Marlin_main.cpp 179 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. union Data
  196. {
  197. byte b[2];
  198. int value;
  199. };
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  252. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  253. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  254. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed=0;
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled=false;
  262. bool retracted[EXTRUDERS]={false
  263. #if EXTRUDERS > 1
  264. , false
  265. #if EXTRUDERS > 2
  266. , false
  267. #endif
  268. #endif
  269. };
  270. bool retracted_swap[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. bool cancel_heatup = false ;
  294. #ifdef FILAMENT_SENSOR
  295. //Variables for Filament Sensor input
  296. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  297. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  298. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  299. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  300. int delay_index1=0; //index into ring buffer
  301. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  302. float delay_dist=0; //delay distance counter
  303. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  304. #endif
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. //===========================================================================
  308. //=============================Private Variables=============================
  309. //===========================================================================
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  312. static float delta[3] = {0.0, 0.0, 0.0};
  313. // For tracing an arc
  314. static float offset[3] = {0.0, 0.0, 0.0};
  315. static bool home_all_axis = true;
  316. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. // Determines Absolute or Relative Coordinates.
  319. // Also there is bool axis_relative_modes[] per axis flag.
  320. static bool relative_mode = false;
  321. // String circular buffer. Commands may be pushed to the buffer from both sides:
  322. // Chained commands will be pushed to the front, interactive (from LCD menu)
  323. // and printing commands (from serial line or from SD card) are pushed to the tail.
  324. // First character of each entry indicates the type of the entry:
  325. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  326. // Command in cmdbuffer was sent over USB.
  327. #define CMDBUFFER_CURRENT_TYPE_USB 1
  328. // Command in cmdbuffer was read from SDCARD.
  329. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  330. // Command in cmdbuffer was generated by the UI.
  331. #define CMDBUFFER_CURRENT_TYPE_UI 3
  332. // Command in cmdbuffer was generated by another G-code.
  333. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  334. // How much space to reserve for the chained commands
  335. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  336. // which are pushed to the front of the queue?
  337. // Maximum 5 commands of max length 20 + null terminator.
  338. #define CMDBUFFER_RESERVE_FRONT (5*21)
  339. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  340. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  341. // Head of the circular buffer, where to read.
  342. static int bufindr = 0;
  343. // Tail of the buffer, where to write.
  344. static int bufindw = 0;
  345. // Number of lines in cmdbuffer.
  346. static int buflen = 0;
  347. // Flag for processing the current command inside the main Arduino loop().
  348. // If a new command was pushed to the front of a command buffer while
  349. // processing another command, this replaces the command on the top.
  350. // Therefore don't remove the command from the queue in the loop() function.
  351. static bool cmdbuffer_front_already_processed = false;
  352. // Type of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  354. // String of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  356. // Enable debugging of the command buffer.
  357. // Debugging information will be sent to serial line.
  358. // #define CMDBUFFER_DEBUG
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  362. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool Stopped=false;
  374. #if NUM_SERVOS > 0
  375. Servo servos[NUM_SERVOS];
  376. #endif
  377. bool CooldownNoWait = true;
  378. bool target_direction;
  379. //Insert variables if CHDK is defined
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. // Pop the currently processed command from the queue.
  414. // It is expected, that there is at least one command in the queue.
  415. bool cmdqueue_pop_front()
  416. {
  417. if (buflen > 0) {
  418. #ifdef CMDBUFFER_DEBUG
  419. SERIAL_ECHOPGM("Dequeing ");
  420. SERIAL_ECHO(cmdbuffer+bufindr+1);
  421. SERIAL_ECHOLNPGM("");
  422. SERIAL_ECHOPGM("Old indices: buflen ");
  423. SERIAL_ECHO(buflen);
  424. SERIAL_ECHOPGM(", bufindr ");
  425. SERIAL_ECHO(bufindr);
  426. SERIAL_ECHOPGM(", bufindw ");
  427. SERIAL_ECHO(bufindw);
  428. SERIAL_ECHOPGM(", serial_count ");
  429. SERIAL_ECHO(serial_count);
  430. SERIAL_ECHOPGM(", bufsize ");
  431. SERIAL_ECHO(sizeof(cmdbuffer));
  432. SERIAL_ECHOLNPGM("");
  433. #endif /* CMDBUFFER_DEBUG */
  434. if (-- buflen == 0) {
  435. // Empty buffer.
  436. if (serial_count == 0)
  437. // No serial communication is pending. Reset both pointers to zero.
  438. bufindw = 0;
  439. bufindr = bufindw;
  440. } else {
  441. // There is at least one ready line in the buffer.
  442. // First skip the current command ID and iterate up to the end of the string.
  443. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  444. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  445. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  446. // If the end of the buffer was empty,
  447. if (bufindr == sizeof(cmdbuffer)) {
  448. // skip to the start and find the nonzero command.
  449. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. }
  451. #ifdef CMDBUFFER_DEBUG
  452. SERIAL_ECHOPGM("New indices: buflen ");
  453. SERIAL_ECHO(buflen);
  454. SERIAL_ECHOPGM(", bufindr ");
  455. SERIAL_ECHO(bufindr);
  456. SERIAL_ECHOPGM(", bufindw ");
  457. SERIAL_ECHO(bufindw);
  458. SERIAL_ECHOPGM(", serial_count ");
  459. SERIAL_ECHO(serial_count);
  460. SERIAL_ECHOPGM(" new command on the top: ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. #endif /* CMDBUFFER_DEBUG */
  464. }
  465. return true;
  466. }
  467. return false;
  468. }
  469. void cmdqueue_reset()
  470. {
  471. while (cmdqueue_pop_front()) ;
  472. }
  473. // How long a string could be pushed to the front of the command queue?
  474. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  475. // len_asked does not contain the zero terminator size.
  476. bool cmdqueue_could_enqueue_front(int len_asked)
  477. {
  478. // MAX_CMD_SIZE has to accommodate the zero terminator.
  479. if (len_asked >= MAX_CMD_SIZE)
  480. return false;
  481. // Remove the currently processed command from the queue.
  482. if (! cmdbuffer_front_already_processed) {
  483. cmdqueue_pop_front();
  484. cmdbuffer_front_already_processed = true;
  485. }
  486. if (bufindr == bufindw && buflen > 0)
  487. // Full buffer.
  488. return false;
  489. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  490. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  491. if (bufindw < bufindr) {
  492. int bufindr_new = bufindr - len_asked - 2;
  493. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  494. if (endw <= bufindr_new) {
  495. bufindr = bufindr_new;
  496. return true;
  497. }
  498. } else {
  499. // Otherwise the free space is split between the start and end.
  500. if (len_asked + 2 <= bufindr) {
  501. // Could fit at the start.
  502. bufindr -= len_asked + 2;
  503. return true;
  504. }
  505. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  506. if (endw <= bufindr_new) {
  507. memset(cmdbuffer, 0, bufindr);
  508. bufindr = bufindr_new;
  509. return true;
  510. }
  511. }
  512. return false;
  513. }
  514. // Could one enqueue a command of lenthg len_asked into the buffer,
  515. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  516. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  517. // len_asked does not contain the zero terminator size.
  518. bool cmdqueue_could_enqueue_back(int len_asked)
  519. {
  520. // MAX_CMD_SIZE has to accommodate the zero terminator.
  521. if (len_asked >= MAX_CMD_SIZE)
  522. return false;
  523. if (bufindr == bufindw && buflen > 0)
  524. // Full buffer.
  525. return false;
  526. if (serial_count > 0) {
  527. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  528. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  529. // serial data.
  530. // How much memory to reserve for the commands pushed to the front?
  531. // End of the queue, when pushing to the end.
  532. int endw = bufindw + len_asked + 2;
  533. if (bufindw < bufindr)
  534. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  535. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  536. // Otherwise the free space is split between the start and end.
  537. if (// Could one fit to the end, including the reserve?
  538. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  539. // Could one fit to the end, and the reserve to the start?
  540. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  541. return true;
  542. // Could one fit both to the start?
  543. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  544. // Mark the rest of the buffer as used.
  545. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  546. // and point to the start.
  547. bufindw = 0;
  548. return true;
  549. }
  550. } else {
  551. // How much memory to reserve for the commands pushed to the front?
  552. // End of the queue, when pushing to the end.
  553. int endw = bufindw + len_asked + 2;
  554. if (bufindw < bufindr)
  555. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  556. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  557. // Otherwise the free space is split between the start and end.
  558. if (// Could one fit to the end, including the reserve?
  559. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  560. // Could one fit to the end, and the reserve to the start?
  561. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  562. return true;
  563. // Could one fit both to the start?
  564. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  565. // Mark the rest of the buffer as used.
  566. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  567. // and point to the start.
  568. bufindw = 0;
  569. return true;
  570. }
  571. }
  572. return false;
  573. }
  574. #ifdef CMDBUFFER_DEBUG
  575. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  576. {
  577. SERIAL_ECHOPGM("Entry nr: ");
  578. SERIAL_ECHO(nr);
  579. SERIAL_ECHOPGM(", type: ");
  580. SERIAL_ECHO(int(*p));
  581. SERIAL_ECHOPGM(", cmd: ");
  582. SERIAL_ECHO(p+1);
  583. SERIAL_ECHOLNPGM("");
  584. }
  585. static void cmdqueue_dump_to_serial()
  586. {
  587. if (buflen == 0) {
  588. SERIAL_ECHOLNPGM("The command buffer is empty.");
  589. } else {
  590. SERIAL_ECHOPGM("Content of the buffer: entries ");
  591. SERIAL_ECHO(buflen);
  592. SERIAL_ECHOPGM(", indr ");
  593. SERIAL_ECHO(bufindr);
  594. SERIAL_ECHOPGM(", indw ");
  595. SERIAL_ECHO(bufindw);
  596. SERIAL_ECHOLNPGM("");
  597. int nr = 0;
  598. if (bufindr < bufindw) {
  599. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  600. cmdqueue_dump_to_serial_single_line(nr, p);
  601. // Skip the command.
  602. for (++p; *p != 0; ++ p);
  603. // Skip the gaps.
  604. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  605. }
  606. } else {
  607. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  608. cmdqueue_dump_to_serial_single_line(nr, p);
  609. // Skip the command.
  610. for (++p; *p != 0; ++ p);
  611. // Skip the gaps.
  612. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  613. }
  614. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  615. cmdqueue_dump_to_serial_single_line(nr, p);
  616. // Skip the command.
  617. for (++p; *p != 0; ++ p);
  618. // Skip the gaps.
  619. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  620. }
  621. }
  622. SERIAL_ECHOLNPGM("End of the buffer.");
  623. }
  624. }
  625. #endif /* CMDBUFFER_DEBUG */
  626. //adds an command to the main command buffer
  627. //thats really done in a non-safe way.
  628. //needs overworking someday
  629. // Currently the maximum length of a command piped through this function is around 20 characters
  630. void enquecommand(const char *cmd, bool from_progmem)
  631. {
  632. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  633. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  634. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  635. if (cmdqueue_could_enqueue_back(len)) {
  636. // This is dangerous if a mixing of serial and this happens
  637. // This may easily be tested: If serial_count > 0, we have a problem.
  638. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  639. if (from_progmem)
  640. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  641. else
  642. strcpy(cmdbuffer + bufindw + 1, cmd);
  643. SERIAL_ECHO_START;
  644. SERIAL_ECHORPGM(MSG_Enqueing);
  645. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  646. SERIAL_ECHOLNPGM("\"");
  647. bufindw += len + 2;
  648. if (bufindw == sizeof(cmdbuffer))
  649. bufindw = 0;
  650. ++ buflen;
  651. #ifdef CMDBUFFER_DEBUG
  652. cmdqueue_dump_to_serial();
  653. #endif /* CMDBUFFER_DEBUG */
  654. } else {
  655. SERIAL_ERROR_START;
  656. SERIAL_ECHORPGM(MSG_Enqueing);
  657. if (from_progmem)
  658. SERIAL_PROTOCOLRPGM(cmd);
  659. else
  660. SERIAL_ECHO(cmd);
  661. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  662. #ifdef CMDBUFFER_DEBUG
  663. cmdqueue_dump_to_serial();
  664. #endif /* CMDBUFFER_DEBUG */
  665. }
  666. }
  667. void enquecommand_front(const char *cmd, bool from_progmem)
  668. {
  669. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  670. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  671. if (cmdqueue_could_enqueue_front(len)) {
  672. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  673. if (from_progmem)
  674. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  675. else
  676. strcpy(cmdbuffer + bufindr + 1, cmd);
  677. ++ buflen;
  678. SERIAL_ECHO_START;
  679. SERIAL_ECHOPGM("Enqueing to the front: \"");
  680. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  681. SERIAL_ECHOLNPGM("\"");
  682. #ifdef CMDBUFFER_DEBUG
  683. cmdqueue_dump_to_serial();
  684. #endif /* CMDBUFFER_DEBUG */
  685. } else {
  686. SERIAL_ERROR_START;
  687. SERIAL_ECHOPGM("Enqueing to the front: \"");
  688. if (from_progmem)
  689. SERIAL_PROTOCOLRPGM(cmd);
  690. else
  691. SERIAL_ECHO(cmd);
  692. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  693. #ifdef CMDBUFFER_DEBUG
  694. cmdqueue_dump_to_serial();
  695. #endif /* CMDBUFFER_DEBUG */
  696. }
  697. }
  698. // Mark the command at the top of the command queue as new.
  699. // Therefore it will not be removed from the queue.
  700. void repeatcommand_front()
  701. {
  702. cmdbuffer_front_already_processed = true;
  703. }
  704. void setup_killpin()
  705. {
  706. #if defined(KILL_PIN) && KILL_PIN > -1
  707. SET_INPUT(KILL_PIN);
  708. WRITE(KILL_PIN,HIGH);
  709. #endif
  710. }
  711. // Set home pin
  712. void setup_homepin(void)
  713. {
  714. #if defined(HOME_PIN) && HOME_PIN > -1
  715. SET_INPUT(HOME_PIN);
  716. WRITE(HOME_PIN,HIGH);
  717. #endif
  718. }
  719. void setup_photpin()
  720. {
  721. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  722. SET_OUTPUT(PHOTOGRAPH_PIN);
  723. WRITE(PHOTOGRAPH_PIN, LOW);
  724. #endif
  725. }
  726. void setup_powerhold()
  727. {
  728. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  729. SET_OUTPUT(SUICIDE_PIN);
  730. WRITE(SUICIDE_PIN, HIGH);
  731. #endif
  732. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  733. SET_OUTPUT(PS_ON_PIN);
  734. #if defined(PS_DEFAULT_OFF)
  735. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  736. #else
  737. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  738. #endif
  739. #endif
  740. }
  741. void suicide()
  742. {
  743. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  744. SET_OUTPUT(SUICIDE_PIN);
  745. WRITE(SUICIDE_PIN, LOW);
  746. #endif
  747. }
  748. void servo_init()
  749. {
  750. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  751. servos[0].attach(SERVO0_PIN);
  752. #endif
  753. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  754. servos[1].attach(SERVO1_PIN);
  755. #endif
  756. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  757. servos[2].attach(SERVO2_PIN);
  758. #endif
  759. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  760. servos[3].attach(SERVO3_PIN);
  761. #endif
  762. #if (NUM_SERVOS >= 5)
  763. #error "TODO: enter initalisation code for more servos"
  764. #endif
  765. }
  766. static void lcd_language_menu();
  767. #ifdef MESH_BED_LEVELING
  768. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  769. #endif
  770. // "Setup" function is called by the Arduino framework on startup.
  771. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  772. // are initialized by the main() routine provided by the Arduino framework.
  773. void setup()
  774. {
  775. setup_killpin();
  776. setup_powerhold();
  777. MYSERIAL.begin(BAUDRATE);
  778. SERIAL_PROTOCOLLNPGM("start");
  779. SERIAL_ECHO_START;
  780. #if 0
  781. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  782. for (int i = 0; i < 4096; ++ i) {
  783. int b = eeprom_read_byte((unsigned char*)i);
  784. if (b != 255) {
  785. SERIAL_ECHO(i);
  786. SERIAL_ECHO(":");
  787. SERIAL_ECHO(b);
  788. SERIAL_ECHOLN("");
  789. }
  790. }
  791. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  792. #endif
  793. // Check startup - does nothing if bootloader sets MCUSR to 0
  794. byte mcu = MCUSR;
  795. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  796. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  797. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  798. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  799. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  800. MCUSR=0;
  801. //SERIAL_ECHORPGM(MSG_MARLIN);
  802. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  803. #ifdef STRING_VERSION_CONFIG_H
  804. #ifdef STRING_CONFIG_H_AUTHOR
  805. SERIAL_ECHO_START;
  806. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  807. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  808. SERIAL_ECHORPGM(MSG_AUTHOR);
  809. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  810. SERIAL_ECHOPGM("Compiled: ");
  811. SERIAL_ECHOLNPGM(__DATE__);
  812. #endif
  813. #endif
  814. SERIAL_ECHO_START;
  815. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  816. SERIAL_ECHO(freeMemory());
  817. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  818. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  819. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  820. Config_RetrieveSettings();
  821. tp_init(); // Initialize temperature loop
  822. plan_init(); // Initialize planner;
  823. watchdog_init();
  824. st_init(); // Initialize stepper, this enables interrupts!
