Marlin_main.cpp 179 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #endif
  33. #include "ultralcd.h"
  34. #include "Configuration_prusa.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #ifdef ULTRALCD
  50. #include "ultralcd.h"
  51. #endif
  52. #if NUM_SERVOS > 0
  53. #include "Servo.h"
  54. #endif
  55. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  56. #include <SPI.h>
  57. #endif
  58. #define VERSION_STRING "1.0.2"
  59. #include "ultralcd.h"
  60. // Macros for bit masks
  61. #define BIT(b) (1<<(b))
  62. #define TEST(n,b) (((n)&BIT(b))!=0)
  63. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  64. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  65. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  66. //Implemented Codes
  67. //-------------------
  68. // PRUSA CODES
  69. // P F - Returns FW versions
  70. // P R - Returns revision of printer
  71. // G0 -> G1
  72. // G1 - Coordinated Movement X Y Z E
  73. // G2 - CW ARC
  74. // G3 - CCW ARC
  75. // G4 - Dwell S<seconds> or P<milliseconds>
  76. // G10 - retract filament according to settings of M207
  77. // G11 - retract recover filament according to settings of M208
  78. // G28 - Home all Axis
  79. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. // G30 - Single Z Probe, probes bed at current XY location.
  81. // G31 - Dock sled (Z_PROBE_SLED only)
  82. // G32 - Undock sled (Z_PROBE_SLED only)
  83. // G80 - Automatic mesh bed leveling
  84. // G81 - Print bed profile
  85. // G90 - Use Absolute Coordinates
  86. // G91 - Use Relative Coordinates
  87. // G92 - Set current position to coordinates given
  88. // M Codes
  89. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. // M1 - Same as M0
  91. // M17 - Enable/Power all stepper motors
  92. // M18 - Disable all stepper motors; same as M84
  93. // M20 - List SD card
  94. // M21 - Init SD card
  95. // M22 - Release SD card
  96. // M23 - Select SD file (M23 filename.g)
  97. // M24 - Start/resume SD print
  98. // M25 - Pause SD print
  99. // M26 - Set SD position in bytes (M26 S12345)
  100. // M27 - Report SD print status
  101. // M28 - Start SD write (M28 filename.g)
  102. // M29 - Stop SD write
  103. // M30 - Delete file from SD (M30 filename.g)
  104. // M31 - Output time since last M109 or SD card start to serial
  105. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. // M80 - Turn on Power Supply
  111. // M81 - Turn off Power Supply
  112. // M82 - Set E codes absolute (default)
  113. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. // M84 - Disable steppers until next move,
  115. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. // M92 - Set axis_steps_per_unit - same syntax as G92
  118. // M104 - Set extruder target temp
  119. // M105 - Read current temp
  120. // M106 - Fan on
  121. // M107 - Fan off
  122. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. // M112 - Emergency stop
  126. // M114 - Output current position to serial port
  127. // M115 - Capabilities string
  128. // M117 - display message
  129. // M119 - Output Endstop status to serial port
  130. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  131. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  132. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  133. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  134. // M140 - Set bed target temp
  135. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  136. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  137. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  138. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  139. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  140. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  141. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  142. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  143. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  144. // M206 - set additional homing offset
  145. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  146. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  147. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  148. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  149. // M220 S<factor in percent>- set speed factor override percentage
  150. // M221 S<factor in percent>- set extrude factor override percentage
  151. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  152. // M240 - Trigger a camera to take a photograph
  153. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  154. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  155. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  156. // M301 - Set PID parameters P I and D
  157. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  158. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  159. // M304 - Set bed PID parameters P I and D
  160. // M400 - Finish all moves
  161. // M401 - Lower z-probe if present
  162. // M402 - Raise z-probe if present
  163. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  164. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  165. // M406 - Turn off Filament Sensor extrusion control
  166. // M407 - Displays measured filament diameter
  167. // M500 - stores parameters in EEPROM
  168. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  169. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  170. // M503 - print the current settings (from memory not from EEPROM)
  171. // M509 - force language selection on next restart
  172. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  173. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  174. // M665 - set delta configurations
  175. // M666 - set delta endstop adjustment
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // ************ SCARA Specific - This can change to suit future G-code regulations
  182. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  183. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  184. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  185. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  186. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  187. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  188. //************* SCARA End ***************
  189. // M928 - Start SD logging (M928 filename.g) - ended by M29
  190. // M999 - Restart after being stopped by error
  191. //Stepper Movement Variables
  192. //===========================================================================
  193. //=============================imported variables============================
  194. //===========================================================================
  195. //===========================================================================
  196. //=============================public variables=============================
  197. //===========================================================================
  198. #ifdef SDSUPPORT
  199. CardReader card;
  200. #endif
  201. union Data
  202. {
  203. byte b[2];
  204. int value;
  205. };
  206. int babystepLoad[3];
  207. float homing_feedrate[] = HOMING_FEEDRATE;
  208. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  209. int feedmultiply=100; //100->1 200->2
  210. int saved_feedmultiply;
  211. int extrudemultiply=100; //100->1 200->2
  212. int extruder_multiply[EXTRUDERS] = {100
  213. #if EXTRUDERS > 1
  214. , 100
  215. #if EXTRUDERS > 2
  216. , 100
  217. #endif
  218. #endif
  219. };
  220. int lcd_change_fil_state = 0;
  221. int feedmultiplyBckp = 100;
  222. unsigned char lang_selected = 0;
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  225. #if EXTRUDERS > 1
  226. , DEFAULT_NOMINAL_FILAMENT_DIA
  227. #if EXTRUDERS > 2
  228. , DEFAULT_NOMINAL_FILAMENT_DIA
  229. #endif
  230. #endif
  231. };
  232. float volumetric_multiplier[EXTRUDERS] = {1.0
  233. #if EXTRUDERS > 1
  234. , 1.0
  235. #if EXTRUDERS > 2
  236. , 1.0
  237. #endif
  238. #endif
  239. };
  240. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  241. float add_homing[3]={0,0,0};
  242. #ifdef DELTA
  243. float endstop_adj[3]={0,0,0};
  244. #endif
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #ifndef DUAL_X_CARRIAGE
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. #else
  254. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  255. #endif
  256. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  257. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  258. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  259. #endif
  260. };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. int fanSpeed=0;
  264. #ifdef SERVO_ENDSTOPS
  265. int servo_endstops[] = SERVO_ENDSTOPS;
  266. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  267. #endif
  268. #ifdef BARICUDA
  269. int ValvePressure=0;
  270. int EtoPPressure=0;
  271. #endif
  272. #ifdef FWRETRACT
  273. bool autoretract_enabled=false;
  274. bool retracted[EXTRUDERS]={false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #endif
  280. #endif
  281. };
  282. bool retracted_swap[EXTRUDERS]={false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif
  298. #ifdef ULTIPANEL
  299. #ifdef PS_DEFAULT_OFF
  300. bool powersupply = false;
  301. #else
  302. bool powersupply = true;
  303. #endif
  304. #endif
  305. #ifdef DELTA
  306. float delta[3] = {0.0, 0.0, 0.0};
  307. #define SIN_60 0.8660254037844386
  308. #define COS_60 0.5
  309. // these are the default values, can be overriden with M665
  310. float delta_radius= DELTA_RADIUS;
  311. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  312. float delta_tower1_y= -COS_60*delta_radius;
  313. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  314. float delta_tower2_y= -COS_60*delta_radius;
  315. float delta_tower3_x= 0.0; // back middle tower
  316. float delta_tower3_y= delta_radius;
  317. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  319. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  320. #endif
  321. #ifdef SCARA // Build size scaling
  322. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  323. #endif
  324. bool cancel_heatup = false ;
  325. #ifdef FILAMENT_SENSOR
  326. //Variables for Filament Sensor input
  327. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  328. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  329. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  330. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  331. int delay_index1=0; //index into ring buffer
  332. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  333. float delay_dist=0; //delay distance counter
  334. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  335. #endif
  336. const char errormagic[] PROGMEM = "Error:";
  337. const char echomagic[] PROGMEM = "echo:";
  338. //===========================================================================
  339. //=============================Private Variables=============================
  340. //===========================================================================
  341. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  342. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  343. #ifndef DELTA
  344. static float delta[3] = {0.0, 0.0, 0.0};
  345. #endif
  346. static float offset[3] = {0.0, 0.0, 0.0};
  347. static bool home_all_axis = true;
  348. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  349. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  350. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  351. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  352. static bool fromsd[BUFSIZE];
  353. static int bufindr = 0;
  354. static int bufindw = 0;
  355. static int buflen = 0;
  356. //static int i = 0;
  357. static char serial_char;
  358. static int serial_count = 0;
  359. static boolean comment_mode = false;
  360. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. //static float tt = 0;
  363. //static float bt = 0;
  364. //Inactivity shutdown variables
  365. static unsigned long previous_millis_cmd = 0;
  366. static unsigned long max_inactive_time = 0;
  367. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  368. unsigned long starttime=0;
  369. unsigned long stoptime=0;
  370. static uint8_t tmp_extruder;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. #ifdef MESH_BED_LEVELING
  412. static void find_bed();
  413. #endif
  414. //adds an command to the main command buffer
  415. //thats really done in a non-safe way.
  416. //needs overworking someday
  417. void enquecommand(const char *cmd)
  418. {
  419. if(buflen < BUFSIZE)
  420. {
  421. //this is dangerous if a mixing of serial and this happens
  422. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  423. SERIAL_ECHO_START;
  424. SERIAL_ECHORPGM(MSG_Enqueing);
  425. SERIAL_ECHO(cmdbuffer[bufindw]);
  426. SERIAL_ECHOLNPGM("\"");
  427. bufindw= (bufindw + 1)%BUFSIZE;
  428. buflen += 1;
  429. }
  430. }
  431. void enquecommand_P(const char *cmd)
  432. {
  433. if(buflen < BUFSIZE)
  434. {
  435. //this is dangerous if a mixing of serial and this happens
  436. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  437. SERIAL_ECHO_START;
  438. SERIAL_ECHORPGM(MSG_Enqueing);
  439. SERIAL_ECHO(cmdbuffer[bufindw]);
  440. SERIAL_ECHOLNPGM("\"");
  441. bufindw= (bufindw + 1)%BUFSIZE;
  442. buflen += 1;
  443. }
  444. }
  445. void setup_killpin()
  446. {
  447. #if defined(KILL_PIN) && KILL_PIN > -1
  448. SET_INPUT(KILL_PIN);
  449. WRITE(KILL_PIN,HIGH);
  450. #endif
  451. }
  452. // Set home pin
  453. void setup_homepin(void)
  454. {
  455. #if defined(HOME_PIN) && HOME_PIN > -1
  456. SET_INPUT(HOME_PIN);
  457. WRITE(HOME_PIN,HIGH);
  458. #endif
  459. }
  460. void setup_photpin()
  461. {
  462. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  463. SET_OUTPUT(PHOTOGRAPH_PIN);
  464. WRITE(PHOTOGRAPH_PIN, LOW);
  465. #endif
  466. }
  467. void setup_powerhold()
  468. {
  469. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  470. SET_OUTPUT(SUICIDE_PIN);
  471. WRITE(SUICIDE_PIN, HIGH);
  472. #endif
  473. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  474. SET_OUTPUT(PS_ON_PIN);
  475. #if defined(PS_DEFAULT_OFF)
  476. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  477. #else
  478. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  479. #endif
  480. #endif
  481. }
  482. void suicide()
  483. {
  484. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  485. SET_OUTPUT(SUICIDE_PIN);
  486. WRITE(SUICIDE_PIN, LOW);
  487. #endif
  488. }
  489. void servo_init()
  490. {
  491. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  492. servos[0].attach(SERVO0_PIN);
  493. #endif
  494. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  495. servos[1].attach(SERVO1_PIN);
  496. #endif
  497. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  498. servos[2].attach(SERVO2_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  501. servos[3].attach(SERVO3_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 5)
  504. #error "TODO: enter initalisation code for more servos"
  505. #endif
  506. // Set position of Servo Endstops that are defined
  507. #ifdef SERVO_ENDSTOPS
  508. for(int8_t i = 0; i < 3; i++)
  509. {
  510. if(servo_endstops[i] > -1) {
  511. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  512. }
  513. }
  514. #endif
  515. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  516. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  517. servos[servo_endstops[Z_AXIS]].detach();
  518. #endif
  519. }
  520. static void lcd_language_menu();
  521. #ifdef MESH_BED_LEVELING
  522. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  523. #endif
  524. void setup()
  525. {
  526. setup_killpin();
  527. setup_powerhold();
  528. MYSERIAL.begin(BAUDRATE);
  529. SERIAL_PROTOCOLLNPGM("start");
  530. SERIAL_ECHO_START;
  531. // Check startup - does nothing if bootloader sets MCUSR to 0
  532. byte mcu = MCUSR;
  533. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  534. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  535. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  536. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  537. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  538. MCUSR=0;
  539. SERIAL_ECHORPGM(MSG_MARLIN);
  540. SERIAL_ECHOLNRPGM(VERSION_STRING);
  541. #ifdef STRING_VERSION_CONFIG_H
  542. #ifdef STRING_CONFIG_H_AUTHOR
  543. SERIAL_ECHO_START;
  544. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  545. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  546. SERIAL_ECHORPGM(MSG_AUTHOR);
  547. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  548. SERIAL_ECHOPGM("Compiled: ");
  549. SERIAL_ECHOLNPGM(__DATE__);
  550. #endif
  551. #endif
  552. SERIAL_ECHO_START;
  553. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  554. SERIAL_ECHO(freeMemory());
  555. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  556. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  557. for(int8_t i = 0; i < BUFSIZE; i++)
  558. {
  559. fromsd[i] = false;
  560. }
  561. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  562. Config_RetrieveSettings();
  563. tp_init(); // Initialize temperature loop
  564. plan_init(); // Initialize planner;
  565. watchdog_init();
  566. st_init(); // Initialize stepper, this enables interrupts!
