temperature.cpp 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "menu.h"
  27. #include "conv2str.h"
  28. #include "sound.h"
  29. #include "temperature.h"
  30. #include "cardreader.h"
  31. #include "SdFatUtil.h"
  32. #include <avr/wdt.h>
  33. #include "adc.h"
  34. #include "ConfigurationStore.h"
  35. #include "messages.h"
  36. #include "Timer.h"
  37. #include "Configuration_prusa.h"
  38. #include "config.h"
  39. //===========================================================================
  40. //=============================public variables============================
  41. //===========================================================================
  42. int target_temperature[EXTRUDERS] = { 0 };
  43. int target_temperature_bed = 0;
  44. int current_temperature_raw[EXTRUDERS] = { 0 };
  45. float current_temperature[EXTRUDERS] = { 0.0 };
  46. #ifdef PINDA_THERMISTOR
  47. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  48. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  49. float current_temperature_pinda = 0.0;
  50. #endif //PINDA_THERMISTOR
  51. #ifdef AMBIENT_THERMISTOR
  52. int current_temperature_raw_ambient = 0 ;
  53. float current_temperature_ambient = 0.0;
  54. #endif //AMBIENT_THERMISTOR
  55. #ifdef VOLT_PWR_PIN
  56. int current_voltage_raw_pwr = 0;
  57. #endif
  58. #ifdef VOLT_BED_PIN
  59. int current_voltage_raw_bed = 0;
  60. #endif
  61. #ifdef IR_SENSOR_ANALOG
  62. uint16_t current_voltage_raw_IR = 0;
  63. #endif //IR_SENSOR_ANALOG
  64. int current_temperature_bed_raw = 0;
  65. float current_temperature_bed = 0.0;
  66. #ifdef PIDTEMP
  67. float _Kp, _Ki, _Kd;
  68. int pid_cycle, pid_number_of_cycles;
  69. bool pid_tuning_finished = false;
  70. #ifdef PID_ADD_EXTRUSION_RATE
  71. float Kc=DEFAULT_Kc;
  72. #endif
  73. #endif //PIDTEMP
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. #ifdef FANCHECK
  78. volatile uint8_t fan_check_error = EFCE_OK;
  79. #endif
  80. unsigned char soft_pwm_bed;
  81. #ifdef BABYSTEPPING
  82. volatile int babystepsTodo[3]={0,0,0};
  83. #endif
  84. //===========================================================================
  85. //=============================private variables============================
  86. //===========================================================================
  87. static volatile bool temp_meas_ready = false;
  88. #ifdef PIDTEMP
  89. //static cannot be external:
  90. static float iState_sum[EXTRUDERS] = { 0 };
  91. static float dState_last[EXTRUDERS] = { 0 };
  92. static float pTerm[EXTRUDERS];
  93. static float iTerm[EXTRUDERS];
  94. static float dTerm[EXTRUDERS];
  95. //int output;
  96. static float pid_error[EXTRUDERS];
  97. static float iState_sum_min[EXTRUDERS];
  98. static float iState_sum_max[EXTRUDERS];
  99. // static float pid_input[EXTRUDERS];
  100. // static float pid_output[EXTRUDERS];
  101. static bool pid_reset[EXTRUDERS];
  102. #endif //PIDTEMP
  103. #ifdef PIDTEMPBED
  104. //static cannot be external:
  105. static float temp_iState_bed = { 0 };
  106. static float temp_dState_bed = { 0 };
  107. static float pTerm_bed;
  108. static float iTerm_bed;
  109. static float dTerm_bed;
  110. //int output;
  111. static float pid_error_bed;
  112. static float temp_iState_min_bed;
  113. static float temp_iState_max_bed;
  114. #else //PIDTEMPBED
  115. static unsigned long previous_millis_bed_heater;
  116. #endif //PIDTEMPBED
  117. static unsigned char soft_pwm[EXTRUDERS];
  118. #ifdef FAN_SOFT_PWM
  119. static unsigned char soft_pwm_fan;
  120. #endif
  121. uint8_t fanSpeedBckp = 255;
  122. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  123. unsigned long extruder_autofan_last_check = _millis();
  124. bool fan_measuring = false;
  125. uint8_t fanState = 0;
  126. #ifdef EXTRUDER_ALTFAN_DETECT
  127. struct
  128. {
  129. uint8_t isAltfan : 1;
  130. uint8_t altfanOverride : 1;
  131. } altfanStatus;
  132. #endif //EXTRUDER_ALTFAN_DETECT
  133. #endif
  134. #if EXTRUDERS > 3
  135. # error Unsupported number of extruders
  136. #elif EXTRUDERS > 2
  137. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  138. #elif EXTRUDERS > 1
  139. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  140. #else
  141. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  142. #endif
  143. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  144. // Init min and max temp with extreme values to prevent false errors during startup
  145. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  146. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  147. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  148. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  149. #ifdef BED_MINTEMP
  150. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  151. #endif
  152. #ifdef BED_MAXTEMP
  153. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  154. #endif
  155. #ifdef AMBIENT_MINTEMP
  156. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  157. #endif
  158. #ifdef AMBIENT_MAXTEMP
  159. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  160. #endif
  161. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  162. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  163. static float analog2temp(int raw, uint8_t e);
  164. static float analog2tempBed(int raw);
  165. #ifdef AMBIENT_MAXTEMP
  166. static float analog2tempAmbient(int raw);
  167. #endif
  168. static void updateTemperaturesFromRawValues();
  169. enum TempRunawayStates : uint8_t
  170. {
  171. TempRunaway_INACTIVE = 0,
  172. TempRunaway_PREHEAT = 1,
  173. TempRunaway_ACTIVE = 2,
  174. };
  175. #ifndef SOFT_PWM_SCALE
  176. #define SOFT_PWM_SCALE 0
  177. #endif
  178. //===========================================================================
  179. //============================= functions ============================
  180. //===========================================================================
  181. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  182. static float temp_runaway_status[1 + EXTRUDERS];
  183. static float temp_runaway_target[1 + EXTRUDERS];
  184. static float temp_runaway_timer[1 + EXTRUDERS];
  185. static int temp_runaway_error_counter[1 + EXTRUDERS];
  186. static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  187. static void temp_runaway_stop(bool isPreheat, bool isBed);
  188. #endif
  189. #ifdef EXTRUDER_ALTFAN_DETECT
  190. ISR(INT6_vect) {
  191. fan_edge_counter[0]++;
  192. }
  193. bool extruder_altfan_detect()
  194. {
  195. setExtruderAutoFanState(3);
  196. SET_INPUT(TACH_0);
  197. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  198. if (overrideVal == EEPROM_EMPTY_VALUE)
  199. {
  200. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  201. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  202. }
  203. altfanStatus.altfanOverride = overrideVal;
  204. CRITICAL_SECTION_START;
  205. EICRB &= ~(1 << ISC61);
  206. EICRB |= (1 << ISC60);
  207. EIMSK |= (1 << INT6);
  208. fan_edge_counter[0] = 0;
  209. CRITICAL_SECTION_END;
  210. extruder_autofan_last_check = _millis();
  211. _delay(1000);
  212. EIMSK &= ~(1 << INT6);
  213. countFanSpeed();
  214. altfanStatus.isAltfan = fan_speed[0] > 100;
  215. setExtruderAutoFanState(1);
  216. return altfanStatus.isAltfan;
  217. }
  218. void altfanOverride_toggle()
  219. {
  220. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  221. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  222. }
  223. bool altfanOverride_get()
  224. {
  225. return altfanStatus.altfanOverride;
  226. }
  227. #endif //EXTRUDER_ALTFAN_DETECT
  228. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  229. bool checkAllHotends(void)
  230. {
  231. bool result=false;
  232. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  233. return(result);
  234. }
  235. // WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
  236. // codegen bug causing a stack overwrite issue in process_commands()
  237. void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
  238. {
  239. pid_number_of_cycles = ncycles;
  240. pid_tuning_finished = false;
  241. float input = 0.0;
  242. pid_cycle=0;
  243. bool heating = true;
  244. unsigned long temp_millis = _millis();
  245. unsigned long t1=temp_millis;
  246. unsigned long t2=temp_millis;
  247. long t_high = 0;
  248. long t_low = 0;
  249. long bias, d;
  250. float Ku, Tu;
  251. float max = 0, min = 10000;
  252. uint8_t safety_check_cycles = 0;
  253. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  254. float temp_ambient;
  255. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  256. unsigned long extruder_autofan_last_check = _millis();
  257. #endif
  258. if ((extruder >= EXTRUDERS)
  259. #if (TEMP_BED_PIN <= -1)
  260. ||(extruder < 0)
  261. #endif
  262. ){
  263. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  264. pid_tuning_finished = true;
  265. pid_cycle = 0;
  266. return;
  267. }
  268. SERIAL_ECHOLN("PID Autotune start");
  269. disable_heater(); // switch off all heaters.
