Marlin_main.cpp 206 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // P Y - Starts filament allignment process for multicolor
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M907 - Set digital trimpot motor current using axis codes.
  179. // M908 - Control digital trimpot directly.
  180. // M350 - Set microstepping mode.
  181. // M351 - Toggle MS1 MS2 pins directly.
  182. // M928 - Start SD logging (M928 filename.g) - ended by M29
  183. // M999 - Restart after being stopped by error
  184. //Stepper Movement Variables
  185. //===========================================================================
  186. //=============================imported variables============================
  187. //===========================================================================
  188. //===========================================================================
  189. //=============================public variables=============================
  190. //===========================================================================
  191. #ifdef SDSUPPORT
  192. CardReader card;
  193. #endif
  194. unsigned long TimeSent = millis();
  195. unsigned long TimeNow = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. bool is_usb_printing = false;
  217. bool homing_flag = false;
  218. unsigned long kicktime = millis()+100000;
  219. unsigned int usb_printing_counter;
  220. int lcd_change_fil_state = 0;
  221. int feedmultiplyBckp = 100;
  222. unsigned char lang_selected = 0;
  223. int8_t FarmMode = 0;
  224. bool prusa_sd_card_upload = false;
  225. unsigned int status_number = 0;
  226. unsigned long total_filament_used;
  227. unsigned int heating_status;
  228. unsigned int heating_status_counter;
  229. bool custom_message;
  230. bool loading_flag = false;
  231. unsigned int custom_message_type;
  232. unsigned int custom_message_state;
  233. bool volumetric_enabled = false;
  234. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  235. #if EXTRUDERS > 1
  236. , DEFAULT_NOMINAL_FILAMENT_DIA
  237. #if EXTRUDERS > 2
  238. , DEFAULT_NOMINAL_FILAMENT_DIA
  239. #endif
  240. #endif
  241. };
  242. float volumetric_multiplier[EXTRUDERS] = {1.0
  243. #if EXTRUDERS > 1
  244. , 1.0
  245. #if EXTRUDERS > 2
  246. , 1.0
  247. #endif
  248. #endif
  249. };
  250. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  251. float add_homing[3]={0,0,0};
  252. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  253. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  254. bool axis_known_position[3] = {false, false, false};
  255. float zprobe_zoffset;
  256. // Extruder offset
  257. #if EXTRUDERS > 1
  258. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  259. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  260. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  261. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  262. #endif
  263. };
  264. #endif
  265. uint8_t active_extruder = 0;
  266. int fanSpeed=0;
  267. #ifdef FWRETRACT
  268. bool autoretract_enabled=false;
  269. bool retracted[EXTRUDERS]={false
  270. #if EXTRUDERS > 1
  271. , false
  272. #if EXTRUDERS > 2
  273. , false
  274. #endif
  275. #endif
  276. };
  277. bool retracted_swap[EXTRUDERS]={false
  278. #if EXTRUDERS > 1
  279. , false
  280. #if EXTRUDERS > 2
  281. , false
  282. #endif
  283. #endif
  284. };
  285. float retract_length = RETRACT_LENGTH;
  286. float retract_length_swap = RETRACT_LENGTH_SWAP;
  287. float retract_feedrate = RETRACT_FEEDRATE;
  288. float retract_zlift = RETRACT_ZLIFT;
  289. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  290. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  291. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  292. #endif
  293. #ifdef ULTIPANEL
  294. #ifdef PS_DEFAULT_OFF
  295. bool powersupply = false;
  296. #else
  297. bool powersupply = true;
  298. #endif
  299. #endif
  300. bool cancel_heatup = false ;
  301. #ifdef FILAMENT_SENSOR
  302. //Variables for Filament Sensor input
  303. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  304. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  305. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  306. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  307. int delay_index1=0; //index into ring buffer
  308. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  309. float delay_dist=0; //delay distance counter
  310. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  311. #endif
  312. const char errormagic[] PROGMEM = "Error:";
  313. const char echomagic[] PROGMEM = "echo:";
  314. //===========================================================================
  315. //=============================Private Variables=============================
  316. //===========================================================================
  317. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  318. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  319. static float delta[3] = {0.0, 0.0, 0.0};
  320. // For tracing an arc
  321. static float offset[3] = {0.0, 0.0, 0.0};
  322. static bool home_all_axis = true;
  323. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. // Determines Absolute or Relative Coordinates.
  326. // Also there is bool axis_relative_modes[] per axis flag.
  327. static bool relative_mode = false;
  328. // String circular buffer. Commands may be pushed to the buffer from both sides:
  329. // Chained commands will be pushed to the front, interactive (from LCD menu)
  330. // and printing commands (from serial line or from SD card) are pushed to the tail.
  331. // First character of each entry indicates the type of the entry:
  332. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  333. // Command in cmdbuffer was sent over USB.
  334. #define CMDBUFFER_CURRENT_TYPE_USB 1
  335. // Command in cmdbuffer was read from SDCARD.
  336. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  337. // Command in cmdbuffer was generated by the UI.
  338. #define CMDBUFFER_CURRENT_TYPE_UI 3
  339. // Command in cmdbuffer was generated by another G-code.
  340. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  341. // How much space to reserve for the chained commands
  342. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  343. // which are pushed to the front of the queue?
  344. // Maximum 5 commands of max length 20 + null terminator.
  345. #define CMDBUFFER_RESERVE_FRONT (5*21)
  346. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  347. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  348. // Head of the circular buffer, where to read.
  349. static int bufindr = 0;
  350. // Tail of the buffer, where to write.
  351. static int bufindw = 0;
  352. // Number of lines in cmdbuffer.
  353. static int buflen = 0;
  354. // Flag for processing the current command inside the main Arduino loop().
  355. // If a new command was pushed to the front of a command buffer while
  356. // processing another command, this replaces the command on the top.
  357. // Therefore don't remove the command from the queue in the loop() function.
  358. static bool cmdbuffer_front_already_processed = false;
  359. // Type of a command, which is to be executed right now.
  360. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  361. // String of a command, which is to be executed right now.
  362. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  363. // Enable debugging of the command buffer.
  364. // Debugging information will be sent to serial line.
  365. // #define CMDBUFFER_DEBUG
  366. static int serial_count = 0;
  367. static boolean comment_mode = false;
  368. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  369. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  370. //static float tt = 0;
  371. //static float bt = 0;
  372. //Inactivity shutdown variables
  373. static unsigned long previous_millis_cmd = 0;
  374. unsigned long max_inactive_time = 0;
  375. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  376. unsigned long starttime=0;
  377. unsigned long stoptime=0;
  378. unsigned long _usb_timer = 0;
  379. static uint8_t tmp_extruder;
  380. bool Stopped=false;
  381. #if NUM_SERVOS > 0
  382. Servo servos[NUM_SERVOS];
  383. #endif
  384. bool CooldownNoWait = true;
  385. bool target_direction;
  386. //Insert variables if CHDK is defined
  387. #ifdef CHDK
  388. unsigned long chdkHigh = 0;
  389. boolean chdkActive = false;
  390. #endif
  391. //===========================================================================
  392. //=============================Routines======================================
  393. //===========================================================================
  394. void get_arc_coordinates();
  395. bool setTargetedHotend(int code);
  396. void serial_echopair_P(const char *s_P, float v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. void serial_echopair_P(const char *s_P, double v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. void serial_echopair_P(const char *s_P, unsigned long v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. #ifdef SDSUPPORT
  403. #include "SdFatUtil.h"
  404. int freeMemory() { return SdFatUtil::FreeRam(); }
  405. #else
  406. extern "C" {
  407. extern unsigned int __bss_end;
  408. extern unsigned int __heap_start;
  409. extern void *__brkval;
  410. int freeMemory() {
  411. int free_memory;
  412. if ((int)__brkval == 0)
  413. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  414. else
  415. free_memory = ((int)&free_memory) - ((int)__brkval);
  416. return free_memory;
  417. }
  418. }
  419. #endif //!SDSUPPORT
  420. // Pop the currently processed command from the queue.
  421. // It is expected, that there is at least one command in the queue.
  422. bool cmdqueue_pop_front()
  423. {
  424. if (buflen > 0) {
  425. #ifdef CMDBUFFER_DEBUG
  426. SERIAL_ECHOPGM("Dequeing ");
  427. SERIAL_ECHO(cmdbuffer+bufindr+1);
  428. SERIAL_ECHOLNPGM("");
  429. SERIAL_ECHOPGM("Old indices: buflen ");
  430. SERIAL_ECHO(buflen);
  431. SERIAL_ECHOPGM(", bufindr ");
  432. SERIAL_ECHO(bufindr);
  433. SERIAL_ECHOPGM(", bufindw ");
  434. SERIAL_ECHO(bufindw);
  435. SERIAL_ECHOPGM(", serial_count ");
  436. SERIAL_ECHO(serial_count);
  437. SERIAL_ECHOPGM(", bufsize ");
  438. SERIAL_ECHO(sizeof(cmdbuffer));
  439. SERIAL_ECHOLNPGM("");
  440. #endif /* CMDBUFFER_DEBUG */
  441. if (-- buflen == 0) {
  442. // Empty buffer.
  443. if (serial_count == 0)
  444. // No serial communication is pending. Reset both pointers to zero.
  445. bufindw = 0;
  446. bufindr = bufindw;
  447. } else {
  448. // There is at least one ready line in the buffer.
  449. // First skip the current command ID and iterate up to the end of the string.
  450. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  451. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  452. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  453. // If the end of the buffer was empty,
  454. if (bufindr == sizeof(cmdbuffer)) {
  455. // skip to the start and find the nonzero command.
  456. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  457. }
  458. #ifdef CMDBUFFER_DEBUG
  459. SERIAL_ECHOPGM("New indices: buflen ");
  460. SERIAL_ECHO(buflen);
  461. SERIAL_ECHOPGM(", bufindr ");
  462. SERIAL_ECHO(bufindr);
  463. SERIAL_ECHOPGM(", bufindw ");
  464. SERIAL_ECHO(bufindw);
  465. SERIAL_ECHOPGM(", serial_count ");
  466. SERIAL_ECHO(serial_count);
  467. SERIAL_ECHOPGM(" new command on the top: ");
  468. SERIAL_ECHO(cmdbuffer+bufindr+1);
  469. SERIAL_ECHOLNPGM("");
  470. #endif /* CMDBUFFER_DEBUG */
  471. }
  472. return true;
  473. }
  474. return false;
  475. }
  476. void cmdqueue_reset()
  477. {
  478. while (cmdqueue_pop_front()) ;
  479. }
  480. // How long a string could be pushed to the front of the command queue?
  481. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  482. // len_asked does not contain the zero terminator size.
  483. bool cmdqueue_could_enqueue_front(int len_asked)
  484. {
  485. // MAX_CMD_SIZE has to accommodate the zero terminator.
  486. if (len_asked >= MAX_CMD_SIZE)
  487. return false;
  488. // Remove the currently processed command from the queue.
  489. if (! cmdbuffer_front_already_processed) {
  490. cmdqueue_pop_front();
  491. cmdbuffer_front_already_processed = true;
  492. }
  493. if (bufindr == bufindw && buflen > 0)
  494. // Full buffer.
  495. return false;
  496. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  497. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  498. if (bufindw < bufindr) {
  499. int bufindr_new = bufindr - len_asked - 2;
  500. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  501. if (endw <= bufindr_new) {
  502. bufindr = bufindr_new;
  503. return true;
  504. }
  505. } else {
  506. // Otherwise the free space is split between the start and end.
  507. if (len_asked + 2 <= bufindr) {
  508. // Could fit at the start.
  509. bufindr -= len_asked + 2;
  510. return true;
  511. }
  512. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  513. if (endw <= bufindr_new) {
  514. memset(cmdbuffer, 0, bufindr);
  515. bufindr = bufindr_new;
  516. return true;
  517. }
  518. }
  519. return false;
  520. }
  521. // Could one enqueue a command of lenthg len_asked into the buffer,
  522. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  523. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  524. // len_asked does not contain the zero terminator size.
  525. bool cmdqueue_could_enqueue_back(int len_asked)
  526. {
  527. // MAX_CMD_SIZE has to accommodate the zero terminator.
  528. if (len_asked >= MAX_CMD_SIZE)
  529. return false;
  530. if (bufindr == bufindw && buflen > 0)
  531. // Full buffer.
  532. return false;
  533. if (serial_count > 0) {
  534. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  535. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  536. // serial data.
  537. // How much memory to reserve for the commands pushed to the front?
  538. // End of the queue, when pushing to the end.
  539. int endw = bufindw + len_asked + 2;
  540. if (bufindw < bufindr)
  541. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  542. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  543. // Otherwise the free space is split between the start and end.
  544. if (// Could one fit to the end, including the reserve?
  545. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  546. // Could one fit to the end, and the reserve to the start?
  547. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  548. return true;
  549. // Could one fit both to the start?
  550. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  551. // Mark the rest of the buffer as used.
  552. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  553. // and point to the start.
  554. bufindw = 0;
  555. return true;
  556. }
  557. } else {
  558. // How much memory to reserve for the commands pushed to the front?
  559. // End of the queue, when pushing to the end.
  560. int endw = bufindw + len_asked + 2;
  561. if (bufindw < bufindr)
  562. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  563. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  564. // Otherwise the free space is split between the start and end.
  565. if (// Could one fit to the end, including the reserve?
  566. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  567. // Could one fit to the end, and the reserve to the start?
  568. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  569. return true;
  570. // Could one fit both to the start?
  571. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  572. // Mark the rest of the buffer as used.
  573. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  574. // and point to the start.
  575. bufindw = 0;
  576. return true;
  577. }
  578. }
  579. return false;
  580. }
  581. #ifdef CMDBUFFER_DEBUG
  582. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  583. {
  584. SERIAL_ECHOPGM("Entry nr: ");
  585. SERIAL_ECHO(nr);
  586. SERIAL_ECHOPGM(", type: ");
  587. SERIAL_ECHO(int(*p));
  588. SERIAL_ECHOPGM(", cmd: ");
  589. SERIAL_ECHO(p+1);
  590. SERIAL_ECHOLNPGM("");
  591. }
  592. static void cmdqueue_dump_to_serial()
  593. {
  594. if (buflen == 0) {
  595. SERIAL_ECHOLNPGM("The command buffer is empty.");
  596. } else {
  597. SERIAL_ECHOPGM("Content of the buffer: entries ");
  598. SERIAL_ECHO(buflen);
  599. SERIAL_ECHOPGM(", indr ");
  600. SERIAL_ECHO(bufindr);
  601. SERIAL_ECHOPGM(", indw ");
  602. SERIAL_ECHO(bufindw);
  603. SERIAL_ECHOLNPGM("");
  604. int nr = 0;
  605. if (bufindr < bufindw) {
  606. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  607. cmdqueue_dump_to_serial_single_line(nr, p);
  608. // Skip the command.
  609. for (++p; *p != 0; ++ p);
  610. // Skip the gaps.
  611. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  612. }
  613. } else {
  614. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  615. cmdqueue_dump_to_serial_single_line(nr, p);
  616. // Skip the command.
  617. for (++p; *p != 0; ++ p);
  618. // Skip the gaps.
  619. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  620. }
  621. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  622. cmdqueue_dump_to_serial_single_line(nr, p);
  623. // Skip the command.
  624. for (++p; *p != 0; ++ p);
  625. // Skip the gaps.
  626. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  627. }
  628. }
  629. SERIAL_ECHOLNPGM("End of the buffer.");
  630. }
  631. }
  632. #endif /* CMDBUFFER_DEBUG */
  633. //adds an command to the main command buffer
  634. //thats really done in a non-safe way.
  635. //needs overworking someday
  636. // Currently the maximum length of a command piped through this function is around 20 characters
  637. void enquecommand(const char *cmd, bool from_progmem)
  638. {
  639. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  640. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  641. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  642. if (cmdqueue_could_enqueue_back(len)) {
  643. // This is dangerous if a mixing of serial and this happens
  644. // This may easily be tested: If serial_count > 0, we have a problem.
  645. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  646. if (from_progmem)
  647. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  648. else
  649. strcpy(cmdbuffer + bufindw + 1, cmd);
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHORPGM(MSG_Enqueing);
  652. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  653. SERIAL_ECHOLNPGM("\"");
  654. bufindw += len + 2;
  655. if (bufindw == sizeof(cmdbuffer))
  656. bufindw = 0;
  657. ++ buflen;
  658. #ifdef CMDBUFFER_DEBUG
  659. cmdqueue_dump_to_serial();
  660. #endif /* CMDBUFFER_DEBUG */
  661. } else {
  662. SERIAL_ERROR_START;
  663. SERIAL_ECHORPGM(MSG_Enqueing);
  664. if (from_progmem)
  665. SERIAL_PROTOCOLRPGM(cmd);
  666. else
  667. SERIAL_ECHO(cmd);
  668. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  669. #ifdef CMDBUFFER_DEBUG
  670. cmdqueue_dump_to_serial();
  671. #endif /* CMDBUFFER_DEBUG */
  672. }
  673. }
  674. void enquecommand_front(const char *cmd, bool from_progmem)
  675. {
  676. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  677. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  678. if (cmdqueue_could_enqueue_front(len)) {
  679. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  680. if (from_progmem)
  681. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  682. else
  683. strcpy(cmdbuffer + bufindr + 1, cmd);
  684. ++ buflen;
  685. SERIAL_ECHO_START;
  686. SERIAL_ECHOPGM("Enqueing to the front: \"");
  687. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  688. SERIAL_ECHOLNPGM("\"");
  689. #ifdef CMDBUFFER_DEBUG
  690. cmdqueue_dump_to_serial();
  691. #endif /* CMDBUFFER_DEBUG */
  692. } else {
  693. SERIAL_ERROR_START;
  694. SERIAL_ECHOPGM("Enqueing to the front: \"");
  695. if (from_progmem)
  696. SERIAL_PROTOCOLRPGM(cmd);
  697. else
  698. SERIAL_ECHO(cmd);
  699. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  700. #ifdef CMDBUFFER_DEBUG
  701. cmdqueue_dump_to_serial();
  702. #endif /* CMDBUFFER_DEBUG */
  703. }
  704. }
  705. // Mark the command at the top of the command queue as new.
  706. // Therefore it will not be removed from the queue.
  707. void repeatcommand_front()
  708. {
  709. cmdbuffer_front_already_processed = true;
  710. }
  711. void setup_killpin()
  712. {
  713. #if defined(KILL_PIN) && KILL_PIN > -1
  714. SET_INPUT(KILL_PIN);
  715. WRITE(KILL_PIN,HIGH);
  716. #endif
  717. }
  718. // Set home pin
  719. void setup_homepin(void)
  720. {
  721. #if defined(HOME_PIN) && HOME_PIN > -1
  722. SET_INPUT(HOME_PIN);
  723. WRITE(HOME_PIN,HIGH);
  724. #endif
  725. }
  726. void setup_photpin()
  727. {
  728. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  729. SET_OUTPUT(PHOTOGRAPH_PIN);
  730. WRITE(PHOTOGRAPH_PIN, LOW);
  731. #endif
  732. }
  733. void setup_powerhold()
  734. {
  735. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  736. SET_OUTPUT(SUICIDE_PIN);
  737. WRITE(SUICIDE_PIN, HIGH);
  738. #endif
  739. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  740. SET_OUTPUT(PS_ON_PIN);
  741. #if defined(PS_DEFAULT_OFF)
  742. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  743. #else
  744. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  745. #endif
  746. #endif
  747. }
  748. void suicide()
  749. {
  750. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  751. SET_OUTPUT(SUICIDE_PIN);
  752. WRITE(SUICIDE_PIN, LOW);
  753. #endif
  754. }
  755. void servo_init()
  756. {
  757. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  758. servos[0].attach(SERVO0_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  761. servos[1].attach(SERVO1_PIN);
  762. #endif
  763. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  764. servos[2].attach(SERVO2_PIN);
  765. #endif
  766. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  767. servos[3].attach(SERVO3_PIN);
  768. #endif
  769. #if (NUM_SERVOS >= 5)
  770. #error "TODO: enter initalisation code for more servos"
  771. #endif
  772. }
  773. static void lcd_language_menu();
  774. #ifdef MESH_BED_LEVELING
  775. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  776. #endif
  777. // Factory reset function
  778. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  779. // Level input parameter sets depth of reset
  780. // Quiet parameter masks all waitings for user interact.