  567. setup_photpin();
  568. servo_init();
  569. lcd_init();
  570. if(!READ(BTN_ENC) ){
  571. _delay_ms(1000);
  572. if(!READ(BTN_ENC) ){
  573. SET_OUTPUT(BEEPER);
  574. WRITE(BEEPER,HIGH);
  575. lcd_force_language_selection();
  576. while(!READ(BTN_ENC));
  577. WRITE(BEEPER,LOW);
  578. }
  579. }else{
  580. _delay_ms(1000); // wait 1sec to display the splash screen
  581. }
  582. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  583. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  584. #endif
  585. #ifdef DIGIPOT_I2C
  586. digipot_i2c_init();
  587. #endif
  588. #ifdef Z_PROBE_SLED
  589. pinMode(SERVO0_PIN, OUTPUT);
  590. digitalWrite(SERVO0_PIN, LOW); // turn it off
  591. #endif // Z_PROBE_SLED
  592. setup_homepin();
  593. }
  594. //unsigned char first_run_ever=1;
  595. //void first_time_menu();
  596. void loop()
  597. {
  598. if(buflen < (BUFSIZE-1))
  599. get_command();
  600. #ifdef SDSUPPORT
  601. card.checkautostart(false);
  602. #endif
  603. if(buflen)
  604. {
  605. #ifdef SDSUPPORT
  606. if(card.saving)
  607. {
  608. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  609. {
  610. card.write_command(cmdbuffer[bufindr]);
  611. if(card.logging)
  612. {
  613. process_commands();
  614. }
  615. else
  616. {
  617. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  618. }
  619. }
  620. else
  621. {
  622. card.closefile();
  623. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  624. }
  625. }
  626. else
  627. {
  628. process_commands();
  629. }
  630. #else
  631. process_commands();
  632. #endif //SDSUPPORT
  633. buflen = (buflen-1);
  634. bufindr = (bufindr + 1)%BUFSIZE;
  635. }
  636. //check heater every n milliseconds
  637. manage_heater();
  638. manage_inactivity();
  639. checkHitEndstops();
  640. lcd_update();
  641. }
  642. void get_command()
  643. {
  644. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  645. serial_char = MYSERIAL.read();
  646. if(serial_char == '\n' ||
  647. serial_char == '\r' ||
  648. (serial_char == ':' && comment_mode == false) ||
  649. serial_count >= (MAX_CMD_SIZE - 1) )
  650. {
  651. if(!serial_count) { //if empty line
  652. comment_mode = false; //for new command
  653. return;
  654. }
  655. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  656. if(!comment_mode){
  657. comment_mode = false; //for new command
  658. fromsd[bufindw] = false;
  659. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  660. {
  661. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  662. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  663. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  664. SERIAL_ERROR_START;
  665. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  666. SERIAL_ERRORLN(gcode_LastN);
  667. //Serial.println(gcode_N);
  668. FlushSerialRequestResend();
  669. serial_count = 0;
  670. return;
  671. }
  672. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  673. {
  674. byte checksum = 0;
  675. byte count = 0;
  676. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  677. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  678. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  679. SERIAL_ERROR_START;
  680. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  681. SERIAL_ERRORLN(gcode_LastN);
  682. FlushSerialRequestResend();
  683. serial_count = 0;
  684. return;
  685. }
  686. //if no errors, continue parsing
  687. }
  688. else
  689. {
  690. SERIAL_ERROR_START;
  691. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  692. SERIAL_ERRORLN(gcode_LastN);
  693. FlushSerialRequestResend();
  694. serial_count = 0;
  695. return;
  696. }
  697. gcode_LastN = gcode_N;
  698. //if no errors, continue parsing
  699. }
  700. else // if we don't receive 'N' but still see '*'
  701. {
  702. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  703. {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. serial_count = 0;
  708. return;
  709. }
  710. }
  711. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  712. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  713. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  714. case 0:
  715. case 1:
  716. case 2:
  717. case 3:
  718. if (Stopped == true) {
  719. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  720. LCD_MESSAGERPGM(MSG_STOPPED);
  721. }
  722. break;
  723. default:
  724. break;
  725. }
  726. }
  727. //If command was e-stop process now
  728. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  729. kill();
  730. bufindw = (bufindw + 1)%BUFSIZE;
  731. buflen += 1;
  732. }
  733. serial_count = 0; //clear buffer
  734. }
  735. else
  736. {
  737. if(serial_char == ';') comment_mode = true;
  738. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  739. }
  740. }
  741. #ifdef SDSUPPORT
  742. if(!card.sdprinting || serial_count!=0){
  743. return;
  744. }
  745. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  746. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  747. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  748. static bool stop_buffering=false;
  749. if(buflen==0) stop_buffering=false;
  750. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  751. int16_t n=card.get();
  752. serial_char = (char)n;
  753. if(serial_char == '\n' ||
  754. serial_char == '\r' ||
  755. (serial_char == '#' && comment_mode == false) ||
  756. (serial_char == ':' && comment_mode == false) ||
  757. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  758. {
  759. if(card.eof()){
  760. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  761. stoptime=millis();
  762. char time[30];
  763. unsigned long t=(stoptime-starttime)/1000;
  764. int hours, minutes;
  765. minutes=(t/60)%60;
  766. hours=t/60/60;
  767. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  768. SERIAL_ECHO_START;
  769. SERIAL_ECHOLN(time);
  770. lcd_setstatus(time);
  771. card.printingHasFinished();
  772. card.checkautostart(true);
  773. }
  774. if(serial_char=='#')
  775. stop_buffering=true;
  776. if(!serial_count)
  777. {
  778. comment_mode = false; //for new command
  779. return; //if empty line
  780. }
  781. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  782. // if(!comment_mode){
  783. fromsd[bufindw] = true;
  784. buflen += 1;
  785. bufindw = (bufindw + 1)%BUFSIZE;
  786. // }
  787. comment_mode = false; //for new command
  788. serial_count = 0; //clear buffer
  789. }
  790. else
  791. {
  792. if(serial_char == ';') comment_mode = true;
  793. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  794. }
  795. }
  796. #endif //SDSUPPORT
  797. }
  798. float code_value()
  799. {
  800. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  801. }
  802. long code_value_long()
  803. {
  804. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  805. }
  806. int16_t code_value_short() {
  807. return (int16_t)(strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  808. }
  809. bool code_seen(char code)
  810. {
  811. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  812. return (strchr_pointer != NULL); //Return True if a character was found
  813. }
  814. #define DEFINE_PGM_READ_ANY(type, reader) \
  815. static inline type pgm_read_any(const type *p) \
  816. { return pgm_read_##reader##_near(p); }
  817. DEFINE_PGM_READ_ANY(float, float);
  818. DEFINE_PGM_READ_ANY(signed char, byte);
  819. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  820. static const PROGMEM type array##_P[3] = \
  821. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  822. static inline type array(int axis) \
  823. { return pgm_read_any(&array##_P[axis]); }
  824. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  825. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  826. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  827. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  828. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  829. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  830. #ifdef DUAL_X_CARRIAGE
  831. #if EXTRUDERS == 1 || defined(COREXY) \
  832. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  833. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  834. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  835. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  836. #endif
  837. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  838. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  839. #endif
  840. #define DXC_FULL_CONTROL_MODE 0
  841. #define DXC_AUTO_PARK_MODE 1
  842. #define DXC_DUPLICATION_MODE 2
  843. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  844. static float x_home_pos(int extruder) {
  845. if (extruder == 0)
  846. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  847. else
  848. // In dual carriage mode the extruder offset provides an override of the
  849. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  850. // This allow soft recalibration of the second extruder offset position without firmware reflash
  851. // (through the M218 command).
  852. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  853. }
  854. static int x_home_dir(int extruder) {
  855. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  856. }
  857. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  858. static bool active_extruder_parked = false; // used in mode 1 & 2
  859. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  860. static unsigned long delayed_move_time = 0; // used in mode 1
  861. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  862. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  863. bool extruder_duplication_enabled = false; // used in mode 2
  864. #endif //DUAL_X_CARRIAGE
  865. static void axis_is_at_home(int axis) {
  866. #ifdef DUAL_X_CARRIAGE
  867. if (axis == X_AXIS) {
  868. if (active_extruder != 0) {
  869. current_position[X_AXIS] = x_home_pos(active_extruder);
  870. min_pos[X_AXIS] = X2_MIN_POS;
  871. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  872. return;
  873. }
  874. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  875. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  876. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  877. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  878. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  879. return;
  880. }
  881. }
  882. #endif
  883. #ifdef SCARA
  884. float homeposition[3];
  885. char i;
  886. if (axis < 2)
  887. {
  888. for (i=0; i<3; i++)
  889. {
  890. homeposition[i] = base_home_pos(i);
  891. }
  892. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  893. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  894. // Works out real Homeposition angles using inverse kinematics,
  895. // and calculates homing offset using forward kinematics
  896. calculate_delta(homeposition);
  897. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  898. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  899. for (i=0; i<2; i++)
  900. {
  901. delta[i] -= add_homing[i];
  902. }
  903. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  904. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  905. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  906. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  907. calculate_SCARA_forward_Transform(delta);
  908. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  909. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  910. current_position[axis] = delta[axis];
  911. // SCARA home positions are based on configuration since the actual limits are determined by the
  912. // inverse kinematic transform.
  913. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  914. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  915. }
  916. else
  917. {
  918. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  919. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  920. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  921. }
  922. #else
  923. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  924. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  925. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  926. #endif
  927. }
  928. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  929. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  930. static void setup_for_endstop_move() {
  931. saved_feedrate = feedrate;
  932. saved_feedmultiply = feedmultiply;
  933. feedmultiply = 100;
  934. previous_millis_cmd = millis();
  935. enable_endstops(true);
  936. }
  937. static void clean_up_after_endstop_move() {
  938. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  939. enable_endstops(false);
  940. #endif
  941. feedrate = saved_feedrate;
  942. feedmultiply = saved_feedmultiply;
  943. previous_millis_cmd = millis();
  944. }
  945. #ifdef ENABLE_AUTO_BED_LEVELING
  946. #ifdef AUTO_BED_LEVELING_GRID
  947. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  948. {
  949. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  950. planeNormal.debug("planeNormal");
  951. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  952. //bedLevel.debug("bedLevel");
  953. //plan_bed_level_matrix.debug("bed level before");
  954. //vector_3 uncorrected_position = plan_get_position_mm();
  955. //uncorrected_position.debug("position before");
  956. vector_3 corrected_position = plan_get_position();
  957. // corrected_position.debug("position after");
  958. current_position[X_AXIS] = corrected_position.x;
  959. current_position[Y_AXIS] = corrected_position.y;
  960. current_position[Z_AXIS] = corrected_position.z;
  961. // put the bed at 0 so we don't go below it.
  962. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  963. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  964. }
  965. #else // not AUTO_BED_LEVELING_GRID
  966. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  967. plan_bed_level_matrix.set_to_identity();
  968. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  969. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  970. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  971. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  972. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  973. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  974. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  975. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  976. vector_3 corrected_position = plan_get_position();
  977. current_position[X_AXIS] = corrected_position.x;
  978. current_position[Y_AXIS] = corrected_position.y;
  979. current_position[Z_AXIS] = corrected_position.z;
  980. // put the bed at 0 so we don't go below it.
  981. current_position[Z_AXIS] = zprobe_zoffset;
  982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  983. }
  984. #endif // AUTO_BED_LEVELING_GRID
  985. static void run_z_probe() {
  986. plan_bed_level_matrix.set_to_identity();
  987. feedrate = homing_feedrate[Z_AXIS];
  988. // move down until you find the bed
  989. float zPosition = -10;
  990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  991. st_synchronize();
  992. // we have to let the planner know where we are right now as it is not where we said to go.
  993. zPosition = st_get_position_mm(Z_AXIS);
  994. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  995. // move up the retract distance
  996. zPosition += home_retract_mm(Z_AXIS);
  997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  998. st_synchronize();
  999. // move back down slowly to find bed
  1000. feedrate = homing_feedrate[Z_AXIS]/4;
  1001. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1003. st_synchronize();
  1004. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1005. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1006. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1007. }
  1008. static void do_blocking_move_to(float x, float y, float z) {
  1009. float oldFeedRate = feedrate;
  1010. feedrate = homing_feedrate[Z_AXIS];
  1011. current_position[Z_AXIS] = z;
  1012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1013. st_synchronize();
  1014. feedrate = XY_TRAVEL_SPEED;
  1015. current_position[X_AXIS] = x;
  1016. current_position[Y_AXIS] = y;
  1017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1018. st_synchronize();
  1019. feedrate = oldFeedRate;
  1020. }
  1021. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1022. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1023. }
  1024. static void engage_z_probe() {
  1025. // Engage Z Servo endstop if enabled
  1026. #ifdef SERVO_ENDSTOPS
  1027. if (servo_endstops[Z_AXIS] > -1) {
  1028. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1029. servos[servo_endstops[Z_AXIS]].attach(0);
  1030. #endif
  1031. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1032. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1033. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1034. servos[servo_endstops[Z_AXIS]].detach();
  1035. #endif
  1036. }
  1037. #endif
  1038. }
  1039. static void retract_z_probe() {
  1040. // Retract Z Servo endstop if enabled
  1041. #ifdef SERVO_ENDSTOPS
  1042. if (servo_endstops[Z_AXIS] > -1) {
  1043. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1044. servos[servo_endstops[Z_AXIS]].attach(0);
  1045. #endif
  1046. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1047. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1048. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1049. servos[servo_endstops[Z_AXIS]].detach();
  1050. #endif
  1051. }
  1052. #endif
  1053. }
  1054. /// Probe bed height at position (x,y), returns the measured z value
  1055. static float probe_pt(float x, float y, float z_before) {
  1056. // move to right place
  1057. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1058. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1059. #ifndef Z_PROBE_SLED
  1060. engage_z_probe(); // Engage Z Servo endstop if available
  1061. #endif // Z_PROBE_SLED
  1062. run_z_probe();
  1063. float measured_z = current_position[Z_AXIS];
  1064. #ifndef Z_PROBE_SLED
  1065. retract_z_probe();
  1066. #endif // Z_PROBE_SLED
  1067. SERIAL_PROTOCOLRPGM(MSG_BED);
  1068. SERIAL_PROTOCOLPGM(" x: ");
  1069. SERIAL_PROTOCOL(x);
  1070. SERIAL_PROTOCOLPGM(" y: ");
  1071. SERIAL_PROTOCOL(y);
  1072. SERIAL_PROTOCOLPGM(" z: ");
  1073. SERIAL_PROTOCOL(measured_z);
  1074. SERIAL_PROTOCOLPGM("\n");
  1075. return measured_z;
  1076. }
  1077. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1078. static void homeaxis(int axis) {
  1079. #define HOMEAXIS_DO(LETTER) \
  1080. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1081. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1082. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1083. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1084. 0) {
  1085. int axis_home_dir = home_dir(axis);
  1086. #ifdef DUAL_X_CARRIAGE
  1087. if (axis == X_AXIS)
  1088. axis_home_dir = x_home_dir(active_extruder);
  1089. #endif
  1090. current_position[axis] = 0;
  1091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1092. #ifndef Z_PROBE_SLED
  1093. // Engage Servo endstop if enabled
  1094. #ifdef SERVO_ENDSTOPS
  1095. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1096. if (axis==Z_AXIS) {
  1097. engage_z_probe();
  1098. }
  1099. else
  1100. #endif
  1101. if (servo_endstops[axis] > -1) {
  1102. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1103. }
  1104. #endif
  1105. #endif // Z_PROBE_SLED
  1106. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1107. feedrate = homing_feedrate[axis];
  1108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1109. st_synchronize();
  1110. current_position[axis] = 0;
  1111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1112. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1114. st_synchronize();
  1115. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1116. #ifdef DELTA
  1117. feedrate = homing_feedrate[axis]/10;
  1118. #else
  1119. feedrate = homing_feedrate[axis]/2 ;
  1120. #endif
  1121. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1122. st_synchronize();
  1123. #ifdef DELTA
  1124. // retrace by the amount specified in endstop_adj
  1125. if (endstop_adj[axis] * axis_home_dir < 0) {
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. destination[axis] = endstop_adj[axis];
  1128. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1129. st_synchronize();
  1130. }
  1131. #endif
  1132. axis_is_at_home(axis);
  1133. destination[axis] = current_position[axis];
  1134. feedrate = 0.0;
  1135. endstops_hit_on_purpose();
  1136. axis_known_position[axis] = true;
  1137. // Retract Servo endstop if enabled
  1138. #ifdef SERVO_ENDSTOPS
  1139. if (servo_endstops[axis] > -1) {
  1140. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1141. }
  1142. #endif
  1143. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1144. #ifndef Z_PROBE_SLED
  1145. if (axis==Z_AXIS) retract_z_probe();
  1146. #endif
  1147. #endif
  1148. }
  1149. }
  1150. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1151. void refresh_cmd_timeout(void)
  1152. {
  1153. previous_millis_cmd = millis();
  1154. }
  1155. #ifdef FWRETRACT
  1156. void retract(bool retracting, bool swapretract = false) {
  1157. if(retracting && !retracted[active_extruder]) {
  1158. destination[X_AXIS]=current_position[X_AXIS];
  1159. destination[Y_AXIS]=current_position[Y_AXIS];
  1160. destination[Z_AXIS]=current_position[Z_AXIS];
  1161. destination[E_AXIS]=current_position[E_AXIS];
  1162. if (swapretract) {
  1163. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1164. } else {
  1165. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1166. }
  1167. plan_set_e_position(current_position[E_AXIS]);
  1168. float oldFeedrate = feedrate;
  1169. feedrate=retract_feedrate*60;
  1170. retracted[active_extruder]=true;
  1171. prepare_move();
  1172. current_position[Z_AXIS]-=retract_zlift;
  1173. #ifdef DELTA
  1174. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1175. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1176. #else
  1177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1178. #endif
  1179. prepare_move();
  1180. feedrate = oldFeedrate;
  1181. } else if(!retracting && retracted[active_extruder]) {
  1182. destination[X_AXIS]=current_position[X_AXIS];
  1183. destination[Y_AXIS]=current_position[Y_AXIS];
  1184. destination[Z_AXIS]=current_position[Z_AXIS];
  1185. destination[E_AXIS]=current_position[E_AXIS];
  1186. current_position[Z_AXIS]+=retract_zlift;
  1187. #ifdef DELTA
  1188. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1189. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1190. #else
  1191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1192. #endif
  1193. //prepare_move();
  1194. if (swapretract) {
  1195. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1196. } else {
  1197. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1198. }
  1199. plan_set_e_position(current_position[E_AXIS]);
  1200. float oldFeedrate = feedrate;
  1201. feedrate=retract_recover_feedrate*60;
  1202. retracted[active_extruder]=false;
  1203. prepare_move();
  1204. feedrate = oldFeedrate;
  1205. }
  1206. } //retract
  1207. #endif //FWRETRACT
  1208. #ifdef Z_PROBE_SLED
  1209. //
  1210. // Method to dock/undock a sled designed by Charles Bell.