  825. setup_photpin();
  826. servo_init();
  827. // Reset the machine correction matrix.
  828. // It does not make sense to load the correction matrix until the machine is homed.
  829. world2machine_reset();
  830. lcd_init();
  831. if (!READ(BTN_ENC))
  832. {
  833. _delay_ms(1000);
  834. if (!READ(BTN_ENC))
  835. {
  836. SET_OUTPUT(BEEPER);
  837. WRITE(BEEPER, HIGH);
  838. lcd_force_language_selection();
  839. farm_no = 0;
  840. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  841. farm_mode = false;
  842. while (!READ(BTN_ENC));
  843. WRITE(BEEPER, LOW);
  844. #ifdef MESH_BED_LEVELING
  845. _delay_ms(2000);
  846. if (!READ(BTN_ENC))
  847. {
  848. WRITE(BEEPER, HIGH);
  849. _delay_ms(100);
  850. WRITE(BEEPER, LOW);
  851. _delay_ms(200);
  852. WRITE(BEEPER, HIGH);
  853. _delay_ms(100);
  854. WRITE(BEEPER, LOW);
  855. int _z = 0;
  856. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  857. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  858. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  859. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  860. }
  861. else
  862. {
  863. WRITE(BEEPER, HIGH);
  864. _delay_ms(100);
  865. WRITE(BEEPER, LOW);
  866. }
  867. #endif // mesh
  868. }
  869. }
  870. else
  871. {
  872. _delay_ms(1000); // wait 1sec to display the splash screen
  873. }
  874. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  875. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  876. #endif
  877. #ifdef DIGIPOT_I2C
  878. digipot_i2c_init();
  879. #endif
  880. setup_homepin();
  881. #if defined(Z_AXIS_ALWAYS_ON)
  882. enable_z();
  883. #endif
  884. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  885. if (farm_no > 0)
  886. {
  887. farm_mode = true;
  888. farm_no = farm_no;
  889. prusa_statistics(8);
  890. }
  891. else
  892. {
  893. farm_mode = false;
  894. farm_no = 0;
  895. }
  896. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  897. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  898. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  899. // but this times out if a blocking dialog is shown in setup().
  900. card.initsd();
  901. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  902. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  903. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  904. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  905. // where all the EEPROM entries are set to 0x0ff.
  906. // Once a firmware boots up, it forces at least a language selection, which changes
  907. // EEPROM_LANG to number lower than 0x0ff.
  908. // 1) Set a high power mode.
  909. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  910. }
  911. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  912. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  913. // is being written into the EEPROM, so the update procedure will be triggered only once.
  914. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  915. if (lang_selected >= LANG_NUM){
  916. lcd_mylang();
  917. }
  918. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  919. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  920. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  921. // Show the message.
  922. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  923. lcd_update_enable(true);
  924. }
  925. // Store the currently running firmware into an eeprom,
  926. // so the next time the firmware gets updated, it will know from which version it has been updated.
  927. update_current_firmware_version_to_eeprom();
  928. }
  929. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  930. // Before loop(), the setup() function is called by the main() routine.
  931. void loop()
  932. {
  933. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  934. {
  935. is_usb_printing = true;
  936. usb_printing_counter--;
  937. _usb_timer = millis();
  938. }
  939. if (usb_printing_counter == 0)
  940. {
  941. is_usb_printing = false;
  942. }
  943. get_command();
  944. #ifdef SDSUPPORT
  945. card.checkautostart(false);
  946. #endif
  947. if(buflen)
  948. {
  949. #ifdef SDSUPPORT
  950. if(card.saving)
  951. {
  952. // Saving a G-code file onto an SD-card is in progress.
  953. // Saving starts with M28, saving until M29 is seen.
  954. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  955. card.write_command(CMDBUFFER_CURRENT_STRING);
  956. if(card.logging)
  957. process_commands();
  958. else
  959. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  960. } else {
  961. card.closefile();
  962. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  963. }
  964. } else {
  965. process_commands();
  966. }
  967. #else
  968. process_commands();
  969. #endif //SDSUPPORT
  970. if (! cmdbuffer_front_already_processed)
  971. cmdqueue_pop_front();
  972. cmdbuffer_front_already_processed = false;
  973. }
  974. //check heater every n milliseconds
  975. manage_heater();
  976. manage_inactivity();
  977. checkHitEndstops();
  978. lcd_update();
  979. }
  980. void get_command()
  981. {
  982. // Test and reserve space for the new command string.
  983. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  984. return;
  985. while (MYSERIAL.available() > 0) {
  986. char serial_char = MYSERIAL.read();
  987. TimeSent = millis();
  988. TimeNow = millis();
  989. if (serial_char < 0)
  990. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  991. // and Marlin does not support such file names anyway.
  992. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  993. // to a hang-up of the print process from an SD card.
  994. continue;
  995. if(serial_char == '\n' ||
  996. serial_char == '\r' ||
  997. (serial_char == ':' && comment_mode == false) ||
  998. serial_count >= (MAX_CMD_SIZE - 1) )
  999. {
  1000. if(!serial_count) { //if empty line
  1001. comment_mode = false; //for new command
  1002. return;
  1003. }
  1004. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1005. if(!comment_mode){
  1006. comment_mode = false; //for new command
  1007. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1008. {
  1009. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1010. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1011. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1012. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1013. // M110 - set current line number.
  1014. // Line numbers not sent in succession.
  1015. SERIAL_ERROR_START;
  1016. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1017. SERIAL_ERRORLN(gcode_LastN);
  1018. //Serial.println(gcode_N);
  1019. FlushSerialRequestResend();
  1020. serial_count = 0;
  1021. return;
  1022. }
  1023. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1024. {
  1025. byte checksum = 0;
  1026. char *p = cmdbuffer+bufindw+1;
  1027. while (p != strchr_pointer)
  1028. checksum = checksum^(*p++);
  1029. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1030. SERIAL_ERROR_START;
  1031. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1032. SERIAL_ERRORLN(gcode_LastN);
  1033. FlushSerialRequestResend();
  1034. serial_count = 0;
  1035. return;
  1036. }
  1037. // If no errors, remove the checksum and continue parsing.
  1038. *strchr_pointer = 0;
  1039. }
  1040. else
  1041. {
  1042. SERIAL_ERROR_START;
  1043. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1044. SERIAL_ERRORLN(gcode_LastN);
  1045. FlushSerialRequestResend();
  1046. serial_count = 0;
  1047. return;
  1048. }
  1049. gcode_LastN = gcode_N;
  1050. //if no errors, continue parsing
  1051. } // end of 'N' command
  1052. else // if we don't receive 'N' but still see '*'
  1053. {
  1054. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1055. {
  1056. SERIAL_ERROR_START;
  1057. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1058. SERIAL_ERRORLN(gcode_LastN);
  1059. serial_count = 0;
  1060. return;
  1061. }
  1062. } // end of '*' command
  1063. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1064. if (! IS_SD_PRINTING) {
  1065. usb_printing_counter = 10;
  1066. is_usb_printing = true;
  1067. }
  1068. if (Stopped == true) {
  1069. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1070. if (gcode >= 0 && gcode <= 3) {
  1071. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1072. LCD_MESSAGERPGM(MSG_STOPPED);
  1073. }
  1074. }
  1075. } // end of 'G' command
  1076. //If command was e-stop process now
  1077. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1078. kill();
  1079. // Store the current line into buffer, move to the next line.
  1080. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1081. #ifdef CMDBUFFER_DEBUG
  1082. SERIAL_ECHO_START;
  1083. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1084. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1085. SERIAL_ECHOLNPGM("");
  1086. #endif /* CMDBUFFER_DEBUG */
  1087. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1088. if (bufindw == sizeof(cmdbuffer))
  1089. bufindw = 0;
  1090. ++ buflen;
  1091. #ifdef CMDBUFFER_DEBUG
  1092. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1093. SERIAL_ECHO(buflen);
  1094. SERIAL_ECHOLNPGM("");
  1095. #endif /* CMDBUFFER_DEBUG */
  1096. } // end of 'not comment mode'
  1097. serial_count = 0; //clear buffer
  1098. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1099. // in the queue, as this function will reserve the memory.
  1100. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1101. return;
  1102. } // end of "end of line" processing
  1103. else {
  1104. // Not an "end of line" symbol. Store the new character into a buffer.
  1105. if(serial_char == ';') comment_mode = true;
  1106. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1107. }
  1108. } // end of serial line processing loop
  1109. if(farm_mode){
  1110. TimeNow = millis();
  1111. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1112. cmdbuffer[bufindw+serial_count+1] = 0;
  1113. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1114. if (bufindw == sizeof(cmdbuffer))
  1115. bufindw = 0;
  1116. ++ buflen;
  1117. serial_count = 0;
  1118. SERIAL_ECHOPGM("TIMEOUT:");
  1119. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1120. return;
  1121. }
  1122. }
  1123. #ifdef SDSUPPORT
  1124. if(!card.sdprinting || serial_count!=0){
  1125. // If there is a half filled buffer from serial line, wait until return before
  1126. // continuing with the serial line.
  1127. return;
  1128. }
  1129. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1130. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1131. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1132. static bool stop_buffering=false;
  1133. if(buflen==0) stop_buffering=false;
  1134. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1135. while( !card.eof() && !stop_buffering) {
  1136. int16_t n=card.get();
  1137. char serial_char = (char)n;
  1138. if(serial_char == '\n' ||
  1139. serial_char == '\r' ||
  1140. (serial_char == '#' && comment_mode == false) ||
  1141. (serial_char == ':' && comment_mode == false) ||
  1142. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1143. {
  1144. if(card.eof()){
  1145. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1146. stoptime=millis();
  1147. char time[30];
  1148. unsigned long t=(stoptime-starttime)/1000;
  1149. int hours, minutes;
  1150. minutes=(t/60)%60;
  1151. hours=t/60/60;
  1152. save_statistics(total_filament_used, t);
  1153. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1154. SERIAL_ECHO_START;
  1155. SERIAL_ECHOLN(time);
  1156. lcd_setstatus(time);
  1157. card.printingHasFinished();
  1158. card.checkautostart(true);
  1159. if (farm_mode)
  1160. {
  1161. prusa_statistics(6);
  1162. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1163. }
  1164. }
  1165. if(serial_char=='#')
  1166. stop_buffering=true;
  1167. if(!serial_count)
  1168. {
  1169. comment_mode = false; //for new command
  1170. return; //if empty line
  1171. }
  1172. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1173. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1174. ++ buflen;
  1175. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1176. if (bufindw == sizeof(cmdbuffer))
  1177. bufindw = 0;
  1178. comment_mode = false; //for new command
  1179. serial_count = 0; //clear buffer
  1180. // The following line will reserve buffer space if available.
  1181. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1182. return;
  1183. }
  1184. else
  1185. {
  1186. if(serial_char == ';') comment_mode = true;
  1187. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1188. }
  1189. }
  1190. #endif //SDSUPPORT
  1191. }
  1192. // Return True if a character was found
  1193. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1194. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1195. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1196. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1197. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1198. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1199. #define DEFINE_PGM_READ_ANY(type, reader) \
  1200. static inline type pgm_read_any(const type *p) \
  1201. { return pgm_read_##reader##_near(p); }
  1202. DEFINE_PGM_READ_ANY(float, float);
  1203. DEFINE_PGM_READ_ANY(signed char, byte);
  1204. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1205. static const PROGMEM type array##_P[3] = \
  1206. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1207. static inline type array(int axis) \
  1208. { return pgm_read_any(&array##_P[axis]); } \
  1209. type array##_ext(int axis) \
  1210. { return pgm_read_any(&array##_P[axis]); }
  1211. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1212. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1213. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1214. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1215. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1216. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1217. static void axis_is_at_home(int axis) {
  1218. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1219. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1220. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1221. }
  1222. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1223. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1224. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1225. saved_feedrate = feedrate;
  1226. saved_feedmultiply = feedmultiply;
  1227. feedmultiply = 100;
  1228. previous_millis_cmd = millis();
  1229. enable_endstops(enable_endstops_now);
  1230. }
  1231. static void clean_up_after_endstop_move() {
  1232. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1233. enable_endstops(false);
  1234. #endif
  1235. feedrate = saved_feedrate;
  1236. feedmultiply = saved_feedmultiply;
  1237. previous_millis_cmd = millis();
  1238. }
  1239. #ifdef ENABLE_AUTO_BED_LEVELING
  1240. #ifdef AUTO_BED_LEVELING_GRID
  1241. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1242. {
  1243. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1244. planeNormal.debug("planeNormal");
  1245. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1246. //bedLevel.debug("bedLevel");
  1247. //plan_bed_level_matrix.debug("bed level before");
  1248. //vector_3 uncorrected_position = plan_get_position_mm();
  1249. //uncorrected_position.debug("position before");
  1250. vector_3 corrected_position = plan_get_position();
  1251. // corrected_position.debug("position after");
  1252. current_position[X_AXIS] = corrected_position.x;
  1253. current_position[Y_AXIS] = corrected_position.y;
  1254. current_position[Z_AXIS] = corrected_position.z;
  1255. // put the bed at 0 so we don't go below it.
  1256. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1258. }
  1259. #else // not AUTO_BED_LEVELING_GRID
  1260. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1261. plan_bed_level_matrix.set_to_identity();
  1262. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1263. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1264. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1265. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1266. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1267. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1268. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1269. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1270. vector_3 corrected_position = plan_get_position();
  1271. current_position[X_AXIS] = corrected_position.x;
  1272. current_position[Y_AXIS] = corrected_position.y;
  1273. current_position[Z_AXIS] = corrected_position.z;
  1274. // put the bed at 0 so we don't go below it.
  1275. current_position[Z_AXIS] = zprobe_zoffset;
  1276. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1277. }
  1278. #endif // AUTO_BED_LEVELING_GRID
  1279. static void run_z_probe() {
  1280. plan_bed_level_matrix.set_to_identity();
  1281. feedrate = homing_feedrate[Z_AXIS];
  1282. // move down until you find the bed
  1283. float zPosition = -10;
  1284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1285. st_synchronize();
  1286. // we have to let the planner know where we are right now as it is not where we said to go.
