Marlin_main.cpp 308 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. float extruder_multiplier[EXTRUDERS] = {1.0
  179. #if EXTRUDERS > 1
  180. , 1.0
  181. #if EXTRUDERS > 2
  182. , 1.0
  183. #endif
  184. #endif
  185. };
  186. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  187. //shortcuts for more readable code
  188. #define _x current_position[X_AXIS]
  189. #define _y current_position[Y_AXIS]
  190. #define _z current_position[Z_AXIS]
  191. #define _e current_position[E_AXIS]
  192. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  193. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  194. bool axis_known_position[3] = {false, false, false};
  195. // Extruder offset
  196. #if EXTRUDERS > 1
  197. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  198. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  199. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  200. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  201. #endif
  202. };
  203. #endif
  204. uint8_t active_extruder = 0;
  205. int fanSpeed=0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. #ifdef HOST_KEEPALIVE_FEATURE
  233. int busy_state = NOT_BUSY;
  234. static long prev_busy_signal_ms = -1;
  235. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  236. #else
  237. #define host_keepalive();
  238. #define KEEPALIVE_STATE(n);
  239. #endif
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. //===========================================================================
  302. //=============================Routines======================================
  303. //===========================================================================
  304. static void get_arc_coordinates();
  305. static bool setTargetedHotend(int code, uint8_t &extruder);
  306. static void print_time_remaining_init();
  307. static void wait_for_heater(long codenum, uint8_t extruder);
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. #ifdef SDSUPPORT
  317. #include "SdFatUtil.h"
  318. int freeMemory() { return SdFatUtil::FreeRam(); }
  319. #else
  320. extern "C" {
  321. extern unsigned int __bss_end;
  322. extern unsigned int __heap_start;
  323. extern void *__brkval;
  324. int freeMemory() {
  325. int free_memory;
  326. if ((int)__brkval == 0)
  327. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  328. else
  329. free_memory = ((int)&free_memory) - ((int)__brkval);
  330. return free_memory;
  331. }
  332. }
  333. #endif //!SDSUPPORT
  334. void setup_killpin()
  335. {
  336. #if defined(KILL_PIN) && KILL_PIN > -1
  337. SET_INPUT(KILL_PIN);
  338. WRITE(KILL_PIN,HIGH);
  339. #endif
  340. }
  341. // Set home pin
  342. void setup_homepin(void)
  343. {
  344. #if defined(HOME_PIN) && HOME_PIN > -1
  345. SET_INPUT(HOME_PIN);
  346. WRITE(HOME_PIN,HIGH);
  347. #endif
  348. }
  349. void setup_photpin()
  350. {
  351. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  352. SET_OUTPUT(PHOTOGRAPH_PIN);
  353. WRITE(PHOTOGRAPH_PIN, LOW);
  354. #endif
  355. }
  356. void setup_powerhold()
  357. {
  358. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  359. SET_OUTPUT(SUICIDE_PIN);
  360. WRITE(SUICIDE_PIN, HIGH);
  361. #endif
  362. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  363. SET_OUTPUT(PS_ON_PIN);
  364. #if defined(PS_DEFAULT_OFF)
  365. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  366. #else
  367. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  368. #endif
  369. #endif
  370. }
  371. void suicide()
  372. {
  373. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  374. SET_OUTPUT(SUICIDE_PIN);
  375. WRITE(SUICIDE_PIN, LOW);
  376. #endif
  377. }
  378. void servo_init()
  379. {
  380. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  381. servos[0].attach(SERVO0_PIN);
  382. #endif
  383. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  384. servos[1].attach(SERVO1_PIN);
  385. #endif
  386. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  387. servos[2].attach(SERVO2_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  390. servos[3].attach(SERVO3_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 5)
  393. #error "TODO: enter initalisation code for more servos"
  394. #endif
  395. }
  396. bool fans_check_enabled = true;
  397. #ifdef TMC2130
  398. extern int8_t CrashDetectMenu;
  399. void crashdet_enable()
  400. {
  401. tmc2130_sg_stop_on_crash = true;
  402. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  403. CrashDetectMenu = 1;
  404. }
  405. void crashdet_disable()
  406. {
  407. tmc2130_sg_stop_on_crash = false;
  408. tmc2130_sg_crash = 0;
  409. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  410. CrashDetectMenu = 0;
  411. }
  412. void crashdet_stop_and_save_print()
  413. {
  414. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  415. }
  416. void crashdet_restore_print_and_continue()
  417. {
  418. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  419. // babystep_apply();
  420. }
  421. void crashdet_stop_and_save_print2()
  422. {
  423. cli();
  424. planner_abort_hard(); //abort printing
  425. cmdqueue_reset(); //empty cmdqueue
  426. card.sdprinting = false;
  427. card.closefile();
  428. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  429. st_reset_timer();
  430. sei();
  431. }
  432. void crashdet_detected(uint8_t mask)
  433. {
  434. st_synchronize();
  435. static uint8_t crashDet_counter = 0;
  436. bool automatic_recovery_after_crash = true;
  437. if (crashDet_counter++ == 0) {
  438. crashDetTimer.start();
  439. }
  440. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  441. crashDetTimer.stop();
  442. crashDet_counter = 0;
  443. }
  444. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  445. automatic_recovery_after_crash = false;
  446. crashDetTimer.stop();
  447. crashDet_counter = 0;
  448. }
  449. else {
  450. crashDetTimer.start();
  451. }
  452. lcd_update_enable(true);
  453. lcd_clear();
  454. lcd_update(2);
  455. if (mask & X_AXIS_MASK)
  456. {
  457. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  458. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  459. }
  460. if (mask & Y_AXIS_MASK)
  461. {
  462. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  463. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  464. }
  465. lcd_update_enable(true);
  466. lcd_update(2);
  467. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  468. gcode_G28(true, true, false); //home X and Y
  469. st_synchronize();
  470. if (automatic_recovery_after_crash) {
  471. enquecommand_P(PSTR("CRASH_RECOVER"));
  472. }else{
  473. setTargetHotend(0, active_extruder);
  474. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  475. lcd_update_enable(true);
  476. if (yesno)
  477. {
  478. enquecommand_P(PSTR("CRASH_RECOVER"));
  479. }
  480. else
  481. {
  482. enquecommand_P(PSTR("CRASH_CANCEL"));
  483. }
  484. }
  485. }
  486. void crashdet_recover()
  487. {
  488. crashdet_restore_print_and_continue();
  489. tmc2130_sg_stop_on_crash = true;
  490. }
  491. void crashdet_cancel()
  492. {
  493. tmc2130_sg_stop_on_crash = true;
  494. if (saved_printing_type == PRINTING_TYPE_SD) {
  495. lcd_print_stop();
  496. }else if(saved_printing_type == PRINTING_TYPE_USB){
  497. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  498. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  499. }
  500. }
  501. #endif //TMC2130
  502. void failstats_reset_print()
  503. {
  504. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  505. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  506. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  508. }
  509. #ifdef MESH_BED_LEVELING
  510. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  511. #endif
  512. // Factory reset function
  513. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  514. // Level input parameter sets depth of reset
  515. int er_progress = 0;
  516. static void factory_reset(char level)
  517. {
  518. lcd_clear();
  519. switch (level) {
  520. // Level 0: Language reset
  521. case 0:
  522. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  523. WRITE(BEEPER, HIGH);
  524. _delay_ms(100);
  525. WRITE(BEEPER, LOW);
  526. lang_reset();
  527. break;
  528. //Level 1: Reset statistics
  529. case 1:
  530. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  531. WRITE(BEEPER, HIGH);
  532. _delay_ms(100);
  533. WRITE(BEEPER, LOW);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. lcd_menu_statistics();
  545. break;
  546. // Level 2: Prepare for shipping
  547. case 2:
  548. //lcd_puts_P(PSTR("Factory RESET"));
  549. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  550. // Force language selection at the next boot up.
  551. lang_reset();
  552. // Force the "Follow calibration flow" message at the next boot up.