  1211. //
  1212. // dock[in] If true, move to MAX_X and engage the electromagnet
  1213. // offset[in] The additional distance to move to adjust docking location
  1214. //
  1215. static void dock_sled(bool dock, int offset=0) {
  1216. int z_loc;
  1217. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1218. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1219. SERIAL_ECHO_START;
  1220. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1221. return;
  1222. }
  1223. if (dock) {
  1224. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1225. current_position[Y_AXIS],
  1226. current_position[Z_AXIS]);
  1227. // turn off magnet
  1228. digitalWrite(SERVO0_PIN, LOW);
  1229. } else {
  1230. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1231. z_loc = Z_RAISE_BEFORE_PROBING;
  1232. else
  1233. z_loc = current_position[Z_AXIS];
  1234. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1235. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1236. // turn on magnet
  1237. digitalWrite(SERVO0_PIN, HIGH);
  1238. }
  1239. }
  1240. #endif
  1241. void process_commands()
  1242. {
  1243. #ifdef FILAMENT_RUNOUT_SUPPORT
  1244. SET_INPUT(FR_SENS);
  1245. #endif
  1246. unsigned long codenum; //throw away variable
  1247. char *starpos = NULL;
  1248. #ifdef ENABLE_AUTO_BED_LEVELING
  1249. float x_tmp, y_tmp, z_tmp, real_z;
  1250. #endif
  1251. // PRUSA GCODES
  1252. if(code_seen('PRUSA')){
  1253. if(code_seen('Fir')){
  1254. SERIAL_PROTOCOLLN(FW_version);
  1255. } else if(code_seen('Rev')){
  1256. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1257. } else if(code_seen('Lang')) {
  1258. lcd_force_language_selection();
  1259. } else if(code_seen('Lz')) {
  1260. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1261. }
  1262. }
  1263. else if(code_seen('G'))
  1264. {
  1265. switch((int)code_value())
  1266. {
  1267. case 0: // G0 -> G1
  1268. case 1: // G1
  1269. if(Stopped == false) {
  1270. #ifdef FILAMENT_RUNOUT_SUPPORT
  1271. if(READ(FR_SENS)){
  1272. feedmultiplyBckp=feedmultiply;
  1273. float target[4];
  1274. float lastpos[4];
  1275. target[X_AXIS]=current_position[X_AXIS];
  1276. target[Y_AXIS]=current_position[Y_AXIS];
  1277. target[Z_AXIS]=current_position[Z_AXIS];
  1278. target[E_AXIS]=current_position[E_AXIS];
  1279. lastpos[X_AXIS]=current_position[X_AXIS];
  1280. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1281. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1282. lastpos[E_AXIS]=current_position[E_AXIS];
  1283. //retract by E
  1284. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1285. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1286. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1287. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1288. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1289. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1290. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1291. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1292. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1293. //finish moves
  1294. st_synchronize();
  1295. //disable extruder steppers so filament can be removed
  1296. disable_e0();
  1297. disable_e1();
  1298. disable_e2();
  1299. delay(100);
  1300. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1301. uint8_t cnt=0;
  1302. int counterBeep = 0;
  1303. lcd_wait_interact();
  1304. while(!lcd_clicked()){
  1305. cnt++;
  1306. manage_heater();
  1307. manage_inactivity(true);
  1308. //lcd_update();
  1309. if(cnt==0)
  1310. {
  1311. #if BEEPER > 0
  1312. if (counterBeep== 500){
  1313. counterBeep = 0;
  1314. }
  1315. SET_OUTPUT(BEEPER);
  1316. if (counterBeep== 0){
  1317. WRITE(BEEPER,HIGH);
  1318. }
  1319. if (counterBeep== 20){
  1320. WRITE(BEEPER,LOW);
  1321. }
  1322. counterBeep++;
  1323. #else
  1324. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1325. lcd_buzz(1000/6,100);
  1326. #else
  1327. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1328. #endif
  1329. #endif
  1330. }
  1331. }
  1332. WRITE(BEEPER,LOW);
  1333. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1334. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1335. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1336. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1337. lcd_change_fil_state = 0;
  1338. lcd_loading_filament();
  1339. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1340. lcd_change_fil_state = 0;
  1341. lcd_alright();
  1342. switch(lcd_change_fil_state){
  1343. case 2:
  1344. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1345. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1346. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1347. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1348. lcd_loading_filament();
  1349. break;
  1350. case 3:
  1351. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1352. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1353. lcd_loading_color();
  1354. break;
  1355. default:
  1356. lcd_change_success();
  1357. break;
  1358. }
  1359. }
  1360. target[E_AXIS]+= 5;
  1361. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1362. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1364. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1365. //plan_set_e_position(current_position[E_AXIS]);
  1366. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1367. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1368. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1369. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1370. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1371. plan_set_e_position(lastpos[E_AXIS]);
  1372. feedmultiply=feedmultiplyBckp;
  1373. char cmd[9];
  1374. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1375. enquecommand(cmd);
  1376. }
  1377. #endif
  1378. get_coordinates(); // For X Y Z E F
  1379. #ifdef FWRETRACT
  1380. if(autoretract_enabled)
  1381. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1382. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1383. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1384. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1385. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1386. retract(!retracted);
  1387. return;
  1388. }
  1389. }
  1390. #endif //FWRETRACT
  1391. prepare_move();
  1392. //ClearToSend();
  1393. }
  1394. break;
  1395. #ifndef SCARA //disable arc support
  1396. case 2: // G2 - CW ARC
  1397. if(Stopped == false) {
  1398. get_arc_coordinates();
  1399. prepare_arc_move(true);
  1400. }
  1401. break;
  1402. case 3: // G3 - CCW ARC
  1403. if(Stopped == false) {
  1404. get_arc_coordinates();
  1405. prepare_arc_move(false);
  1406. }
  1407. break;
  1408. #endif
  1409. case 4: // G4 dwell
  1410. LCD_MESSAGERPGM(MSG_DWELL);
  1411. codenum = 0;
  1412. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1413. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1414. st_synchronize();
  1415. codenum += millis(); // keep track of when we started waiting
  1416. previous_millis_cmd = millis();
  1417. while(millis() < codenum) {
  1418. manage_heater();
  1419. manage_inactivity();
  1420. lcd_update();
  1421. }
  1422. break;
  1423. #ifdef FWRETRACT
  1424. case 10: // G10 retract
  1425. #if EXTRUDERS > 1
  1426. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1427. retract(true,retracted_swap[active_extruder]);
  1428. #else
  1429. retract(true);
  1430. #endif
  1431. break;
  1432. case 11: // G11 retract_recover
  1433. #if EXTRUDERS > 1
  1434. retract(false,retracted_swap[active_extruder]);
  1435. #else
  1436. retract(false);
  1437. #endif
  1438. break;
  1439. #endif //FWRETRACT
  1440. case 28: //G28 Home all Axis one at a time
  1441. #ifdef ENABLE_AUTO_BED_LEVELING
  1442. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1443. #endif //ENABLE_AUTO_BED_LEVELING
  1444. // For mesh bed leveling deactivate the matrix temporarily
  1445. #ifdef MESH_BED_LEVELING
  1446. mbl.active = 0;
  1447. #endif
  1448. saved_feedrate = feedrate;
  1449. saved_feedmultiply = feedmultiply;
  1450. feedmultiply = 100;
  1451. previous_millis_cmd = millis();
  1452. enable_endstops(true);
  1453. for(int8_t i=0; i < NUM_AXIS; i++) {
  1454. destination[i] = current_position[i];
  1455. }
  1456. feedrate = 0.0;
  1457. #ifdef DELTA
  1458. // A delta can only safely home all axis at the same time
  1459. // all axis have to home at the same time
  1460. // Move all carriages up together until the first endstop is hit.
  1461. current_position[X_AXIS] = 0;
  1462. current_position[Y_AXIS] = 0;
  1463. current_position[Z_AXIS] = 0;
  1464. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1465. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1466. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1467. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1468. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1469. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1470. st_synchronize();
  1471. endstops_hit_on_purpose();
  1472. current_position[X_AXIS] = destination[X_AXIS];
  1473. current_position[Y_AXIS] = destination[Y_AXIS];
  1474. current_position[Z_AXIS] = destination[Z_AXIS];
  1475. // take care of back off and rehome now we are all at the top
  1476. HOMEAXIS(X);
  1477. HOMEAXIS(Y);
  1478. HOMEAXIS(Z);
  1479. calculate_delta(current_position);
  1480. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1481. #else // NOT DELTA
  1482. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1483. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1484. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1485. HOMEAXIS(Z);
  1486. }
  1487. #endif
  1488. #ifdef QUICK_HOME
  1489. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1490. {
  1491. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1492. #ifndef DUAL_X_CARRIAGE
  1493. int x_axis_home_dir = home_dir(X_AXIS);
  1494. #else
  1495. int x_axis_home_dir = x_home_dir(active_extruder);
  1496. extruder_duplication_enabled = false;
  1497. #endif
  1498. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1499. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1500. feedrate = homing_feedrate[X_AXIS];
  1501. if(homing_feedrate[Y_AXIS]<feedrate)
  1502. feedrate = homing_feedrate[Y_AXIS];
  1503. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1504. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1505. } else {
  1506. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1507. }
  1508. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1509. st_synchronize();
  1510. axis_is_at_home(X_AXIS);
  1511. axis_is_at_home(Y_AXIS);
  1512. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1513. destination[X_AXIS] = current_position[X_AXIS];
  1514. destination[Y_AXIS] = current_position[Y_AXIS];
  1515. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1516. feedrate = 0.0;
  1517. st_synchronize();
  1518. endstops_hit_on_purpose();
  1519. current_position[X_AXIS] = destination[X_AXIS];
  1520. current_position[Y_AXIS] = destination[Y_AXIS];
  1521. #ifndef SCARA
  1522. current_position[Z_AXIS] = destination[Z_AXIS];
  1523. #endif
  1524. }
  1525. #endif
  1526. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1527. {
  1528. #ifdef DUAL_X_CARRIAGE
  1529. int tmp_extruder = active_extruder;
  1530. extruder_duplication_enabled = false;
  1531. active_extruder = !active_extruder;
  1532. HOMEAXIS(X);
  1533. inactive_extruder_x_pos = current_position[X_AXIS];
  1534. active_extruder = tmp_extruder;
  1535. HOMEAXIS(X);
  1536. // reset state used by the different modes
  1537. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1538. delayed_move_time = 0;
  1539. active_extruder_parked = true;
  1540. #else
  1541. HOMEAXIS(X);
  1542. #endif
  1543. }
  1544. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1545. HOMEAXIS(Y);
  1546. }
  1547. if(code_seen(axis_codes[X_AXIS]))
  1548. {
  1549. if(code_value_long() != 0) {
  1550. #ifdef SCARA
  1551. current_position[X_AXIS]=code_value();
  1552. #else
  1553. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1554. #endif
  1555. }
  1556. }
  1557. if(code_seen(axis_codes[Y_AXIS])) {
  1558. if(code_value_long() != 0) {
  1559. #ifdef SCARA
  1560. current_position[Y_AXIS]=code_value();
  1561. #else
  1562. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1563. #endif
  1564. }
  1565. }
  1566. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1567. #ifndef Z_SAFE_HOMING
  1568. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1569. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1570. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1571. feedrate = max_feedrate[Z_AXIS];
  1572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1573. st_synchronize();
  1574. #endif
  1575. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1576. destination[X_AXIS] = MESH_MIN_X - X_PROBE_OFFSET_FROM_EXTRUDER;
  1577. destination[Y_AXIS] = MESH_MIN_Y - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1578. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1579. feedrate = homing_feedrate[Z_AXIS]/10;
  1580. current_position[Z_AXIS] = 0;
  1581. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1582. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1583. st_synchronize();
  1584. current_position[X_AXIS] = destination[X_AXIS];
  1585. current_position[Y_AXIS] = destination[Y_AXIS];
  1586. HOMEAXIS(Z);
  1587. #else
  1588. HOMEAXIS(Z);
  1589. #endif
  1590. }
  1591. #else // Z Safe mode activated.
  1592. if(home_all_axis) {
  1593. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1594. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1595. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1596. feedrate = XY_TRAVEL_SPEED/60;
  1597. current_position[Z_AXIS] = 0;
  1598. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1599. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1600. st_synchronize();
  1601. current_position[X_AXIS] = destination[X_AXIS];
  1602. current_position[Y_AXIS] = destination[Y_AXIS];
  1603. HOMEAXIS(Z);
  1604. }
  1605. // Let's see if X and Y are homed and probe is inside bed area.
  1606. if(code_seen(axis_codes[Z_AXIS])) {
  1607. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1608. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1609. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1610. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1611. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1612. current_position[Z_AXIS] = 0;
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1615. feedrate = max_feedrate[Z_AXIS];
  1616. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1617. st_synchronize();
  1618. HOMEAXIS(Z);
  1619. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1620. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1621. SERIAL_ECHO_START;
  1622. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1623. } else {
  1624. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1625. SERIAL_ECHO_START;
  1626. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1627. }
  1628. }
  1629. #endif
  1630. #endif
  1631. if(code_seen(axis_codes[Z_AXIS])) {
  1632. if(code_value_long() != 0) {
  1633. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1634. }
  1635. }
  1636. #ifdef ENABLE_AUTO_BED_LEVELING
  1637. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1638. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1639. }
  1640. #endif
  1641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1642. #endif // else DELTA
  1643. #ifdef SCARA
  1644. calculate_delta(current_position);
  1645. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1646. #endif // SCARA
  1647. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1648. enable_endstops(false);
  1649. #endif
  1650. feedrate = saved_feedrate;
  1651. feedmultiply = saved_feedmultiply;
  1652. previous_millis_cmd = millis();
  1653. endstops_hit_on_purpose();
  1654. #ifndef MESH_BED_LEVELING
  1655. if(card.sdprinting) {
  1656. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  1657. if(babystepLoad[2] != 0){
  1658. lcd_adjust_z();
  1659. }
  1660. }
  1661. #endif
  1662. break;
  1663. #ifdef ENABLE_AUTO_BED_LEVELING
  1664. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1665. {
  1666. #if Z_MIN_PIN == -1
  1667. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1668. #endif
  1669. // Prevent user from running a G29 without first homing in X and Y
  1670. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1671. {
  1672. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1673. SERIAL_ECHO_START;
  1674. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1675. break; // abort G29, since we don't know where we are
  1676. }
  1677. #ifdef Z_PROBE_SLED
  1678. dock_sled(false);
  1679. #endif // Z_PROBE_SLED
  1680. st_synchronize();
  1681. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1682. //vector_3 corrected_position = plan_get_position_mm();
  1683. //corrected_position.debug("position before G29");
  1684. plan_bed_level_matrix.set_to_identity();
  1685. vector_3 uncorrected_position = plan_get_position();
  1686. //uncorrected_position.debug("position durring G29");
  1687. current_position[X_AXIS] = uncorrected_position.x;
  1688. current_position[Y_AXIS] = uncorrected_position.y;
  1689. current_position[Z_AXIS] = uncorrected_position.z;
  1690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1691. setup_for_endstop_move();
  1692. feedrate = homing_feedrate[Z_AXIS];
  1693. #ifdef AUTO_BED_LEVELING_GRID
  1694. // probe at the points of a lattice grid
  1695. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1696. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1697. // solve the plane equation ax + by + d = z
  1698. // A is the matrix with rows [x y 1] for all the probed points
  1699. // B is the vector of the Z positions
  1700. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1701. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1702. // "A" matrix of the linear system of equations
  1703. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1704. // "B" vector of Z points
  1705. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1706. int probePointCounter = 0;
  1707. bool zig = true;
  1708. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1709. {
  1710. int xProbe, xInc;
  1711. if (zig)
  1712. {
  1713. xProbe = LEFT_PROBE_BED_POSITION;
  1714. //xEnd = RIGHT_PROBE_BED_POSITION;
  1715. xInc = xGridSpacing;
  1716. zig = false;
  1717. } else // zag
  1718. {
  1719. xProbe = RIGHT_PROBE_BED_POSITION;
  1720. //xEnd = LEFT_PROBE_BED_POSITION;
  1721. xInc = -xGridSpacing;
  1722. zig = true;
  1723. }
  1724. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1725. {
  1726. float z_before;
  1727. if (probePointCounter == 0)
  1728. {
  1729. // raise before probing
  1730. z_before = Z_RAISE_BEFORE_PROBING;
  1731. } else
  1732. {
  1733. // raise extruder
  1734. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1735. }
  1736. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1737. eqnBVector[probePointCounter] = measured_z;
  1738. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1739. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1740. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1741. probePointCounter++;
  1742. xProbe += xInc;
  1743. }
  1744. }
  1745. clean_up_after_endstop_move();
  1746. // solve lsq problem
  1747. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1748. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1749. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1750. SERIAL_PROTOCOLPGM(" b: ");
  1751. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1752. SERIAL_PROTOCOLPGM(" d: ");
  1753. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1754. set_bed_level_equation_lsq(plane_equation_coefficients);
  1755. free(plane_equation_coefficients);
  1756. #else // AUTO_BED_LEVELING_GRID not defined
  1757. // Probe at 3 arbitrary points
  1758. // probe 1
  1759. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1760. // probe 2
  1761. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1762. // probe 3
  1763. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1764. clean_up_after_endstop_move();
  1765. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1766. #endif // AUTO_BED_LEVELING_GRID
  1767. st_synchronize();
  1768. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1769. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1770. // When the bed is uneven, this height must be corrected.
  1771. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1772. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1773. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1774. z_tmp = current_position[Z_AXIS];
  1775. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1776. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1778. #ifdef Z_PROBE_SLED
  1779. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1780. #endif // Z_PROBE_SLED
  1781. }
  1782. break;
  1783. #ifndef Z_PROBE_SLED
  1784. case 30: // G30 Single Z Probe
  1785. {
  1786. engage_z_probe(); // Engage Z Servo endstop if available
  1787. st_synchronize();
  1788. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1789. setup_for_endstop_move();
  1790. feedrate = homing_feedrate[Z_AXIS];
  1791. run_z_probe();
  1792. SERIAL_PROTOCOLPGM(MSG_BED);
  1793. SERIAL_PROTOCOLPGM(" X: ");
  1794. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1795. SERIAL_PROTOCOLPGM(" Y: ");
  1796. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1797. SERIAL_PROTOCOLPGM(" Z: ");
  1798. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1799. SERIAL_PROTOCOLPGM("\n");
  1800. clean_up_after_endstop_move();
  1801. retract_z_probe(); // Retract Z Servo endstop if available
  1802. }
  1803. break;
  1804. #else
  1805. case 31: // dock the sled
  1806. dock_sled(true);
  1807. break;
  1808. case 32: // undock the sled
  1809. dock_sled(false);
  1810. break;
  1811. #endif // Z_PROBE_SLED
  1812. #endif // ENABLE_AUTO_BED_LEVELING
  1813. #ifdef MESH_BED_LEVELING
  1814. /**
  1815. * G80: Mesh-based Z probe, probes a grid and produces a
  1816. * mesh to compensate for variable bed height
  1817. *
  1818. * The S0 report the points as below
  1819. *
  1820. * +----> X-axis
  1821. * |
  1822. * |
  1823. * v Y-axis
  1824. *
  1825. */
  1826. case 80:
  1827. {
  1828. // Firstly check if we know where we are
  1829. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1830. // We don't know where we are!!! HOME!