  270. if (extruder<0)
  271. {
  272. soft_pwm_bed = (MAX_BED_POWER)/2;
  273. timer02_set_pwm0(soft_pwm_bed << 1);
  274. bias = d = (MAX_BED_POWER)/2;
  275. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  276. }
  277. else
  278. {
  279. soft_pwm[extruder] = (PID_MAX)/2;
  280. bias = d = (PID_MAX)/2;
  281. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  282. }
  283. for(;;) {
  284. #ifdef WATCHDOG
  285. wdt_reset();
  286. #endif //WATCHDOG
  287. if(temp_meas_ready == true) { // temp sample ready
  288. updateTemperaturesFromRawValues();
  289. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  290. max=max(max,input);
  291. min=min(min,input);
  292. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  293. if(_millis() - extruder_autofan_last_check > 2500) {
  294. checkExtruderAutoFans();
  295. extruder_autofan_last_check = _millis();
  296. }
  297. #endif
  298. if(heating == true && input > temp) {
  299. if(_millis() - t2 > 5000) {
  300. heating=false;
  301. if (extruder<0)
  302. {
  303. soft_pwm_bed = (bias - d) >> 1;
  304. timer02_set_pwm0(soft_pwm_bed << 1);
  305. }
  306. else
  307. soft_pwm[extruder] = (bias - d) >> 1;
  308. t1=_millis();
  309. t_high=t1 - t2;
  310. max=temp;
  311. }
  312. }
  313. if(heating == false && input < temp) {
  314. if(_millis() - t1 > 5000) {
  315. heating=true;
  316. t2=_millis();
  317. t_low=t2 - t1;
  318. if(pid_cycle > 0) {
  319. bias += (d*(t_high - t_low))/(t_low + t_high);
  320. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  321. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  322. else d = bias;
  323. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  324. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  325. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  326. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  327. if(pid_cycle > 2) {
  328. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  329. Tu = ((float)(t_low + t_high)/1000.0);
  330. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  331. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  332. _Kp = 0.6*Ku;
  333. _Ki = 2*_Kp/Tu;
  334. _Kd = _Kp*Tu/8;
  335. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  336. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  337. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  338. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  339. /*
  340. _Kp = 0.33*Ku;
  341. _Ki = _Kp/Tu;
  342. _Kd = _Kp*Tu/3;
  343. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  344. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  345. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  346. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  347. _Kp = 0.2*Ku;
  348. _Ki = 2*_Kp/Tu;
  349. _Kd = _Kp*Tu/3;
  350. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  351. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  352. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  353. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  354. */
  355. }
  356. }
  357. if (extruder<0)
  358. {
  359. soft_pwm_bed = (bias + d) >> 1;
  360. timer02_set_pwm0(soft_pwm_bed << 1);
  361. }
  362. else
  363. soft_pwm[extruder] = (bias + d) >> 1;
  364. pid_cycle++;
  365. min=temp;
  366. }
  367. }
  368. }
  369. if(input > (temp + 20)) {
  370. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  371. pid_tuning_finished = true;
  372. pid_cycle = 0;
  373. return;
  374. }
  375. if(_millis() - temp_millis > 2000) {
  376. int p;
  377. if (extruder<0){
  378. p=soft_pwm_bed;
  379. SERIAL_PROTOCOLPGM("B:");
  380. }else{
  381. p=soft_pwm[extruder];
  382. SERIAL_PROTOCOLPGM("T:");
  383. }
  384. SERIAL_PROTOCOL(input);
  385. SERIAL_PROTOCOLPGM(" @:");
  386. SERIAL_PROTOCOLLN(p);
  387. if (safety_check_cycles == 0) { //save ambient temp
  388. temp_ambient = input;
  389. //SERIAL_ECHOPGM("Ambient T: ");
  390. //MYSERIAL.println(temp_ambient);
  391. safety_check_cycles++;
  392. }
  393. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  394. safety_check_cycles++;
  395. }
  396. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  397. safety_check_cycles++;
  398. //SERIAL_ECHOPGM("Time from beginning: ");
  399. //MYSERIAL.print(safety_check_cycles_count * 2);
  400. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  401. //MYSERIAL.println(input - temp_ambient);
  402. if (fabs(input - temp_ambient) < 5.0) {
  403. temp_runaway_stop(false, (extruder<0));
  404. pid_tuning_finished = true;
  405. return;
  406. }
  407. }
  408. temp_millis = _millis();
  409. }
  410. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  411. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  412. pid_tuning_finished = true;
  413. pid_cycle = 0;
  414. return;
  415. }
  416. if(pid_cycle > ncycles) {
  417. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  418. pid_tuning_finished = true;
  419. pid_cycle = 0;
  420. return;
  421. }
  422. lcd_update(0);
  423. }
  424. }
  425. void updatePID()
  426. {
  427. #ifdef PIDTEMP
  428. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  429. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  430. }
  431. #endif
  432. #ifdef PIDTEMPBED
  433. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  434. #endif
  435. }
  436. int getHeaterPower(int heater) {
  437. if (heater<0)
  438. return soft_pwm_bed;
  439. return soft_pwm[heater];
  440. }
  441. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  442. #if defined(FAN_PIN) && FAN_PIN > -1
  443. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  444. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  445. #endif
  446. #endif
  447. void setExtruderAutoFanState(uint8_t state)
  448. {
  449. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  450. //the fan to either On or Off during certain tests/errors.
  451. fanState = state;
  452. newFanSpeed = 0;
  453. if (fanState & 0x01)
  454. {
  455. #ifdef EXTRUDER_ALTFAN_DETECT
  456. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  457. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  458. #else //EXTRUDER_ALTFAN_DETECT
  459. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  460. #endif //EXTRUDER_ALTFAN_DETECT
  461. }
  462. timer4_set_fan0(newFanSpeed);
  463. }
  464. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  465. void countFanSpeed()
  466. {
  467. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  468. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  469. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  470. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  471. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  472. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  473. SERIAL_ECHOLNPGM(" ");*/
  474. fan_edge_counter[0] = 0;
  475. fan_edge_counter[1] = 0;
  476. }
  477. void checkFanSpeed()
  478. {
  479. uint8_t max_print_fan_errors = 0;
  480. uint8_t max_extruder_fan_errors = 0;
  481. #ifdef FAN_SOFT_PWM
  482. max_print_fan_errors = 3; //15 seconds
  483. max_extruder_fan_errors = 2; //10seconds
  484. #else //FAN_SOFT_PWM
  485. max_print_fan_errors = 15; //15 seconds
  486. max_extruder_fan_errors = 5; //5 seconds
  487. #endif //FAN_SOFT_PWM
  488. if(fans_check_enabled != false)
  489. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  490. static unsigned char fan_speed_errors[2] = { 0,0 };
  491. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  492. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  493. else fan_speed_errors[0] = 0;
  494. #endif
  495. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  496. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  497. else fan_speed_errors[1] = 0;
  498. #endif
  499. // drop the fan_check_error flag when both fans are ok
  500. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  501. // we may even send some info to the LCD from here
  502. fan_check_error = EFCE_FIXED;
  503. }
  504. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  505. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  506. lcd_reset_alert_level(); //for another fan speed error
  507. }
  508. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  509. fan_speed_errors[0] = 0;
  510. fanSpeedError(0); //extruder fan
  511. }
  512. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  513. fan_speed_errors[1] = 0;
  514. fanSpeedError(1); //print fan
  515. }
  516. }
  517. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  518. //! Extracted from fanSpeedError to save some space.