  781. int er_progress = 0;
  782. void factory_reset(char level, bool quiet)
  783. {
  784. lcd_implementation_clear();
  785. switch (level) {
  786. // Level 0: Language reset
  787. case 0:
  788. WRITE(BEEPER, HIGH);
  789. _delay_ms(100);
  790. WRITE(BEEPER, LOW);
  791. lcd_force_language_selection();
  792. break;
  793. //Level 1: Reset statistics
  794. case 1:
  795. WRITE(BEEPER, HIGH);
  796. _delay_ms(100);
  797. WRITE(BEEPER, LOW);
  798. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  799. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  800. lcd_menu_statistics();
  801. break;
  802. // Level 2: Prepare for shipping
  803. case 2:
  804. //lcd_printPGM(PSTR("Factory RESET"));
  805. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  806. // Force language selection at the next boot up.
  807. lcd_force_language_selection();
  808. // Force the "Follow calibration flow" message at the next boot up.
  809. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  810. farm_no = 0;
  811. farm_mode == false;
  812. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  813. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. //_delay_ms(2000);
  818. break;
  819. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  820. case 3:
  821. lcd_printPGM(PSTR("Factory RESET"));
  822. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  823. WRITE(BEEPER, HIGH);
  824. _delay_ms(100);
  825. WRITE(BEEPER, LOW);
  826. er_progress = 0;
  827. lcd_print_at_PGM(3, 3, PSTR(" "));
  828. lcd_implementation_print_at(3, 3, er_progress);
  829. // Erase EEPROM
  830. for (int i = 0; i < 4096; i++) {
  831. eeprom_write_byte((uint8_t*)i, 0xFF);
  832. if (i % 41 == 0) {
  833. er_progress++;
  834. lcd_print_at_PGM(3, 3, PSTR(" "));
  835. lcd_implementation_print_at(3, 3, er_progress);
  836. lcd_printPGM(PSTR("%"));
  837. }
  838. }
  839. break;
  840. default:
  841. break;
  842. }
  843. }
  844. // "Setup" function is called by the Arduino framework on startup.
  845. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  846. // are initialized by the main() routine provided by the Arduino framework.
  847. void setup()
  848. {
  849. setup_killpin();
  850. setup_powerhold();
  851. MYSERIAL.begin(BAUDRATE);
  852. SERIAL_PROTOCOLLNPGM("start");
  853. SERIAL_ECHO_START;
  854. #if 0
  855. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  856. for (int i = 0; i < 4096; ++ i) {
  857. int b = eeprom_read_byte((unsigned char*)i);
  858. if (b != 255) {
  859. SERIAL_ECHO(i);
  860. SERIAL_ECHO(":");
  861. SERIAL_ECHO(b);
  862. SERIAL_ECHOLN("");
  863. }
  864. }
  865. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  866. #endif
  867. // Check startup - does nothing if bootloader sets MCUSR to 0
  868. byte mcu = MCUSR;
  869. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  870. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  871. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  872. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  873. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  874. MCUSR=0;
  875. //SERIAL_ECHORPGM(MSG_MARLIN);
  876. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  877. #ifdef STRING_VERSION_CONFIG_H
  878. #ifdef STRING_CONFIG_H_AUTHOR
  879. SERIAL_ECHO_START;
  880. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  881. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  882. SERIAL_ECHORPGM(MSG_AUTHOR);
  883. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  884. SERIAL_ECHOPGM("Compiled: ");
  885. SERIAL_ECHOLNPGM(__DATE__);
  886. #endif
  887. #endif
  888. SERIAL_ECHO_START;
  889. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  890. SERIAL_ECHO(freeMemory());
  891. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  892. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  893. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  894. Config_RetrieveSettings();
  895. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  896. tp_init(); // Initialize temperature loop
  897. plan_init(); // Initialize planner;
  898. watchdog_init();
  899. st_init(); // Initialize stepper, this enables interrupts!
  900. setup_photpin();
  901. servo_init();
  902. // Reset the machine correction matrix.
  903. // It does not make sense to load the correction matrix until the machine is homed.
  904. world2machine_reset();
  905. lcd_init();
  906. if (!READ(BTN_ENC))
  907. {
  908. _delay_ms(1000);
  909. if (!READ(BTN_ENC))
  910. {
  911. lcd_implementation_clear();
  912. lcd_printPGM(PSTR("Factory RESET"));
  913. SET_OUTPUT(BEEPER);
  914. WRITE(BEEPER, HIGH);
  915. while (!READ(BTN_ENC));
  916. WRITE(BEEPER, LOW);
  917. _delay_ms(2000);
  918. char level = reset_menu();
  919. factory_reset(level, false);
  920. switch (level) {
  921. case 0: _delay_ms(0); break;
  922. case 1: _delay_ms(0); break;
  923. case 2: _delay_ms(0); break;
  924. case 3: _delay_ms(0); break;
  925. }
  926. // _delay_ms(100);
  927. /*
  928. #ifdef MESH_BED_LEVELING
  929. _delay_ms(2000);
  930. if (!READ(BTN_ENC))
  931. {
  932. WRITE(BEEPER, HIGH);
  933. _delay_ms(100);
  934. WRITE(BEEPER, LOW);
  935. _delay_ms(200);
  936. WRITE(BEEPER, HIGH);
  937. _delay_ms(100);
  938. WRITE(BEEPER, LOW);
  939. int _z = 0;
  940. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  941. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  942. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  943. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  944. }
  945. else
  946. {
  947. WRITE(BEEPER, HIGH);
  948. _delay_ms(100);
  949. WRITE(BEEPER, LOW);
  950. }
  951. #endif // mesh */
  952. }
  953. }
  954. else
  955. {
  956. _delay_ms(1000); // wait 1sec to display the splash screen
  957. }
  958. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  959. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  960. #endif
  961. #ifdef DIGIPOT_I2C
  962. digipot_i2c_init();
  963. #endif
  964. setup_homepin();
  965. #if defined(Z_AXIS_ALWAYS_ON)
  966. enable_z();
  967. #endif
  968. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  969. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  970. if (farm_mode)
  971. {
  972. prusa_statistics(8);
  973. }
  974. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  975. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  976. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  977. // but this times out if a blocking dialog is shown in setup().
  978. card.initsd();
  979. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  980. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  981. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  982. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  983. // where all the EEPROM entries are set to 0x0ff.
  984. // Once a firmware boots up, it forces at least a language selection, which changes
  985. // EEPROM_LANG to number lower than 0x0ff.
  986. // 1) Set a high power mode.
  987. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  988. }
  989. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  990. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  991. // is being written into the EEPROM, so the update procedure will be triggered only once.
  992. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  993. if (lang_selected >= LANG_NUM){
  994. lcd_mylang();
  995. }
  996. check_babystep(); //checking if Z babystep is in allowed range
  997. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  998. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  999. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1000. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1001. // Show the message.
  1002. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1003. lcd_update_enable(true);
  1004. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1005. // Show the message.
  1006. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1007. lcd_update_enable(true);
  1008. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1009. // Show the message.
  1010. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1011. lcd_update_enable(true);
  1012. }
  1013. // Store the currently running firmware into an eeprom,
  1014. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1015. update_current_firmware_version_to_eeprom();
  1016. }
  1017. void trace();
  1018. #define CHUNK_SIZE 64 // bytes
  1019. #define SAFETY_MARGIN 1
  1020. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1021. int chunkHead = 0;
  1022. int serial_read_stream() {
  1023. setTargetHotend(0, 0);
  1024. setTargetBed(0);
  1025. lcd_implementation_clear();
  1026. lcd_printPGM(PSTR(" Upload in progress"));
  1027. // first wait for how many bytes we will receive
  1028. uint32_t bytesToReceive;
  1029. // receive the four bytes
  1030. char bytesToReceiveBuffer[4];
  1031. for (int i=0; i<4; i++) {
  1032. int data;
  1033. while ((data = MYSERIAL.read()) == -1) {};
  1034. bytesToReceiveBuffer[i] = data;
  1035. }
  1036. // make it a uint32
  1037. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1038. // we're ready, notify the sender
  1039. MYSERIAL.write('+');
  1040. // lock in the routine
  1041. uint32_t receivedBytes = 0;
  1042. while (prusa_sd_card_upload) {
  1043. int i;
  1044. for (i=0; i<CHUNK_SIZE; i++) {
  1045. int data;
  1046. // check if we're not done
  1047. if (receivedBytes == bytesToReceive) {
  1048. break;
  1049. }
  1050. // read the next byte
  1051. while ((data = MYSERIAL.read()) == -1) {};
  1052. receivedBytes++;
  1053. // save it to the chunk
  1054. chunk[i] = data;
  1055. }
  1056. // write the chunk to SD
  1057. card.write_command_no_newline(&chunk[0]);
  1058. // notify the sender we're ready for more data
  1059. MYSERIAL.write('+');
  1060. // for safety
  1061. manage_heater();
  1062. // check if we're done
  1063. if(receivedBytes == bytesToReceive) {
  1064. trace(); // beep
  1065. card.closefile();
  1066. prusa_sd_card_upload = false;
  1067. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1068. return 0;
  1069. }
  1070. }
  1071. }
  1072. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1073. // Before loop(), the setup() function is called by the main() routine.
  1074. void loop()
  1075. {
  1076. bool stack_integrity = true;
  1077. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1078. {
  1079. is_usb_printing = true;
  1080. usb_printing_counter--;
  1081. _usb_timer = millis();
  1082. }
  1083. if (usb_printing_counter == 0)
  1084. {
  1085. is_usb_printing = false;
  1086. }
  1087. if (prusa_sd_card_upload)
  1088. {
  1089. //we read byte-by byte
  1090. serial_read_stream();
  1091. } else
  1092. {
  1093. get_command();
  1094. #ifdef SDSUPPORT
  1095. card.checkautostart(false);
  1096. #endif
  1097. if(buflen)
  1098. {
  1099. #ifdef SDSUPPORT
  1100. if(card.saving)
  1101. {
  1102. // Saving a G-code file onto an SD-card is in progress.
  1103. // Saving starts with M28, saving until M29 is seen.
  1104. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1105. card.write_command(CMDBUFFER_CURRENT_STRING);
  1106. if(card.logging)
  1107. process_commands();
  1108. else
  1109. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1110. } else {
  1111. card.closefile();
  1112. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1113. }
  1114. } else {
  1115. process_commands();
  1116. }
  1117. #else
  1118. process_commands();
  1119. #endif //SDSUPPORT
  1120. if (! cmdbuffer_front_already_processed)
  1121. cmdqueue_pop_front();
  1122. cmdbuffer_front_already_processed = false;
  1123. }
  1124. }
  1125. //check heater every n milliseconds
  1126. manage_heater();
  1127. manage_inactivity();
  1128. checkHitEndstops();
  1129. lcd_update();
  1130. }
  1131. void get_command()
  1132. {
  1133. // Test and reserve space for the new command string.
  1134. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1135. return;
  1136. while (MYSERIAL.available() > 0) {
  1137. char serial_char = MYSERIAL.read();
  1138. TimeSent = millis();
  1139. TimeNow = millis();
  1140. if (serial_char < 0)
  1141. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1142. // and Marlin does not support such file names anyway.
  1143. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1144. // to a hang-up of the print process from an SD card.
  1145. continue;
  1146. if(serial_char == '\n' ||
  1147. serial_char == '\r' ||
  1148. (serial_char == ':' && comment_mode == false) ||
  1149. serial_count >= (MAX_CMD_SIZE - 1) )
  1150. {
  1151. if(!serial_count) { //if empty line
  1152. comment_mode = false; //for new command
  1153. return;
  1154. }
  1155. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1156. if(!comment_mode){
  1157. comment_mode = false; //for new command
  1158. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1159. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1160. {
  1161. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1162. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1163. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1164. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1165. // M110 - set current line number.
  1166. // Line numbers not sent in succession.
  1167. SERIAL_ERROR_START;
  1168. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1169. SERIAL_ERRORLN(gcode_LastN);
  1170. //Serial.println(gcode_N);
  1171. FlushSerialRequestResend();
  1172. serial_count = 0;
  1173. return;
  1174. }
  1175. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1176. {
  1177. byte checksum = 0;
  1178. char *p = cmdbuffer+bufindw+1;
  1179. while (p != strchr_pointer)
  1180. checksum = checksum^(*p++);
  1181. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1182. SERIAL_ERROR_START;
  1183. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1184. SERIAL_ERRORLN(gcode_LastN);
  1185. FlushSerialRequestResend();
  1186. serial_count = 0;
  1187. return;
  1188. }
  1189. // If no errors, remove the checksum and continue parsing.
  1190. *strchr_pointer = 0;
  1191. }
  1192. else
  1193. {
  1194. SERIAL_ERROR_START;
  1195. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1196. SERIAL_ERRORLN(gcode_LastN);
  1197. FlushSerialRequestResend();
  1198. serial_count = 0;
  1199. return;
  1200. }
  1201. gcode_LastN = gcode_N;
  1202. //if no errors, continue parsing
  1203. } // end of 'N' command
  1204. }
  1205. else // if we don't receive 'N' but still see '*'
  1206. {
  1207. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1208. {
  1209. SERIAL_ERROR_START;
  1210. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1211. SERIAL_ERRORLN(gcode_LastN);
  1212. serial_count = 0;
  1213. return;
  1214. }
  1215. } // end of '*' command
  1216. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1217. if (! IS_SD_PRINTING) {
  1218. usb_printing_counter = 10;
  1219. is_usb_printing = true;
  1220. }
  1221. if (Stopped == true) {
  1222. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1223. if (gcode >= 0 && gcode <= 3) {
  1224. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1225. LCD_MESSAGERPGM(MSG_STOPPED);
  1226. }
  1227. }
  1228. } // end of 'G' command
  1229. //If command was e-stop process now
  1230. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1231. kill();
  1232. // Store the current line into buffer, move to the next line.
  1233. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1234. #ifdef CMDBUFFER_DEBUG
  1235. SERIAL_ECHO_START;
  1236. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1237. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1238. SERIAL_ECHOLNPGM("");
  1239. #endif /* CMDBUFFER_DEBUG */
  1240. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1241. if (bufindw == sizeof(cmdbuffer))
  1242. bufindw = 0;
  1243. ++ buflen;
  1244. #ifdef CMDBUFFER_DEBUG
  1245. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1246. SERIAL_ECHO(buflen);
  1247. SERIAL_ECHOLNPGM("");
  1248. #endif /* CMDBUFFER_DEBUG */
  1249. } // end of 'not comment mode'
  1250. serial_count = 0; //clear buffer
  1251. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1252. // in the queue, as this function will reserve the memory.
  1253. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1254. return;
  1255. } // end of "end of line" processing
  1256. else {
  1257. // Not an "end of line" symbol. Store the new character into a buffer.
  1258. if(serial_char == ';') comment_mode = true;
  1259. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1260. }
  1261. } // end of serial line processing loop
  1262. if(farm_mode){
  1263. TimeNow = millis();
  1264. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1265. cmdbuffer[bufindw+serial_count+1] = 0;
  1266. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1267. if (bufindw == sizeof(cmdbuffer))
  1268. bufindw = 0;
  1269. ++ buflen;
  1270. serial_count = 0;
  1271. SERIAL_ECHOPGM("TIMEOUT:");
  1272. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1273. return;
  1274. }
  1275. }
  1276. #ifdef SDSUPPORT
  1277. if(!card.sdprinting || serial_count!=0){
  1278. // If there is a half filled buffer from serial line, wait until return before
  1279. // continuing with the serial line.
  1280. return;
  1281. }
  1282. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1283. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1284. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1285. static bool stop_buffering=false;
  1286. if(buflen==0) stop_buffering=false;
  1287. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1288. while( !card.eof() && !stop_buffering) {
  1289. int16_t n=card.get();
  1290. char serial_char = (char)n;
  1291. if(serial_char == '\n' ||
  1292. serial_char == '\r' ||
  1293. (serial_char == '#' && comment_mode == false) ||
  1294. (serial_char == ':' && comment_mode == false) ||
  1295. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1296. {
  1297. if(card.eof()){
  1298. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1299. stoptime=millis();
  1300. char time[30];
  1301. unsigned long t=(stoptime-starttime)/1000;
  1302. int hours, minutes;
  1303. minutes=(t/60)%60;
  1304. hours=t/60/60;
  1305. save_statistics(total_filament_used, t);
  1306. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1307. SERIAL_ECHO_START;
  1308. SERIAL_ECHOLN(time);
  1309. lcd_setstatus(time);
  1310. card.printingHasFinished();
  1311. card.checkautostart(true);
  1312. if (farm_mode)
  1313. {
  1314. prusa_statistics(6);
  1315. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1316. }
  1317. }
  1318. if(serial_char=='#')
  1319. stop_buffering=true;
  1320. if(!serial_count)
  1321. {
  1322. comment_mode = false; //for new command
  1323. return; //if empty line
  1324. }
  1325. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1326. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1327. ++ buflen;
  1328. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1329. if (bufindw == sizeof(cmdbuffer))
  1330. bufindw = 0;
  1331. comment_mode = false; //for new command
  1332. serial_count = 0; //clear buffer
  1333. // The following line will reserve buffer space if available.
  1334. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1335. return;
  1336. }
  1337. else
  1338. {
  1339. if(serial_char == ';') comment_mode = true;
  1340. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1341. }
  1342. }
  1343. #endif //SDSUPPORT
  1344. }
  1345. // Return True if a character was found
  1346. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1347. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1348. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1349. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1350. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1351. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1352. #define DEFINE_PGM_READ_ANY(type, reader) \
  1353. static inline type pgm_read_any(const type *p) \
  1354. { return pgm_read_##reader##_near(p); }
  1355. DEFINE_PGM_READ_ANY(float, float);
  1356. DEFINE_PGM_READ_ANY(signed char, byte);
  1357. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1358. static const PROGMEM type array##_P[3] = \
  1359. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1360. static inline type array(int axis) \
  1361. { return pgm_read_any(&array##_P[axis]); } \
  1362. type array##_ext(int axis) \
  1363. { return pgm_read_any(&array##_P[axis]); }
  1364. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1365. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1366. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1367. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1368. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1369. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1370. static void axis_is_at_home(int axis) {
  1371. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1372. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1373. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1374. }
  1375. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1376. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1377. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1378. saved_feedrate = feedrate;
  1379. saved_feedmultiply = feedmultiply;
  1380. feedmultiply = 100;
  1381. previous_millis_cmd = millis();
  1382. enable_endstops(enable_endstops_now);
  1383. }
  1384. static void clean_up_after_endstop_move() {
  1385. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1386. enable_endstops(false);
  1387. #endif
  1388. feedrate = saved_feedrate;
  1389. feedmultiply = saved_feedmultiply;
  1390. previous_millis_cmd = millis();
  1391. }
  1392. #ifdef ENABLE_AUTO_BED_LEVELING
  1393. #ifdef AUTO_BED_LEVELING_GRID
  1394. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1395. {
  1396. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1397. planeNormal.debug("planeNormal");
  1398. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1399. //bedLevel.debug("bedLevel");
  1400. //plan_bed_level_matrix.debug("bed level before");
  1401. //vector_3 uncorrected_position = plan_get_position_mm();
  1402. //uncorrected_position.debug("position before");
  1403. vector_3 corrected_position = plan_get_position();
  1404. // corrected_position.debug("position after");
  1405. current_position[X_AXIS] = corrected_position.x;
  1406. current_position[Y_AXIS] = corrected_position.y;
  1407. current_position[Z_AXIS] = corrected_position.z;
  1408. // put the bed at 0 so we don't go below it.