  1831. enquecommand_P((PSTR("G28")));
  1832. enquecommand_P((PSTR("G80")));
  1833. break;
  1834. }
  1835. mbl.reset();
  1836. // Cycle through all points and probe them
  1837. current_position[X_AXIS] = MESH_MIN_X - X_PROBE_OFFSET_FROM_EXTRUDER;
  1838. current_position[Y_AXIS] = MESH_MIN_Y - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1840. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1842. st_synchronize();
  1843. int mesh_point = 0;
  1844. int ix = 0;
  1845. int iy = 0;
  1846. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1847. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1848. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1849. setup_for_endstop_move();
  1850. while (!(mesh_point == ((MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) ))) {
  1851. // Move Z to proper distance
  1852. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1854. st_synchronize();
  1855. // Get cords of measuring point
  1856. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1857. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1858. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1859. current_position[X_AXIS] = mbl.get_meas_x(ix);
  1860. current_position[Y_AXIS] = mbl.get_meas_y(iy);
  1861. current_position[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  1862. current_position[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  1863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  1864. st_synchronize();
  1865. // Go down until endstop is hit
  1866. find_bed();
  1867. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1868. mesh_point++;
  1869. }
  1870. clean_up_after_endstop_move();
  1871. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1873. mbl.upsample_3x3();
  1874. mbl.active = 1;
  1875. current_position[X_AXIS] = X_MIN_POS+0.2;
  1876. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  1877. current_position[Z_AXIS] = Z_MIN_POS;
  1878. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  1879. st_synchronize();
  1880. if(card.sdprinting) {
  1881. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01){
  1882. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  1883. babystepsTodo[Z_AXIS] = babystepLoad[2];
  1884. //lcd_adjust_z();
  1885. }
  1886. }
  1887. }
  1888. break;
  1889. /**
  1890. * G81: Print mesh bed leveling status and bed profile if activated
  1891. */
  1892. case 81:
  1893. if (mbl.active) {
  1894. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1895. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1896. SERIAL_PROTOCOLPGM(",");
  1897. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1898. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1899. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  1900. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1901. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  1902. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1903. SERIAL_PROTOCOLPGM(" ");
  1904. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1905. }
  1906. SERIAL_PROTOCOLPGM("\n");
  1907. }
  1908. }
  1909. else
  1910. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1911. break;
  1912. /**
  1913. * G82: Single Z probe at current location
  1914. *
  1915. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  1916. *
  1917. */
  1918. case 82:
  1919. SERIAL_PROTOCOLLNPGM("Finding bed ");
  1920. setup_for_endstop_move();
  1921. find_bed();
  1922. clean_up_after_endstop_move();
  1923. SERIAL_PROTOCOLPGM("Bed found at: ");
  1924. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  1925. SERIAL_PROTOCOLPGM("\n");
  1926. break;
  1927. /**
  1928. * G83: Babystep in Z and store to EEPROM
  1929. */
  1930. case 83:
  1931. {
  1932. int babystepz = code_seen('S') ? code_value() : 0;
  1933. int BabyPosition = code_seen('P') ? code_value() : 0;
  1934. if (babystepz != 0) {
  1935. if (BabyPosition > 4) {
  1936. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  1937. }else{
  1938. // Save it to the eeprom
  1939. babystepLoad[2] = babystepz;
  1940. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoad[2]);
  1941. // adjist the Z
  1942. babystepsTodo[Z_AXIS] = babystepLoad[2];
  1943. }
  1944. }
  1945. }
  1946. break;
  1947. /**
  1948. * G84: UNDO Babystep Z (move Z axis back)
  1949. */
  1950. case 84:
  1951. babystepsTodo[Z_AXIS] = -babystepLoad[2];
  1952. break;
  1953. /**
  1954. * G85: Pick best babystep
  1955. */
  1956. case 85:
  1957. lcd_pick_babystep();
  1958. break;
  1959. /**
  1960. * G86: Disable babystep correction after home
  1961. */
  1962. case 86:
  1963. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  1964. break;
  1965. /**
  1966. * G87: Enable babystep correction after home
  1967. */
  1968. case 87:
  1969. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  1970. break;
  1971. #endif // ENABLE_MESH_BED_LEVELING
  1972. case 90: // G90
  1973. relative_mode = false;
  1974. break;
  1975. case 91: // G91
  1976. relative_mode = true;
  1977. break;
  1978. case 92: // G92
  1979. if(!code_seen(axis_codes[E_AXIS]))
  1980. st_synchronize();
  1981. for(int8_t i=0; i < NUM_AXIS; i++) {
  1982. if(code_seen(axis_codes[i])) {
  1983. if(i == E_AXIS) {
  1984. current_position[i] = code_value();
  1985. plan_set_e_position(current_position[E_AXIS]);
  1986. }
  1987. else {
  1988. #ifdef SCARA
  1989. if (i == X_AXIS || i == Y_AXIS) {
  1990. current_position[i] = code_value();
  1991. }
  1992. else {
  1993. current_position[i] = code_value()+add_homing[i];
  1994. }
  1995. #else
  1996. current_position[i] = code_value()+add_homing[i];
  1997. #endif
  1998. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1999. }
  2000. }
  2001. }
  2002. break;
  2003. }
  2004. }
  2005. else if(code_seen('M'))
  2006. {
  2007. switch( (int)code_value() )
  2008. {
  2009. #ifdef ULTIPANEL
  2010. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2011. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2012. {
  2013. char *src = strchr_pointer + 2;
  2014. codenum = 0;
  2015. bool hasP = false, hasS = false;
  2016. if (code_seen('P')) {
  2017. codenum = code_value(); // milliseconds to wait
  2018. hasP = codenum > 0;
  2019. }
  2020. if (code_seen('S')) {
  2021. codenum = code_value() * 1000; // seconds to wait
  2022. hasS = codenum > 0;
  2023. }
  2024. starpos = strchr(src, '*');
  2025. if (starpos != NULL) *(starpos) = '\0';
  2026. while (*src == ' ') ++src;
  2027. if (!hasP && !hasS && *src != '\0') {
  2028. lcd_setstatus(src);
  2029. } else {
  2030. LCD_MESSAGERPGM(MSG_USERWAIT);
  2031. }
  2032. lcd_ignore_click();
  2033. st_synchronize();
  2034. previous_millis_cmd = millis();
  2035. if (codenum > 0){
  2036. codenum += millis(); // keep track of when we started waiting
  2037. while(millis() < codenum && !lcd_clicked()){
  2038. manage_heater();
  2039. manage_inactivity();
  2040. lcd_update();
  2041. }
  2042. lcd_ignore_click(false);
  2043. }else{
  2044. if (!lcd_detected())
  2045. break;
  2046. while(!lcd_clicked()){
  2047. manage_heater();
  2048. manage_inactivity();
  2049. lcd_update();
  2050. }
  2051. }
  2052. if (IS_SD_PRINTING)
  2053. LCD_MESSAGERPGM(MSG_RESUMING);
  2054. else
  2055. LCD_MESSAGERPGM(WELCOME_MSG);
  2056. }
  2057. break;
  2058. #endif
  2059. case 17:
  2060. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2061. enable_x();
  2062. enable_y();
  2063. enable_z();
  2064. enable_e0();
  2065. enable_e1();
  2066. enable_e2();
  2067. break;
  2068. #ifdef SDSUPPORT
  2069. case 20: // M20 - list SD card
  2070. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2071. card.ls();
  2072. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2073. break;
  2074. case 21: // M21 - init SD card
  2075. card.initsd();
  2076. break;
  2077. case 22: //M22 - release SD card
  2078. card.release();
  2079. break;
  2080. case 23: //M23 - Select file
  2081. starpos = (strchr(strchr_pointer + 4,'*'));
  2082. if(starpos!=NULL)
  2083. *(starpos)='\0';
  2084. card.openFile(strchr_pointer + 4,true);
  2085. break;
  2086. case 24: //M24 - Start SD print
  2087. card.startFileprint();
  2088. starttime=millis();
  2089. break;
  2090. case 25: //M25 - Pause SD print
  2091. card.pauseSDPrint();
  2092. break;
  2093. case 26: //M26 - Set SD index
  2094. if(card.cardOK && code_seen('S')) {
  2095. card.setIndex(code_value_long());
  2096. }
  2097. break;
  2098. case 27: //M27 - Get SD status
  2099. card.getStatus();
  2100. break;
  2101. case 28: //M28 - Start SD write
  2102. starpos = (strchr(strchr_pointer + 4,'*'));
  2103. if(starpos != NULL){
  2104. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2105. strchr_pointer = strchr(npos,' ') + 1;
  2106. *(starpos) = '\0';
  2107. }
  2108. card.openFile(strchr_pointer+4,false);
  2109. break;
  2110. case 29: //M29 - Stop SD write
  2111. //processed in write to file routine above
  2112. //card,saving = false;
  2113. break;
  2114. case 30: //M30 <filename> Delete File
  2115. if (card.cardOK){
  2116. card.closefile();
  2117. starpos = (strchr(strchr_pointer + 4,'*'));
  2118. if(starpos != NULL){
  2119. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2120. strchr_pointer = strchr(npos,' ') + 1;
  2121. *(starpos) = '\0';
  2122. }
  2123. card.removeFile(strchr_pointer + 4);
  2124. }
  2125. break;
  2126. case 32: //M32 - Select file and start SD print
  2127. {
  2128. if(card.sdprinting) {
  2129. st_synchronize();
  2130. }
  2131. starpos = (strchr(strchr_pointer + 4,'*'));
  2132. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2133. if(namestartpos==NULL)
  2134. {
  2135. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2136. }
  2137. else
  2138. namestartpos++; //to skip the '!'
  2139. if(starpos!=NULL)
  2140. *(starpos)='\0';
  2141. bool call_procedure=(code_seen('P'));
  2142. if(strchr_pointer>namestartpos)
  2143. call_procedure=false; //false alert, 'P' found within filename
  2144. if( card.cardOK )
  2145. {
  2146. card.openFile(namestartpos,true,!call_procedure);
  2147. if(code_seen('S'))
  2148. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2149. card.setIndex(code_value_long());
  2150. card.startFileprint();
  2151. if(!call_procedure)
  2152. starttime=millis(); //procedure calls count as normal print time.
  2153. }
  2154. } break;
  2155. case 928: //M928 - Start SD write
  2156. starpos = (strchr(strchr_pointer + 5,'*'));
  2157. if(starpos != NULL){
  2158. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2159. strchr_pointer = strchr(npos,' ') + 1;
  2160. *(starpos) = '\0';
  2161. }
  2162. card.openLogFile(strchr_pointer+5);
  2163. break;
  2164. #endif //SDSUPPORT
  2165. case 31: //M31 take time since the start of the SD print or an M109 command
  2166. {
  2167. stoptime=millis();
  2168. char time[30];
  2169. unsigned long t=(stoptime-starttime)/1000;
  2170. int sec,min;
  2171. min=t/60;
  2172. sec=t%60;
  2173. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2174. SERIAL_ECHO_START;
  2175. SERIAL_ECHOLN(time);
  2176. lcd_setstatus(time);
  2177. autotempShutdown();
  2178. }
  2179. break;
  2180. case 42: //M42 -Change pin status via gcode
  2181. if (code_seen('S'))
  2182. {
  2183. int pin_status = code_value();
  2184. int pin_number = LED_PIN;
  2185. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2186. pin_number = code_value();
  2187. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2188. {
  2189. if (sensitive_pins[i] == pin_number)
  2190. {
  2191. pin_number = -1;
  2192. break;
  2193. }
  2194. }
  2195. #if defined(FAN_PIN) && FAN_PIN > -1
  2196. if (pin_number == FAN_PIN)
  2197. fanSpeed = pin_status;
  2198. #endif
  2199. if (pin_number > -1)
  2200. {
  2201. pinMode(pin_number, OUTPUT);
  2202. digitalWrite(pin_number, pin_status);
  2203. analogWrite(pin_number, pin_status);
  2204. }
  2205. }
  2206. break;
  2207. // M48 Z-Probe repeatability measurement function.
  2208. //
  2209. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  2210. //
  2211. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2212. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2213. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2214. // regenerated.
  2215. //
  2216. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2217. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2218. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2219. //
  2220. #ifdef ENABLE_AUTO_BED_LEVELING
  2221. #ifdef Z_PROBE_REPEATABILITY_TEST
  2222. case 48: // M48 Z-Probe repeatability
  2223. {
  2224. #if Z_MIN_PIN == -1
  2225. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2226. #endif
  2227. double sum=0.0;
  2228. double mean=0.0;
  2229. double sigma=0.0;
  2230. double sample_set[50];
  2231. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2232. double X_current, Y_current, Z_current;
  2233. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2234. if (code_seen('V') || code_seen('v')) {
  2235. verbose_level = code_value();
  2236. if (verbose_level<0 || verbose_level>4 ) {
  2237. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2238. goto Sigma_Exit;
  2239. }
  2240. }
  2241. if (verbose_level > 0) {
  2242. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2243. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2244. }
  2245. if (code_seen('n')) {
  2246. n_samples = code_value();
  2247. if (n_samples<4 || n_samples>50 ) {
  2248. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2249. goto Sigma_Exit;
  2250. }
  2251. }
  2252. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2253. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2254. Z_current = st_get_position_mm(Z_AXIS);
  2255. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2256. ext_position = st_get_position_mm(E_AXIS);
  2257. if (code_seen('E') || code_seen('e') )
  2258. engage_probe_for_each_reading++;
  2259. if (code_seen('X') || code_seen('x') ) {
  2260. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2261. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2262. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2263. goto Sigma_Exit;
  2264. }
  2265. }
  2266. if (code_seen('Y') || code_seen('y') ) {
  2267. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2268. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2269. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2270. goto Sigma_Exit;
  2271. }
  2272. }
  2273. if (code_seen('L') || code_seen('l') ) {
  2274. n_legs = code_value();
  2275. if ( n_legs==1 )
  2276. n_legs = 2;
  2277. if ( n_legs<0 || n_legs>15 ) {
  2278. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2279. goto Sigma_Exit;
  2280. }
  2281. }
  2282. //
  2283. // Do all the preliminary setup work. First raise the probe.
  2284. //
  2285. st_synchronize();
  2286. plan_bed_level_matrix.set_to_identity();
  2287. plan_buffer_line( X_current, Y_current, Z_start_location,
  2288. ext_position,
  2289. homing_feedrate[Z_AXIS]/60,
  2290. active_extruder);
  2291. st_synchronize();
  2292. //
  2293. // Now get everything to the specified probe point So we can safely do a probe to
  2294. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2295. // use that as a starting point for each probe.
  2296. //
  2297. if (verbose_level > 2)
  2298. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2299. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2300. ext_position,
  2301. homing_feedrate[X_AXIS]/60,
  2302. active_extruder);
  2303. st_synchronize();
  2304. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2305. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2306. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2307. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2308. //
  2309. // OK, do the inital probe to get us close to the bed.