  519. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  520. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  521. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  522. SERIAL_ECHOLNRPGM(serialMsg);
  523. if (get_message_level() == 0) {
  524. Sound_MakeCustom(200,0,true);
  525. LCD_ALERTMESSAGERPGM(lcdMsg);
  526. }
  527. }
  528. void fanSpeedError(unsigned char _fan) {
  529. if (get_message_level() != 0 && isPrintPaused) return;
  530. //to ensure that target temp. is not set to zero in case that we are resuming print
  531. if (card.sdprinting || is_usb_printing) {
  532. if (heating_status != HeatingStatus::NO_HEATING) {
  533. lcd_print_stop();
  534. }
  535. else {
  536. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  537. }
  538. }
  539. else {
  540. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  541. setTargetHotend0(0);
  542. heating_status = HeatingStatus::NO_HEATING;
  543. fan_check_error = EFCE_REPORTED;
  544. }
  545. switch (_fan) {
  546. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  547. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  548. break;
  549. case 1:
  550. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  551. break;
  552. }
  553. }
  554. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  555. void checkExtruderAutoFans()
  556. {
  557. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  558. if (!(fanState & 0x02))
  559. {
  560. fanState &= ~1;
  561. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  562. }
  563. setExtruderAutoFanState(fanState);
  564. #endif
  565. }
  566. #endif // any extruder auto fan pins set
  567. // ready for eventually parameters adjusting
  568. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  569. //void resetPID(uint8_t extruder)
  570. {
  571. }
  572. void manage_heater()
  573. {
  574. #ifdef WATCHDOG
  575. wdt_reset();
  576. #endif //WATCHDOG
  577. float pid_input;
  578. float pid_output;
  579. if(temp_meas_ready != true) //better readability
  580. return;
  581. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  582. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  583. updateTemperaturesFromRawValues();
  584. check_max_temp();
  585. check_min_temp();
  586. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  587. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  588. #endif
  589. for(uint8_t e = 0; e < EXTRUDERS; e++)
  590. {
  591. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  592. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  593. #endif
  594. #ifdef PIDTEMP
  595. pid_input = current_temperature[e];
  596. #ifndef PID_OPENLOOP
  597. if(target_temperature[e] == 0) {
  598. pid_output = 0;
  599. pid_reset[e] = true;
  600. } else {
  601. pid_error[e] = target_temperature[e] - pid_input;
  602. if(pid_reset[e]) {
  603. iState_sum[e] = 0.0;
  604. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  605. pid_reset[e] = false;
  606. }
  607. #ifndef PonM
  608. pTerm[e] = cs.Kp * pid_error[e];
  609. iState_sum[e] += pid_error[e];
  610. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  611. iTerm[e] = cs.Ki * iState_sum[e];
  612. // PID_K1 defined in Configuration.h in the PID settings
  613. #define K2 (1.0-PID_K1)
  614. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  615. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  616. if (pid_output > PID_MAX) {
  617. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  618. pid_output=PID_MAX;
  619. } else if (pid_output < 0) {
  620. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  621. pid_output=0;
  622. }
  623. #else // PonM ("Proportional on Measurement" method)
  624. iState_sum[e] += cs.Ki * pid_error[e];
  625. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  626. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  627. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  628. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  629. pid_output = constrain(pid_output, 0, PID_MAX);
  630. #endif // PonM
  631. }
  632. dState_last[e] = pid_input;
  633. #else
  634. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  635. #endif //PID_OPENLOOP
  636. #ifdef PID_DEBUG
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHO(" PID_DEBUG ");
  639. SERIAL_ECHO(e);
  640. SERIAL_ECHO(": Input ");
  641. SERIAL_ECHO(pid_input);
  642. SERIAL_ECHO(" Output ");
  643. SERIAL_ECHO(pid_output);
  644. SERIAL_ECHO(" pTerm ");
  645. SERIAL_ECHO(pTerm[e]);
  646. SERIAL_ECHO(" iTerm ");
  647. SERIAL_ECHO(iTerm[e]);
  648. SERIAL_ECHO(" dTerm ");
  649. SERIAL_ECHOLN(-dTerm[e]);
  650. #endif //PID_DEBUG
  651. #else /* PID off */
  652. pid_output = 0;
  653. if(current_temperature[e] < target_temperature[e]) {
  654. pid_output = PID_MAX;
  655. }
  656. #endif
  657. // Check if temperature is within the correct range
  658. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  659. {
  660. soft_pwm[e] = (int)pid_output >> 1;
  661. }
  662. else
  663. {
  664. soft_pwm[e] = 0;
  665. }
  666. } // End extruder for loop
  667. #define FAN_CHECK_PERIOD 5000 //5s
  668. #define FAN_CHECK_DURATION 100 //100ms
  669. #ifndef DEBUG_DISABLE_FANCHECK
  670. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  671. #ifdef FAN_SOFT_PWM
  672. #ifdef FANCHECK
  673. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  674. extruder_autofan_last_check = _millis();
  675. fanSpeedBckp = fanSpeedSoftPwm;
  676. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  677. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  678. fanSpeedSoftPwm = 255;
  679. }
  680. fan_measuring = true;
  681. }
  682. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  683. countFanSpeed();
  684. checkFanSpeed();
  685. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  686. fanSpeedSoftPwm = fanSpeedBckp;
  687. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  688. extruder_autofan_last_check = _millis();
  689. fan_measuring = false;
  690. }
  691. #endif //FANCHECK
  692. checkExtruderAutoFans();
  693. #else //FAN_SOFT_PWM
  694. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  695. {
  696. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  697. countFanSpeed();
  698. checkFanSpeed();
  699. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  700. checkExtruderAutoFans();
  701. extruder_autofan_last_check = _millis();
  702. }
  703. #endif //FAN_SOFT_PWM
  704. #endif
  705. #endif //DEBUG_DISABLE_FANCHECK
  706. #ifndef PIDTEMPBED
  707. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  708. return;
  709. previous_millis_bed_heater = _millis();
  710. #endif
  711. #if TEMP_SENSOR_BED != 0
  712. #ifdef PIDTEMPBED
  713. pid_input = current_temperature_bed;
  714. #ifndef PID_OPENLOOP
  715. pid_error_bed = target_temperature_bed - pid_input;
  716. pTerm_bed = cs.bedKp * pid_error_bed;
  717. temp_iState_bed += pid_error_bed;
  718. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  719. iTerm_bed = cs.bedKi * temp_iState_bed;
  720. //PID_K1 defined in Configuration.h in the PID settings
  721. #define K2 (1.0-PID_K1)
  722. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  723. temp_dState_bed = pid_input;
  724. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  725. if (pid_output > MAX_BED_POWER) {
  726. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  727. pid_output=MAX_BED_POWER;
  728. } else if (pid_output < 0){
  729. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  730. pid_output=0;
  731. }
  732. #else
  733. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  734. #endif //PID_OPENLOOP
  735. if(current_temperature_bed < BED_MAXTEMP)
  736. {
  737. soft_pwm_bed = (int)pid_output >> 1;
  738. timer02_set_pwm0(soft_pwm_bed << 1);
  739. }
  740. else {
  741. soft_pwm_bed = 0;
  742. timer02_set_pwm0(soft_pwm_bed << 1);
  743. }
  744. #elif !defined(BED_LIMIT_SWITCHING)
  745. // Check if temperature is within the correct range
  746. if(current_temperature_bed < BED_MAXTEMP)
  747. {
  748. if(current_temperature_bed >= target_temperature_bed)
  749. {
  750. soft_pwm_bed = 0;
  751. timer02_set_pwm0(soft_pwm_bed << 1);
  752. }
  753. else
  754. {
  755. soft_pwm_bed = MAX_BED_POWER>>1;
  756. timer02_set_pwm0(soft_pwm_bed << 1);
  757. }
  758. }
  759. else
  760. {
  761. soft_pwm_bed = 0;
  762. timer02_set_pwm0(soft_pwm_bed << 1);
  763. WRITE(HEATER_BED_PIN,LOW);
  764. }
  765. #else //#ifdef BED_LIMIT_SWITCHING
  766. // Check if temperature is within the correct band
  767. if(current_temperature_bed < BED_MAXTEMP)
  768. {
  769. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  770. {
  771. soft_pwm_bed = 0;
  772. timer02_set_pwm0(soft_pwm_bed << 1);
  773. }
  774. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  775. {
  776. soft_pwm_bed = MAX_BED_POWER>>1;
  777. timer02_set_pwm0(soft_pwm_bed << 1);
  778. }
  779. }
  780. else
  781. {
  782. soft_pwm_bed = 0;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. WRITE(HEATER_BED_PIN,LOW);
  785. }
  786. #endif
  787. if(target_temperature_bed==0)
  788. {
  789. soft_pwm_bed = 0;
  790. timer02_set_pwm0(soft_pwm_bed << 1);
  791. }
  792. #endif
  793. }
  794. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  795. // Derived from RepRap FiveD extruder::getTemperature()
  796. // For hot end temperature measurement.