  1409. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1410. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1411. }
  1412. #else // not AUTO_BED_LEVELING_GRID
  1413. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1414. plan_bed_level_matrix.set_to_identity();
  1415. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1416. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1417. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1418. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1419. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1420. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1421. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1422. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1423. vector_3 corrected_position = plan_get_position();
  1424. current_position[X_AXIS] = corrected_position.x;
  1425. current_position[Y_AXIS] = corrected_position.y;
  1426. current_position[Z_AXIS] = corrected_position.z;
  1427. // put the bed at 0 so we don't go below it.
  1428. current_position[Z_AXIS] = zprobe_zoffset;
  1429. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1430. }
  1431. #endif // AUTO_BED_LEVELING_GRID
  1432. static void run_z_probe() {
  1433. plan_bed_level_matrix.set_to_identity();
  1434. feedrate = homing_feedrate[Z_AXIS];
  1435. // move down until you find the bed
  1436. float zPosition = -10;
  1437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1438. st_synchronize();
  1439. // we have to let the planner know where we are right now as it is not where we said to go.
  1440. zPosition = st_get_position_mm(Z_AXIS);
  1441. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1442. // move up the retract distance
  1443. zPosition += home_retract_mm(Z_AXIS);
  1444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1445. st_synchronize();
  1446. // move back down slowly to find bed
  1447. feedrate = homing_feedrate[Z_AXIS]/4;
  1448. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1450. st_synchronize();
  1451. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1452. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1454. }
  1455. static void do_blocking_move_to(float x, float y, float z) {
  1456. float oldFeedRate = feedrate;
  1457. feedrate = homing_feedrate[Z_AXIS];
  1458. current_position[Z_AXIS] = z;
  1459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1460. st_synchronize();
  1461. feedrate = XY_TRAVEL_SPEED;
  1462. current_position[X_AXIS] = x;
  1463. current_position[Y_AXIS] = y;
  1464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1465. st_synchronize();
  1466. feedrate = oldFeedRate;
  1467. }
  1468. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1469. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1470. }
  1471. /// Probe bed height at position (x,y), returns the measured z value
  1472. static float probe_pt(float x, float y, float z_before) {
  1473. // move to right place
  1474. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1475. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1476. run_z_probe();
  1477. float measured_z = current_position[Z_AXIS];
  1478. SERIAL_PROTOCOLRPGM(MSG_BED);
  1479. SERIAL_PROTOCOLPGM(" x: ");
  1480. SERIAL_PROTOCOL(x);
  1481. SERIAL_PROTOCOLPGM(" y: ");
  1482. SERIAL_PROTOCOL(y);
  1483. SERIAL_PROTOCOLPGM(" z: ");
  1484. SERIAL_PROTOCOL(measured_z);
  1485. SERIAL_PROTOCOLPGM("\n");
  1486. return measured_z;
  1487. }
  1488. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1489. void homeaxis(int axis) {
  1490. #define HOMEAXIS_DO(LETTER) \
  1491. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1492. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1493. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1494. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1495. 0) {
  1496. int axis_home_dir = home_dir(axis);
  1497. current_position[axis] = 0;
  1498. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1499. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1500. feedrate = homing_feedrate[axis];
  1501. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1502. st_synchronize();
  1503. current_position[axis] = 0;
  1504. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1505. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1506. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1507. st_synchronize();
  1508. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1509. feedrate = homing_feedrate[axis]/2 ;
  1510. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1511. st_synchronize();
  1512. axis_is_at_home(axis);
  1513. destination[axis] = current_position[axis];
  1514. feedrate = 0.0;
  1515. endstops_hit_on_purpose();
  1516. axis_known_position[axis] = true;
  1517. }
  1518. }
  1519. void home_xy()
  1520. {
  1521. set_destination_to_current();
  1522. homeaxis(X_AXIS);
  1523. homeaxis(Y_AXIS);
  1524. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1525. endstops_hit_on_purpose();
  1526. }
  1527. void refresh_cmd_timeout(void)
  1528. {
  1529. previous_millis_cmd = millis();
  1530. }
  1531. #ifdef FWRETRACT
  1532. void retract(bool retracting, bool swapretract = false) {
  1533. if(retracting && !retracted[active_extruder]) {
  1534. destination[X_AXIS]=current_position[X_AXIS];
  1535. destination[Y_AXIS]=current_position[Y_AXIS];
  1536. destination[Z_AXIS]=current_position[Z_AXIS];
  1537. destination[E_AXIS]=current_position[E_AXIS];
  1538. if (swapretract) {
  1539. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1540. } else {
  1541. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1542. }
  1543. plan_set_e_position(current_position[E_AXIS]);
  1544. float oldFeedrate = feedrate;
  1545. feedrate=retract_feedrate*60;
  1546. retracted[active_extruder]=true;
  1547. prepare_move();
  1548. current_position[Z_AXIS]-=retract_zlift;
  1549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1550. prepare_move();
  1551. feedrate = oldFeedrate;
  1552. } else if(!retracting && retracted[active_extruder]) {
  1553. destination[X_AXIS]=current_position[X_AXIS];
  1554. destination[Y_AXIS]=current_position[Y_AXIS];
  1555. destination[Z_AXIS]=current_position[Z_AXIS];
  1556. destination[E_AXIS]=current_position[E_AXIS];
  1557. current_position[Z_AXIS]+=retract_zlift;
  1558. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1559. //prepare_move();
  1560. if (swapretract) {
  1561. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1562. } else {
  1563. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1564. }
  1565. plan_set_e_position(current_position[E_AXIS]);
  1566. float oldFeedrate = feedrate;
  1567. feedrate=retract_recover_feedrate*60;
  1568. retracted[active_extruder]=false;
  1569. prepare_move();
  1570. feedrate = oldFeedrate;
  1571. }
  1572. } //retract
  1573. #endif //FWRETRACT
  1574. void trace() {
  1575. tone(BEEPER, 440);
  1576. delay(25);
  1577. noTone(BEEPER);
  1578. delay(20);
  1579. }
  1580. void ramming() {
  1581. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1582. if (current_temperature[0] < 230) {
  1583. //PLA
  1584. max_feedrate[E_AXIS] = 50;
  1585. //current_position[E_AXIS] -= 8;
  1586. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1587. //current_position[E_AXIS] += 8;
  1588. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1589. current_position[E_AXIS] += 5.4;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1591. current_position[E_AXIS] += 3.2;
  1592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1593. current_position[E_AXIS] += 3;
  1594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1595. st_synchronize();
  1596. max_feedrate[E_AXIS] = 80;
  1597. current_position[E_AXIS] -= 82;
  1598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1599. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1600. current_position[E_AXIS] -= 20;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1602. current_position[E_AXIS] += 5;
  1603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1604. current_position[E_AXIS] += 5;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1606. current_position[E_AXIS] -= 10;
  1607. st_synchronize();
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1609. current_position[E_AXIS] += 10;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1611. current_position[E_AXIS] -= 10;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1613. current_position[E_AXIS] += 10;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1615. current_position[E_AXIS] -= 10;
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1617. st_synchronize();
  1618. }
  1619. else {
  1620. //ABS
  1621. max_feedrate[E_AXIS] = 50;
  1622. //current_position[E_AXIS] -= 8;
  1623. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1624. //current_position[E_AXIS] += 8;
  1625. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1626. current_position[E_AXIS] += 3.1;
  1627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1628. current_position[E_AXIS] += 3.1;
  1629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1630. current_position[E_AXIS] += 4;
  1631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1632. st_synchronize();
  1633. /*current_position[X_AXIS] += 23; //delay
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1635. current_position[X_AXIS] -= 23; //delay
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1637. delay(4700);
  1638. max_feedrate[E_AXIS] = 80;
  1639. current_position[E_AXIS] -= 92;
  1640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1641. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1642. current_position[E_AXIS] -= 5;
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1644. current_position[E_AXIS] += 5;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1646. current_position[E_AXIS] -= 5;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1648. st_synchronize();
  1649. current_position[E_AXIS] += 5;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1651. current_position[E_AXIS] -= 5;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1653. current_position[E_AXIS] += 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1655. current_position[E_AXIS] -= 5;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1657. st_synchronize();
  1658. }
  1659. }
  1660. void process_commands()
  1661. {
  1662. #ifdef FILAMENT_RUNOUT_SUPPORT
  1663. SET_INPUT(FR_SENS);
  1664. #endif
  1665. #ifdef CMDBUFFER_DEBUG
  1666. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1667. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1668. SERIAL_ECHOLNPGM("");
  1669. SERIAL_ECHOPGM("In cmdqueue: ");
  1670. SERIAL_ECHO(buflen);
  1671. SERIAL_ECHOLNPGM("");
  1672. #endif /* CMDBUFFER_DEBUG */
  1673. unsigned long codenum; //throw away variable
  1674. char *starpos = NULL;
  1675. #ifdef ENABLE_AUTO_BED_LEVELING
  1676. float x_tmp, y_tmp, z_tmp, real_z;
  1677. #endif
  1678. // PRUSA GCODES
  1679. #ifdef SNMM
  1680. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1681. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1682. int8_t SilentMode;
  1683. #endif
  1684. if(code_seen("PRUSA")){
  1685. if (code_seen("PRN")) {
  1686. MYSERIAL.println(status_number);
  1687. }else if (code_seen("fn")) {
  1688. if (farm_mode) {
  1689. MYSERIAL.println(farm_no);
  1690. }
  1691. else {
  1692. MYSERIAL.println("Not in farm mode.");
  1693. }
  1694. }else if (code_seen("fv")) {
  1695. // get file version
  1696. #ifdef SDSUPPORT
  1697. card.openFile(strchr_pointer + 3,true);
  1698. while (true) {
  1699. uint16_t readByte = card.get();
  1700. MYSERIAL.write(readByte);
  1701. if (readByte=='\n') {
  1702. break;
  1703. }
  1704. }
  1705. card.closefile();
  1706. #endif // SDSUPPORT
  1707. } else if (code_seen("M28")) {
  1708. trace();
  1709. prusa_sd_card_upload = true;
  1710. card.openFile(strchr_pointer+4,false);
  1711. } else if(code_seen("Fir")){
  1712. SERIAL_PROTOCOLLN(FW_version);
  1713. } else if(code_seen("Rev")){
  1714. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1715. } else if(code_seen("Lang")) {
  1716. lcd_force_language_selection();
  1717. } else if(code_seen("Lz")) {
  1718. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1719. } else if (code_seen("SERIAL LOW")) {
  1720. MYSERIAL.println("SERIAL LOW");
  1721. MYSERIAL.begin(BAUDRATE);
  1722. return;
  1723. } else if (code_seen("SERIAL HIGH")) {
  1724. MYSERIAL.println("SERIAL HIGH");
  1725. MYSERIAL.begin(1152000);
  1726. return;
  1727. } else if(code_seen("Beat")) {
  1728. // Kick farm link timer
  1729. kicktime = millis();
  1730. } else if(code_seen("FR")) {
  1731. // Factory full reset
  1732. factory_reset(0,true);
  1733. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1734. #ifdef SNMM
  1735. int extr;
  1736. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1737. lcd_implementation_clear();
  1738. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1739. current_position[Z_AXIS] = 100;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1741. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1742. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1743. change_extr(extr);
  1744. ramming();
  1745. }
  1746. change_extr(0);
  1747. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1749. st_synchronize();
  1750. for (extr = 1; extr < 4; extr++) {
  1751. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1752. change_extr(extr);
  1753. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1755. st_synchronize();
  1756. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1757. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1759. st_synchronize();
  1760. }
  1761. change_extr(0);
  1762. current_position[E_AXIS] += 25;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1764. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1765. ramming();
  1766. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1767. else digipot_current(2, tmp_motor_loud[2]);
  1768. st_synchronize();
  1769. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1770. lcd_implementation_clear();
  1771. lcd_printPGM(MSG_PLEASE_WAIT);
  1772. current_position[Z_AXIS] = 0;
  1773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1774. st_synchronize();
  1775. lcd_update_enable(true);
  1776. #endif
  1777. }
  1778. else if (code_seen("SetF")) {
  1779. #ifdef SNMM
  1780. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1781. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1782. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1783. #endif
  1784. }
  1785. else if (code_seen("ResF")) {
  1786. #ifdef SNMM
  1787. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1788. #endif
  1789. }
  1790. //else if (code_seen('Cal')) {
  1791. // lcd_calibration();
  1792. // }
  1793. }
  1794. else if (code_seen('^')) {
  1795. // nothing, this is a version line
  1796. } else if(code_seen('G'))
  1797. {
  1798. switch((int)code_value())
  1799. {
  1800. case 0: // G0 -> G1
  1801. case 1: // G1
  1802. if(Stopped == false) {
  1803. #ifdef FILAMENT_RUNOUT_SUPPORT
  1804. if(READ(FR_SENS)){
  1805. feedmultiplyBckp=feedmultiply;
  1806. float target[4];
  1807. float lastpos[4];
  1808. target[X_AXIS]=current_position[X_AXIS];
  1809. target[Y_AXIS]=current_position[Y_AXIS];
  1810. target[Z_AXIS]=current_position[Z_AXIS];
  1811. target[E_AXIS]=current_position[E_AXIS];
  1812. lastpos[X_AXIS]=current_position[X_AXIS];
  1813. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1814. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1815. lastpos[E_AXIS]=current_position[E_AXIS];
  1816. //retract by E
  1817. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1818. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1819. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1820. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1821. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1822. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1824. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1826. //finish moves
  1827. st_synchronize();
  1828. //disable extruder steppers so filament can be removed
  1829. disable_e0();
  1830. disable_e1();
  1831. disable_e2();
  1832. delay(100);
  1833. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1834. uint8_t cnt=0;
  1835. int counterBeep = 0;
  1836. lcd_wait_interact();
  1837. while(!lcd_clicked()){
  1838. cnt++;
  1839. manage_heater();
  1840. manage_inactivity(true);
  1841. //lcd_update();
  1842. if(cnt==0)
  1843. {
  1844. #if BEEPER > 0
  1845. if (counterBeep== 500){
  1846. counterBeep = 0;
  1847. }
  1848. SET_OUTPUT(BEEPER);
  1849. if (counterBeep== 0){
  1850. WRITE(BEEPER,HIGH);
  1851. }
  1852. if (counterBeep== 20){
  1853. WRITE(BEEPER,LOW);
  1854. }
  1855. counterBeep++;
  1856. #else
  1857. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1858. lcd_buzz(1000/6,100);
  1859. #else
  1860. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1861. #endif
  1862. #endif
  1863. }
  1864. }
  1865. WRITE(BEEPER,LOW);
  1866. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1867. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1868. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1869. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1870. lcd_change_fil_state = 0;
  1871. lcd_loading_filament();
  1872. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1873. lcd_change_fil_state = 0;
  1874. lcd_alright();
  1875. switch(lcd_change_fil_state){
  1876. case 2:
  1877. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1878. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1879. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1881. lcd_loading_filament();
  1882. break;
  1883. case 3:
  1884. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1886. lcd_loading_color();
  1887. break;
  1888. default:
  1889. lcd_change_success();
  1890. break;
  1891. }
  1892. }
  1893. target[E_AXIS]+= 5;
  1894. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1895. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1896. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1897. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1898. //plan_set_e_position(current_position[E_AXIS]);
  1899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1900. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1901. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1902. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1903. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1904. plan_set_e_position(lastpos[E_AXIS]);
  1905. feedmultiply=feedmultiplyBckp;
  1906. char cmd[9];
  1907. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1908. enquecommand(cmd);
  1909. }
  1910. #endif
  1911. get_coordinates(); // For X Y Z E F
  1912. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1913. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1914. }
  1915. #ifdef FWRETRACT
  1916. if(autoretract_enabled)
  1917. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1918. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1919. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1920. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1921. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1922. retract(!retracted);
  1923. return;
  1924. }
  1925. }
  1926. #endif //FWRETRACT
  1927. prepare_move();
  1928. //ClearToSend();
  1929. }
  1930. break;
  1931. case 2: // G2 - CW ARC
  1932. if(Stopped == false) {
  1933. get_arc_coordinates();
  1934. prepare_arc_move(true);
  1935. }
  1936. break;
  1937. case 3: // G3 - CCW ARC
  1938. if(Stopped == false) {
  1939. get_arc_coordinates();
  1940. prepare_arc_move(false);
  1941. }
  1942. break;
  1943. case 4: // G4 dwell
  1944. LCD_MESSAGERPGM(MSG_DWELL);
  1945. codenum = 0;
  1946. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1947. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1948. st_synchronize();
  1949. codenum += millis(); // keep track of when we started waiting
  1950. previous_millis_cmd = millis();
  1951. while(millis() < codenum) {
  1952. manage_heater();
  1953. manage_inactivity();
  1954. lcd_update();
  1955. }
  1956. break;
  1957. #ifdef FWRETRACT
  1958. case 10: // G10 retract
  1959. #if EXTRUDERS > 1
  1960. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1961. retract(true,retracted_swap[active_extruder]);
  1962. #else
  1963. retract(true);
  1964. #endif
  1965. break;
  1966. case 11: // G11 retract_recover
  1967. #if EXTRUDERS > 1
  1968. retract(false,retracted_swap[active_extruder]);
  1969. #else
  1970. retract(false);
  1971. #endif
  1972. break;
  1973. #endif //FWRETRACT
  1974. case 28: //G28 Home all Axis one at a time
  1975. homing_flag = true;
  1976. #ifdef ENABLE_AUTO_BED_LEVELING
  1977. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1978. #endif //ENABLE_AUTO_BED_LEVELING
  1979. // For mesh bed leveling deactivate the matrix temporarily
  1980. #ifdef MESH_BED_LEVELING
  1981. mbl.active = 0;
  1982. #endif
  1983. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1984. // the planner will not perform any adjustments in the XY plane.
  1985. // Wait for the motors to stop and update the current position with the absolute values.
  1986. world2machine_revert_to_uncorrected();
  1987. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1988. // consumed during the first movements following this statement.
  1989. babystep_undo();
  1990. saved_feedrate = feedrate;
  1991. saved_feedmultiply = feedmultiply;
  1992. feedmultiply = 100;
  1993. previous_millis_cmd = millis();
  1994. enable_endstops(true);
  1995. for(int8_t i=0; i < NUM_AXIS; i++)
  1996. destination[i] = current_position[i];
  1997. feedrate = 0.0;
  1998. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1999. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2000. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2001. homeaxis(Z_AXIS);
  2002. }
  2003. #endif
  2004. #ifdef QUICK_HOME
  2005. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2006. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2007. {
  2008. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2009. int x_axis_home_dir = home_dir(X_AXIS);
  2010. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2011. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2012. feedrate = homing_feedrate[X_AXIS];
  2013. if(homing_feedrate[Y_AXIS]<feedrate)
  2014. feedrate = homing_feedrate[Y_AXIS];
  2015. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2016. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2017. } else {
  2018. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2019. }
  2020. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2021. st_synchronize();
  2022. axis_is_at_home(X_AXIS);
  2023. axis_is_at_home(Y_AXIS);
  2024. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2025. destination[X_AXIS] = current_position[X_AXIS];
  2026. destination[Y_AXIS] = current_position[Y_AXIS];
  2027. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2028. feedrate = 0.0;
  2029. st_synchronize();
  2030. endstops_hit_on_purpose();
  2031. current_position[X_AXIS] = destination[X_AXIS];
  2032. current_position[Y_AXIS] = destination[Y_AXIS];
  2033. current_position[Z_AXIS] = destination[Z_AXIS];
  2034. }
  2035. #endif /* QUICK_HOME */
  2036. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2037. homeaxis(X_AXIS);
  2038. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2039. homeaxis(Y_AXIS);
  2040. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2041. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2042. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2043. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2044. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2045. #ifndef Z_SAFE_HOMING
  2046. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2047. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2048. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2049. feedrate = max_feedrate[Z_AXIS];
  2050. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2051. st_synchronize();
  2052. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2053. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2054. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2055. {
  2056. homeaxis(X_AXIS);
  2057. homeaxis(Y_AXIS);
  2058. }
  2059. // 1st mesh bed leveling measurement point, corrected.