  553. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  554. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  555. farm_no = 0;
  556. farm_mode = false;
  557. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  558. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  559. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  560. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  561. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  562. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  563. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  564. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  565. #ifdef FILAMENT_SENSOR
  566. fsensor_enable();
  567. fsensor_autoload_set(true);
  568. #endif //FILAMENT_SENSOR
  569. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  570. WRITE(BEEPER, HIGH);
  571. _delay_ms(100);
  572. WRITE(BEEPER, LOW);
  573. //_delay_ms(2000);
  574. break;
  575. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  576. case 3:
  577. lcd_puts_P(PSTR("Factory RESET"));
  578. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  579. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  580. WRITE(BEEPER, HIGH);
  581. _delay_ms(100);
  582. WRITE(BEEPER, LOW);
  583. er_progress = 0;
  584. lcd_puts_at_P(3, 3, PSTR(" "));
  585. lcd_set_cursor(3, 3);
  586. lcd_print(er_progress);
  587. // Erase EEPROM
  588. for (int i = 0; i < 4096; i++) {
  589. eeprom_update_byte((uint8_t*)i, 0xFF);
  590. if (i % 41 == 0) {
  591. er_progress++;
  592. lcd_puts_at_P(3, 3, PSTR(" "));
  593. lcd_set_cursor(3, 3);
  594. lcd_print(er_progress);
  595. lcd_puts_P(PSTR("%"));
  596. }
  597. }
  598. break;
  599. case 4:
  600. bowden_menu();
  601. break;
  602. default:
  603. break;
  604. }
  605. }
  606. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  607. int uart_putchar(char c, FILE *)
  608. {
  609. MYSERIAL.write(c);
  610. return 0;
  611. }
  612. void lcd_splash()
  613. {
  614. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  615. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  616. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  617. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  618. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  619. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. uint8_t check_printer_version()
  673. {
  674. uint8_t version_changed = 0;
  675. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  676. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  677. if (printer_type != PRINTER_TYPE) {
  678. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  679. else version_changed |= 0b10;
  680. }
  681. if (motherboard != MOTHERBOARD) {
  682. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  683. else version_changed |= 0b01;
  684. }
  685. return version_changed;
  686. }
  687. #ifdef BOOTAPP
  688. #include "bootapp.h" //bootloader support
  689. #endif //BOOTAPP
  690. #if (LANG_MODE != 0) //secondary language support
  691. #ifdef W25X20CL
  692. // language update from external flash
  693. #define LANGBOOT_BLOCKSIZE 0x1000u
  694. #define LANGBOOT_RAMBUFFER 0x0800
  695. void update_sec_lang_from_external_flash()
  696. {
  697. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  698. {
  699. uint8_t lang = boot_reserved >> 4;
  700. uint8_t state = boot_reserved & 0xf;
  701. lang_table_header_t header;
  702. uint32_t src_addr;
  703. if (lang_get_header(lang, &header, &src_addr))
  704. {
  705. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  706. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  707. delay(100);
  708. boot_reserved = (state + 1) | (lang << 4);
  709. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  710. {
  711. cli();
  712. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  713. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  714. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  715. if (state == 0)
  716. {
  717. //TODO - check header integrity
  718. }
  719. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  720. }
  721. else
  722. {
  723. //TODO - check sec lang data integrity
  724. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  725. }
  726. }
  727. }
  728. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  729. }
  730. #ifdef DEBUG_W25X20CL
  731. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  732. {
  733. lang_table_header_t header;
  734. uint8_t count = 0;
  735. uint32_t addr = 0x00000;
  736. while (1)
  737. {
  738. printf_P(_n("LANGTABLE%d:"), count);
  739. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  740. if (header.magic != LANG_MAGIC)
  741. {
  742. printf_P(_n("NG!\n"));
  743. break;
  744. }
  745. printf_P(_n("OK\n"));
  746. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  747. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  748. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  749. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  750. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  751. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  752. addr += header.size;
  753. codes[count] = header.code;
  754. count ++;
  755. }
  756. return count;
  757. }
  758. void list_sec_lang_from_external_flash()
  759. {
  760. uint16_t codes[8];
  761. uint8_t count = lang_xflash_enum_codes(codes);
  762. printf_P(_n("XFlash lang count = %hhd\n"), count);
  763. }
  764. #endif //DEBUG_W25X20CL
  765. #endif //W25X20CL
  766. #endif //(LANG_MODE != 0)
  767. // "Setup" function is called by the Arduino framework on startup.
  768. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  769. // are initialized by the main() routine provided by the Arduino framework.
  770. void setup()
  771. {
  772. mmu_init();
  773. ultralcd_init();
  774. spi_init();
  775. lcd_splash();
  776. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  777. #ifdef W25X20CL
  778. if (!w25x20cl_init())
  779. kill(_i("External SPI flash W25X20CL not responding."));
  780. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  781. optiboot_w25x20cl_enter();
  782. #endif
  783. #if (LANG_MODE != 0) //secondary language support
  784. #ifdef W25X20CL
  785. if (w25x20cl_init())
  786. update_sec_lang_from_external_flash();
  787. #endif //W25X20CL
  788. #endif //(LANG_MODE != 0)
  789. setup_killpin();
  790. setup_powerhold();
  791. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  792. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  793. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  794. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  795. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  796. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  797. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  798. if (farm_mode)
  799. {
  800. no_response = true; //we need confirmation by recieving PRUSA thx
  801. important_status = 8;
  802. prusa_statistics(8);
  803. selectedSerialPort = 1;
  804. #ifdef TMC2130
  805. //increased extruder current (PFW363)
  806. tmc2130_current_h[E_AXIS] = 36;
  807. tmc2130_current_r[E_AXIS] = 36;
  808. #endif //TMC2130
  809. #ifdef FILAMENT_SENSOR
  810. //disabled filament autoload (PFW360)
  811. fsensor_autoload_set(false);
  812. #endif //FILAMENT_SENSOR
  813. }
  814. MYSERIAL.begin(BAUDRATE);
  815. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  816. stdout = uartout;
  817. SERIAL_PROTOCOLLNPGM("start");
  818. SERIAL_ECHO_START;
  819. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  820. #ifdef DEBUG_SEC_LANG
  821. lang_table_header_t header;
  822. uint32_t src_addr = 0x00000;
  823. if (lang_get_header(1, &header, &src_addr))
  824. {
  825. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  826. #define LT_PRINT_TEST 2
  827. // flash usage
  828. // total p.test
  829. //0 252718 t+c text code
  830. //1 253142 424 170 254
  831. //2 253040 322 164 158
  832. //3 253248 530 135 395
  833. #if (LT_PRINT_TEST==1) //not optimized printf
  834. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  835. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  836. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  837. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  838. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  839. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  840. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  841. #elif (LT_PRINT_TEST==2) //optimized printf
  842. printf_P(
  843. _n(
  844. " _src_addr = 0x%08lx\n"
  845. " _lt_magic = 0x%08lx %S\n"
  846. " _lt_size = 0x%04x (%d)\n"
  847. " _lt_count = 0x%04x (%d)\n"
  848. " _lt_chsum = 0x%04x\n"
  849. " _lt_code = 0x%04x (%c%c)\n"
  850. " _lt_resv1 = 0x%08lx\n"
  851. ),
  852. src_addr,
  853. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  854. header.size, header.size,
  855. header.count, header.count,
  856. header.checksum,
  857. header.code, header.code >> 8, header.code & 0xff,
  858. header.signature
  859. );
  860. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  861. MYSERIAL.print(" _src_addr = 0x");
  862. MYSERIAL.println(src_addr, 16);
  863. MYSERIAL.print(" _lt_magic = 0x");
  864. MYSERIAL.print(header.magic, 16);
  865. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  866. MYSERIAL.print(" _lt_size = 0x");
  867. MYSERIAL.print(header.size, 16);
  868. MYSERIAL.print(" (");
  869. MYSERIAL.print(header.size, 10);
  870. MYSERIAL.println(")");
  871. MYSERIAL.print(" _lt_count = 0x");
  872. MYSERIAL.print(header.count, 16);
  873. MYSERIAL.print(" (");
  874. MYSERIAL.print(header.count, 10);
  875. MYSERIAL.println(")");
  876. MYSERIAL.print(" _lt_chsum = 0x");
  877. MYSERIAL.println(header.checksum, 16);
  878. MYSERIAL.print(" _lt_code = 0x");
  879. MYSERIAL.print(header.code, 16);
  880. MYSERIAL.print(" (");
  881. MYSERIAL.print((char)(header.code >> 8), 0);
  882. MYSERIAL.print((char)(header.code & 0xff), 0);
  883. MYSERIAL.println(")");
  884. MYSERIAL.print(" _lt_resv1 = 0x");
  885. MYSERIAL.println(header.signature, 16);
  886. #endif //(LT_PRINT_TEST==)
  887. #undef LT_PRINT_TEST
  888. #if 0
  889. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  890. for (uint16_t i = 0; i < 1024; i++)
  891. {
  892. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  893. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  894. if ((i % 16) == 15) putchar('\n');
  895. }
  896. #endif
  897. uint16_t sum = 0;
  898. for (uint16_t i = 0; i < header.size; i++)
  899. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  900. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  901. sum -= header.checksum; //subtract checksum
  902. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  903. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  904. if (sum == header.checksum)
  905. printf_P(_n("Checksum OK\n"), sum);
  906. else
  907. printf_P(_n("Checksum NG\n"), sum);
  908. }
  909. else
  910. printf_P(_n("lang_get_header failed!\n"));
  911. #if 0
  912. for (uint16_t i = 0; i < 1024*10; i++)
  913. {
  914. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  915. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  916. if ((i % 16) == 15) putchar('\n');
  917. }
  918. #endif
  919. #if 0
  920. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  921. for (int i = 0; i < 4096; ++i) {
  922. int b = eeprom_read_byte((unsigned char*)i);
  923. if (b != 255) {
  924. SERIAL_ECHO(i);
  925. SERIAL_ECHO(":");
  926. SERIAL_ECHO(b);
  927. SERIAL_ECHOLN("");
  928. }
  929. }
  930. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  931. #endif
  932. #endif //DEBUG_SEC_LANG
  933. // Check startup - does nothing if bootloader sets MCUSR to 0
  934. byte mcu = MCUSR;
  935. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  936. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  937. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  938. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  939. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  940. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  941. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  942. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  943. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  944. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  945. MCUSR = 0;
  946. //SERIAL_ECHORPGM(MSG_MARLIN);
  947. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  948. #ifdef STRING_VERSION_CONFIG_H
  949. #ifdef STRING_CONFIG_H_AUTHOR
  950. SERIAL_ECHO_START;
  951. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  952. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  953. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  954. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  955. SERIAL_ECHOPGM("Compiled: ");
  956. SERIAL_ECHOLNPGM(__DATE__);
  957. #endif
  958. #endif
  959. SERIAL_ECHO_START;
  960. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  961. SERIAL_ECHO(freeMemory());
  962. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  963. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  964. //lcd_update_enable(false); // why do we need this?? - andre
  965. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  966. bool previous_settings_retrieved = false;
  967. uint8_t hw_changed = check_printer_version();
  968. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  969. previous_settings_retrieved = Config_RetrieveSettings();
  970. }
  971. else { //printer version was changed so use default settings
  972. Config_ResetDefault();
  973. }
  974. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  975. tp_init(); // Initialize temperature loop
  976. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  977. plan_init(); // Initialize planner;
  978. factory_reset();
  979. lcd_encoder_diff=0;
  980. #ifdef TMC2130
  981. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  982. if (silentMode == 0xff) silentMode = 0;
  983. tmc2130_mode = TMC2130_MODE_NORMAL;
  984. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  985. if (crashdet && !farm_mode)
  986. {
  987. crashdet_enable();
  988. puts_P(_N("CrashDetect ENABLED!"));
  989. }
  990. else
  991. {
  992. crashdet_disable();
  993. puts_P(_N("CrashDetect DISABLED"));
  994. }
  995. #ifdef TMC2130_LINEARITY_CORRECTION
  996. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  997. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  998. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  999. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1000. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1001. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1002. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1003. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1004. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1005. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1006. #endif //TMC2130_LINEARITY_CORRECTION
  1007. #ifdef TMC2130_VARIABLE_RESOLUTION
  1008. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1009. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1010. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1011. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1012. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1013. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1014. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1015. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1016. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1017. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1018. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1019. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1020. #else //TMC2130_VARIABLE_RESOLUTION
  1021. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1022. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1023. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1024. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1025. #endif //TMC2130_VARIABLE_RESOLUTION
  1026. #endif //TMC2130
  1027. st_init(); // Initialize stepper, this enables interrupts!