  797. static float analog2temp(int raw, uint8_t e) {
  798. if(e >= EXTRUDERS)
  799. {
  800. SERIAL_ERROR_START;
  801. SERIAL_ERROR((int)e);
  802. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  803. kill(NULL, 6);
  804. return 0.0;
  805. }
  806. #ifdef HEATER_0_USES_MAX6675
  807. if (e == 0)
  808. {
  809. return 0.25 * raw;
  810. }
  811. #endif
  812. if(heater_ttbl_map[e] != NULL)
  813. {
  814. float celsius = 0;
  815. uint8_t i;
  816. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  817. for (i=1; i<heater_ttbllen_map[e]; i++)
  818. {
  819. if (PGM_RD_W((*tt)[i][0]) > raw)
  820. {
  821. celsius = PGM_RD_W((*tt)[i-1][1]) +
  822. (raw - PGM_RD_W((*tt)[i-1][0])) *
  823. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  824. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  825. break;
  826. }
  827. }
  828. // Overflow: Set to last value in the table
  829. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  830. return celsius;
  831. }
  832. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  833. }
  834. // Derived from RepRap FiveD extruder::getTemperature()
  835. // For bed temperature measurement.
  836. static float analog2tempBed(int raw) {
  837. #ifdef BED_USES_THERMISTOR
  838. float celsius = 0;
  839. byte i;
  840. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  841. {
  842. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  843. {
  844. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  845. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  846. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  847. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  848. break;
  849. }
  850. }
  851. // Overflow: Set to last value in the table
  852. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  853. // temperature offset adjustment
  854. #ifdef BED_OFFSET
  855. float _offset = BED_OFFSET;
  856. float _offset_center = BED_OFFSET_CENTER;
  857. float _offset_start = BED_OFFSET_START;
  858. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  859. float _second_koef = (_offset / 2) / (100 - _offset_center);
  860. if (celsius >= _offset_start && celsius <= _offset_center)
  861. {
  862. celsius = celsius + (_first_koef * (celsius - _offset_start));
  863. }
  864. else if (celsius > _offset_center && celsius <= 100)
  865. {
  866. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  867. }
  868. else if (celsius > 100)
  869. {
  870. celsius = celsius + _offset;
  871. }
  872. #endif
  873. return celsius;
  874. #elif defined BED_USES_AD595
  875. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  876. #else
  877. return 0;
  878. #endif
  879. }
  880. #ifdef AMBIENT_THERMISTOR
  881. static float analog2tempAmbient(int raw)
  882. {
  883. float celsius = 0;
  884. byte i;
  885. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  886. {
  887. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  888. {
  889. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  890. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  891. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  892. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  893. break;
  894. }
  895. }
  896. // Overflow: Set to last value in the table
  897. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  898. return celsius;
  899. }
  900. #endif //AMBIENT_THERMISTOR
  901. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  902. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  903. static void updateTemperaturesFromRawValues()
  904. {
  905. for(uint8_t e=0;e<EXTRUDERS;e++)
  906. {
  907. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  908. }
  909. #ifdef PINDA_THERMISTOR
  910. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  911. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  912. #endif
  913. #ifdef AMBIENT_THERMISTOR
  914. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  915. #endif
  916. #ifdef DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = target_temperature_bed;
  918. #else //DEBUG_HEATER_BED_SIM
  919. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  920. #endif //DEBUG_HEATER_BED_SIM
  921. CRITICAL_SECTION_START;
  922. temp_meas_ready = false;
  923. CRITICAL_SECTION_END;
  924. }
  925. void tp_init()
  926. {
  927. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  928. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  929. MCUCR=(1<<JTD);
  930. MCUCR=(1<<JTD);
  931. #endif
  932. // Finish init of mult extruder arrays
  933. for(int e = 0; e < EXTRUDERS; e++) {
  934. // populate with the first value
  935. maxttemp[e] = maxttemp[0];
  936. #ifdef PIDTEMP
  937. iState_sum_min[e] = 0.0;
  938. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  939. #endif //PIDTEMP
  940. #ifdef PIDTEMPBED
  941. temp_iState_min_bed = 0.0;
  942. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  943. #endif //PIDTEMPBED
  944. }
  945. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  946. SET_OUTPUT(HEATER_0_PIN);
  947. #endif
  948. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  949. SET_OUTPUT(HEATER_1_PIN);
  950. #endif
  951. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  952. SET_OUTPUT(HEATER_2_PIN);
  953. #endif
  954. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  955. SET_OUTPUT(HEATER_BED_PIN);
  956. #endif
  957. #if defined(FAN_PIN) && (FAN_PIN > -1)
  958. SET_OUTPUT(FAN_PIN);
  959. #ifdef FAST_PWM_FAN
  960. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  961. #endif
  962. #ifdef FAN_SOFT_PWM
  963. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  964. #endif
  965. #endif
  966. #ifdef HEATER_0_USES_MAX6675
  967. #ifndef SDSUPPORT
  968. SET_OUTPUT(SCK_PIN);
  969. WRITE(SCK_PIN,0);
  970. SET_OUTPUT(MOSI_PIN);
  971. WRITE(MOSI_PIN,1);
  972. SET_INPUT(MISO_PIN);
  973. WRITE(MISO_PIN,1);
  974. #endif
  975. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  976. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  977. pinMode(SS_PIN, OUTPUT);
  978. digitalWrite(SS_PIN,0);
  979. pinMode(MAX6675_SS, OUTPUT);
  980. digitalWrite(MAX6675_SS,1);
  981. #endif
  982. adc_init();
  983. timer0_init(); //enables the heatbed timer.
  984. // timer2 already enabled earlier in the code
  985. // now enable the COMPB temperature interrupt
  986. OCR2B = 128;
  987. TIMSK2 |= (1<<OCIE2B);
  988. timer4_init(); //for tone and Extruder fan PWM
  989. // Wait for temperature measurement to settle
  990. _delay(250);
  991. #ifdef HEATER_0_MINTEMP
  992. minttemp[0] = HEATER_0_MINTEMP;
  993. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  994. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  995. minttemp_raw[0] += OVERSAMPLENR;
  996. #else
  997. minttemp_raw[0] -= OVERSAMPLENR;
  998. #endif
  999. }
  1000. #endif //MINTEMP
  1001. #ifdef HEATER_0_MAXTEMP
  1002. maxttemp[0] = HEATER_0_MAXTEMP;
  1003. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1004. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1005. maxttemp_raw[0] -= OVERSAMPLENR;
  1006. #else
  1007. maxttemp_raw[0] += OVERSAMPLENR;
  1008. #endif
  1009. }
  1010. #endif //MAXTEMP
  1011. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1012. minttemp[1] = HEATER_1_MINTEMP;
  1013. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1014. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1015. minttemp_raw[1] += OVERSAMPLENR;
  1016. #else
  1017. minttemp_raw[1] -= OVERSAMPLENR;
  1018. #endif
  1019. }
  1020. #endif // MINTEMP 1
  1021. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1022. maxttemp[1] = HEATER_1_MAXTEMP;
  1023. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1024. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1025. maxttemp_raw[1] -= OVERSAMPLENR;
  1026. #else
  1027. maxttemp_raw[1] += OVERSAMPLENR;
  1028. #endif
  1029. }
  1030. #endif //MAXTEMP 1
  1031. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1032. minttemp[2] = HEATER_2_MINTEMP;
  1033. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1034. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1035. minttemp_raw[2] += OVERSAMPLENR;
  1036. #else
  1037. minttemp_raw[2] -= OVERSAMPLENR;
  1038. #endif
  1039. }
  1040. #endif //MINTEMP 2
  1041. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1042. maxttemp[2] = HEATER_2_MAXTEMP;
  1043. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1044. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1045. maxttemp_raw[2] -= OVERSAMPLENR;
  1046. #else
  1047. maxttemp_raw[2] += OVERSAMPLENR;
  1048. #endif
  1049. }
  1050. #endif //MAXTEMP 2
  1051. #ifdef BED_MINTEMP
  1052. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1053. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1054. bed_minttemp_raw += OVERSAMPLENR;
  1055. #else
  1056. bed_minttemp_raw -= OVERSAMPLENR;
  1057. #endif
  1058. }
  1059. #endif //BED_MINTEMP
  1060. #ifdef BED_MAXTEMP
  1061. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1062. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1063. bed_maxttemp_raw -= OVERSAMPLENR;