  2060. world2machine_initialize();
  2061. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2062. world2machine_reset();
  2063. if (destination[Y_AXIS] < Y_MIN_POS)
  2064. destination[Y_AXIS] = Y_MIN_POS;
  2065. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2066. feedrate = homing_feedrate[Z_AXIS]/10;
  2067. current_position[Z_AXIS] = 0;
  2068. enable_endstops(false);
  2069. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2070. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2071. st_synchronize();
  2072. current_position[X_AXIS] = destination[X_AXIS];
  2073. current_position[Y_AXIS] = destination[Y_AXIS];
  2074. enable_endstops(true);
  2075. endstops_hit_on_purpose();
  2076. homeaxis(Z_AXIS);
  2077. #else // MESH_BED_LEVELING
  2078. homeaxis(Z_AXIS);
  2079. #endif // MESH_BED_LEVELING
  2080. }
  2081. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2082. if(home_all_axis) {
  2083. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2084. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2085. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2086. feedrate = XY_TRAVEL_SPEED/60;
  2087. current_position[Z_AXIS] = 0;
  2088. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2089. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2090. st_synchronize();
  2091. current_position[X_AXIS] = destination[X_AXIS];
  2092. current_position[Y_AXIS] = destination[Y_AXIS];
  2093. homeaxis(Z_AXIS);
  2094. }
  2095. // Let's see if X and Y are homed and probe is inside bed area.
  2096. if(code_seen(axis_codes[Z_AXIS])) {
  2097. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2098. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2099. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2100. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2101. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2102. current_position[Z_AXIS] = 0;
  2103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2104. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2105. feedrate = max_feedrate[Z_AXIS];
  2106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2107. st_synchronize();
  2108. homeaxis(Z_AXIS);
  2109. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2110. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2111. SERIAL_ECHO_START;
  2112. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2113. } else {
  2114. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2115. SERIAL_ECHO_START;
  2116. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2117. }
  2118. }
  2119. #endif // Z_SAFE_HOMING
  2120. #endif // Z_HOME_DIR < 0
  2121. if(code_seen(axis_codes[Z_AXIS])) {
  2122. if(code_value_long() != 0) {
  2123. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2124. }
  2125. }
  2126. #ifdef ENABLE_AUTO_BED_LEVELING
  2127. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2128. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2129. }
  2130. #endif
  2131. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2132. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2133. enable_endstops(false);
  2134. #endif
  2135. feedrate = saved_feedrate;
  2136. feedmultiply = saved_feedmultiply;
  2137. previous_millis_cmd = millis();
  2138. endstops_hit_on_purpose();
  2139. #ifndef MESH_BED_LEVELING
  2140. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2141. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2142. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2143. lcd_adjust_z();
  2144. #endif
  2145. // Load the machine correction matrix
  2146. world2machine_initialize();
  2147. // and correct the current_position to match the transformed coordinate system.
  2148. world2machine_update_current();
  2149. #ifdef MESH_BED_LEVELING
  2150. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2151. {
  2152. }
  2153. else
  2154. {
  2155. st_synchronize();
  2156. homing_flag = false;
  2157. // Push the commands to the front of the message queue in the reverse order!
  2158. // There shall be always enough space reserved for these commands.
  2159. // enquecommand_front_P((PSTR("G80")));
  2160. goto case_G80;
  2161. }
  2162. #endif
  2163. if (farm_mode) { prusa_statistics(20); };
  2164. homing_flag = false;
  2165. break;
  2166. #ifdef ENABLE_AUTO_BED_LEVELING
  2167. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2168. {
  2169. #if Z_MIN_PIN == -1
  2170. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2171. #endif
  2172. // Prevent user from running a G29 without first homing in X and Y
  2173. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2174. {
  2175. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2176. SERIAL_ECHO_START;
  2177. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2178. break; // abort G29, since we don't know where we are
  2179. }
  2180. st_synchronize();
  2181. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2182. //vector_3 corrected_position = plan_get_position_mm();
  2183. //corrected_position.debug("position before G29");
  2184. plan_bed_level_matrix.set_to_identity();
  2185. vector_3 uncorrected_position = plan_get_position();
  2186. //uncorrected_position.debug("position durring G29");
  2187. current_position[X_AXIS] = uncorrected_position.x;
  2188. current_position[Y_AXIS] = uncorrected_position.y;
  2189. current_position[Z_AXIS] = uncorrected_position.z;
  2190. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2191. setup_for_endstop_move();
  2192. feedrate = homing_feedrate[Z_AXIS];
  2193. #ifdef AUTO_BED_LEVELING_GRID
  2194. // probe at the points of a lattice grid
  2195. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2196. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2197. // solve the plane equation ax + by + d = z
  2198. // A is the matrix with rows [x y 1] for all the probed points
  2199. // B is the vector of the Z positions
  2200. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2201. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2202. // "A" matrix of the linear system of equations
  2203. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2204. // "B" vector of Z points
  2205. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2206. int probePointCounter = 0;
  2207. bool zig = true;
  2208. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2209. {
  2210. int xProbe, xInc;
  2211. if (zig)
  2212. {
  2213. xProbe = LEFT_PROBE_BED_POSITION;
  2214. //xEnd = RIGHT_PROBE_BED_POSITION;
  2215. xInc = xGridSpacing;
  2216. zig = false;
  2217. } else // zag
  2218. {
  2219. xProbe = RIGHT_PROBE_BED_POSITION;
  2220. //xEnd = LEFT_PROBE_BED_POSITION;
  2221. xInc = -xGridSpacing;
  2222. zig = true;
  2223. }
  2224. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2225. {
  2226. float z_before;
  2227. if (probePointCounter == 0)
  2228. {
  2229. // raise before probing
  2230. z_before = Z_RAISE_BEFORE_PROBING;
  2231. } else
  2232. {
  2233. // raise extruder
  2234. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2235. }
  2236. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2237. eqnBVector[probePointCounter] = measured_z;
  2238. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2239. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2240. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2241. probePointCounter++;
  2242. xProbe += xInc;
  2243. }
  2244. }
  2245. clean_up_after_endstop_move();
  2246. // solve lsq problem
  2247. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2248. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2249. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2250. SERIAL_PROTOCOLPGM(" b: ");
  2251. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2252. SERIAL_PROTOCOLPGM(" d: ");
  2253. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2254. set_bed_level_equation_lsq(plane_equation_coefficients);
  2255. free(plane_equation_coefficients);
  2256. #else // AUTO_BED_LEVELING_GRID not defined
  2257. // Probe at 3 arbitrary points
  2258. // probe 1
  2259. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2260. // probe 2
  2261. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2262. // probe 3
  2263. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2264. clean_up_after_endstop_move();
  2265. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2266. #endif // AUTO_BED_LEVELING_GRID
  2267. st_synchronize();
  2268. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2269. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2270. // When the bed is uneven, this height must be corrected.
  2271. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2272. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2273. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2274. z_tmp = current_position[Z_AXIS];
  2275. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2276. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2278. }
  2279. break;
  2280. #ifndef Z_PROBE_SLED
  2281. case 30: // G30 Single Z Probe
  2282. {
  2283. st_synchronize();
  2284. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2285. setup_for_endstop_move();
  2286. feedrate = homing_feedrate[Z_AXIS];
  2287. run_z_probe();
  2288. SERIAL_PROTOCOLPGM(MSG_BED);
  2289. SERIAL_PROTOCOLPGM(" X: ");
  2290. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2291. SERIAL_PROTOCOLPGM(" Y: ");
  2292. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2293. SERIAL_PROTOCOLPGM(" Z: ");
  2294. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2295. SERIAL_PROTOCOLPGM("\n");
  2296. clean_up_after_endstop_move();
  2297. }
  2298. break;
  2299. #else
  2300. case 31: // dock the sled
  2301. dock_sled(true);
  2302. break;
  2303. case 32: // undock the sled
  2304. dock_sled(false);
  2305. break;
  2306. #endif // Z_PROBE_SLED
  2307. #endif // ENABLE_AUTO_BED_LEVELING
  2308. #ifdef MESH_BED_LEVELING
  2309. case 30: // G30 Single Z Probe
  2310. {
  2311. st_synchronize();
  2312. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2313. setup_for_endstop_move();
  2314. feedrate = homing_feedrate[Z_AXIS];
  2315. find_bed_induction_sensor_point_z(-10.f, 3);
  2316. SERIAL_PROTOCOLRPGM(MSG_BED);
  2317. SERIAL_PROTOCOLPGM(" X: ");
  2318. MYSERIAL.print(current_position[X_AXIS], 5);
  2319. SERIAL_PROTOCOLPGM(" Y: ");
  2320. MYSERIAL.print(current_position[Y_AXIS], 5);
  2321. SERIAL_PROTOCOLPGM(" Z: ");
  2322. MYSERIAL.print(current_position[Z_AXIS], 5);
  2323. SERIAL_PROTOCOLPGM("\n");
  2324. clean_up_after_endstop_move();
  2325. }
  2326. break;
  2327. /**
  2328. * G80: Mesh-based Z probe, probes a grid and produces a
  2329. * mesh to compensate for variable bed height
  2330. *
  2331. * The S0 report the points as below
  2332. *
  2333. * +----> X-axis
  2334. * |
  2335. * |
  2336. * v Y-axis
  2337. *
  2338. */
  2339. #ifdef DIS
  2340. case 77:
  2341. {
  2342. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2343. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2344. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2345. float dimension_x = 40;
  2346. float dimension_y = 40;
  2347. int points_x = 40;
  2348. int points_y = 40;
  2349. float offset_x = 74;
  2350. float offset_y = 33;
  2351. if (code_seen('X')) dimension_x = code_value();
  2352. if (code_seen('Y')) dimension_y = code_value();
  2353. if (code_seen('XP')) points_x = code_value();
  2354. if (code_seen('YP')) points_y = code_value();
  2355. if (code_seen('XO')) offset_x = code_value();
  2356. if (code_seen('YO')) offset_y = code_value();
  2357. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2358. } break;
  2359. #endif
  2360. case 80:
  2361. case_G80:
  2362. {
  2363. // Firstly check if we know where we are
  2364. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2365. // We don't know where we are! HOME!
  2366. // Push the commands to the front of the message queue in the reverse order!
  2367. // There shall be always enough space reserved for these commands.
  2368. repeatcommand_front(); // repeat G80 with all its parameters
  2369. enquecommand_front_P((PSTR("G28 W0")));
  2370. break;
  2371. }
  2372. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2373. bool custom_message_old = custom_message;
  2374. unsigned int custom_message_type_old = custom_message_type;
  2375. unsigned int custom_message_state_old = custom_message_state;
  2376. custom_message = true;
  2377. custom_message_type = 1;
  2378. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2379. lcd_update(1);
  2380. mbl.reset();
  2381. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2382. // consumed during the first movements following this statement.
  2383. babystep_undo();
  2384. // Cycle through all points and probe them
  2385. // First move up. During this first movement, the babystepping will be reverted.
  2386. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2387. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2388. // The move to the first calibration point.
  2389. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2390. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2391. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2392. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2393. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2394. // Wait until the move is finished.
  2395. st_synchronize();
  2396. int mesh_point = 0;
  2397. int ix = 0;
  2398. int iy = 0;
  2399. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2400. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2401. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2402. bool has_z = is_bed_z_jitter_data_valid();
  2403. setup_for_endstop_move(false);
  2404. const char *kill_message = NULL;
  2405. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2406. // Get coords of a measuring point.
  2407. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2408. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2409. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2410. float z0 = 0.f;
  2411. if (has_z && mesh_point > 0) {
  2412. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2413. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2414. #if 0
  2415. SERIAL_ECHOPGM("Bed leveling, point: ");
  2416. MYSERIAL.print(mesh_point);
  2417. SERIAL_ECHOPGM(", calibration z: ");
  2418. MYSERIAL.print(z0, 5);
  2419. SERIAL_ECHOLNPGM("");
  2420. #endif
  2421. }
  2422. // Move Z up to MESH_HOME_Z_SEARCH.
  2423. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2425. st_synchronize();
  2426. // Move to XY position of the sensor point.
  2427. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2428. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2429. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2431. st_synchronize();
  2432. // Go down until endstop is hit
  2433. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2434. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2435. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2436. break;
  2437. }
  2438. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2439. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2440. break;
  2441. }
  2442. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2443. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2444. break;
  2445. }
  2446. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2447. custom_message_state--;
  2448. mesh_point++;
  2449. lcd_update(1);
  2450. }
  2451. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2453. st_synchronize();
  2454. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2455. kill(kill_message);
  2456. }
  2457. clean_up_after_endstop_move();
  2458. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2459. babystep_apply();
  2460. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2461. for (uint8_t i = 0; i < 4; ++ i) {
  2462. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2463. long correction = 0;
  2464. if (code_seen(codes[i]))
  2465. correction = code_value_long();
  2466. else if (eeprom_bed_correction_valid) {
  2467. unsigned char *addr = (i < 2) ?
  2468. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2469. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2470. correction = eeprom_read_int8(addr);
  2471. }
  2472. if (correction == 0)
  2473. continue;
  2474. float offset = float(correction) * 0.001f;
  2475. if (fabs(offset) > 0.101f) {
  2476. SERIAL_ERROR_START;
  2477. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2478. SERIAL_ECHO(offset);
  2479. SERIAL_ECHOLNPGM(" microns");
  2480. } else {
  2481. switch (i) {
  2482. case 0:
  2483. for (uint8_t row = 0; row < 3; ++ row) {
  2484. mbl.z_values[row][1] += 0.5f * offset;
  2485. mbl.z_values[row][0] += offset;
  2486. }
  2487. break;
  2488. case 1:
  2489. for (uint8_t row = 0; row < 3; ++ row) {
  2490. mbl.z_values[row][1] += 0.5f * offset;
  2491. mbl.z_values[row][2] += offset;
  2492. }
  2493. break;
  2494. case 2:
  2495. for (uint8_t col = 0; col < 3; ++ col) {
  2496. mbl.z_values[1][col] += 0.5f * offset;
  2497. mbl.z_values[0][col] += offset;
  2498. }
  2499. break;
  2500. case 3:
  2501. for (uint8_t col = 0; col < 3; ++ col) {
  2502. mbl.z_values[1][col] += 0.5f * offset;
  2503. mbl.z_values[2][col] += offset;
  2504. }
  2505. break;
  2506. }
  2507. }
  2508. }
  2509. mbl.upsample_3x3();
  2510. mbl.active = 1;
  2511. go_home_with_z_lift();
  2512. // Restore custom message state
  2513. custom_message = custom_message_old;
  2514. custom_message_type = custom_message_type_old;
  2515. custom_message_state = custom_message_state_old;
  2516. lcd_update(1);
  2517. }
  2518. break;
  2519. /**
  2520. * G81: Print mesh bed leveling status and bed profile if activated
  2521. */
  2522. case 81:
  2523. if (mbl.active) {
  2524. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2525. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2526. SERIAL_PROTOCOLPGM(",");
  2527. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2528. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2529. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2530. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2531. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2532. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2533. SERIAL_PROTOCOLPGM(" ");
  2534. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2535. }
  2536. SERIAL_PROTOCOLPGM("\n");
  2537. }
  2538. }
  2539. else
  2540. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2541. break;
  2542. #if 0
  2543. /**
  2544. * G82: Single Z probe at current location
  2545. *
  2546. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2547. *
  2548. */
  2549. case 82:
  2550. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2551. setup_for_endstop_move();
  2552. find_bed_induction_sensor_point_z();
  2553. clean_up_after_endstop_move();
  2554. SERIAL_PROTOCOLPGM("Bed found at: ");
  2555. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2556. SERIAL_PROTOCOLPGM("\n");
  2557. break;
  2558. /**
  2559. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2560. */
  2561. case 83:
  2562. {
  2563. int babystepz = code_seen('S') ? code_value() : 0;
  2564. int BabyPosition = code_seen('P') ? code_value() : 0;
  2565. if (babystepz != 0) {
  2566. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2567. // Is the axis indexed starting with zero or one?
  2568. if (BabyPosition > 4) {
  2569. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2570. }else{
  2571. // Save it to the eeprom
  2572. babystepLoadZ = babystepz;
  2573. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2574. // adjust the Z
  2575. babystepsTodoZadd(babystepLoadZ);
  2576. }
  2577. }
  2578. }
  2579. break;
  2580. /**
  2581. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2582. */
  2583. case 84:
  2584. babystepsTodoZsubtract(babystepLoadZ);
  2585. // babystepLoadZ = 0;
  2586. break;
  2587. /**
  2588. * G85: Prusa3D specific: Pick best babystep
  2589. */
  2590. case 85:
  2591. lcd_pick_babystep();
  2592. break;
  2593. #endif
  2594. /**
  2595. * G86: Prusa3D specific: Disable babystep correction after home.
  2596. * This G-code will be performed at the start of a calibration script.
  2597. */
  2598. case 86:
  2599. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2600. break;
  2601. /**
  2602. * G87: Prusa3D specific: Enable babystep correction after home
  2603. * This G-code will be performed at the end of a calibration script.