  1287. zPosition = st_get_position_mm(Z_AXIS);
  1288. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1289. // move up the retract distance
  1290. zPosition += home_retract_mm(Z_AXIS);
  1291. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1292. st_synchronize();
  1293. // move back down slowly to find bed
  1294. feedrate = homing_feedrate[Z_AXIS]/4;
  1295. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1296. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1297. st_synchronize();
  1298. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1299. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1300. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1301. }
  1302. static void do_blocking_move_to(float x, float y, float z) {
  1303. float oldFeedRate = feedrate;
  1304. feedrate = homing_feedrate[Z_AXIS];
  1305. current_position[Z_AXIS] = z;
  1306. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1307. st_synchronize();
  1308. feedrate = XY_TRAVEL_SPEED;
  1309. current_position[X_AXIS] = x;
  1310. current_position[Y_AXIS] = y;
  1311. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1312. st_synchronize();
  1313. feedrate = oldFeedRate;
  1314. }
  1315. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1316. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1317. }
  1318. /// Probe bed height at position (x,y), returns the measured z value
  1319. static float probe_pt(float x, float y, float z_before) {
  1320. // move to right place
  1321. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1322. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1323. run_z_probe();
  1324. float measured_z = current_position[Z_AXIS];
  1325. SERIAL_PROTOCOLRPGM(MSG_BED);
  1326. SERIAL_PROTOCOLPGM(" x: ");
  1327. SERIAL_PROTOCOL(x);
  1328. SERIAL_PROTOCOLPGM(" y: ");
  1329. SERIAL_PROTOCOL(y);
  1330. SERIAL_PROTOCOLPGM(" z: ");
  1331. SERIAL_PROTOCOL(measured_z);
  1332. SERIAL_PROTOCOLPGM("\n");
  1333. return measured_z;
  1334. }
  1335. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1336. void homeaxis(int axis) {
  1337. #define HOMEAXIS_DO(LETTER) \
  1338. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1339. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1340. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1341. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1342. 0) {
  1343. int axis_home_dir = home_dir(axis);
  1344. current_position[axis] = 0;
  1345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1346. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1347. feedrate = homing_feedrate[axis];
  1348. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1349. st_synchronize();
  1350. current_position[axis] = 0;
  1351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1352. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1353. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1354. st_synchronize();
  1355. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1356. feedrate = homing_feedrate[axis]/2 ;
  1357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1358. st_synchronize();
  1359. axis_is_at_home(axis);
  1360. destination[axis] = current_position[axis];
  1361. feedrate = 0.0;
  1362. endstops_hit_on_purpose();
  1363. axis_known_position[axis] = true;
  1364. }
  1365. }
  1366. void home_xy()
  1367. {
  1368. set_destination_to_current();
  1369. homeaxis(X_AXIS);
  1370. homeaxis(Y_AXIS);
  1371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. endstops_hit_on_purpose();
  1373. }
  1374. void refresh_cmd_timeout(void)
  1375. {
  1376. previous_millis_cmd = millis();
  1377. }
  1378. #ifdef FWRETRACT
  1379. void retract(bool retracting, bool swapretract = false) {
  1380. if(retracting && !retracted[active_extruder]) {
  1381. destination[X_AXIS]=current_position[X_AXIS];
  1382. destination[Y_AXIS]=current_position[Y_AXIS];
  1383. destination[Z_AXIS]=current_position[Z_AXIS];
  1384. destination[E_AXIS]=current_position[E_AXIS];
  1385. if (swapretract) {
  1386. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1387. } else {
  1388. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1389. }
  1390. plan_set_e_position(current_position[E_AXIS]);
  1391. float oldFeedrate = feedrate;
  1392. feedrate=retract_feedrate*60;
  1393. retracted[active_extruder]=true;
  1394. prepare_move();
  1395. current_position[Z_AXIS]-=retract_zlift;
  1396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1397. prepare_move();
  1398. feedrate = oldFeedrate;
  1399. } else if(!retracting && retracted[active_extruder]) {
  1400. destination[X_AXIS]=current_position[X_AXIS];
  1401. destination[Y_AXIS]=current_position[Y_AXIS];
  1402. destination[Z_AXIS]=current_position[Z_AXIS];
  1403. destination[E_AXIS]=current_position[E_AXIS];
  1404. current_position[Z_AXIS]+=retract_zlift;
  1405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1406. //prepare_move();
  1407. if (swapretract) {
  1408. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1409. } else {
  1410. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1411. }
  1412. plan_set_e_position(current_position[E_AXIS]);
  1413. float oldFeedrate = feedrate;
  1414. feedrate=retract_recover_feedrate*60;
  1415. retracted[active_extruder]=false;
  1416. prepare_move();
  1417. feedrate = oldFeedrate;
  1418. }
  1419. } //retract
  1420. #endif //FWRETRACT
  1421. void process_commands()
  1422. {
  1423. #ifdef FILAMENT_RUNOUT_SUPPORT
  1424. SET_INPUT(FR_SENS);
  1425. #endif
  1426. #ifdef CMDBUFFER_DEBUG
  1427. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1428. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1429. SERIAL_ECHOLNPGM("");
  1430. SERIAL_ECHOPGM("In cmdqueue: ");
  1431. SERIAL_ECHO(buflen);
  1432. SERIAL_ECHOLNPGM("");
  1433. #endif /* CMDBUFFER_DEBUG */
  1434. unsigned long codenum; //throw away variable
  1435. char *starpos = NULL;
  1436. #ifdef ENABLE_AUTO_BED_LEVELING
  1437. float x_tmp, y_tmp, z_tmp, real_z;
  1438. #endif
  1439. // PRUSA GCODES
  1440. if(code_seen("PRUSA")){
  1441. if(code_seen("Fir")){
  1442. SERIAL_PROTOCOLLN(FW_version);
  1443. } else if(code_seen("Rev")){
  1444. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1445. } else if(code_seen("Lang")) {
  1446. lcd_force_language_selection();
  1447. } else if(code_seen("Lz")) {
  1448. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1449. }
  1450. //else if (code_seen('Cal')) {
  1451. // lcd_calibration();
  1452. // }
  1453. }
  1454. else
  1455. if(code_seen('G'))
  1456. {
  1457. switch((int)code_value())
  1458. {
  1459. case 0: // G0 -> G1
  1460. case 1: // G1
  1461. if(Stopped == false) {
  1462. #ifdef FILAMENT_RUNOUT_SUPPORT
  1463. if(READ(FR_SENS)){
  1464. feedmultiplyBckp=feedmultiply;
  1465. float target[4];
  1466. float lastpos[4];
  1467. target[X_AXIS]=current_position[X_AXIS];
  1468. target[Y_AXIS]=current_position[Y_AXIS];
  1469. target[Z_AXIS]=current_position[Z_AXIS];
  1470. target[E_AXIS]=current_position[E_AXIS];
  1471. lastpos[X_AXIS]=current_position[X_AXIS];
  1472. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1473. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1474. lastpos[E_AXIS]=current_position[E_AXIS];
  1475. //retract by E
  1476. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1477. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1478. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1479. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1480. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1481. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1483. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1484. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1485. //finish moves
  1486. st_synchronize();
  1487. //disable extruder steppers so filament can be removed
  1488. disable_e0();
  1489. disable_e1();
  1490. disable_e2();
  1491. delay(100);
  1492. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1493. uint8_t cnt=0;
  1494. int counterBeep = 0;
  1495. lcd_wait_interact();
  1496. while(!lcd_clicked()){
  1497. cnt++;
  1498. manage_heater();
  1499. manage_inactivity(true);
  1500. //lcd_update();
  1501. if(cnt==0)
  1502. {
  1503. #if BEEPER > 0
  1504. if (counterBeep== 500){
  1505. counterBeep = 0;
  1506. }
  1507. SET_OUTPUT(BEEPER);
  1508. if (counterBeep== 0){
  1509. WRITE(BEEPER,HIGH);
  1510. }
  1511. if (counterBeep== 20){
  1512. WRITE(BEEPER,LOW);
  1513. }
  1514. counterBeep++;
  1515. #else
  1516. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1517. lcd_buzz(1000/6,100);
  1518. #else
  1519. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1520. #endif
  1521. #endif
  1522. }
  1523. }
  1524. WRITE(BEEPER,LOW);
  1525. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1526. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1527. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1529. lcd_change_fil_state = 0;
  1530. lcd_loading_filament();
  1531. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1532. lcd_change_fil_state = 0;
  1533. lcd_alright();
  1534. switch(lcd_change_fil_state){
  1535. case 2:
  1536. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1538. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1540. lcd_loading_filament();
  1541. break;
  1542. case 3:
  1543. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1544. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1545. lcd_loading_color();
  1546. break;
  1547. default:
  1548. lcd_change_success();
  1549. break;
  1550. }
  1551. }
  1552. target[E_AXIS]+= 5;
  1553. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1554. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1555. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1556. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1557. //plan_set_e_position(current_position[E_AXIS]);
  1558. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1559. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1560. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1561. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1562. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1563. plan_set_e_position(lastpos[E_AXIS]);
  1564. feedmultiply=feedmultiplyBckp;
  1565. char cmd[9];
  1566. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1567. enquecommand(cmd);
  1568. }
  1569. #endif
  1570. get_coordinates(); // For X Y Z E F
  1571. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1572. #ifdef FWRETRACT
  1573. if(autoretract_enabled)
  1574. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1575. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1576. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1577. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1578. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1579. retract(!retracted);
  1580. return;
  1581. }
  1582. }
  1583. #endif //FWRETRACT
  1584. prepare_move();
  1585. //ClearToSend();
  1586. }
  1587. break;
  1588. case 2: // G2 - CW ARC
  1589. if(Stopped == false) {
  1590. get_arc_coordinates();
  1591. prepare_arc_move(true);
  1592. }
  1593. break;
  1594. case 3: // G3 - CCW ARC
  1595. if(Stopped == false) {
  1596. get_arc_coordinates();
  1597. prepare_arc_move(false);
  1598. }
  1599. break;
  1600. case 4: // G4 dwell
  1601. LCD_MESSAGERPGM(MSG_DWELL);
  1602. codenum = 0;
  1603. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1604. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1605. st_synchronize();
  1606. codenum += millis(); // keep track of when we started waiting
  1607. previous_millis_cmd = millis();
  1608. while(millis() < codenum) {
  1609. manage_heater();
  1610. manage_inactivity();
  1611. lcd_update();
  1612. }
  1613. break;
  1614. #ifdef FWRETRACT
  1615. case 10: // G10 retract
  1616. #if EXTRUDERS > 1
  1617. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1618. retract(true,retracted_swap[active_extruder]);
  1619. #else
  1620. retract(true);
  1621. #endif
  1622. break;
  1623. case 11: // G11 retract_recover
  1624. #if EXTRUDERS > 1
  1625. retract(false,retracted_swap[active_extruder]);
  1626. #else
  1627. retract(false);
  1628. #endif
  1629. break;
  1630. #endif //FWRETRACT
  1631. case 28: //G28 Home all Axis one at a time
  1632. #ifdef ENABLE_AUTO_BED_LEVELING
  1633. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1634. #endif //ENABLE_AUTO_BED_LEVELING
  1635. // For mesh bed leveling deactivate the matrix temporarily
  1636. #ifdef MESH_BED_LEVELING
  1637. mbl.active = 0;
  1638. #endif
  1639. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1640. // the planner will not perform any adjustments in the XY plane.
  1641. // Wait for the motors to stop and update the current position with the absolute values.
  1642. world2machine_revert_to_uncorrected();
  1643. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1644. // consumed during the first movements following this statement.
  1645. babystep_undo();
  1646. saved_feedrate = feedrate;
  1647. saved_feedmultiply = feedmultiply;
  1648. feedmultiply = 100;
  1649. previous_millis_cmd = millis();
  1650. enable_endstops(true);
  1651. for(int8_t i=0; i < NUM_AXIS; i++)
  1652. destination[i] = current_position[i];
  1653. feedrate = 0.0;
  1654. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1655. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1656. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1657. homeaxis(Z_AXIS);
  1658. }
  1659. #endif
  1660. #ifdef QUICK_HOME
  1661. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1662. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1663. {
  1664. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1665. int x_axis_home_dir = home_dir(X_AXIS);
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1668. feedrate = homing_feedrate[X_AXIS];
  1669. if(homing_feedrate[Y_AXIS]<feedrate)
  1670. feedrate = homing_feedrate[Y_AXIS];
  1671. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1672. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1673. } else {
  1674. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1675. }
  1676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. axis_is_at_home(X_AXIS);
  1679. axis_is_at_home(Y_AXIS);
  1680. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1681. destination[X_AXIS] = current_position[X_AXIS];
  1682. destination[Y_AXIS] = current_position[Y_AXIS];
  1683. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1684. feedrate = 0.0;
  1685. st_synchronize();
  1686. endstops_hit_on_purpose();
  1687. current_position[X_AXIS] = destination[X_AXIS];
  1688. current_position[Y_AXIS] = destination[Y_AXIS];
  1689. current_position[Z_AXIS] = destination[Z_AXIS];
  1690. }
  1691. #endif /* QUICK_HOME */
  1692. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1693. homeaxis(X_AXIS);
  1694. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1695. homeaxis(Y_AXIS);
  1696. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1697. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1698. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1699. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1700. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1701. #ifndef Z_SAFE_HOMING
  1702. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1703. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1704. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1705. feedrate = max_feedrate[Z_AXIS];
  1706. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1707. st_synchronize();
  1708. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1709. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1710. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1711. {
  1712. homeaxis(X_AXIS);
  1713. homeaxis(Y_AXIS);
  1714. }
  1715. // 1st mesh bed leveling measurement point, corrected.
  1716. world2machine_initialize();
  1717. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1718. world2machine_reset();
  1719. if (destination[Y_AXIS] < Y_MIN_POS)
  1720. destination[Y_AXIS] = Y_MIN_POS;
  1721. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1722. feedrate = homing_feedrate[Z_AXIS]/10;
  1723. current_position[Z_AXIS] = 0;
  1724. enable_endstops(false);
  1725. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1726. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1727. st_synchronize();
  1728. current_position[X_AXIS] = destination[X_AXIS];
  1729. current_position[Y_AXIS] = destination[Y_AXIS];
  1730. enable_endstops(true);
  1731. endstops_hit_on_purpose();
  1732. homeaxis(Z_AXIS);
  1733. #else // MESH_BED_LEVELING
  1734. homeaxis(Z_AXIS);
  1735. #endif // MESH_BED_LEVELING
  1736. }
  1737. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1738. if(home_all_axis) {
  1739. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1740. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1741. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1742. feedrate = XY_TRAVEL_SPEED/60;
  1743. current_position[Z_AXIS] = 0;
  1744. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1745. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1746. st_synchronize();
  1747. current_position[X_AXIS] = destination[X_AXIS];
  1748. current_position[Y_AXIS] = destination[Y_AXIS];
  1749. homeaxis(Z_AXIS);
  1750. }
  1751. // Let's see if X and Y are homed and probe is inside bed area.
  1752. if(code_seen(axis_codes[Z_AXIS])) {
  1753. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1754. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1755. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1756. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1757. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1758. current_position[Z_AXIS] = 0;
  1759. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1760. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1761. feedrate = max_feedrate[Z_AXIS];
  1762. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1763. st_synchronize();
  1764. homeaxis(Z_AXIS);
  1765. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1766. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1767. SERIAL_ECHO_START;
  1768. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1769. } else {
  1770. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1771. SERIAL_ECHO_START;
  1772. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1773. }
  1774. }
  1775. #endif // Z_SAFE_HOMING
  1776. #endif // Z_HOME_DIR < 0
  1777. if(code_seen(axis_codes[Z_AXIS])) {
  1778. if(code_value_long() != 0) {
  1779. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1780. }
  1781. }
  1782. #ifdef ENABLE_AUTO_BED_LEVELING
  1783. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1784. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1785. }
  1786. #endif
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1789. enable_endstops(false);
  1790. #endif
  1791. feedrate = saved_feedrate;
  1792. feedmultiply = saved_feedmultiply;
  1793. previous_millis_cmd = millis();
  1794. endstops_hit_on_purpose();
  1795. #ifndef MESH_BED_LEVELING
  1796. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1797. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1798. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1799. lcd_adjust_z();
  1800. #endif
  1801. // Load the machine correction matrix
  1802. world2machine_initialize();
  1803. // and correct the current_position to match the transformed coordinate system.
  1804. world2machine_update_current();
  1805. #ifdef MESH_BED_LEVELING
  1806. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1807. {
  1808. }
  1809. else
  1810. {
  1811. st_synchronize();
  1812. // Push the commands to the front of the message queue in the reverse order!
  1813. // There shall be always enough space reserved for these commands.
  1814. // enquecommand_front_P((PSTR("G80")));
  1815. goto case_G80;
  1816. }
  1817. #endif
  1818. if (farm_mode) { prusa_statistics(20); };
  1819. break;
  1820. #ifdef ENABLE_AUTO_BED_LEVELING
  1821. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1822. {
  1823. #if Z_MIN_PIN == -1
  1824. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1825. #endif
  1826. // Prevent user from running a G29 without first homing in X and Y
  1827. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1828. {
  1829. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1830. SERIAL_ECHO_START;
  1831. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1832. break; // abort G29, since we don't know where we are
  1833. }
  1834. st_synchronize();
  1835. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1836. //vector_3 corrected_position = plan_get_position_mm();
  1837. //corrected_position.debug("position before G29");
  1838. plan_bed_level_matrix.set_to_identity();
  1839. vector_3 uncorrected_position = plan_get_position();
  1840. //uncorrected_position.debug("position durring G29");
  1841. current_position[X_AXIS] = uncorrected_position.x;
  1842. current_position[Y_AXIS] = uncorrected_position.y;
  1843. current_position[Z_AXIS] = uncorrected_position.z;
  1844. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1845. setup_for_endstop_move();
  1846. feedrate = homing_feedrate[Z_AXIS];
  1847. #ifdef AUTO_BED_LEVELING_GRID
  1848. // probe at the points of a lattice grid
  1849. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1850. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1851. // solve the plane equation ax + by + d = z
  1852. // A is the matrix with rows [x y 1] for all the probed points
  1853. // B is the vector of the Z positions
  1854. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1855. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1856. // "A" matrix of the linear system of equations
  1857. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1858. // "B" vector of Z points
  1859. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1860. int probePointCounter = 0;
  1861. bool zig = true;
  1862. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1863. {
  1864. int xProbe, xInc;
  1865. if (zig)
  1866. {
  1867. xProbe = LEFT_PROBE_BED_POSITION;
  1868. //xEnd = RIGHT_PROBE_BED_POSITION;
  1869. xInc = xGridSpacing;
  1870. zig = false;
  1871. } else // zag
  1872. {
  1873. xProbe = RIGHT_PROBE_BED_POSITION;
  1874. //xEnd = LEFT_PROBE_BED_POSITION;
  1875. xInc = -xGridSpacing;
  1876. zig = true;
  1877. }
  1878. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1879. {
  1880. float z_before;
  1881. if (probePointCounter == 0)
  1882. {
  1883. // raise before probing
  1884. z_before = Z_RAISE_BEFORE_PROBING;
  1885. } else
  1886. {
  1887. // raise extruder
  1888. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1889. }
  1890. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1891. eqnBVector[probePointCounter] = measured_z;
  1892. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1893. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1894. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1895. probePointCounter++;
  1896. xProbe += xInc;
  1897. }
  1898. }
  1899. clean_up_after_endstop_move();
  1900. // solve lsq problem
  1901. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1902. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1903. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1904. SERIAL_PROTOCOLPGM(" b: ");
  1905. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1906. SERIAL_PROTOCOLPGM(" d: ");
  1907. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1908. set_bed_level_equation_lsq(plane_equation_coefficients);
  1909. free(plane_equation_coefficients);
  1910. #else // AUTO_BED_LEVELING_GRID not defined
  1911. // Probe at 3 arbitrary points
  1912. // probe 1
  1913. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1914. // probe 2
  1915. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1916. // probe 3
  1917. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1918. clean_up_after_endstop_move();
  1919. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1920. #endif // AUTO_BED_LEVELING_GRID
  1921. st_synchronize();
  1922. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1923. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1924. // When the bed is uneven, this height must be corrected.
