_position[E_AXIS] += 5;
  1805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1806. current_position[E_AXIS] -= 10;
  1807. st_synchronize();
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1809. current_position[E_AXIS] += 10;
  1810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1811. current_position[E_AXIS] -= 10;
  1812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1813. current_position[E_AXIS] += 10;
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1815. current_position[E_AXIS] -= 10;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1817. st_synchronize();
  1818. }
  1819. else {
  1820. //ABS
  1821. max_feedrate[E_AXIS] = 50;
  1822. //current_position[E_AXIS] -= 8;
  1823. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1824. //current_position[E_AXIS] += 8;
  1825. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1826. current_position[E_AXIS] += 3.1;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1828. current_position[E_AXIS] += 3.1;
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1830. current_position[E_AXIS] += 4;
  1831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1832. st_synchronize();
  1833. //current_position[X_AXIS] += 23; //delay
  1834. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1835. //current_position[X_AXIS] -= 23; //delay
  1836. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1837. delay(4700);
  1838. max_feedrate[E_AXIS] = 80;
  1839. current_position[E_AXIS] -= 92;
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1841. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1842. current_position[E_AXIS] -= 5;
  1843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1844. current_position[E_AXIS] += 5;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1846. current_position[E_AXIS] -= 5;
  1847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1848. st_synchronize();
  1849. current_position[E_AXIS] += 5;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1851. current_position[E_AXIS] -= 5;
  1852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1853. current_position[E_AXIS] += 5;
  1854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1855. current_position[E_AXIS] -= 5;
  1856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1857. st_synchronize();
  1858. }
  1859. }
  1860. */
  1861. void gcode_M701() {
  1862. #ifdef SNMM
  1863. extr_adj(snmm_extruder);//loads current extruder
  1864. #else
  1865. enable_z();
  1866. custom_message = true;
  1867. custom_message_type = 2;
  1868. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1869. current_position[E_AXIS] += 70;
  1870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1871. current_position[E_AXIS] += 25;
  1872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1873. st_synchronize();
  1874. if (!farm_mode && loading_flag) {
  1875. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1876. while (!clean) {
  1877. lcd_update_enable(true);
  1878. lcd_update(2);
  1879. current_position[E_AXIS] += 25;
  1880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1881. st_synchronize();
  1882. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1883. }
  1884. }
  1885. lcd_update_enable(true);
  1886. lcd_update(2);
  1887. lcd_setstatuspgm(WELCOME_MSG);
  1888. disable_z();
  1889. loading_flag = false;
  1890. custom_message = false;
  1891. custom_message_type = 0;
  1892. #endif
  1893. }
  1894. bool gcode_M45(bool onlyZ) {
  1895. bool final_result = false;
  1896. if (!onlyZ) {
  1897. setTargetBed(0);
  1898. setTargetHotend(0, 0);
  1899. setTargetHotend(0, 1);
  1900. setTargetHotend(0, 2);
  1901. adjust_bed_reset(); //reset bed level correction
  1902. }
  1903. // Disable the default update procedure of the display. We will do a modal dialog.
  1904. lcd_update_enable(false);
  1905. // Let the planner use the uncorrected coordinates.
  1906. mbl.reset();
  1907. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1908. // the planner will not perform any adjustments in the XY plane.
  1909. // Wait for the motors to stop and update the current position with the absolute values.
  1910. world2machine_revert_to_uncorrected();
  1911. // Reset the baby step value applied without moving the axes.
  1912. babystep_reset();
  1913. // Mark all axes as in a need for homing.
  1914. memset(axis_known_position, 0, sizeof(axis_known_position));
  1915. // Let the user move the Z axes up to the end stoppers.
  1916. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1917. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1918. KEEPALIVE_STATE(IN_HANDLER);
  1919. refresh_cmd_timeout();
  1920. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1921. lcd_wait_for_cool_down();
  1922. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1923. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1924. lcd_implementation_print_at(0, 2, 1);
  1925. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1926. }
  1927. // Move the print head close to the bed.
  1928. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1930. st_synchronize();
  1931. // Home in the XY plane.
  1932. set_destination_to_current();
  1933. setup_for_endstop_move();
  1934. home_xy();
  1935. int8_t verbosity_level = 0;
  1936. if (code_seen('V')) {
  1937. // Just 'V' without a number counts as V1.
  1938. char c = strchr_pointer[1];
  1939. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1940. }
  1941. if (onlyZ) {
  1942. clean_up_after_endstop_move();
  1943. // Z only calibration.
  1944. // Load the machine correction matrix
  1945. world2machine_initialize();
  1946. // and correct the current_position to match the transformed coordinate system.
  1947. world2machine_update_current();
  1948. //FIXME
  1949. bool result = sample_mesh_and_store_reference();
  1950. if (result) {
  1951. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1952. // Shipped, the nozzle height has been set already. The user can start printing now.
  1953. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1954. // babystep_apply();
  1955. final_result = true;
  1956. }
  1957. }
  1958. else {
  1959. //if wizard is active and selftest was succefully completed, we dont want to loose information about it
  1960. if (calibration_status() != 250 || eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) {
  1961. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1962. }
  1963. // Reset the baby step value and the baby step applied flag.
  1964. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1965. // Complete XYZ calibration.
  1966. uint8_t point_too_far_mask = 0;
  1967. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1968. clean_up_after_endstop_move();
  1969. // Print head up.
  1970. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1972. st_synchronize();
  1973. if (result >= 0) {
  1974. point_too_far_mask = 0;
  1975. // Second half: The fine adjustment.
  1976. // Let the planner use the uncorrected coordinates.
  1977. mbl.reset();
  1978. world2machine_reset();
  1979. // Home in the XY plane.
  1980. setup_for_endstop_move();
  1981. home_xy();
  1982. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1983. clean_up_after_endstop_move();
  1984. // Print head up.
  1985. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1987. st_synchronize();
  1988. // if (result >= 0) babystep_apply();
  1989. }
  1990. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1991. if (result >= 0) {
  1992. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1993. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1994. if(eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1995. final_result = true;
  1996. }
  1997. }
  1998. }
  1999. else {
  2000. // Timeouted.
  2001. KEEPALIVE_STATE(IN_HANDLER);
  2002. }
  2003. lcd_update_enable(true);
  2004. return final_result;
  2005. }
  2006. void process_commands()
  2007. {
  2008. #ifdef FILAMENT_RUNOUT_SUPPORT
  2009. SET_INPUT(FR_SENS);
  2010. #endif
  2011. #ifdef CMDBUFFER_DEBUG
  2012. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2013. SERIAL_ECHO(cmdbuffer+bufindr+1);
  2014. SERIAL_ECHOLNPGM("");
  2015. SERIAL_ECHOPGM("In cmdqueue: ");
  2016. SERIAL_ECHO(buflen);
  2017. SERIAL_ECHOLNPGM("");
  2018. #endif /* CMDBUFFER_DEBUG */
  2019. unsigned long codenum; //throw away variable
  2020. char *starpos = NULL;
  2021. #ifdef ENABLE_AUTO_BED_LEVELING
  2022. float x_tmp, y_tmp, z_tmp, real_z;
  2023. #endif
  2024. // PRUSA GCODES
  2025. KEEPALIVE_STATE(IN_HANDLER);
  2026. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2027. custom_message = true; //fixes using M117 during SD print, but needs to be be updated in future
  2028. custom_message_type = 2; //fixes using M117 during SD print, but needs to be be updated in future
  2029. starpos = (strchr(strchr_pointer + 5, '*'));
  2030. if (starpos != NULL)
  2031. *(starpos) = '\0';
  2032. lcd_setstatus(strchr_pointer + 5);
  2033. custom_message = false;
  2034. custom_message_type = 0;
  2035. }
  2036. else if(code_seen("PRUSA")){
  2037. if (code_seen("Ping")) { //PRUSA Ping
  2038. if (farm_mode) {
  2039. PingTime = millis();
  2040. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2041. }
  2042. } else if (code_seen("PRN")) {
  2043. MYSERIAL.println(status_number);
  2044. } else if (code_seen("RESET")) {
  2045. // careful!
  2046. if (farm_mode) {
  2047. asm volatile(" jmp 0x3E000");
  2048. }
  2049. else {
  2050. MYSERIAL.println("Not in farm mode.");
  2051. }
  2052. } else if (code_seen("fn")) {
  2053. if (farm_mode) {
  2054. MYSERIAL.println(farm_no);
  2055. }
  2056. else {
  2057. MYSERIAL.println("Not in farm mode.");
  2058. }
  2059. }
  2060. else if (code_seen("thx")) {
  2061. no_response = false;
  2062. }else if (code_seen("fv")) {
  2063. // get file version
  2064. #ifdef SDSUPPORT
  2065. card.openFile(strchr_pointer + 3,true);
  2066. while (true) {
  2067. uint16_t readByte = card.get();
  2068. MYSERIAL.write(readByte);
  2069. if (readByte=='\n') {
  2070. break;
  2071. }
  2072. }
  2073. card.closefile();
  2074. #endif // SDSUPPORT
  2075. } else if (code_seen("M28")) {
  2076. trace();
  2077. prusa_sd_card_upload = true;
  2078. card.openFile(strchr_pointer+4,false);
  2079. } else if (code_seen("SN")) {
  2080. if (farm_mode) {
  2081. selectedSerialPort = 0;
  2082. MSerial.write(";S");
  2083. // S/N is:CZPX0917X003XC13518
  2084. int numbersRead = 0;
  2085. while (numbersRead < 19) {
  2086. while (MSerial.available() > 0) {
  2087. uint8_t serial_char = MSerial.read();
  2088. selectedSerialPort = 1;
  2089. MSerial.write(serial_char);
  2090. numbersRead++;
  2091. selectedSerialPort = 0;
  2092. }
  2093. }
  2094. selectedSerialPort = 1;
  2095. MSerial.write('\n');
  2096. /*for (int b = 0; b < 3; b++) {
  2097. tone(BEEPER, 110);
  2098. delay(50);
  2099. noTone(BEEPER);
  2100. delay(50);
  2101. }*/
  2102. } else {
  2103. MYSERIAL.println("Not in farm mode.");
  2104. }
  2105. } else if(code_seen("Fir")){
  2106. SERIAL_PROTOCOLLN(FW_version);
  2107. } else if(code_seen("Rev")){
  2108. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2109. } else if(code_seen("Lang")) {
  2110. lcd_force_language_selection();
  2111. } else if(code_seen("Lz")) {
  2112. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2113. } else if (code_seen("SERIAL LOW")) {
  2114. MYSERIAL.println("SERIAL LOW");
  2115. MYSERIAL.begin(BAUDRATE);
  2116. return;
  2117. } else if (code_seen("SERIAL HIGH")) {
  2118. MYSERIAL.println("SERIAL HIGH");
  2119. MYSERIAL.begin(1152000);
  2120. return;
  2121. } else if(code_seen("Beat")) {
  2122. // Kick farm link timer
  2123. kicktime = millis();
  2124. } else if(code_seen("FR")) {
  2125. // Factory full reset
  2126. factory_reset(0,true);
  2127. }
  2128. //else if (code_seen('Cal')) {
  2129. // lcd_calibration();
  2130. // }
  2131. }
  2132. else if (code_seen('^')) {
  2133. // nothing, this is a version line
  2134. } else if(code_seen('G'))
  2135. {
  2136. switch((int)code_value())
  2137. {
  2138. case 0: // G0 -> G1
  2139. case 1: // G1
  2140. if(Stopped == false) {
  2141. #ifdef FILAMENT_RUNOUT_SUPPORT
  2142. if(READ(FR_SENS)){
  2143. feedmultiplyBckp=feedmultiply;
  2144. float target[4];
  2145. float lastpos[4];
  2146. target[X_AXIS]=current_position[X_AXIS];
  2147. target[Y_AXIS]=current_position[Y_AXIS];
  2148. target[Z_AXIS]=current_position[Z_AXIS];
  2149. target[E_AXIS]=current_position[E_AXIS];
  2150. lastpos[X_AXIS]=current_position[X_AXIS];
  2151. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2152. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2153. lastpos[E_AXIS]=current_position[E_AXIS];
  2154. //retract by E
  2155. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2157. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2158. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2159. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2160. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2161. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2162. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2163. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2164. //finish moves
  2165. st_synchronize();
  2166. //disable extruder steppers so filament can be removed
  2167. disable_e0();
  2168. disable_e1();
  2169. disable_e2();
  2170. delay(100);
  2171. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2172. uint8_t cnt=0;
  2173. int counterBeep = 0;
  2174. lcd_wait_interact();
  2175. while(!lcd_clicked()){
  2176. cnt++;
  2177. manage_heater();
  2178. manage_inactivity(true);
  2179. //lcd_update();
  2180. if(cnt==0)
  2181. {
  2182. #if BEEPER > 0
  2183. if (counterBeep== 500){
  2184. counterBeep = 0;
  2185. }
  2186. SET_OUTPUT(BEEPER);
  2187. if (counterBeep== 0){
  2188. WRITE(BEEPER,HIGH);
  2189. }
  2190. if (counterBeep== 20){
  2191. WRITE(BEEPER,LOW);
  2192. }
  2193. counterBeep++;
  2194. #else
  2195. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2196. lcd_buzz(1000/6,100);
  2197. #else
  2198. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2199. #endif
  2200. #endif
  2201. }
  2202. }
  2203. WRITE(BEEPER,LOW);
  2204. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2205. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2206. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2207. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2208. lcd_change_fil_state = 0;
  2209. lcd_loading_filament();
  2210. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2211. lcd_change_fil_state = 0;
  2212. lcd_alright();
  2213. switch(lcd_change_fil_state){
  2214. case 2:
  2215. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2216. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2217. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2218. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2219. lcd_loading_filament();
  2220. break;
  2221. case 3:
  2222. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2223. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2224. lcd_loading_color();
  2225. break;
  2226. default:
  2227. lcd_change_success();
  2228. break;
  2229. }
  2230. }
  2231. target[E_AXIS]+= 5;
  2232. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2233. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2234. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2235. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2236. //plan_set_e_position(current_position[E_AXIS]);
  2237. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2238. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2239. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2240. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2241. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2242. plan_set_e_position(lastpos[E_AXIS]);
  2243. feedmultiply=feedmultiplyBckp;
  2244. char cmd[9];
  2245. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2246. enquecommand(cmd);
  2247. }
  2248. #endif
  2249. get_coordinates(); // For X Y Z E F
  2250. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2251. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2252. }
  2253. #ifdef FWRETRACT
  2254. if(autoretract_enabled)
  2255. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2256. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2257. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2258. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2259. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2260. retract(!retracted[active_extruder]);
  2261. return;
  2262. }
  2263. }
  2264. #endif //FWRETRACT
  2265. prepare_move();
  2266. //ClearToSend();
  2267. }
  2268. break;
  2269. case 2: // G2 - CW ARC
  2270. if(Stopped == false) {
  2271. get_arc_coordinates();
  2272. prepare_arc_move(true);
  2273. }
  2274. break;
  2275. case 3: // G3 - CCW ARC
  2276. if(Stopped == false) {
  2277. get_arc_coordinates();
  2278. prepare_arc_move(false);
  2279. }
  2280. break;
  2281. case 4: // G4 dwell
  2282. codenum = 0;
  2283. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2284. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2285. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2286. st_synchronize();
  2287. codenum += millis(); // keep track of when we started waiting
  2288. previous_millis_cmd = millis();
  2289. while(millis() < codenum) {
  2290. manage_heater();
  2291. manage_inactivity();
  2292. lcd_update();
  2293. }
  2294. break;
  2295. #ifdef FWRETRACT
  2296. case 10: // G10 retract
  2297. #if EXTRUDERS > 1
  2298. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2299. retract(true,retracted_swap[active_extruder]);
  2300. #else
  2301. retract(true);
  2302. #endif
  2303. break;
  2304. case 11: // G11 retract_recover
  2305. #if EXTRUDERS > 1
  2306. retract(false,retracted_swap[active_extruder]);
  2307. #else
  2308. retract(false);
  2309. #endif
  2310. break;
  2311. #endif //FWRETRACT
  2312. case 28: //G28 Home all Axis one at a time
  2313. homing_flag = true;
  2314. #ifdef ENABLE_AUTO_BED_LEVELING
  2315. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2316. #endif //ENABLE_AUTO_BED_LEVELING
  2317. // For mesh bed leveling deactivate the matrix temporarily
  2318. #ifdef MESH_BED_LEVELING
  2319. mbl.active = 0;
  2320. #endif
  2321. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2322. // the planner will not perform any adjustments in the XY plane.
  2323. // Wait for the motors to stop and update the current position with the absolute values.
  2324. world2machine_revert_to_uncorrected();
  2325. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2326. // consumed during the first movements following this statement.