  2604. */
  2605. case 87:
  2606. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2607. break;
  2608. /**
  2609. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2610. */
  2611. case 88:
  2612. break;
  2613. #endif // ENABLE_MESH_BED_LEVELING
  2614. case 90: // G90
  2615. relative_mode = false;
  2616. break;
  2617. case 91: // G91
  2618. relative_mode = true;
  2619. break;
  2620. case 92: // G92
  2621. if(!code_seen(axis_codes[E_AXIS]))
  2622. st_synchronize();
  2623. for(int8_t i=0; i < NUM_AXIS; i++) {
  2624. if(code_seen(axis_codes[i])) {
  2625. if(i == E_AXIS) {
  2626. current_position[i] = code_value();
  2627. plan_set_e_position(current_position[E_AXIS]);
  2628. }
  2629. else {
  2630. current_position[i] = code_value()+add_homing[i];
  2631. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2632. }
  2633. }
  2634. }
  2635. break;
  2636. case 98: //activate farm mode
  2637. farm_mode = 1;
  2638. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2639. break;
  2640. case 99: //deactivate farm mode
  2641. farm_mode = 0;
  2642. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2643. break;
  2644. }
  2645. } // end if(code_seen('G'))
  2646. else if(code_seen('M'))
  2647. {
  2648. int index;
  2649. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2650. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2651. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2652. SERIAL_ECHOLNPGM("Invalid M code");
  2653. } else
  2654. switch((int)code_value())
  2655. {
  2656. #ifdef ULTIPANEL
  2657. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2658. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2659. {
  2660. char *src = strchr_pointer + 2;
  2661. codenum = 0;
  2662. bool hasP = false, hasS = false;
  2663. if (code_seen('P')) {
  2664. codenum = code_value(); // milliseconds to wait
  2665. hasP = codenum > 0;
  2666. }
  2667. if (code_seen('S')) {
  2668. codenum = code_value() * 1000; // seconds to wait
  2669. hasS = codenum > 0;
  2670. }
  2671. starpos = strchr(src, '*');
  2672. if (starpos != NULL) *(starpos) = '\0';
  2673. while (*src == ' ') ++src;
  2674. if (!hasP && !hasS && *src != '\0') {
  2675. lcd_setstatus(src);
  2676. } else {
  2677. LCD_MESSAGERPGM(MSG_USERWAIT);
  2678. }
  2679. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2680. st_synchronize();
  2681. previous_millis_cmd = millis();
  2682. if (codenum > 0){
  2683. codenum += millis(); // keep track of when we started waiting
  2684. while(millis() < codenum && !lcd_clicked()){
  2685. manage_heater();
  2686. manage_inactivity(true);
  2687. lcd_update();
  2688. }
  2689. lcd_ignore_click(false);
  2690. }else{
  2691. if (!lcd_detected())
  2692. break;
  2693. while(!lcd_clicked()){
  2694. manage_heater();
  2695. manage_inactivity(true);
  2696. lcd_update();
  2697. }
  2698. }
  2699. if (IS_SD_PRINTING)
  2700. LCD_MESSAGERPGM(MSG_RESUMING);
  2701. else
  2702. LCD_MESSAGERPGM(WELCOME_MSG);
  2703. }
  2704. break;
  2705. #endif
  2706. case 17:
  2707. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2708. enable_x();
  2709. enable_y();
  2710. enable_z();
  2711. enable_e0();
  2712. enable_e1();
  2713. enable_e2();
  2714. break;
  2715. #ifdef SDSUPPORT
  2716. case 20: // M20 - list SD card
  2717. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2718. card.ls();
  2719. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2720. break;
  2721. case 21: // M21 - init SD card
  2722. card.initsd();
  2723. break;
  2724. case 22: //M22 - release SD card
  2725. card.release();
  2726. break;
  2727. case 23: //M23 - Select file
  2728. starpos = (strchr(strchr_pointer + 4,'*'));
  2729. if(starpos!=NULL)
  2730. *(starpos)='\0';
  2731. card.openFile(strchr_pointer + 4,true);
  2732. break;
  2733. case 24: //M24 - Start SD print
  2734. card.startFileprint();
  2735. starttime=millis();
  2736. break;
  2737. case 25: //M25 - Pause SD print
  2738. card.pauseSDPrint();
  2739. break;
  2740. case 26: //M26 - Set SD index
  2741. if(card.cardOK && code_seen('S')) {
  2742. card.setIndex(code_value_long());
  2743. }
  2744. break;
  2745. case 27: //M27 - Get SD status
  2746. card.getStatus();
  2747. break;
  2748. case 28: //M28 - Start SD write
  2749. starpos = (strchr(strchr_pointer + 4,'*'));
  2750. if(starpos != NULL){
  2751. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2752. strchr_pointer = strchr(npos,' ') + 1;
  2753. *(starpos) = '\0';
  2754. }
  2755. card.openFile(strchr_pointer+4,false);
  2756. break;
  2757. case 29: //M29 - Stop SD write
  2758. //processed in write to file routine above
  2759. //card,saving = false;
  2760. break;
  2761. case 30: //M30 <filename> Delete File
  2762. if (card.cardOK){
  2763. card.closefile();
  2764. starpos = (strchr(strchr_pointer + 4,'*'));
  2765. if(starpos != NULL){
  2766. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2767. strchr_pointer = strchr(npos,' ') + 1;
  2768. *(starpos) = '\0';
  2769. }
  2770. card.removeFile(strchr_pointer + 4);
  2771. }
  2772. break;
  2773. case 32: //M32 - Select file and start SD print
  2774. {
  2775. if(card.sdprinting) {
  2776. st_synchronize();
  2777. }
  2778. starpos = (strchr(strchr_pointer + 4,'*'));
  2779. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2780. if(namestartpos==NULL)
  2781. {
  2782. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2783. }
  2784. else
  2785. namestartpos++; //to skip the '!'
  2786. if(starpos!=NULL)
  2787. *(starpos)='\0';
  2788. bool call_procedure=(code_seen('P'));
  2789. if(strchr_pointer>namestartpos)
  2790. call_procedure=false; //false alert, 'P' found within filename
  2791. if( card.cardOK )
  2792. {
  2793. card.openFile(namestartpos,true,!call_procedure);
  2794. if(code_seen('S'))
  2795. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2796. card.setIndex(code_value_long());
  2797. card.startFileprint();
  2798. if(!call_procedure)
  2799. starttime=millis(); //procedure calls count as normal print time.
  2800. }
  2801. } break;
  2802. case 928: //M928 - Start SD write
  2803. starpos = (strchr(strchr_pointer + 5,'*'));
  2804. if(starpos != NULL){
  2805. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2806. strchr_pointer = strchr(npos,' ') + 1;
  2807. *(starpos) = '\0';
  2808. }
  2809. card.openLogFile(strchr_pointer+5);
  2810. break;
  2811. #endif //SDSUPPORT
  2812. case 31: //M31 take time since the start of the SD print or an M109 command
  2813. {
  2814. stoptime=millis();
  2815. char time[30];
  2816. unsigned long t=(stoptime-starttime)/1000;
  2817. int sec,min;
  2818. min=t/60;
  2819. sec=t%60;
  2820. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2821. SERIAL_ECHO_START;
  2822. SERIAL_ECHOLN(time);
  2823. lcd_setstatus(time);
  2824. autotempShutdown();
  2825. }
  2826. break;
  2827. case 42: //M42 -Change pin status via gcode
  2828. if (code_seen('S'))
  2829. {
  2830. int pin_status = code_value();
  2831. int pin_number = LED_PIN;
  2832. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2833. pin_number = code_value();
  2834. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2835. {
  2836. if (sensitive_pins[i] == pin_number)
  2837. {
  2838. pin_number = -1;
  2839. break;
  2840. }
  2841. }
  2842. #if defined(FAN_PIN) && FAN_PIN > -1
  2843. if (pin_number == FAN_PIN)
  2844. fanSpeed = pin_status;
  2845. #endif
  2846. if (pin_number > -1)
  2847. {
  2848. pinMode(pin_number, OUTPUT);
  2849. digitalWrite(pin_number, pin_status);
  2850. analogWrite(pin_number, pin_status);
  2851. }
  2852. }
  2853. break;
  2854. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2855. // Reset the baby step value and the baby step applied flag.
  2856. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2857. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2858. // Reset the skew and offset in both RAM and EEPROM.
  2859. reset_bed_offset_and_skew();
  2860. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2861. // the planner will not perform any adjustments in the XY plane.
  2862. // Wait for the motors to stop and update the current position with the absolute values.
  2863. world2machine_revert_to_uncorrected();
  2864. break;
  2865. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2866. {
  2867. // Only Z calibration?
  2868. bool onlyZ = code_seen('Z');
  2869. if (!onlyZ) {
  2870. setTargetBed(0);
  2871. setTargetHotend(0, 0);
  2872. setTargetHotend(0, 1);
  2873. setTargetHotend(0, 2);
  2874. adjust_bed_reset(); //reset bed level correction
  2875. }
  2876. // Disable the default update procedure of the display. We will do a modal dialog.
  2877. lcd_update_enable(false);
  2878. // Let the planner use the uncorrected coordinates.
  2879. mbl.reset();
  2880. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2881. // the planner will not perform any adjustments in the XY plane.
  2882. // Wait for the motors to stop and update the current position with the absolute values.
  2883. world2machine_revert_to_uncorrected();
  2884. // Reset the baby step value applied without moving the axes.
  2885. babystep_reset();
  2886. // Mark all axes as in a need for homing.
  2887. memset(axis_known_position, 0, sizeof(axis_known_position));
  2888. // Let the user move the Z axes up to the end stoppers.
  2889. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2890. refresh_cmd_timeout();
  2891. if (((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION))&& (!onlyZ)) lcd_wait_for_cool_down();
  2892. lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
  2893. lcd_implementation_print_at(0, 3, 1);
  2894. lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
  2895. // Move the print head close to the bed.
  2896. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2898. st_synchronize();
  2899. // Home in the XY plane.
  2900. set_destination_to_current();
  2901. setup_for_endstop_move();
  2902. home_xy();
  2903. int8_t verbosity_level = 0;
  2904. if (code_seen('V')) {
  2905. // Just 'V' without a number counts as V1.
  2906. char c = strchr_pointer[1];
  2907. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2908. }
  2909. if (onlyZ) {
  2910. clean_up_after_endstop_move();
  2911. // Z only calibration.
  2912. // Load the machine correction matrix
  2913. world2machine_initialize();
  2914. // and correct the current_position to match the transformed coordinate system.
  2915. world2machine_update_current();
  2916. //FIXME
  2917. bool result = sample_mesh_and_store_reference();
  2918. if (result) {
  2919. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2920. // Shipped, the nozzle height has been set already. The user can start printing now.
  2921. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2922. // babystep_apply();
  2923. }
  2924. } else {
  2925. // Reset the baby step value and the baby step applied flag.
  2926. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2927. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2928. // Complete XYZ calibration.
  2929. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2930. uint8_t point_too_far_mask = 0;
  2931. clean_up_after_endstop_move();
  2932. // Print head up.
  2933. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2935. st_synchronize();
  2936. if (result >= 0) {
  2937. // Second half: The fine adjustment.
  2938. // Let the planner use the uncorrected coordinates.
  2939. mbl.reset();
  2940. world2machine_reset();
  2941. // Home in the XY plane.
  2942. setup_for_endstop_move();
  2943. home_xy();
  2944. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2945. clean_up_after_endstop_move();
  2946. // Print head up.
  2947. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2949. st_synchronize();
  2950. // if (result >= 0) babystep_apply();
  2951. }
  2952. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2953. if (result >= 0) {
  2954. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2955. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2956. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2957. }
  2958. }
  2959. } else {
  2960. // Timeouted.
  2961. }
  2962. lcd_update_enable(true);
  2963. break;
  2964. }
  2965. /*
  2966. case 46:
  2967. {
  2968. // M46: Prusa3D: Show the assigned IP address.
  2969. uint8_t ip[4];
  2970. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2971. if (hasIP) {
  2972. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2973. SERIAL_ECHO(int(ip[0]));
  2974. SERIAL_ECHOPGM(".");
  2975. SERIAL_ECHO(int(ip[1]));
  2976. SERIAL_ECHOPGM(".");
  2977. SERIAL_ECHO(int(ip[2]));
  2978. SERIAL_ECHOPGM(".");
  2979. SERIAL_ECHO(int(ip[3]));
  2980. SERIAL_ECHOLNPGM("");
  2981. } else {
  2982. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2983. }
  2984. break;
  2985. }
  2986. */
  2987. case 47:
  2988. // M47: Prusa3D: Show end stops dialog on the display.
  2989. lcd_diag_show_end_stops();
  2990. break;
  2991. #if 0
  2992. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2993. {
  2994. // Disable the default update procedure of the display. We will do a modal dialog.
  2995. lcd_update_enable(false);
  2996. // Let the planner use the uncorrected coordinates.
  2997. mbl.reset();
  2998. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2999. // the planner will not perform any adjustments in the XY plane.
  3000. // Wait for the motors to stop and update the current position with the absolute values.
  3001. world2machine_revert_to_uncorrected();
  3002. // Move the print head close to the bed.
  3003. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3005. st_synchronize();
  3006. // Home in the XY plane.
  3007. set_destination_to_current();
  3008. setup_for_endstop_move();
  3009. home_xy();
  3010. int8_t verbosity_level = 0;
  3011. if (code_seen('V')) {
  3012. // Just 'V' without a number counts as V1.
  3013. char c = strchr_pointer[1];
  3014. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3015. }
  3016. bool success = scan_bed_induction_points(verbosity_level);
  3017. clean_up_after_endstop_move();
  3018. // Print head up.
  3019. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3021. st_synchronize();
  3022. lcd_update_enable(true);
  3023. break;
  3024. }
  3025. #endif
  3026. // M48 Z-Probe repeatability measurement function.
  3027. //
  3028. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3029. //
  3030. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3031. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3032. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3033. // regenerated.
  3034. //
  3035. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3036. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3037. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3038. //
  3039. #ifdef ENABLE_AUTO_BED_LEVELING
  3040. #ifdef Z_PROBE_REPEATABILITY_TEST
  3041. case 48: // M48 Z-Probe repeatability
  3042. {
  3043. #if Z_MIN_PIN == -1
  3044. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3045. #endif
  3046. double sum=0.0;
  3047. double mean=0.0;
  3048. double sigma=0.0;
  3049. double sample_set[50];
  3050. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3051. double X_current, Y_current, Z_current;
  3052. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3053. if (code_seen('V') || code_seen('v')) {
  3054. verbose_level = code_value();
  3055. if (verbose_level<0 || verbose_level>4 ) {
  3056. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3057. goto Sigma_Exit;
  3058. }
  3059. }
  3060. if (verbose_level > 0) {
  3061. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3062. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3063. }
  3064. if (code_seen('n')) {
  3065. n_samples = code_value();
  3066. if (n_samples<4 || n_samples>50 ) {
  3067. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3068. goto Sigma_Exit;
  3069. }
  3070. }
  3071. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3072. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3073. Z_current = st_get_position_mm(Z_AXIS);
  3074. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3075. ext_position = st_get_position_mm(E_AXIS);
  3076. if (code_seen('X') || code_seen('x') ) {
  3077. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3078. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3079. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3080. goto Sigma_Exit;
  3081. }
  3082. }
  3083. if (code_seen('Y') || code_seen('y') ) {
  3084. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3085. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3086. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3087. goto Sigma_Exit;
  3088. }
  3089. }
  3090. if (code_seen('L') || code_seen('l') ) {
  3091. n_legs = code_value();
  3092. if ( n_legs==1 )
  3093. n_legs = 2;
  3094. if ( n_legs<0 || n_legs>15 ) {
  3095. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3096. goto Sigma_Exit;
  3097. }
  3098. }
  3099. //
  3100. // Do all the preliminary setup work. First raise the probe.
  3101. //
  3102. st_synchronize();
  3103. plan_bed_level_matrix.set_to_identity();
  3104. plan_buffer_line( X_current, Y_current, Z_start_location,
  3105. ext_position,
  3106. homing_feedrate[Z_AXIS]/60,
  3107. active_extruder);
  3108. st_synchronize();
  3109. //
  3110. // Now get everything to the specified probe point So we can safely do a probe to
  3111. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3112. // use that as a starting point for each probe.
  3113. //
  3114. if (verbose_level > 2)
  3115. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3116. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3117. ext_position,
  3118. homing_feedrate[X_AXIS]/60,
  3119. active_extruder);
  3120. st_synchronize();
  3121. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3122. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3123. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3124. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3125. //
  3126. // OK, do the inital probe to get us close to the bed.
  3127. // Then retrace the right amount and use that in subsequent probes
  3128. //
  3129. setup_for_endstop_move();
  3130. run_z_probe();
  3131. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3132. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3133. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3134. ext_position,
  3135. homing_feedrate[X_AXIS]/60,
  3136. active_extruder);
  3137. st_synchronize();
  3138. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3139. for( n=0; n<n_samples; n++) {
  3140. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3141. if ( n_legs) {
  3142. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3143. int rotational_direction, l;
  3144. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3145. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3146. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3147. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3148. //SERIAL_ECHOPAIR(" theta: ",theta);
  3149. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3150. //SERIAL_PROTOCOLLNPGM("");
  3151. for( l=0; l<n_legs-1; l++) {
  3152. if (rotational_direction==1)
  3153. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3154. else
  3155. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3156. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3157. if ( radius<0.0 )
  3158. radius = -radius;
  3159. X_current = X_probe_location + cos(theta) * radius;
  3160. Y_current = Y_probe_location + sin(theta) * radius;
  3161. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3162. X_current = X_MIN_POS;
  3163. if ( X_current>X_MAX_POS)
  3164. X_current = X_MAX_POS;
  3165. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3166. Y_current = Y_MIN_POS;
  3167. if ( Y_current>Y_MAX_POS)
  3168. Y_current = Y_MAX_POS;
  3169. if (verbose_level>3 ) {
  3170. SERIAL_ECHOPAIR("x: ", X_current);
  3171. SERIAL_ECHOPAIR("y: ", Y_current);
  3172. SERIAL_PROTOCOLLNPGM("");
  3173. }
  3174. do_blocking_move_to( X_current, Y_current, Z_current );
  3175. }
  3176. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3177. }
  3178. setup_for_endstop_move();
  3179. run_z_probe();
  3180. sample_set[n] = current_position[Z_AXIS];
  3181. //
  3182. // Get the current mean for the data points we have so far
  3183. //
  3184. sum=0.0;
  3185. for( j=0; j<=n; j++) {
  3186. sum = sum + sample_set[j];
  3187. }
  3188. mean = sum / (double (n+1));
  3189. //
  3190. // Now, use that mean to calculate the standard deviation for the
  3191. // data points we have so far
  3192. //
  3193. sum=0.0;
  3194. for( j=0; j<=n; j++) {
  3195. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3196. }
  3197. sigma = sqrt( sum / (double (n+1)) );
  3198. if (verbose_level > 1) {
  3199. SERIAL_PROTOCOL(n+1);
  3200. SERIAL_PROTOCOL(" of ");
  3201. SERIAL_PROTOCOL(n_samples);
  3202. SERIAL_PROTOCOLPGM(" z: ");
  3203. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3204. }
  3205. if (verbose_level > 2) {
  3206. SERIAL_PROTOCOL(" mean: ");
  3207. SERIAL_PROTOCOL_F(mean,6);
  3208. SERIAL_PROTOCOL(" sigma: ");
  3209. SERIAL_PROTOCOL_F(sigma,6);
  3210. }
  3211. if (verbose_level > 0)
  3212. SERIAL_PROTOCOLPGM("\n");
  3213. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3214. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3215. st_synchronize();
  3216. }
  3217. delay(1000);
  3218. clean_up_after_endstop_move();
  3219. // enable_endstops(true);
  3220. if (verbose_level > 0) {
  3221. SERIAL_PROTOCOLPGM("Mean: ");
  3222. SERIAL_PROTOCOL_F(mean, 6);
  3223. SERIAL_PROTOCOLPGM("\n");
  3224. }
  3225. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3226. SERIAL_PROTOCOL_F(sigma, 6);
  3227. SERIAL_PROTOCOLPGM("\n\n");
  3228. Sigma_Exit:
  3229. break;
  3230. }
  3231. #endif // Z_PROBE_REPEATABILITY_TEST
  3232. #endif // ENABLE_AUTO_BED_LEVELING
  3233. case 104: // M104
  3234. if(setTargetedHotend(104)){
  3235. break;
  3236. }
  3237. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3238. setWatch();
  3239. break;
  3240. case 112: // M112 -Emergency Stop
  3241. kill();
  3242. break;
  3243. case 140: // M140 set bed temp
  3244. if (code_seen('S')) setTargetBed(code_value());
  3245. break;
  3246. case 105 : // M105
  3247. if(setTargetedHotend(105)){
  3248. break;
  3249. }
  3250. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3251. SERIAL_PROTOCOLPGM("ok T:");
  3252. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3253. SERIAL_PROTOCOLPGM(" /");
  3254. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3255. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3256. SERIAL_PROTOCOLPGM(" B:");
  3257. SERIAL_PROTOCOL_F(degBed(),1);
  3258. SERIAL_PROTOCOLPGM(" /");
  3259. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3260. #endif //TEMP_BED_PIN
  3261. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3262. SERIAL_PROTOCOLPGM(" T");
  3263. SERIAL_PROTOCOL(cur_extruder);
  3264. SERIAL_PROTOCOLPGM(":");
  3265. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3266. SERIAL_PROTOCOLPGM(" /");
  3267. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3268. }
  3269. #else
  3270. SERIAL_ERROR_START;
  3271. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3272. #endif
  3273. SERIAL_PROTOCOLPGM(" @:");
  3274. #ifdef EXTRUDER_WATTS
  3275. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3276. SERIAL_PROTOCOLPGM("W");
  3277. #else
  3278. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3279. #endif
  3280. SERIAL_PROTOCOLPGM(" B@:");
  3281. #ifdef BED_WATTS
  3282. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3283. SERIAL_PROTOCOLPGM("W");
  3284. #else
  3285. SERIAL_PROTOCOL(getHeaterPower(-1));
  3286. #endif
  3287. #ifdef SHOW_TEMP_ADC_VALUES
  3288. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3289. SERIAL_PROTOCOLPGM(" ADC B:");
  3290. SERIAL_PROTOCOL_F(degBed(),1);
  3291. SERIAL_PROTOCOLPGM("C->");
  3292. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3293. #endif
  3294. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3295. SERIAL_PROTOCOLPGM(" T");
  3296. SERIAL_PROTOCOL(cur_extruder);
  3297. SERIAL_PROTOCOLPGM(":");
  3298. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3299. SERIAL_PROTOCOLPGM("C->");
  3300. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3301. }
  3302. #endif
  3303. SERIAL_PROTOCOLLN("");
  3304. return;
  3305. break;
  3306. case 109:
  3307. {// M109 - Wait for extruder heater to reach target.