  1028. #ifdef TMC2130
  1029. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1030. update_mode_profile();
  1031. tmc2130_init();
  1032. #endif //TMC2130
  1033. setup_photpin();
  1034. servo_init();
  1035. // Reset the machine correction matrix.
  1036. // It does not make sense to load the correction matrix until the machine is homed.
  1037. world2machine_reset();
  1038. #ifdef FILAMENT_SENSOR
  1039. fsensor_init();
  1040. #endif //FILAMENT_SENSOR
  1041. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1042. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1043. #endif
  1044. setup_homepin();
  1045. #ifdef TMC2130
  1046. if (1) {
  1047. // try to run to zero phase before powering the Z motor.
  1048. // Move in negative direction
  1049. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1050. // Round the current micro-micro steps to micro steps.
  1051. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1052. // Until the phase counter is reset to zero.
  1053. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1054. delay(2);
  1055. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1056. delay(2);
  1057. }
  1058. }
  1059. #endif //TMC2130
  1060. #if defined(Z_AXIS_ALWAYS_ON)
  1061. enable_z();
  1062. #endif
  1063. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1064. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1065. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1066. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1067. if (farm_mode)
  1068. {
  1069. prusa_statistics(8);
  1070. }
  1071. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1072. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1073. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1074. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1075. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1076. // where all the EEPROM entries are set to 0x0ff.
  1077. // Once a firmware boots up, it forces at least a language selection, which changes
  1078. // EEPROM_LANG to number lower than 0x0ff.
  1079. // 1) Set a high power mode.
  1080. #ifdef TMC2130
  1081. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1082. tmc2130_mode = TMC2130_MODE_NORMAL;
  1083. #endif //TMC2130
  1084. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1085. }
  1086. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1087. // but this times out if a blocking dialog is shown in setup().
  1088. card.initsd();
  1089. #ifdef DEBUG_SD_SPEED_TEST
  1090. if (card.cardOK)
  1091. {
  1092. uint8_t* buff = (uint8_t*)block_buffer;
  1093. uint32_t block = 0;
  1094. uint32_t sumr = 0;
  1095. uint32_t sumw = 0;
  1096. for (int i = 0; i < 1024; i++)
  1097. {
  1098. uint32_t u = micros();
  1099. bool res = card.card.readBlock(i, buff);
  1100. u = micros() - u;
  1101. if (res)
  1102. {
  1103. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1104. sumr += u;
  1105. u = micros();
  1106. res = card.card.writeBlock(i, buff);
  1107. u = micros() - u;
  1108. if (res)
  1109. {
  1110. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1111. sumw += u;
  1112. }
  1113. else
  1114. {
  1115. printf_P(PSTR("writeBlock %4d error\n"), i);
  1116. break;
  1117. }
  1118. }
  1119. else
  1120. {
  1121. printf_P(PSTR("readBlock %4d error\n"), i);
  1122. break;
  1123. }
  1124. }
  1125. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1126. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1127. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1128. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1129. }
  1130. else
  1131. printf_P(PSTR("Card NG!\n"));
  1132. #endif //DEBUG_SD_SPEED_TEST
  1133. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1134. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1135. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1136. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1137. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1138. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1139. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1140. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1141. #ifdef SNMM
  1142. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1143. int _z = BOWDEN_LENGTH;
  1144. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1145. }
  1146. #endif
  1147. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1148. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1149. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1150. #if (LANG_MODE != 0) //secondary language support
  1151. #ifdef DEBUG_W25X20CL
  1152. W25X20CL_SPI_ENTER();
  1153. uint8_t uid[8]; // 64bit unique id
  1154. w25x20cl_rd_uid(uid);
  1155. puts_P(_n("W25X20CL UID="));
  1156. for (uint8_t i = 0; i < 8; i ++)
  1157. printf_P(PSTR("%02hhx"), uid[i]);
  1158. putchar('\n');
  1159. list_sec_lang_from_external_flash();
  1160. #endif //DEBUG_W25X20CL
  1161. // lang_reset();
  1162. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1163. lcd_language();
  1164. #ifdef DEBUG_SEC_LANG
  1165. uint16_t sec_lang_code = lang_get_code(1);
  1166. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1167. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1168. // lang_print_sec_lang(uartout);
  1169. #endif //DEBUG_SEC_LANG
  1170. #endif //(LANG_MODE != 0)
  1171. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1172. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1173. temp_cal_active = false;
  1174. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1175. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1176. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1177. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1178. int16_t z_shift = 0;
  1179. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1180. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1181. temp_cal_active = false;
  1182. }
  1183. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1184. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1185. }
  1186. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1187. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1188. }
  1189. check_babystep(); //checking if Z babystep is in allowed range
  1190. #ifdef UVLO_SUPPORT
  1191. setup_uvlo_interrupt();
  1192. #endif //UVLO_SUPPORT
  1193. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1194. setup_fan_interrupt();
  1195. #endif //DEBUG_DISABLE_FANCHECK
  1196. #ifdef FILAMENT_SENSOR
  1197. fsensor_setup_interrupt();
  1198. #endif //FILAMENT_SENSOR
  1199. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1200. #ifndef DEBUG_DISABLE_STARTMSGS
  1201. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1202. show_fw_version_warnings();
  1203. switch (hw_changed) {
  1204. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1205. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1206. case(0b01):
  1207. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1208. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1209. break;
  1210. case(0b10):
  1211. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1212. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1213. break;
  1214. case(0b11):
  1215. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1216. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1217. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1218. break;
  1219. default: break; //no change, show no message
  1220. }
  1221. if (!previous_settings_retrieved) {
  1222. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1223. Config_StoreSettings();
  1224. }
  1225. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1226. lcd_wizard(WizState::Run);
  1227. }
  1228. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1229. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1230. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1231. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1232. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1233. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1234. // Show the message.
  1235. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1236. }
  1237. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1238. // Show the message.
  1239. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1240. lcd_update_enable(true);
  1241. }
  1242. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1243. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1244. lcd_update_enable(true);
  1245. }
  1246. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1247. // Show the message.
  1248. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1249. }
  1250. }
  1251. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1252. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1253. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1254. update_current_firmware_version_to_eeprom();
  1255. lcd_selftest();
  1256. }
  1257. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1258. KEEPALIVE_STATE(IN_PROCESS);
  1259. #endif //DEBUG_DISABLE_STARTMSGS
  1260. lcd_update_enable(true);
  1261. lcd_clear();
  1262. lcd_update(2);
  1263. // Store the currently running firmware into an eeprom,
  1264. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1265. update_current_firmware_version_to_eeprom();
  1266. #ifdef TMC2130
  1267. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1268. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1269. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1270. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1271. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1272. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1273. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1274. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1275. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1276. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1277. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1278. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1279. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1280. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1281. #endif //TMC2130
  1282. #ifdef UVLO_SUPPORT
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1284. /*
  1285. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1286. else {
  1287. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1288. lcd_update_enable(true);
  1289. lcd_update(2);
  1290. lcd_setstatuspgm(_T(WELCOME_MSG));
  1291. }
  1292. */
  1293. manage_heater(); // Update temperatures
  1294. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1295. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1296. #endif
  1297. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1298. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1299. puts_P(_N("Automatic recovery!"));
  1300. #endif
  1301. recover_print(1);
  1302. }
  1303. else{
  1304. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1305. puts_P(_N("Normal recovery!"));
  1306. #endif
  1307. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1308. else {
  1309. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1310. lcd_update_enable(true);
  1311. lcd_update(2);
  1312. lcd_setstatuspgm(_T(WELCOME_MSG));
  1313. }
  1314. }
  1315. }
  1316. #endif //UVLO_SUPPORT
  1317. KEEPALIVE_STATE(NOT_BUSY);
  1318. #ifdef WATCHDOG
  1319. wdt_enable(WDTO_4S);
  1320. #endif //WATCHDOG
  1321. }
  1322. void trace();
  1323. #define CHUNK_SIZE 64 // bytes
  1324. #define SAFETY_MARGIN 1
  1325. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1326. int chunkHead = 0;
  1327. void serial_read_stream() {
  1328. setAllTargetHotends(0);
  1329. setTargetBed(0);
  1330. lcd_clear();
  1331. lcd_puts_P(PSTR(" Upload in progress"));
  1332. // first wait for how many bytes we will receive
  1333. uint32_t bytesToReceive;
  1334. // receive the four bytes
  1335. char bytesToReceiveBuffer[4];
  1336. for (int i=0; i<4; i++) {
  1337. int data;
  1338. while ((data = MYSERIAL.read()) == -1) {};
  1339. bytesToReceiveBuffer[i] = data;
  1340. }
  1341. // make it a uint32
  1342. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1343. // we're ready, notify the sender
  1344. MYSERIAL.write('+');
  1345. // lock in the routine
  1346. uint32_t receivedBytes = 0;
  1347. while (prusa_sd_card_upload) {
  1348. int i;
  1349. for (i=0; i<CHUNK_SIZE; i++) {
  1350. int data;
  1351. // check if we're not done
  1352. if (receivedBytes == bytesToReceive) {
  1353. break;
  1354. }
  1355. // read the next byte
  1356. while ((data = MYSERIAL.read()) == -1) {};
  1357. receivedBytes++;
  1358. // save it to the chunk
  1359. chunk[i] = data;
  1360. }
  1361. // write the chunk to SD
  1362. card.write_command_no_newline(&chunk[0]);
  1363. // notify the sender we're ready for more data
  1364. MYSERIAL.write('+');
  1365. // for safety
  1366. manage_heater();
  1367. // check if we're done
  1368. if(receivedBytes == bytesToReceive) {
  1369. trace(); // beep
  1370. card.closefile();
  1371. prusa_sd_card_upload = false;
  1372. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1373. }
  1374. }
  1375. }
  1376. #ifdef HOST_KEEPALIVE_FEATURE
  1377. /**
  1378. * Output a "busy" message at regular intervals
  1379. * while the machine is not accepting commands.