  1925. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1926. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1927. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1928. z_tmp = current_position[Z_AXIS];
  1929. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1930. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1931. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1932. }
  1933. break;
  1934. #ifndef Z_PROBE_SLED
  1935. case 30: // G30 Single Z Probe
  1936. {
  1937. st_synchronize();
  1938. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1939. setup_for_endstop_move();
  1940. feedrate = homing_feedrate[Z_AXIS];
  1941. run_z_probe();
  1942. SERIAL_PROTOCOLPGM(MSG_BED);
  1943. SERIAL_PROTOCOLPGM(" X: ");
  1944. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1945. SERIAL_PROTOCOLPGM(" Y: ");
  1946. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1947. SERIAL_PROTOCOLPGM(" Z: ");
  1948. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1949. SERIAL_PROTOCOLPGM("\n");
  1950. clean_up_after_endstop_move();
  1951. }
  1952. break;
  1953. #else
  1954. case 31: // dock the sled
  1955. dock_sled(true);
  1956. break;
  1957. case 32: // undock the sled
  1958. dock_sled(false);
  1959. break;
  1960. #endif // Z_PROBE_SLED
  1961. #endif // ENABLE_AUTO_BED_LEVELING
  1962. #ifdef MESH_BED_LEVELING
  1963. case 30: // G30 Single Z Probe
  1964. {
  1965. st_synchronize();
  1966. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1967. setup_for_endstop_move();
  1968. feedrate = homing_feedrate[Z_AXIS];
  1969. find_bed_induction_sensor_point_z(-10.f, 3);
  1970. SERIAL_PROTOCOLRPGM(MSG_BED);
  1971. SERIAL_PROTOCOLPGM(" X: ");
  1972. MYSERIAL.print(current_position[X_AXIS], 5);
  1973. SERIAL_PROTOCOLPGM(" Y: ");
  1974. MYSERIAL.print(current_position[Y_AXIS], 5);
  1975. SERIAL_PROTOCOLPGM(" Z: ");
  1976. MYSERIAL.print(current_position[Z_AXIS], 5);
  1977. SERIAL_PROTOCOLPGM("\n");
  1978. clean_up_after_endstop_move();
  1979. }
  1980. break;
  1981. /**
  1982. * G80: Mesh-based Z probe, probes a grid and produces a
  1983. * mesh to compensate for variable bed height
  1984. *
  1985. * The S0 report the points as below
  1986. *
  1987. * +----> X-axis
  1988. * |
  1989. * |
  1990. * v Y-axis
  1991. *
  1992. */
  1993. case 80:
  1994. case_G80:
  1995. {
  1996. // Firstly check if we know where we are
  1997. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1998. // We don't know where we are! HOME!
  1999. // Push the commands to the front of the message queue in the reverse order!
  2000. // There shall be always enough space reserved for these commands.
  2001. repeatcommand_front(); // repeat G80 with all its parameters
  2002. enquecommand_front_P((PSTR("G28 W0")));
  2003. break;
  2004. }
  2005. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2006. bool custom_message_old = custom_message;
  2007. unsigned int custom_message_type_old = custom_message_type;
  2008. unsigned int custom_message_state_old = custom_message_state;
  2009. custom_message = true;
  2010. custom_message_type = 1;
  2011. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2012. lcd_update(1);
  2013. mbl.reset();
  2014. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2015. // consumed during the first movements following this statement.
  2016. babystep_undo();
  2017. // Cycle through all points and probe them
  2018. // First move up. During this first movement, the babystepping will be reverted.
  2019. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2021. // The move to the first calibration point.
  2022. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2023. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2024. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2025. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2027. // Wait until the move is finished.
  2028. st_synchronize();
  2029. int mesh_point = 0;
  2030. int ix = 0;
  2031. int iy = 0;
  2032. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2033. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2034. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2035. bool has_z = is_bed_z_jitter_data_valid();
  2036. setup_for_endstop_move(false);
  2037. const char *kill_message = NULL;
  2038. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2039. // Get coords of a measuring point.
  2040. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2041. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2042. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2043. float z0 = 0.f;
  2044. if (has_z && mesh_point > 0) {
  2045. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2046. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2047. #if 0
  2048. SERIAL_ECHOPGM("Bed leveling, point: ");
  2049. MYSERIAL.print(mesh_point);
  2050. SERIAL_ECHOPGM(", calibration z: ");
  2051. MYSERIAL.print(z0, 5);
  2052. SERIAL_ECHOLNPGM("");
  2053. #endif
  2054. }
  2055. // Move Z up to MESH_HOME_Z_SEARCH.
  2056. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2058. st_synchronize();
  2059. // Move to XY position of the sensor point.
  2060. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2061. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2062. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2064. st_synchronize();
  2065. // Go down until endstop is hit
  2066. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2067. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2068. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2069. break;
  2070. }
  2071. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2072. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2073. break;
  2074. }
  2075. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2076. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2077. break;
  2078. }
  2079. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2080. custom_message_state--;
  2081. mesh_point++;
  2082. lcd_update(1);
  2083. }
  2084. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2086. st_synchronize();
  2087. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2088. kill(kill_message);
  2089. }
  2090. clean_up_after_endstop_move();
  2091. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2092. babystep_apply();
  2093. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2094. for (uint8_t i = 0; i < 4; ++ i) {
  2095. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2096. long correction = 0;
  2097. if (code_seen(codes[i]))
  2098. correction = code_value_long();
  2099. else if (eeprom_bed_correction_valid) {
  2100. unsigned char *addr = (i < 2) ?
  2101. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2102. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2103. correction = eeprom_read_int8(addr);
  2104. }
  2105. if (correction == 0)
  2106. continue;
  2107. float offset = float(correction) * 0.001f;
  2108. if (fabs(offset) > 0.101f) {
  2109. SERIAL_ERROR_START;
  2110. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2111. SERIAL_ECHO(offset);
  2112. SERIAL_ECHOLNPGM(" microns");
  2113. } else {
  2114. switch (i) {
  2115. case 0:
  2116. for (uint8_t row = 0; row < 3; ++ row) {
  2117. mbl.z_values[row][1] += 0.5f * offset;
  2118. mbl.z_values[row][0] += offset;
  2119. }
  2120. break;
  2121. case 1:
  2122. for (uint8_t row = 0; row < 3; ++ row) {
  2123. mbl.z_values[row][1] += 0.5f * offset;
  2124. mbl.z_values[row][2] += offset;
  2125. }
  2126. break;
  2127. case 2:
  2128. for (uint8_t col = 0; col < 3; ++ col) {
  2129. mbl.z_values[1][col] += 0.5f * offset;
  2130. mbl.z_values[0][col] += offset;
  2131. }
  2132. break;
  2133. case 3:
  2134. for (uint8_t col = 0; col < 3; ++ col) {
  2135. mbl.z_values[1][col] += 0.5f * offset;
  2136. mbl.z_values[2][col] += offset;
  2137. }
  2138. break;
  2139. }
  2140. }
  2141. }
  2142. mbl.upsample_3x3();
  2143. mbl.active = 1;
  2144. go_home_with_z_lift();
  2145. // Restore custom message state
  2146. custom_message = custom_message_old;
  2147. custom_message_type = custom_message_type_old;
  2148. custom_message_state = custom_message_state_old;
  2149. lcd_update(1);
  2150. }
  2151. break;
  2152. /**
  2153. * G81: Print mesh bed leveling status and bed profile if activated
  2154. */
  2155. case 81:
  2156. if (mbl.active) {
  2157. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2158. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2159. SERIAL_PROTOCOLPGM(",");
  2160. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2161. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2162. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2163. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2164. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2165. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2166. SERIAL_PROTOCOLPGM(" ");
  2167. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2168. }
  2169. SERIAL_PROTOCOLPGM("\n");
  2170. }
  2171. }
  2172. else
  2173. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2174. break;
  2175. #if 0
  2176. /**
  2177. * G82: Single Z probe at current location
  2178. *
  2179. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2180. *
  2181. */
  2182. case 82:
  2183. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2184. setup_for_endstop_move();
  2185. find_bed_induction_sensor_point_z();
  2186. clean_up_after_endstop_move();
  2187. SERIAL_PROTOCOLPGM("Bed found at: ");
  2188. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2189. SERIAL_PROTOCOLPGM("\n");
  2190. break;
  2191. /**
  2192. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2193. */
  2194. case 83:
  2195. {
  2196. int babystepz = code_seen('S') ? code_value() : 0;
  2197. int BabyPosition = code_seen('P') ? code_value() : 0;
  2198. if (babystepz != 0) {
  2199. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2200. // Is the axis indexed starting with zero or one?
  2201. if (BabyPosition > 4) {
  2202. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2203. }else{
  2204. // Save it to the eeprom
  2205. babystepLoadZ = babystepz;
  2206. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2207. // adjust the Z
  2208. babystepsTodoZadd(babystepLoadZ);
  2209. }
  2210. }
  2211. }
  2212. break;
  2213. /**
  2214. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2215. */
  2216. case 84:
  2217. babystepsTodoZsubtract(babystepLoadZ);
  2218. // babystepLoadZ = 0;
  2219. break;
  2220. /**
  2221. * G85: Prusa3D specific: Pick best babystep
  2222. */
  2223. case 85:
  2224. lcd_pick_babystep();
  2225. break;
  2226. #endif
  2227. /**
  2228. * G86: Prusa3D specific: Disable babystep correction after home.
  2229. * This G-code will be performed at the start of a calibration script.
  2230. */
  2231. case 86:
  2232. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2233. break;
  2234. /**
  2235. * G87: Prusa3D specific: Enable babystep correction after home
  2236. * This G-code will be performed at the end of a calibration script.
  2237. */
  2238. case 87:
  2239. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2240. break;
  2241. /**
  2242. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2243. */
  2244. case 88:
  2245. break;
  2246. #endif // ENABLE_MESH_BED_LEVELING
  2247. case 90: // G90
  2248. relative_mode = false;
  2249. break;
  2250. case 91: // G91
  2251. relative_mode = true;
  2252. break;
  2253. case 92: // G92
  2254. if(!code_seen(axis_codes[E_AXIS]))
  2255. st_synchronize();
  2256. for(int8_t i=0; i < NUM_AXIS; i++) {
  2257. if(code_seen(axis_codes[i])) {
  2258. if(i == E_AXIS) {
  2259. current_position[i] = code_value();
  2260. plan_set_e_position(current_position[E_AXIS]);
  2261. }
  2262. else {
  2263. current_position[i] = code_value()+add_homing[i];
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. }
  2266. }
  2267. }
  2268. break;
  2269. case 98:
  2270. farm_no = 21;
  2271. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2272. farm_mode = true;
  2273. break;
  2274. case 99:
  2275. farm_no = 0;
  2276. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2277. farm_mode = false;
  2278. break;
  2279. }
  2280. } // end if(code_seen('G'))
  2281. else if(code_seen('M'))
  2282. {
  2283. switch( (int)code_value() )
  2284. {
  2285. #ifdef ULTIPANEL
  2286. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2287. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2288. {
  2289. char *src = strchr_pointer + 2;
  2290. codenum = 0;
  2291. bool hasP = false, hasS = false;
  2292. if (code_seen('P')) {
  2293. codenum = code_value(); // milliseconds to wait
  2294. hasP = codenum > 0;
  2295. }
  2296. if (code_seen('S')) {
  2297. codenum = code_value() * 1000; // seconds to wait
  2298. hasS = codenum > 0;
  2299. }
  2300. starpos = strchr(src, '*');
  2301. if (starpos != NULL) *(starpos) = '\0';
  2302. while (*src == ' ') ++src;
  2303. if (!hasP && !hasS && *src != '\0') {
  2304. lcd_setstatus(src);
  2305. } else {
  2306. LCD_MESSAGERPGM(MSG_USERWAIT);
  2307. }
  2308. lcd_ignore_click();
  2309. st_synchronize();
  2310. previous_millis_cmd = millis();
  2311. if (codenum > 0){
  2312. codenum += millis(); // keep track of when we started waiting
  2313. while(millis() < codenum && !lcd_clicked()){
  2314. manage_heater();
  2315. manage_inactivity();
  2316. lcd_update();
  2317. }
  2318. lcd_ignore_click(false);
  2319. }else{
  2320. if (!lcd_detected())
  2321. break;
  2322. while(!lcd_clicked()){
  2323. manage_heater();
  2324. manage_inactivity();
  2325. lcd_update();
  2326. }
  2327. }
  2328. if (IS_SD_PRINTING)
  2329. LCD_MESSAGERPGM(MSG_RESUMING);
  2330. else
  2331. LCD_MESSAGERPGM(WELCOME_MSG);
  2332. }
  2333. break;
  2334. #endif
  2335. case 17:
  2336. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2337. enable_x();
  2338. enable_y();
  2339. enable_z();
  2340. enable_e0();
  2341. enable_e1();
  2342. enable_e2();
  2343. break;
  2344. #ifdef SDSUPPORT
  2345. case 20: // M20 - list SD card
  2346. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2347. card.ls();
  2348. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2349. break;
  2350. case 21: // M21 - init SD card
  2351. card.initsd();
  2352. break;
  2353. case 22: //M22 - release SD card
  2354. card.release();
  2355. break;
  2356. case 23: //M23 - Select file
  2357. starpos = (strchr(strchr_pointer + 4,'*'));
  2358. if(starpos!=NULL)
  2359. *(starpos)='\0';
  2360. card.openFile(strchr_pointer + 4,true);
  2361. break;
  2362. case 24: //M24 - Start SD print
  2363. card.startFileprint();
  2364. starttime=millis();
  2365. break;
  2366. case 25: //M25 - Pause SD print
  2367. card.pauseSDPrint();
  2368. break;
  2369. case 26: //M26 - Set SD index
  2370. if(card.cardOK && code_seen('S')) {
  2371. card.setIndex(code_value_long());
  2372. }
  2373. break;
  2374. case 27: //M27 - Get SD status
  2375. card.getStatus();
  2376. break;
  2377. case 28: //M28 - Start SD write
  2378. starpos = (strchr(strchr_pointer + 4,'*'));
  2379. if(starpos != NULL){
  2380. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2381. strchr_pointer = strchr(npos,' ') + 1;
  2382. *(starpos) = '\0';
  2383. }
  2384. card.openFile(strchr_pointer+4,false);
  2385. break;
  2386. case 29: //M29 - Stop SD write
  2387. //processed in write to file routine above
  2388. //card,saving = false;
  2389. break;
  2390. case 30: //M30 <filename> Delete File
  2391. if (card.cardOK){
  2392. card.closefile();
  2393. starpos = (strchr(strchr_pointer + 4,'*'));
  2394. if(starpos != NULL){
  2395. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2396. strchr_pointer = strchr(npos,' ') + 1;
  2397. *(starpos) = '\0';
  2398. }
  2399. card.removeFile(strchr_pointer + 4);
  2400. }
  2401. break;
  2402. case 32: //M32 - Select file and start SD print
  2403. {
  2404. if(card.sdprinting) {
  2405. st_synchronize();
  2406. }
  2407. starpos = (strchr(strchr_pointer + 4,'*'));
  2408. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2409. if(namestartpos==NULL)
  2410. {
  2411. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2412. }
  2413. else
  2414. namestartpos++; //to skip the '!'