  3308. if(setTargetedHotend(109)){
  3309. break;
  3310. }
  3311. LCD_MESSAGERPGM(MSG_HEATING);
  3312. heating_status = 1;
  3313. if (farm_mode) { prusa_statistics(1); };
  3314. #ifdef AUTOTEMP
  3315. autotemp_enabled=false;
  3316. #endif
  3317. if (code_seen('S')) {
  3318. setTargetHotend(code_value(), tmp_extruder);
  3319. CooldownNoWait = true;
  3320. } else if (code_seen('R')) {
  3321. setTargetHotend(code_value(), tmp_extruder);
  3322. CooldownNoWait = false;
  3323. }
  3324. #ifdef AUTOTEMP
  3325. if (code_seen('S')) autotemp_min=code_value();
  3326. if (code_seen('B')) autotemp_max=code_value();
  3327. if (code_seen('F'))
  3328. {
  3329. autotemp_factor=code_value();
  3330. autotemp_enabled=true;
  3331. }
  3332. #endif
  3333. setWatch();
  3334. codenum = millis();
  3335. /* See if we are heating up or cooling down */
  3336. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3337. cancel_heatup = false;
  3338. #ifdef TEMP_RESIDENCY_TIME
  3339. long residencyStart;
  3340. residencyStart = -1;
  3341. /* continue to loop until we have reached the target temp
  3342. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3343. while((!cancel_heatup)&&((residencyStart == -1) ||
  3344. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3345. #else
  3346. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3347. #endif //TEMP_RESIDENCY_TIME
  3348. if( (millis() - codenum) > 1000UL )
  3349. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3350. if (!farm_mode) {
  3351. SERIAL_PROTOCOLPGM("T:");
  3352. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  3353. SERIAL_PROTOCOLPGM(" E:");
  3354. SERIAL_PROTOCOL((int)tmp_extruder);
  3355. #ifdef TEMP_RESIDENCY_TIME
  3356. SERIAL_PROTOCOLPGM(" W:");
  3357. if (residencyStart > -1)
  3358. {
  3359. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3360. SERIAL_PROTOCOLLN(codenum);
  3361. }
  3362. else
  3363. {
  3364. SERIAL_PROTOCOLLN("?");
  3365. }
  3366. }
  3367. #else
  3368. SERIAL_PROTOCOLLN("");
  3369. #endif
  3370. codenum = millis();
  3371. }
  3372. manage_heater();
  3373. manage_inactivity();
  3374. lcd_update();
  3375. #ifdef TEMP_RESIDENCY_TIME
  3376. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3377. or when current temp falls outside the hysteresis after target temp was reached */
  3378. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3379. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3380. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3381. {
  3382. residencyStart = millis();
  3383. }
  3384. #endif //TEMP_RESIDENCY_TIME
  3385. }
  3386. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3387. heating_status = 2;
  3388. if (farm_mode) { prusa_statistics(2); };
  3389. starttime=millis();
  3390. previous_millis_cmd = millis();
  3391. }
  3392. break;
  3393. case 190: // M190 - Wait for bed heater to reach target.
  3394. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3395. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3396. heating_status = 3;
  3397. if (farm_mode) { prusa_statistics(1); };
  3398. if (code_seen('S'))
  3399. {
  3400. setTargetBed(code_value());
  3401. CooldownNoWait = true;
  3402. }
  3403. else if (code_seen('R'))
  3404. {
  3405. setTargetBed(code_value());
  3406. CooldownNoWait = false;
  3407. }
  3408. codenum = millis();
  3409. cancel_heatup = false;
  3410. target_direction = isHeatingBed(); // true if heating, false if cooling
  3411. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3412. {
  3413. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3414. {
  3415. if (!farm_mode) {
  3416. float tt = degHotend(active_extruder);
  3417. SERIAL_PROTOCOLPGM("T:");
  3418. SERIAL_PROTOCOL(tt);
  3419. SERIAL_PROTOCOLPGM(" E:");
  3420. SERIAL_PROTOCOL((int)active_extruder);
  3421. SERIAL_PROTOCOLPGM(" B:");
  3422. SERIAL_PROTOCOL_F(degBed(), 1);
  3423. SERIAL_PROTOCOLLN("");
  3424. }
  3425. codenum = millis();
  3426. }
  3427. manage_heater();
  3428. manage_inactivity();
  3429. lcd_update();
  3430. }
  3431. LCD_MESSAGERPGM(MSG_BED_DONE);
  3432. heating_status = 4;
  3433. previous_millis_cmd = millis();
  3434. #endif
  3435. break;
  3436. #if defined(FAN_PIN) && FAN_PIN > -1
  3437. case 106: //M106 Fan On
  3438. if (code_seen('S')){
  3439. fanSpeed=constrain(code_value(),0,255);
  3440. }
  3441. else {
  3442. fanSpeed=255;
  3443. }
  3444. break;
  3445. case 107: //M107 Fan Off
  3446. fanSpeed = 0;
  3447. break;
  3448. #endif //FAN_PIN
  3449. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3450. case 80: // M80 - Turn on Power Supply
  3451. SET_OUTPUT(PS_ON_PIN); //GND
  3452. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3453. // If you have a switch on suicide pin, this is useful
  3454. // if you want to start another print with suicide feature after
  3455. // a print without suicide...
  3456. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3457. SET_OUTPUT(SUICIDE_PIN);
  3458. WRITE(SUICIDE_PIN, HIGH);
  3459. #endif
  3460. #ifdef ULTIPANEL
  3461. powersupply = true;
  3462. LCD_MESSAGERPGM(WELCOME_MSG);
  3463. lcd_update();
  3464. #endif
  3465. break;
  3466. #endif
  3467. case 81: // M81 - Turn off Power Supply
  3468. disable_heater();
  3469. st_synchronize();
  3470. disable_e0();
  3471. disable_e1();
  3472. disable_e2();
  3473. finishAndDisableSteppers();
  3474. fanSpeed = 0;
  3475. delay(1000); // Wait a little before to switch off
  3476. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3477. st_synchronize();
  3478. suicide();
  3479. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3480. SET_OUTPUT(PS_ON_PIN);
  3481. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3482. #endif
  3483. #ifdef ULTIPANEL
  3484. powersupply = false;
  3485. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3486. /*
  3487. MACHNAME = "Prusa i3"
  3488. MSGOFF = "Vypnuto"
  3489. "Prusai3"" ""vypnuto""."
  3490. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3491. */
  3492. lcd_update();
  3493. #endif
  3494. break;
  3495. case 82:
  3496. axis_relative_modes[3] = false;
  3497. break;
  3498. case 83:
  3499. axis_relative_modes[3] = true;
  3500. break;
  3501. case 18: //compatibility
  3502. case 84: // M84
  3503. if(code_seen('S')){
  3504. stepper_inactive_time = code_value() * 1000;
  3505. }
  3506. else
  3507. {
  3508. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3509. if(all_axis)
  3510. {
  3511. st_synchronize();
  3512. disable_e0();
  3513. disable_e1();
  3514. disable_e2();
  3515. finishAndDisableSteppers();
  3516. }
  3517. else
  3518. {
  3519. st_synchronize();
  3520. if(code_seen('X')) disable_x();
  3521. if(code_seen('Y')) disable_y();
  3522. if(code_seen('Z')) disable_z();
  3523. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3524. if(code_seen('E')) {
  3525. disable_e0();
  3526. disable_e1();
  3527. disable_e2();
  3528. }
  3529. #endif
  3530. }
  3531. }
  3532. break;
  3533. case 85: // M85
  3534. if(code_seen('S')) {
  3535. max_inactive_time = code_value() * 1000;
  3536. }
  3537. break;
  3538. case 92: // M92
  3539. for(int8_t i=0; i < NUM_AXIS; i++)
  3540. {
  3541. if(code_seen(axis_codes[i]))
  3542. {
  3543. if(i == 3) { // E
  3544. float value = code_value();
  3545. if(value < 20.0) {
  3546. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3547. max_jerk[E_AXIS] *= factor;
  3548. max_feedrate[i] *= factor;
  3549. axis_steps_per_sqr_second[i] *= factor;
  3550. }
  3551. axis_steps_per_unit[i] = value;
  3552. }
  3553. else {
  3554. axis_steps_per_unit[i] = code_value();
  3555. }
  3556. }
  3557. }
  3558. break;
  3559. case 115: // M115
  3560. if (code_seen('V')) {
  3561. // Report the Prusa version number.
  3562. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3563. } else if (code_seen('U')) {
  3564. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3565. // pause the print and ask the user to upgrade the firmware.
  3566. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3567. } else {
  3568. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3569. }
  3570. break;
  3571. case 117: // M117 display message
  3572. starpos = (strchr(strchr_pointer + 5,'*'));
  3573. if(starpos!=NULL)
  3574. *(starpos)='\0';
  3575. lcd_setstatus(strchr_pointer + 5);
  3576. break;
  3577. case 114: // M114
  3578. SERIAL_PROTOCOLPGM("X:");
  3579. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3580. SERIAL_PROTOCOLPGM(" Y:");
  3581. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3582. SERIAL_PROTOCOLPGM(" Z:");
  3583. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3584. SERIAL_PROTOCOLPGM(" E:");
  3585. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3586. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3587. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3588. SERIAL_PROTOCOLPGM(" Y:");
  3589. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3590. SERIAL_PROTOCOLPGM(" Z:");
  3591. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3592. SERIAL_PROTOCOLLN("");
  3593. break;
  3594. case 120: // M120
  3595. enable_endstops(false) ;
  3596. break;
  3597. case 121: // M121
  3598. enable_endstops(true) ;
  3599. break;
  3600. case 119: // M119
  3601. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3602. SERIAL_PROTOCOLLN("");
  3603. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3604. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3605. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3606. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3607. }else{
  3608. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3609. }
  3610. SERIAL_PROTOCOLLN("");
  3611. #endif
  3612. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3613. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3614. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3615. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3616. }else{
  3617. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3618. }
  3619. SERIAL_PROTOCOLLN("");
  3620. #endif
  3621. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3622. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3623. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3624. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3625. }else{
  3626. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3627. }
  3628. SERIAL_PROTOCOLLN("");
  3629. #endif
  3630. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3631. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3632. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3633. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3634. }else{
  3635. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3636. }
  3637. SERIAL_PROTOCOLLN("");
  3638. #endif
  3639. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3640. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3641. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3642. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3643. }else{
  3644. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3645. }
  3646. SERIAL_PROTOCOLLN("");
  3647. #endif
  3648. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3649. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3650. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3651. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3652. }else{
  3653. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3654. }
  3655. SERIAL_PROTOCOLLN("");
  3656. #endif
  3657. break;
  3658. //TODO: update for all axis, use for loop
  3659. #ifdef BLINKM
  3660. case 150: // M150
  3661. {
  3662. byte red;
  3663. byte grn;
  3664. byte blu;
  3665. if(code_seen('R')) red = code_value();
  3666. if(code_seen('U')) grn = code_value();
  3667. if(code_seen('B')) blu = code_value();
  3668. SendColors(red,grn,blu);
  3669. }
  3670. break;
  3671. #endif //BLINKM
  3672. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3673. {
  3674. tmp_extruder = active_extruder;
  3675. if(code_seen('T')) {
  3676. tmp_extruder = code_value();
  3677. if(tmp_extruder >= EXTRUDERS) {
  3678. SERIAL_ECHO_START;
  3679. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3680. break;
  3681. }
  3682. }
  3683. float area = .0;
  3684. if(code_seen('D')) {
  3685. float diameter = (float)code_value();
  3686. if (diameter == 0.0) {
  3687. // setting any extruder filament size disables volumetric on the assumption that
  3688. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3689. // for all extruders
  3690. volumetric_enabled = false;
  3691. } else {
  3692. filament_size[tmp_extruder] = (float)code_value();
  3693. // make sure all extruders have some sane value for the filament size
  3694. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3695. #if EXTRUDERS > 1
  3696. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3697. #if EXTRUDERS > 2
  3698. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3699. #endif
  3700. #endif
  3701. volumetric_enabled = true;
  3702. }
  3703. } else {
  3704. //reserved for setting filament diameter via UFID or filament measuring device
  3705. break;
  3706. }
  3707. calculate_volumetric_multipliers();
  3708. }
  3709. break;
  3710. case 201: // M201
  3711. for(int8_t i=0; i < NUM_AXIS; i++)
  3712. {
  3713. if(code_seen(axis_codes[i]))
  3714. {
  3715. max_acceleration_units_per_sq_second[i] = code_value();
  3716. }
  3717. }
  3718. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3719. reset_acceleration_rates();
  3720. break;
  3721. #if 0 // Not used for Sprinter/grbl gen6
  3722. case 202: // M202
  3723. for(int8_t i=0; i < NUM_AXIS; i++) {
  3724. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3725. }
  3726. break;
  3727. #endif
  3728. case 203: // M203 max feedrate mm/sec
  3729. for(int8_t i=0; i < NUM_AXIS; i++) {
  3730. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3731. }
  3732. break;
  3733. case 204: // M204 acclereration S normal moves T filmanent only moves
  3734. {
  3735. if(code_seen('S')) acceleration = code_value() ;
  3736. if(code_seen('T')) retract_acceleration = code_value() ;
  3737. }
  3738. break;
  3739. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3740. {
  3741. if(code_seen('S')) minimumfeedrate = code_value();
  3742. if(code_seen('T')) mintravelfeedrate = code_value();
  3743. if(code_seen('B')) minsegmenttime = code_value() ;
  3744. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3745. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3746. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3747. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3748. }
  3749. break;
  3750. case 206: // M206 additional homing offset
  3751. for(int8_t i=0; i < 3; i++)
  3752. {
  3753. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3754. }
  3755. break;
  3756. #ifdef FWRETRACT
  3757. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3758. {
  3759. if(code_seen('S'))
  3760. {
  3761. retract_length = code_value() ;
  3762. }
  3763. if(code_seen('F'))
  3764. {
  3765. retract_feedrate = code_value()/60 ;
  3766. }
  3767. if(code_seen('Z'))
  3768. {
  3769. retract_zlift = code_value() ;
  3770. }
  3771. }break;
  3772. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3773. {
  3774. if(code_seen('S'))
  3775. {
  3776. retract_recover_length = code_value() ;
  3777. }
  3778. if(code_seen('F'))
  3779. {
  3780. retract_recover_feedrate = code_value()/60 ;
  3781. }
  3782. }break;
  3783. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3784. {
  3785. if(code_seen('S'))
  3786. {
  3787. int t= code_value() ;
  3788. switch(t)
  3789. {
  3790. case 0:
  3791. {
  3792. autoretract_enabled=false;
  3793. retracted[0]=false;
  3794. #if EXTRUDERS > 1
  3795. retracted[1]=false;
  3796. #endif
  3797. #if EXTRUDERS > 2
  3798. retracted[2]=false;
  3799. #endif
  3800. }break;
  3801. case 1:
  3802. {
  3803. autoretract_enabled=true;
  3804. retracted[0]=false;
  3805. #if EXTRUDERS > 1
  3806. retracted[1]=false;
  3807. #endif
  3808. #if EXTRUDERS > 2
  3809. retracted[2]=false;
  3810. #endif
  3811. }break;
  3812. default:
  3813. SERIAL_ECHO_START;
  3814. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3815. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3816. SERIAL_ECHOLNPGM("\"");
  3817. }
  3818. }
  3819. }break;
  3820. #endif // FWRETRACT
  3821. #if EXTRUDERS > 1
  3822. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3823. {
  3824. if(setTargetedHotend(218)){
  3825. break;
  3826. }
  3827. if(code_seen('X'))
  3828. {
  3829. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3830. }
  3831. if(code_seen('Y'))
  3832. {
  3833. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3834. }
  3835. SERIAL_ECHO_START;
  3836. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3837. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3838. {
  3839. SERIAL_ECHO(" ");
  3840. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3841. SERIAL_ECHO(",");
  3842. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3843. }
  3844. SERIAL_ECHOLN("");
  3845. }break;
  3846. #endif
  3847. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3848. {
  3849. if(code_seen('S'))
  3850. {
  3851. feedmultiply = code_value() ;
  3852. }
  3853. }
  3854. break;
  3855. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3856. {
  3857. if(code_seen('S'))
  3858. {
  3859. int tmp_code = code_value();
  3860. if (code_seen('T'))
  3861. {
  3862. if(setTargetedHotend(221)){
  3863. break;
  3864. }
  3865. extruder_multiply[tmp_extruder] = tmp_code;
  3866. }
  3867. else
  3868. {
  3869. extrudemultiply = tmp_code ;
  3870. }
  3871. }
  3872. }
  3873. break;
  3874. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3875. {
  3876. if(code_seen('P')){
  3877. int pin_number = code_value(); // pin number
  3878. int pin_state = -1; // required pin state - default is inverted
  3879. if(code_seen('S')) pin_state = code_value(); // required pin state
  3880. if(pin_state >= -1 && pin_state <= 1){
  3881. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3882. {
  3883. if (sensitive_pins[i] == pin_number)
  3884. {
  3885. pin_number = -1;
  3886. break;
  3887. }
  3888. }
  3889. if (pin_number > -1)
  3890. {
  3891. int target = LOW;
  3892. st_synchronize();
  3893. pinMode(pin_number, INPUT);
  3894. switch(pin_state){
  3895. case 1:
  3896. target = HIGH;
  3897. break;
  3898. case 0:
  3899. target = LOW;
  3900. break;
  3901. case -1:
  3902. target = !digitalRead(pin_number);
  3903. break;
  3904. }
  3905. while(digitalRead(pin_number) != target){
  3906. manage_heater();
  3907. manage_inactivity();
  3908. lcd_update();
  3909. }
  3910. }
  3911. }
  3912. }
  3913. }
  3914. break;
  3915. #if NUM_SERVOS > 0
  3916. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3917. {
  3918. int servo_index = -1;
  3919. int servo_position = 0;
  3920. if (code_seen('P'))
  3921. servo_index = code_value();
  3922. if (code_seen('S')) {
  3923. servo_position = code_value();
  3924. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3925. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3926. servos[servo_index].attach(0);
  3927. #endif
  3928. servos[servo_index].write(servo_position);
  3929. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3930. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3931. servos[servo_index].detach();
  3932. #endif
  3933. }
  3934. else {
  3935. SERIAL_ECHO_START;
  3936. SERIAL_ECHO("Servo ");
  3937. SERIAL_ECHO(servo_index);
  3938. SERIAL_ECHOLN(" out of range");
  3939. }
  3940. }
  3941. else if (servo_index >= 0) {
  3942. SERIAL_PROTOCOL(MSG_OK);
  3943. SERIAL_PROTOCOL(" Servo ");
  3944. SERIAL_PROTOCOL(servo_index);
  3945. SERIAL_PROTOCOL(": ");
  3946. SERIAL_PROTOCOL(servos[servo_index].read());
  3947. SERIAL_PROTOCOLLN("");
  3948. }
  3949. }
  3950. break;
  3951. #endif // NUM_SERVOS > 0
  3952. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3953. case 300: // M300
  3954. {
  3955. int beepS = code_seen('S') ? code_value() : 110;
  3956. int beepP = code_seen('P') ? code_value() : 1000;
  3957. if (beepS > 0)
  3958. {
  3959. #if BEEPER > 0
  3960. tone(BEEPER, beepS);
  3961. delay(beepP);
  3962. noTone(BEEPER);
  3963. #elif defined(ULTRALCD)
  3964. lcd_buzz(beepS, beepP);
  3965. #elif defined(LCD_USE_I2C_BUZZER)
  3966. lcd_buzz(beepP, beepS);