  2327. babystep_undo();
  2328. saved_feedrate = feedrate;
  2329. saved_feedmultiply = feedmultiply;
  2330. feedmultiply = 100;
  2331. previous_millis_cmd = millis();
  2332. enable_endstops(true);
  2333. for(int8_t i=0; i < NUM_AXIS; i++)
  2334. destination[i] = current_position[i];
  2335. feedrate = 0.0;
  2336. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2337. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2338. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2339. homeaxis(Z_AXIS);
  2340. }
  2341. #endif
  2342. #ifdef QUICK_HOME
  2343. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2344. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2345. {
  2346. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2347. int x_axis_home_dir = home_dir(X_AXIS);
  2348. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2349. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2350. feedrate = homing_feedrate[X_AXIS];
  2351. if(homing_feedrate[Y_AXIS]<feedrate)
  2352. feedrate = homing_feedrate[Y_AXIS];
  2353. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2354. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2355. } else {
  2356. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2357. }
  2358. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2359. st_synchronize();
  2360. axis_is_at_home(X_AXIS);
  2361. axis_is_at_home(Y_AXIS);
  2362. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2363. destination[X_AXIS] = current_position[X_AXIS];
  2364. destination[Y_AXIS] = current_position[Y_AXIS];
  2365. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2366. feedrate = 0.0;
  2367. st_synchronize();
  2368. endstops_hit_on_purpose();
  2369. current_position[X_AXIS] = destination[X_AXIS];
  2370. current_position[Y_AXIS] = destination[Y_AXIS];
  2371. current_position[Z_AXIS] = destination[Z_AXIS];
  2372. }
  2373. #endif /* QUICK_HOME */
  2374. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2375. homeaxis(X_AXIS);
  2376. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2377. homeaxis(Y_AXIS);
  2378. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2379. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2380. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2381. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2382. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2383. #ifndef Z_SAFE_HOMING
  2384. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2385. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2386. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2387. feedrate = max_feedrate[Z_AXIS];
  2388. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2389. st_synchronize();
  2390. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2391. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2392. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2393. {
  2394. homeaxis(X_AXIS);
  2395. homeaxis(Y_AXIS);
  2396. }
  2397. // 1st mesh bed leveling measurement point, corrected.
  2398. world2machine_initialize();
  2399. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2400. world2machine_reset();
  2401. if (destination[Y_AXIS] < Y_MIN_POS)
  2402. destination[Y_AXIS] = Y_MIN_POS;
  2403. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2404. feedrate = homing_feedrate[Z_AXIS]/10;
  2405. current_position[Z_AXIS] = 0;
  2406. enable_endstops(false);
  2407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2408. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2409. st_synchronize();
  2410. current_position[X_AXIS] = destination[X_AXIS];
  2411. current_position[Y_AXIS] = destination[Y_AXIS];
  2412. enable_endstops(true);
  2413. endstops_hit_on_purpose();
  2414. homeaxis(Z_AXIS);
  2415. #else // MESH_BED_LEVELING
  2416. homeaxis(Z_AXIS);
  2417. #endif // MESH_BED_LEVELING
  2418. }
  2419. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2420. if(home_all_axis) {
  2421. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2422. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2423. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2424. feedrate = XY_TRAVEL_SPEED/60;
  2425. current_position[Z_AXIS] = 0;
  2426. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2427. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2428. st_synchronize();
  2429. current_position[X_AXIS] = destination[X_AXIS];
  2430. current_position[Y_AXIS] = destination[Y_AXIS];
  2431. homeaxis(Z_AXIS);
  2432. }
  2433. // Let's see if X and Y are homed and probe is inside bed area.
  2434. if(code_seen(axis_codes[Z_AXIS])) {
  2435. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2436. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2437. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2438. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2439. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2440. current_position[Z_AXIS] = 0;
  2441. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2442. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2443. feedrate = max_feedrate[Z_AXIS];
  2444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2445. st_synchronize();
  2446. homeaxis(Z_AXIS);
  2447. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2448. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2449. SERIAL_ECHO_START;
  2450. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2451. } else {
  2452. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2453. SERIAL_ECHO_START;
  2454. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2455. }
  2456. }
  2457. #endif // Z_SAFE_HOMING
  2458. #endif // Z_HOME_DIR < 0
  2459. if(code_seen(axis_codes[Z_AXIS])) {
  2460. if(code_value_long() != 0) {
  2461. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2462. }
  2463. }
  2464. #ifdef ENABLE_AUTO_BED_LEVELING
  2465. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2466. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2467. }
  2468. #endif
  2469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2470. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2471. enable_endstops(false);
  2472. #endif
  2473. feedrate = saved_feedrate;
  2474. feedmultiply = saved_feedmultiply;
  2475. previous_millis_cmd = millis();
  2476. endstops_hit_on_purpose();
  2477. #ifndef MESH_BED_LEVELING
  2478. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2479. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2480. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2481. lcd_adjust_z();
  2482. #endif
  2483. // Load the machine correction matrix
  2484. world2machine_initialize();
  2485. // and correct the current_position to match the transformed coordinate system.
  2486. world2machine_update_current();
  2487. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2488. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2489. {
  2490. }
  2491. else
  2492. {
  2493. st_synchronize();
  2494. homing_flag = false;
  2495. // Push the commands to the front of the message queue in the reverse order!
  2496. // There shall be always enough space reserved for these commands.
  2497. // enquecommand_front_P((PSTR("G80")));
  2498. goto case_G80;
  2499. }
  2500. #endif
  2501. if (farm_mode) { prusa_statistics(20); };
  2502. homing_flag = false;
  2503. break;
  2504. #ifdef ENABLE_AUTO_BED_LEVELING
  2505. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2506. {
  2507. #if Z_MIN_PIN == -1
  2508. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2509. #endif
  2510. // Prevent user from running a G29 without first homing in X and Y
  2511. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2512. {
  2513. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2514. SERIAL_ECHO_START;
  2515. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2516. break; // abort G29, since we don't know where we are
  2517. }
  2518. st_synchronize();
  2519. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2520. //vector_3 corrected_position = plan_get_position_mm();
  2521. //corrected_position.debug("position before G29");
  2522. plan_bed_level_matrix.set_to_identity();
  2523. vector_3 uncorrected_position = plan_get_position();
  2524. //uncorrected_position.debug("position durring G29");
  2525. current_position[X_AXIS] = uncorrected_position.x;
  2526. current_position[Y_AXIS] = uncorrected_position.y;
  2527. current_position[Z_AXIS] = uncorrected_position.z;
  2528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2529. setup_for_endstop_move();
  2530. feedrate = homing_feedrate[Z_AXIS];
  2531. #ifdef AUTO_BED_LEVELING_GRID
  2532. // probe at the points of a lattice grid
  2533. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2534. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2535. // solve the plane equation ax + by + d = z
  2536. // A is the matrix with rows [x y 1] for all the probed points
  2537. // B is the vector of the Z positions
  2538. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2539. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2540. // "A" matrix of the linear system of equations
  2541. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2542. // "B" vector of Z points
  2543. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2544. int probePointCounter = 0;
  2545. bool zig = true;
  2546. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2547. {
  2548. int xProbe, xInc;
  2549. if (zig)
  2550. {
  2551. xProbe = LEFT_PROBE_BED_POSITION;
  2552. //xEnd = RIGHT_PROBE_BED_POSITION;
  2553. xInc = xGridSpacing;
  2554. zig = false;
  2555. } else // zag
  2556. {
  2557. xProbe = RIGHT_PROBE_BED_POSITION;
  2558. //xEnd = LEFT_PROBE_BED_POSITION;
  2559. xInc = -xGridSpacing;
  2560. zig = true;
  2561. }
  2562. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2563. {
  2564. float z_before;
  2565. if (probePointCounter == 0)
  2566. {
  2567. // raise before probing
  2568. z_before = Z_RAISE_BEFORE_PROBING;
  2569. } else
  2570. {
  2571. // raise extruder
  2572. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2573. }
  2574. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2575. eqnBVector[probePointCounter] = measured_z;
  2576. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2577. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2578. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2579. probePointCounter++;
  2580. xProbe += xInc;
  2581. }
  2582. }
  2583. clean_up_after_endstop_move();
  2584. // solve lsq problem
  2585. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2586. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2587. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2588. SERIAL_PROTOCOLPGM(" b: ");
  2589. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2590. SERIAL_PROTOCOLPGM(" d: ");
  2591. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2592. set_bed_level_equation_lsq(plane_equation_coefficients);
  2593. free(plane_equation_coefficients);
  2594. #else // AUTO_BED_LEVELING_GRID not defined
  2595. // Probe at 3 arbitrary points
  2596. // probe 1
  2597. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2598. // probe 2
  2599. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2600. // probe 3
  2601. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2602. clean_up_after_endstop_move();
  2603. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2604. #endif // AUTO_BED_LEVELING_GRID
  2605. st_synchronize();
  2606. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2607. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2608. // When the bed is uneven, this height must be corrected.
  2609. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2610. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2611. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2612. z_tmp = current_position[Z_AXIS];
  2613. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2614. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2616. }
  2617. break;
  2618. #ifndef Z_PROBE_SLED
  2619. case 30: // G30 Single Z Probe
  2620. {
  2621. st_synchronize();
  2622. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2623. setup_for_endstop_move();
  2624. feedrate = homing_feedrate[Z_AXIS];
  2625. run_z_probe();
  2626. SERIAL_PROTOCOLPGM(MSG_BED);
  2627. SERIAL_PROTOCOLPGM(" X: ");
  2628. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2629. SERIAL_PROTOCOLPGM(" Y: ");
  2630. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" Z: ");
  2632. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2633. SERIAL_PROTOCOLPGM("\n");
  2634. clean_up_after_endstop_move();
  2635. }
  2636. break;
  2637. #else
  2638. case 31: // dock the sled
  2639. dock_sled(true);
  2640. break;
  2641. case 32: // undock the sled
  2642. dock_sled(false);
  2643. break;
  2644. #endif // Z_PROBE_SLED
  2645. #endif // ENABLE_AUTO_BED_LEVELING
  2646. #ifdef MESH_BED_LEVELING
  2647. case 30: // G30 Single Z Probe
  2648. {
  2649. st_synchronize();
  2650. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2651. setup_for_endstop_move();
  2652. feedrate = homing_feedrate[Z_AXIS];
  2653. find_bed_induction_sensor_point_z(-10.f, 3);
  2654. SERIAL_PROTOCOLRPGM(MSG_BED);
  2655. SERIAL_PROTOCOLPGM(" X: ");
  2656. MYSERIAL.print(current_position[X_AXIS], 5);
  2657. SERIAL_PROTOCOLPGM(" Y: ");
  2658. MYSERIAL.print(current_position[Y_AXIS], 5);
  2659. SERIAL_PROTOCOLPGM(" Z: ");
  2660. MYSERIAL.print(current_position[Z_AXIS], 5);
  2661. SERIAL_PROTOCOLPGM("\n");
  2662. clean_up_after_endstop_move();
  2663. }
  2664. break;
  2665. case 75:
  2666. {
  2667. for (int i = 40; i <= 110; i++) {
  2668. MYSERIAL.print(i);
  2669. MYSERIAL.print(" ");
  2670. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2671. }
  2672. }
  2673. break;
  2674. case 76: //PINDA probe temperature calibration
  2675. {
  2676. setTargetBed(PINDA_MIN_T);
  2677. float zero_z;
  2678. int z_shift = 0; //unit: steps
  2679. int t_c; // temperature
  2680. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2681. // We don't know where we are! HOME!
  2682. // Push the commands to the front of the message queue in the reverse order!
  2683. // There shall be always enough space reserved for these commands.
  2684. repeatcommand_front(); // repeat G76 with all its parameters
  2685. enquecommand_front_P((PSTR("G28 W0")));
  2686. break;
  2687. }
  2688. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2689. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2690. custom_message = true;
  2691. custom_message_type = 4;
  2692. custom_message_state = 1;
  2693. custom_message = MSG_TEMP_CALIBRATION;
  2694. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2695. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2696. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2698. st_synchronize();
  2699. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2700. delay_keep_alive(1000);
  2701. serialecho_temperatures();
  2702. }
  2703. //enquecommand_P(PSTR("M190 S50"));
  2704. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2705. delay_keep_alive(1000);
  2706. serialecho_temperatures();
  2707. }
  2708. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2709. current_position[Z_AXIS] = 5;
  2710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2711. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2712. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2714. st_synchronize();
  2715. find_bed_induction_sensor_point_z(-1.f);
  2716. zero_z = current_position[Z_AXIS];
  2717. //current_position[Z_AXIS]
  2718. SERIAL_ECHOLNPGM("");
  2719. SERIAL_ECHOPGM("ZERO: ");
  2720. MYSERIAL.print(current_position[Z_AXIS]);
  2721. SERIAL_ECHOLNPGM("");
  2722. for (int i = 0; i<5; i++) {
  2723. SERIAL_ECHOPGM("Step: ");
  2724. MYSERIAL.print(i+2);
  2725. SERIAL_ECHOLNPGM("/6");
  2726. custom_message_state = i + 2;
  2727. t_c = 60 + i * 10;
  2728. setTargetBed(t_c);
  2729. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2730. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2731. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2733. st_synchronize();
  2734. while (degBed() < t_c) {
  2735. delay_keep_alive(1000);
  2736. serialecho_temperatures();
  2737. }
  2738. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2739. delay_keep_alive(1000);
  2740. serialecho_temperatures();
  2741. }
  2742. current_position[Z_AXIS] = 5;
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2744. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2745. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2747. st_synchronize();
  2748. find_bed_induction_sensor_point_z(-1.f);
  2749. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2750. SERIAL_ECHOLNPGM("");
  2751. SERIAL_ECHOPGM("Temperature: ");
  2752. MYSERIAL.print(t_c);
  2753. SERIAL_ECHOPGM(" Z shift (mm):");
  2754. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2755. SERIAL_ECHOLNPGM("");
  2756. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2757. }
  2758. custom_message_type = 0;
  2759. custom_message = false;
  2760. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2761. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2762. disable_x();
  2763. disable_y();
  2764. disable_z();
  2765. disable_e0();
  2766. disable_e1();
  2767. disable_e2();
  2768. setTargetBed(0); //set bed target temperature back to 0
  2769. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2770. lcd_update_enable(true);
  2771. lcd_update(2);
  2772. }
  2773. break;
  2774. #ifdef DIS
  2775. case 77:
  2776. {
  2777. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2778. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2779. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2780. float dimension_x = 40;
  2781. float dimension_y = 40;
  2782. int points_x = 40;
  2783. int points_y = 40;
  2784. float offset_x = 74;
  2785. float offset_y = 33;
  2786. if (code_seen('X')) dimension_x = code_value();
  2787. if (code_seen('Y')) dimension_y = code_value();
  2788. if (code_seen('XP')) points_x = code_value();
  2789. if (code_seen('YP')) points_y = code_value();
  2790. if (code_seen('XO')) offset_x = code_value();
  2791. if (code_seen('YO')) offset_y = code_value();
  2792. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2793. } break;
  2794. #endif
  2795. /**
  2796. * G80: Mesh-based Z probe, probes a grid and produces a
  2797. * mesh to compensate for variable bed height
  2798. *
  2799. * The S0 report the points as below
  2800. *
  2801. * +----> X-axis
  2802. * |
  2803. * |
  2804. * v Y-axis
  2805. *
  2806. */
  2807. case 80:
  2808. #ifdef MK1BP
  2809. break;
  2810. #endif //MK1BP
  2811. case_G80:
  2812. {
  2813. mesh_bed_leveling_flag = true;
  2814. int8_t verbosity_level = 0;
  2815. static bool run = false;
  2816. if (code_seen('V')) {
  2817. // Just 'V' without a number counts as V1.
  2818. char c = strchr_pointer[1];
  2819. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2820. }
  2821. // Firstly check if we know where we are
  2822. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2823. // We don't know where we are! HOME!
  2824. // Push the commands to the front of the message queue in the reverse order!
  2825. // There shall be always enough space reserved for these commands.
  2826. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2827. repeatcommand_front(); // repeat G80 with all its parameters
  2828. enquecommand_front_P((PSTR("G28 W0")));
  2829. }
  2830. else {
  2831. mesh_bed_leveling_flag = false;
  2832. }
  2833. break;
  2834. }
  2835. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2836. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2837. temp_compensation_start();
  2838. run = true;
  2839. repeatcommand_front(); // repeat G80 with all its parameters
  2840. enquecommand_front_P((PSTR("G28 W0")));
  2841. }
  2842. else {
  2843. mesh_bed_leveling_flag = false;
  2844. }
  2845. break;
  2846. }
  2847. run = false;
  2848. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2849. mesh_bed_leveling_flag = false;
  2850. break;
  2851. }
  2852. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2853. bool custom_message_old = custom_message;
  2854. unsigned int custom_message_type_old = custom_message_type;
  2855. unsigned int custom_message_state_old = custom_message_state;
  2856. custom_message = true;
  2857. custom_message_type = 1;
  2858. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2859. lcd_update(1);
  2860. mbl.reset(); //reset mesh bed leveling
  2861. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2862. // consumed during the first movements following this statement.