  2415. if(starpos!=NULL)
  2416. *(starpos)='\0';
  2417. bool call_procedure=(code_seen('P'));
  2418. if(strchr_pointer>namestartpos)
  2419. call_procedure=false; //false alert, 'P' found within filename
  2420. if( card.cardOK )
  2421. {
  2422. card.openFile(namestartpos,true,!call_procedure);
  2423. if(code_seen('S'))
  2424. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2425. card.setIndex(code_value_long());
  2426. card.startFileprint();
  2427. if(!call_procedure)
  2428. starttime=millis(); //procedure calls count as normal print time.
  2429. }
  2430. } break;
  2431. case 928: //M928 - Start SD write
  2432. starpos = (strchr(strchr_pointer + 5,'*'));
  2433. if(starpos != NULL){
  2434. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2435. strchr_pointer = strchr(npos,' ') + 1;
  2436. *(starpos) = '\0';
  2437. }
  2438. card.openLogFile(strchr_pointer+5);
  2439. break;
  2440. #endif //SDSUPPORT
  2441. case 31: //M31 take time since the start of the SD print or an M109 command
  2442. {
  2443. stoptime=millis();
  2444. char time[30];
  2445. unsigned long t=(stoptime-starttime)/1000;
  2446. int sec,min;
  2447. min=t/60;
  2448. sec=t%60;
  2449. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2450. SERIAL_ECHO_START;
  2451. SERIAL_ECHOLN(time);
  2452. lcd_setstatus(time);
  2453. autotempShutdown();
  2454. }
  2455. break;
  2456. case 42: //M42 -Change pin status via gcode
  2457. if (code_seen('S'))
  2458. {
  2459. int pin_status = code_value();
  2460. int pin_number = LED_PIN;
  2461. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2462. pin_number = code_value();
  2463. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2464. {
  2465. if (sensitive_pins[i] == pin_number)
  2466. {
  2467. pin_number = -1;
  2468. break;
  2469. }
  2470. }
  2471. #if defined(FAN_PIN) && FAN_PIN > -1
  2472. if (pin_number == FAN_PIN)
  2473. fanSpeed = pin_status;
  2474. #endif
  2475. if (pin_number > -1)
  2476. {
  2477. pinMode(pin_number, OUTPUT);
  2478. digitalWrite(pin_number, pin_status);
  2479. analogWrite(pin_number, pin_status);
  2480. }
  2481. }
  2482. break;
  2483. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2484. // Reset the skew and offset in both RAM and EEPROM.
  2485. reset_bed_offset_and_skew();
  2486. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2487. // the planner will not perform any adjustments in the XY plane.
  2488. // Wait for the motors to stop and update the current position with the absolute values.
  2489. world2machine_revert_to_uncorrected();
  2490. break;
  2491. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2492. {
  2493. // Disable the default update procedure of the display. We will do a modal dialog.
  2494. lcd_update_enable(false);
  2495. // Let the planner use the uncorrected coordinates.
  2496. mbl.reset();
  2497. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2498. // the planner will not perform any adjustments in the XY plane.
  2499. // Wait for the motors to stop and update the current position with the absolute values.
  2500. world2machine_revert_to_uncorrected();
  2501. // Reset the baby step value applied without moving the axes.
  2502. babystep_reset();
  2503. // Mark all axes as in a need for homing.
  2504. memset(axis_known_position, 0, sizeof(axis_known_position));
  2505. // Only Z calibration?
  2506. bool onlyZ = code_seen('Z');
  2507. // Let the user move the Z axes up to the end stoppers.
  2508. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2509. refresh_cmd_timeout();
  2510. // Move the print head close to the bed.
  2511. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2513. st_synchronize();
  2514. // Home in the XY plane.
  2515. set_destination_to_current();
  2516. setup_for_endstop_move();
  2517. home_xy();
  2518. int8_t verbosity_level = 0;
  2519. if (code_seen('V')) {
  2520. // Just 'V' without a number counts as V1.
  2521. char c = strchr_pointer[1];
  2522. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2523. }
  2524. if (onlyZ) {
  2525. clean_up_after_endstop_move();
  2526. // Z only calibration.
  2527. // Load the machine correction matrix
  2528. world2machine_initialize();
  2529. // and correct the current_position to match the transformed coordinate system.
  2530. world2machine_update_current();
  2531. //FIXME
  2532. bool result = sample_mesh_and_store_reference();
  2533. // if (result) babystep_apply();
  2534. } else {
  2535. // Reset the baby step value and the baby step applied flag.
  2536. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2537. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2538. // Complete XYZ calibration.
  2539. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2540. uint8_t point_too_far_mask = 0;
  2541. clean_up_after_endstop_move();
  2542. // Print head up.
  2543. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2545. st_synchronize();
  2546. if (result >= 0) {
  2547. // Second half: The fine adjustment.
  2548. // Let the planner use the uncorrected coordinates.
  2549. mbl.reset();
  2550. world2machine_reset();
  2551. // Home in the XY plane.
  2552. setup_for_endstop_move();
  2553. home_xy();
  2554. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2555. clean_up_after_endstop_move();
  2556. // Print head up.
  2557. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2559. st_synchronize();
  2560. // if (result >= 0) babystep_apply();
  2561. }
  2562. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2563. }
  2564. } else {
  2565. // Timeouted.
  2566. }
  2567. lcd_update_enable(true);
  2568. break;
  2569. }
  2570. /*
  2571. case 46:
  2572. {
  2573. // M46: Prusa3D: Show the assigned IP address.
  2574. uint8_t ip[4];
  2575. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2576. if (hasIP) {
  2577. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2578. SERIAL_ECHO(int(ip[0]));
  2579. SERIAL_ECHOPGM(".");
  2580. SERIAL_ECHO(int(ip[1]));
  2581. SERIAL_ECHOPGM(".");
  2582. SERIAL_ECHO(int(ip[2]));
  2583. SERIAL_ECHOPGM(".");
  2584. SERIAL_ECHO(int(ip[3]));
  2585. SERIAL_ECHOLNPGM("");
  2586. } else {
  2587. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2588. }
  2589. break;
  2590. }
  2591. */
  2592. case 47:
  2593. // M47: Prusa3D: Show end stops dialog on the display.
  2594. lcd_diag_show_end_stops();
  2595. break;
  2596. #if 0
  2597. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2598. {
  2599. // Disable the default update procedure of the display. We will do a modal dialog.
  2600. lcd_update_enable(false);
  2601. // Let the planner use the uncorrected coordinates.
  2602. mbl.reset();
  2603. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2604. // the planner will not perform any adjustments in the XY plane.
  2605. // Wait for the motors to stop and update the current position with the absolute values.
  2606. world2machine_revert_to_uncorrected();
  2607. // Move the print head close to the bed.
  2608. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2610. st_synchronize();
  2611. // Home in the XY plane.
  2612. set_destination_to_current();
  2613. setup_for_endstop_move();
  2614. home_xy();
  2615. int8_t verbosity_level = 0;
  2616. if (code_seen('V')) {
  2617. // Just 'V' without a number counts as V1.
  2618. char c = strchr_pointer[1];
  2619. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2620. }
  2621. bool success = scan_bed_induction_points(verbosity_level);
  2622. clean_up_after_endstop_move();
  2623. // Print head up.
  2624. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2626. st_synchronize();
  2627. lcd_update_enable(true);
  2628. break;
  2629. }
  2630. #endif
  2631. // M48 Z-Probe repeatability measurement function.
  2632. //
  2633. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2634. //
  2635. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2636. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2637. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2638. // regenerated.
  2639. //
  2640. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2641. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2642. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2643. //
  2644. #ifdef ENABLE_AUTO_BED_LEVELING
  2645. #ifdef Z_PROBE_REPEATABILITY_TEST
  2646. case 48: // M48 Z-Probe repeatability
  2647. {
  2648. #if Z_MIN_PIN == -1
  2649. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2650. #endif
  2651. double sum=0.0;
  2652. double mean=0.0;
  2653. double sigma=0.0;
  2654. double sample_set[50];
  2655. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2656. double X_current, Y_current, Z_current;
  2657. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2658. if (code_seen('V') || code_seen('v')) {
  2659. verbose_level = code_value();
  2660. if (verbose_level<0 || verbose_level>4 ) {
  2661. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2662. goto Sigma_Exit;
  2663. }
  2664. }
  2665. if (verbose_level > 0) {
  2666. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2667. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2668. }
  2669. if (code_seen('n')) {
  2670. n_samples = code_value();
  2671. if (n_samples<4 || n_samples>50 ) {
  2672. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2673. goto Sigma_Exit;
  2674. }
  2675. }
  2676. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2677. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2678. Z_current = st_get_position_mm(Z_AXIS);
  2679. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2680. ext_position = st_get_position_mm(E_AXIS);
  2681. if (code_seen('X') || code_seen('x') ) {
  2682. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2683. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2684. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2685. goto Sigma_Exit;
  2686. }
  2687. }
  2688. if (code_seen('Y') || code_seen('y') ) {
  2689. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2690. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2691. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2692. goto Sigma_Exit;
  2693. }
  2694. }
  2695. if (code_seen('L') || code_seen('l') ) {
  2696. n_legs = code_value();
  2697. if ( n_legs==1 )
  2698. n_legs = 2;
  2699. if ( n_legs<0 || n_legs>15 ) {
  2700. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2701. goto Sigma_Exit;
  2702. }
  2703. }
  2704. //
  2705. // Do all the preliminary setup work. First raise the probe.
  2706. //
  2707. st_synchronize();
  2708. plan_bed_level_matrix.set_to_identity();
  2709. plan_buffer_line( X_current, Y_current, Z_start_location,
  2710. ext_position,
  2711. homing_feedrate[Z_AXIS]/60,
  2712. active_extruder);
  2713. st_synchronize();
  2714. //
  2715. // Now get everything to the specified probe point So we can safely do a probe to
  2716. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2717. // use that as a starting point for each probe.
  2718. //
  2719. if (verbose_level > 2)
  2720. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2721. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2722. ext_position,
  2723. homing_feedrate[X_AXIS]/60,
  2724. active_extruder);
  2725. st_synchronize();
  2726. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2727. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2728. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2729. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2730. //
  2731. // OK, do the inital probe to get us close to the bed.
  2732. // Then retrace the right amount and use that in subsequent probes
  2733. //
  2734. setup_for_endstop_move();
  2735. run_z_probe();
  2736. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2737. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2738. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2739. ext_position,
  2740. homing_feedrate[X_AXIS]/60,
  2741. active_extruder);
  2742. st_synchronize();
  2743. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2744. for( n=0; n<n_samples; n++) {
  2745. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2746. if ( n_legs) {
  2747. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2748. int rotational_direction, l;
  2749. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2750. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2751. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2752. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2753. //SERIAL_ECHOPAIR(" theta: ",theta);
  2754. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2755. //SERIAL_PROTOCOLLNPGM("");
  2756. for( l=0; l<n_legs-1; l++) {
  2757. if (rotational_direction==1)
  2758. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2759. else
  2760. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2761. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2762. if ( radius<0.0 )
  2763. radius = -radius;
  2764. X_current = X_probe_location + cos(theta) * radius;
  2765. Y_current = Y_probe_location + sin(theta) * radius;
  2766. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2767. X_current = X_MIN_POS;
  2768. if ( X_current>X_MAX_POS)
  2769. X_current = X_MAX_POS;
  2770. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2771. Y_current = Y_MIN_POS;
  2772. if ( Y_current>Y_MAX_POS)
  2773. Y_current = Y_MAX_POS;
  2774. if (verbose_level>3 ) {
  2775. SERIAL_ECHOPAIR("x: ", X_current);
  2776. SERIAL_ECHOPAIR("y: ", Y_current);
  2777. SERIAL_PROTOCOLLNPGM("");
  2778. }
  2779. do_blocking_move_to( X_current, Y_current, Z_current );
  2780. }
  2781. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2782. }
  2783. setup_for_endstop_move();
  2784. run_z_probe();
  2785. sample_set[n] = current_position[Z_AXIS];
  2786. //
  2787. // Get the current mean for the data points we have so far
  2788. //
  2789. sum=0.0;
  2790. for( j=0; j<=n; j++) {
  2791. sum = sum + sample_set[j];
  2792. }
  2793. mean = sum / (double (n+1));
  2794. //
  2795. // Now, use that mean to calculate the standard deviation for the
  2796. // data points we have so far
  2797. //
  2798. sum=0.0;
  2799. for( j=0; j<=n; j++) {
  2800. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2801. }
  2802. sigma = sqrt( sum / (double (n+1)) );
  2803. if (verbose_level > 1) {
  2804. SERIAL_PROTOCOL(n+1);
  2805. SERIAL_PROTOCOL(" of ");
  2806. SERIAL_PROTOCOL(n_samples);
  2807. SERIAL_PROTOCOLPGM(" z: ");
  2808. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2809. }
  2810. if (verbose_level > 2) {
  2811. SERIAL_PROTOCOL(" mean: ");
  2812. SERIAL_PROTOCOL_F(mean,6);
  2813. SERIAL_PROTOCOL(" sigma: ");
  2814. SERIAL_PROTOCOL_F(sigma,6);
  2815. }
  2816. if (verbose_level > 0)
  2817. SERIAL_PROTOCOLPGM("\n");
  2818. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2819. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2820. st_synchronize();
  2821. }
  2822. delay(1000);
  2823. clean_up_after_endstop_move();
  2824. // enable_endstops(true);
  2825. if (verbose_level > 0) {
  2826. SERIAL_PROTOCOLPGM("Mean: ");
  2827. SERIAL_PROTOCOL_F(mean, 6);
  2828. SERIAL_PROTOCOLPGM("\n");
  2829. }
  2830. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2831. SERIAL_PROTOCOL_F(sigma, 6);
  2832. SERIAL_PROTOCOLPGM("\n\n");
  2833. Sigma_Exit:
  2834. break;
  2835. }
  2836. #endif // Z_PROBE_REPEATABILITY_TEST
  2837. #endif // ENABLE_AUTO_BED_LEVELING
  2838. case 104: // M104
  2839. if(setTargetedHotend(104)){
  2840. break;
  2841. }
  2842. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2843. setWatch();
  2844. break;
  2845. case 112: // M112 -Emergency Stop
  2846. kill();
  2847. break;
  2848. case 140: // M140 set bed temp
  2849. if (code_seen('S')) setTargetBed(code_value());
  2850. break;
  2851. case 105 : // M105
  2852. if(setTargetedHotend(105)){
  2853. break;
  2854. }
  2855. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2856. SERIAL_PROTOCOLPGM("ok T:");
  2857. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2858. SERIAL_PROTOCOLPGM(" /");
  2859. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2860. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2861. SERIAL_PROTOCOLPGM(" B:");
  2862. SERIAL_PROTOCOL_F(degBed(),1);
  2863. SERIAL_PROTOCOLPGM(" /");
  2864. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2865. #endif //TEMP_BED_PIN
  2866. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2867. SERIAL_PROTOCOLPGM(" T");
  2868. SERIAL_PROTOCOL(cur_extruder);
  2869. SERIAL_PROTOCOLPGM(":");
  2870. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2871. SERIAL_PROTOCOLPGM(" /");
  2872. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2873. }
  2874. #else
  2875. SERIAL_ERROR_START;
  2876. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2877. #endif
  2878. SERIAL_PROTOCOLPGM(" @:");
  2879. #ifdef EXTRUDER_WATTS
  2880. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2881. SERIAL_PROTOCOLPGM("W");
  2882. #else
  2883. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2884. #endif
  2885. SERIAL_PROTOCOLPGM(" B@:");
  2886. #ifdef BED_WATTS
  2887. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2888. SERIAL_PROTOCOLPGM("W");
  2889. #else
  2890. SERIAL_PROTOCOL(getHeaterPower(-1));
  2891. #endif
  2892. #ifdef SHOW_TEMP_ADC_VALUES
  2893. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2894. SERIAL_PROTOCOLPGM(" ADC B:");
  2895. SERIAL_PROTOCOL_F(degBed(),1);
  2896. SERIAL_PROTOCOLPGM("C->");
  2897. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2898. #endif
  2899. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2900. SERIAL_PROTOCOLPGM(" T");
  2901. SERIAL_PROTOCOL(cur_extruder);
  2902. SERIAL_PROTOCOLPGM(":");
  2903. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2904. SERIAL_PROTOCOLPGM("C->");
  2905. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2906. }
  2907. #endif
  2908. SERIAL_PROTOCOLLN("");
  2909. return;
  2910. break;
  2911. case 109:
  2912. {// M109 - Wait for extruder heater to reach target.