  1380. */
  1381. void host_keepalive() {
  1382. if (farm_mode) return;
  1383. long ms = millis();
  1384. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1385. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1386. switch (busy_state) {
  1387. case IN_HANDLER:
  1388. case IN_PROCESS:
  1389. SERIAL_ECHO_START;
  1390. SERIAL_ECHOLNPGM("busy: processing");
  1391. break;
  1392. case PAUSED_FOR_USER:
  1393. SERIAL_ECHO_START;
  1394. SERIAL_ECHOLNPGM("busy: paused for user");
  1395. break;
  1396. case PAUSED_FOR_INPUT:
  1397. SERIAL_ECHO_START;
  1398. SERIAL_ECHOLNPGM("busy: paused for input");
  1399. break;
  1400. default:
  1401. break;
  1402. }
  1403. }
  1404. prev_busy_signal_ms = ms;
  1405. }
  1406. #endif
  1407. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1408. // Before loop(), the setup() function is called by the main() routine.
  1409. void loop()
  1410. {
  1411. KEEPALIVE_STATE(NOT_BUSY);
  1412. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1413. {
  1414. is_usb_printing = true;
  1415. usb_printing_counter--;
  1416. _usb_timer = millis();
  1417. }
  1418. if (usb_printing_counter == 0)
  1419. {
  1420. is_usb_printing = false;
  1421. }
  1422. if (prusa_sd_card_upload)
  1423. {
  1424. //we read byte-by byte
  1425. serial_read_stream();
  1426. } else
  1427. {
  1428. get_command();
  1429. #ifdef SDSUPPORT
  1430. card.checkautostart(false);
  1431. #endif
  1432. if(buflen)
  1433. {
  1434. cmdbuffer_front_already_processed = false;
  1435. #ifdef SDSUPPORT
  1436. if(card.saving)
  1437. {
  1438. // Saving a G-code file onto an SD-card is in progress.
  1439. // Saving starts with M28, saving until M29 is seen.
  1440. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1441. card.write_command(CMDBUFFER_CURRENT_STRING);
  1442. if(card.logging)
  1443. process_commands();
  1444. else
  1445. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1446. } else {
  1447. card.closefile();
  1448. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1449. }
  1450. } else {
  1451. process_commands();
  1452. }
  1453. #else
  1454. process_commands();
  1455. #endif //SDSUPPORT
  1456. if (! cmdbuffer_front_already_processed && buflen)
  1457. {
  1458. // ptr points to the start of the block currently being processed.
  1459. // The first character in the block is the block type.
  1460. char *ptr = cmdbuffer + bufindr;
  1461. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1462. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1463. union {
  1464. struct {
  1465. char lo;
  1466. char hi;
  1467. } lohi;
  1468. uint16_t value;
  1469. } sdlen;
  1470. sdlen.value = 0;
  1471. {
  1472. // This block locks the interrupts globally for 3.25 us,
  1473. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1474. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1475. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1476. cli();
  1477. // Reset the command to something, which will be ignored by the power panic routine,
  1478. // so this buffer length will not be counted twice.
  1479. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1480. // Extract the current buffer length.
  1481. sdlen.lohi.lo = *ptr ++;
  1482. sdlen.lohi.hi = *ptr;
  1483. // and pass it to the planner queue.
  1484. planner_add_sd_length(sdlen.value);
  1485. sei();
  1486. }
  1487. }
  1488. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1489. cli();
  1490. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1491. // and one for each command to previous block in the planner queue.
  1492. planner_add_sd_length(1);
  1493. sei();
  1494. }
  1495. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1496. // this block's SD card length will not be counted twice as its command type has been replaced
  1497. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1498. cmdqueue_pop_front();
  1499. }
  1500. host_keepalive();
  1501. }
  1502. }
  1503. //check heater every n milliseconds
  1504. manage_heater();
  1505. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1506. checkHitEndstops();
  1507. lcd_update(0);
  1508. #ifdef FILAMENT_SENSOR
  1509. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1510. fsensor_update();
  1511. #endif //FILAMENT_SENSOR
  1512. #ifdef TMC2130
  1513. tmc2130_check_overtemp();
  1514. if (tmc2130_sg_crash)
  1515. {
  1516. uint8_t crash = tmc2130_sg_crash;
  1517. tmc2130_sg_crash = 0;
  1518. // crashdet_stop_and_save_print();
  1519. switch (crash)
  1520. {
  1521. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1522. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1523. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1524. }
  1525. }
  1526. #endif //TMC2130
  1527. mmu_loop();
  1528. }
  1529. #define DEFINE_PGM_READ_ANY(type, reader) \
  1530. static inline type pgm_read_any(const type *p) \
  1531. { return pgm_read_##reader##_near(p); }
  1532. DEFINE_PGM_READ_ANY(float, float);
  1533. DEFINE_PGM_READ_ANY(signed char, byte);
  1534. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1535. static const PROGMEM type array##_P[3] = \
  1536. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1537. static inline type array(int axis) \
  1538. { return pgm_read_any(&array##_P[axis]); } \
  1539. type array##_ext(int axis) \
  1540. { return pgm_read_any(&array##_P[axis]); }
  1541. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1542. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1543. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1544. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1545. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1546. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1547. static void axis_is_at_home(int axis) {
  1548. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1549. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1550. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1551. }
  1552. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1553. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1554. //! @return original feedmultiply
  1555. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1556. saved_feedrate = feedrate;
  1557. int l_feedmultiply = feedmultiply;
  1558. feedmultiply = 100;
  1559. previous_millis_cmd = millis();
  1560. enable_endstops(enable_endstops_now);
  1561. return l_feedmultiply;
  1562. }
  1563. //! @param original_feedmultiply feedmultiply to restore
  1564. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1565. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1566. enable_endstops(false);
  1567. #endif
  1568. feedrate = saved_feedrate;
  1569. feedmultiply = original_feedmultiply;
  1570. previous_millis_cmd = millis();
  1571. }
  1572. #ifdef ENABLE_AUTO_BED_LEVELING
  1573. #ifdef AUTO_BED_LEVELING_GRID
  1574. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1575. {
  1576. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1577. planeNormal.debug("planeNormal");
  1578. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1579. //bedLevel.debug("bedLevel");
  1580. //plan_bed_level_matrix.debug("bed level before");
  1581. //vector_3 uncorrected_position = plan_get_position_mm();
  1582. //uncorrected_position.debug("position before");
  1583. vector_3 corrected_position = plan_get_position();
  1584. // corrected_position.debug("position after");
  1585. current_position[X_AXIS] = corrected_position.x;
  1586. current_position[Y_AXIS] = corrected_position.y;
  1587. current_position[Z_AXIS] = corrected_position.z;
  1588. // put the bed at 0 so we don't go below it.
  1589. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1591. }
  1592. #else // not AUTO_BED_LEVELING_GRID
  1593. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1594. plan_bed_level_matrix.set_to_identity();
  1595. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1596. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1597. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1598. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1599. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1600. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1601. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1602. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1603. vector_3 corrected_position = plan_get_position();
  1604. current_position[X_AXIS] = corrected_position.x;
  1605. current_position[Y_AXIS] = corrected_position.y;
  1606. current_position[Z_AXIS] = corrected_position.z;
  1607. // put the bed at 0 so we don't go below it.
  1608. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1610. }
  1611. #endif // AUTO_BED_LEVELING_GRID
  1612. static void run_z_probe() {
  1613. plan_bed_level_matrix.set_to_identity();
  1614. feedrate = homing_feedrate[Z_AXIS];
  1615. // move down until you find the bed
  1616. float zPosition = -10;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1618. st_synchronize();
  1619. // we have to let the planner know where we are right now as it is not where we said to go.