  1064. #else
  1065. bed_maxttemp_raw += OVERSAMPLENR;
  1066. #endif
  1067. }
  1068. #endif //BED_MAXTEMP
  1069. #ifdef AMBIENT_MINTEMP
  1070. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1071. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1072. ambient_minttemp_raw += OVERSAMPLENR;
  1073. #else
  1074. ambient_minttemp_raw -= OVERSAMPLENR;
  1075. #endif
  1076. }
  1077. #endif //AMBIENT_MINTEMP
  1078. #ifdef AMBIENT_MAXTEMP
  1079. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1080. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1081. ambient_maxttemp_raw -= OVERSAMPLENR;
  1082. #else
  1083. ambient_maxttemp_raw += OVERSAMPLENR;
  1084. #endif
  1085. }
  1086. #endif //AMBIENT_MAXTEMP
  1087. }
  1088. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1089. void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1090. {
  1091. float __delta;
  1092. float __hysteresis = 0;
  1093. uint16_t __timeout = 0;
  1094. bool temp_runaway_check_active = false;
  1095. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1096. static uint8_t __preheat_counter[2] = { 0,0};
  1097. static uint8_t __preheat_errors[2] = { 0,0};
  1098. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1099. {
  1100. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1101. if (_isbed)
  1102. {
  1103. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1104. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1105. }
  1106. #endif
  1107. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1108. if (!_isbed)
  1109. {
  1110. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1111. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1112. }
  1113. #endif
  1114. temp_runaway_timer[_heater_id] = _millis();
  1115. if (_output == 0)
  1116. {
  1117. temp_runaway_check_active = false;
  1118. temp_runaway_error_counter[_heater_id] = 0;
  1119. }
  1120. if (temp_runaway_target[_heater_id] != _target_temperature)
  1121. {
  1122. if (_target_temperature > 0)
  1123. {
  1124. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1125. temp_runaway_target[_heater_id] = _target_temperature;
  1126. __preheat_start[_heater_id] = _current_temperature;
  1127. __preheat_counter[_heater_id] = 0;
  1128. }
  1129. else
  1130. {
  1131. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1132. temp_runaway_target[_heater_id] = _target_temperature;
  1133. }
  1134. }
  1135. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1136. {
  1137. __preheat_counter[_heater_id]++;
  1138. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1139. {
  1140. /*SERIAL_ECHOPGM("Heater:");
  1141. MYSERIAL.print(_heater_id);
  1142. SERIAL_ECHOPGM(" T:");
  1143. MYSERIAL.print(_current_temperature);
  1144. SERIAL_ECHOPGM(" Tstart:");
  1145. MYSERIAL.print(__preheat_start[_heater_id]);
  1146. SERIAL_ECHOPGM(" delta:");
  1147. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1148. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1149. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1150. __delta=2.0;
  1151. if(_isbed)
  1152. {
  1153. __delta=3.0;
  1154. if(_current_temperature>90.0) __delta=2.0;
  1155. if(_current_temperature>105.0) __delta=0.6;
  1156. }
  1157. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1158. __preheat_errors[_heater_id]++;
  1159. /*SERIAL_ECHOPGM(" Preheat errors:");
  1160. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1161. }
  1162. else {
  1163. //SERIAL_ECHOLNPGM("");
  1164. __preheat_errors[_heater_id] = 0;
  1165. }
  1166. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1167. {
  1168. if (farm_mode) { prusa_statistics(0); }
  1169. temp_runaway_stop(true, _isbed);
  1170. if (farm_mode) { prusa_statistics(91); }
  1171. }
  1172. __preheat_start[_heater_id] = _current_temperature;
  1173. __preheat_counter[_heater_id] = 0;
  1174. }
  1175. }
  1176. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1177. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1178. {
  1179. /*SERIAL_ECHOPGM("Heater:");
  1180. MYSERIAL.print(_heater_id);
  1181. MYSERIAL.println(" ->tempRunaway");*/
  1182. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1183. temp_runaway_check_active = false;
  1184. temp_runaway_error_counter[_heater_id] = 0;
  1185. }
  1186. if (_output > 0)
  1187. {
  1188. temp_runaway_check_active = true;
  1189. }
  1190. if (temp_runaway_check_active)
  1191. {
  1192. // we are in range
  1193. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1194. {
  1195. temp_runaway_check_active = false;
  1196. temp_runaway_error_counter[_heater_id] = 0;
  1197. }
  1198. else
  1199. {
  1200. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1201. {
  1202. temp_runaway_error_counter[_heater_id]++;
  1203. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1204. {
  1205. if (farm_mode) { prusa_statistics(0); }
  1206. temp_runaway_stop(false, _isbed);
  1207. if (farm_mode) { prusa_statistics(90); }
  1208. }
  1209. }
  1210. }
  1211. }
  1212. }
  1213. }
  1214. void temp_runaway_stop(bool isPreheat, bool isBed)
  1215. {
  1216. disable_heater();
  1217. Sound_MakeCustom(200,0,true);
  1218. if (isPreheat)
  1219. {
  1220. lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
  1221. SERIAL_ERROR_START;
  1222. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
  1223. #ifdef EXTRUDER_ALTFAN_DETECT
  1224. altfanStatus.altfanOverride = 1; //full speed
  1225. #endif //EXTRUDER_ALTFAN_DETECT
  1226. setExtruderAutoFanState(3);
  1227. SET_OUTPUT(FAN_PIN);
  1228. #ifdef FAN_SOFT_PWM
  1229. fanSpeedSoftPwm = 255;
  1230. #else //FAN_SOFT_PWM
  1231. analogWrite(FAN_PIN, 255);
  1232. #endif //FAN_SOFT_PWM
  1233. fanSpeed = 255;
  1234. }
  1235. else
  1236. {
  1237. lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
  1238. SERIAL_ERROR_START;
  1239. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1240. }
  1241. Stop();
  1242. }
  1243. #endif
  1244. void disable_heater()
  1245. {
  1246. setAllTargetHotends(0);
  1247. setTargetBed(0);
  1248. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1249. target_temperature[0]=0;
  1250. soft_pwm[0]=0;
  1251. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1252. WRITE(HEATER_0_PIN,LOW);
  1253. #endif
  1254. #endif
  1255. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1256. target_temperature[1]=0;
  1257. soft_pwm[1]=0;
  1258. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1259. WRITE(HEATER_1_PIN,LOW);
  1260. #endif
  1261. #endif
  1262. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1263. target_temperature[2]=0;
  1264. soft_pwm[2]=0;
  1265. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1266. WRITE(HEATER_2_PIN,LOW);
  1267. #endif
  1268. #endif
  1269. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1270. target_temperature_bed=0;
  1271. soft_pwm_bed=0;
  1272. timer02_set_pwm0(soft_pwm_bed << 1);
  1273. bedPWMDisabled = 0;
  1274. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1275. //WRITE(HEATER_BED_PIN,LOW);
  1276. #endif
  1277. #endif
  1278. }
  1279. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1280. //! than raw const char * of the messages themselves.
  1281. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1282. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1283. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1284. //! remember the last alert message sent to the LCD
  1285. //! to prevent flicker and improve speed
  1286. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1287. //! update the current temperature error message
  1288. //! @param type short error abbreviation (PROGMEM)
  1289. void temp_update_messagepgm(const char* PROGMEM type)
  1290. {
  1291. char msg[LCD_WIDTH];
  1292. strcpy_P(msg, PSTR("Err: "));
  1293. strcat_P(msg, type);
  1294. lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
  1295. }
  1296. //! signal a temperature error on both the lcd and serial
  1297. //! @param type short error abbreviation (PROGMEM)
  1298. //! @param e optional extruder index for hotend errors
  1299. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1300. {
  1301. temp_update_messagepgm(type);
  1302. SERIAL_ERROR_START;
  1303. if(e != EXTRUDERS) {
  1304. SERIAL_ERROR((int)e);
  1305. SERIAL_ERRORPGM(": ");
  1306. }
  1307. SERIAL_ERRORPGM("Heaters switched off. ");
  1308. SERIAL_ERRORRPGM(type);
  1309. SERIAL_ERRORLNPGM(" triggered!");
  1310. }
  1311. void max_temp_error(uint8_t e) {
  1312. disable_heater();
  1313. if(IsStopped() == false) {
  1314. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1315. }
  1316. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1317. Stop();
  1318. #endif
  1319. SET_OUTPUT(FAN_PIN);
  1320. SET_OUTPUT(BEEPER);
  1321. WRITE(FAN_PIN, 1);
  1322. WRITE(BEEPER, 1);
  1323. #ifdef EXTRUDER_ALTFAN_DETECT
  1324. altfanStatus.altfanOverride = 1; //full speed
  1325. #endif //EXTRUDER_ALTFAN_DETECT
  1326. setExtruderAutoFanState(3);
  1327. // fanSpeed will consumed by the check_axes_activity() routine.