  2863. babystep_undo();
  2864. // Cycle through all points and probe them
  2865. // First move up. During this first movement, the babystepping will be reverted.
  2866. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2868. // The move to the first calibration point.
  2869. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2870. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2871. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2872. if (verbosity_level >= 1) {
  2873. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2874. }
  2875. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2877. // Wait until the move is finished.
  2878. st_synchronize();
  2879. int mesh_point = 0; //index number of calibration point
  2880. int ix = 0;
  2881. int iy = 0;
  2882. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2883. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2884. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2885. if (verbosity_level >= 1) {
  2886. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2887. }
  2888. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2889. const char *kill_message = NULL;
  2890. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2891. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2892. // Get coords of a measuring point.
  2893. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2894. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2895. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2896. float z0 = 0.f;
  2897. if (has_z && mesh_point > 0) {
  2898. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2899. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2900. //#if 0
  2901. if (verbosity_level >= 1) {
  2902. SERIAL_ECHOPGM("Bed leveling, point: ");
  2903. MYSERIAL.print(mesh_point);
  2904. SERIAL_ECHOPGM(", calibration z: ");
  2905. MYSERIAL.print(z0, 5);
  2906. SERIAL_ECHOLNPGM("");
  2907. }
  2908. //#endif
  2909. }
  2910. // Move Z up to MESH_HOME_Z_SEARCH.
  2911. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2913. st_synchronize();
  2914. // Move to XY position of the sensor point.
  2915. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2916. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2917. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2918. if (verbosity_level >= 1) {
  2919. SERIAL_PROTOCOL(mesh_point);
  2920. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2921. }
  2922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2923. st_synchronize();
  2924. // Go down until endstop is hit
  2925. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2926. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2927. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2928. break;
  2929. }
  2930. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2931. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2932. break;
  2933. }
  2934. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2935. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2936. break;
  2937. }
  2938. if (verbosity_level >= 10) {
  2939. SERIAL_ECHOPGM("X: ");
  2940. MYSERIAL.print(current_position[X_AXIS], 5);
  2941. SERIAL_ECHOLNPGM("");
  2942. SERIAL_ECHOPGM("Y: ");
  2943. MYSERIAL.print(current_position[Y_AXIS], 5);
  2944. SERIAL_PROTOCOLPGM("\n");
  2945. }
  2946. if (verbosity_level >= 1) {
  2947. SERIAL_ECHOPGM("mesh bed leveling: ");
  2948. MYSERIAL.print(current_position[Z_AXIS], 5);
  2949. SERIAL_ECHOLNPGM("");
  2950. }
  2951. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2952. custom_message_state--;
  2953. mesh_point++;
  2954. lcd_update(1);
  2955. }
  2956. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2957. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2958. if (verbosity_level >= 20) {
  2959. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2960. MYSERIAL.print(current_position[Z_AXIS], 5);
  2961. }
  2962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2963. st_synchronize();
  2964. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2965. kill(kill_message);
  2966. SERIAL_ECHOLNPGM("killed");
  2967. }
  2968. clean_up_after_endstop_move();
  2969. SERIAL_ECHOLNPGM("clean up finished ");
  2970. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2971. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2972. SERIAL_ECHOLNPGM("babystep applied");
  2973. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2974. if (verbosity_level >= 1) {
  2975. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2976. }
  2977. for (uint8_t i = 0; i < 4; ++i) {
  2978. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2979. long correction = 0;
  2980. if (code_seen(codes[i]))
  2981. correction = code_value_long();
  2982. else if (eeprom_bed_correction_valid) {
  2983. unsigned char *addr = (i < 2) ?
  2984. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2985. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2986. correction = eeprom_read_int8(addr);
  2987. }
  2988. if (correction == 0)
  2989. continue;
  2990. float offset = float(correction) * 0.001f;
  2991. if (fabs(offset) > 0.101f) {
  2992. SERIAL_ERROR_START;
  2993. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2994. SERIAL_ECHO(offset);
  2995. SERIAL_ECHOLNPGM(" microns");
  2996. }
  2997. else {
  2998. switch (i) {
  2999. case 0:
  3000. for (uint8_t row = 0; row < 3; ++row) {
  3001. mbl.z_values[row][1] += 0.5f * offset;
  3002. mbl.z_values[row][0] += offset;
  3003. }
  3004. break;
  3005. case 1:
  3006. for (uint8_t row = 0; row < 3; ++row) {
  3007. mbl.z_values[row][1] += 0.5f * offset;
  3008. mbl.z_values[row][2] += offset;
  3009. }
  3010. break;
  3011. case 2:
  3012. for (uint8_t col = 0; col < 3; ++col) {
  3013. mbl.z_values[1][col] += 0.5f * offset;
  3014. mbl.z_values[0][col] += offset;
  3015. }
  3016. break;
  3017. case 3:
  3018. for (uint8_t col = 0; col < 3; ++col) {
  3019. mbl.z_values[1][col] += 0.5f * offset;
  3020. mbl.z_values[2][col] += offset;
  3021. }
  3022. break;
  3023. }
  3024. }
  3025. }
  3026. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3027. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3028. SERIAL_ECHOLNPGM("Upsample finished");
  3029. mbl.active = 1; //activate mesh bed leveling
  3030. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3031. go_home_with_z_lift();
  3032. SERIAL_ECHOLNPGM("Go home finished");
  3033. //unretract (after PINDA preheat retraction)
  3034. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3035. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3037. }
  3038. KEEPALIVE_STATE(NOT_BUSY);
  3039. // Restore custom message state
  3040. custom_message = custom_message_old;
  3041. custom_message_type = custom_message_type_old;
  3042. custom_message_state = custom_message_state_old;
  3043. mesh_bed_leveling_flag = false;
  3044. mesh_bed_run_from_menu = false;
  3045. lcd_update(2);
  3046. }
  3047. break;
  3048. /**
  3049. * G81: Print mesh bed leveling status and bed profile if activated
  3050. */
  3051. case 81:
  3052. if (mbl.active) {
  3053. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3054. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3055. SERIAL_PROTOCOLPGM(",");
  3056. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3057. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3058. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3059. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3060. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3061. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3062. SERIAL_PROTOCOLPGM(" ");
  3063. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3064. }
  3065. SERIAL_PROTOCOLPGM("\n");
  3066. }
  3067. }
  3068. else
  3069. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3070. break;
  3071. #if 0
  3072. /**
  3073. * G82: Single Z probe at current location
  3074. *
  3075. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3076. *
  3077. */
  3078. case 82:
  3079. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3080. setup_for_endstop_move();
  3081. find_bed_induction_sensor_point_z();
  3082. clean_up_after_endstop_move();
  3083. SERIAL_PROTOCOLPGM("Bed found at: ");
  3084. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3085. SERIAL_PROTOCOLPGM("\n");
  3086. break;
  3087. /**
  3088. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3089. */
  3090. case 83:
  3091. {
  3092. int babystepz = code_seen('S') ? code_value() : 0;
  3093. int BabyPosition = code_seen('P') ? code_value() : 0;
  3094. if (babystepz != 0) {
  3095. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3096. // Is the axis indexed starting with zero or one?
  3097. if (BabyPosition > 4) {
  3098. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3099. }else{
  3100. // Save it to the eeprom
  3101. babystepLoadZ = babystepz;
  3102. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3103. // adjust the Z
  3104. babystepsTodoZadd(babystepLoadZ);
  3105. }
  3106. }
  3107. }
  3108. break;
  3109. /**
  3110. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3111. */
  3112. case 84:
  3113. babystepsTodoZsubtract(babystepLoadZ);
  3114. // babystepLoadZ = 0;
  3115. break;
  3116. /**
  3117. * G85: Prusa3D specific: Pick best babystep
  3118. */
  3119. case 85:
  3120. lcd_pick_babystep();
  3121. break;
  3122. #endif
  3123. /**
  3124. * G86: Prusa3D specific: Disable babystep correction after home.
  3125. * This G-code will be performed at the start of a calibration script.
  3126. */
  3127. case 86:
  3128. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3129. break;
  3130. /**
  3131. * G87: Prusa3D specific: Enable babystep correction after home
  3132. * This G-code will be performed at the end of a calibration script.
  3133. */
  3134. case 87:
  3135. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3136. break;
  3137. /*case 88: //just for test
  3138. SERIAL_ECHOPGM("Calibration status:");
  3139. MYSERIAL.println(int(calibration_status()));
  3140. if (code_seen('S')) codenum = code_value();
  3141. calibration_status_store(codenum);
  3142. SERIAL_ECHOPGM("Calibration status:");
  3143. MYSERIAL.println(int(calibration_status()));
  3144. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  3145. break;
  3146. */
  3147. #endif // ENABLE_MESH_BED_LEVELING
  3148. case 90: // G90
  3149. relative_mode = false;
  3150. break;
  3151. case 91: // G91
  3152. relative_mode = true;
  3153. break;
  3154. case 92: // G92
  3155. if(!code_seen(axis_codes[E_AXIS]))
  3156. st_synchronize();
  3157. for(int8_t i=0; i < NUM_AXIS; i++) {
  3158. if(code_seen(axis_codes[i])) {
  3159. if(i == E_AXIS) {
  3160. current_position[i] = code_value();
  3161. plan_set_e_position(current_position[E_AXIS]);
  3162. }
  3163. else {
  3164. current_position[i] = code_value()+add_homing[i];
  3165. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3166. }
  3167. }
  3168. }
  3169. break;
  3170. case 98: //activate farm mode
  3171. farm_mode = 1;
  3172. PingTime = millis();
  3173. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3174. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3175. break;
  3176. case 99: //deactivate farm mode
  3177. farm_mode = 0;
  3178. lcd_printer_connected();
  3179. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3180. lcd_update(2);
  3181. break;
  3182. }
  3183. } // end if(code_seen('G'))
  3184. else if(code_seen('M'))
  3185. {
  3186. int index;
  3187. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3188. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3189. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3190. SERIAL_ECHOLNPGM("Invalid M code");
  3191. } else
  3192. switch((int)code_value())
  3193. {
  3194. #ifdef ULTIPANEL
  3195. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3196. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3197. {
  3198. custom_message = true; //fixes using M1 during SD print, but needs to be be updated in future
  3199. custom_message_type = 2; //fixes using M1 during SD print, but needs to be be updated in future
  3200. char *src = strchr_pointer + 2;
  3201. codenum = 0;
  3202. bool hasP = false, hasS = false;
  3203. if (code_seen('P')) {
  3204. codenum = code_value(); // milliseconds to wait
  3205. hasP = codenum > 0;
  3206. }
  3207. if (code_seen('S')) {
  3208. codenum = code_value() * 1000; // seconds to wait
  3209. hasS = codenum > 0;
  3210. }
  3211. starpos = strchr(src, '*');
  3212. if (starpos != NULL) *(starpos) = '\0';
  3213. while (*src == ' ') ++src;
  3214. if (!hasP && !hasS && *src != '\0') {
  3215. lcd_setstatus(src);
  3216. } else {
  3217. LCD_MESSAGERPGM(MSG_USERWAIT);
  3218. }
  3219. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3220. st_synchronize();
  3221. previous_millis_cmd = millis();
  3222. if (codenum > 0){
  3223. codenum += millis(); // keep track of when we started waiting
  3224. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3225. while(millis() < codenum && !lcd_clicked()){
  3226. manage_heater();
  3227. manage_inactivity(true);
  3228. lcd_update();
  3229. }
  3230. KEEPALIVE_STATE(IN_HANDLER);
  3231. lcd_ignore_click(false);
  3232. }else{
  3233. if (!lcd_detected())
  3234. break;
  3235. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3236. while(!lcd_clicked()){
  3237. manage_heater();
  3238. manage_inactivity(true);
  3239. lcd_update();
  3240. }
  3241. KEEPALIVE_STATE(IN_HANDLER);
  3242. }
  3243. if (IS_SD_PRINTING)
  3244. LCD_MESSAGERPGM(MSG_RESUMING);
  3245. else
  3246. LCD_MESSAGERPGM(WELCOME_MSG);
  3247. custom_message = false;
  3248. custom_message_type = 0;
  3249. }
  3250. break;
  3251. #endif
  3252. case 17:
  3253. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3254. enable_x();
  3255. enable_y();
  3256. enable_z();
  3257. enable_e0();
  3258. enable_e1();
  3259. enable_e2();
  3260. break;
  3261. #ifdef SDSUPPORT
  3262. case 20: // M20 - list SD card
  3263. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3264. card.ls();
  3265. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3266. break;
  3267. case 21: // M21 - init SD card
  3268. card.initsd();
  3269. break;
  3270. case 22: //M22 - release SD card
  3271. card.release();
  3272. break;
  3273. case 23: //M23 - Select file
  3274. starpos = (strchr(strchr_pointer + 4,'*'));
  3275. if(starpos!=NULL)
  3276. *(starpos)='\0';
  3277. card.openFile(strchr_pointer + 4,true);
  3278. break;
  3279. case 24: //M24 - Start SD print
  3280. card.startFileprint();
  3281. starttime=millis();
  3282. break;
  3283. case 25: //M25 - Pause SD print
  3284. card.pauseSDPrint();
  3285. break;
  3286. case 26: //M26 - Set SD index
  3287. if(card.cardOK && code_seen('S')) {
  3288. card.setIndex(code_value_long());
  3289. }
  3290. break;
  3291. case 27: //M27 - Get SD status
  3292. card.getStatus();
  3293. break;
  3294. case 28: //M28 - Start SD write
  3295. starpos = (strchr(strchr_pointer + 4,'*'));
  3296. if(starpos != NULL){
  3297. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3298. strchr_pointer = strchr(npos,' ') + 1;
  3299. *(starpos) = '\0';
  3300. }
  3301. card.openFile(strchr_pointer+4,false);
  3302. break;
  3303. case 29: //M29 - Stop SD write
  3304. //processed in write to file routine above
  3305. //card,saving = false;
  3306. break;
  3307. case 30: //M30 <filename> Delete File
  3308. if (card.cardOK){
  3309. card.closefile();
  3310. starpos = (strchr(strchr_pointer + 4,'*'));
  3311. if(starpos != NULL){
  3312. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3313. strchr_pointer = strchr(npos,' ') + 1;
  3314. *(starpos) = '\0';
  3315. }
  3316. card.removeFile(strchr_pointer + 4);
  3317. }
  3318. break;
  3319. case 32: //M32 - Select file and start SD print
  3320. {
  3321. if(card.sdprinting) {
  3322. st_synchronize();
  3323. }
  3324. starpos = (strchr(strchr_pointer + 4,'*'));
  3325. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3326. if(namestartpos==NULL)
  3327. {
  3328. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3329. }
  3330. else
  3331. namestartpos++; //to skip the '!'
  3332. if(starpos!=NULL)
  3333. *(starpos)='\0';
  3334. bool call_procedure=(code_seen('P'));
  3335. if(strchr_pointer>namestartpos)
  3336. call_procedure=false; //false alert, 'P' found within filename
  3337. if( card.cardOK )
  3338. {
  3339. card.openFile(namestartpos,true,!call_procedure);
  3340. if(code_seen('S'))
  3341. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3342. card.setIndex(code_value_long());
  3343. card.startFileprint();
  3344. if(!call_procedure)
  3345. starttime=millis(); //procedure calls count as normal print time.
  3346. }
  3347. } break;
  3348. case 928: //M928 - Start SD write
  3349. starpos = (strchr(strchr_pointer + 5,'*'));
  3350. if(starpos != NULL){
  3351. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3352. strchr_pointer = strchr(npos,' ') + 1;
  3353. *(starpos) = '\0';
  3354. }
  3355. card.openLogFile(strchr_pointer+5);
  3356. break;
  3357. #endif //SDSUPPORT
  3358. case 31: //M31 take time since the start of the SD print or an M109 command
  3359. {
  3360. stoptime=millis();
  3361. char time[30];
  3362. unsigned long t=(stoptime-starttime)/1000;
  3363. int sec,min;
  3364. min=t/60;
  3365. sec=t%60;
  3366. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3367. SERIAL_ECHO_START;
  3368. SERIAL_ECHOLN(time);
  3369. lcd_setstatus(time);
  3370. autotempShutdown();
  3371. }
  3372. break;
  3373. case 42: //M42 -Change pin status via gcode
  3374. if (code_seen('S'))
  3375. {
  3376. int pin_status = code_value();
  3377. int pin_number = LED_PIN;
  3378. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3379. pin_number = code_value();
  3380. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3381. {
  3382. if (sensitive_pins[i] == pin_number)
  3383. {
  3384. pin_number = -1;
  3385. break;
  3386. }
  3387. }
  3388. #if defined(FAN_PIN) && FAN_PIN > -1
  3389. if (pin_number == FAN_PIN)
  3390. fanSpeed = pin_status;
  3391. #endif
  3392. if (pin_number > -1)
  3393. {
  3394. pinMode(pin_number, OUTPUT);
  3395. digitalWrite(pin_number, pin_status);
  3396. analogWrite(pin_number, pin_status);
  3397. }
  3398. }
  3399. break;
  3400. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3401. // Reset the baby step value and the baby step applied flag.