  2310. // Then retrace the right amount and use that in subsequent probes
  2311. //
  2312. engage_z_probe();
  2313. setup_for_endstop_move();
  2314. run_z_probe();
  2315. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2316. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2317. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2318. ext_position,
  2319. homing_feedrate[X_AXIS]/60,
  2320. active_extruder);
  2321. st_synchronize();
  2322. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2323. if (engage_probe_for_each_reading)
  2324. retract_z_probe();
  2325. for( n=0; n<n_samples; n++) {
  2326. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2327. if ( n_legs) {
  2328. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2329. int rotational_direction, l;
  2330. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2331. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2332. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2333. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2334. //SERIAL_ECHOPAIR(" theta: ",theta);
  2335. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2336. //SERIAL_PROTOCOLLNPGM("");
  2337. for( l=0; l<n_legs-1; l++) {
  2338. if (rotational_direction==1)
  2339. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2340. else
  2341. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2342. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2343. if ( radius<0.0 )
  2344. radius = -radius;
  2345. X_current = X_probe_location + cos(theta) * radius;
  2346. Y_current = Y_probe_location + sin(theta) * radius;
  2347. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2348. X_current = X_MIN_POS;
  2349. if ( X_current>X_MAX_POS)
  2350. X_current = X_MAX_POS;
  2351. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2352. Y_current = Y_MIN_POS;
  2353. if ( Y_current>Y_MAX_POS)
  2354. Y_current = Y_MAX_POS;
  2355. if (verbose_level>3 ) {
  2356. SERIAL_ECHOPAIR("x: ", X_current);
  2357. SERIAL_ECHOPAIR("y: ", Y_current);
  2358. SERIAL_PROTOCOLLNPGM("");
  2359. }
  2360. do_blocking_move_to( X_current, Y_current, Z_current );
  2361. }
  2362. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2363. }
  2364. if (engage_probe_for_each_reading) {
  2365. engage_z_probe();
  2366. delay(1000);
  2367. }
  2368. setup_for_endstop_move();
  2369. run_z_probe();
  2370. sample_set[n] = current_position[Z_AXIS];
  2371. //
  2372. // Get the current mean for the data points we have so far
  2373. //
  2374. sum=0.0;
  2375. for( j=0; j<=n; j++) {
  2376. sum = sum + sample_set[j];
  2377. }
  2378. mean = sum / (double (n+1));
  2379. //
  2380. // Now, use that mean to calculate the standard deviation for the
  2381. // data points we have so far
  2382. //
  2383. sum=0.0;
  2384. for( j=0; j<=n; j++) {
  2385. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2386. }
  2387. sigma = sqrt( sum / (double (n+1)) );
  2388. if (verbose_level > 1) {
  2389. SERIAL_PROTOCOL(n+1);
  2390. SERIAL_PROTOCOL(" of ");
  2391. SERIAL_PROTOCOL(n_samples);
  2392. SERIAL_PROTOCOLPGM(" z: ");
  2393. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2394. }
  2395. if (verbose_level > 2) {
  2396. SERIAL_PROTOCOL(" mean: ");
  2397. SERIAL_PROTOCOL_F(mean,6);
  2398. SERIAL_PROTOCOL(" sigma: ");
  2399. SERIAL_PROTOCOL_F(sigma,6);
  2400. }
  2401. if (verbose_level > 0)
  2402. SERIAL_PROTOCOLPGM("\n");
  2403. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2404. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2405. st_synchronize();
  2406. if (engage_probe_for_each_reading) {
  2407. retract_z_probe();
  2408. delay(1000);
  2409. }
  2410. }
  2411. retract_z_probe();
  2412. delay(1000);
  2413. clean_up_after_endstop_move();
  2414. // enable_endstops(true);
  2415. if (verbose_level > 0) {
  2416. SERIAL_PROTOCOLPGM("Mean: ");
  2417. SERIAL_PROTOCOL_F(mean, 6);
  2418. SERIAL_PROTOCOLPGM("\n");
  2419. }
  2420. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2421. SERIAL_PROTOCOL_F(sigma, 6);
  2422. SERIAL_PROTOCOLPGM("\n\n");
  2423. Sigma_Exit:
  2424. break;
  2425. }
  2426. #endif // Z_PROBE_REPEATABILITY_TEST
  2427. #endif // ENABLE_AUTO_BED_LEVELING
  2428. case 104: // M104
  2429. if(setTargetedHotend(104)){
  2430. break;
  2431. }
  2432. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2433. #ifdef DUAL_X_CARRIAGE
  2434. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2435. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2436. #endif
  2437. setWatch();
  2438. break;
  2439. case 112: // M112 -Emergency Stop
  2440. kill();
  2441. break;
  2442. case 140: // M140 set bed temp
  2443. if (code_seen('S')) setTargetBed(code_value());
  2444. break;
  2445. case 105 : // M105
  2446. if(setTargetedHotend(105)){
  2447. break;
  2448. }
  2449. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2450. SERIAL_PROTOCOLPGM("ok T:");
  2451. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2452. SERIAL_PROTOCOLPGM(" /");
  2453. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2454. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2455. SERIAL_PROTOCOLPGM(" B:");
  2456. SERIAL_PROTOCOL_F(degBed(),1);
  2457. SERIAL_PROTOCOLPGM(" /");
  2458. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2459. #endif //TEMP_BED_PIN
  2460. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2461. SERIAL_PROTOCOLPGM(" T");
  2462. SERIAL_PROTOCOL(cur_extruder);
  2463. SERIAL_PROTOCOLPGM(":");
  2464. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2465. SERIAL_PROTOCOLPGM(" /");
  2466. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2467. }
  2468. #else
  2469. SERIAL_ERROR_START;
  2470. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2471. #endif
  2472. SERIAL_PROTOCOLPGM(" @:");
  2473. #ifdef EXTRUDER_WATTS
  2474. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2475. SERIAL_PROTOCOLPGM("W");
  2476. #else
  2477. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2478. #endif
  2479. SERIAL_PROTOCOLPGM(" B@:");
  2480. #ifdef BED_WATTS
  2481. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2482. SERIAL_PROTOCOLPGM("W");
  2483. #else
  2484. SERIAL_PROTOCOL(getHeaterPower(-1));
  2485. #endif
  2486. #ifdef SHOW_TEMP_ADC_VALUES
  2487. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2488. SERIAL_PROTOCOLPGM(" ADC B:");
  2489. SERIAL_PROTOCOL_F(degBed(),1);
  2490. SERIAL_PROTOCOLPGM("C->");
  2491. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2492. #endif
  2493. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2494. SERIAL_PROTOCOLPGM(" T");
  2495. SERIAL_PROTOCOL(cur_extruder);
  2496. SERIAL_PROTOCOLPGM(":");
  2497. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2498. SERIAL_PROTOCOLPGM("C->");
  2499. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2500. }
  2501. #endif
  2502. SERIAL_PROTOCOLLN("");
  2503. return;
  2504. break;
  2505. case 109:
  2506. {// M109 - Wait for extruder heater to reach target.
  2507. if(setTargetedHotend(109)){
  2508. break;
  2509. }
  2510. LCD_MESSAGERPGM(MSG_HEATING);
  2511. #ifdef AUTOTEMP
  2512. autotemp_enabled=false;
  2513. #endif
  2514. if (code_seen('S')) {
  2515. setTargetHotend(code_value(), tmp_extruder);
  2516. #ifdef DUAL_X_CARRIAGE
  2517. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2518. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2519. #endif
  2520. CooldownNoWait = true;
  2521. } else if (code_seen('R')) {
  2522. setTargetHotend(code_value(), tmp_extruder);
  2523. #ifdef DUAL_X_CARRIAGE
  2524. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2525. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2526. #endif
  2527. CooldownNoWait = false;
  2528. }
  2529. #ifdef AUTOTEMP
  2530. if (code_seen('S')) autotemp_min=code_value();
  2531. if (code_seen('B')) autotemp_max=code_value();
  2532. if (code_seen('F'))
  2533. {
  2534. autotemp_factor=code_value();
  2535. autotemp_enabled=true;
  2536. }
  2537. #endif
  2538. setWatch();
  2539. codenum = millis();
  2540. /* See if we are heating up or cooling down */
  2541. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2542. cancel_heatup = false;
  2543. #ifdef TEMP_RESIDENCY_TIME
  2544. long residencyStart;
  2545. residencyStart = -1;
  2546. /* continue to loop until we have reached the target temp
  2547. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2548. while((!cancel_heatup)&&((residencyStart == -1) ||
  2549. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2550. #else
  2551. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2552. #endif //TEMP_RESIDENCY_TIME
  2553. if( (millis() - codenum) > 1000UL )
  2554. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2555. SERIAL_PROTOCOLPGM("T:");
  2556. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2557. SERIAL_PROTOCOLPGM(" E:");
  2558. SERIAL_PROTOCOL((int)tmp_extruder);
  2559. #ifdef TEMP_RESIDENCY_TIME
  2560. SERIAL_PROTOCOLPGM(" W:");
  2561. if(residencyStart > -1)
  2562. {
  2563. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2564. SERIAL_PROTOCOLLN( codenum );
  2565. }
  2566. else
  2567. {
  2568. SERIAL_PROTOCOLLN( "?" );
  2569. }
  2570. #else
  2571. SERIAL_PROTOCOLLN("");
  2572. #endif
  2573. codenum = millis();
  2574. }
  2575. manage_heater();
  2576. manage_inactivity();
  2577. lcd_update();
  2578. #ifdef TEMP_RESIDENCY_TIME
  2579. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2580. or when current temp falls outside the hysteresis after target temp was reached */
  2581. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2582. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2583. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2584. {
  2585. residencyStart = millis();
  2586. }
  2587. #endif //TEMP_RESIDENCY_TIME
  2588. }
  2589. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2590. if(IS_SD_PRINTING){
  2591. lcd_setstatus("SD-PRINTING ");
  2592. }
  2593. starttime=millis();
  2594. previous_millis_cmd = millis();
  2595. }
  2596. break;
  2597. case 190: // M190 - Wait for bed heater to reach target.
  2598. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2599. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2600. if (code_seen('S')) {
  2601. setTargetBed(code_value());
  2602. CooldownNoWait = true;
  2603. } else if (code_seen('R')) {
  2604. setTargetBed(code_value());
  2605. CooldownNoWait = false;
  2606. }
  2607. codenum = millis();
  2608. cancel_heatup = false;
  2609. target_direction = isHeatingBed(); // true if heating, false if cooling
  2610. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2611. {
  2612. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2613. {
  2614. float tt=degHotend(active_extruder);
  2615. SERIAL_PROTOCOLPGM("T:");
  2616. SERIAL_PROTOCOL(tt);
  2617. SERIAL_PROTOCOLPGM(" E:");
  2618. SERIAL_PROTOCOL((int)active_extruder);
  2619. SERIAL_PROTOCOLPGM(" B:");
  2620. SERIAL_PROTOCOL_F(degBed(),1);
  2621. SERIAL_PROTOCOLLN("");
  2622. codenum = millis();
  2623. }
  2624. manage_heater();
  2625. manage_inactivity();
  2626. lcd_update();
  2627. }
  2628. LCD_MESSAGERPGM(MSG_BED_DONE);
  2629. if(IS_SD_PRINTING){
  2630. lcd_setstatus("SD-PRINTING ");
  2631. }
  2632. previous_millis_cmd = millis();
  2633. #endif
  2634. break;
  2635. #if defined(FAN_PIN) && FAN_PIN > -1
  2636. case 106: //M106 Fan On
  2637. if (code_seen('S')){
  2638. fanSpeed=constrain(code_value(),0,255);
  2639. }
  2640. else {
  2641. fanSpeed=255;
  2642. }
  2643. break;
  2644. case 107: //M107 Fan Off
  2645. fanSpeed = 0;
  2646. break;
  2647. #endif //FAN_PIN
  2648. #ifdef BARICUDA
  2649. // PWM for HEATER_1_PIN
  2650. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2651. case 126: //M126 valve open
  2652. if (code_seen('S')){
  2653. ValvePressure=constrain(code_value(),0,255);
  2654. }
  2655. else {
  2656. ValvePressure=255;
  2657. }
  2658. break;
  2659. case 127: //M127 valve closed
  2660. ValvePressure = 0;
  2661. break;
  2662. #endif //HEATER_1_PIN
  2663. // PWM for HEATER_2_PIN
  2664. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2665. case 128: //M128 valve open
  2666. if (code_seen('S')){
  2667. EtoPPressure=constrain(code_value(),0,255);
  2668. }
  2669. else {
  2670. EtoPPressure=255;
  2671. }
  2672. break;
  2673. case 129: //M129 valve closed
  2674. EtoPPressure = 0;
  2675. break;
  2676. #endif //HEATER_2_PIN
  2677. #endif
  2678. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2679. case 80: // M80 - Turn on Power Supply
  2680. SET_OUTPUT(PS_ON_PIN); //GND
  2681. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2682. // If you have a switch on suicide pin, this is useful
  2683. // if you want to start another print with suicide feature after
  2684. // a print without suicide...
  2685. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2686. SET_OUTPUT(SUICIDE_PIN);
  2687. WRITE(SUICIDE_PIN, HIGH);
  2688. #endif
  2689. #ifdef ULTIPANEL
  2690. powersupply = true;
  2691. LCD_MESSAGERPGM(WELCOME_MSG);
  2692. lcd_update();
  2693. #endif
  2694. break;
  2695. #endif
  2696. case 81: // M81 - Turn off Power Supply
  2697. disable_heater();
  2698. st_synchronize();
  2699. disable_e0();
  2700. disable_e1();
  2701. disable_e2();
  2702. finishAndDisableSteppers();
  2703. fanSpeed = 0;
  2704. delay(1000); // Wait a little before to switch off
  2705. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2706. st_synchronize();
  2707. suicide();
  2708. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2709. SET_OUTPUT(PS_ON_PIN);
  2710. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2711. #endif
  2712. #ifdef ULTIPANEL
  2713. powersupply = false;
  2714. LCD_MESSAGERPGM(CAT4(MACHINE_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!!!!!!!!!!!!!
  2715. /*
  2716. MACHNAME = "Prusa i3"
  2717. MSGOFF = "Vypnuto"
  2718. "Prusai3"" ""vypnuto""."