  1328. fanSpeed=255;
  1329. if (farm_mode) { prusa_statistics(93); }
  1330. }
  1331. void min_temp_error(uint8_t e) {
  1332. #ifdef DEBUG_DISABLE_MINTEMP
  1333. return;
  1334. #endif
  1335. disable_heater();
  1336. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1337. static const char err[] PROGMEM = "MINTEMP";
  1338. if(IsStopped() == false) {
  1339. temp_error_messagepgm(err, e);
  1340. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1341. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1342. // we are already stopped due to some error, only update the status message without flickering
  1343. temp_update_messagepgm(err);
  1344. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1345. }
  1346. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1347. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1348. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1349. // lcd_print_stop();
  1350. // }
  1351. Stop();
  1352. #endif
  1353. if (farm_mode) { prusa_statistics(92); }
  1354. }
  1355. void bed_max_temp_error(void) {
  1356. disable_heater();
  1357. if(IsStopped() == false) {
  1358. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1359. }
  1360. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1361. Stop();
  1362. #endif
  1363. }
  1364. void bed_min_temp_error(void) {
  1365. #ifdef DEBUG_DISABLE_MINTEMP
  1366. return;
  1367. #endif
  1368. disable_heater();
  1369. static const char err[] PROGMEM = "MINTEMP BED";
  1370. if(IsStopped() == false) {
  1371. temp_error_messagepgm(err);
  1372. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1373. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1374. // we are already stopped due to some error, only update the status message without flickering
  1375. temp_update_messagepgm(err);
  1376. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1377. }
  1378. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1379. Stop();
  1380. #endif
  1381. }
  1382. #ifdef AMBIENT_THERMISTOR
  1383. void ambient_max_temp_error(void) {
  1384. disable_heater();
  1385. if(IsStopped() == false) {
  1386. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1387. }
  1388. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1389. Stop();
  1390. #endif
  1391. }
  1392. void ambient_min_temp_error(void) {
  1393. #ifdef DEBUG_DISABLE_MINTEMP
  1394. return;
  1395. #endif
  1396. disable_heater();
  1397. if(IsStopped() == false) {
  1398. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1399. }
  1400. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1401. Stop();
  1402. #endif
  1403. }
  1404. #endif
  1405. #ifdef HEATER_0_USES_MAX6675
  1406. #define MAX6675_HEAT_INTERVAL 250
  1407. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1408. int max6675_temp = 2000;
  1409. int read_max6675()
  1410. {
  1411. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1412. return max6675_temp;
  1413. max6675_previous_millis = _millis();
  1414. max6675_temp = 0;
  1415. #ifdef PRR
  1416. PRR &= ~(1<<PRSPI);
  1417. #elif defined PRR0
  1418. PRR0 &= ~(1<<PRSPI);
  1419. #endif
  1420. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1421. // enable TT_MAX6675
  1422. WRITE(MAX6675_SS, 0);
  1423. // ensure 100ns delay - a bit extra is fine
  1424. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1425. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1426. // read MSB
  1427. SPDR = 0;
  1428. for (;(SPSR & (1<<SPIF)) == 0;);
  1429. max6675_temp = SPDR;
  1430. max6675_temp <<= 8;
  1431. // read LSB
  1432. SPDR = 0;
  1433. for (;(SPSR & (1<<SPIF)) == 0;);
  1434. max6675_temp |= SPDR;
  1435. // disable TT_MAX6675
  1436. WRITE(MAX6675_SS, 1);
  1437. if (max6675_temp & 4)
  1438. {
  1439. // thermocouple open
  1440. max6675_temp = 2000;
  1441. }
  1442. else
  1443. {
  1444. max6675_temp = max6675_temp >> 3;
  1445. }
  1446. return max6675_temp;
  1447. }
  1448. #endif
  1449. extern "C" {
  1450. void adc_ready(void) //callback from adc when sampling finished
  1451. {
  1452. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1453. #ifdef PINDA_THERMISTOR
  1454. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1455. #endif //PINDA_THERMISTOR
  1456. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1457. #ifdef VOLT_PWR_PIN
  1458. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1459. #endif
  1460. #ifdef AMBIENT_THERMISTOR
  1461. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1462. #endif //AMBIENT_THERMISTOR
  1463. #ifdef VOLT_BED_PIN
  1464. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1465. #endif
  1466. #ifdef IR_SENSOR_ANALOG
  1467. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1468. #endif //IR_SENSOR_ANALOG
  1469. temp_meas_ready = true;
  1470. }
  1471. } // extern "C"
  1472. FORCE_INLINE static void temperature_isr()
  1473. {
  1474. if (!temp_meas_ready) adc_cycle();
  1475. lcd_buttons_update();
  1476. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1477. static uint8_t soft_pwm_0;
  1478. #ifdef SLOW_PWM_HEATERS
  1479. static unsigned char slow_pwm_count = 0;
  1480. static unsigned char state_heater_0 = 0;
  1481. static unsigned char state_timer_heater_0 = 0;
  1482. #endif
  1483. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1484. static unsigned char soft_pwm_1;
  1485. #ifdef SLOW_PWM_HEATERS
  1486. static unsigned char state_heater_1 = 0;
  1487. static unsigned char state_timer_heater_1 = 0;
  1488. #endif
  1489. #endif
  1490. #if EXTRUDERS > 2
  1491. static unsigned char soft_pwm_2;
  1492. #ifdef SLOW_PWM_HEATERS
  1493. static unsigned char state_heater_2 = 0;
  1494. static unsigned char state_timer_heater_2 = 0;
  1495. #endif
  1496. #endif
  1497. #if HEATER_BED_PIN > -1
  1498. // @@DR static unsigned char soft_pwm_b;
  1499. #ifdef SLOW_PWM_HEATERS
  1500. static unsigned char state_heater_b = 0;
  1501. static unsigned char state_timer_heater_b = 0;
  1502. #endif
  1503. #endif
  1504. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1505. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1506. #endif
  1507. #ifndef SLOW_PWM_HEATERS
  1508. /*
  1509. * standard PWM modulation
  1510. */
  1511. if (pwm_count == 0)
  1512. {
  1513. soft_pwm_0 = soft_pwm[0];
  1514. if(soft_pwm_0 > 0)
  1515. {
  1516. WRITE(HEATER_0_PIN,1);
  1517. #ifdef HEATERS_PARALLEL
  1518. WRITE(HEATER_1_PIN,1);
  1519. #endif
  1520. } else WRITE(HEATER_0_PIN,0);
  1521. #if EXTRUDERS > 1
  1522. soft_pwm_1 = soft_pwm[1];
  1523. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1524. #endif
  1525. #if EXTRUDERS > 2
  1526. soft_pwm_2 = soft_pwm[2];
  1527. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1528. #endif
  1529. }
  1530. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1531. #if 0 // @@DR vypnuto pro hw pwm bedu
  1532. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1533. // teoreticky by se tato cast uz vubec nemusela poustet
  1534. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1535. {
  1536. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1537. # ifndef SYSTEM_TIMER_2
  1538. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1539. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1540. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1541. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1542. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1543. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1544. # endif //SYSTEM_TIMER_2
  1545. }
  1546. #endif
  1547. #endif
  1548. #ifdef FAN_SOFT_PWM
  1549. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1550. {
  1551. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1552. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1553. }
  1554. #endif
  1555. if(soft_pwm_0 < pwm_count)
  1556. {
  1557. WRITE(HEATER_0_PIN,0);
  1558. #ifdef HEATERS_PARALLEL
  1559. WRITE(HEATER_1_PIN,0);
  1560. #endif
  1561. }
  1562. #if EXTRUDERS > 1
  1563. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1564. #endif
  1565. #if EXTRUDERS > 2
  1566. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1567. #endif
  1568. #if 0 // @@DR
  1569. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1570. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1571. //WRITE(HEATER_BED_PIN,0);