  3402. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3403. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3404. // Reset the skew and offset in both RAM and EEPROM.
  3405. reset_bed_offset_and_skew();
  3406. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3407. // the planner will not perform any adjustments in the XY plane.
  3408. // Wait for the motors to stop and update the current position with the absolute values.
  3409. world2machine_revert_to_uncorrected();
  3410. break;
  3411. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3412. {
  3413. // Only Z calibration?
  3414. bool only_Z = code_seen('Z');
  3415. gcode_M45(only_Z);
  3416. break;
  3417. }
  3418. /*
  3419. case 46:
  3420. {
  3421. // M46: Prusa3D: Show the assigned IP address.
  3422. uint8_t ip[4];
  3423. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3424. if (hasIP) {
  3425. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3426. SERIAL_ECHO(int(ip[0]));
  3427. SERIAL_ECHOPGM(".");
  3428. SERIAL_ECHO(int(ip[1]));
  3429. SERIAL_ECHOPGM(".");
  3430. SERIAL_ECHO(int(ip[2]));
  3431. SERIAL_ECHOPGM(".");
  3432. SERIAL_ECHO(int(ip[3]));
  3433. SERIAL_ECHOLNPGM("");
  3434. } else {
  3435. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3436. }
  3437. break;
  3438. }
  3439. */
  3440. case 47:
  3441. // M47: Prusa3D: Show end stops dialog on the display.
  3442. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3443. lcd_diag_show_end_stops();
  3444. KEEPALIVE_STATE(IN_HANDLER);
  3445. break;
  3446. #if 0
  3447. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3448. {
  3449. // Disable the default update procedure of the display. We will do a modal dialog.
  3450. lcd_update_enable(false);
  3451. // Let the planner use the uncorrected coordinates.
  3452. mbl.reset();
  3453. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3454. // the planner will not perform any adjustments in the XY plane.
  3455. // Wait for the motors to stop and update the current position with the absolute values.
  3456. world2machine_revert_to_uncorrected();
  3457. // Move the print head close to the bed.
  3458. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3460. st_synchronize();
  3461. // Home in the XY plane.
  3462. set_destination_to_current();
  3463. setup_for_endstop_move();
  3464. home_xy();
  3465. int8_t verbosity_level = 0;
  3466. if (code_seen('V')) {
  3467. // Just 'V' without a number counts as V1.
  3468. char c = strchr_pointer[1];
  3469. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3470. }
  3471. bool success = scan_bed_induction_points(verbosity_level);
  3472. clean_up_after_endstop_move();
  3473. // Print head up.
  3474. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3475. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3476. st_synchronize();
  3477. lcd_update_enable(true);
  3478. break;
  3479. }
  3480. #endif
  3481. // M48 Z-Probe repeatability measurement function.
  3482. //
  3483. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3484. //
  3485. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3486. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3487. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3488. // regenerated.
  3489. //
  3490. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3491. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3492. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3493. //
  3494. #ifdef ENABLE_AUTO_BED_LEVELING
  3495. #ifdef Z_PROBE_REPEATABILITY_TEST
  3496. case 48: // M48 Z-Probe repeatability
  3497. {
  3498. #if Z_MIN_PIN == -1
  3499. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3500. #endif
  3501. double sum=0.0;
  3502. double mean=0.0;
  3503. double sigma=0.0;
  3504. double sample_set[50];
  3505. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3506. double X_current, Y_current, Z_current;
  3507. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3508. if (code_seen('V') || code_seen('v')) {
  3509. verbose_level = code_value();
  3510. if (verbose_level<0 || verbose_level>4 ) {
  3511. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3512. goto Sigma_Exit;
  3513. }
  3514. }
  3515. if (verbose_level > 0) {
  3516. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3517. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3518. }
  3519. if (code_seen('n')) {
  3520. n_samples = code_value();
  3521. if (n_samples<4 || n_samples>50 ) {
  3522. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3523. goto Sigma_Exit;
  3524. }
  3525. }
  3526. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3527. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3528. Z_current = st_get_position_mm(Z_AXIS);
  3529. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3530. ext_position = st_get_position_mm(E_AXIS);
  3531. if (code_seen('X') || code_seen('x') ) {
  3532. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3533. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3534. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3535. goto Sigma_Exit;
  3536. }
  3537. }
  3538. if (code_seen('Y') || code_seen('y') ) {
  3539. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3540. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3541. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3542. goto Sigma_Exit;
  3543. }
  3544. }
  3545. if (code_seen('L') || code_seen('l') ) {
  3546. n_legs = code_value();
  3547. if ( n_legs==1 )
  3548. n_legs = 2;
  3549. if ( n_legs<0 || n_legs>15 ) {
  3550. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3551. goto Sigma_Exit;
  3552. }
  3553. }
  3554. //
  3555. // Do all the preliminary setup work. First raise the probe.
  3556. //
  3557. st_synchronize();
  3558. plan_bed_level_matrix.set_to_identity();
  3559. plan_buffer_line( X_current, Y_current, Z_start_location,
  3560. ext_position,
  3561. homing_feedrate[Z_AXIS]/60,
  3562. active_extruder);
  3563. st_synchronize();
  3564. //
  3565. // Now get everything to the specified probe point So we can safely do a probe to
  3566. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3567. // use that as a starting point for each probe.
  3568. //
  3569. if (verbose_level > 2)
  3570. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3571. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3572. ext_position,
  3573. homing_feedrate[X_AXIS]/60,
  3574. active_extruder);
  3575. st_synchronize();
  3576. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3577. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3578. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3579. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3580. //
  3581. // OK, do the inital probe to get us close to the bed.
  3582. // Then retrace the right amount and use that in subsequent probes
  3583. //
  3584. setup_for_endstop_move();
  3585. run_z_probe();
  3586. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3587. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3588. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3589. ext_position,
  3590. homing_feedrate[X_AXIS]/60,
  3591. active_extruder);
  3592. st_synchronize();
  3593. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3594. for( n=0; n<n_samples; n++) {
  3595. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3596. if ( n_legs) {
  3597. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3598. int rotational_direction, l;
  3599. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3600. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3601. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3602. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3603. //SERIAL_ECHOPAIR(" theta: ",theta);
  3604. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3605. //SERIAL_PROTOCOLLNPGM("");
  3606. for( l=0; l<n_legs-1; l++) {
  3607. if (rotational_direction==1)
  3608. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3609. else
  3610. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3611. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3612. if ( radius<0.0 )
  3613. radius = -radius;
  3614. X_current = X_probe_location + cos(theta) * radius;
  3615. Y_current = Y_probe_location + sin(theta) * radius;
  3616. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3617. X_current = X_MIN_POS;
  3618. if ( X_current>X_MAX_POS)
  3619. X_current = X_MAX_POS;
  3620. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3621. Y_current = Y_MIN_POS;
  3622. if ( Y_current>Y_MAX_POS)
  3623. Y_current = Y_MAX_POS;
  3624. if (verbose_level>3 ) {
  3625. SERIAL_ECHOPAIR("x: ", X_current);
  3626. SERIAL_ECHOPAIR("y: ", Y_current);
  3627. SERIAL_PROTOCOLLNPGM("");
  3628. }
  3629. do_blocking_move_to( X_current, Y_current, Z_current );
  3630. }
  3631. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3632. }
  3633. setup_for_endstop_move();
  3634. run_z_probe();
  3635. sample_set[n] = current_position[Z_AXIS];
  3636. //
  3637. // Get the current mean for the data points we have so far
  3638. //
  3639. sum=0.0;
  3640. for( j=0; j<=n; j++) {
  3641. sum = sum + sample_set[j];
  3642. }
  3643. mean = sum / (double (n+1));
  3644. //
  3645. // Now, use that mean to calculate the standard deviation for the
  3646. // data points we have so far
  3647. //
  3648. sum=0.0;
  3649. for( j=0; j<=n; j++) {
  3650. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3651. }
  3652. sigma = sqrt( sum / (double (n+1)) );
  3653. if (verbose_level > 1) {
  3654. SERIAL_PROTOCOL(n+1);
  3655. SERIAL_PROTOCOL(" of ");
  3656. SERIAL_PROTOCOL(n_samples);
  3657. SERIAL_PROTOCOLPGM(" z: ");
  3658. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3659. }
  3660. if (verbose_level > 2) {
  3661. SERIAL_PROTOCOL(" mean: ");
  3662. SERIAL_PROTOCOL_F(mean,6);
  3663. SERIAL_PROTOCOL(" sigma: ");
  3664. SERIAL_PROTOCOL_F(sigma,6);
  3665. }
  3666. if (verbose_level > 0)
  3667. SERIAL_PROTOCOLPGM("\n");
  3668. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3669. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3670. st_synchronize();
  3671. }
  3672. delay(1000);
  3673. clean_up_after_endstop_move();
  3674. // enable_endstops(true);
  3675. if (verbose_level > 0) {
  3676. SERIAL_PROTOCOLPGM("Mean: ");
  3677. SERIAL_PROTOCOL_F(mean, 6);
  3678. SERIAL_PROTOCOLPGM("\n");
  3679. }
  3680. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3681. SERIAL_PROTOCOL_F(sigma, 6);
  3682. SERIAL_PROTOCOLPGM("\n\n");
  3683. Sigma_Exit:
  3684. break;
  3685. }
  3686. #endif // Z_PROBE_REPEATABILITY_TEST
  3687. #endif // ENABLE_AUTO_BED_LEVELING
  3688. case 104: // M104
  3689. if(setTargetedHotend(104)){
  3690. break;
  3691. }
  3692. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3693. setWatch();
  3694. break;
  3695. case 112: // M112 -Emergency Stop
  3696. kill();
  3697. break;
  3698. case 140: // M140 set bed temp
  3699. if (code_seen('S')) setTargetBed(code_value());
  3700. break;
  3701. case 105 : // M105
  3702. if(setTargetedHotend(105)){
  3703. break;
  3704. }
  3705. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3706. SERIAL_PROTOCOLPGM("ok T:");
  3707. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3708. SERIAL_PROTOCOLPGM(" /");
  3709. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3710. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3711. SERIAL_PROTOCOLPGM(" B:");
  3712. SERIAL_PROTOCOL_F(degBed(),1);
  3713. SERIAL_PROTOCOLPGM(" /");
  3714. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3715. #endif //TEMP_BED_PIN
  3716. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3717. SERIAL_PROTOCOLPGM(" T");
  3718. SERIAL_PROTOCOL(cur_extruder);
  3719. SERIAL_PROTOCOLPGM(":");
  3720. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3721. SERIAL_PROTOCOLPGM(" /");
  3722. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3723. }
  3724. #else
  3725. SERIAL_ERROR_START;
  3726. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3727. #endif
  3728. SERIAL_PROTOCOLPGM(" @:");
  3729. #ifdef EXTRUDER_WATTS
  3730. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3731. SERIAL_PROTOCOLPGM("W");
  3732. #else
  3733. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3734. #endif
  3735. SERIAL_PROTOCOLPGM(" B@:");
  3736. #ifdef BED_WATTS
  3737. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3738. SERIAL_PROTOCOLPGM("W");
  3739. #else
  3740. SERIAL_PROTOCOL(getHeaterPower(-1));
  3741. #endif
  3742. #ifdef SHOW_TEMP_ADC_VALUES
  3743. {float raw = 0.0;
  3744. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3745. SERIAL_PROTOCOLPGM(" ADC B:");
  3746. SERIAL_PROTOCOL_F(degBed(),1);
  3747. SERIAL_PROTOCOLPGM("C->");
  3748. raw = rawBedTemp();
  3749. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3750. SERIAL_PROTOCOLPGM(" Rb->");
  3751. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3752. SERIAL_PROTOCOLPGM(" Rxb->");
  3753. SERIAL_PROTOCOL_F(raw, 5);
  3754. #endif
  3755. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3756. SERIAL_PROTOCOLPGM(" T");
  3757. SERIAL_PROTOCOL(cur_extruder);
  3758. SERIAL_PROTOCOLPGM(":");
  3759. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3760. SERIAL_PROTOCOLPGM("C->");
  3761. raw = rawHotendTemp(cur_extruder);
  3762. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3763. SERIAL_PROTOCOLPGM(" Rt");
  3764. SERIAL_PROTOCOL(cur_extruder);
  3765. SERIAL_PROTOCOLPGM("->");
  3766. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3767. SERIAL_PROTOCOLPGM(" Rx");
  3768. SERIAL_PROTOCOL(cur_extruder);
  3769. SERIAL_PROTOCOLPGM("->");
  3770. SERIAL_PROTOCOL_F(raw, 5);
  3771. }}
  3772. #endif
  3773. SERIAL_PROTOCOLLN("");
  3774. KEEPALIVE_STATE(NOT_BUSY);
  3775. return;
  3776. break;
  3777. case 109:
  3778. {// M109 - Wait for extruder heater to reach target.
  3779. if(setTargetedHotend(109)){
  3780. break;
  3781. }
  3782. LCD_MESSAGERPGM(MSG_HEATING);
  3783. heating_status = 1;
  3784. if (farm_mode) { prusa_statistics(1); };
  3785. #ifdef AUTOTEMP
  3786. autotemp_enabled=false;
  3787. #endif
  3788. if (code_seen('S')) {
  3789. setTargetHotend(code_value(), tmp_extruder);
  3790. CooldownNoWait = true;
  3791. } else if (code_seen('R')) {
  3792. setTargetHotend(code_value(), tmp_extruder);
  3793. CooldownNoWait = false;
  3794. }
  3795. #ifdef AUTOTEMP
  3796. if (code_seen('S')) autotemp_min=code_value();
  3797. if (code_seen('B')) autotemp_max=code_value();
  3798. if (code_seen('F'))
  3799. {
  3800. autotemp_factor=code_value();
  3801. autotemp_enabled=true;
  3802. }
  3803. #endif
  3804. setWatch();
  3805. codenum = millis();
  3806. /* See if we are heating up or cooling down */
  3807. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3808. KEEPALIVE_STATE(NOT_BUSY);
  3809. cancel_heatup = false;
  3810. wait_for_heater(codenum); //loops until target temperature is reached
  3811. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3812. KEEPALIVE_STATE(IN_HANDLER);
  3813. heating_status = 2;
  3814. if (farm_mode) { prusa_statistics(2); };
  3815. //starttime=millis();
  3816. previous_millis_cmd = millis();
  3817. }
  3818. break;
  3819. case 190: // M190 - Wait for bed heater to reach target.
  3820. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3821. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3822. heating_status = 3;
  3823. if (farm_mode) { prusa_statistics(1); };
  3824. if (code_seen('S'))
  3825. {
  3826. setTargetBed(code_value());
  3827. CooldownNoWait = true;
  3828. }
  3829. else if (code_seen('R'))
  3830. {
  3831. setTargetBed(code_value());
  3832. CooldownNoWait = false;
  3833. }
  3834. codenum = millis();
  3835. cancel_heatup = false;
  3836. target_direction = isHeatingBed(); // true if heating, false if cooling
  3837. KEEPALIVE_STATE(NOT_BUSY);
  3838. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3839. {
  3840. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3841. {
  3842. if (!farm_mode) {
  3843. float tt = degHotend(active_extruder);
  3844. SERIAL_PROTOCOLPGM("T:");
  3845. SERIAL_PROTOCOL(tt);
  3846. SERIAL_PROTOCOLPGM(" E:");
  3847. SERIAL_PROTOCOL((int)active_extruder);
  3848. SERIAL_PROTOCOLPGM(" B:");
  3849. SERIAL_PROTOCOL_F(degBed(), 1);
  3850. SERIAL_PROTOCOLLN("");
  3851. }
  3852. codenum = millis();
  3853. }
  3854. manage_heater();
  3855. manage_inactivity();
  3856. lcd_update();
  3857. }
  3858. LCD_MESSAGERPGM(MSG_BED_DONE);
  3859. KEEPALIVE_STATE(IN_HANDLER);
  3860. heating_status = 4;
  3861. previous_millis_cmd = millis();
  3862. #endif
  3863. break;
  3864. #if defined(FAN_PIN) && FAN_PIN > -1
  3865. case 106: //M106 Fan On
  3866. if (code_seen('S')){
  3867. fanSpeed=constrain(code_value(),0,255);
  3868. }
  3869. else {
  3870. fanSpeed=255;
  3871. }
  3872. break;
  3873. case 107: //M107 Fan Off
  3874. fanSpeed = 0;
  3875. break;
  3876. #endif //FAN_PIN
  3877. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3878. case 80: // M80 - Turn on Power Supply
  3879. SET_OUTPUT(PS_ON_PIN); //GND
  3880. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3881. // If you have a switch on suicide pin, this is useful
  3882. // if you want to start another print with suicide feature after
  3883. // a print without suicide...