  3967. #endif
  3968. }
  3969. else
  3970. {
  3971. delay(beepP);
  3972. }
  3973. }
  3974. break;
  3975. #endif // M300
  3976. #ifdef PIDTEMP
  3977. case 301: // M301
  3978. {
  3979. if(code_seen('P')) Kp = code_value();
  3980. if(code_seen('I')) Ki = scalePID_i(code_value());
  3981. if(code_seen('D')) Kd = scalePID_d(code_value());
  3982. #ifdef PID_ADD_EXTRUSION_RATE
  3983. if(code_seen('C')) Kc = code_value();
  3984. #endif
  3985. updatePID();
  3986. SERIAL_PROTOCOLRPGM(MSG_OK);
  3987. SERIAL_PROTOCOL(" p:");
  3988. SERIAL_PROTOCOL(Kp);
  3989. SERIAL_PROTOCOL(" i:");
  3990. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3991. SERIAL_PROTOCOL(" d:");
  3992. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3993. #ifdef PID_ADD_EXTRUSION_RATE
  3994. SERIAL_PROTOCOL(" c:");
  3995. //Kc does not have scaling applied above, or in resetting defaults
  3996. SERIAL_PROTOCOL(Kc);
  3997. #endif
  3998. SERIAL_PROTOCOLLN("");
  3999. }
  4000. break;
  4001. #endif //PIDTEMP
  4002. #ifdef PIDTEMPBED
  4003. case 304: // M304
  4004. {
  4005. if(code_seen('P')) bedKp = code_value();
  4006. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4007. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4008. updatePID();
  4009. SERIAL_PROTOCOLRPGM(MSG_OK);
  4010. SERIAL_PROTOCOL(" p:");
  4011. SERIAL_PROTOCOL(bedKp);
  4012. SERIAL_PROTOCOL(" i:");
  4013. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4014. SERIAL_PROTOCOL(" d:");
  4015. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4016. SERIAL_PROTOCOLLN("");
  4017. }
  4018. break;
  4019. #endif //PIDTEMP
  4020. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4021. {
  4022. #ifdef CHDK
  4023. SET_OUTPUT(CHDK);
  4024. WRITE(CHDK, HIGH);
  4025. chdkHigh = millis();
  4026. chdkActive = true;
  4027. #else
  4028. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4029. const uint8_t NUM_PULSES=16;
  4030. const float PULSE_LENGTH=0.01524;
  4031. for(int i=0; i < NUM_PULSES; i++) {
  4032. WRITE(PHOTOGRAPH_PIN, HIGH);
  4033. _delay_ms(PULSE_LENGTH);
  4034. WRITE(PHOTOGRAPH_PIN, LOW);
  4035. _delay_ms(PULSE_LENGTH);
  4036. }
  4037. delay(7.33);
  4038. for(int i=0; i < NUM_PULSES; i++) {
  4039. WRITE(PHOTOGRAPH_PIN, HIGH);
  4040. _delay_ms(PULSE_LENGTH);
  4041. WRITE(PHOTOGRAPH_PIN, LOW);
  4042. _delay_ms(PULSE_LENGTH);
  4043. }
  4044. #endif
  4045. #endif //chdk end if
  4046. }
  4047. break;
  4048. #ifdef DOGLCD
  4049. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4050. {
  4051. if (code_seen('C')) {
  4052. lcd_setcontrast( ((int)code_value())&63 );
  4053. }
  4054. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4055. SERIAL_PROTOCOL(lcd_contrast);
  4056. SERIAL_PROTOCOLLN("");
  4057. }
  4058. break;
  4059. #endif
  4060. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4061. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4062. {
  4063. float temp = .0;
  4064. if (code_seen('S')) temp=code_value();
  4065. set_extrude_min_temp(temp);
  4066. }
  4067. break;
  4068. #endif
  4069. case 303: // M303 PID autotune
  4070. {
  4071. float temp = 150.0;
  4072. int e=0;
  4073. int c=5;
  4074. if (code_seen('E')) e=code_value();
  4075. if (e<0)
  4076. temp=70;
  4077. if (code_seen('S')) temp=code_value();
  4078. if (code_seen('C')) c=code_value();
  4079. PID_autotune(temp, e, c);
  4080. }
  4081. break;
  4082. case 400: // M400 finish all moves
  4083. {
  4084. st_synchronize();
  4085. }
  4086. break;
  4087. #ifdef FILAMENT_SENSOR
  4088. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4089. {
  4090. #if (FILWIDTH_PIN > -1)
  4091. if(code_seen('N')) filament_width_nominal=code_value();
  4092. else{
  4093. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4094. SERIAL_PROTOCOLLN(filament_width_nominal);
  4095. }
  4096. #endif
  4097. }
  4098. break;
  4099. case 405: //M405 Turn on filament sensor for control
  4100. {
  4101. if(code_seen('D')) meas_delay_cm=code_value();
  4102. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4103. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4104. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4105. {
  4106. int temp_ratio = widthFil_to_size_ratio();
  4107. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4108. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4109. }
  4110. delay_index1=0;
  4111. delay_index2=0;
  4112. }
  4113. filament_sensor = true ;
  4114. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4115. //SERIAL_PROTOCOL(filament_width_meas);
  4116. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4117. //SERIAL_PROTOCOL(extrudemultiply);
  4118. }
  4119. break;
  4120. case 406: //M406 Turn off filament sensor for control
  4121. {
  4122. filament_sensor = false ;
  4123. }
  4124. break;
  4125. case 407: //M407 Display measured filament diameter
  4126. {
  4127. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4128. SERIAL_PROTOCOLLN(filament_width_meas);
  4129. }
  4130. break;
  4131. #endif
  4132. case 500: // M500 Store settings in EEPROM
  4133. {
  4134. Config_StoreSettings();
  4135. }
  4136. break;
  4137. case 501: // M501 Read settings from EEPROM
  4138. {
  4139. Config_RetrieveSettings();
  4140. }
  4141. break;
  4142. case 502: // M502 Revert to default settings
  4143. {
  4144. Config_ResetDefault();
  4145. }
  4146. break;
  4147. case 503: // M503 print settings currently in memory
  4148. {
  4149. Config_PrintSettings();
  4150. }
  4151. break;
  4152. case 509: //M509 Force language selection
  4153. {
  4154. lcd_force_language_selection();
  4155. SERIAL_ECHO_START;
  4156. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4157. }
  4158. break;
  4159. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4160. case 540:
  4161. {
  4162. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4163. }
  4164. break;
  4165. #endif
  4166. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4167. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4168. {
  4169. float value;
  4170. if (code_seen('Z'))
  4171. {
  4172. value = code_value();
  4173. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4174. {
  4175. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4176. SERIAL_ECHO_START;
  4177. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4178. SERIAL_PROTOCOLLN("");
  4179. }
  4180. else
  4181. {
  4182. SERIAL_ECHO_START;
  4183. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4184. SERIAL_ECHORPGM(MSG_Z_MIN);
  4185. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4186. SERIAL_ECHORPGM(MSG_Z_MAX);
  4187. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4188. SERIAL_PROTOCOLLN("");
  4189. }
  4190. }
  4191. else
  4192. {
  4193. SERIAL_ECHO_START;
  4194. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4195. SERIAL_ECHO(-zprobe_zoffset);
  4196. SERIAL_PROTOCOLLN("");
  4197. }
  4198. break;
  4199. }
  4200. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4201. #ifdef FILAMENTCHANGEENABLE
  4202. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4203. {
  4204. st_synchronize();
  4205. if (farm_mode)
  4206. {
  4207. prusa_statistics(22);
  4208. }
  4209. feedmultiplyBckp=feedmultiply;
  4210. int8_t TooLowZ = 0;
  4211. float target[4];
  4212. float lastpos[4];
  4213. target[X_AXIS]=current_position[X_AXIS];
  4214. target[Y_AXIS]=current_position[Y_AXIS];
  4215. target[Z_AXIS]=current_position[Z_AXIS];
  4216. target[E_AXIS]=current_position[E_AXIS];
  4217. lastpos[X_AXIS]=current_position[X_AXIS];
  4218. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4219. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4220. lastpos[E_AXIS]=current_position[E_AXIS];
  4221. //Restract extruder
  4222. if(code_seen('E'))
  4223. {
  4224. target[E_AXIS]+= code_value();
  4225. }
  4226. else
  4227. {
  4228. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4229. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4230. #endif
  4231. }
  4232. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4233. //Lift Z
  4234. if(code_seen('Z'))
  4235. {
  4236. target[Z_AXIS]+= code_value();
  4237. }
  4238. else
  4239. {
  4240. #ifdef FILAMENTCHANGE_ZADD
  4241. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4242. if(target[Z_AXIS] < 10){
  4243. target[Z_AXIS]+= 10 ;
  4244. TooLowZ = 1;
  4245. }else{
  4246. TooLowZ = 0;
  4247. }
  4248. #endif
  4249. }
  4250. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4251. //Move XY to side
  4252. if(code_seen('X'))
  4253. {
  4254. target[X_AXIS]+= code_value();
  4255. }
  4256. else
  4257. {
  4258. #ifdef FILAMENTCHANGE_XPOS
  4259. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4260. #endif
  4261. }
  4262. if(code_seen('Y'))
  4263. {
  4264. target[Y_AXIS]= code_value();
  4265. }
  4266. else
  4267. {
  4268. #ifdef FILAMENTCHANGE_YPOS
  4269. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4270. #endif
  4271. }
  4272. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4273. // Unload filament
  4274. if(code_seen('L'))
  4275. {
  4276. target[E_AXIS]+= code_value();
  4277. }
  4278. else
  4279. {
  4280. #ifdef FILAMENTCHANGE_FINALRETRACT
  4281. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4282. #endif
  4283. }
  4284. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4285. //finish moves
  4286. st_synchronize();
  4287. //disable extruder steppers so filament can be removed
  4288. disable_e0();
  4289. disable_e1();
  4290. disable_e2();
  4291. delay(100);
  4292. //Wait for user to insert filament
  4293. uint8_t cnt=0;
  4294. int counterBeep = 0;
  4295. lcd_wait_interact();
  4296. while(!lcd_clicked()){
  4297. cnt++;
  4298. manage_heater();
  4299. manage_inactivity(true);
  4300. if(cnt==0)
  4301. {
  4302. #if BEEPER > 0
  4303. if (counterBeep== 500){
  4304. counterBeep = 0;
  4305. }
  4306. SET_OUTPUT(BEEPER);
  4307. if (counterBeep== 0){
  4308. WRITE(BEEPER,HIGH);
  4309. }
  4310. if (counterBeep== 20){
  4311. WRITE(BEEPER,LOW);
  4312. }
  4313. counterBeep++;
  4314. #else
  4315. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4316. lcd_buzz(1000/6,100);
  4317. #else
  4318. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4319. #endif
  4320. #endif
  4321. }
  4322. }
  4323. //Filament inserted
  4324. WRITE(BEEPER,LOW);
  4325. //Feed the filament to the end of nozzle quickly
  4326. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4327. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4328. //Extrude some filament
  4329. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4330. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4331. //Wait for user to check the state
  4332. lcd_change_fil_state = 0;
  4333. lcd_loading_filament();
  4334. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4335. lcd_change_fil_state = 0;
  4336. lcd_alright();
  4337. switch(lcd_change_fil_state){
  4338. // Filament failed to load so load it again
  4339. case 2:
  4340. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4341. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4342. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4343. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4344. lcd_loading_filament();
  4345. break;
  4346. // Filament loaded properly but color is not clear
  4347. case 3:
  4348. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4350. lcd_loading_color();
  4351. break;
  4352. // Everything good
  4353. default:
  4354. lcd_change_success();
  4355. break;
  4356. }
  4357. }
  4358. //Not let's go back to print
  4359. //Feed a little of filament to stabilize pressure
  4360. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4361. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4362. //Retract
  4363. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4365. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4366. //Move XY back
  4367. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4368. //Move Z back
  4369. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4370. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4371. //Unretract
  4372. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4373. //Set E position to original
  4374. plan_set_e_position(lastpos[E_AXIS]);
  4375. //Recover feed rate
  4376. feedmultiply=feedmultiplyBckp;
  4377. char cmd[9];
  4378. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4379. enquecommand(cmd);
  4380. }
  4381. break;
  4382. #endif //FILAMENTCHANGEENABLE
  4383. case 907: // M907 Set digital trimpot motor current using axis codes.
  4384. {
  4385. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4386. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4387. if(code_seen('B')) digipot_current(4,code_value());
  4388. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4389. #endif
  4390. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4391. if(code_seen('X')) digipot_current(0, code_value());
  4392. #endif
  4393. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4394. if(code_seen('Z')) digipot_current(1, code_value());
  4395. #endif
  4396. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4397. if(code_seen('E')) digipot_current(2, code_value());
  4398. #endif
  4399. #ifdef DIGIPOT_I2C
  4400. // this one uses actual amps in floating point
  4401. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4402. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4403. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4404. #endif
  4405. }
  4406. break;
  4407. case 908: // M908 Control digital trimpot directly.
  4408. {
  4409. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4410. uint8_t channel,current;
  4411. if(code_seen('P')) channel=code_value();
  4412. if(code_seen('S')) current=code_value();
  4413. digitalPotWrite(channel, current);
  4414. #endif
  4415. }
  4416. break;
  4417. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4418. {
  4419. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4420. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4421. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4422. if(code_seen('B')) microstep_mode(4,code_value());
  4423. microstep_readings();
  4424. #endif
  4425. }
  4426. break;
  4427. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4428. {
  4429. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4430. if(code_seen('S')) switch((int)code_value())
  4431. {
  4432. case 1:
  4433. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4434. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4435. break;
  4436. case 2:
  4437. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4438. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4439. break;
  4440. }
  4441. microstep_readings();
  4442. #endif
  4443. }
  4444. break;
  4445. case 701: //M701: load filament
  4446. {
  4447. enable_z();
  4448. custom_message = true;
  4449. custom_message_type = 2;
  4450. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4451. current_position[E_AXIS] += 65;
  4452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4453. current_position[E_AXIS] += 40;
  4454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4455. st_synchronize();
  4456. if (!farm_mode && loading_flag) {
  4457. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4458. while (!clean) {
  4459. lcd_update_enable(true);
  4460. lcd_update(2);
  4461. current_position[E_AXIS] += 40;
  4462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4463. st_synchronize();
  4464. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4465. }
  4466. }
  4467. lcd_update_enable(true);
  4468. lcd_update(2);
  4469. lcd_setstatuspgm(WELCOME_MSG);
  4470. disable_z();
  4471. loading_flag = false;
  4472. custom_message = false;
  4473. custom_message_type = 0;
  4474. }
  4475. break;
  4476. case 702:
  4477. {
  4478. custom_message = true;
  4479. custom_message_type = 2;
  4480. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4481. current_position[E_AXIS] -= 80;
  4482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4483. st_synchronize();
  4484. lcd_setstatuspgm(WELCOME_MSG);
  4485. custom_message = false;
  4486. custom_message_type = 0;
  4487. }
  4488. break;
  4489. case 999: // M999: Restart after being stopped
  4490. Stopped = false;
  4491. lcd_reset_alert_level();
  4492. gcode_LastN = Stopped_gcode_LastN;
  4493. FlushSerialRequestResend();
  4494. break;
  4495. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4496. }
  4497. } // end if(code_seen('M')) (end of M codes)
  4498. else if(code_seen('T'))
  4499. {
  4500. int index;
  4501. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4502. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4503. SERIAL_ECHOLNPGM("Invalid T code.");
  4504. }
  4505. else {
  4506. tmp_extruder = code_value();
  4507. #ifdef SNMM
  4508. st_synchronize();
  4509. delay(100);
  4510. disable_e0();
  4511. disable_e1();
  4512. disable_e2();
  4513. pinMode(E_MUX0_PIN, OUTPUT);
  4514. pinMode(E_MUX1_PIN, OUTPUT);
  4515. pinMode(E_MUX2_PIN, OUTPUT);
  4516. delay(100);
  4517. SERIAL_ECHO_START;
  4518. SERIAL_ECHO("T:");
  4519. SERIAL_ECHOLN((int)tmp_extruder);
  4520. switch (tmp_extruder) {
  4521. case 1:
  4522. WRITE(E_MUX0_PIN, HIGH);
  4523. WRITE(E_MUX1_PIN, LOW);
  4524. WRITE(E_MUX2_PIN, LOW);
  4525. break;
  4526. case 2:
  4527. WRITE(E_MUX0_PIN, LOW);
  4528. WRITE(E_MUX1_PIN, HIGH);
  4529. WRITE(E_MUX2_PIN, LOW);
  4530. break;
  4531. case 3:
  4532. WRITE(E_MUX0_PIN, HIGH);
  4533. WRITE(E_MUX1_PIN, HIGH);
  4534. WRITE(E_MUX2_PIN, LOW);
  4535. break;
  4536. default:
  4537. WRITE(E_MUX0_PIN, LOW);
  4538. WRITE(E_MUX1_PIN, LOW);
  4539. WRITE(E_MUX2_PIN, LOW);
  4540. break;
  4541. }
  4542. delay(100);
  4543. #else
  4544. if (tmp_extruder >= EXTRUDERS) {
  4545. SERIAL_ECHO_START;
  4546. SERIAL_ECHOPGM("T");
  4547. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4548. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4549. }
  4550. else {
  4551. boolean make_move = false;
  4552. if (code_seen('F')) {
  4553. make_move = true;
  4554. next_feedrate = code_value();
  4555. if (next_feedrate > 0.0) {
  4556. feedrate = next_feedrate;
  4557. }
  4558. }
  4559. #if EXTRUDERS > 1
  4560. if (tmp_extruder != active_extruder) {
  4561. // Save current position to return to after applying extruder offset
  4562. memcpy(destination, current_position, sizeof(destination));
  4563. // Offset extruder (only by XY)
  4564. int i;
  4565. for (i = 0; i < 2; i++) {
  4566. current_position[i] = current_position[i] -
  4567. extruder_offset[i][active_extruder] +
  4568. extruder_offset[i][tmp_extruder];
  4569. }
  4570. // Set the new active extruder and position
  4571. active_extruder = tmp_extruder;
  4572. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4573. // Move to the old position if 'F' was in the parameters
  4574. if (make_move && Stopped == false) {
  4575. prepare_move();
  4576. }
  4577. }
  4578. #endif
  4579. SERIAL_ECHO_START;
  4580. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4581. SERIAL_PROTOCOLLN((int)active_extruder);
  4582. }
  4583. #endif
  4584. }
  4585. } // end if(code_seen('T')) (end of T codes)
  4586. else
  4587. {
  4588. SERIAL_ECHO_START;
  4589. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4590. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4591. SERIAL_ECHOLNPGM("\"");
  4592. }
  4593. ClearToSend();
  4594. }
  4595. void FlushSerialRequestResend()
  4596. {
  4597. //char cmdbuffer[bufindr][100]="Resend:";
  4598. MYSERIAL.flush();
  4599. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4600. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4601. ClearToSend();
  4602. }
  4603. // Confirm the execution of a command, if sent from a serial line.
  4604. // Execution of a command from a SD card will not be confirmed.
  4605. void ClearToSend()
  4606. {
  4607. previous_millis_cmd = millis();
  4608. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4609. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4610. }
  4611. void get_coordinates()
  4612. {
  4613. bool seen[4]={false,false,false,false};
  4614. for(int8_t i=0; i < NUM_AXIS; i++) {
  4615. if(code_seen(axis_codes[i]))
  4616. {
  4617. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4618. seen[i]=true;
  4619. }
  4620. else destination[i] = current_position[i]; //Are these else lines really needed?