  1620. zPosition = st_get_position_mm(Z_AXIS);
  1621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1622. // move up the retract distance
  1623. zPosition += home_retract_mm(Z_AXIS);
  1624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1625. st_synchronize();
  1626. // move back down slowly to find bed
  1627. feedrate = homing_feedrate[Z_AXIS]/4;
  1628. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1630. st_synchronize();
  1631. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1632. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1634. }
  1635. static void do_blocking_move_to(float x, float y, float z) {
  1636. float oldFeedRate = feedrate;
  1637. feedrate = homing_feedrate[Z_AXIS];
  1638. current_position[Z_AXIS] = z;
  1639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1640. st_synchronize();
  1641. feedrate = XY_TRAVEL_SPEED;
  1642. current_position[X_AXIS] = x;
  1643. current_position[Y_AXIS] = y;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1645. st_synchronize();
  1646. feedrate = oldFeedRate;
  1647. }
  1648. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1649. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1650. }
  1651. /// Probe bed height at position (x,y), returns the measured z value
  1652. static float probe_pt(float x, float y, float z_before) {
  1653. // move to right place
  1654. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1655. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1656. run_z_probe();
  1657. float measured_z = current_position[Z_AXIS];
  1658. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1659. SERIAL_PROTOCOLPGM(" x: ");
  1660. SERIAL_PROTOCOL(x);
  1661. SERIAL_PROTOCOLPGM(" y: ");
  1662. SERIAL_PROTOCOL(y);
  1663. SERIAL_PROTOCOLPGM(" z: ");
  1664. SERIAL_PROTOCOL(measured_z);
  1665. SERIAL_PROTOCOLPGM("\n");
  1666. return measured_z;
  1667. }
  1668. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1669. #ifdef LIN_ADVANCE
  1670. /**
  1671. * M900: Set and/or Get advance K factor and WH/D ratio
  1672. *
  1673. * K<factor> Set advance K factor
  1674. * R<ratio> Set ratio directly (overrides WH/D)
  1675. * W<width> H<height> D<diam> Set ratio from WH/D
  1676. */
  1677. inline void gcode_M900() {
  1678. st_synchronize();
  1679. const float newK = code_seen('K') ? code_value_float() : -1;
  1680. if (newK >= 0) extruder_advance_k = newK;
  1681. float newR = code_seen('R') ? code_value_float() : -1;
  1682. if (newR < 0) {
  1683. const float newD = code_seen('D') ? code_value_float() : -1,
  1684. newW = code_seen('W') ? code_value_float() : -1,
  1685. newH = code_seen('H') ? code_value_float() : -1;
  1686. if (newD >= 0 && newW >= 0 && newH >= 0)
  1687. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1688. }
  1689. if (newR >= 0) advance_ed_ratio = newR;
  1690. SERIAL_ECHO_START;
  1691. SERIAL_ECHOPGM("Advance K=");
  1692. SERIAL_ECHOLN(extruder_advance_k);
  1693. SERIAL_ECHOPGM(" E/D=");
  1694. const float ratio = advance_ed_ratio;
  1695. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1696. }
  1697. #endif // LIN_ADVANCE
  1698. bool check_commands() {
  1699. bool end_command_found = false;
  1700. while (buflen)
  1701. {
  1702. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1703. if (!cmdbuffer_front_already_processed)
  1704. cmdqueue_pop_front();
  1705. cmdbuffer_front_already_processed = false;
  1706. }
  1707. return end_command_found;
  1708. }
  1709. #ifdef TMC2130
  1710. bool calibrate_z_auto()
  1711. {
  1712. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1713. lcd_clear();
  1714. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1715. bool endstops_enabled = enable_endstops(true);
  1716. int axis_up_dir = -home_dir(Z_AXIS);
  1717. tmc2130_home_enter(Z_AXIS_MASK);
  1718. current_position[Z_AXIS] = 0;
  1719. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1720. set_destination_to_current();
  1721. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1722. feedrate = homing_feedrate[Z_AXIS];
  1723. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1724. st_synchronize();
  1725. // current_position[axis] = 0;
  1726. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1727. tmc2130_home_exit();
  1728. enable_endstops(false);
  1729. current_position[Z_AXIS] = 0;
  1730. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1731. set_destination_to_current();
  1732. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1733. feedrate = homing_feedrate[Z_AXIS] / 2;
  1734. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1735. st_synchronize();
  1736. enable_endstops(endstops_enabled);
  1737. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1738. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1739. return true;
  1740. }
  1741. #endif //TMC2130
  1742. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1743. {
  1744. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1745. #define HOMEAXIS_DO(LETTER) \
  1746. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1747. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1748. {
  1749. int axis_home_dir = home_dir(axis);
  1750. feedrate = homing_feedrate[axis];
  1751. #ifdef TMC2130
  1752. tmc2130_home_enter(X_AXIS_MASK << axis);
  1753. #endif //TMC2130
  1754. // Move away a bit, so that the print head does not touch the end position,
  1755. // and the following movement to endstop has a chance to achieve the required velocity
  1756. // for the stall guard to work.
  1757. current_position[axis] = 0;
  1758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1759. set_destination_to_current();
  1760. // destination[axis] = 11.f;
  1761. destination[axis] = -3.f * axis_home_dir;
  1762. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1763. st_synchronize();
  1764. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1765. endstops_hit_on_purpose();
  1766. enable_endstops(false);
  1767. current_position[axis] = 0;
  1768. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1769. destination[axis] = 1. * axis_home_dir;
  1770. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1771. st_synchronize();
  1772. // Now continue to move up to the left end stop with the collision detection enabled.
  1773. enable_endstops(true);
  1774. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1775. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1776. st_synchronize();
  1777. for (uint8_t i = 0; i < cnt; i++)
  1778. {
  1779. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1780. endstops_hit_on_purpose();
  1781. enable_endstops(false);
  1782. current_position[axis] = 0;
  1783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1784. destination[axis] = -10.f * axis_home_dir;
  1785. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1786. st_synchronize();
  1787. endstops_hit_on_purpose();
  1788. // Now move left up to the collision, this time with a repeatable velocity.
  1789. enable_endstops(true);
  1790. destination[axis] = 11.f * axis_home_dir;
  1791. #ifdef TMC2130
  1792. feedrate = homing_feedrate[axis];
  1793. #else //TMC2130
  1794. feedrate = homing_feedrate[axis] / 2;
  1795. #endif //TMC2130
  1796. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1797. st_synchronize();
  1798. #ifdef TMC2130
  1799. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1800. if (pstep) pstep[i] = mscnt >> 4;
  1801. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1802. #endif //TMC2130
  1803. }
  1804. endstops_hit_on_purpose();
  1805. enable_endstops(false);
  1806. #ifdef TMC2130
  1807. uint8_t orig = tmc2130_home_origin[axis];
  1808. uint8_t back = tmc2130_home_bsteps[axis];
  1809. if (tmc2130_home_enabled && (orig <= 63))
  1810. {
  1811. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1812. if (back > 0)
  1813. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1814. }
  1815. else
  1816. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1817. tmc2130_home_exit();
  1818. #endif //TMC2130
  1819. axis_is_at_home(axis);
  1820. axis_known_position[axis] = true;
  1821. // Move from minimum
  1822. #ifdef TMC2130
  1823. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1824. #else //TMC2130
  1825. float dist = - axis_home_dir * 0.01f * 64;
  1826. #endif //TMC2130
  1827. current_position[axis] -= dist;
  1828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1829. current_position[axis] += dist;
  1830. destination[axis] = current_position[axis];
  1831. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1832. st_synchronize();
  1833. feedrate = 0.0;
  1834. }
  1835. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1836. {
  1837. #ifdef TMC2130
  1838. FORCE_HIGH_POWER_START;
  1839. #endif
  1840. int axis_home_dir = home_dir(axis);
  1841. current_position[axis] = 0;
  1842. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1843. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1844. feedrate = homing_feedrate[axis];
  1845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. #ifdef TMC2130
  1848. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1849. FORCE_HIGH_POWER_END;
  1850. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1851. return;
  1852. }
  1853. #endif //TMC2130
  1854. current_position[axis] = 0;
  1855. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1856. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1857. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1858. st_synchronize();
  1859. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1860. feedrate = homing_feedrate[axis]/2 ;
  1861. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1862. st_synchronize();
  1863. #ifdef TMC2130
  1864. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1865. FORCE_HIGH_POWER_END;
  1866. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1867. return;
  1868. }
  1869. #endif //TMC2130
  1870. axis_is_at_home(axis);
  1871. destination[axis] = current_position[axis];
  1872. feedrate = 0.0;
  1873. endstops_hit_on_purpose();
  1874. axis_known_position[axis] = true;
  1875. #ifdef TMC2130
  1876. FORCE_HIGH_POWER_END;
  1877. #endif
  1878. }
  1879. enable_endstops(endstops_enabled);
  1880. }
  1881. /**/
  1882. void home_xy()
  1883. {
  1884. set_destination_to_current();
  1885. homeaxis(X_AXIS);
  1886. homeaxis(Y_AXIS);
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. endstops_hit_on_purpose();
  1889. }
  1890. void refresh_cmd_timeout(void)
  1891. {
  1892. previous_millis_cmd = millis();
  1893. }
  1894. #ifdef FWRETRACT
  1895. void retract(bool retracting, bool swapretract = false) {
  1896. if(retracting && !retracted[active_extruder]) {
  1897. destination[X_AXIS]=current_position[X_AXIS];
  1898. destination[Y_AXIS]=current_position[Y_AXIS];
  1899. destination[Z_AXIS]=current_position[Z_AXIS];
  1900. destination[E_AXIS]=current_position[E_AXIS];
  1901. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1902. plan_set_e_position(current_position[E_AXIS]);
  1903. float oldFeedrate = feedrate;
  1904. feedrate=cs.retract_feedrate*60;
  1905. retracted[active_extruder]=true;
  1906. prepare_move();
  1907. current_position[Z_AXIS]-=cs.retract_zlift;
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. prepare_move();
  1910. feedrate = oldFeedrate;
  1911. } else if(!retracting && retracted[active_extruder]) {
  1912. destination[X_AXIS]=current_position[X_AXIS];
  1913. destination[Y_AXIS]=current_position[Y_AXIS];
  1914. destination[Z_AXIS]=current_position[Z_AXIS];
  1915. destination[E_AXIS]=current_position[E_AXIS];
  1916. current_position[Z_AXIS]+=cs.retract_zlift;
  1917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1918. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1919. plan_set_e_position(current_position[E_AXIS]);
  1920. float oldFeedrate = feedrate;
  1921. feedrate=cs.retract_recover_feedrate*60;
  1922. retracted[active_extruder]=false;
  1923. prepare_move();
  1924. feedrate = oldFeedrate;
  1925. }
  1926. } //retract
  1927. #endif //FWRETRACT
  1928. void trace() {
  1929. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1930. tone(BEEPER, 440);
  1931. delay(25);
  1932. noTone(BEEPER);
  1933. delay(20);
  1934. }
  1935. /*
  1936. void ramming() {
  1937. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1938. if (current_temperature[0] < 230) {
  1939. //PLA
  1940. max_feedrate[E_AXIS] = 50;
  1941. //current_position[E_AXIS] -= 8;
  1942. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1943. //current_position[E_AXIS] += 8;
  1944. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1945. current_position[E_AXIS] += 5.4;
  1946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1947. current_position[E_AXIS] += 3.2;
  1948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1949. current_position[E_AXIS] += 3;
  1950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1951. st_synchronize();
  1952. max_feedrate[E_AXIS] = 80;
  1953. current_position[E_AXIS] -= 82;
  1954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1955. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1956. current_position[E_AXIS] -= 20;
  1957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1958. current_position[E_AXIS] += 5;
  1959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1960. current_position[E_AXIS] += 5;
  1961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1962. current_position[E_AXIS] -= 10;
  1963. st_synchronize();
  1964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1965. current_position[E_AXIS] += 10;
  1966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1967. current_position[E_AXIS] -= 10;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1969. current_position[E_AXIS] += 10;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1971. current_position[E_AXIS] -= 10;
  1972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1973. st_synchronize();
  1974. }
  1975. else {
  1976. //ABS
  1977. max_feedrate[E_AXIS] = 50;
  1978. //current_position[E_AXIS] -= 8;
  1979. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1980. //current_position[E_AXIS] += 8;
  1981. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1982. current_position[E_AXIS] += 3.1;
  1983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1984. current_position[E_AXIS] += 3.1;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1986. current_position[E_AXIS] += 4;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1988. st_synchronize();
  1989. //current_position[X_AXIS] += 23; //delay
  1990. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1991. //current_position[X_AXIS] -= 23; //delay
  1992. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1993. delay(4700);
  1994. max_feedrate[E_AXIS] = 80;
  1995. current_position[E_AXIS] -= 92;
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1997. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1998. current_position[E_AXIS] -= 5;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2000. current_position[E_AXIS] += 5;
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2002. current_position[E_AXIS] -= 5;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2004. st_synchronize();
  2005. current_position[E_AXIS] += 5;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2007. current_position[E_AXIS] -= 5;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2009. current_position[E_AXIS] += 5;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2011. current_position[E_AXIS] -= 5;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2013. st_synchronize();
  2014. }
  2015. }
  2016. */
  2017. #ifdef TMC2130
  2018. void force_high_power_mode(bool start_high_power_section) {
  2019. uint8_t silent;
  2020. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2021. if (silent == 1) {
  2022. //we are in silent mode, set to normal mode to enable crash detection
  2023. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2024. st_synchronize();
  2025. cli();
  2026. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2027. update_mode_profile();
  2028. tmc2130_init();
  2029. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2030. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2031. st_reset_timer();
  2032. sei();
  2033. }
  2034. }
  2035. #endif //TMC2130
  2036. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2037. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2038. }
  2039. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2040. st_synchronize();
  2041. #if 0
  2042. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2043. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2044. #endif
  2045. // Flag for the display update routine and to disable the print cancelation during homing.