  3884. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3885. SET_OUTPUT(SUICIDE_PIN);
  3886. WRITE(SUICIDE_PIN, HIGH);
  3887. #endif
  3888. #ifdef ULTIPANEL
  3889. powersupply = true;
  3890. LCD_MESSAGERPGM(WELCOME_MSG);
  3891. lcd_update();
  3892. #endif
  3893. break;
  3894. #endif
  3895. case 81: // M81 - Turn off Power Supply
  3896. disable_heater();
  3897. st_synchronize();
  3898. disable_e0();
  3899. disable_e1();
  3900. disable_e2();
  3901. finishAndDisableSteppers();
  3902. fanSpeed = 0;
  3903. delay(1000); // Wait a little before to switch off
  3904. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3905. st_synchronize();
  3906. suicide();
  3907. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3908. SET_OUTPUT(PS_ON_PIN);
  3909. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3910. #endif
  3911. #ifdef ULTIPANEL
  3912. powersupply = false;
  3913. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3914. /*
  3915. MACHNAME = "Prusa i3"
  3916. MSGOFF = "Vypnuto"
  3917. "Prusai3"" ""vypnuto""."
  3918. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3919. */
  3920. lcd_update();
  3921. #endif
  3922. break;
  3923. case 82:
  3924. axis_relative_modes[3] = false;
  3925. break;
  3926. case 83:
  3927. axis_relative_modes[3] = true;
  3928. break;
  3929. case 18: //compatibility
  3930. case 84: // M84
  3931. if(code_seen('S')){
  3932. stepper_inactive_time = code_value() * 1000;
  3933. }
  3934. else
  3935. {
  3936. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3937. if(all_axis)
  3938. {
  3939. st_synchronize();
  3940. disable_e0();
  3941. disable_e1();
  3942. disable_e2();
  3943. finishAndDisableSteppers();
  3944. }
  3945. else
  3946. {
  3947. st_synchronize();
  3948. if (code_seen('X')) disable_x();
  3949. if (code_seen('Y')) disable_y();
  3950. if (code_seen('Z')) disable_z();
  3951. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3952. if (code_seen('E')) {
  3953. disable_e0();
  3954. disable_e1();
  3955. disable_e2();
  3956. }
  3957. #endif
  3958. }
  3959. }
  3960. snmm_filaments_used = 0;
  3961. break;
  3962. case 85: // M85
  3963. if(code_seen('S')) {
  3964. max_inactive_time = code_value() * 1000;
  3965. }
  3966. break;
  3967. case 92: // M92
  3968. for(int8_t i=0; i < NUM_AXIS; i++)
  3969. {
  3970. if(code_seen(axis_codes[i]))
  3971. {
  3972. if(i == 3) { // E
  3973. float value = code_value();
  3974. if(value < 20.0) {
  3975. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3976. max_jerk[E_AXIS] *= factor;
  3977. max_feedrate[i] *= factor;
  3978. axis_steps_per_sqr_second[i] *= factor;
  3979. }
  3980. axis_steps_per_unit[i] = value;
  3981. }
  3982. else {
  3983. axis_steps_per_unit[i] = code_value();
  3984. }
  3985. }
  3986. }
  3987. break;
  3988. case 110: // M110 - reset line pos
  3989. if (code_seen('N'))
  3990. gcode_LastN = code_value_long();
  3991. else
  3992. gcode_LastN = 0;
  3993. break;
  3994. #ifdef HOST_KEEPALIVE_FEATURE
  3995. case 113: // M113 - Get or set Host Keepalive interval
  3996. if (code_seen('S')) {
  3997. host_keepalive_interval = (uint8_t)code_value_short();
  3998. NOMORE(host_keepalive_interval, 60);
  3999. } else {
  4000. SERIAL_ECHO_START;
  4001. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4002. SERIAL_PROTOCOLLN("");
  4003. }
  4004. break;
  4005. #endif
  4006. case 115: // M115
  4007. if (code_seen('V')) {
  4008. // Report the Prusa version number.
  4009. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4010. } else if (code_seen('U')) {
  4011. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4012. // pause the print and ask the user to upgrade the firmware.
  4013. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4014. } else {
  4015. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4016. }
  4017. break;
  4018. /* case 117: // M117 display message
  4019. starpos = (strchr(strchr_pointer + 5,'*'));
  4020. if(starpos!=NULL)
  4021. *(starpos)='\0';
  4022. lcd_setstatus(strchr_pointer + 5);
  4023. break;*/
  4024. case 114: // M114
  4025. SERIAL_PROTOCOLPGM("X:");
  4026. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4027. SERIAL_PROTOCOLPGM(" Y:");
  4028. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4029. SERIAL_PROTOCOLPGM(" Z:");
  4030. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4031. SERIAL_PROTOCOLPGM(" E:");
  4032. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4033. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4034. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4035. SERIAL_PROTOCOLPGM(" Y:");
  4036. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4037. SERIAL_PROTOCOLPGM(" Z:");
  4038. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4039. SERIAL_PROTOCOLLN("");
  4040. break;
  4041. case 120: // M120
  4042. enable_endstops(false) ;
  4043. break;
  4044. case 121: // M121
  4045. enable_endstops(true) ;
  4046. break;
  4047. case 119: // M119
  4048. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4049. SERIAL_PROTOCOLLN("");
  4050. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4051. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4052. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4053. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4054. }else{
  4055. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4056. }
  4057. SERIAL_PROTOCOLLN("");
  4058. #endif
  4059. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4060. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4061. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4062. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4063. }else{
  4064. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4065. }
  4066. SERIAL_PROTOCOLLN("");
  4067. #endif
  4068. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4069. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4070. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4071. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4072. }else{
  4073. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4074. }
  4075. SERIAL_PROTOCOLLN("");
  4076. #endif
  4077. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4078. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4079. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4080. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4081. }else{
  4082. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4083. }
  4084. SERIAL_PROTOCOLLN("");
  4085. #endif
  4086. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4087. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4088. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4089. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4090. }else{
  4091. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4092. }
  4093. SERIAL_PROTOCOLLN("");
  4094. #endif
  4095. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4096. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4097. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4098. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4099. }else{
  4100. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4101. }
  4102. SERIAL_PROTOCOLLN("");
  4103. #endif
  4104. break;
  4105. //TODO: update for all axis, use for loop
  4106. #ifdef BLINKM
  4107. case 150: // M150
  4108. {
  4109. byte red;
  4110. byte grn;
  4111. byte blu;
  4112. if(code_seen('R')) red = code_value();
  4113. if(code_seen('U')) grn = code_value();
  4114. if(code_seen('B')) blu = code_value();
  4115. SendColors(red,grn,blu);
  4116. }
  4117. break;
  4118. #endif //BLINKM
  4119. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4120. {
  4121. tmp_extruder = active_extruder;
  4122. if(code_seen('T')) {
  4123. tmp_extruder = code_value();
  4124. if(tmp_extruder >= EXTRUDERS) {
  4125. SERIAL_ECHO_START;
  4126. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4127. break;
  4128. }
  4129. }
  4130. if(code_seen('D')) {
  4131. float diameter = (float)code_value();
  4132. if (diameter == 0.0) {
  4133. // setting any extruder filament size disables volumetric on the assumption that
  4134. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4135. // for all extruders
  4136. volumetric_enabled = false;
  4137. } else {
  4138. filament_size[tmp_extruder] = (float)code_value();
  4139. // make sure all extruders have some sane value for the filament size
  4140. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4141. #if EXTRUDERS > 1
  4142. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4143. #if EXTRUDERS > 2
  4144. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4145. #endif
  4146. #endif
  4147. volumetric_enabled = true;
  4148. }
  4149. } else {
  4150. //reserved for setting filament diameter via UFID or filament measuring device
  4151. break;
  4152. }
  4153. calculate_volumetric_multipliers();
  4154. }
  4155. break;
  4156. case 201: // M201
  4157. for(int8_t i=0; i < NUM_AXIS; i++)
  4158. {
  4159. if(code_seen(axis_codes[i]))
  4160. {
  4161. max_acceleration_units_per_sq_second[i] = code_value();
  4162. }
  4163. }
  4164. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4165. reset_acceleration_rates();
  4166. break;
  4167. #if 0 // Not used for Sprinter/grbl gen6
  4168. case 202: // M202
  4169. for(int8_t i=0; i < NUM_AXIS; i++) {
  4170. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4171. }
  4172. break;
  4173. #endif
  4174. case 203: // M203 max feedrate mm/sec
  4175. for(int8_t i=0; i < NUM_AXIS; i++) {
  4176. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4177. }
  4178. break;
  4179. case 204: // M204 acclereration S normal moves T filmanent only moves
  4180. {
  4181. if(code_seen('S')) acceleration = code_value() ;
  4182. if(code_seen('T')) retract_acceleration = code_value() ;
  4183. }
  4184. break;
  4185. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4186. {
  4187. if(code_seen('S')) minimumfeedrate = code_value();
  4188. if(code_seen('T')) mintravelfeedrate = code_value();
  4189. if(code_seen('B')) minsegmenttime = code_value() ;
  4190. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4191. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4192. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4193. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4194. }
  4195. break;
  4196. case 206: // M206 additional homing offset
  4197. for(int8_t i=0; i < 3; i++)
  4198. {
  4199. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4200. }
  4201. break;
  4202. #ifdef FWRETRACT
  4203. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4204. {
  4205. if(code_seen('S'))
  4206. {
  4207. retract_length = code_value() ;
  4208. }
  4209. if(code_seen('F'))
  4210. {
  4211. retract_feedrate = code_value()/60 ;
  4212. }
  4213. if(code_seen('Z'))
  4214. {
  4215. retract_zlift = code_value() ;
  4216. }
  4217. }break;
  4218. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4219. {
  4220. if(code_seen('S'))
  4221. {
  4222. retract_recover_length = code_value() ;
  4223. }
  4224. if(code_seen('F'))
  4225. {
  4226. retract_recover_feedrate = code_value()/60 ;
  4227. }
  4228. }break;
  4229. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4230. {
  4231. if(code_seen('S'))
  4232. {
  4233. int t= code_value() ;
  4234. switch(t)
  4235. {
  4236. case 0:
  4237. {
  4238. autoretract_enabled=false;
  4239. retracted[0]=false;
  4240. #if EXTRUDERS > 1
  4241. retracted[1]=false;
  4242. #endif
  4243. #if EXTRUDERS > 2
  4244. retracted[2]=false;
  4245. #endif
  4246. }break;
  4247. case 1:
  4248. {
  4249. autoretract_enabled=true;
  4250. retracted[0]=false;
  4251. #if EXTRUDERS > 1
  4252. retracted[1]=false;
  4253. #endif
  4254. #if EXTRUDERS > 2
  4255. retracted[2]=false;
  4256. #endif
  4257. }break;
  4258. default:
  4259. SERIAL_ECHO_START;
  4260. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4261. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4262. SERIAL_ECHOLNPGM("\"");
  4263. }
  4264. }
  4265. }break;
  4266. #endif // FWRETRACT
  4267. #if EXTRUDERS > 1
  4268. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4269. {
  4270. if(setTargetedHotend(218)){
  4271. break;
  4272. }
  4273. if(code_seen('X'))
  4274. {
  4275. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4276. }
  4277. if(code_seen('Y'))
  4278. {
  4279. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4280. }
  4281. SERIAL_ECHO_START;
  4282. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4283. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4284. {
  4285. SERIAL_ECHO(" ");
  4286. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4287. SERIAL_ECHO(",");
  4288. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4289. }
  4290. SERIAL_ECHOLN("");
  4291. }break;
  4292. #endif
  4293. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4294. {
  4295. if (code_seen('B')) //backup current speed factor
  4296. {
  4297. saved_feedmultiply_mm = feedmultiply;
  4298. }
  4299. if(code_seen('S'))
  4300. {
  4301. feedmultiply = code_value() ;
  4302. }
  4303. if (code_seen('R')) { //restore previous feedmultiply
  4304. feedmultiply = saved_feedmultiply_mm;
  4305. }
  4306. }
  4307. break;
  4308. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4309. {
  4310. if(code_seen('S'))
  4311. {
  4312. int tmp_code = code_value();
  4313. if (code_seen('T'))
  4314. {
  4315. if(setTargetedHotend(221)){
  4316. break;
  4317. }
  4318. extruder_multiply[tmp_extruder] = tmp_code;
  4319. }
  4320. else
  4321. {
  4322. extrudemultiply = tmp_code ;
  4323. }
  4324. }
  4325. }
  4326. break;
  4327. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4328. {
  4329. if(code_seen('P')){
  4330. int pin_number = code_value(); // pin number
  4331. int pin_state = -1; // required pin state - default is inverted
  4332. if(code_seen('S')) pin_state = code_value(); // required pin state
  4333. if(pin_state >= -1 && pin_state <= 1){
  4334. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4335. {
  4336. if (sensitive_pins[i] == pin_number)
  4337. {
  4338. pin_number = -1;
  4339. break;
  4340. }
  4341. }
  4342. if (pin_number > -1)
  4343. {
  4344. int target = LOW;
  4345. st_synchronize();
  4346. pinMode(pin_number, INPUT);
  4347. switch(pin_state){
  4348. case 1:
  4349. target = HIGH;
  4350. break;
  4351. case 0:
  4352. target = LOW;
  4353. break;
  4354. case -1:
  4355. target = !digitalRead(pin_number);
  4356. break;
  4357. }
  4358. while(digitalRead(pin_number) != target){
  4359. manage_heater();
  4360. manage_inactivity();
  4361. lcd_update();
  4362. }
  4363. }
  4364. }
  4365. }
  4366. }
  4367. break;
  4368. #if NUM_SERVOS > 0
  4369. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4370. {
  4371. int servo_index = -1;
  4372. int servo_position = 0;
  4373. if (code_seen('P'))
  4374. servo_index = code_value();
  4375. if (code_seen('S')) {
  4376. servo_position = code_value();
  4377. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4378. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4379. servos[servo_index].attach(0);
  4380. #endif
  4381. servos[servo_index].write(servo_position);
  4382. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4383. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4384. servos[servo_index].detach();
  4385. #endif
  4386. }
  4387. else {
  4388. SERIAL_ECHO_START;
  4389. SERIAL_ECHO("Servo ");
  4390. SERIAL_ECHO(servo_index);
  4391. SERIAL_ECHOLN(" out of range");
  4392. }
  4393. }
  4394. else if (servo_index >= 0) {
  4395. SERIAL_PROTOCOL(MSG_OK);
  4396. SERIAL_PROTOCOL(" Servo ");
  4397. SERIAL_PROTOCOL(servo_index);
  4398. SERIAL_PROTOCOL(": ");
  4399. SERIAL_PROTOCOL(servos[servo_index].read());
  4400. SERIAL_PROTOCOLLN("");
  4401. }
  4402. }
  4403. break;
  4404. #endif // NUM_SERVOS > 0
  4405. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4406. case 300: // M300
  4407. {
  4408. int beepS = code_seen('S') ? code_value() : 110;
  4409. int beepP = code_seen('P') ? code_value() : 1000;
  4410. if (beepS > 0)
  4411. {
  4412. #if BEEPER > 0
  4413. tone(BEEPER, beepS);
  4414. delay(beepP);
  4415. noTone(BEEPER);
  4416. #elif defined(ULTRALCD)
  4417. lcd_buzz(beepS, beepP);
  4418. #elif defined(LCD_USE_I2C_BUZZER)
  4419. lcd_buzz(beepP, beepS);
  4420. #endif
  4421. }
  4422. else
  4423. {
  4424. delay(beepP);
  4425. }
  4426. }
  4427. break;
  4428. #endif // M300
  4429. #ifdef PIDTEMP
  4430. case 301: // M301
  4431. {