  2719. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2720. */
  2721. lcd_update();
  2722. #endif
  2723. break;
  2724. case 82:
  2725. axis_relative_modes[3] = false;
  2726. break;
  2727. case 83:
  2728. axis_relative_modes[3] = true;
  2729. break;
  2730. case 18: //compatibility
  2731. case 84: // M84
  2732. if(code_seen('S')){
  2733. stepper_inactive_time = code_value() * 1000;
  2734. }
  2735. else
  2736. {
  2737. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2738. if(all_axis)
  2739. {
  2740. st_synchronize();
  2741. disable_e0();
  2742. disable_e1();
  2743. disable_e2();
  2744. finishAndDisableSteppers();
  2745. }
  2746. else
  2747. {
  2748. st_synchronize();
  2749. if(code_seen('X')) disable_x();
  2750. if(code_seen('Y')) disable_y();
  2751. if(code_seen('Z')) disable_z();
  2752. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2753. if(code_seen('E')) {
  2754. disable_e0();
  2755. disable_e1();
  2756. disable_e2();
  2757. }
  2758. #endif
  2759. }
  2760. }
  2761. break;
  2762. case 85: // M85
  2763. if(code_seen('S')) {
  2764. max_inactive_time = code_value() * 1000;
  2765. }
  2766. break;
  2767. case 92: // M92
  2768. for(int8_t i=0; i < NUM_AXIS; i++)
  2769. {
  2770. if(code_seen(axis_codes[i]))
  2771. {
  2772. if(i == 3) { // E
  2773. float value = code_value();
  2774. if(value < 20.0) {
  2775. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2776. max_e_jerk *= factor;
  2777. max_feedrate[i] *= factor;
  2778. axis_steps_per_sqr_second[i] *= factor;
  2779. }
  2780. axis_steps_per_unit[i] = value;
  2781. }
  2782. else {
  2783. axis_steps_per_unit[i] = code_value();
  2784. }
  2785. }
  2786. }
  2787. break;
  2788. case 115: // M115
  2789. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  2790. break;
  2791. case 117: // M117 display message
  2792. starpos = (strchr(strchr_pointer + 5,'*'));
  2793. if(starpos!=NULL)
  2794. *(starpos)='\0';
  2795. lcd_setstatus(strchr_pointer + 5);
  2796. break;
  2797. case 114: // M114
  2798. SERIAL_PROTOCOLPGM("X:");
  2799. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2800. SERIAL_PROTOCOLPGM(" Y:");
  2801. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2802. SERIAL_PROTOCOLPGM(" Z:");
  2803. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2804. SERIAL_PROTOCOLPGM(" E:");
  2805. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2806. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2807. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2808. SERIAL_PROTOCOLPGM(" Y:");
  2809. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2810. SERIAL_PROTOCOLPGM(" Z:");
  2811. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2812. SERIAL_PROTOCOLLN("");
  2813. #ifdef SCARA
  2814. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2815. SERIAL_PROTOCOL(delta[X_AXIS]);
  2816. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2817. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2818. SERIAL_PROTOCOLLN("");
  2819. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2820. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2821. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2822. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2823. SERIAL_PROTOCOLLN("");
  2824. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2825. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2826. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2827. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2828. SERIAL_PROTOCOLLN("");
  2829. SERIAL_PROTOCOLLN("");
  2830. #endif
  2831. break;
  2832. case 120: // M120
  2833. enable_endstops(false) ;
  2834. break;
  2835. case 121: // M121
  2836. enable_endstops(true) ;
  2837. break;
  2838. case 119: // M119
  2839. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  2840. SERIAL_PROTOCOLLN("");
  2841. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2842. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  2843. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  2844. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2845. }else{
  2846. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2847. }
  2848. SERIAL_PROTOCOLLN("");
  2849. #endif
  2850. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2851. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  2852. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  2853. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2854. }else{
  2855. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2856. }
  2857. SERIAL_PROTOCOLLN("");
  2858. #endif
  2859. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2860. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  2861. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  2862. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2863. }else{
  2864. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2865. }
  2866. SERIAL_PROTOCOLLN("");
  2867. #endif
  2868. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2869. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  2870. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  2871. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2872. }else{
  2873. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2874. }
  2875. SERIAL_PROTOCOLLN("");
  2876. #endif
  2877. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2878. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  2879. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  2880. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2881. }else{
  2882. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2883. }
  2884. SERIAL_PROTOCOLLN("");
  2885. #endif
  2886. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2887. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  2888. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  2889. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2890. }else{
  2891. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2892. }
  2893. SERIAL_PROTOCOLLN("");
  2894. #endif
  2895. break;
  2896. //TODO: update for all axis, use for loop
  2897. #ifdef BLINKM
  2898. case 150: // M150
  2899. {
  2900. byte red;
  2901. byte grn;
  2902. byte blu;
  2903. if(code_seen('R')) red = code_value();
  2904. if(code_seen('U')) grn = code_value();
  2905. if(code_seen('B')) blu = code_value();
  2906. SendColors(red,grn,blu);
  2907. }
  2908. break;
  2909. #endif //BLINKM
  2910. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2911. {
  2912. tmp_extruder = active_extruder;
  2913. if(code_seen('T')) {
  2914. tmp_extruder = code_value();
  2915. if(tmp_extruder >= EXTRUDERS) {
  2916. SERIAL_ECHO_START;
  2917. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2918. break;
  2919. }
  2920. }
  2921. float area = .0;
  2922. if(code_seen('D')) {
  2923. float diameter = (float)code_value();
  2924. if (diameter == 0.0) {
  2925. // setting any extruder filament size disables volumetric on the assumption that
  2926. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2927. // for all extruders
  2928. volumetric_enabled = false;
  2929. } else {
  2930. filament_size[tmp_extruder] = (float)code_value();
  2931. // make sure all extruders have some sane value for the filament size
  2932. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2933. #if EXTRUDERS > 1
  2934. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2935. #if EXTRUDERS > 2
  2936. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2937. #endif
  2938. #endif
  2939. volumetric_enabled = true;
  2940. }
  2941. } else {
  2942. //reserved for setting filament diameter via UFID or filament measuring device
  2943. break;
  2944. }
  2945. calculate_volumetric_multipliers();
  2946. }
  2947. break;
  2948. case 201: // M201
  2949. for(int8_t i=0; i < NUM_AXIS; i++)
  2950. {
  2951. if(code_seen(axis_codes[i]))
  2952. {
  2953. max_acceleration_units_per_sq_second[i] = code_value();
  2954. }
  2955. }
  2956. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2957. reset_acceleration_rates();
  2958. break;
  2959. #if 0 // Not used for Sprinter/grbl gen6
  2960. case 202: // M202
  2961. for(int8_t i=0; i < NUM_AXIS; i++) {
  2962. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2963. }
  2964. break;
  2965. #endif
  2966. case 203: // M203 max feedrate mm/sec
  2967. for(int8_t i=0; i < NUM_AXIS; i++) {
  2968. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2969. }
  2970. break;
  2971. case 204: // M204 acclereration S normal moves T filmanent only moves
  2972. {
  2973. if(code_seen('S')) acceleration = code_value() ;
  2974. if(code_seen('T')) retract_acceleration = code_value() ;
  2975. }
  2976. break;
  2977. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2978. {
  2979. if(code_seen('S')) minimumfeedrate = code_value();
  2980. if(code_seen('T')) mintravelfeedrate = code_value();
  2981. if(code_seen('B')) minsegmenttime = code_value() ;
  2982. if(code_seen('X')) max_xy_jerk = code_value() ;
  2983. if(code_seen('Z')) max_z_jerk = code_value() ;
  2984. if(code_seen('E')) max_e_jerk = code_value() ;
  2985. }
  2986. break;
  2987. case 206: // M206 additional homing offset
  2988. for(int8_t i=0; i < 3; i++)
  2989. {
  2990. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2991. }
  2992. #ifdef SCARA
  2993. if(code_seen('T')) // Theta
  2994. {
  2995. add_homing[X_AXIS] = code_value() ;
  2996. }
  2997. if(code_seen('P')) // Psi
  2998. {
  2999. add_homing[Y_AXIS] = code_value() ;
  3000. }
  3001. #endif
  3002. break;
  3003. #ifdef DELTA
  3004. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  3005. if(code_seen('L')) {
  3006. delta_diagonal_rod= code_value();
  3007. }
  3008. if(code_seen('R')) {
  3009. delta_radius= code_value();
  3010. }
  3011. if(code_seen('S')) {
  3012. delta_segments_per_second= code_value();
  3013. }
  3014. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3015. break;
  3016. case 666: // M666 set delta endstop adjustemnt
  3017. for(int8_t i=0; i < 3; i++)
  3018. {
  3019. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  3020. }
  3021. break;
  3022. #endif
  3023. #ifdef FWRETRACT
  3024. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3025. {
  3026. if(code_seen('S'))
  3027. {
  3028. retract_length = code_value() ;
  3029. }
  3030. if(code_seen('F'))
  3031. {
  3032. retract_feedrate = code_value()/60 ;
  3033. }
  3034. if(code_seen('Z'))
  3035. {
  3036. retract_zlift = code_value() ;
  3037. }
  3038. }break;
  3039. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3040. {
  3041. if(code_seen('S'))
  3042. {
  3043. retract_recover_length = code_value() ;
  3044. }
  3045. if(code_seen('F'))
  3046. {
  3047. retract_recover_feedrate = code_value()/60 ;
  3048. }
  3049. }break;
  3050. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3051. {
  3052. if(code_seen('S'))
  3053. {
  3054. int t= code_value() ;
  3055. switch(t)
  3056. {
  3057. case 0:
  3058. {
  3059. autoretract_enabled=false;
  3060. retracted[0]=false;
  3061. #if EXTRUDERS > 1
  3062. retracted[1]=false;
  3063. #endif
  3064. #if EXTRUDERS > 2
  3065. retracted[2]=false;
  3066. #endif
  3067. }break;
  3068. case 1:
  3069. {
  3070. autoretract_enabled=true;
  3071. retracted[0]=false;
  3072. #if EXTRUDERS > 1
  3073. retracted[1]=false;
  3074. #endif
  3075. #if EXTRUDERS > 2
  3076. retracted[2]=false;
  3077. #endif
  3078. }break;
  3079. default:
  3080. SERIAL_ECHO_START;
  3081. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3082. SERIAL_ECHO(cmdbuffer[bufindr]);
  3083. SERIAL_ECHOLNPGM("\"");
  3084. }
  3085. }
  3086. }break;
  3087. #endif // FWRETRACT
  3088. #if EXTRUDERS > 1
  3089. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3090. {
  3091. if(setTargetedHotend(218)){
  3092. break;
  3093. }
  3094. if(code_seen('X'))
  3095. {
  3096. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3097. }
  3098. if(code_seen('Y'))
  3099. {
  3100. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3101. }
  3102. #ifdef DUAL_X_CARRIAGE
  3103. if(code_seen('Z'))
  3104. {
  3105. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3106. }
  3107. #endif
  3108. SERIAL_ECHO_START;
  3109. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3110. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3111. {
  3112. SERIAL_ECHO(" ");
  3113. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3114. SERIAL_ECHO(",");
  3115. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3116. #ifdef DUAL_X_CARRIAGE
  3117. SERIAL_ECHO(",");
  3118. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3119. #endif
  3120. }
  3121. SERIAL_ECHOLN("");
  3122. }break;
  3123. #endif
  3124. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3125. {
  3126. if(code_seen('S'))
  3127. {
  3128. feedmultiply = code_value() ;
  3129. }
  3130. }
  3131. break;
  3132. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3133. {
  3134. if(code_seen('S'))
  3135. {
  3136. int tmp_code = code_value();
  3137. if (code_seen('T'))
  3138. {
  3139. if(setTargetedHotend(221)){
  3140. break;
  3141. }
  3142. extruder_multiply[tmp_extruder] = tmp_code;
  3143. }
  3144. else
  3145. {
  3146. extrudemultiply = tmp_code ;
  3147. }
  3148. }
  3149. }
  3150. break;
  3151. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3152. {
  3153. if(code_seen('P')){
  3154. int pin_number = code_value(); // pin number
  3155. int pin_state = -1; // required pin state - default is inverted
  3156. if(code_seen('S')) pin_state = code_value(); // required pin state
  3157. if(pin_state >= -1 && pin_state <= 1){
  3158. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3159. {
  3160. if (sensitive_pins[i] == pin_number)
  3161. {
  3162. pin_number = -1;
  3163. break;
  3164. }
  3165. }
  3166. if (pin_number > -1)
  3167. {
  3168. int target = LOW;
  3169. st_synchronize();
  3170. pinMode(pin_number, INPUT);
  3171. switch(pin_state){
  3172. case 1:
  3173. target = HIGH;
  3174. break;
  3175. case 0:
  3176. target = LOW;
  3177. break;
  3178. case -1:
  3179. target = !digitalRead(pin_number);
  3180. break;
  3181. }
  3182. while(digitalRead(pin_number) != target){
  3183. manage_heater();
  3184. manage_inactivity();
  3185. lcd_update();
  3186. }
  3187. }
  3188. }
  3189. }
  3190. }
  3191. break;
  3192. #if NUM_SERVOS > 0
  3193. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3194. {
  3195. int servo_index = -1;
  3196. int servo_position = 0;
  3197. if (code_seen('P'))
  3198. servo_index = code_value();
  3199. if (code_seen('S')) {
  3200. servo_position = code_value();
  3201. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3202. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3203. servos[servo_index].attach(0);
  3204. #endif
  3205. servos[servo_index].write(servo_position);
  3206. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3207. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3208. servos[servo_index].detach();
  3209. #endif
  3210. }
  3211. else {
  3212. SERIAL_ECHO_START;
  3213. SERIAL_ECHO("Servo ");
  3214. SERIAL_ECHO(servo_index);
  3215. SERIAL_ECHOLN(" out of range");
  3216. }
  3217. }
  3218. else if (servo_index >= 0) {
  3219. SERIAL_PROTOCOL(MSG_OK);
  3220. SERIAL_PROTOCOL(" Servo ");
  3221. SERIAL_PROTOCOL(servo_index);
  3222. SERIAL_PROTOCOL(": ");
  3223. SERIAL_PROTOCOL(servos[servo_index].read());
  3224. SERIAL_PROTOCOLLN("");
  3225. }
  3226. }
  3227. break;
  3228. #endif // NUM_SERVOS > 0
  3229. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3230. case 300: // M300
  3231. {
  3232. int beepS = code_seen('S') ? code_value() : 110;
  3233. int beepP = code_seen('P') ? code_value() : 1000;
  3234. if (beepS > 0)
  3235. {
  3236. #if BEEPER > 0
  3237. tone(BEEPER, beepS);
  3238. delay(beepP);
  3239. noTone(BEEPER);
  3240. #elif defined(ULTRALCD)
  3241. lcd_buzz(beepS, beepP);
  3242. #elif defined(LCD_USE_I2C_BUZZER)
  3243. lcd_buzz(beepP, beepS);
  3244. #endif
  3245. }
  3246. else
  3247. {
  3248. delay(beepP);
  3249. }
  3250. }
  3251. break;
  3252. #endif // M300
  3253. #ifdef PIDTEMP
  3254. case 301: // M301
  3255. {
  3256. if(code_seen('P')) Kp = code_value();
  3257. if(code_seen('I')) Ki = scalePID_i(code_value());
  3258. if(code_seen('D')) Kd = scalePID_d(code_value());
  3259. #ifdef PID_ADD_EXTRUSION_RATE
  3260. if(code_seen('C')) Kc = code_value();
  3261. #endif
  3262. updatePID();
  3263. SERIAL_PROTOCOL(MSG_OK);
  3264. SERIAL_PROTOCOL(" p:");
  3265. SERIAL_PROTOCOL(Kp);
  3266. SERIAL_PROTOCOL(" i:");
  3267. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3268. SERIAL_PROTOCOL(" d:");
  3269. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3270. #ifdef PID_ADD_EXTRUSION_RATE
  3271. SERIAL_PROTOCOL(" c:");
  3272. //Kc does not have scaling applied above, or in resetting defaults
  3273. SERIAL_PROTOCOL(Kc);
  3274. #endif
  3275. SERIAL_PROTOCOLLN("");
  3276. }
  3277. break;
  3278. #endif //PIDTEMP
  3279. #ifdef PIDTEMPBED
  3280. case 304: // M304
  3281. {
  3282. if(code_seen('P')) bedKp = code_value();
  3283. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3284. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3285. updatePID();
  3286. SERIAL_PROTOCOL(MSG_OK);
  3287. SERIAL_PROTOCOL(" p:");
  3288. SERIAL_PROTOCOL(bedKp);
  3289. SERIAL_PROTOCOL(" i:");
  3290. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3291. SERIAL_PROTOCOL(" d:");
  3292. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3293. SERIAL_PROTOCOLLN("");
  3294. }
  3295. break;
  3296. #endif //PIDTEMP
  3297. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3298. {
  3299. #ifdef CHDK
  3300. SET_OUTPUT(CHDK);
  3301. WRITE(CHDK, HIGH);
  3302. chdkHigh = millis();
  3303. chdkActive = true;
  3304. #else
  3305. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3306. const uint8_t NUM_PULSES=16;
  3307. const float PULSE_LENGTH=0.01524;
  3308. for(int i=0; i < NUM_PULSES; i++) {
  3309. WRITE(PHOTOGRAPH_PIN, HIGH);
  3310. _delay_ms(PULSE_LENGTH);
  3311. WRITE(PHOTOGRAPH_PIN, LOW);
  3312. _delay_ms(PULSE_LENGTH);
  3313. }
  3314. delay(7.33);
  3315. for(int i=0; i < NUM_PULSES; i++) {
  3316. WRITE(PHOTOGRAPH_PIN, HIGH);
  3317. _delay_ms(PULSE_LENGTH);
  3318. WRITE(PHOTOGRAPH_PIN, LOW);
  3319. _delay_ms(PULSE_LENGTH);
  3320. }
  3321. #endif
  3322. #endif //chdk end if
  3323. }
  3324. break;
  3325. #ifdef DOGLCD
  3326. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3327. {
  3328. if (code_seen('C')) {
  3329. lcd_setcontrast( ((int)code_value())&63 );
  3330. }
  3331. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3332. SERIAL_PROTOCOL(lcd_contrast);
  3333. SERIAL_PROTOCOLLN("");
  3334. }
  3335. break;
  3336. #endif
  3337. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3338. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3339. {
  3340. float temp = .0;
  3341. if (code_seen('S')) temp=code_value();
  3342. set_extrude_min_temp(temp);
  3343. }
  3344. break;
  3345. #endif
  3346. case 303: // M303 PID autotune
  3347. {
  3348. float temp = 150.0;
  3349. int e=0;
  3350. int c=5;
  3351. if (code_seen('E')) e=code_value();
  3352. if (e<0)
  3353. temp=70;
  3354. if (code_seen('S')) temp=code_value();
  3355. if (code_seen('C')) c=code_value();
  3356. PID_autotune(temp, e, c);
  3357. }
  3358. break;
  3359. #ifdef SCARA
  3360. case 360: // M360 SCARA Theta pos1
  3361. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3362. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3363. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3364. if(Stopped == false) {
  3365. //get_coordinates(); // For X Y Z E F
  3366. delta[X_AXIS] = 0;
  3367. delta[Y_AXIS] = 120;
  3368. calculate_SCARA_forward_Transform(delta);
  3369. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3370. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3371. prepare_move();
  3372. //ClearToSend();
  3373. return;
  3374. }
  3375. break;
  3376. case 361: // SCARA Theta pos2
  3377. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3378. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3379. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3380. if(Stopped == false) {
  3381. //get_coordinates(); // For X Y Z E F
  3382. delta[X_AXIS] = 90;
  3383. delta[Y_AXIS] = 130;
  3384. calculate_SCARA_forward_Transform(delta);
  3385. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3386. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3387. prepare_move();
  3388. //ClearToSend();
  3389. return;
  3390. }
  3391. break;
  3392. case 362: // SCARA Psi pos1
  3393. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3394. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3395. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3396. if(Stopped == false) {
  3397. //get_coordinates(); // For X Y Z E F
  3398. delta[X_AXIS] = 60;
  3399. delta[Y_AXIS] = 180;
  3400. calculate_SCARA_forward_Transform(delta);
  3401. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3402. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3403. prepare_move();
  3404. //ClearToSend();
  3405. return;
  3406. }
  3407. break;
  3408. case 363: // SCARA Psi pos2
  3409. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3410. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3411. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3412. if(Stopped == false) {
  3413. //get_coordinates(); // For X Y Z E F
  3414. delta[X_AXIS] = 50;
  3415. delta[Y_AXIS] = 90;
  3416. calculate_SCARA_forward_Transform(delta);
  3417. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3418. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3419. prepare_move();
  3420. //ClearToSend();
  3421. return;
  3422. }
  3423. break;
  3424. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3425. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3426. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3427. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3428. if(Stopped == false) {
  3429. //get_coordinates(); // For X Y Z E F