  2046. homing_flag = true;
  2047. // Which axes should be homed?
  2048. bool home_x = home_x_axis;
  2049. bool home_y = home_y_axis;
  2050. bool home_z = home_z_axis;
  2051. // Either all X,Y,Z codes are present, or none of them.
  2052. bool home_all_axes = home_x == home_y && home_x == home_z;
  2053. if (home_all_axes)
  2054. // No X/Y/Z code provided means to home all axes.
  2055. home_x = home_y = home_z = true;
  2056. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2057. if (home_all_axes) {
  2058. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2059. feedrate = homing_feedrate[Z_AXIS];
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2061. st_synchronize();
  2062. }
  2063. #ifdef ENABLE_AUTO_BED_LEVELING
  2064. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2065. #endif //ENABLE_AUTO_BED_LEVELING
  2066. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2067. // the planner will not perform any adjustments in the XY plane.
  2068. // Wait for the motors to stop and update the current position with the absolute values.
  2069. world2machine_revert_to_uncorrected();
  2070. // For mesh bed leveling deactivate the matrix temporarily.
  2071. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2072. // in a single axis only.
  2073. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2074. #ifdef MESH_BED_LEVELING
  2075. uint8_t mbl_was_active = mbl.active;
  2076. mbl.active = 0;
  2077. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2078. #endif
  2079. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2080. // consumed during the first movements following this statement.
  2081. if (home_z)
  2082. babystep_undo();
  2083. saved_feedrate = feedrate;
  2084. int l_feedmultiply = feedmultiply;
  2085. feedmultiply = 100;
  2086. previous_millis_cmd = millis();
  2087. enable_endstops(true);
  2088. memcpy(destination, current_position, sizeof(destination));
  2089. feedrate = 0.0;
  2090. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2091. if(home_z)
  2092. homeaxis(Z_AXIS);
  2093. #endif
  2094. #ifdef QUICK_HOME
  2095. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2096. if(home_x && home_y) //first diagonal move
  2097. {
  2098. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2099. int x_axis_home_dir = home_dir(X_AXIS);
  2100. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2101. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2102. feedrate = homing_feedrate[X_AXIS];
  2103. if(homing_feedrate[Y_AXIS]<feedrate)
  2104. feedrate = homing_feedrate[Y_AXIS];
  2105. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2106. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2107. } else {
  2108. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2109. }
  2110. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2111. st_synchronize();
  2112. axis_is_at_home(X_AXIS);
  2113. axis_is_at_home(Y_AXIS);
  2114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2115. destination[X_AXIS] = current_position[X_AXIS];
  2116. destination[Y_AXIS] = current_position[Y_AXIS];
  2117. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2118. feedrate = 0.0;
  2119. st_synchronize();
  2120. endstops_hit_on_purpose();
  2121. current_position[X_AXIS] = destination[X_AXIS];
  2122. current_position[Y_AXIS] = destination[Y_AXIS];
  2123. current_position[Z_AXIS] = destination[Z_AXIS];
  2124. }
  2125. #endif /* QUICK_HOME */
  2126. #ifdef TMC2130
  2127. if(home_x)
  2128. {
  2129. if (!calib)
  2130. homeaxis(X_AXIS);
  2131. else
  2132. tmc2130_home_calibrate(X_AXIS);
  2133. }
  2134. if(home_y)
  2135. {
  2136. if (!calib)
  2137. homeaxis(Y_AXIS);
  2138. else
  2139. tmc2130_home_calibrate(Y_AXIS);
  2140. }
  2141. #endif //TMC2130
  2142. if(home_x_axis && home_x_value != 0)
  2143. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2144. if(home_y_axis && home_y_value != 0)
  2145. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2146. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2147. #ifndef Z_SAFE_HOMING
  2148. if(home_z) {
  2149. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2150. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2151. feedrate = max_feedrate[Z_AXIS];
  2152. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2153. st_synchronize();
  2154. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2155. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2156. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2157. {
  2158. homeaxis(X_AXIS);
  2159. homeaxis(Y_AXIS);
  2160. }
  2161. // 1st mesh bed leveling measurement point, corrected.
  2162. world2machine_initialize();
  2163. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2164. world2machine_reset();
  2165. if (destination[Y_AXIS] < Y_MIN_POS)
  2166. destination[Y_AXIS] = Y_MIN_POS;
  2167. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2168. feedrate = homing_feedrate[Z_AXIS]/10;
  2169. current_position[Z_AXIS] = 0;
  2170. enable_endstops(false);
  2171. #ifdef DEBUG_BUILD
  2172. SERIAL_ECHOLNPGM("plan_set_position()");
  2173. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2174. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2175. #endif
  2176. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2177. #ifdef DEBUG_BUILD
  2178. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2179. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2180. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2181. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2182. #endif
  2183. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2184. st_synchronize();
  2185. current_position[X_AXIS] = destination[X_AXIS];
  2186. current_position[Y_AXIS] = destination[Y_AXIS];
  2187. enable_endstops(true);
  2188. endstops_hit_on_purpose();
  2189. homeaxis(Z_AXIS);
  2190. #else // MESH_BED_LEVELING
  2191. homeaxis(Z_AXIS);
  2192. #endif // MESH_BED_LEVELING
  2193. }
  2194. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2195. if(home_all_axes) {
  2196. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2197. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2198. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2199. feedrate = XY_TRAVEL_SPEED/60;
  2200. current_position[Z_AXIS] = 0;
  2201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2203. st_synchronize();
  2204. current_position[X_AXIS] = destination[X_AXIS];
  2205. current_position[Y_AXIS] = destination[Y_AXIS];
  2206. homeaxis(Z_AXIS);
  2207. }
  2208. // Let's see if X and Y are homed and probe is inside bed area.
  2209. if(home_z) {
  2210. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2211. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2212. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2213. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2214. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2215. current_position[Z_AXIS] = 0;
  2216. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2217. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2218. feedrate = max_feedrate[Z_AXIS];
  2219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2220. st_synchronize();
  2221. homeaxis(Z_AXIS);
  2222. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2223. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2224. SERIAL_ECHO_START;
  2225. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2226. } else {
  2227. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2228. SERIAL_ECHO_START;
  2229. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2230. }
  2231. }
  2232. #endif // Z_SAFE_HOMING
  2233. #endif // Z_HOME_DIR < 0
  2234. if(home_z_axis && home_z_value != 0)
  2235. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2236. #ifdef ENABLE_AUTO_BED_LEVELING
  2237. if(home_z)
  2238. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2239. #endif
  2240. // Set the planner and stepper routine positions.
  2241. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2242. // contains the machine coordinates.
  2243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2244. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2245. enable_endstops(false);
  2246. #endif
  2247. feedrate = saved_feedrate;
  2248. feedmultiply = l_feedmultiply;
  2249. previous_millis_cmd = millis();
  2250. endstops_hit_on_purpose();
  2251. #ifndef MESH_BED_LEVELING
  2252. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2253. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2254. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2255. lcd_adjust_z();
  2256. #endif
  2257. // Load the machine correction matrix
  2258. world2machine_initialize();
  2259. // and correct the current_position XY axes to match the transformed coordinate system.
  2260. world2machine_update_current();
  2261. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2262. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2263. {
  2264. if (! home_z && mbl_was_active) {
  2265. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2266. mbl.active = true;
  2267. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2268. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2269. }
  2270. }
  2271. else
  2272. {
  2273. st_synchronize();
  2274. homing_flag = false;
  2275. }
  2276. #endif
  2277. if (farm_mode) { prusa_statistics(20); };
  2278. homing_flag = false;
  2279. #if 0
  2280. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2281. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2282. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2283. #endif
  2284. }
  2285. void adjust_bed_reset()
  2286. {
  2287. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2288. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2289. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2290. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2291. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2292. }
  2293. //! @brief Calibrate XYZ
  2294. //! @param onlyZ if true, calibrate only Z axis
  2295. //! @param verbosity_level
  2296. //! @retval true Succeeded
  2297. //! @retval false Failed
  2298. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2299. {
  2300. bool final_result = false;
  2301. #ifdef TMC2130
  2302. FORCE_HIGH_POWER_START;
  2303. #endif // TMC2130
  2304. // Only Z calibration?
  2305. if (!onlyZ)
  2306. {
  2307. setTargetBed(0);
  2308. setAllTargetHotends(0);
  2309. adjust_bed_reset(); //reset bed level correction
  2310. }
  2311. // Disable the default update procedure of the display. We will do a modal dialog.