  2913. if(setTargetedHotend(109)){
  2914. break;
  2915. }
  2916. LCD_MESSAGERPGM(MSG_HEATING);
  2917. heating_status = 1;
  2918. if (farm_mode) { prusa_statistics(1); };
  2919. #ifdef AUTOTEMP
  2920. autotemp_enabled=false;
  2921. #endif
  2922. if (code_seen('S')) {
  2923. setTargetHotend(code_value(), tmp_extruder);
  2924. CooldownNoWait = true;
  2925. } else if (code_seen('R')) {
  2926. setTargetHotend(code_value(), tmp_extruder);
  2927. CooldownNoWait = false;
  2928. }
  2929. #ifdef AUTOTEMP
  2930. if (code_seen('S')) autotemp_min=code_value();
  2931. if (code_seen('B')) autotemp_max=code_value();
  2932. if (code_seen('F'))
  2933. {
  2934. autotemp_factor=code_value();
  2935. autotemp_enabled=true;
  2936. }
  2937. #endif
  2938. setWatch();
  2939. codenum = millis();
  2940. /* See if we are heating up or cooling down */
  2941. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2942. cancel_heatup = false;
  2943. #ifdef TEMP_RESIDENCY_TIME
  2944. long residencyStart;
  2945. residencyStart = -1;
  2946. /* continue to loop until we have reached the target temp
  2947. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2948. while((!cancel_heatup)&&((residencyStart == -1) ||
  2949. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2950. #else
  2951. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2952. #endif //TEMP_RESIDENCY_TIME
  2953. if( (millis() - codenum) > 1000UL )
  2954. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2955. SERIAL_PROTOCOLPGM("T:");
  2956. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2957. SERIAL_PROTOCOLPGM(" E:");
  2958. SERIAL_PROTOCOL((int)tmp_extruder);
  2959. #ifdef TEMP_RESIDENCY_TIME
  2960. SERIAL_PROTOCOLPGM(" W:");
  2961. if(residencyStart > -1)
  2962. {
  2963. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2964. SERIAL_PROTOCOLLN( codenum );
  2965. }
  2966. else
  2967. {
  2968. SERIAL_PROTOCOLLN( "?" );
  2969. }
  2970. #else
  2971. SERIAL_PROTOCOLLN("");
  2972. #endif
  2973. codenum = millis();
  2974. }
  2975. manage_heater();
  2976. manage_inactivity();
  2977. lcd_update();
  2978. #ifdef TEMP_RESIDENCY_TIME
  2979. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2980. or when current temp falls outside the hysteresis after target temp was reached */
  2981. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2982. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2983. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2984. {
  2985. residencyStart = millis();
  2986. }
  2987. #endif //TEMP_RESIDENCY_TIME
  2988. }
  2989. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2990. heating_status = 2;
  2991. if (farm_mode) { prusa_statistics(2); };
  2992. starttime=millis();
  2993. previous_millis_cmd = millis();
  2994. }
  2995. break;
  2996. case 190: // M190 - Wait for bed heater to reach target.
  2997. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2998. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2999. heating_status = 3;
  3000. if (farm_mode) { prusa_statistics(1); };
  3001. if (code_seen('S'))
  3002. {
  3003. setTargetBed(code_value());
  3004. CooldownNoWait = true;
  3005. }
  3006. else if (code_seen('R'))
  3007. {
  3008. setTargetBed(code_value());
  3009. CooldownNoWait = false;
  3010. }
  3011. codenum = millis();
  3012. cancel_heatup = false;
  3013. target_direction = isHeatingBed(); // true if heating, false if cooling
  3014. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3015. {
  3016. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3017. {
  3018. float tt=degHotend(active_extruder);
  3019. SERIAL_PROTOCOLPGM("T:");
  3020. SERIAL_PROTOCOL(tt);
  3021. SERIAL_PROTOCOLPGM(" E:");
  3022. SERIAL_PROTOCOL((int)active_extruder);
  3023. SERIAL_PROTOCOLPGM(" B:");
  3024. SERIAL_PROTOCOL_F(degBed(),1);
  3025. SERIAL_PROTOCOLLN("");
  3026. codenum = millis();
  3027. }
  3028. manage_heater();
  3029. manage_inactivity();
  3030. lcd_update();
  3031. }
  3032. LCD_MESSAGERPGM(MSG_BED_DONE);
  3033. heating_status = 4;
  3034. previous_millis_cmd = millis();
  3035. #endif
  3036. break;
  3037. #if defined(FAN_PIN) && FAN_PIN > -1
  3038. case 106: //M106 Fan On
  3039. if (code_seen('S')){
  3040. fanSpeed=constrain(code_value(),0,255);
  3041. }
  3042. else {
  3043. fanSpeed=255;
  3044. }
  3045. break;
  3046. case 107: //M107 Fan Off
  3047. fanSpeed = 0;
  3048. break;
  3049. #endif //FAN_PIN
  3050. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3051. case 80: // M80 - Turn on Power Supply
  3052. SET_OUTPUT(PS_ON_PIN); //GND
  3053. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3054. // If you have a switch on suicide pin, this is useful
  3055. // if you want to start another print with suicide feature after
  3056. // a print without suicide...
  3057. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3058. SET_OUTPUT(SUICIDE_PIN);
  3059. WRITE(SUICIDE_PIN, HIGH);
  3060. #endif
  3061. #ifdef ULTIPANEL
  3062. powersupply = true;
  3063. LCD_MESSAGERPGM(WELCOME_MSG);
  3064. lcd_update();
  3065. #endif
  3066. break;
  3067. #endif
  3068. case 81: // M81 - Turn off Power Supply
  3069. disable_heater();
  3070. st_synchronize();
  3071. disable_e0();
  3072. disable_e1();
  3073. disable_e2();
  3074. finishAndDisableSteppers();
  3075. fanSpeed = 0;
  3076. delay(1000); // Wait a little before to switch off
  3077. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3078. st_synchronize();
  3079. suicide();
  3080. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3081. SET_OUTPUT(PS_ON_PIN);
  3082. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3083. #endif
  3084. #ifdef ULTIPANEL
  3085. powersupply = false;
  3086. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3087. /*
  3088. MACHNAME = "Prusa i3"
  3089. MSGOFF = "Vypnuto"
  3090. "Prusai3"" ""vypnuto""."
  3091. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3092. */
  3093. lcd_update();
  3094. #endif
  3095. break;
  3096. case 82:
  3097. axis_relative_modes[3] = false;
  3098. break;
  3099. case 83:
  3100. axis_relative_modes[3] = true;
  3101. break;
  3102. case 18: //compatibility
  3103. case 84: // M84
  3104. if(code_seen('S')){
  3105. stepper_inactive_time = code_value() * 1000;
  3106. }
  3107. else
  3108. {
  3109. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3110. if(all_axis)
  3111. {
  3112. st_synchronize();
  3113. disable_e0();
  3114. disable_e1();
  3115. disable_e2();
  3116. finishAndDisableSteppers();
  3117. }
  3118. else
  3119. {
  3120. st_synchronize();
  3121. if(code_seen('X')) disable_x();
  3122. if(code_seen('Y')) disable_y();
  3123. if(code_seen('Z')) disable_z();
  3124. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3125. if(code_seen('E')) {
  3126. disable_e0();
  3127. disable_e1();
  3128. disable_e2();
  3129. }
  3130. #endif
  3131. }
  3132. }
  3133. break;
  3134. case 85: // M85
  3135. if(code_seen('S')) {
  3136. max_inactive_time = code_value() * 1000;
  3137. }
  3138. break;
  3139. case 92: // M92
  3140. for(int8_t i=0; i < NUM_AXIS; i++)
  3141. {
  3142. if(code_seen(axis_codes[i]))
  3143. {
  3144. if(i == 3) { // E
  3145. float value = code_value();
  3146. if(value < 20.0) {
  3147. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3148. max_jerk[E_AXIS] *= factor;
  3149. max_feedrate[i] *= factor;
  3150. axis_steps_per_sqr_second[i] *= factor;
  3151. }
  3152. axis_steps_per_unit[i] = value;
  3153. }
  3154. else {
  3155. axis_steps_per_unit[i] = code_value();
  3156. }
  3157. }
  3158. }
  3159. break;
  3160. case 115: // M115
  3161. if (code_seen('V')) {
  3162. // Report the Prusa version number.
  3163. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3164. } else if (code_seen('U')) {
  3165. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3166. // pause the print and ask the user to upgrade the firmware.
  3167. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3168. } else {
  3169. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3170. }
  3171. break;
  3172. case 117: // M117 display message
  3173. starpos = (strchr(strchr_pointer + 5,'*'));
  3174. if(starpos!=NULL)
  3175. *(starpos)='\0';
  3176. lcd_setstatus(strchr_pointer + 5);
  3177. break;
  3178. case 114: // M114
  3179. SERIAL_PROTOCOLPGM("X:");
  3180. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3181. SERIAL_PROTOCOLPGM(" Y:");
  3182. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3183. SERIAL_PROTOCOLPGM(" Z:");
  3184. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3185. SERIAL_PROTOCOLPGM(" E:");
  3186. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3187. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3188. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3189. SERIAL_PROTOCOLPGM(" Y:");
  3190. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3191. SERIAL_PROTOCOLPGM(" Z:");
  3192. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3193. SERIAL_PROTOCOLLN("");
  3194. break;
  3195. case 120: // M120
  3196. enable_endstops(false) ;
  3197. break;
  3198. case 121: // M121
  3199. enable_endstops(true) ;
  3200. break;
  3201. case 119: // M119
  3202. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3203. SERIAL_PROTOCOLLN("");
  3204. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3205. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3206. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3207. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3208. }else{
  3209. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3210. }
  3211. SERIAL_PROTOCOLLN("");
  3212. #endif
  3213. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3214. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3215. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3216. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3217. }else{
  3218. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3219. }
  3220. SERIAL_PROTOCOLLN("");
  3221. #endif
  3222. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3223. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3224. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3225. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3226. }else{
  3227. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3228. }
  3229. SERIAL_PROTOCOLLN("");
  3230. #endif
  3231. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3232. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3233. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3234. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3235. }else{
  3236. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3237. }
  3238. SERIAL_PROTOCOLLN("");
  3239. #endif
  3240. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3241. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3242. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3243. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3244. }else{
  3245. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3246. }
  3247. SERIAL_PROTOCOLLN("");
  3248. #endif
  3249. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3250. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3251. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3252. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3253. }else{
  3254. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3255. }
  3256. SERIAL_PROTOCOLLN("");
  3257. #endif
  3258. break;
  3259. //TODO: update for all axis, use for loop
  3260. #ifdef BLINKM
  3261. case 150: // M150
  3262. {
  3263. byte red;
  3264. byte grn;
  3265. byte blu;
  3266. if(code_seen('R')) red = code_value();
  3267. if(code_seen('U')) grn = code_value();
  3268. if(code_seen('B')) blu = code_value();
  3269. SendColors(red,grn,blu);
  3270. }
  3271. break;
  3272. #endif //BLINKM
  3273. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3274. {
  3275. tmp_extruder = active_extruder;
  3276. if(code_seen('T')) {
  3277. tmp_extruder = code_value();
  3278. if(tmp_extruder >= EXTRUDERS) {
  3279. SERIAL_ECHO_START;
  3280. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3281. break;
  3282. }
  3283. }
  3284. float area = .0;
  3285. if(code_seen('D')) {
  3286. float diameter = (float)code_value();
  3287. if (diameter == 0.0) {
  3288. // setting any extruder filament size disables volumetric on the assumption that
  3289. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3290. // for all extruders
  3291. volumetric_enabled = false;
  3292. } else {
  3293. filament_size[tmp_extruder] = (float)code_value();
  3294. // make sure all extruders have some sane value for the filament size
  3295. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3296. #if EXTRUDERS > 1
  3297. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3298. #if EXTRUDERS > 2
  3299. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3300. #endif
  3301. #endif
  3302. volumetric_enabled = true;
  3303. }
  3304. } else {
  3305. //reserved for setting filament diameter via UFID or filament measuring device
  3306. break;
  3307. }
  3308. calculate_volumetric_multipliers();
  3309. }
  3310. break;
  3311. case 201: // M201
  3312. for(int8_t i=0; i < NUM_AXIS; i++)
  3313. {
  3314. if(code_seen(axis_codes[i]))
  3315. {
  3316. max_acceleration_units_per_sq_second[i] = code_value();
  3317. }
  3318. }
  3319. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3320. reset_acceleration_rates();
  3321. break;
  3322. #if 0 // Not used for Sprinter/grbl gen6
  3323. case 202: // M202
  3324. for(int8_t i=0; i < NUM_AXIS; i++) {
  3325. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3326. }
  3327. break;
  3328. #endif
  3329. case 203: // M203 max feedrate mm/sec
  3330. for(int8_t i=0; i < NUM_AXIS; i++) {
  3331. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3332. }
  3333. break;
  3334. case 204: // M204 acclereration S normal moves T filmanent only moves
  3335. {
  3336. if(code_seen('S')) acceleration = code_value() ;
  3337. if(code_seen('T')) retract_acceleration = code_value() ;
  3338. }
  3339. break;
  3340. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3341. {
  3342. if(code_seen('S')) minimumfeedrate = code_value();
  3343. if(code_seen('T')) mintravelfeedrate = code_value();
  3344. if(code_seen('B')) minsegmenttime = code_value() ;
  3345. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3346. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3347. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3348. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3349. }
  3350. break;
  3351. case 206: // M206 additional homing offset
  3352. for(int8_t i=0; i < 3; i++)
  3353. {
  3354. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3355. }
  3356. break;
  3357. #ifdef FWRETRACT
  3358. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3359. {
  3360. if(code_seen('S'))
  3361. {
  3362. retract_length = code_value() ;
  3363. }
  3364. if(code_seen('F'))
  3365. {
  3366. retract_feedrate = code_value()/60 ;
  3367. }
  3368. if(code_seen('Z'))
  3369. {
  3370. retract_zlift = code_value() ;
  3371. }
  3372. }break;
  3373. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3374. {
  3375. if(code_seen('S'))
  3376. {
  3377. retract_recover_length = code_value() ;
  3378. }
  3379. if(code_seen('F'))
  3380. {
  3381. retract_recover_feedrate = code_value()/60 ;
  3382. }
  3383. }break;
  3384. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3385. {
  3386. if(code_seen('S'))
  3387. {
  3388. int t= code_value() ;
  3389. switch(t)
  3390. {
  3391. case 0:
  3392. {
  3393. autoretract_enabled=false;
  3394. retracted[0]=false;
  3395. #if EXTRUDERS > 1
  3396. retracted[1]=false;
  3397. #endif
  3398. #if EXTRUDERS > 2
  3399. retracted[2]=false;
  3400. #endif
  3401. }break;
  3402. case 1:
  3403. {
  3404. autoretract_enabled=true;
  3405. retracted[0]=false;
  3406. #if EXTRUDERS > 1
  3407. retracted[1]=false;
  3408. #endif
  3409. #if EXTRUDERS > 2
  3410. retracted[2]=false;
  3411. #endif
  3412. }break;
  3413. default:
  3414. SERIAL_ECHO_START;
  3415. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3416. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3417. SERIAL_ECHOLNPGM("\"");
  3418. }
  3419. }
  3420. }break;
  3421. #endif // FWRETRACT
  3422. #if EXTRUDERS > 1
  3423. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3424. {
  3425. if(setTargetedHotend(218)){
  3426. break;
  3427. }
  3428. if(code_seen('X'))
  3429. {
  3430. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3431. }
  3432. if(code_seen('Y'))
  3433. {
  3434. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3435. }
  3436. SERIAL_ECHO_START;
  3437. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3438. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3439. {
  3440. SERIAL_ECHO(" ");
  3441. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3442. SERIAL_ECHO(",");
  3443. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3444. }
  3445. SERIAL_ECHOLN("");