  3430. delta[X_AXIS] = 45;
  3431. delta[Y_AXIS] = 135;
  3432. calculate_SCARA_forward_Transform(delta);
  3433. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3434. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3435. prepare_move();
  3436. //ClearToSend();
  3437. return;
  3438. }
  3439. break;
  3440. case 365: // M364 Set SCARA scaling for X Y Z
  3441. for(int8_t i=0; i < 3; i++)
  3442. {
  3443. if(code_seen(axis_codes[i]))
  3444. {
  3445. axis_scaling[i] = code_value();
  3446. }
  3447. }
  3448. break;
  3449. #endif
  3450. case 400: // M400 finish all moves
  3451. {
  3452. st_synchronize();
  3453. }
  3454. break;
  3455. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3456. case 401:
  3457. {
  3458. engage_z_probe(); // Engage Z Servo endstop if available
  3459. }
  3460. break;
  3461. case 402:
  3462. {
  3463. retract_z_probe(); // Retract Z Servo endstop if enabled
  3464. }
  3465. break;
  3466. #endif
  3467. #ifdef FILAMENT_SENSOR
  3468. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3469. {
  3470. #if (FILWIDTH_PIN > -1)
  3471. if(code_seen('N')) filament_width_nominal=code_value();
  3472. else{
  3473. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3474. SERIAL_PROTOCOLLN(filament_width_nominal);
  3475. }
  3476. #endif
  3477. }
  3478. break;
  3479. case 405: //M405 Turn on filament sensor for control
  3480. {
  3481. if(code_seen('D')) meas_delay_cm=code_value();
  3482. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3483. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3484. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3485. {
  3486. int temp_ratio = widthFil_to_size_ratio();
  3487. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3488. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3489. }
  3490. delay_index1=0;
  3491. delay_index2=0;
  3492. }
  3493. filament_sensor = true ;
  3494. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3495. //SERIAL_PROTOCOL(filament_width_meas);
  3496. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3497. //SERIAL_PROTOCOL(extrudemultiply);
  3498. }
  3499. break;
  3500. case 406: //M406 Turn off filament sensor for control
  3501. {
  3502. filament_sensor = false ;
  3503. }
  3504. break;
  3505. case 407: //M407 Display measured filament diameter
  3506. {
  3507. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3508. SERIAL_PROTOCOLLN(filament_width_meas);
  3509. }
  3510. break;
  3511. #endif
  3512. case 500: // M500 Store settings in EEPROM
  3513. {
  3514. Config_StoreSettings();
  3515. }
  3516. break;
  3517. case 501: // M501 Read settings from EEPROM
  3518. {
  3519. Config_RetrieveSettings();
  3520. }
  3521. break;
  3522. case 502: // M502 Revert to default settings
  3523. {
  3524. Config_ResetDefault();
  3525. }
  3526. break;
  3527. case 503: // M503 print settings currently in memory
  3528. {
  3529. Config_PrintSettings();
  3530. }
  3531. break;
  3532. case 509: //M509 Force language selection
  3533. {
  3534. lcd_force_language_selection();
  3535. SERIAL_ECHO_START;
  3536. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3537. }
  3538. break;
  3539. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3540. case 540:
  3541. {
  3542. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3543. }
  3544. break;
  3545. #endif
  3546. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3547. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3548. {
  3549. float value;
  3550. if (code_seen('Z'))
  3551. {
  3552. value = code_value();
  3553. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3554. {
  3555. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3556. SERIAL_ECHO_START;
  3557. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3558. SERIAL_PROTOCOLLN("");
  3559. }
  3560. else
  3561. {
  3562. SERIAL_ECHO_START;
  3563. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3564. SERIAL_ECHORPGM(MSG_Z_MIN);
  3565. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3566. SERIAL_ECHORPGM(MSG_Z_MAX);
  3567. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3568. SERIAL_PROTOCOLLN("");
  3569. }
  3570. }
  3571. else
  3572. {
  3573. SERIAL_ECHO_START;
  3574. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3575. SERIAL_ECHO(-zprobe_zoffset);
  3576. SERIAL_PROTOCOLLN("");
  3577. }
  3578. break;
  3579. }
  3580. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3581. #ifdef FILAMENTCHANGEENABLE
  3582. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3583. {
  3584. feedmultiplyBckp=feedmultiply;
  3585. int8_t TooLowZ = 0;
  3586. float target[4];
  3587. float lastpos[4];
  3588. target[X_AXIS]=current_position[X_AXIS];
  3589. target[Y_AXIS]=current_position[Y_AXIS];
  3590. target[Z_AXIS]=current_position[Z_AXIS];
  3591. target[E_AXIS]=current_position[E_AXIS];
  3592. lastpos[X_AXIS]=current_position[X_AXIS];
  3593. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3594. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3595. lastpos[E_AXIS]=current_position[E_AXIS];
  3596. //Restract extruder
  3597. if(code_seen('E'))
  3598. {
  3599. target[E_AXIS]+= code_value();
  3600. }
  3601. else
  3602. {
  3603. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3604. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3605. #endif
  3606. }
  3607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3608. //Lift Z
  3609. if(code_seen('Z'))
  3610. {
  3611. target[Z_AXIS]+= code_value();
  3612. }
  3613. else
  3614. {
  3615. #ifdef FILAMENTCHANGE_ZADD
  3616. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3617. if(target[Z_AXIS] < 10){
  3618. target[Z_AXIS]+= 10 ;
  3619. TooLowZ = 1;
  3620. }else{
  3621. TooLowZ = 0;
  3622. }
  3623. #endif
  3624. }
  3625. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3626. //Move XY to side
  3627. if(code_seen('X'))
  3628. {
  3629. target[X_AXIS]+= code_value();
  3630. }
  3631. else
  3632. {
  3633. #ifdef FILAMENTCHANGE_XPOS
  3634. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3635. #endif
  3636. }
  3637. if(code_seen('Y'))
  3638. {
  3639. target[Y_AXIS]= code_value();
  3640. }
  3641. else
  3642. {
  3643. #ifdef FILAMENTCHANGE_YPOS
  3644. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3645. #endif
  3646. }
  3647. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3648. // Unload filament
  3649. if(code_seen('L'))
  3650. {
  3651. target[E_AXIS]+= code_value();
  3652. }
  3653. else
  3654. {
  3655. #ifdef FILAMENTCHANGE_FINALRETRACT
  3656. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3657. #endif
  3658. }
  3659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3660. //finish moves
  3661. st_synchronize();
  3662. //disable extruder steppers so filament can be removed
  3663. disable_e0();
  3664. disable_e1();
  3665. disable_e2();
  3666. delay(100);
  3667. //Wait for user to insert filament
  3668. uint8_t cnt=0;
  3669. int counterBeep = 0;
  3670. lcd_wait_interact();
  3671. while(!lcd_clicked()){
  3672. cnt++;
  3673. manage_heater();
  3674. manage_inactivity(true);
  3675. if(cnt==0)
  3676. {
  3677. #if BEEPER > 0
  3678. if (counterBeep== 500){
  3679. counterBeep = 0;
  3680. }
  3681. SET_OUTPUT(BEEPER);
  3682. if (counterBeep== 0){
  3683. WRITE(BEEPER,HIGH);
  3684. }
  3685. if (counterBeep== 20){
  3686. WRITE(BEEPER,LOW);
  3687. }
  3688. counterBeep++;
  3689. #else
  3690. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3691. lcd_buzz(1000/6,100);
  3692. #else
  3693. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3694. #endif
  3695. #endif
  3696. }
  3697. }
  3698. //Filament inserted
  3699. WRITE(BEEPER,LOW);
  3700. //Feed the filament to the end of nozzle quickly
  3701. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3703. //Extrude some filament
  3704. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3705. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3706. //Wait for user to check the state
  3707. lcd_change_fil_state = 0;
  3708. lcd_loading_filament();
  3709. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3710. lcd_change_fil_state = 0;
  3711. lcd_alright();
  3712. switch(lcd_change_fil_state){
  3713. // Filament failed to load so load it again
  3714. case 2:
  3715. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3716. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3717. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3718. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3719. lcd_loading_filament();
  3720. break;
  3721. // Filament loaded properly but color is not clear
  3722. case 3:
  3723. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3725. lcd_loading_color();
  3726. break;
  3727. // Everything good
  3728. default:
  3729. lcd_change_success();
  3730. break;
  3731. }
  3732. }
  3733. //Not let's go back to print
  3734. //Feed a little of filament to stabilize pressure
  3735. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3736. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3737. //Retract
  3738. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3739. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3740. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3741. //Move XY back
  3742. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3743. //Move Z back
  3744. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3745. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3746. //Unretract
  3747. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3748. //Set E position to original
  3749. plan_set_e_position(lastpos[E_AXIS]);
  3750. //Recover feed rate
  3751. feedmultiply=feedmultiplyBckp;
  3752. char cmd[9];
  3753. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3754. enquecommand(cmd);
  3755. }
  3756. break;
  3757. #endif //FILAMENTCHANGEENABLE
  3758. #ifdef DUAL_X_CARRIAGE
  3759. case 605: // Set dual x-carriage movement mode:
  3760. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3761. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3762. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3763. // millimeters x-offset and an optional differential hotend temperature of
  3764. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3765. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3766. //
  3767. // Note: the X axis should be homed after changing dual x-carriage mode.
  3768. {
  3769. st_synchronize();
  3770. if (code_seen('S'))
  3771. dual_x_carriage_mode = code_value();
  3772. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3773. {
  3774. if (code_seen('X'))
  3775. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3776. if (code_seen('R'))
  3777. duplicate_extruder_temp_offset = code_value();
  3778. SERIAL_ECHO_START;
  3779. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3780. SERIAL_ECHO(" ");
  3781. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3782. SERIAL_ECHO(",");
  3783. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3784. SERIAL_ECHO(" ");
  3785. SERIAL_ECHO(duplicate_extruder_x_offset);
  3786. SERIAL_ECHO(",");
  3787. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3788. }
  3789. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3790. {
  3791. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3792. }
  3793. active_extruder_parked = false;
  3794. extruder_duplication_enabled = false;
  3795. delayed_move_time = 0;
  3796. }
  3797. break;
  3798. #endif //DUAL_X_CARRIAGE
  3799. case 907: // M907 Set digital trimpot motor current using axis codes.
  3800. {
  3801. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3802. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3803. if(code_seen('B')) digipot_current(4,code_value());
  3804. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3805. #endif
  3806. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3807. if(code_seen('X')) digipot_current(0, code_value());
  3808. #endif
  3809. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3810. if(code_seen('Z')) digipot_current(1, code_value());
  3811. #endif
  3812. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3813. if(code_seen('E')) digipot_current(2, code_value());
  3814. #endif
  3815. #ifdef DIGIPOT_I2C
  3816. // this one uses actual amps in floating point
  3817. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3818. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3819. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3820. #endif
  3821. }
  3822. break;
  3823. case 908: // M908 Control digital trimpot directly.
  3824. {
  3825. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3826. uint8_t channel,current;
  3827. if(code_seen('P')) channel=code_value();
  3828. if(code_seen('S')) current=code_value();
  3829. digitalPotWrite(channel, current);
  3830. #endif
  3831. }
  3832. break;
  3833. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3834. {
  3835. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3836. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3837. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3838. if(code_seen('B')) microstep_mode(4,code_value());
  3839. microstep_readings();
  3840. #endif
  3841. }
  3842. break;
  3843. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3844. {
  3845. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3846. if(code_seen('S')) switch((int)code_value())
  3847. {
  3848. case 1:
  3849. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3850. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3851. break;
  3852. case 2:
  3853. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3854. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3855. break;
  3856. }
  3857. microstep_readings();
  3858. #endif
  3859. }
  3860. break;
  3861. case 999: // M999: Restart after being stopped
  3862. Stopped = false;
  3863. lcd_reset_alert_level();
  3864. gcode_LastN = Stopped_gcode_LastN;
  3865. FlushSerialRequestResend();
  3866. break;
  3867. }
  3868. }
  3869. else if(code_seen('T'))
  3870. {
  3871. tmp_extruder = code_value();
  3872. if(tmp_extruder >= EXTRUDERS) {
  3873. SERIAL_ECHO_START;
  3874. SERIAL_ECHO("T");
  3875. SERIAL_ECHO(tmp_extruder);
  3876. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3877. }
  3878. else {
  3879. boolean make_move = false;
  3880. if(code_seen('F')) {
  3881. make_move = true;
  3882. next_feedrate = code_value();
  3883. if(next_feedrate > 0.0) {
  3884. feedrate = next_feedrate;
  3885. }
  3886. }
  3887. #if EXTRUDERS > 1
  3888. if(tmp_extruder != active_extruder) {
  3889. // Save current position to return to after applying extruder offset
  3890. memcpy(destination, current_position, sizeof(destination));
  3891. #ifdef DUAL_X_CARRIAGE
  3892. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3893. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3894. {
  3895. // Park old head: 1) raise 2) move to park position 3) lower
  3896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3897. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3898. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3899. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3900. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3901. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3902. st_synchronize();
  3903. }
  3904. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3905. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3906. extruder_offset[Y_AXIS][active_extruder] +
  3907. extruder_offset[Y_AXIS][tmp_extruder];
  3908. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3909. extruder_offset[Z_AXIS][active_extruder] +
  3910. extruder_offset[Z_AXIS][tmp_extruder];
  3911. active_extruder = tmp_extruder;
  3912. // This function resets the max/min values - the current position may be overwritten below.
  3913. axis_is_at_home(X_AXIS);
  3914. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3915. {
  3916. current_position[X_AXIS] = inactive_extruder_x_pos;
  3917. inactive_extruder_x_pos = destination[X_AXIS];
  3918. }
  3919. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3920. {
  3921. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3922. if (active_extruder == 0 || active_extruder_parked)
  3923. current_position[X_AXIS] = inactive_extruder_x_pos;
  3924. else
  3925. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3926. inactive_extruder_x_pos = destination[X_AXIS];
  3927. extruder_duplication_enabled = false;
  3928. }
  3929. else
  3930. {
  3931. // record raised toolhead position for use by unpark
  3932. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3933. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3934. active_extruder_parked = true;
  3935. delayed_move_time = 0;
  3936. }
  3937. #else
  3938. // Offset extruder (only by XY)
  3939. int i;
  3940. for(i = 0; i < 2; i++) {
  3941. current_position[i] = current_position[i] -
  3942. extruder_offset[i][active_extruder] +
  3943. extruder_offset[i][tmp_extruder];
  3944. }
  3945. // Set the new active extruder and position
  3946. active_extruder = tmp_extruder;
  3947. #endif //else DUAL_X_CARRIAGE
  3948. #ifdef DELTA
  3949. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3950. //sent position to plan_set_position();
  3951. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3952. #else
  3953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3954. #endif
  3955. // Move to the old position if 'F' was in the parameters
  3956. if(make_move && Stopped == false) {
  3957. prepare_move();
  3958. }
  3959. }
  3960. #endif
  3961. SERIAL_ECHO_START;
  3962. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3963. SERIAL_PROTOCOLLN((int)active_extruder);
  3964. }
  3965. }
  3966. else
  3967. {
  3968. SERIAL_ECHO_START;
  3969. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3970. SERIAL_ECHO(cmdbuffer[bufindr]);
  3971. SERIAL_ECHOLNPGM("\"");
  3972. }
  3973. ClearToSend();
  3974. }
  3975. void FlushSerialRequestResend()
  3976. {
  3977. //char cmdbuffer[bufindr][100]="Resend:";
  3978. MYSERIAL.flush();
  3979. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3980. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3981. ClearToSend();
  3982. }
  3983. void ClearToSend()
  3984. {
  3985. previous_millis_cmd = millis();
  3986. #ifdef SDSUPPORT
  3987. if(fromsd[bufindr])
  3988. return;
  3989. #endif //SDSUPPORT
  3990. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  3991. }
  3992. void get_coordinates()
  3993. {
  3994. bool seen[4]={false,false,false,false};
  3995. for(int8_t i=0; i < NUM_AXIS; i++) {
  3996. if(code_seen(axis_codes[i]))
  3997. {
  3998. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3999. seen[i]=true;
  4000. }
  4001. else destination[i] = current_position[i]; //Are these else lines really needed?
  4002. }
  4003. if(code_seen('F')) {
  4004. next_feedrate = code_value();
  4005. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4006. }
  4007. }
  4008. void get_arc_coordinates()
  4009. {
  4010. #ifdef SF_ARC_FIX
  4011. bool relative_mode_backup = relative_mode;
  4012. relative_mode = true;
  4013. #endif
  4014. get_coordinates();
  4015. #ifdef SF_ARC_FIX
  4016. relative_mode=relative_mode_backup;
  4017. #endif
  4018. if(code_seen('I')) {
  4019. offset[0] = code_value();
  4020. }
  4021. else {
  4022. offset[0] = 0.0;
  4023. }
  4024. if(code_seen('J')) {
  4025. offset[1] = code_value();
  4026. }
  4027. else {
  4028. offset[1] = 0.0;
  4029. }
  4030. }
  4031. void clamp_to_software_endstops(float target[3])
  4032. {
  4033. if (min_software_endstops) {
  4034. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4035. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4036. float negative_z_offset = 0;
  4037. #ifdef ENABLE_AUTO_BED_LEVELING
  4038. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4039. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4040. #endif
  4041. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4042. }
  4043. if (max_software_endstops) {
  4044. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4045. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4046. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4047. }
  4048. }
  4049. #ifdef DELTA
  4050. void recalc_delta_settings(float radius, float diagonal_rod)
  4051. {
  4052. delta_tower1_x= -SIN_60*radius; // front left tower
  4053. delta_tower1_y= -COS_60*radius;
  4054. delta_tower2_x= SIN_60*radius; // front right tower
  4055. delta_tower2_y= -COS_60*radius;
  4056. delta_tower3_x= 0.0; // back middle tower
  4057. delta_tower3_y= radius;
  4058. delta_diagonal_rod_2= sq(diagonal_rod);
  4059. }
  4060. void calculate_delta(float cartesian[3])
  4061. {
  4062. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4063. - sq(delta_tower1_x-cartesian[X_AXIS])
  4064. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4065. ) + cartesian[Z_AXIS];
  4066. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4067. - sq(delta_tower2_x-cartesian[X_AXIS])
  4068. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4069. ) + cartesian[Z_AXIS];
  4070. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4071. - sq(delta_tower3_x-cartesian[X_AXIS])
  4072. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4073. ) + cartesian[Z_AXIS];
  4074. /*
  4075. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4076. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4077. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4078. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4079. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4080. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4081. */
  4082. }
  4083. #endif
  4084. #ifdef MESH_BED_LEVELING
  4085. static void find_bed() {
  4086. feedrate = homing_feedrate[Z_AXIS];
  4087. // move down until you find the bed
  4088. float zPosition = -10;
  4089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  4090. st_synchronize();
  4091. // we have to let the planner know where we are right now as it is not where we said to go.