  2312. lcd_update_enable(false);
  2313. // Let the planner use the uncorrected coordinates.
  2314. mbl.reset();
  2315. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2316. // the planner will not perform any adjustments in the XY plane.
  2317. // Wait for the motors to stop and update the current position with the absolute values.
  2318. world2machine_revert_to_uncorrected();
  2319. // Reset the baby step value applied without moving the axes.
  2320. babystep_reset();
  2321. // Mark all axes as in a need for homing.
  2322. memset(axis_known_position, 0, sizeof(axis_known_position));
  2323. // Home in the XY plane.
  2324. //set_destination_to_current();
  2325. int l_feedmultiply = setup_for_endstop_move();
  2326. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2327. home_xy();
  2328. enable_endstops(false);
  2329. current_position[X_AXIS] += 5;
  2330. current_position[Y_AXIS] += 5;
  2331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2332. st_synchronize();
  2333. // Let the user move the Z axes up to the end stoppers.
  2334. #ifdef TMC2130
  2335. if (calibrate_z_auto())
  2336. {
  2337. #else //TMC2130
  2338. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2339. {
  2340. #endif //TMC2130
  2341. refresh_cmd_timeout();
  2342. #ifndef STEEL_SHEET
  2343. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2344. {
  2345. lcd_wait_for_cool_down();
  2346. }
  2347. #endif //STEEL_SHEET
  2348. if(!onlyZ)
  2349. {
  2350. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2351. #ifdef STEEL_SHEET
  2352. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2353. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2354. #endif //STEEL_SHEET
  2355. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2356. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2357. KEEPALIVE_STATE(IN_HANDLER);
  2358. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2359. lcd_set_cursor(0, 2);
  2360. lcd_print(1);
  2361. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2362. }
  2363. // Move the print head close to the bed.
  2364. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2365. bool endstops_enabled = enable_endstops(true);
  2366. #ifdef TMC2130
  2367. tmc2130_home_enter(Z_AXIS_MASK);
  2368. #endif //TMC2130
  2369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2370. st_synchronize();
  2371. #ifdef TMC2130
  2372. tmc2130_home_exit();
  2373. #endif //TMC2130
  2374. enable_endstops(endstops_enabled);
  2375. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2376. {
  2377. if (onlyZ)
  2378. {
  2379. clean_up_after_endstop_move(l_feedmultiply);
  2380. // Z only calibration.
  2381. // Load the machine correction matrix
  2382. world2machine_initialize();
  2383. // and correct the current_position to match the transformed coordinate system.
  2384. world2machine_update_current();
  2385. //FIXME
  2386. bool result = sample_mesh_and_store_reference();
  2387. if (result)
  2388. {
  2389. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2390. // Shipped, the nozzle height has been set already. The user can start printing now.
  2391. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2392. final_result = true;
  2393. // babystep_apply();
  2394. }
  2395. }
  2396. else
  2397. {
  2398. // Reset the baby step value and the baby step applied flag.
  2399. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2400. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2401. // Complete XYZ calibration.
  2402. uint8_t point_too_far_mask = 0;
  2403. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2404. clean_up_after_endstop_move(l_feedmultiply);
  2405. // Print head up.
  2406. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2408. st_synchronize();
  2409. //#ifndef NEW_XYZCAL
  2410. if (result >= 0)
  2411. {
  2412. #ifdef HEATBED_V2
  2413. sample_z();
  2414. #else //HEATBED_V2
  2415. point_too_far_mask = 0;
  2416. // Second half: The fine adjustment.
  2417. // Let the planner use the uncorrected coordinates.
  2418. mbl.reset();
  2419. world2machine_reset();
  2420. // Home in the XY plane.
  2421. int l_feedmultiply = setup_for_endstop_move();
  2422. home_xy();
  2423. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2424. clean_up_after_endstop_move(l_feedmultiply);
  2425. // Print head up.
  2426. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2428. st_synchronize();
  2429. // if (result >= 0) babystep_apply();
  2430. #endif //HEATBED_V2
  2431. }
  2432. //#endif //NEW_XYZCAL
  2433. lcd_update_enable(true);
  2434. lcd_update(2);
  2435. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2436. if (result >= 0)
  2437. {
  2438. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2439. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2440. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2441. final_result = true;
  2442. }
  2443. }
  2444. #ifdef TMC2130
  2445. tmc2130_home_exit();
  2446. #endif
  2447. }
  2448. else
  2449. {
  2450. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2451. final_result = false;
  2452. }
  2453. }
  2454. else
  2455. {
  2456. // Timeouted.
  2457. }
  2458. lcd_update_enable(true);
  2459. #ifdef TMC2130
  2460. FORCE_HIGH_POWER_END;
  2461. #endif // TMC2130
  2462. return final_result;
  2463. }
  2464. void gcode_M114()
  2465. {
  2466. SERIAL_PROTOCOLPGM("X:");
  2467. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2468. SERIAL_PROTOCOLPGM(" Y:");
  2469. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2470. SERIAL_PROTOCOLPGM(" Z:");
  2471. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2472. SERIAL_PROTOCOLPGM(" E:");
  2473. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2474. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2475. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2476. SERIAL_PROTOCOLPGM(" Y:");
  2477. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2478. SERIAL_PROTOCOLPGM(" Z:");
  2479. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2480. SERIAL_PROTOCOLPGM(" E:");
  2481. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2482. SERIAL_PROTOCOLLN("");
  2483. }
  2484. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2485. {
  2486. st_synchronize();
  2487. float lastpos[4];
  2488. if (farm_mode)
  2489. {
  2490. prusa_statistics(22);
  2491. }
  2492. //First backup current position and settings
  2493. int feedmultiplyBckp = feedmultiply;
  2494. float HotendTempBckp = degTargetHotend(active_extruder);
  2495. int fanSpeedBckp = fanSpeed;
  2496. lastpos[X_AXIS] = current_position[X_AXIS];
  2497. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2498. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2499. lastpos[E_AXIS] = current_position[E_AXIS];
  2500. //Retract E
  2501. current_position[E_AXIS] += e_shift;
  2502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2503. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2504. st_synchronize();
  2505. //Lift Z
  2506. current_position[Z_AXIS] += z_shift;
  2507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2508. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2509. st_synchronize();
  2510. //Move XY to side
  2511. current_position[X_AXIS] = x_position;
  2512. current_position[Y_AXIS] = y_position;
  2513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2514. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2515. st_synchronize();
  2516. //Beep, manage nozzle heater and wait for user to start unload filament
  2517. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2518. lcd_change_fil_state = 0;
  2519. // Unload filament
  2520. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2521. else unload_filament(); //unload filament for single material (used also in M702)
  2522. //finish moves
  2523. st_synchronize();
  2524. if (!mmu_enabled)
  2525. {
  2526. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2527. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2528. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2529. if (lcd_change_fil_state == 0)
  2530. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2531. lcd_update_enable(true);
  2532. }
  2533. if (mmu_enabled)
  2534. {
  2535. if (!automatic) {
  2536. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2537. mmu_M600_wait_and_beep();
  2538. if (saved_printing) {
  2539. lcd_clear();
  2540. lcd_set_cursor(0, 2);
  2541. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2542. mmu_command(MMU_CMD_R0);
  2543. manage_response(false, false);
  2544. }
  2545. }
  2546. mmu_M600_load_filament(automatic);
  2547. }
  2548. else
  2549. M600_load_filament();
  2550. if (!automatic) M600_check_state();
  2551. lcd_update_enable(true);
  2552. //Not let's go back to print
  2553. fanSpeed = fanSpeedBckp;
  2554. //Feed a little of filament to stabilize pressure
  2555. if (!automatic)
  2556. {
  2557. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2559. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2560. }
  2561. //Move XY back
  2562. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2563. FILAMENTCHANGE_XYFEED, active_extruder);
  2564. st_synchronize();
  2565. //Move Z back
  2566. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2567. FILAMENTCHANGE_ZFEED, active_extruder);
  2568. st_synchronize();
  2569. //Set E position to original
  2570. plan_set_e_position(lastpos[E_AXIS]);
  2571. memcpy(current_position, lastpos, sizeof(lastpos));
  2572. memcpy(destination, current_position, sizeof(current_position));
  2573. //Recover feed rate
  2574. feedmultiply = feedmultiplyBckp;
  2575. char cmd[9];
  2576. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2577. enquecommand(cmd);
  2578. lcd_setstatuspgm(_T(WELCOME_MSG));
  2579. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2580. }
  2581. void gcode_M701()
  2582. {
  2583. printf_P(PSTR("gcode_M701 begin\n"));
  2584. if (mmu_enabled)
  2585. {
  2586. extr_adj(tmp_extruder);//loads current extruder
  2587. mmu_extruder = tmp_extruder;
  2588. }
  2589. else
  2590. {
  2591. enable_z();
  2592. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2593. #ifdef FILAMENT_SENSOR
  2594. fsensor_oq_meassure_start(40);
  2595. #endif //FILAMENT_SENSOR
  2596. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2597. current_position[E_AXIS] += 40;
  2598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2599. st_synchronize();
  2600. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2601. current_position[E_AXIS] += 30;
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2603. st_synchronize();
  2604. current_position[E_AXIS] += 25;
  2605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2606. st_synchronize();
  2607. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2608. delay_keep_alive(50);
  2609. noTone(BEEPER);
  2610. if (!farm_mode && loading_flag) {
  2611. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2612. while (!clean) {
  2613. lcd_update_enable(true);
  2614. lcd_update(2);
  2615. current_position[E_AXIS] += 25;
  2616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2617. st_synchronize();
  2618. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2619. }
  2620. }
  2621. lcd_update_enable(true);
  2622. lcd_update(2);
  2623. lcd_setstatuspgm(_T(WELCOME_MSG));
  2624. disable_z();
  2625. loading_flag = false;
  2626. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2627. #ifdef FILAMENT_SENSOR
  2628. if (mmu_enabled == false)
  2629. {
  2630. fsensor_oq_meassure_stop();
  2631. if (!fsensor_oq_result())
  2632. {
  2633. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2634. lcd_update_enable(true);
  2635. lcd_update(2);
  2636. if (disable)
  2637. fsensor_disable();
  2638. }
  2639. }
  2640. #endif //FILAMENT_SENSOR
  2641. }
  2642. }
  2643. /**
  2644. * @brief Get serial number from 32U2 processor
  2645. *
  2646. * Typical format of S/N is:CZPX0917X003XC13518
  2647. *
  2648. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2649. *
  2650. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2651. * reply is transmitted to serial port 1 character by character.