  1572. }
  1573. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1574. #endif
  1575. #endif
  1576. #ifdef FAN_SOFT_PWM
  1577. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1578. #endif
  1579. pwm_count += (1 << SOFT_PWM_SCALE);
  1580. pwm_count &= 0x7f;
  1581. #else //ifndef SLOW_PWM_HEATERS
  1582. /*
  1583. * SLOW PWM HEATERS
  1584. *
  1585. * for heaters drived by relay
  1586. */
  1587. #ifndef MIN_STATE_TIME
  1588. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1589. #endif
  1590. if (slow_pwm_count == 0) {
  1591. // EXTRUDER 0
  1592. soft_pwm_0 = soft_pwm[0];
  1593. if (soft_pwm_0 > 0) {
  1594. // turn ON heather only if the minimum time is up
  1595. if (state_timer_heater_0 == 0) {
  1596. // if change state set timer
  1597. if (state_heater_0 == 0) {
  1598. state_timer_heater_0 = MIN_STATE_TIME;
  1599. }
  1600. state_heater_0 = 1;
  1601. WRITE(HEATER_0_PIN, 1);
  1602. #ifdef HEATERS_PARALLEL
  1603. WRITE(HEATER_1_PIN, 1);
  1604. #endif
  1605. }
  1606. } else {
  1607. // turn OFF heather only if the minimum time is up
  1608. if (state_timer_heater_0 == 0) {
  1609. // if change state set timer
  1610. if (state_heater_0 == 1) {
  1611. state_timer_heater_0 = MIN_STATE_TIME;
  1612. }
  1613. state_heater_0 = 0;
  1614. WRITE(HEATER_0_PIN, 0);
  1615. #ifdef HEATERS_PARALLEL
  1616. WRITE(HEATER_1_PIN, 0);
  1617. #endif
  1618. }
  1619. }
  1620. #if EXTRUDERS > 1
  1621. // EXTRUDER 1
  1622. soft_pwm_1 = soft_pwm[1];
  1623. if (soft_pwm_1 > 0) {
  1624. // turn ON heather only if the minimum time is up
  1625. if (state_timer_heater_1 == 0) {
  1626. // if change state set timer
  1627. if (state_heater_1 == 0) {
  1628. state_timer_heater_1 = MIN_STATE_TIME;
  1629. }
  1630. state_heater_1 = 1;
  1631. WRITE(HEATER_1_PIN, 1);
  1632. }
  1633. } else {
  1634. // turn OFF heather only if the minimum time is up
  1635. if (state_timer_heater_1 == 0) {
  1636. // if change state set timer
  1637. if (state_heater_1 == 1) {
  1638. state_timer_heater_1 = MIN_STATE_TIME;
  1639. }
  1640. state_heater_1 = 0;
  1641. WRITE(HEATER_1_PIN, 0);
  1642. }
  1643. }
  1644. #endif
  1645. #if EXTRUDERS > 2
  1646. // EXTRUDER 2
  1647. soft_pwm_2 = soft_pwm[2];
  1648. if (soft_pwm_2 > 0) {
  1649. // turn ON heather only if the minimum time is up
  1650. if (state_timer_heater_2 == 0) {
  1651. // if change state set timer
  1652. if (state_heater_2 == 0) {
  1653. state_timer_heater_2 = MIN_STATE_TIME;
  1654. }
  1655. state_heater_2 = 1;
  1656. WRITE(HEATER_2_PIN, 1);
  1657. }
  1658. } else {
  1659. // turn OFF heather only if the minimum time is up
  1660. if (state_timer_heater_2 == 0) {
  1661. // if change state set timer
  1662. if (state_heater_2 == 1) {
  1663. state_timer_heater_2 = MIN_STATE_TIME;
  1664. }
  1665. state_heater_2 = 0;
  1666. WRITE(HEATER_2_PIN, 0);
  1667. }
  1668. }
  1669. #endif
  1670. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1671. // BED
  1672. soft_pwm_b = soft_pwm_bed;
  1673. if (soft_pwm_b > 0) {
  1674. // turn ON heather only if the minimum time is up
  1675. if (state_timer_heater_b == 0) {
  1676. // if change state set timer
  1677. if (state_heater_b == 0) {
  1678. state_timer_heater_b = MIN_STATE_TIME;
  1679. }
  1680. state_heater_b = 1;
  1681. //WRITE(HEATER_BED_PIN, 1);
  1682. }
  1683. } else {
  1684. // turn OFF heather only if the minimum time is up
  1685. if (state_timer_heater_b == 0) {
  1686. // if change state set timer
  1687. if (state_heater_b == 1) {
  1688. state_timer_heater_b = MIN_STATE_TIME;
  1689. }
  1690. state_heater_b = 0;
  1691. WRITE(HEATER_BED_PIN, 0);
  1692. }
  1693. }
  1694. #endif
  1695. } // if (slow_pwm_count == 0)
  1696. // EXTRUDER 0
  1697. if (soft_pwm_0 < slow_pwm_count) {
  1698. // turn OFF heather only if the minimum time is up
  1699. if (state_timer_heater_0 == 0) {
  1700. // if change state set timer
  1701. if (state_heater_0 == 1) {
  1702. state_timer_heater_0 = MIN_STATE_TIME;
  1703. }
  1704. state_heater_0 = 0;
  1705. WRITE(HEATER_0_PIN, 0);
  1706. #ifdef HEATERS_PARALLEL
  1707. WRITE(HEATER_1_PIN, 0);
  1708. #endif
  1709. }
  1710. }
  1711. #if EXTRUDERS > 1
  1712. // EXTRUDER 1
  1713. if (soft_pwm_1 < slow_pwm_count) {
  1714. // turn OFF heather only if the minimum time is up
  1715. if (state_timer_heater_1 == 0) {
  1716. // if change state set timer
  1717. if (state_heater_1 == 1) {
  1718. state_timer_heater_1 = MIN_STATE_TIME;
  1719. }
  1720. state_heater_1 = 0;
  1721. WRITE(HEATER_1_PIN, 0);
  1722. }
  1723. }
  1724. #endif
  1725. #if EXTRUDERS > 2
  1726. // EXTRUDER 2
  1727. if (soft_pwm_2 < slow_pwm_count) {
  1728. // turn OFF heather only if the minimum time is up
  1729. if (state_timer_heater_2 == 0) {
  1730. // if change state set timer
  1731. if (state_heater_2 == 1) {
  1732. state_timer_heater_2 = MIN_STATE_TIME;
  1733. }
  1734. state_heater_2 = 0;
  1735. WRITE(HEATER_2_PIN, 0);
  1736. }
  1737. }
  1738. #endif
  1739. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1740. // BED
  1741. if (soft_pwm_b < slow_pwm_count) {
  1742. // turn OFF heather only if the minimum time is up
  1743. if (state_timer_heater_b == 0) {
  1744. // if change state set timer
  1745. if (state_heater_b == 1) {
  1746. state_timer_heater_b = MIN_STATE_TIME;
  1747. }
  1748. state_heater_b = 0;
  1749. WRITE(HEATER_BED_PIN, 0);
  1750. }
  1751. }
  1752. #endif
  1753. #ifdef FAN_SOFT_PWM
  1754. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1755. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1756. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1757. }
  1758. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1759. #endif
  1760. pwm_count += (1 << SOFT_PWM_SCALE);
  1761. pwm_count &= 0x7f;
  1762. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1763. if ((pwm_count % 64) == 0) {
  1764. slow_pwm_count++;
  1765. slow_pwm_count &= 0x7f;
  1766. // Extruder 0
  1767. if (state_timer_heater_0 > 0) {
  1768. state_timer_heater_0--;
  1769. }
  1770. #if EXTRUDERS > 1
  1771. // Extruder 1
  1772. if (state_timer_heater_1 > 0)
  1773. state_timer_heater_1--;
  1774. #endif
  1775. #if EXTRUDERS > 2
  1776. // Extruder 2
  1777. if (state_timer_heater_2 > 0)
  1778. state_timer_heater_2--;
  1779. #endif
  1780. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1781. // Bed
  1782. if (state_timer_heater_b > 0)
  1783. state_timer_heater_b--;
  1784. #endif
  1785. } //if ((pwm_count % 64) == 0) {
  1786. #endif //ifndef SLOW_PWM_HEATERS
  1787. #ifdef BABYSTEPPING
  1788. for(uint8_t axis=0;axis<3;axis++)
  1789. {
  1790. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1791. if(curTodo>0)
  1792. {
  1793. CRITICAL_SECTION_START;
  1794. babystep(axis,/*fwd*/true);
  1795. babystepsTodo[axis]--; //less to do next time
  1796. CRITICAL_SECTION_END;
  1797. }
  1798. else
  1799. if(curTodo<0)
  1800. {
  1801. CRITICAL_SECTION_START;
  1802. babystep(axis,/*fwd*/false);
  1803. babystepsTodo[axis]++; //less to do next time
  1804. CRITICAL_SECTION_END;
  1805. }
  1806. }
  1807. #endif //BABYSTEPPING
  1808. // Check if a stack overflow happened
  1809. if (!SdFatUtil::test_stack_integrity()) stack_error();
  1810. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1811. check_fans();
  1812. #endif //(defined(TACH_0))
  1813. }
  1814. // Timer2 (originaly timer0) is shared with millies
  1815. #ifdef SYSTEM_TIMER_2
  1816. ISR(TIMER2_COMPB_vect)
  1817. #else //SYSTEM_TIMER_2
  1818. ISR(TIMER0_COMPB_vect)
  1819. #endif //SYSTEM_TIMER_2
  1820. {
  1821. static bool _lock = false;
  1822. if (!_lock)
  1823. {
  1824. _lock = true;
  1825. sei();
  1826. temperature_isr();
  1827. cli();
  1828. _lock = false;
  1829. }
  1830. }
  1831. void check_max_temp()
  1832. {
  1833. //heater
  1834. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1835. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1836. #else
  1837. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1838. #endif
  1839. max_temp_error(0);
  1840. }
  1841. //bed
  1842. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1843. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1844. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1845. #else