  4432. if(code_seen('P')) Kp = code_value();
  4433. if(code_seen('I')) Ki = scalePID_i(code_value());
  4434. if(code_seen('D')) Kd = scalePID_d(code_value());
  4435. #ifdef PID_ADD_EXTRUSION_RATE
  4436. if(code_seen('C')) Kc = code_value();
  4437. #endif
  4438. updatePID();
  4439. SERIAL_PROTOCOLRPGM(MSG_OK);
  4440. SERIAL_PROTOCOL(" p:");
  4441. SERIAL_PROTOCOL(Kp);
  4442. SERIAL_PROTOCOL(" i:");
  4443. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4444. SERIAL_PROTOCOL(" d:");
  4445. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4446. #ifdef PID_ADD_EXTRUSION_RATE
  4447. SERIAL_PROTOCOL(" c:");
  4448. //Kc does not have scaling applied above, or in resetting defaults
  4449. SERIAL_PROTOCOL(Kc);
  4450. #endif
  4451. SERIAL_PROTOCOLLN("");
  4452. }
  4453. break;
  4454. #endif //PIDTEMP
  4455. #ifdef PIDTEMPBED
  4456. case 304: // M304
  4457. {
  4458. if(code_seen('P')) bedKp = code_value();
  4459. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4460. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4461. updatePID();
  4462. SERIAL_PROTOCOLRPGM(MSG_OK);
  4463. SERIAL_PROTOCOL(" p:");
  4464. SERIAL_PROTOCOL(bedKp);
  4465. SERIAL_PROTOCOL(" i:");
  4466. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4467. SERIAL_PROTOCOL(" d:");
  4468. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4469. SERIAL_PROTOCOLLN("");
  4470. }
  4471. break;
  4472. #endif //PIDTEMP
  4473. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4474. {
  4475. #ifdef CHDK
  4476. SET_OUTPUT(CHDK);
  4477. WRITE(CHDK, HIGH);
  4478. chdkHigh = millis();
  4479. chdkActive = true;
  4480. #else
  4481. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4482. const uint8_t NUM_PULSES=16;
  4483. const float PULSE_LENGTH=0.01524;
  4484. for(int i=0; i < NUM_PULSES; i++) {
  4485. WRITE(PHOTOGRAPH_PIN, HIGH);
  4486. _delay_ms(PULSE_LENGTH);
  4487. WRITE(PHOTOGRAPH_PIN, LOW);
  4488. _delay_ms(PULSE_LENGTH);
  4489. }
  4490. delay(7.33);
  4491. for(int i=0; i < NUM_PULSES; i++) {
  4492. WRITE(PHOTOGRAPH_PIN, HIGH);
  4493. _delay_ms(PULSE_LENGTH);
  4494. WRITE(PHOTOGRAPH_PIN, LOW);
  4495. _delay_ms(PULSE_LENGTH);
  4496. }
  4497. #endif
  4498. #endif //chdk end if
  4499. }
  4500. break;
  4501. #ifdef DOGLCD
  4502. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4503. {
  4504. if (code_seen('C')) {
  4505. lcd_setcontrast( ((int)code_value())&63 );
  4506. }
  4507. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4508. SERIAL_PROTOCOL(lcd_contrast);
  4509. SERIAL_PROTOCOLLN("");
  4510. }
  4511. break;
  4512. #endif
  4513. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4514. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4515. {
  4516. float temp = .0;
  4517. if (code_seen('S')) temp=code_value();
  4518. set_extrude_min_temp(temp);
  4519. }
  4520. break;
  4521. #endif
  4522. case 303: // M303 PID autotune
  4523. {
  4524. float temp = 150.0;
  4525. int e=0;
  4526. int c=5;
  4527. if (code_seen('E')) e=code_value();
  4528. if (e<0)
  4529. temp=70;
  4530. if (code_seen('S')) temp=code_value();
  4531. if (code_seen('C')) c=code_value();
  4532. PID_autotune(temp, e, c);
  4533. }
  4534. break;
  4535. case 400: // M400 finish all moves
  4536. {
  4537. st_synchronize();
  4538. }
  4539. break;
  4540. #ifdef FILAMENT_SENSOR
  4541. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4542. {
  4543. #if (FILWIDTH_PIN > -1)
  4544. if(code_seen('N')) filament_width_nominal=code_value();
  4545. else{
  4546. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4547. SERIAL_PROTOCOLLN(filament_width_nominal);
  4548. }
  4549. #endif
  4550. }
  4551. break;
  4552. case 405: //M405 Turn on filament sensor for control
  4553. {
  4554. if(code_seen('D')) meas_delay_cm=code_value();
  4555. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4556. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4557. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4558. {
  4559. int temp_ratio = widthFil_to_size_ratio();
  4560. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4561. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4562. }
  4563. delay_index1=0;
  4564. delay_index2=0;
  4565. }
  4566. filament_sensor = true ;
  4567. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4568. //SERIAL_PROTOCOL(filament_width_meas);
  4569. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4570. //SERIAL_PROTOCOL(extrudemultiply);
  4571. }
  4572. break;
  4573. case 406: //M406 Turn off filament sensor for control
  4574. {
  4575. filament_sensor = false ;
  4576. }
  4577. break;
  4578. case 407: //M407 Display measured filament diameter
  4579. {
  4580. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4581. SERIAL_PROTOCOLLN(filament_width_meas);
  4582. }
  4583. break;
  4584. #endif
  4585. case 500: // M500 Store settings in EEPROM
  4586. {
  4587. Config_StoreSettings();
  4588. }
  4589. break;
  4590. case 501: // M501 Read settings from EEPROM
  4591. {
  4592. Config_RetrieveSettings();
  4593. }
  4594. break;
  4595. case 502: // M502 Revert to default settings
  4596. {
  4597. Config_ResetDefault();
  4598. }
  4599. break;
  4600. case 503: // M503 print settings currently in memory
  4601. {
  4602. Config_PrintSettings();
  4603. }
  4604. break;
  4605. case 509: //M509 Force language selection
  4606. {
  4607. lcd_force_language_selection();
  4608. SERIAL_ECHO_START;
  4609. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4610. }
  4611. break;
  4612. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4613. case 540:
  4614. {
  4615. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4616. }
  4617. break;
  4618. #endif
  4619. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4620. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4621. {
  4622. float value;
  4623. if (code_seen('Z'))
  4624. {
  4625. value = code_value();
  4626. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4627. {
  4628. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4629. SERIAL_ECHO_START;
  4630. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4631. SERIAL_PROTOCOLLN("");
  4632. }
  4633. else
  4634. {
  4635. SERIAL_ECHO_START;
  4636. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4637. SERIAL_ECHORPGM(MSG_Z_MIN);
  4638. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4639. SERIAL_ECHORPGM(MSG_Z_MAX);
  4640. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4641. SERIAL_PROTOCOLLN("");
  4642. }
  4643. }
  4644. else
  4645. {
  4646. SERIAL_ECHO_START;
  4647. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4648. SERIAL_ECHO(-zprobe_zoffset);
  4649. SERIAL_PROTOCOLLN("");
  4650. }
  4651. break;
  4652. }
  4653. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4654. #ifdef FILAMENTCHANGEENABLE
  4655. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4656. {
  4657. st_synchronize();
  4658. float target[4];
  4659. float lastpos[4];
  4660. if (farm_mode)
  4661. {
  4662. prusa_statistics(22);
  4663. }
  4664. feedmultiplyBckp=feedmultiply;
  4665. target[X_AXIS]=current_position[X_AXIS];
  4666. target[Y_AXIS]=current_position[Y_AXIS];
  4667. target[Z_AXIS]=current_position[Z_AXIS];
  4668. target[E_AXIS]=current_position[E_AXIS];
  4669. lastpos[X_AXIS]=current_position[X_AXIS];
  4670. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4671. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4672. lastpos[E_AXIS]=current_position[E_AXIS];
  4673. //Retract extruder
  4674. if(code_seen('E'))
  4675. {
  4676. target[E_AXIS]+= code_value();
  4677. }
  4678. else
  4679. {
  4680. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4681. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4682. #endif
  4683. }
  4684. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4685. //Lift Z
  4686. if(code_seen('Z'))
  4687. {
  4688. target[Z_AXIS]+= code_value();
  4689. }
  4690. else
  4691. {
  4692. #ifdef FILAMENTCHANGE_ZADD
  4693. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4694. // XXX: Removed unused var 'TooLowZ'
  4695. if(target[Z_AXIS] < 10){
  4696. target[Z_AXIS]+= 10 ;
  4697. }
  4698. #endif
  4699. }
  4700. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4701. //Move XY to side
  4702. if(code_seen('X'))
  4703. {
  4704. target[X_AXIS]+= code_value();
  4705. }
  4706. else
  4707. {
  4708. #ifdef FILAMENTCHANGE_XPOS
  4709. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4710. #endif
  4711. }
  4712. if(code_seen('Y'))
  4713. {
  4714. target[Y_AXIS]= code_value();
  4715. }
  4716. else
  4717. {
  4718. #ifdef FILAMENTCHANGE_YPOS
  4719. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4720. #endif
  4721. }
  4722. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4723. st_synchronize();
  4724. custom_message = true;
  4725. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4726. // Unload filament
  4727. if(code_seen('L'))
  4728. {
  4729. target[E_AXIS]+= code_value();
  4730. }
  4731. else
  4732. {
  4733. #ifdef SNMM
  4734. #else
  4735. #ifdef FILAMENTCHANGE_FINALRETRACT
  4736. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4737. #endif
  4738. #endif // SNMM
  4739. }
  4740. #ifdef SNMM
  4741. target[E_AXIS] += 12;
  4742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4743. target[E_AXIS] += 6;
  4744. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4745. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4747. st_synchronize();
  4748. target[E_AXIS] += (FIL_COOLING);
  4749. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4750. target[E_AXIS] += (FIL_COOLING*-1);
  4751. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4752. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4754. st_synchronize();
  4755. #else
  4756. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4757. #endif // SNMM
  4758. //finish moves
  4759. st_synchronize();
  4760. //disable extruder steppers so filament can be removed
  4761. disable_e0();
  4762. disable_e1();
  4763. disable_e2();
  4764. delay(100);
  4765. //Wait for user to insert filament
  4766. uint8_t cnt=0;
  4767. int counterBeep = 0;
  4768. lcd_wait_interact();
  4769. load_filament_time = millis();
  4770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4771. while(!lcd_clicked()){
  4772. cnt++;
  4773. manage_heater();
  4774. manage_inactivity(true);
  4775. /*#ifdef SNMM
  4776. target[E_AXIS] += 0.002;
  4777. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4778. #endif // SNMM*/
  4779. if(cnt==0)
  4780. {
  4781. #if BEEPER > 0
  4782. if (counterBeep== 500){
  4783. counterBeep = 0;
  4784. }
  4785. SET_OUTPUT(BEEPER);
  4786. if (counterBeep== 0){
  4787. WRITE(BEEPER,HIGH);
  4788. }
  4789. if (counterBeep== 20){
  4790. WRITE(BEEPER,LOW);
  4791. }
  4792. counterBeep++;
  4793. #else
  4794. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4795. lcd_buzz(1000/6,100);
  4796. #else
  4797. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4798. #endif
  4799. #endif
  4800. }
  4801. }
  4802. KEEPALIVE_STATE(IN_HANDLER);
  4803. WRITE(BEEPER, LOW);
  4804. #ifdef SNMM
  4805. display_loading();
  4806. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4807. do {
  4808. target[E_AXIS] += 0.002;
  4809. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4810. delay_keep_alive(2);
  4811. } while (!lcd_clicked());
  4812. KEEPALIVE_STATE(IN_HANDLER);
  4813. /*if (millis() - load_filament_time > 2) {
  4814. load_filament_time = millis();
  4815. target[E_AXIS] += 0.001;
  4816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4817. }*/
  4818. #endif
  4819. //Filament inserted
  4820. //Feed the filament to the end of nozzle quickly
  4821. #ifdef SNMM
  4822. st_synchronize();
  4823. target[E_AXIS] += bowden_length[snmm_extruder];
  4824. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4825. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4827. target[E_AXIS] += 40;
  4828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4829. target[E_AXIS] += 10;
  4830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4831. #else
  4832. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4833. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4834. #endif // SNMM
  4835. //Extrude some filament
  4836. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4837. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4838. //Wait for user to check the state
  4839. lcd_change_fil_state = 0;
  4840. lcd_loading_filament();
  4841. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4842. lcd_change_fil_state = 0;
  4843. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4844. lcd_alright();
  4845. KEEPALIVE_STATE(IN_HANDLER);
  4846. switch(lcd_change_fil_state){
  4847. // Filament failed to load so load it again
  4848. case 2:
  4849. #ifdef SNMM
  4850. display_loading();
  4851. do {
  4852. target[E_AXIS] += 0.002;
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4854. delay_keep_alive(2);
  4855. } while (!lcd_clicked());
  4856. st_synchronize();
  4857. target[E_AXIS] += bowden_length[snmm_extruder];
  4858. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4859. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4860. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4861. target[E_AXIS] += 40;
  4862. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4863. target[E_AXIS] += 10;
  4864. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4865. #else
  4866. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4867. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4868. #endif
  4869. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4870. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4871. lcd_loading_filament();
  4872. break;
  4873. // Filament loaded properly but color is not clear
  4874. case 3:
  4875. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4876. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4877. lcd_loading_color();
  4878. break;
  4879. // Everything good
  4880. default:
  4881. lcd_change_success();
  4882. lcd_update_enable(true);
  4883. break;
  4884. }
  4885. }
  4886. //Not let's go back to print
  4887. //Feed a little of filament to stabilize pressure
  4888. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4890. //Retract
  4891. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4893. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4894. //Move XY back
  4895. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4896. //Move Z back
  4897. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4898. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4899. //Unretract
  4900. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4901. //Set E position to original
  4902. plan_set_e_position(lastpos[E_AXIS]);
  4903. //Recover feed rate
  4904. feedmultiply=feedmultiplyBckp;
  4905. char cmd[9];
  4906. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4907. enquecommand(cmd);
  4908. lcd_setstatuspgm(WELCOME_MSG);
  4909. custom_message = false;
  4910. custom_message_type = 0;
  4911. }
  4912. break;
  4913. #endif //FILAMENTCHANGEENABLE
  4914. case 601: {
  4915. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4916. }
  4917. break;
  4918. case 602: {
  4919. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4920. }
  4921. break;
  4922. #ifdef LIN_ADVANCE
  4923. case 900: // M900: Set LIN_ADVANCE options.
  4924. gcode_M900();
  4925. break;
  4926. #endif
  4927. case 907: // M907 Set digital trimpot motor current using axis codes.
  4928. {
  4929. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4930. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4931. if(code_seen('B')) digipot_current(4,code_value());
  4932. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4933. #endif
  4934. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4935. if(code_seen('X')) digipot_current(0, code_value());
  4936. #endif
  4937. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4938. if(code_seen('Z')) digipot_current(1, code_value());
  4939. #endif
  4940. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4941. if(code_seen('E')) digipot_current(2, code_value());
  4942. #endif
  4943. #ifdef DIGIPOT_I2C
  4944. // this one uses actual amps in floating point
  4945. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4946. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4947. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4948. #endif
  4949. }
  4950. break;
  4951. case 908: // M908 Control digital trimpot directly.