  3446. }break;
  3447. #endif
  3448. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3449. {
  3450. if(code_seen('S'))
  3451. {
  3452. feedmultiply = code_value() ;
  3453. }
  3454. }
  3455. break;
  3456. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3457. {
  3458. if(code_seen('S'))
  3459. {
  3460. int tmp_code = code_value();
  3461. if (code_seen('T'))
  3462. {
  3463. if(setTargetedHotend(221)){
  3464. break;
  3465. }
  3466. extruder_multiply[tmp_extruder] = tmp_code;
  3467. }
  3468. else
  3469. {
  3470. extrudemultiply = tmp_code ;
  3471. }
  3472. }
  3473. }
  3474. break;
  3475. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3476. {
  3477. if(code_seen('P')){
  3478. int pin_number = code_value(); // pin number
  3479. int pin_state = -1; // required pin state - default is inverted
  3480. if(code_seen('S')) pin_state = code_value(); // required pin state
  3481. if(pin_state >= -1 && pin_state <= 1){
  3482. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3483. {
  3484. if (sensitive_pins[i] == pin_number)
  3485. {
  3486. pin_number = -1;
  3487. break;
  3488. }
  3489. }
  3490. if (pin_number > -1)
  3491. {
  3492. int target = LOW;
  3493. st_synchronize();
  3494. pinMode(pin_number, INPUT);
  3495. switch(pin_state){
  3496. case 1:
  3497. target = HIGH;
  3498. break;
  3499. case 0:
  3500. target = LOW;
  3501. break;
  3502. case -1:
  3503. target = !digitalRead(pin_number);
  3504. break;
  3505. }
  3506. while(digitalRead(pin_number) != target){
  3507. manage_heater();
  3508. manage_inactivity();
  3509. lcd_update();
  3510. }
  3511. }
  3512. }
  3513. }
  3514. }
  3515. break;
  3516. #if NUM_SERVOS > 0
  3517. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3518. {
  3519. int servo_index = -1;
  3520. int servo_position = 0;
  3521. if (code_seen('P'))
  3522. servo_index = code_value();
  3523. if (code_seen('S')) {
  3524. servo_position = code_value();
  3525. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3526. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3527. servos[servo_index].attach(0);
  3528. #endif
  3529. servos[servo_index].write(servo_position);
  3530. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3531. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3532. servos[servo_index].detach();
  3533. #endif
  3534. }
  3535. else {
  3536. SERIAL_ECHO_START;
  3537. SERIAL_ECHO("Servo ");
  3538. SERIAL_ECHO(servo_index);
  3539. SERIAL_ECHOLN(" out of range");
  3540. }
  3541. }
  3542. else if (servo_index >= 0) {
  3543. SERIAL_PROTOCOL(MSG_OK);
  3544. SERIAL_PROTOCOL(" Servo ");
  3545. SERIAL_PROTOCOL(servo_index);
  3546. SERIAL_PROTOCOL(": ");
  3547. SERIAL_PROTOCOL(servos[servo_index].read());
  3548. SERIAL_PROTOCOLLN("");
  3549. }
  3550. }
  3551. break;
  3552. #endif // NUM_SERVOS > 0
  3553. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3554. case 300: // M300
  3555. {
  3556. int beepS = code_seen('S') ? code_value() : 110;
  3557. int beepP = code_seen('P') ? code_value() : 1000;
  3558. if (beepS > 0)
  3559. {
  3560. #if BEEPER > 0
  3561. tone(BEEPER, beepS);
  3562. delay(beepP);
  3563. noTone(BEEPER);
  3564. #elif defined(ULTRALCD)
  3565. lcd_buzz(beepS, beepP);
  3566. #elif defined(LCD_USE_I2C_BUZZER)
  3567. lcd_buzz(beepP, beepS);
  3568. #endif
  3569. }
  3570. else
  3571. {
  3572. delay(beepP);
  3573. }
  3574. }
  3575. break;
  3576. #endif // M300
  3577. #ifdef PIDTEMP
  3578. case 301: // M301
  3579. {
  3580. if(code_seen('P')) Kp = code_value();
  3581. if(code_seen('I')) Ki = scalePID_i(code_value());
  3582. if(code_seen('D')) Kd = scalePID_d(code_value());
  3583. #ifdef PID_ADD_EXTRUSION_RATE
  3584. if(code_seen('C')) Kc = code_value();
  3585. #endif
  3586. updatePID();
  3587. SERIAL_PROTOCOL(MSG_OK);
  3588. SERIAL_PROTOCOL(" p:");
  3589. SERIAL_PROTOCOL(Kp);
  3590. SERIAL_PROTOCOL(" i:");
  3591. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3592. SERIAL_PROTOCOL(" d:");
  3593. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3594. #ifdef PID_ADD_EXTRUSION_RATE
  3595. SERIAL_PROTOCOL(" c:");
  3596. //Kc does not have scaling applied above, or in resetting defaults
  3597. SERIAL_PROTOCOL(Kc);
  3598. #endif
  3599. SERIAL_PROTOCOLLN("");
  3600. }
  3601. break;
  3602. #endif //PIDTEMP
  3603. #ifdef PIDTEMPBED
  3604. case 304: // M304
  3605. {
  3606. if(code_seen('P')) bedKp = code_value();
  3607. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3608. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3609. updatePID();
  3610. SERIAL_PROTOCOL(MSG_OK);
  3611. SERIAL_PROTOCOL(" p:");
  3612. SERIAL_PROTOCOL(bedKp);
  3613. SERIAL_PROTOCOL(" i:");
  3614. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3615. SERIAL_PROTOCOL(" d:");
  3616. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3617. SERIAL_PROTOCOLLN("");
  3618. }
  3619. break;
  3620. #endif //PIDTEMP
  3621. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3622. {
  3623. #ifdef CHDK
  3624. SET_OUTPUT(CHDK);
  3625. WRITE(CHDK, HIGH);
  3626. chdkHigh = millis();
  3627. chdkActive = true;
  3628. #else
  3629. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3630. const uint8_t NUM_PULSES=16;
  3631. const float PULSE_LENGTH=0.01524;
  3632. for(int i=0; i < NUM_PULSES; i++) {
  3633. WRITE(PHOTOGRAPH_PIN, HIGH);
  3634. _delay_ms(PULSE_LENGTH);
  3635. WRITE(PHOTOGRAPH_PIN, LOW);
  3636. _delay_ms(PULSE_LENGTH);
  3637. }
  3638. delay(7.33);
  3639. for(int i=0; i < NUM_PULSES; i++) {
  3640. WRITE(PHOTOGRAPH_PIN, HIGH);
  3641. _delay_ms(PULSE_LENGTH);
  3642. WRITE(PHOTOGRAPH_PIN, LOW);
  3643. _delay_ms(PULSE_LENGTH);
  3644. }
  3645. #endif
  3646. #endif //chdk end if
  3647. }
  3648. break;
  3649. #ifdef DOGLCD
  3650. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3651. {
  3652. if (code_seen('C')) {
  3653. lcd_setcontrast( ((int)code_value())&63 );
  3654. }
  3655. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3656. SERIAL_PROTOCOL(lcd_contrast);
  3657. SERIAL_PROTOCOLLN("");
  3658. }
  3659. break;
  3660. #endif
  3661. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3662. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3663. {
  3664. float temp = .0;
  3665. if (code_seen('S')) temp=code_value();
  3666. set_extrude_min_temp(temp);
  3667. }
  3668. break;
  3669. #endif
  3670. case 303: // M303 PID autotune
  3671. {
  3672. float temp = 150.0;
  3673. int e=0;
  3674. int c=5;
  3675. if (code_seen('E')) e=code_value();
  3676. if (e<0)
  3677. temp=70;
  3678. if (code_seen('S')) temp=code_value();
  3679. if (code_seen('C')) c=code_value();
  3680. PID_autotune(temp, e, c);
  3681. }
  3682. break;
  3683. case 400: // M400 finish all moves
  3684. {
  3685. st_synchronize();
  3686. }
  3687. break;
  3688. #ifdef FILAMENT_SENSOR
  3689. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3690. {
  3691. #if (FILWIDTH_PIN > -1)
  3692. if(code_seen('N')) filament_width_nominal=code_value();
  3693. else{
  3694. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3695. SERIAL_PROTOCOLLN(filament_width_nominal);
  3696. }
  3697. #endif
  3698. }
  3699. break;
  3700. case 405: //M405 Turn on filament sensor for control
  3701. {
  3702. if(code_seen('D')) meas_delay_cm=code_value();
  3703. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3704. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3705. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3706. {
  3707. int temp_ratio = widthFil_to_size_ratio();
  3708. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3709. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3710. }
  3711. delay_index1=0;
  3712. delay_index2=0;
  3713. }
  3714. filament_sensor = true ;
  3715. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3716. //SERIAL_PROTOCOL(filament_width_meas);
  3717. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3718. //SERIAL_PROTOCOL(extrudemultiply);
  3719. }
  3720. break;
  3721. case 406: //M406 Turn off filament sensor for control
  3722. {
  3723. filament_sensor = false ;
  3724. }
  3725. break;
  3726. case 407: //M407 Display measured filament diameter
  3727. {
  3728. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3729. SERIAL_PROTOCOLLN(filament_width_meas);
  3730. }
  3731. break;
  3732. #endif
  3733. case 500: // M500 Store settings in EEPROM
  3734. {
  3735. Config_StoreSettings();
  3736. }
  3737. break;
  3738. case 501: // M501 Read settings from EEPROM
  3739. {
  3740. Config_RetrieveSettings();
  3741. }
  3742. break;
  3743. case 502: // M502 Revert to default settings
  3744. {
  3745. Config_ResetDefault();
  3746. }
  3747. break;
  3748. case 503: // M503 print settings currently in memory
  3749. {
  3750. Config_PrintSettings();
  3751. }
  3752. break;
  3753. case 509: //M509 Force language selection
  3754. {
  3755. lcd_force_language_selection();
  3756. SERIAL_ECHO_START;
  3757. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3758. }
  3759. break;
  3760. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3761. case 540:
  3762. {
  3763. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3764. }
  3765. break;
  3766. #endif
  3767. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3768. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3769. {
  3770. float value;
  3771. if (code_seen('Z'))
  3772. {
  3773. value = code_value();
  3774. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3775. {
  3776. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3777. SERIAL_ECHO_START;
  3778. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3779. SERIAL_PROTOCOLLN("");
  3780. }
  3781. else
  3782. {
  3783. SERIAL_ECHO_START;
  3784. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3785. SERIAL_ECHORPGM(MSG_Z_MIN);
  3786. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3787. SERIAL_ECHORPGM(MSG_Z_MAX);
  3788. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3789. SERIAL_PROTOCOLLN("");
  3790. }
  3791. }
  3792. else
  3793. {
  3794. SERIAL_ECHO_START;
  3795. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3796. SERIAL_ECHO(-zprobe_zoffset);
  3797. SERIAL_PROTOCOLLN("");
  3798. }
  3799. break;
  3800. }
  3801. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3802. #ifdef FILAMENTCHANGEENABLE
  3803. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3804. {
  3805. st_synchronize();
  3806. if (farm_mode)
  3807. {
  3808. prusa_statistics(22);
  3809. }
  3810. feedmultiplyBckp=feedmultiply;
  3811. int8_t TooLowZ = 0;
  3812. float target[4];
  3813. float lastpos[4];
  3814. target[X_AXIS]=current_position[X_AXIS];
  3815. target[Y_AXIS]=current_position[Y_AXIS];
  3816. target[Z_AXIS]=current_position[Z_AXIS];
  3817. target[E_AXIS]=current_position[E_AXIS];
  3818. lastpos[X_AXIS]=current_position[X_AXIS];
  3819. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3820. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3821. lastpos[E_AXIS]=current_position[E_AXIS];
  3822. //Restract extruder
  3823. if(code_seen('E'))
  3824. {
  3825. target[E_AXIS]+= code_value();
  3826. }
  3827. else
  3828. {
  3829. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3830. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3831. #endif
  3832. }
  3833. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3834. //Lift Z
  3835. if(code_seen('Z'))
  3836. {
  3837. target[Z_AXIS]+= code_value();
  3838. }
  3839. else
  3840. {
  3841. #ifdef FILAMENTCHANGE_ZADD
  3842. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3843. if(target[Z_AXIS] < 10){
  3844. target[Z_AXIS]+= 10 ;
  3845. TooLowZ = 1;
  3846. }else{
  3847. TooLowZ = 0;
  3848. }
  3849. #endif
  3850. }
  3851. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3852. //Move XY to side
  3853. if(code_seen('X'))
  3854. {
  3855. target[X_AXIS]+= code_value();
  3856. }
  3857. else
  3858. {
  3859. #ifdef FILAMENTCHANGE_XPOS
  3860. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3861. #endif
  3862. }
  3863. if(code_seen('Y'))
  3864. {
  3865. target[Y_AXIS]= code_value();
  3866. }
  3867. else
  3868. {
  3869. #ifdef FILAMENTCHANGE_YPOS
  3870. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3871. #endif
  3872. }
  3873. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3874. // Unload filament
  3875. if(code_seen('L'))
  3876. {
  3877. target[E_AXIS]+= code_value();
  3878. }
  3879. else
  3880. {
  3881. #ifdef FILAMENTCHANGE_FINALRETRACT
  3882. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3883. #endif
  3884. }
  3885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3886. //finish moves
  3887. st_synchronize();
  3888. //disable extruder steppers so filament can be removed
  3889. disable_e0();
  3890. disable_e1();
  3891. disable_e2();
  3892. delay(100);
  3893. //Wait for user to insert filament
  3894. uint8_t cnt=0;
  3895. int counterBeep = 0;
  3896. lcd_wait_interact();
  3897. while(!lcd_clicked()){
  3898. cnt++;
  3899. manage_heater();
  3900. manage_inactivity(true);
  3901. if(cnt==0)
  3902. {
  3903. #if BEEPER > 0
  3904. if (counterBeep== 500){
  3905. counterBeep = 0;
  3906. }
  3907. SET_OUTPUT(BEEPER);
  3908. if (counterBeep== 0){
  3909. WRITE(BEEPER,HIGH);
  3910. }
  3911. if (counterBeep== 20){
  3912. WRITE(BEEPER,LOW);
  3913. }
  3914. counterBeep++;
  3915. #else
  3916. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3917. lcd_buzz(1000/6,100);
  3918. #else
  3919. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3920. #endif
  3921. #endif
  3922. }
  3923. }
  3924. //Filament inserted
  3925. WRITE(BEEPER,LOW);
  3926. //Feed the filament to the end of nozzle quickly
  3927. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3928. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3929. //Extrude some filament
  3930. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3931. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3932. //Wait for user to check the state
  3933. lcd_change_fil_state = 0;
  3934. lcd_loading_filament();
  3935. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3936. lcd_change_fil_state = 0;
  3937. lcd_alright();
  3938. switch(lcd_change_fil_state){
  3939. // Filament failed to load so load it again
  3940. case 2:
  3941. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3942. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3943. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3944. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3945. lcd_loading_filament();
  3946. break;
  3947. // Filament loaded properly but color is not clear
  3948. case 3:
  3949. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3950. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3951. lcd_loading_color();
  3952. break;
  3953. // Everything good
  3954. default:
  3955. lcd_change_success();
  3956. break;
  3957. }
  3958. }
  3959. //Not let's go back to print
  3960. //Feed a little of filament to stabilize pressure
  3961. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3962. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3963. //Retract
  3964. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3965. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3966. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3967. //Move XY back
  3968. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3969. //Move Z back
  3970. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3971. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3972. //Unretract
  3973. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3974. //Set E position to original
  3975. plan_set_e_position(lastpos[E_AXIS]);
  3976. //Recover feed rate
  3977. feedmultiply=feedmultiplyBckp;
  3978. char cmd[9];
  3979. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3980. enquecommand(cmd);
  3981. }
  3982. break;
  3983. #endif //FILAMENTCHANGEENABLE
  3984. case 907: // M907 Set digital trimpot motor current using axis codes.
  3985. {
  3986. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3987. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3988. if(code_seen('B')) digipot_current(4,code_value());
  3989. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3990. #endif
  3991. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3992. if(code_seen('X')) digipot_current(0, code_value());
  3993. #endif
  3994. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3995. if(code_seen('Z')) digipot_current(1, code_value());
  3996. #endif
  3997. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3998. if(code_seen('E')) digipot_current(2, code_value());
  3999. #endif
  4000. #ifdef DIGIPOT_I2C
  4001. // this one uses actual amps in floating point
  4002. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4003. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4004. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4005. #endif
  4006. }
  4007. break;
  4008. case 908: // M908 Control digital trimpot directly.