  1846. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1847. #endif
  1848. bed_max_temp_error();
  1849. }
  1850. #endif
  1851. //ambient
  1852. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1853. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1854. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1855. #else
  1856. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1857. #endif
  1858. ambient_max_temp_error();
  1859. }
  1860. #endif
  1861. }
  1862. //! number of repeating the same state with consecutive step() calls
  1863. //! used to slow down text switching
  1864. struct alert_automaton_mintemp {
  1865. const char *m2;
  1866. alert_automaton_mintemp(const char *m2):m2(m2){}
  1867. private:
  1868. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1869. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1870. States state = States::Init;
  1871. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1872. void substep(States next_state){
  1873. if( repeat == 0 ){
  1874. state = next_state; // advance to the next state
  1875. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1876. } else {
  1877. --repeat;
  1878. }
  1879. }
  1880. public:
  1881. //! brief state automaton step routine
  1882. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1883. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1884. void step(float current_temp, float mintemp){
  1885. static const char m1[] PROGMEM = "Please restart";
  1886. switch(state){
  1887. case States::Init: // initial state - check hysteresis
  1888. if( current_temp > mintemp ){
  1889. state = States::TempAboveMintemp;
  1890. }
  1891. // otherwise keep the Err MINTEMP alert message on the display,
  1892. // i.e. do not transfer to state 1
  1893. break;
  1894. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1895. lcd_setalertstatuspgm(m2);
  1896. substep(States::ShowMintemp);
  1897. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1898. break;
  1899. case States::ShowPleaseRestart: // displaying "Please restart"
  1900. lcd_updatestatuspgm(m1);
  1901. substep(States::ShowMintemp);
  1902. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1903. break;
  1904. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1905. lcd_updatestatuspgm(m2);
  1906. substep(States::ShowPleaseRestart);
  1907. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1908. break;
  1909. }
  1910. }
  1911. };
  1912. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1913. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1914. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1915. void check_min_temp_heater0()
  1916. {
  1917. //heater
  1918. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1919. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1920. #else
  1921. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1922. #endif
  1923. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1924. min_temp_error(0);
  1925. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1926. // no recovery, just force the user to restart the printer
  1927. // which is a safer variant than just continuing printing
  1928. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1929. // we shall signalize, that MINTEMP has been fixed
  1930. // Code notice: normally the alert_automaton instance would have been placed here
  1931. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1932. // due to stupid compiler that takes 16 more bytes.
  1933. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1934. }
  1935. }
  1936. void check_min_temp_bed()
  1937. {
  1938. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1939. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1940. #else
  1941. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1942. #endif
  1943. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1944. bed_min_temp_error();
  1945. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1946. // no recovery, just force the user to restart the printer
  1947. // which is a safer variant than just continuing printing
  1948. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1949. }
  1950. }
  1951. #ifdef AMBIENT_MINTEMP
  1952. void check_min_temp_ambient()
  1953. {
  1954. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1955. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1956. #else
  1957. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1958. #endif
  1959. ambient_min_temp_error();
  1960. }
  1961. }
  1962. #endif
  1963. void check_min_temp()
  1964. {
  1965. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1966. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1967. #ifdef AMBIENT_THERMISTOR
  1968. #ifdef AMBIENT_MINTEMP
  1969. check_min_temp_ambient();
  1970. #endif
  1971. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1972. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1973. #else
  1974. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1975. #endif
  1976. { // ambient temperature is low
  1977. #endif //AMBIENT_THERMISTOR
  1978. // *** 'common' part of code for MK2.5 & MK3
  1979. // * nozzle checking
  1980. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1981. { // ~ nozzle heating is on
  1982. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1983. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1984. {
  1985. bCheckingOnHeater=true; // not necessary
  1986. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1987. }
  1988. }
  1989. else { // ~ nozzle heating is off
  1990. oTimer4minTempHeater.start();
  1991. bCheckingOnHeater=false;
  1992. }
  1993. // * bed checking
  1994. if(target_temperature_bed>BED_MINTEMP)
  1995. { // ~ bed heating is on
  1996. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1997. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1998. {
  1999. bCheckingOnBed=true; // not necessary
  2000. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2001. }
  2002. }
  2003. else { // ~ bed heating is off
  2004. oTimer4minTempBed.start();
  2005. bCheckingOnBed=false;
  2006. }
  2007. // *** end of 'common' part
  2008. #ifdef AMBIENT_THERMISTOR
  2009. }
  2010. else { // ambient temperature is standard
  2011. check_min_temp_heater0();
  2012. check_min_temp_bed();
  2013. }
  2014. #endif //AMBIENT_THERMISTOR
  2015. }
  2016. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2017. void check_fans() {
  2018. #ifdef FAN_SOFT_PWM
  2019. if (READ(TACH_0) != fan_state[0]) {
  2020. if(fan_measuring) fan_edge_counter[0] ++;
  2021. fan_state[0] = !fan_state[0];
  2022. }
  2023. #else //FAN_SOFT_PWM
  2024. if (READ(TACH_0) != fan_state[0]) {
  2025. fan_edge_counter[0] ++;
  2026. fan_state[0] = !fan_state[0];
  2027. }
  2028. #endif
  2029. //if (READ(TACH_1) != fan_state[1]) {
  2030. // fan_edge_counter[1] ++;
  2031. // fan_state[1] = !fan_state[1];
  2032. //}
  2033. }
  2034. #endif //TACH_0
  2035. #ifdef PIDTEMP
  2036. // Apply the scale factors to the PID values
  2037. float scalePID_i(float i)
  2038. {
  2039. return i*PID_dT;
  2040. }
  2041. float unscalePID_i(float i)
  2042. {
  2043. return i/PID_dT;
  2044. }
  2045. float scalePID_d(float d)
  2046. {
  2047. return d/PID_dT;
  2048. }
  2049. float unscalePID_d(float d)
  2050. {
  2051. return d*PID_dT;
  2052. }
  2053. #endif //PIDTEMP
  2054. #ifdef PINDA_THERMISTOR
  2055. //! @brief PINDA thermistor detected
  2056. //!
  2057. //! @retval true firmware should do temperature compensation and allow calibration
  2058. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2059. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2060. //!
  2061. bool has_temperature_compensation()
  2062. {
  2063. #ifdef SUPERPINDA_SUPPORT
  2064. #ifdef PINDA_TEMP_COMP
  2065. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2066. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2067. {
  2068. #endif //PINDA_TEMP_COMP
  2069. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2070. #ifdef PINDA_TEMP_COMP
  2071. }
  2072. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2073. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2074. #endif //PINDA_TEMP_COMP
  2075. #else
  2076. return true;
  2077. #endif
  2078. }
  2079. #endif //PINDA_THERMISTOR