  4952. {
  4953. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4954. uint8_t channel,current;
  4955. if(code_seen('P')) channel=code_value();
  4956. if(code_seen('S')) current=code_value();
  4957. digitalPotWrite(channel, current);
  4958. #endif
  4959. }
  4960. break;
  4961. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4962. {
  4963. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4964. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4965. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4966. if(code_seen('B')) microstep_mode(4,code_value());
  4967. microstep_readings();
  4968. #endif
  4969. }
  4970. break;
  4971. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4972. {
  4973. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4974. if(code_seen('S')) switch((int)code_value())
  4975. {
  4976. case 1:
  4977. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4978. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4979. break;
  4980. case 2:
  4981. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4982. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4983. break;
  4984. }
  4985. microstep_readings();
  4986. #endif
  4987. }
  4988. break;
  4989. case 701: //M701: load filament
  4990. {
  4991. gcode_M701();
  4992. }
  4993. break;
  4994. case 702:
  4995. {
  4996. #ifdef SNMM
  4997. if (code_seen('U')) {
  4998. extr_unload_used(); //unload all filaments which were used in current print
  4999. }
  5000. else if (code_seen('C')) {
  5001. extr_unload(); //unload just current filament
  5002. }
  5003. else {
  5004. extr_unload_all(); //unload all filaments
  5005. }
  5006. #else
  5007. custom_message = true;
  5008. custom_message_type = 2;
  5009. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5010. current_position[E_AXIS] -= 80;
  5011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5012. st_synchronize();
  5013. lcd_setstatuspgm(WELCOME_MSG);
  5014. custom_message = false;
  5015. custom_message_type = 0;
  5016. #endif
  5017. }
  5018. break;
  5019. case 999: // M999: Restart after being stopped
  5020. Stopped = false;
  5021. lcd_reset_alert_level();
  5022. gcode_LastN = Stopped_gcode_LastN;
  5023. FlushSerialRequestResend();
  5024. break;
  5025. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5026. }
  5027. } // end if(code_seen('M')) (end of M codes)
  5028. else if(code_seen('T'))
  5029. {
  5030. #ifdef SNMM
  5031. int index;
  5032. st_synchronize();
  5033. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5034. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5035. SERIAL_ECHOLNPGM("Invalid T code.");
  5036. }
  5037. else {
  5038. if (*(strchr_pointer + index) == '?') {
  5039. tmp_extruder = choose_extruder_menu();
  5040. }
  5041. else {
  5042. tmp_extruder = code_value();
  5043. }
  5044. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5045. #ifdef LIN_ADVANCE
  5046. if (snmm_extruder != tmp_extruder)
  5047. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5048. #endif
  5049. snmm_extruder = tmp_extruder;
  5050. delay(100);
  5051. disable_e0();
  5052. disable_e1();
  5053. disable_e2();
  5054. pinMode(E_MUX0_PIN, OUTPUT);
  5055. pinMode(E_MUX1_PIN, OUTPUT);
  5056. delay(100);
  5057. SERIAL_ECHO_START;
  5058. SERIAL_ECHO("T:");
  5059. SERIAL_ECHOLN((int)tmp_extruder);
  5060. switch (tmp_extruder) {
  5061. case 1:
  5062. WRITE(E_MUX0_PIN, HIGH);
  5063. WRITE(E_MUX1_PIN, LOW);
  5064. break;
  5065. case 2:
  5066. WRITE(E_MUX0_PIN, LOW);
  5067. WRITE(E_MUX1_PIN, HIGH);
  5068. break;
  5069. case 3:
  5070. WRITE(E_MUX0_PIN, HIGH);
  5071. WRITE(E_MUX1_PIN, HIGH);
  5072. break;
  5073. default:
  5074. WRITE(E_MUX0_PIN, LOW);
  5075. WRITE(E_MUX1_PIN, LOW);
  5076. break;
  5077. }
  5078. delay(100);
  5079. #else
  5080. if (tmp_extruder >= EXTRUDERS) {
  5081. SERIAL_ECHO_START;
  5082. SERIAL_ECHOPGM("T");
  5083. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5084. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5085. }
  5086. else {
  5087. #if EXTRUDERS == 1
  5088. if (code_seen('F')) {
  5089. next_feedrate = code_value();
  5090. if (next_feedrate > 0.0) {
  5091. feedrate = next_feedrate;
  5092. }
  5093. }
  5094. #else
  5095. boolean make_move = false;
  5096. if (code_seen('F')) {
  5097. make_move = true;
  5098. next_feedrate = code_value();
  5099. if (next_feedrate > 0.0) {
  5100. feedrate = next_feedrate;
  5101. }
  5102. }
  5103. if (tmp_extruder != active_extruder) {
  5104. // Save current position to return to after applying extruder offset
  5105. memcpy(destination, current_position, sizeof(destination));
  5106. // Offset extruder (only by XY)
  5107. int i;
  5108. for (i = 0; i < 2; i++) {
  5109. current_position[i] = current_position[i] -
  5110. extruder_offset[i][active_extruder] +
  5111. extruder_offset[i][tmp_extruder];
  5112. }
  5113. // Set the new active extruder and position
  5114. active_extruder = tmp_extruder;
  5115. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5116. // Move to the old position if 'F' was in the parameters
  5117. if (make_move && Stopped == false) {
  5118. prepare_move();
  5119. }
  5120. }
  5121. #endif
  5122. SERIAL_ECHO_START;
  5123. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5124. SERIAL_PROTOCOLLN((int)active_extruder);
  5125. }
  5126. #endif
  5127. }
  5128. } // end if(code_seen('T')) (end of T codes)
  5129. #ifdef DEBUG_DCODES
  5130. else if (code_seen('D')) // D codes (debug)
  5131. {
  5132. switch((int)code_value_uint8())
  5133. {
  5134. case 0: // D0 - Reset
  5135. if (*(strchr_pointer + 1) == 0) break;
  5136. MYSERIAL.println("D0 - Reset");
  5137. asm volatile("jmp 0x00000");
  5138. break;
  5139. case 1: // D1 - Clear EEPROM
  5140. {
  5141. MYSERIAL.println("D1 - Clear EEPROM");
  5142. cli();
  5143. for (int i = 0; i < 4096; i++)
  5144. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5145. sei();
  5146. }
  5147. break;
  5148. case 2: // D2 - Read/Write PIN
  5149. {
  5150. if (code_seen('P')) // Pin (0-255)
  5151. {
  5152. int pin = (int)code_value();
  5153. if ((pin >= 0) && (pin <= 255))
  5154. {
  5155. if (code_seen('F')) // Function in/out (0/1)
  5156. {
  5157. int fnc = (int)code_value();
  5158. if (fnc == 0) pinMode(pin, INPUT);
  5159. else if (fnc == 1) pinMode(pin, OUTPUT);
  5160. }
  5161. if (code_seen('V')) // Value (0/1)
  5162. {
  5163. int val = (int)code_value();
  5164. if (val == 0) digitalWrite(pin, LOW);
  5165. else if (val == 1) digitalWrite(pin, HIGH);
  5166. }
  5167. else
  5168. {
  5169. int val = (digitalRead(pin) != LOW)?1:0;
  5170. MYSERIAL.print("PIN");
  5171. MYSERIAL.print(pin);
  5172. MYSERIAL.print("=");
  5173. MYSERIAL.println(val);
  5174. }
  5175. }
  5176. }
  5177. }
  5178. break;
  5179. }
  5180. }
  5181. #endif //DEBUG_DCODES
  5182. else
  5183. {
  5184. SERIAL_ECHO_START;
  5185. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5186. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5187. SERIAL_ECHOLNPGM("\"");
  5188. }
  5189. KEEPALIVE_STATE(NOT_BUSY);
  5190. ClearToSend();
  5191. }
  5192. void FlushSerialRequestResend()
  5193. {
  5194. //char cmdbuffer[bufindr][100]="Resend:";
  5195. MYSERIAL.flush();
  5196. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5197. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5198. ClearToSend();
  5199. }
  5200. // Confirm the execution of a command, if sent from a serial line.
  5201. // Execution of a command from a SD card will not be confirmed.
  5202. void ClearToSend()
  5203. {
  5204. previous_millis_cmd = millis();
  5205. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5206. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5207. }
  5208. void update_currents() {
  5209. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5210. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5211. float tmp_motor[3];
  5212. //SERIAL_ECHOLNPGM("Currents updated: ");
  5213. if (destination[Z_AXIS] < Z_SILENT) {
  5214. //SERIAL_ECHOLNPGM("LOW");
  5215. for (uint8_t i = 0; i < 3; i++) {
  5216. digipot_current(i, current_low[i]);
  5217. /*MYSERIAL.print(int(i));
  5218. SERIAL_ECHOPGM(": ");
  5219. MYSERIAL.println(current_low[i]);*/
  5220. }
  5221. }
  5222. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5223. //SERIAL_ECHOLNPGM("HIGH");
  5224. for (uint8_t i = 0; i < 3; i++) {
  5225. digipot_current(i, current_high[i]);
  5226. /*MYSERIAL.print(int(i));
  5227. SERIAL_ECHOPGM(": ");
  5228. MYSERIAL.println(current_high[i]);*/
  5229. }
  5230. }
  5231. else {
  5232. for (uint8_t i = 0; i < 3; i++) {
  5233. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5234. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5235. digipot_current(i, tmp_motor[i]);
  5236. /*MYSERIAL.print(int(i));
  5237. SERIAL_ECHOPGM(": ");
  5238. MYSERIAL.println(tmp_motor[i]);*/
  5239. }
  5240. }
  5241. }
  5242. void get_coordinates()
  5243. {
  5244. // XXX: Unused var (set but not ref)
  5245. // bool seen[4]={false,false,false,false};
  5246. for(int8_t i=0; i < NUM_AXIS; i++) {
  5247. if(code_seen(axis_codes[i]))
  5248. {
  5249. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5250. // seen[i]=true;
  5251. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5252. }
  5253. else destination[i] = current_position[i]; //Are these else lines really needed?
  5254. }
  5255. if(code_seen('F')) {
  5256. next_feedrate = code_value();
  5257. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5258. }
  5259. }
  5260. void get_arc_coordinates()
  5261. {
  5262. #ifdef SF_ARC_FIX
  5263. bool relative_mode_backup = relative_mode;
  5264. relative_mode = true;
  5265. #endif
  5266. get_coordinates();
  5267. #ifdef SF_ARC_FIX
  5268. relative_mode=relative_mode_backup;
  5269. #endif
  5270. if(code_seen('I')) {
  5271. offset[0] = code_value();
  5272. }
  5273. else {
  5274. offset[0] = 0.0;
  5275. }
  5276. if(code_seen('J')) {
  5277. offset[1] = code_value();
  5278. }
  5279. else {
  5280. offset[1] = 0.0;
  5281. }
  5282. }
  5283. void clamp_to_software_endstops(float target[3])
  5284. {
  5285. #ifdef DEBUG_DISABLE_SWLIMITS
  5286. return;
  5287. #endif //DEBUG_DISABLE_SWLIMITS
  5288. world2machine_clamp(target[0], target[1]);
  5289. // Clamp the Z coordinate.
  5290. if (min_software_endstops) {
  5291. float negative_z_offset = 0;
  5292. #ifdef ENABLE_AUTO_BED_LEVELING
  5293. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5294. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5295. #endif
  5296. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5297. }
  5298. if (max_software_endstops) {
  5299. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5300. }
  5301. }
  5302. #ifdef MESH_BED_LEVELING
  5303. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5304. float dx = x - current_position[X_AXIS];
  5305. float dy = y - current_position[Y_AXIS];
  5306. float dz = z - current_position[Z_AXIS];
  5307. int n_segments = 0;
  5308. if (mbl.active) {
  5309. float len = abs(dx) + abs(dy);
  5310. if (len > 0)
  5311. // Split to 3cm segments or shorter.
  5312. n_segments = int(ceil(len / 30.f));
  5313. }
  5314. if (n_segments > 1) {
  5315. float de = e - current_position[E_AXIS];
  5316. for (int i = 1; i < n_segments; ++ i) {
  5317. float t = float(i) / float(n_segments);
  5318. plan_buffer_line(
  5319. current_position[X_AXIS] + t * dx,
  5320. current_position[Y_AXIS] + t * dy,
  5321. current_position[Z_AXIS] + t * dz,
  5322. current_position[E_AXIS] + t * de,
  5323. feed_rate, extruder);
  5324. }
  5325. }
  5326. // The rest of the path.
  5327. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5328. current_position[X_AXIS] = x;
  5329. current_position[Y_AXIS] = y;
  5330. current_position[Z_AXIS] = z;
  5331. current_position[E_AXIS] = e;
  5332. }
  5333. #endif // MESH_BED_LEVELING
  5334. void prepare_move()
  5335. {
  5336. clamp_to_software_endstops(destination);
  5337. previous_millis_cmd = millis();
  5338. // Do not use feedmultiply for E or Z only moves
  5339. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5341. }
  5342. else {
  5343. #ifdef MESH_BED_LEVELING
  5344. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5345. #else
  5346. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5347. #endif
  5348. }
  5349. for(int8_t i=0; i < NUM_AXIS; i++) {
  5350. current_position[i] = destination[i];
  5351. }
  5352. }
  5353. void prepare_arc_move(char isclockwise) {
  5354. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5355. // Trace the arc
  5356. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5357. // As far as the parser is concerned, the position is now == target. In reality the
  5358. // motion control system might still be processing the action and the real tool position
  5359. // in any intermediate location.
  5360. for(int8_t i=0; i < NUM_AXIS; i++) {
  5361. current_position[i] = destination[i];
  5362. }
  5363. previous_millis_cmd = millis();
  5364. }
  5365. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5366. #if defined(FAN_PIN)
  5367. #if CONTROLLERFAN_PIN == FAN_PIN
  5368. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5369. #endif
  5370. #endif
  5371. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5372. unsigned long lastMotorCheck = 0;
  5373. void controllerFan()
  5374. {
  5375. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5376. {
  5377. lastMotorCheck = millis();
  5378. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5379. #if EXTRUDERS > 2
  5380. || !READ(E2_ENABLE_PIN)
  5381. #endif
  5382. #if EXTRUDER > 1
  5383. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5384. || !READ(X2_ENABLE_PIN)
  5385. #endif
  5386. || !READ(E1_ENABLE_PIN)
  5387. #endif
  5388. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5389. {
  5390. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5391. }
  5392. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5393. {
  5394. digitalWrite(CONTROLLERFAN_PIN, 0);
  5395. analogWrite(CONTROLLERFAN_PIN, 0);
  5396. }
  5397. else
  5398. {
  5399. // allows digital or PWM fan output to be used (see M42 handling)
  5400. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5401. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5402. }
  5403. }
  5404. }
  5405. #endif
  5406. #ifdef TEMP_STAT_LEDS
  5407. static bool blue_led = false;
  5408. static bool red_led = false;
  5409. static uint32_t stat_update = 0;
  5410. void handle_status_leds(void) {
  5411. float max_temp = 0.0;
  5412. if(millis() > stat_update) {
  5413. stat_update += 500; // Update every 0.5s
  5414. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5415. max_temp = max(max_temp, degHotend(cur_extruder));
  5416. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5417. }
  5418. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5419. max_temp = max(max_temp, degTargetBed());
  5420. max_temp = max(max_temp, degBed());
  5421. #endif
  5422. if((max_temp > 55.0) && (red_led == false)) {
  5423. digitalWrite(STAT_LED_RED, 1);
  5424. digitalWrite(STAT_LED_BLUE, 0);
  5425. red_led = true;
  5426. blue_led = false;
  5427. }
  5428. if((max_temp < 54.0) && (blue_led == false)) {
  5429. digitalWrite(STAT_LED_RED, 0);
  5430. digitalWrite(STAT_LED_BLUE, 1);
  5431. red_led = false;
  5432. blue_led = true;
  5433. }
  5434. }
  5435. }
  5436. #endif
  5437. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5438. {
  5439. #if defined(KILL_PIN) && KILL_PIN > -1
  5440. static int killCount = 0; // make the inactivity button a bit less responsive
  5441. const int KILL_DELAY = 10000;
  5442. #endif
  5443. if(buflen < (BUFSIZE-1)){
  5444. get_command();
  5445. }
  5446. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5447. if(max_inactive_time)
  5448. kill();
  5449. if(stepper_inactive_time) {
  5450. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5451. {
  5452. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5453. disable_x();
  5454. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5455. disable_y();
  5456. disable_z();
  5457. disable_e0();
  5458. disable_e1();
  5459. disable_e2();
  5460. }
  5461. }
  5462. }
  5463. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5464. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5465. {
  5466. chdkActive = false;
  5467. WRITE(CHDK, LOW);
  5468. }
  5469. #endif
  5470. #if defined(KILL_PIN) && KILL_PIN > -1
  5471. // Check if the kill button was pressed and wait just in case it was an accidental
  5472. // key kill key press
  5473. // -------------------------------------------------------------------------------
  5474. if( 0 == READ(KILL_PIN) )
  5475. {
  5476. killCount++;
  5477. }
  5478. else if (killCount > 0)
  5479. {
  5480. killCount--;
  5481. }
  5482. // Exceeded threshold and we can confirm that it was not accidental
  5483. // KILL the machine
  5484. // ----------------------------------------------------------------
  5485. if ( killCount >= KILL_DELAY)
  5486. {
  5487. kill();
  5488. }
  5489. #endif
  5490. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5491. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5492. #endif
  5493. #ifdef EXTRUDER_RUNOUT_PREVENT
  5494. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5495. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5496. {
  5497. bool oldstatus=READ(E0_ENABLE_PIN);
  5498. enable_e0();
  5499. float oldepos=current_position[E_AXIS];
  5500. float oldedes=destination[E_AXIS];
  5501. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5502. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5503. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5504. current_position[E_AXIS]=oldepos;
  5505. destination[E_AXIS]=oldedes;
  5506. plan_set_e_position(oldepos);
  5507. previous_millis_cmd=millis();
  5508. st_synchronize();
  5509. WRITE(E0_ENABLE_PIN,oldstatus);
  5510. }
  5511. #endif
  5512. #ifdef TEMP_STAT_LEDS
  5513. handle_status_leds();
  5514. #endif
  5515. check_axes_activity();
  5516. }
  5517. void kill(const char *full_screen_message)
  5518. {
  5519. cli(); // Stop interrupts
  5520. disable_heater();
  5521. disable_x();
  5522. // SERIAL_ECHOLNPGM("kill - disable Y");
  5523. disable_y();
  5524. disable_z();
  5525. disable_e0();
  5526. disable_e1();
  5527. disable_e2();
  5528. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5529. pinMode(PS_ON_PIN,INPUT);
  5530. #endif
  5531. SERIAL_ERROR_START;
  5532. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5533. if (full_screen_message != NULL) {
  5534. SERIAL_ERRORLNRPGM(full_screen_message);
  5535. lcd_display_message_fullscreen_P(full_screen_message);
  5536. } else {
  5537. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5538. }
  5539. // FMC small patch to update the LCD before ending
  5540. sei(); // enable interrupts
  5541. for ( int i=5; i--; lcd_update())
  5542. {
  5543. delay(200);
  5544. }
  5545. cli(); // disable interrupts
  5546. suicide();
  5547. while(1) { /* Intentionally left empty */ } // Wait for reset
  5548. }
  5549. void Stop()
  5550. {
  5551. disable_heater();
  5552. if(Stopped == false) {
  5553. Stopped = true;
  5554. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5555. SERIAL_ERROR_START;
  5556. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5557. LCD_MESSAGERPGM(MSG_STOPPED);
  5558. }
  5559. }
  5560. bool IsStopped() { return Stopped; };
  5561. #ifdef FAST_PWM_FAN
  5562. void setPwmFrequency(uint8_t pin, int val)
  5563. {
  5564. val &= 0x07;
  5565. switch(digitalPinToTimer(pin))
  5566. {
  5567. #if defined(TCCR0A)
  5568. case TIMER0A:
  5569. case TIMER0B:
  5570. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5571. // TCCR0B |= val;
  5572. break;
  5573. #endif
  5574. #if defined(TCCR1A)
  5575. case TIMER1A:
  5576. case TIMER1B:
  5577. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5578. // TCCR1B |= val;
  5579. break;
  5580. #endif
  5581. #if defined(TCCR2)
  5582. case TIMER2:
  5583. case TIMER2:
  5584. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5585. TCCR2 |= val;
  5586. break;
  5587. #endif
  5588. #if defined(TCCR2A)
  5589. case TIMER2A:
  5590. case TIMER2B:
  5591. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5592. TCCR2B |= val;
  5593. break;
  5594. #endif
  5595. #if defined(TCCR3A)
  5596. case TIMER3A:
  5597. case TIMER3B:
  5598. case TIMER3C:
  5599. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5600. TCCR3B |= val;
  5601. break;
  5602. #endif
  5603. #if defined(TCCR4A)
  5604. case TIMER4A:
  5605. case TIMER4B:
  5606. case TIMER4C:
  5607. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5608. TCCR4B |= val;
  5609. break;
  5610. #endif
  5611. #if defined(TCCR5A)
  5612. case TIMER5A:
  5613. case TIMER5B:
  5614. case TIMER5C:
  5615. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5616. TCCR5B |= val;
  5617. break;
  5618. #endif
  5619. }
  5620. }
  5621. #endif //FAST_PWM_FAN
  5622. bool setTargetedHotend(int code){
  5623. tmp_extruder = active_extruder;
  5624. if(code_seen('T')) {
  5625. tmp_extruder = code_value();
  5626. if(tmp_extruder >= EXTRUDERS) {
  5627. SERIAL_ECHO_START;
  5628. switch(code){
  5629. case 104:
  5630. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5631. break;
  5632. case 105:
  5633. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5634. break;
  5635. case 109:
  5636. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5637. break;
  5638. case 218:
  5639. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5640. break;
  5641. case 221:
  5642. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5643. break;
  5644. }
  5645. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5646. return true;
  5647. }
  5648. }
  5649. return false;
  5650. }
  5651. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5652. {
  5653. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5654. {
  5655. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5656. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5657. }
  5658. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5659. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5660. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5661. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5662. total_filament_used = 0;
  5663. }
  5664. float calculate_volumetric_multiplier(float diameter) {
  5665. float area = .0;
  5666. float radius = .0;
  5667. radius = diameter * .5;
  5668. if (! volumetric_enabled || radius == 0) {
  5669. area = 1;
  5670. }
  5671. else {
  5672. area = M_PI * pow(radius, 2);
  5673. }
  5674. return 1.0 / area;
  5675. }
  5676. void calculate_volumetric_multipliers() {
  5677. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5678. #if EXTRUDERS > 1
  5679. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5680. #if EXTRUDERS > 2
  5681. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5682. #endif
  5683. #endif
  5684. }
  5685. void delay_keep_alive(unsigned int ms)
  5686. {
  5687. for (;;) {
  5688. manage_heater();
  5689. // Manage inactivity, but don't disable steppers on timeout.