  4092. zPosition = st_get_position_mm(Z_AXIS);
  4093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  4094. // move up the retract distance
  4095. zPosition += home_retract_mm(Z_AXIS);
  4096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  4097. st_synchronize();
  4098. // move back down slowly to find bed
  4099. feedrate = homing_feedrate[Z_AXIS]/4;
  4100. zPosition -= home_retract_mm(Z_AXIS) * 2;
  4101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  4102. st_synchronize();
  4103. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  4104. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  4105. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4106. }
  4107. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4108. float dx = x - current_position[X_AXIS];
  4109. float dy = y - current_position[Y_AXIS];
  4110. float dz = z - current_position[Z_AXIS];
  4111. int n_segments = 0;
  4112. if (mbl.active) {
  4113. float len = abs(dx) + abs(dy) + abs(dz);
  4114. if (len > 0)
  4115. n_segments = int(floor(len / 30.f));
  4116. }
  4117. if (n_segments > 1) {
  4118. float de = e - current_position[E_AXIS];
  4119. for (int i = 1; i < n_segments; ++ i) {
  4120. float t = float(i) / float(n_segments);
  4121. plan_buffer_line(
  4122. current_position[X_AXIS] + t * dx,
  4123. current_position[Y_AXIS] + t * dy,
  4124. current_position[Z_AXIS] + t * dz,
  4125. current_position[E_AXIS] + t * de,
  4126. feed_rate, extruder);
  4127. }
  4128. }
  4129. // The rest of the path.
  4130. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4131. set_current_to_destination();
  4132. }
  4133. #endif // MESH_BED_LEVELING
  4134. void prepare_move()
  4135. {
  4136. clamp_to_software_endstops(destination);
  4137. previous_millis_cmd = millis();
  4138. #ifdef SCARA //for now same as delta-code
  4139. float difference[NUM_AXIS];
  4140. for (int8_t i=0; i < NUM_AXIS; i++) {
  4141. difference[i] = destination[i] - current_position[i];
  4142. }
  4143. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4144. sq(difference[Y_AXIS]) +
  4145. sq(difference[Z_AXIS]));
  4146. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4147. if (cartesian_mm < 0.000001) { return; }
  4148. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4149. int steps = max(1, int(scara_segments_per_second * seconds));
  4150. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4151. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4152. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4153. for (int s = 1; s <= steps; s++) {
  4154. float fraction = float(s) / float(steps);
  4155. for(int8_t i=0; i < NUM_AXIS; i++) {
  4156. destination[i] = current_position[i] + difference[i] * fraction;
  4157. }
  4158. calculate_delta(destination);
  4159. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4160. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4161. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4162. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4163. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4164. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4165. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4166. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4167. active_extruder);
  4168. }
  4169. #endif // SCARA
  4170. #ifdef DELTA
  4171. float difference[NUM_AXIS];
  4172. for (int8_t i=0; i < NUM_AXIS; i++) {
  4173. difference[i] = destination[i] - current_position[i];
  4174. }
  4175. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4176. sq(difference[Y_AXIS]) +
  4177. sq(difference[Z_AXIS]));
  4178. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4179. if (cartesian_mm < 0.000001) { return; }
  4180. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4181. int steps = max(1, int(delta_segments_per_second * seconds));
  4182. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4183. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4184. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4185. for (int s = 1; s <= steps; s++) {
  4186. float fraction = float(s) / float(steps);
  4187. for(int8_t i=0; i < NUM_AXIS; i++) {
  4188. destination[i] = current_position[i] + difference[i] * fraction;
  4189. }
  4190. calculate_delta(destination);
  4191. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4192. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4193. active_extruder);
  4194. }
  4195. #endif // DELTA
  4196. #ifdef DUAL_X_CARRIAGE
  4197. if (active_extruder_parked)
  4198. {
  4199. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4200. {
  4201. // move duplicate extruder into correct duplication position.
  4202. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4203. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4204. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4205. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4206. st_synchronize();
  4207. extruder_duplication_enabled = true;
  4208. active_extruder_parked = false;
  4209. }
  4210. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4211. {
  4212. if (current_position[E_AXIS] == destination[E_AXIS])
  4213. {
  4214. // this is a travel move - skit it but keep track of current position (so that it can later
  4215. // be used as start of first non-travel move)
  4216. if (delayed_move_time != 0xFFFFFFFFUL)
  4217. {
  4218. memcpy(current_position, destination, sizeof(current_position));
  4219. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4220. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4221. delayed_move_time = millis();
  4222. return;
  4223. }
  4224. }
  4225. delayed_move_time = 0;
  4226. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4227. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4228. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4229. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4230. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4231. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4232. active_extruder_parked = false;
  4233. }
  4234. }
  4235. #endif //DUAL_X_CARRIAGE
  4236. #if ! (defined DELTA || defined SCARA)
  4237. // Do not use feedmultiply for E or Z only moves
  4238. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4239. #ifdef MESH_BED_LEVELING
  4240. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4241. #else
  4242. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4243. #endif
  4244. }
  4245. else {
  4246. #ifdef MESH_BED_LEVELING
  4247. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4248. #else
  4249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4250. #endif
  4251. }
  4252. #endif // !(DELTA || SCARA)
  4253. for(int8_t i=0; i < NUM_AXIS; i++) {
  4254. current_position[i] = destination[i];
  4255. }
  4256. }
  4257. void prepare_arc_move(char isclockwise) {
  4258. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4259. // Trace the arc
  4260. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4261. // As far as the parser is concerned, the position is now == target. In reality the
  4262. // motion control system might still be processing the action and the real tool position
  4263. // in any intermediate location.
  4264. for(int8_t i=0; i < NUM_AXIS; i++) {
  4265. current_position[i] = destination[i];
  4266. }
  4267. previous_millis_cmd = millis();
  4268. }
  4269. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4270. #if defined(FAN_PIN)
  4271. #if CONTROLLERFAN_PIN == FAN_PIN
  4272. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4273. #endif
  4274. #endif
  4275. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4276. unsigned long lastMotorCheck = 0;
  4277. void controllerFan()
  4278. {
  4279. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4280. {
  4281. lastMotorCheck = millis();
  4282. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4283. #if EXTRUDERS > 2
  4284. || !READ(E2_ENABLE_PIN)
  4285. #endif
  4286. #if EXTRUDER > 1
  4287. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4288. || !READ(X2_ENABLE_PIN)
  4289. #endif
  4290. || !READ(E1_ENABLE_PIN)
  4291. #endif
  4292. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4293. {
  4294. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4295. }
  4296. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4297. {
  4298. digitalWrite(CONTROLLERFAN_PIN, 0);
  4299. analogWrite(CONTROLLERFAN_PIN, 0);
  4300. }
  4301. else
  4302. {
  4303. // allows digital or PWM fan output to be used (see M42 handling)
  4304. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4305. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4306. }
  4307. }
  4308. }
  4309. #endif
  4310. #ifdef SCARA
  4311. void calculate_SCARA_forward_Transform(float f_scara[3])
  4312. {
  4313. // Perform forward kinematics, and place results in delta[3]
  4314. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4315. float x_sin, x_cos, y_sin, y_cos;
  4316. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4317. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4318. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4319. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4320. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4321. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4322. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4323. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4324. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4325. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4326. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4327. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4328. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4329. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4330. }
  4331. void calculate_delta(float cartesian[3]){
  4332. //reverse kinematics.
  4333. // Perform reversed kinematics, and place results in delta[3]
  4334. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4335. float SCARA_pos[2];
  4336. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4337. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4338. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4339. #if (Linkage_1 == Linkage_2)
  4340. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4341. #else
  4342. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4343. #endif
  4344. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4345. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4346. SCARA_K2 = Linkage_2 * SCARA_S2;
  4347. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4348. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4349. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4350. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4351. delta[Z_AXIS] = cartesian[Z_AXIS];
  4352. /*
  4353. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4354. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4355. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4356. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4357. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4358. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4359. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4360. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4361. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4362. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4363. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4364. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4365. SERIAL_ECHOLN(" ");*/
  4366. }
  4367. #endif
  4368. #ifdef TEMP_STAT_LEDS
  4369. static bool blue_led = false;
  4370. static bool red_led = false;
  4371. static uint32_t stat_update = 0;
  4372. void handle_status_leds(void) {
  4373. float max_temp = 0.0;
  4374. if(millis() > stat_update) {
  4375. stat_update += 500; // Update every 0.5s
  4376. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4377. max_temp = max(max_temp, degHotend(cur_extruder));
  4378. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4379. }
  4380. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4381. max_temp = max(max_temp, degTargetBed());
  4382. max_temp = max(max_temp, degBed());
  4383. #endif
  4384. if((max_temp > 55.0) && (red_led == false)) {
  4385. digitalWrite(STAT_LED_RED, 1);
  4386. digitalWrite(STAT_LED_BLUE, 0);
  4387. red_led = true;
  4388. blue_led = false;
  4389. }
  4390. if((max_temp < 54.0) && (blue_led == false)) {
  4391. digitalWrite(STAT_LED_RED, 0);
  4392. digitalWrite(STAT_LED_BLUE, 1);
  4393. red_led = false;
  4394. blue_led = true;
  4395. }
  4396. }
  4397. }
  4398. #endif
  4399. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4400. {
  4401. #if defined(KILL_PIN) && KILL_PIN > -1
  4402. static int killCount = 0; // make the inactivity button a bit less responsive
  4403. const int KILL_DELAY = 10000;
  4404. #endif
  4405. #if defined(HOME_PIN) && HOME_PIN > -1
  4406. static int homeDebounceCount = 0; // poor man's debouncing count
  4407. const int HOME_DEBOUNCE_DELAY = 10000;
  4408. #endif
  4409. if(buflen < (BUFSIZE-1))
  4410. get_command();
  4411. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4412. if(max_inactive_time)
  4413. kill();
  4414. if(stepper_inactive_time) {
  4415. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4416. {
  4417. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4418. disable_x();
  4419. disable_y();
  4420. disable_z();
  4421. disable_e0();
  4422. disable_e1();
  4423. disable_e2();
  4424. }
  4425. }
  4426. }
  4427. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4428. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4429. {
  4430. chdkActive = false;
  4431. WRITE(CHDK, LOW);
  4432. }
  4433. #endif
  4434. #if defined(KILL_PIN) && KILL_PIN > -1
  4435. // Check if the kill button was pressed and wait just in case it was an accidental
  4436. // key kill key press
  4437. // -------------------------------------------------------------------------------
  4438. if( 0 == READ(KILL_PIN) )
  4439. {
  4440. killCount++;
  4441. }
  4442. else if (killCount > 0)
  4443. {
  4444. killCount--;
  4445. }
  4446. // Exceeded threshold and we can confirm that it was not accidental
  4447. // KILL the machine
  4448. // ----------------------------------------------------------------
  4449. if ( killCount >= KILL_DELAY)
  4450. {
  4451. kill();
  4452. }
  4453. #endif
  4454. #if defined(HOME_PIN) && HOME_PIN > -1
  4455. // Check to see if we have to home, use poor man's debouncer
  4456. // ---------------------------------------------------------
  4457. if ( 0 == READ(HOME_PIN) )
  4458. {
  4459. if (homeDebounceCount == 0)
  4460. {
  4461. enquecommand_P((PSTR("G28")));
  4462. homeDebounceCount++;
  4463. LCD_ALERTMESSAGERPGM(MSG_AUTO_HOME);
  4464. }
  4465. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4466. {
  4467. homeDebounceCount++;
  4468. }
  4469. else
  4470. {
  4471. homeDebounceCount = 0;
  4472. }
  4473. }
  4474. #endif
  4475. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4476. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4477. #endif
  4478. #ifdef EXTRUDER_RUNOUT_PREVENT
  4479. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4480. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4481. {
  4482. bool oldstatus=READ(E0_ENABLE_PIN);
  4483. enable_e0();
  4484. float oldepos=current_position[E_AXIS];
  4485. float oldedes=destination[E_AXIS];
  4486. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4487. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4488. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4489. current_position[E_AXIS]=oldepos;
  4490. destination[E_AXIS]=oldedes;
  4491. plan_set_e_position(oldepos);
  4492. previous_millis_cmd=millis();
  4493. st_synchronize();
  4494. WRITE(E0_ENABLE_PIN,oldstatus);
  4495. }
  4496. #endif
  4497. #if defined(DUAL_X_CARRIAGE)
  4498. // handle delayed move timeout
  4499. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4500. {
  4501. // travel moves have been received so enact them
  4502. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4503. memcpy(destination,current_position,sizeof(destination));
  4504. prepare_move();
  4505. }
  4506. #endif
  4507. #ifdef TEMP_STAT_LEDS
  4508. handle_status_leds();
  4509. #endif
  4510. check_axes_activity();
  4511. }
  4512. void kill()
  4513. {
  4514. cli(); // Stop interrupts
  4515. disable_heater();
  4516. disable_x();
  4517. disable_y();
  4518. disable_z();
  4519. disable_e0();
  4520. disable_e1();
  4521. disable_e2();
  4522. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4523. pinMode(PS_ON_PIN,INPUT);
  4524. #endif
  4525. SERIAL_ERROR_START;
  4526. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4527. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4528. // FMC small patch to update the LCD before ending
  4529. sei(); // enable interrupts
  4530. for ( int i=5; i--; lcd_update())
  4531. {
  4532. delay(200);
  4533. }
  4534. cli(); // disable interrupts
  4535. suicide();
  4536. while(1) { /* Intentionally left empty */ } // Wait for reset
  4537. }
  4538. void Stop()
  4539. {
  4540. disable_heater();
  4541. if(Stopped == false) {
  4542. Stopped = true;
  4543. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4544. SERIAL_ERROR_START;
  4545. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4546. LCD_MESSAGERPGM(MSG_STOPPED);
  4547. }
  4548. }
  4549. bool IsStopped() { return Stopped; };
  4550. #ifdef FAST_PWM_FAN
  4551. void setPwmFrequency(uint8_t pin, int val)
  4552. {
  4553. val &= 0x07;
  4554. switch(digitalPinToTimer(pin))
  4555. {
  4556. #if defined(TCCR0A)
  4557. case TIMER0A:
  4558. case TIMER0B:
  4559. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4560. // TCCR0B |= val;
  4561. break;
  4562. #endif
  4563. #if defined(TCCR1A)
  4564. case TIMER1A:
  4565. case TIMER1B:
  4566. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4567. // TCCR1B |= val;
  4568. break;
  4569. #endif
  4570. #if defined(TCCR2)
  4571. case TIMER2:
  4572. case TIMER2:
  4573. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4574. TCCR2 |= val;
  4575. break;
  4576. #endif
  4577. #if defined(TCCR2A)
  4578. case TIMER2A:
  4579. case TIMER2B:
  4580. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4581. TCCR2B |= val;
  4582. break;
  4583. #endif
  4584. #if defined(TCCR3A)
  4585. case TIMER3A:
  4586. case TIMER3B:
  4587. case TIMER3C:
  4588. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4589. TCCR3B |= val;
  4590. break;
  4591. #endif
  4592. #if defined(TCCR4A)
  4593. case TIMER4A:
  4594. case TIMER4B:
  4595. case TIMER4C:
  4596. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4597. TCCR4B |= val;
  4598. break;
  4599. #endif
  4600. #if defined(TCCR5A)
  4601. case TIMER5A:
  4602. case TIMER5B:
  4603. case TIMER5C:
  4604. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4605. TCCR5B |= val;
  4606. break;
  4607. #endif
  4608. }
  4609. }
  4610. #endif //FAST_PWM_FAN
  4611. bool setTargetedHotend(int code){
  4612. tmp_extruder = active_extruder;
  4613. if(code_seen('T')) {
  4614. tmp_extruder = code_value();
  4615. if(tmp_extruder >= EXTRUDERS) {
  4616. SERIAL_ECHO_START;
  4617. switch(code){
  4618. case 104:
  4619. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4620. break;
  4621. case 105:
  4622. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4623. break;
  4624. case 109:
  4625. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4626. break;
  4627. case 218:
  4628. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4629. break;
  4630. case 221:
  4631. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4632. break;
  4633. }
  4634. SERIAL_ECHOLN(tmp_extruder);
  4635. return true;
  4636. }
  4637. }
  4638. return false;
  4639. }
  4640. float calculate_volumetric_multiplier(float diameter) {
  4641. float area = .0;
  4642. float radius = .0;
  4643. radius = diameter * .5;
  4644. if (! volumetric_enabled || radius == 0) {
  4645. area = 1;
  4646. }
  4647. else {
  4648. area = M_PI * pow(radius, 2);
  4649. }
  4650. return 1.0 / area;
  4651. }
  4652. void calculate_volumetric_multipliers() {
  4653. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4654. #if EXTRUDERS > 1
  4655. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4656. #if EXTRUDERS > 2
  4657. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4658. #endif
  4659. #endif
  4660. }