  4621. }
  4622. if(code_seen('F')) {
  4623. next_feedrate = code_value();
  4624. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4625. }
  4626. }
  4627. void get_arc_coordinates()
  4628. {
  4629. #ifdef SF_ARC_FIX
  4630. bool relative_mode_backup = relative_mode;
  4631. relative_mode = true;
  4632. #endif
  4633. get_coordinates();
  4634. #ifdef SF_ARC_FIX
  4635. relative_mode=relative_mode_backup;
  4636. #endif
  4637. if(code_seen('I')) {
  4638. offset[0] = code_value();
  4639. }
  4640. else {
  4641. offset[0] = 0.0;
  4642. }
  4643. if(code_seen('J')) {
  4644. offset[1] = code_value();
  4645. }
  4646. else {
  4647. offset[1] = 0.0;
  4648. }
  4649. }
  4650. void clamp_to_software_endstops(float target[3])
  4651. {
  4652. world2machine_clamp(target[0], target[1]);
  4653. // Clamp the Z coordinate.
  4654. if (min_software_endstops) {
  4655. float negative_z_offset = 0;
  4656. #ifdef ENABLE_AUTO_BED_LEVELING
  4657. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4658. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4659. #endif
  4660. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4661. }
  4662. if (max_software_endstops) {
  4663. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4664. }
  4665. }
  4666. #ifdef MESH_BED_LEVELING
  4667. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4668. float dx = x - current_position[X_AXIS];
  4669. float dy = y - current_position[Y_AXIS];
  4670. float dz = z - current_position[Z_AXIS];
  4671. int n_segments = 0;
  4672. if (mbl.active) {
  4673. float len = abs(dx) + abs(dy);
  4674. if (len > 0)
  4675. // Split to 3cm segments or shorter.
  4676. n_segments = int(ceil(len / 30.f));
  4677. }
  4678. if (n_segments > 1) {
  4679. float de = e - current_position[E_AXIS];
  4680. for (int i = 1; i < n_segments; ++ i) {
  4681. float t = float(i) / float(n_segments);
  4682. plan_buffer_line(
  4683. current_position[X_AXIS] + t * dx,
  4684. current_position[Y_AXIS] + t * dy,
  4685. current_position[Z_AXIS] + t * dz,
  4686. current_position[E_AXIS] + t * de,
  4687. feed_rate, extruder);
  4688. }
  4689. }
  4690. // The rest of the path.
  4691. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4692. current_position[X_AXIS] = x;
  4693. current_position[Y_AXIS] = y;
  4694. current_position[Z_AXIS] = z;
  4695. current_position[E_AXIS] = e;
  4696. }
  4697. #endif // MESH_BED_LEVELING
  4698. void prepare_move()
  4699. {
  4700. clamp_to_software_endstops(destination);
  4701. previous_millis_cmd = millis();
  4702. // Do not use feedmultiply for E or Z only moves
  4703. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4704. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4705. }
  4706. else {
  4707. #ifdef MESH_BED_LEVELING
  4708. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4709. #else
  4710. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4711. #endif
  4712. }
  4713. for(int8_t i=0; i < NUM_AXIS; i++) {
  4714. current_position[i] = destination[i];
  4715. }
  4716. }
  4717. void prepare_arc_move(char isclockwise) {
  4718. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4719. // Trace the arc
  4720. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4721. // As far as the parser is concerned, the position is now == target. In reality the
  4722. // motion control system might still be processing the action and the real tool position
  4723. // in any intermediate location.
  4724. for(int8_t i=0; i < NUM_AXIS; i++) {
  4725. current_position[i] = destination[i];
  4726. }
  4727. previous_millis_cmd = millis();
  4728. }
  4729. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4730. #if defined(FAN_PIN)
  4731. #if CONTROLLERFAN_PIN == FAN_PIN
  4732. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4733. #endif
  4734. #endif
  4735. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4736. unsigned long lastMotorCheck = 0;
  4737. void controllerFan()
  4738. {
  4739. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4740. {
  4741. lastMotorCheck = millis();
  4742. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4743. #if EXTRUDERS > 2
  4744. || !READ(E2_ENABLE_PIN)
  4745. #endif
  4746. #if EXTRUDER > 1
  4747. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4748. || !READ(X2_ENABLE_PIN)
  4749. #endif
  4750. || !READ(E1_ENABLE_PIN)
  4751. #endif
  4752. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4753. {
  4754. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4755. }
  4756. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4757. {
  4758. digitalWrite(CONTROLLERFAN_PIN, 0);
  4759. analogWrite(CONTROLLERFAN_PIN, 0);
  4760. }
  4761. else
  4762. {
  4763. // allows digital or PWM fan output to be used (see M42 handling)
  4764. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4765. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4766. }
  4767. }
  4768. }
  4769. #endif
  4770. #ifdef TEMP_STAT_LEDS
  4771. static bool blue_led = false;
  4772. static bool red_led = false;
  4773. static uint32_t stat_update = 0;
  4774. void handle_status_leds(void) {
  4775. float max_temp = 0.0;
  4776. if(millis() > stat_update) {
  4777. stat_update += 500; // Update every 0.5s
  4778. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4779. max_temp = max(max_temp, degHotend(cur_extruder));
  4780. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4781. }
  4782. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4783. max_temp = max(max_temp, degTargetBed());
  4784. max_temp = max(max_temp, degBed());
  4785. #endif
  4786. if((max_temp > 55.0) && (red_led == false)) {
  4787. digitalWrite(STAT_LED_RED, 1);
  4788. digitalWrite(STAT_LED_BLUE, 0);
  4789. red_led = true;
  4790. blue_led = false;
  4791. }
  4792. if((max_temp < 54.0) && (blue_led == false)) {
  4793. digitalWrite(STAT_LED_RED, 0);
  4794. digitalWrite(STAT_LED_BLUE, 1);
  4795. red_led = false;
  4796. blue_led = true;
  4797. }
  4798. }
  4799. }
  4800. #endif
  4801. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4802. {
  4803. #if defined(KILL_PIN) && KILL_PIN > -1
  4804. static int killCount = 0; // make the inactivity button a bit less responsive
  4805. const int KILL_DELAY = 10000;
  4806. #endif
  4807. if(buflen < (BUFSIZE-1)){
  4808. get_command();
  4809. }
  4810. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4811. if(max_inactive_time)
  4812. kill();
  4813. if(stepper_inactive_time) {
  4814. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4815. {
  4816. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4817. disable_x();
  4818. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4819. disable_y();
  4820. disable_z();
  4821. disable_e0();
  4822. disable_e1();
  4823. disable_e2();
  4824. }
  4825. }
  4826. }
  4827. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4828. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4829. {
  4830. chdkActive = false;
  4831. WRITE(CHDK, LOW);
  4832. }
  4833. #endif
  4834. #if defined(KILL_PIN) && KILL_PIN > -1
  4835. // Check if the kill button was pressed and wait just in case it was an accidental
  4836. // key kill key press
  4837. // -------------------------------------------------------------------------------
  4838. if( 0 == READ(KILL_PIN) )
  4839. {
  4840. killCount++;
  4841. }
  4842. else if (killCount > 0)
  4843. {
  4844. killCount--;
  4845. }
  4846. // Exceeded threshold and we can confirm that it was not accidental
  4847. // KILL the machine
  4848. // ----------------------------------------------------------------
  4849. if ( killCount >= KILL_DELAY)
  4850. {
  4851. kill();
  4852. }
  4853. #endif
  4854. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4855. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4856. #endif
  4857. #ifdef EXTRUDER_RUNOUT_PREVENT
  4858. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4859. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4860. {
  4861. bool oldstatus=READ(E0_ENABLE_PIN);
  4862. enable_e0();
  4863. float oldepos=current_position[E_AXIS];
  4864. float oldedes=destination[E_AXIS];
  4865. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4866. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4867. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4868. current_position[E_AXIS]=oldepos;
  4869. destination[E_AXIS]=oldedes;
  4870. plan_set_e_position(oldepos);
  4871. previous_millis_cmd=millis();
  4872. st_synchronize();
  4873. WRITE(E0_ENABLE_PIN,oldstatus);
  4874. }
  4875. #endif
  4876. #ifdef TEMP_STAT_LEDS
  4877. handle_status_leds();
  4878. #endif
  4879. check_axes_activity();
  4880. }
  4881. void kill(const char *full_screen_message)
  4882. {
  4883. cli(); // Stop interrupts
  4884. disable_heater();
  4885. disable_x();
  4886. // SERIAL_ECHOLNPGM("kill - disable Y");
  4887. disable_y();
  4888. disable_z();
  4889. disable_e0();
  4890. disable_e1();
  4891. disable_e2();
  4892. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4893. pinMode(PS_ON_PIN,INPUT);
  4894. #endif
  4895. SERIAL_ERROR_START;
  4896. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4897. if (full_screen_message != NULL) {
  4898. SERIAL_ERRORLNRPGM(full_screen_message);
  4899. lcd_display_message_fullscreen_P(full_screen_message);
  4900. } else {
  4901. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4902. }
  4903. // FMC small patch to update the LCD before ending
  4904. sei(); // enable interrupts
  4905. for ( int i=5; i--; lcd_update())
  4906. {
  4907. delay(200);
  4908. }
  4909. cli(); // disable interrupts
  4910. suicide();
  4911. while(1) { /* Intentionally left empty */ } // Wait for reset
  4912. }
  4913. void Stop()
  4914. {
  4915. disable_heater();
  4916. if(Stopped == false) {
  4917. Stopped = true;
  4918. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4919. SERIAL_ERROR_START;
  4920. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4921. LCD_MESSAGERPGM(MSG_STOPPED);
  4922. }
  4923. }
  4924. bool IsStopped() { return Stopped; };
  4925. #ifdef FAST_PWM_FAN
  4926. void setPwmFrequency(uint8_t pin, int val)
  4927. {
  4928. val &= 0x07;
  4929. switch(digitalPinToTimer(pin))
  4930. {
  4931. #if defined(TCCR0A)
  4932. case TIMER0A:
  4933. case TIMER0B:
  4934. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4935. // TCCR0B |= val;
  4936. break;
  4937. #endif
  4938. #if defined(TCCR1A)
  4939. case TIMER1A:
  4940. case TIMER1B:
  4941. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4942. // TCCR1B |= val;
  4943. break;
  4944. #endif
  4945. #if defined(TCCR2)
  4946. case TIMER2:
  4947. case TIMER2:
  4948. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4949. TCCR2 |= val;
  4950. break;
  4951. #endif
  4952. #if defined(TCCR2A)
  4953. case TIMER2A:
  4954. case TIMER2B:
  4955. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4956. TCCR2B |= val;
  4957. break;
  4958. #endif
  4959. #if defined(TCCR3A)
  4960. case TIMER3A:
  4961. case TIMER3B:
  4962. case TIMER3C:
  4963. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4964. TCCR3B |= val;
  4965. break;
  4966. #endif
  4967. #if defined(TCCR4A)
  4968. case TIMER4A:
  4969. case TIMER4B:
  4970. case TIMER4C:
  4971. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4972. TCCR4B |= val;
  4973. break;
  4974. #endif
  4975. #if defined(TCCR5A)
  4976. case TIMER5A:
  4977. case TIMER5B:
  4978. case TIMER5C:
  4979. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4980. TCCR5B |= val;
  4981. break;
  4982. #endif
  4983. }
  4984. }
  4985. #endif //FAST_PWM_FAN
  4986. bool setTargetedHotend(int code){
  4987. tmp_extruder = active_extruder;
  4988. if(code_seen('T')) {
  4989. tmp_extruder = code_value();
  4990. if(tmp_extruder >= EXTRUDERS) {
  4991. SERIAL_ECHO_START;
  4992. switch(code){
  4993. case 104:
  4994. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  4995. break;
  4996. case 105:
  4997. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4998. break;
  4999. case 109:
  5000. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5001. break;
  5002. case 218:
  5003. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5004. break;
  5005. case 221:
  5006. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5007. break;
  5008. }
  5009. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5010. return true;
  5011. }
  5012. }
  5013. return false;
  5014. }
  5015. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5016. {
  5017. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5018. {
  5019. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5020. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5021. }
  5022. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5023. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5024. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5025. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5026. total_filament_used = 0;
  5027. }
  5028. float calculate_volumetric_multiplier(float diameter) {
  5029. float area = .0;
  5030. float radius = .0;
  5031. radius = diameter * .5;
  5032. if (! volumetric_enabled || radius == 0) {
  5033. area = 1;
  5034. }
  5035. else {
  5036. area = M_PI * pow(radius, 2);
  5037. }
  5038. return 1.0 / area;
  5039. }
  5040. void calculate_volumetric_multipliers() {
  5041. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5042. #if EXTRUDERS > 1
  5043. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5044. #if EXTRUDERS > 2
  5045. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5046. #endif
  5047. #endif
  5048. }
  5049. void delay_keep_alive(int ms)
  5050. {
  5051. for (;;) {
  5052. manage_heater();
  5053. // Manage inactivity, but don't disable steppers on timeout.
  5054. manage_inactivity(true);
  5055. lcd_update();
  5056. if (ms == 0)
  5057. break;
  5058. else if (ms >= 50) {
  5059. delay(50);
  5060. ms -= 50;
  5061. } else {
  5062. delay(ms);
  5063. ms = 0;
  5064. }
  5065. }
  5066. }
  5067. void check_babystep() {
  5068. int babystep_z;
  5069. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5070. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5071. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5072. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5073. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5074. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5075. lcd_update_enable(true);
  5076. }
  5077. }
  5078. #ifdef DIS
  5079. void d_setup()
  5080. {
  5081. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5082. pinMode(D_DATA, INPUT_PULLUP);
  5083. pinMode(D_REQUIRE, OUTPUT);
  5084. digitalWrite(D_REQUIRE, HIGH);
  5085. }
  5086. float d_ReadData()
  5087. {
  5088. int digit[13];
  5089. String mergeOutput;
  5090. float output;
  5091. digitalWrite(D_REQUIRE, HIGH);
  5092. for (int i = 0; i<13; i++)
  5093. {
  5094. for (int j = 0; j < 4; j++)
  5095. {
  5096. while (digitalRead(D_DATACLOCK) == LOW) {}
  5097. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5098. bitWrite(digit[i], j, digitalRead(D_DATA));
  5099. }
  5100. }
  5101. digitalWrite(D_REQUIRE, LOW);
  5102. mergeOutput = "";
  5103. output = 0;
  5104. for (int r = 5; r <= 10; r++) //Merge digits
  5105. {
  5106. mergeOutput += digit[r];
  5107. }
  5108. output = mergeOutput.toFloat();
  5109. if (digit[4] == 8) //Handle sign
  5110. {
  5111. output *= -1;
  5112. }
  5113. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5114. {
  5115. output /= 10;
  5116. }
  5117. return output;
  5118. }
  5119. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5120. int t1 = 0;
  5121. int t_delay = 0;
  5122. int digit[13];
  5123. int m;
  5124. char str[3];
  5125. //String mergeOutput;
  5126. char mergeOutput[15];
  5127. float output;
  5128. int mesh_point = 0; //index number of calibration point
  5129. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5130. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5131. float mesh_home_z_search = 4;
  5132. float row[x_points_num];
  5133. int ix = 0;
  5134. int iy = 0;
  5135. char* filename_wldsd = "wldsd.txt";
  5136. char data_wldsd[70];
  5137. char numb_wldsd[10];
  5138. d_setup();
  5139. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5140. // We don't know where we are! HOME!
  5141. // Push the commands to the front of the message queue in the reverse order!
  5142. // There shall be always enough space reserved for these commands.
  5143. repeatcommand_front(); // repeat G80 with all its parameters
  5144. enquecommand_front_P((PSTR("G28 W0")));
  5145. enquecommand_front_P((PSTR("G1 Z5")));
  5146. return;
  5147. }
  5148. bool custom_message_old = custom_message;
  5149. unsigned int custom_message_type_old = custom_message_type;
  5150. unsigned int custom_message_state_old = custom_message_state;
  5151. custom_message = true;
  5152. custom_message_type = 1;
  5153. custom_message_state = (x_points_num * y_points_num) + 10;
  5154. lcd_update(1);
  5155. mbl.reset();
  5156. babystep_undo();
  5157. card.openFile(filename_wldsd, false);
  5158. current_position[Z_AXIS] = mesh_home_z_search;
  5159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5160. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5161. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5162. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5163. setup_for_endstop_move(false);
  5164. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5165. SERIAL_PROTOCOL(x_points_num);
  5166. SERIAL_PROTOCOLPGM(",");
  5167. SERIAL_PROTOCOL(y_points_num);
  5168. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5169. SERIAL_PROTOCOL(mesh_home_z_search);
  5170. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5171. SERIAL_PROTOCOL(x_dimension);
  5172. SERIAL_PROTOCOLPGM(",");
  5173. SERIAL_PROTOCOL(y_dimension);
  5174. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5175. while (mesh_point != x_points_num * y_points_num) {
  5176. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5177. iy = mesh_point / x_points_num;
  5178. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5179. float z0 = 0.f;
  5180. current_position[Z_AXIS] = mesh_home_z_search;
  5181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5182. st_synchronize();
  5183. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5184. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5186. st_synchronize();
  5187. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5188. break;
  5189. card.closefile();
  5190. }
  5191. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5192. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5193. //strcat(data_wldsd, numb_wldsd);
  5194. //MYSERIAL.println(data_wldsd);
  5195. //delay(1000);
  5196. //delay(3000);
  5197. //t1 = millis();
  5198. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5199. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5200. memset(digit, 0, sizeof(digit));
  5201. //cli();
  5202. digitalWrite(D_REQUIRE, LOW);
  5203. for (int i = 0; i<13; i++)
  5204. {
  5205. //t1 = millis();
  5206. for (int j = 0; j < 4; j++)
  5207. {
  5208. while (digitalRead(D_DATACLOCK) == LOW) {}
  5209. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5210. bitWrite(digit[i], j, digitalRead(D_DATA));
  5211. }
  5212. //t_delay = (millis() - t1);
  5213. //SERIAL_PROTOCOLPGM(" ");
  5214. //SERIAL_PROTOCOL_F(t_delay, 5);
  5215. //SERIAL_PROTOCOLPGM(" ");
  5216. }
  5217. //sei();
  5218. digitalWrite(D_REQUIRE, HIGH);
  5219. mergeOutput[0] = '\0';
  5220. output = 0;
  5221. for (int r = 5; r <= 10; r++) //Merge digits
  5222. {
  5223. sprintf(str, "%d", digit[r]);
  5224. strcat(mergeOutput, str);
  5225. }
  5226. output = atof(mergeOutput);
  5227. if (digit[4] == 8) //Handle sign
  5228. {
  5229. output *= -1;
  5230. }
  5231. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5232. {
  5233. output *= 0.1;
  5234. }
  5235. //output = d_ReadData();
  5236. //row[ix] = current_position[Z_AXIS];
  5237. memset(data_wldsd, 0, sizeof(data_wldsd));
  5238. for (int i = 0; i <3; i++) {
  5239. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5240. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5241. strcat(data_wldsd, numb_wldsd);
  5242. strcat(data_wldsd, ";");
  5243. }
  5244. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5245. dtostrf(output, 8, 5, numb_wldsd);
  5246. strcat(data_wldsd, numb_wldsd);
  5247. //strcat(data_wldsd, ";");
  5248. card.write_command(data_wldsd);
  5249. //row[ix] = d_ReadData();
  5250. row[ix] = output; // current_position[Z_AXIS];
  5251. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5252. for (int i = 0; i < x_points_num; i++) {
  5253. SERIAL_PROTOCOLPGM(" ");
  5254. SERIAL_PROTOCOL_F(row[i], 5);
  5255. }
  5256. SERIAL_PROTOCOLPGM("\n");
  5257. }
  5258. custom_message_state--;
  5259. mesh_point++;
  5260. lcd_update(1);
  5261. }
  5262. card.closefile();
  5263. }
  5264. #endif