  5690. manage_inactivity(true);
  5691. lcd_update();
  5692. if (ms == 0)
  5693. break;
  5694. else if (ms >= 50) {
  5695. delay(50);
  5696. ms -= 50;
  5697. } else {
  5698. delay(ms);
  5699. ms = 0;
  5700. }
  5701. }
  5702. }
  5703. void wait_for_heater(long codenum) {
  5704. #ifdef TEMP_RESIDENCY_TIME
  5705. long residencyStart;
  5706. residencyStart = -1;
  5707. /* continue to loop until we have reached the target temp
  5708. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5709. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5710. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5711. #else
  5712. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5713. #endif //TEMP_RESIDENCY_TIME
  5714. if ((millis() - codenum) > 1000UL)
  5715. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5716. if (!farm_mode) {
  5717. SERIAL_PROTOCOLPGM("T:");
  5718. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5719. SERIAL_PROTOCOLPGM(" E:");
  5720. SERIAL_PROTOCOL((int)tmp_extruder);
  5721. #ifdef TEMP_RESIDENCY_TIME
  5722. SERIAL_PROTOCOLPGM(" W:");
  5723. if (residencyStart > -1)
  5724. {
  5725. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5726. SERIAL_PROTOCOLLN(codenum);
  5727. }
  5728. else
  5729. {
  5730. SERIAL_PROTOCOLLN("?");
  5731. }
  5732. }
  5733. #else
  5734. SERIAL_PROTOCOLLN("");
  5735. #endif
  5736. codenum = millis();
  5737. }
  5738. manage_heater();
  5739. manage_inactivity();
  5740. lcd_update();
  5741. #ifdef TEMP_RESIDENCY_TIME
  5742. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5743. or when current temp falls outside the hysteresis after target temp was reached */
  5744. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5745. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5746. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5747. {
  5748. residencyStart = millis();
  5749. }
  5750. #endif //TEMP_RESIDENCY_TIME
  5751. }
  5752. }
  5753. void check_babystep() {
  5754. int babystep_z;
  5755. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5756. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5757. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5758. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5759. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5760. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5761. lcd_update_enable(true);
  5762. }
  5763. }
  5764. #ifdef DIS
  5765. void d_setup()
  5766. {
  5767. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5768. pinMode(D_DATA, INPUT_PULLUP);
  5769. pinMode(D_REQUIRE, OUTPUT);
  5770. digitalWrite(D_REQUIRE, HIGH);
  5771. }
  5772. float d_ReadData()
  5773. {
  5774. int digit[13];
  5775. String mergeOutput;
  5776. float output;
  5777. digitalWrite(D_REQUIRE, HIGH);
  5778. for (int i = 0; i<13; i++)
  5779. {
  5780. for (int j = 0; j < 4; j++)
  5781. {
  5782. while (digitalRead(D_DATACLOCK) == LOW) {}
  5783. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5784. bitWrite(digit[i], j, digitalRead(D_DATA));
  5785. }
  5786. }
  5787. digitalWrite(D_REQUIRE, LOW);
  5788. mergeOutput = "";
  5789. output = 0;
  5790. for (int r = 5; r <= 10; r++) //Merge digits
  5791. {
  5792. mergeOutput += digit[r];
  5793. }
  5794. output = mergeOutput.toFloat();
  5795. if (digit[4] == 8) //Handle sign
  5796. {
  5797. output *= -1;
  5798. }
  5799. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5800. {
  5801. output /= 10;
  5802. }
  5803. return output;
  5804. }
  5805. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5806. int t1 = 0;
  5807. int t_delay = 0;
  5808. int digit[13];
  5809. int m;
  5810. char str[3];
  5811. //String mergeOutput;
  5812. char mergeOutput[15];
  5813. float output;
  5814. int mesh_point = 0; //index number of calibration point
  5815. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5816. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5817. float mesh_home_z_search = 4;
  5818. float row[x_points_num];
  5819. int ix = 0;
  5820. int iy = 0;
  5821. char* filename_wldsd = "wldsd.txt";
  5822. char data_wldsd[70];
  5823. char numb_wldsd[10];
  5824. d_setup();
  5825. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5826. // We don't know where we are! HOME!
  5827. // Push the commands to the front of the message queue in the reverse order!
  5828. // There shall be always enough space reserved for these commands.
  5829. repeatcommand_front(); // repeat G80 with all its parameters
  5830. enquecommand_front_P((PSTR("G28 W0")));
  5831. enquecommand_front_P((PSTR("G1 Z5")));
  5832. return;
  5833. }
  5834. bool custom_message_old = custom_message;
  5835. unsigned int custom_message_type_old = custom_message_type;
  5836. unsigned int custom_message_state_old = custom_message_state;
  5837. custom_message = true;
  5838. custom_message_type = 1;
  5839. custom_message_state = (x_points_num * y_points_num) + 10;
  5840. lcd_update(1);
  5841. mbl.reset();
  5842. babystep_undo();
  5843. card.openFile(filename_wldsd, false);
  5844. current_position[Z_AXIS] = mesh_home_z_search;
  5845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5846. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5847. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5848. setup_for_endstop_move(false);
  5849. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5850. SERIAL_PROTOCOL(x_points_num);
  5851. SERIAL_PROTOCOLPGM(",");
  5852. SERIAL_PROTOCOL(y_points_num);
  5853. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5854. SERIAL_PROTOCOL(mesh_home_z_search);
  5855. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5856. SERIAL_PROTOCOL(x_dimension);
  5857. SERIAL_PROTOCOLPGM(",");
  5858. SERIAL_PROTOCOL(y_dimension);
  5859. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5860. while (mesh_point != x_points_num * y_points_num) {
  5861. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5862. iy = mesh_point / x_points_num;
  5863. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5864. float z0 = 0.f;
  5865. current_position[Z_AXIS] = mesh_home_z_search;
  5866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5867. st_synchronize();
  5868. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5869. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5871. st_synchronize();
  5872. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5873. break;
  5874. card.closefile();
  5875. }
  5876. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5877. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5878. //strcat(data_wldsd, numb_wldsd);
  5879. //MYSERIAL.println(data_wldsd);
  5880. //delay(1000);
  5881. //delay(3000);
  5882. //t1 = millis();
  5883. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5884. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5885. memset(digit, 0, sizeof(digit));
  5886. //cli();
  5887. digitalWrite(D_REQUIRE, LOW);
  5888. for (int i = 0; i<13; i++)
  5889. {
  5890. //t1 = millis();
  5891. for (int j = 0; j < 4; j++)
  5892. {
  5893. while (digitalRead(D_DATACLOCK) == LOW) {}
  5894. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5895. bitWrite(digit[i], j, digitalRead(D_DATA));
  5896. }
  5897. //t_delay = (millis() - t1);
  5898. //SERIAL_PROTOCOLPGM(" ");
  5899. //SERIAL_PROTOCOL_F(t_delay, 5);
  5900. //SERIAL_PROTOCOLPGM(" ");
  5901. }
  5902. //sei();
  5903. digitalWrite(D_REQUIRE, HIGH);
  5904. mergeOutput[0] = '\0';
  5905. output = 0;
  5906. for (int r = 5; r <= 10; r++) //Merge digits
  5907. {
  5908. sprintf(str, "%d", digit[r]);
  5909. strcat(mergeOutput, str);
  5910. }
  5911. output = atof(mergeOutput);
  5912. if (digit[4] == 8) //Handle sign
  5913. {
  5914. output *= -1;
  5915. }
  5916. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5917. {
  5918. output *= 0.1;
  5919. }
  5920. //output = d_ReadData();
  5921. //row[ix] = current_position[Z_AXIS];
  5922. memset(data_wldsd, 0, sizeof(data_wldsd));
  5923. for (int i = 0; i <3; i++) {
  5924. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5925. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5926. strcat(data_wldsd, numb_wldsd);
  5927. strcat(data_wldsd, ";");
  5928. }
  5929. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5930. dtostrf(output, 8, 5, numb_wldsd);
  5931. strcat(data_wldsd, numb_wldsd);
  5932. //strcat(data_wldsd, ";");
  5933. card.write_command(data_wldsd);
  5934. //row[ix] = d_ReadData();
  5935. row[ix] = output; // current_position[Z_AXIS];
  5936. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5937. for (int i = 0; i < x_points_num; i++) {
  5938. SERIAL_PROTOCOLPGM(" ");
  5939. SERIAL_PROTOCOL_F(row[i], 5);
  5940. }
  5941. SERIAL_PROTOCOLPGM("\n");
  5942. }
  5943. custom_message_state--;
  5944. mesh_point++;
  5945. lcd_update(1);
  5946. }
  5947. card.closefile();
  5948. }
  5949. #endif
  5950. void temp_compensation_start() {
  5951. custom_message = true;
  5952. custom_message_type = 5;
  5953. custom_message_state = PINDA_HEAT_T + 1;
  5954. lcd_update(2);
  5955. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5956. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5957. }
  5958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5959. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5960. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5961. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5963. st_synchronize();
  5964. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5965. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5966. delay_keep_alive(1000);
  5967. custom_message_state = PINDA_HEAT_T - i;
  5968. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5969. else lcd_update(1);
  5970. }
  5971. custom_message_type = 0;
  5972. custom_message_state = 0;
  5973. custom_message = false;
  5974. }
  5975. void temp_compensation_apply() {
  5976. int i_add;
  5977. int z_shift = 0;
  5978. float z_shift_mm;
  5979. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5980. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5981. i_add = (target_temperature_bed - 60) / 10;
  5982. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5983. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5984. }else {
  5985. //interpolation
  5986. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5987. }
  5988. SERIAL_PROTOCOLPGM("\n");
  5989. SERIAL_PROTOCOLPGM("Z shift applied:");
  5990. MYSERIAL.print(z_shift_mm);
  5991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5992. st_synchronize();
  5993. plan_set_z_position(current_position[Z_AXIS]);
  5994. }
  5995. else {
  5996. //we have no temp compensation data
  5997. }
  5998. }
  5999. float temp_comp_interpolation(float inp_temperature) {
  6000. //cubic spline interpolation
  6001. int n, i, j;
  6002. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6003. int shift[10];
  6004. int temp_C[10];
  6005. n = 6; //number of measured points
  6006. shift[0] = 0;
  6007. for (i = 0; i < n; i++) {
  6008. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6009. temp_C[i] = 50 + i * 10; //temperature in C
  6010. x[i] = (float)temp_C[i];
  6011. f[i] = (float)shift[i];
  6012. }
  6013. if (inp_temperature < x[0]) return 0;
  6014. for (i = n - 1; i>0; i--) {
  6015. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6016. h[i - 1] = x[i] - x[i - 1];
  6017. }
  6018. //*********** formation of h, s , f matrix **************
  6019. for (i = 1; i<n - 1; i++) {
  6020. m[i][i] = 2 * (h[i - 1] + h[i]);
  6021. if (i != 1) {
  6022. m[i][i - 1] = h[i - 1];
  6023. m[i - 1][i] = h[i - 1];
  6024. }
  6025. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6026. }
  6027. //*********** forward elimination **************
  6028. for (i = 1; i<n - 2; i++) {
  6029. temp = (m[i + 1][i] / m[i][i]);
  6030. for (j = 1; j <= n - 1; j++)
  6031. m[i + 1][j] -= temp*m[i][j];
  6032. }
  6033. //*********** backward substitution *********
  6034. for (i = n - 2; i>0; i--) {
  6035. sum = 0;
  6036. for (j = i; j <= n - 2; j++)
  6037. sum += m[i][j] * s[j];
  6038. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6039. }
  6040. for (i = 0; i<n - 1; i++)
  6041. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6042. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6043. b = s[i] / 2;
  6044. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6045. d = f[i];
  6046. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6047. }
  6048. return sum;
  6049. }
  6050. void long_pause() //long pause print
  6051. {
  6052. st_synchronize();
  6053. //save currently set parameters to global variables
  6054. saved_feedmultiply = feedmultiply;
  6055. HotendTempBckp = degTargetHotend(active_extruder);
  6056. fanSpeedBckp = fanSpeed;
  6057. start_pause_print = millis();
  6058. //save position
  6059. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6060. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6061. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6062. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6063. //retract
  6064. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6066. //lift z
  6067. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6068. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6070. //set nozzle target temperature to 0
  6071. setTargetHotend(0, 0);
  6072. setTargetHotend(0, 1);
  6073. setTargetHotend(0, 2);
  6074. //Move XY to side
  6075. current_position[X_AXIS] = X_PAUSE_POS;
  6076. current_position[Y_AXIS] = Y_PAUSE_POS;
  6077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6078. // Turn off the print fan
  6079. fanSpeed = 0;
  6080. st_synchronize();
  6081. }
  6082. void serialecho_temperatures() {
  6083. float tt = degHotend(active_extruder);
  6084. SERIAL_PROTOCOLPGM("T:");
  6085. SERIAL_PROTOCOL(tt);
  6086. SERIAL_PROTOCOLPGM(" E:");
  6087. SERIAL_PROTOCOL((int)active_extruder);
  6088. SERIAL_PROTOCOLPGM(" B:");
  6089. SERIAL_PROTOCOL_F(degBed(), 1);
  6090. SERIAL_PROTOCOLLN("");
  6091. }