  4009. {
  4010. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4011. uint8_t channel,current;
  4012. if(code_seen('P')) channel=code_value();
  4013. if(code_seen('S')) current=code_value();
  4014. digitalPotWrite(channel, current);
  4015. #endif
  4016. }
  4017. break;
  4018. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4019. {
  4020. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4021. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4022. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4023. if(code_seen('B')) microstep_mode(4,code_value());
  4024. microstep_readings();
  4025. #endif
  4026. }
  4027. break;
  4028. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4029. {
  4030. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4031. if(code_seen('S')) switch((int)code_value())
  4032. {
  4033. case 1:
  4034. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4035. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4036. break;
  4037. case 2:
  4038. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4039. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4040. break;
  4041. }
  4042. microstep_readings();
  4043. #endif
  4044. }
  4045. break;
  4046. case 999: // M999: Restart after being stopped
  4047. Stopped = false;
  4048. lcd_reset_alert_level();
  4049. gcode_LastN = Stopped_gcode_LastN;
  4050. FlushSerialRequestResend();
  4051. break;
  4052. }
  4053. } // end if(code_seen('M')) (end of M codes)
  4054. else if(code_seen('T'))
  4055. {
  4056. tmp_extruder = code_value();
  4057. if(tmp_extruder >= EXTRUDERS) {
  4058. SERIAL_ECHO_START;
  4059. SERIAL_ECHO("T");
  4060. SERIAL_ECHO(tmp_extruder);
  4061. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4062. }
  4063. else {
  4064. boolean make_move = false;
  4065. if(code_seen('F')) {
  4066. make_move = true;
  4067. next_feedrate = code_value();
  4068. if(next_feedrate > 0.0) {
  4069. feedrate = next_feedrate;
  4070. }
  4071. }
  4072. #if EXTRUDERS > 1
  4073. if(tmp_extruder != active_extruder) {
  4074. // Save current position to return to after applying extruder offset
  4075. memcpy(destination, current_position, sizeof(destination));
  4076. // Offset extruder (only by XY)
  4077. int i;
  4078. for(i = 0; i < 2; i++) {
  4079. current_position[i] = current_position[i] -
  4080. extruder_offset[i][active_extruder] +
  4081. extruder_offset[i][tmp_extruder];
  4082. }
  4083. // Set the new active extruder and position
  4084. active_extruder = tmp_extruder;
  4085. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4086. // Move to the old position if 'F' was in the parameters
  4087. if(make_move && Stopped == false) {
  4088. prepare_move();
  4089. }
  4090. }
  4091. #endif
  4092. SERIAL_ECHO_START;
  4093. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4094. SERIAL_PROTOCOLLN((int)active_extruder);
  4095. }
  4096. } // end if(code_seen('T')) (end of T codes)
  4097. else
  4098. {
  4099. SERIAL_ECHO_START;
  4100. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4101. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4102. SERIAL_ECHOLNPGM("\"");
  4103. }
  4104. ClearToSend();
  4105. }
  4106. void FlushSerialRequestResend()
  4107. {
  4108. //char cmdbuffer[bufindr][100]="Resend:";
  4109. MYSERIAL.flush();
  4110. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4111. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4112. ClearToSend();
  4113. }
  4114. // Confirm the execution of a command, if sent from a serial line.
  4115. // Execution of a command from a SD card will not be confirmed.
  4116. void ClearToSend()
  4117. {
  4118. previous_millis_cmd = millis();
  4119. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4120. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4121. }
  4122. void get_coordinates()
  4123. {
  4124. bool seen[4]={false,false,false,false};
  4125. for(int8_t i=0; i < NUM_AXIS; i++) {
  4126. if(code_seen(axis_codes[i]))
  4127. {
  4128. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4129. seen[i]=true;
  4130. }
  4131. else destination[i] = current_position[i]; //Are these else lines really needed?
  4132. }
  4133. if(code_seen('F')) {
  4134. next_feedrate = code_value();
  4135. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4136. }
  4137. }
  4138. void get_arc_coordinates()
  4139. {
  4140. #ifdef SF_ARC_FIX
  4141. bool relative_mode_backup = relative_mode;
  4142. relative_mode = true;
  4143. #endif
  4144. get_coordinates();
  4145. #ifdef SF_ARC_FIX
  4146. relative_mode=relative_mode_backup;
  4147. #endif
  4148. if(code_seen('I')) {
  4149. offset[0] = code_value();
  4150. }
  4151. else {
  4152. offset[0] = 0.0;
  4153. }
  4154. if(code_seen('J')) {
  4155. offset[1] = code_value();
  4156. }
  4157. else {
  4158. offset[1] = 0.0;
  4159. }
  4160. }
  4161. void clamp_to_software_endstops(float target[3])
  4162. {
  4163. world2machine_clamp(target[0], target[1]);
  4164. // Clamp the Z coordinate.
  4165. if (min_software_endstops) {
  4166. float negative_z_offset = 0;
  4167. #ifdef ENABLE_AUTO_BED_LEVELING
  4168. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4169. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4170. #endif
  4171. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4172. }
  4173. if (max_software_endstops) {
  4174. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4175. }
  4176. }
  4177. #ifdef MESH_BED_LEVELING
  4178. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4179. float dx = x - current_position[X_AXIS];
  4180. float dy = y - current_position[Y_AXIS];
  4181. float dz = z - current_position[Z_AXIS];
  4182. int n_segments = 0;
  4183. if (mbl.active) {
  4184. float len = abs(dx) + abs(dy);
  4185. if (len > 0)
  4186. // Split to 3cm segments or shorter.
  4187. n_segments = int(ceil(len / 30.f));
  4188. }
  4189. if (n_segments > 1) {
  4190. float de = e - current_position[E_AXIS];
  4191. for (int i = 1; i < n_segments; ++ i) {
  4192. float t = float(i) / float(n_segments);
  4193. plan_buffer_line(
  4194. current_position[X_AXIS] + t * dx,
  4195. current_position[Y_AXIS] + t * dy,
  4196. current_position[Z_AXIS] + t * dz,
  4197. current_position[E_AXIS] + t * de,
  4198. feed_rate, extruder);
  4199. }
  4200. }
  4201. // The rest of the path.
  4202. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4203. current_position[X_AXIS] = x;
  4204. current_position[Y_AXIS] = y;
  4205. current_position[Z_AXIS] = z;
  4206. current_position[E_AXIS] = e;
  4207. }
  4208. #endif // MESH_BED_LEVELING
  4209. void prepare_move()
  4210. {
  4211. clamp_to_software_endstops(destination);
  4212. previous_millis_cmd = millis();
  4213. // Do not use feedmultiply for E or Z only moves
  4214. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4215. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4216. }
  4217. else {
  4218. #ifdef MESH_BED_LEVELING
  4219. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4220. #else
  4221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4222. #endif
  4223. }
  4224. for(int8_t i=0; i < NUM_AXIS; i++) {
  4225. current_position[i] = destination[i];
  4226. }
  4227. }
  4228. void prepare_arc_move(char isclockwise) {
  4229. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4230. // Trace the arc
  4231. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4232. // As far as the parser is concerned, the position is now == target. In reality the
  4233. // motion control system might still be processing the action and the real tool position
  4234. // in any intermediate location.
  4235. for(int8_t i=0; i < NUM_AXIS; i++) {
  4236. current_position[i] = destination[i];
  4237. }
  4238. previous_millis_cmd = millis();
  4239. }
  4240. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4241. #if defined(FAN_PIN)
  4242. #if CONTROLLERFAN_PIN == FAN_PIN
  4243. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4244. #endif
  4245. #endif
  4246. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4247. unsigned long lastMotorCheck = 0;
  4248. void controllerFan()
  4249. {
  4250. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4251. {
  4252. lastMotorCheck = millis();
  4253. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4254. #if EXTRUDERS > 2
  4255. || !READ(E2_ENABLE_PIN)
  4256. #endif
  4257. #if EXTRUDER > 1
  4258. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4259. || !READ(X2_ENABLE_PIN)
  4260. #endif
  4261. || !READ(E1_ENABLE_PIN)
  4262. #endif
  4263. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4264. {
  4265. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4266. }
  4267. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4268. {
  4269. digitalWrite(CONTROLLERFAN_PIN, 0);
  4270. analogWrite(CONTROLLERFAN_PIN, 0);
  4271. }
  4272. else
  4273. {
  4274. // allows digital or PWM fan output to be used (see M42 handling)
  4275. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4276. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4277. }
  4278. }
  4279. }
  4280. #endif
  4281. #ifdef TEMP_STAT_LEDS
  4282. static bool blue_led = false;
  4283. static bool red_led = false;
  4284. static uint32_t stat_update = 0;
  4285. void handle_status_leds(void) {
  4286. float max_temp = 0.0;
  4287. if(millis() > stat_update) {
  4288. stat_update += 500; // Update every 0.5s
  4289. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4290. max_temp = max(max_temp, degHotend(cur_extruder));
  4291. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4292. }
  4293. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4294. max_temp = max(max_temp, degTargetBed());
  4295. max_temp = max(max_temp, degBed());
  4296. #endif
  4297. if((max_temp > 55.0) && (red_led == false)) {
  4298. digitalWrite(STAT_LED_RED, 1);
  4299. digitalWrite(STAT_LED_BLUE, 0);
  4300. red_led = true;
  4301. blue_led = false;
  4302. }
  4303. if((max_temp < 54.0) && (blue_led == false)) {
  4304. digitalWrite(STAT_LED_RED, 0);
  4305. digitalWrite(STAT_LED_BLUE, 1);
  4306. red_led = false;
  4307. blue_led = true;
  4308. }
  4309. }
  4310. }
  4311. #endif
  4312. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4313. {
  4314. #if defined(KILL_PIN) && KILL_PIN > -1
  4315. static int killCount = 0; // make the inactivity button a bit less responsive
  4316. const int KILL_DELAY = 10000;
  4317. #endif
  4318. if(buflen < (BUFSIZE-1)){
  4319. get_command();
  4320. }
  4321. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4322. if(max_inactive_time)
  4323. kill();
  4324. if(stepper_inactive_time) {
  4325. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4326. {
  4327. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4328. disable_x();
  4329. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4330. disable_y();
  4331. disable_z();
  4332. disable_e0();
  4333. disable_e1();
  4334. disable_e2();
  4335. }
  4336. }
  4337. }
  4338. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4339. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4340. {
  4341. chdkActive = false;
  4342. WRITE(CHDK, LOW);
  4343. }
  4344. #endif
  4345. #if defined(KILL_PIN) && KILL_PIN > -1
  4346. // Check if the kill button was pressed and wait just in case it was an accidental
  4347. // key kill key press
  4348. // -------------------------------------------------------------------------------
  4349. if( 0 == READ(KILL_PIN) )
  4350. {
  4351. killCount++;
  4352. }
  4353. else if (killCount > 0)
  4354. {
  4355. killCount--;
  4356. }
  4357. // Exceeded threshold and we can confirm that it was not accidental
  4358. // KILL the machine
  4359. // ----------------------------------------------------------------
  4360. if ( killCount >= KILL_DELAY)
  4361. {
  4362. kill();
  4363. }
  4364. #endif
  4365. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4366. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4367. #endif
  4368. #ifdef EXTRUDER_RUNOUT_PREVENT
  4369. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4370. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4371. {
  4372. bool oldstatus=READ(E0_ENABLE_PIN);
  4373. enable_e0();
  4374. float oldepos=current_position[E_AXIS];
  4375. float oldedes=destination[E_AXIS];
  4376. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4377. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4378. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4379. current_position[E_AXIS]=oldepos;
  4380. destination[E_AXIS]=oldedes;
  4381. plan_set_e_position(oldepos);
  4382. previous_millis_cmd=millis();
  4383. st_synchronize();
  4384. WRITE(E0_ENABLE_PIN,oldstatus);
  4385. }
  4386. #endif
  4387. #ifdef TEMP_STAT_LEDS
  4388. handle_status_leds();
  4389. #endif
  4390. check_axes_activity();
  4391. }
  4392. void kill(const char *full_screen_message)
  4393. {
  4394. cli(); // Stop interrupts
  4395. disable_heater();
  4396. disable_x();
  4397. // SERIAL_ECHOLNPGM("kill - disable Y");
  4398. disable_y();
  4399. disable_z();
  4400. disable_e0();
  4401. disable_e1();
  4402. disable_e2();
  4403. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4404. pinMode(PS_ON_PIN,INPUT);
  4405. #endif
  4406. SERIAL_ERROR_START;
  4407. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4408. if (full_screen_message != NULL) {
  4409. SERIAL_ERRORLNRPGM(full_screen_message);
  4410. lcd_display_message_fullscreen_P(full_screen_message);
  4411. } else {
  4412. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4413. }
  4414. // FMC small patch to update the LCD before ending
  4415. sei(); // enable interrupts
  4416. for ( int i=5; i--; lcd_update())
  4417. {
  4418. delay(200);
  4419. }
  4420. cli(); // disable interrupts
  4421. suicide();
  4422. while(1) { /* Intentionally left empty */ } // Wait for reset
  4423. }
  4424. void Stop()
  4425. {
  4426. disable_heater();
  4427. if(Stopped == false) {
  4428. Stopped = true;
  4429. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4430. SERIAL_ERROR_START;
  4431. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4432. LCD_MESSAGERPGM(MSG_STOPPED);
  4433. }
  4434. }
  4435. bool IsStopped() { return Stopped; };
  4436. #ifdef FAST_PWM_FAN
  4437. void setPwmFrequency(uint8_t pin, int val)
  4438. {
  4439. val &= 0x07;
  4440. switch(digitalPinToTimer(pin))
  4441. {
  4442. #if defined(TCCR0A)
  4443. case TIMER0A:
  4444. case TIMER0B:
  4445. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4446. // TCCR0B |= val;
  4447. break;
  4448. #endif
  4449. #if defined(TCCR1A)
  4450. case TIMER1A:
  4451. case TIMER1B:
  4452. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4453. // TCCR1B |= val;
  4454. break;
  4455. #endif
  4456. #if defined(TCCR2)
  4457. case TIMER2:
  4458. case TIMER2:
  4459. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4460. TCCR2 |= val;
  4461. break;
  4462. #endif
  4463. #if defined(TCCR2A)
  4464. case TIMER2A:
  4465. case TIMER2B:
  4466. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4467. TCCR2B |= val;
  4468. break;
  4469. #endif
  4470. #if defined(TCCR3A)
  4471. case TIMER3A:
  4472. case TIMER3B:
  4473. case TIMER3C:
  4474. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4475. TCCR3B |= val;
  4476. break;
  4477. #endif
  4478. #if defined(TCCR4A)
  4479. case TIMER4A:
  4480. case TIMER4B:
  4481. case TIMER4C:
  4482. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4483. TCCR4B |= val;
  4484. break;
  4485. #endif
  4486. #if defined(TCCR5A)
  4487. case TIMER5A:
  4488. case TIMER5B:
  4489. case TIMER5C:
  4490. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4491. TCCR5B |= val;
  4492. break;
  4493. #endif
  4494. }
  4495. }
  4496. #endif //FAST_PWM_FAN
  4497. bool setTargetedHotend(int code){
  4498. tmp_extruder = active_extruder;
  4499. if(code_seen('T')) {
  4500. tmp_extruder = code_value();
  4501. if(tmp_extruder >= EXTRUDERS) {
  4502. SERIAL_ECHO_START;
  4503. switch(code){
  4504. case 104:
  4505. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4506. break;
  4507. case 105:
  4508. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4509. break;
  4510. case 109:
  4511. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4512. break;
  4513. case 218:
  4514. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4515. break;
  4516. case 221:
  4517. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4518. break;
  4519. }
  4520. SERIAL_ECHOLN(tmp_extruder);
  4521. return true;
  4522. }
  4523. }
  4524. return false;
  4525. }
  4526. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4527. {
  4528. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4529. {
  4530. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4531. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4532. }
  4533. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4534. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4535. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4536. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4537. total_filament_used = 0;
  4538. }
  4539. float calculate_volumetric_multiplier(float diameter) {
  4540. float area = .0;
  4541. float radius = .0;
  4542. radius = diameter * .5;
  4543. if (! volumetric_enabled || radius == 0) {
  4544. area = 1;
  4545. }
  4546. else {
  4547. area = M_PI * pow(radius, 2);
  4548. }
  4549. return 1.0 / area;
  4550. }
  4551. void calculate_volumetric_multipliers() {
  4552. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4553. #if EXTRUDERS > 1
  4554. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4555. #if EXTRUDERS > 2
  4556. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4557. #endif
  4558. #endif
  4559. }
  4560. void delay_keep_alive(int ms)
  4561. {
  4562. for (;;) {
  4563. manage_heater();
  4564. // Manage inactivity, but don't disable steppers on timeout.
  4565. manage_inactivity(true);
  4566. lcd_update();
  4567. if (ms == 0)
  4568. break;
  4569. else if (ms >= 50) {
  4570. delay(50);
  4571. ms -= 50;
  4572. } else {
  4573. delay(ms);
  4574. ms = 0;
  4575. }
  4576. }
  4577. }