  2652. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2653. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2654. * in any case.
  2655. */
  2656. static void gcode_PRUSA_SN()
  2657. {
  2658. if (farm_mode) {
  2659. selectedSerialPort = 0;
  2660. putchar(';');
  2661. putchar('S');
  2662. int numbersRead = 0;
  2663. ShortTimer timeout;
  2664. timeout.start();
  2665. while (numbersRead < 19) {
  2666. while (MSerial.available() > 0) {
  2667. uint8_t serial_char = MSerial.read();
  2668. selectedSerialPort = 1;
  2669. putchar(serial_char);
  2670. numbersRead++;
  2671. selectedSerialPort = 0;
  2672. }
  2673. if (timeout.expired(100u)) break;
  2674. }
  2675. selectedSerialPort = 1;
  2676. putchar('\n');
  2677. #if 0
  2678. for (int b = 0; b < 3; b++) {
  2679. tone(BEEPER, 110);
  2680. delay(50);
  2681. noTone(BEEPER);
  2682. delay(50);
  2683. }
  2684. #endif
  2685. } else {
  2686. puts_P(_N("Not in farm mode."));
  2687. }
  2688. }
  2689. #ifdef BACKLASH_X
  2690. extern uint8_t st_backlash_x;
  2691. #endif //BACKLASH_X
  2692. #ifdef BACKLASH_Y
  2693. extern uint8_t st_backlash_y;
  2694. #endif //BACKLASH_Y
  2695. //! @brief Parse and process commands
  2696. //!
  2697. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2698. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2699. //!
  2700. //! Implemented Codes
  2701. //! -------------------
  2702. //!
  2703. //!@n PRUSA CODES
  2704. //!@n P F - Returns FW versions
  2705. //!@n P R - Returns revision of printer
  2706. //!
  2707. //!@n G0 -> G1
  2708. //!@n G1 - Coordinated Movement X Y Z E
  2709. //!@n G2 - CW ARC
  2710. //!@n G3 - CCW ARC
  2711. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2712. //!@n G10 - retract filament according to settings of M207
  2713. //!@n G11 - retract recover filament according to settings of M208
  2714. //!@n G28 - Home all Axis
  2715. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2716. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2717. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2718. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2719. //!@n G80 - Automatic mesh bed leveling
  2720. //!@n G81 - Print bed profile
  2721. //!@n G90 - Use Absolute Coordinates
  2722. //!@n G91 - Use Relative Coordinates
  2723. //!@n G92 - Set current position to coordinates given
  2724. //!
  2725. //!@n M Codes
  2726. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2727. //!@n M1 - Same as M0
  2728. //!@n M17 - Enable/Power all stepper motors
  2729. //!@n M18 - Disable all stepper motors; same as M84
  2730. //!@n M20 - List SD card
  2731. //!@n M21 - Init SD card
  2732. //!@n M22 - Release SD card
  2733. //!@n M23 - Select SD file (M23 filename.g)
  2734. //!@n M24 - Start/resume SD print
  2735. //!@n M25 - Pause SD print
  2736. //!@n M26 - Set SD position in bytes (M26 S12345)
  2737. //!@n M27 - Report SD print status
  2738. //!@n M28 - Start SD write (M28 filename.g)
  2739. //!@n M29 - Stop SD write
  2740. //!@n M30 - Delete file from SD (M30 filename.g)
  2741. //!@n M31 - Output time since last M109 or SD card start to serial
  2742. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2743. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2744. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2745. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2746. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2747. //!@n M73 - Show percent done and print time remaining
  2748. //!@n M80 - Turn on Power Supply
  2749. //!@n M81 - Turn off Power Supply
  2750. //!@n M82 - Set E codes absolute (default)
  2751. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2752. //!@n M84 - Disable steppers until next move,
  2753. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2754. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2755. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2756. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2757. //!@n M104 - Set extruder target temp
  2758. //!@n M105 - Read current temp
  2759. //!@n M106 - Fan on
  2760. //!@n M107 - Fan off
  2761. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2762. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2763. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2764. //!@n M112 - Emergency stop
  2765. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2766. //!@n M114 - Output current position to serial port
  2767. //!@n M115 - Capabilities string
  2768. //!@n M117 - display message
  2769. //!@n M119 - Output Endstop status to serial port
  2770. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2771. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2772. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2773. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2774. //!@n M140 - Set bed target temp
  2775. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2776. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2777. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2778. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2779. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2780. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2781. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2782. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2783. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2784. //!@n M206 - set additional homing offset
  2785. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2786. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2787. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2788. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2789. //!@n M220 S<factor in percent>- set speed factor override percentage
  2790. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2791. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2792. //!@n M240 - Trigger a camera to take a photograph
  2793. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2794. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2795. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2796. //!@n M301 - Set PID parameters P I and D
  2797. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2798. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2799. //!@n M304 - Set bed PID parameters P I and D
  2800. //!@n M400 - Finish all moves
  2801. //!@n M401 - Lower z-probe if present
  2802. //!@n M402 - Raise z-probe if present
  2803. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2804. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2805. //!@n M406 - Turn off Filament Sensor extrusion control
  2806. //!@n M407 - Displays measured filament diameter
  2807. //!@n M500 - stores parameters in EEPROM
  2808. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2809. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2810. //!@n M503 - print the current settings (from memory not from EEPROM)
  2811. //!@n M509 - force language selection on next restart
  2812. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2813. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2814. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2815. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2816. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2817. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2818. //!@n M907 - Set digital trimpot motor current using axis codes.
  2819. //!@n M908 - Control digital trimpot directly.
  2820. //!@n M350 - Set microstepping mode.
  2821. //!@n M351 - Toggle MS1 MS2 pins directly.
  2822. //!
  2823. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2824. //!@n M999 - Restart after being stopped by error
  2825. void process_commands()
  2826. {
  2827. if (!buflen) return; //empty command
  2828. #ifdef FILAMENT_RUNOUT_SUPPORT
  2829. SET_INPUT(FR_SENS);
  2830. #endif
  2831. #ifdef CMDBUFFER_DEBUG
  2832. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2833. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2834. SERIAL_ECHOLNPGM("");
  2835. SERIAL_ECHOPGM("In cmdqueue: ");
  2836. SERIAL_ECHO(buflen);
  2837. SERIAL_ECHOLNPGM("");
  2838. #endif /* CMDBUFFER_DEBUG */
  2839. unsigned long codenum; //throw away variable
  2840. char *starpos = NULL;
  2841. #ifdef ENABLE_AUTO_BED_LEVELING
  2842. float x_tmp, y_tmp, z_tmp, real_z;
  2843. #endif
  2844. // PRUSA GCODES
  2845. KEEPALIVE_STATE(IN_HANDLER);
  2846. #ifdef SNMM
  2847. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2848. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2849. int8_t SilentMode;
  2850. #endif
  2851. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2852. starpos = (strchr(strchr_pointer + 5, '*'));
  2853. if (starpos != NULL)
  2854. *(starpos) = '\0';
  2855. lcd_setstatus(strchr_pointer + 5);
  2856. }
  2857. #ifdef TMC2130
  2858. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2859. {
  2860. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2861. {
  2862. uint8_t mask = 0;
  2863. if (code_seen('X')) mask |= X_AXIS_MASK;
  2864. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2865. crashdet_detected(mask);
  2866. }
  2867. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2868. crashdet_recover();
  2869. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2870. crashdet_cancel();
  2871. }
  2872. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2873. {
  2874. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2875. {
  2876. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2877. axis = (axis == 'E')?3:(axis - 'X');
  2878. if (axis < 4)
  2879. {
  2880. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2881. tmc2130_set_wave(axis, 247, fac);
  2882. }
  2883. }
  2884. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2885. {
  2886. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2887. axis = (axis == 'E')?3:(axis - 'X');
  2888. if (axis < 4)
  2889. {
  2890. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2891. uint16_t res = tmc2130_get_res(axis);
  2892. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2893. }
  2894. }
  2895. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2896. {
  2897. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2898. axis = (axis == 'E')?3:(axis - 'X');
  2899. if (axis < 4)
  2900. {
  2901. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2902. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2903. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2904. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2905. char* str_end = 0;
  2906. if (CMDBUFFER_CURRENT_STRING[14])
  2907. {
  2908. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2909. if (str_end && *str_end)
  2910. {
  2911. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2912. if (str_end && *str_end)
  2913. {
  2914. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2915. if (str_end && *str_end)
  2916. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2917. }
  2918. }
  2919. }
  2920. tmc2130_chopper_config[axis].toff = chop0;
  2921. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2922. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2923. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2924. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2925. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2926. }
  2927. }
  2928. }
  2929. #ifdef BACKLASH_X
  2930. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2931. {
  2932. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2933. st_backlash_x = bl;
  2934. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2935. }
  2936. #endif //BACKLASH_X
  2937. #ifdef BACKLASH_Y
  2938. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2939. {
  2940. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2941. st_backlash_y = bl;
  2942. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2943. }
  2944. #endif //BACKLASH_Y
  2945. #endif //TMC2130
  2946. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2947. fsensor_restore_print_and_continue();
  2948. }
  2949. else if(code_seen("PRUSA")){
  2950. if (code_seen("Ping")) { //! PRUSA Ping
  2951. if (farm_mode) {
  2952. PingTime = millis();
  2953. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2954. }
  2955. }
  2956. else if (code_seen("PRN")) { //! PRUSA PRN
  2957. printf_P(_N("%d"), status_number);
  2958. }else if (code_seen("FAN")) { //! PRUSA FAN
  2959. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2960. }else if (code_seen("fn")) { //! PRUSA fn
  2961. if (farm_mode) {
  2962. printf_P(_N("%d"), farm_no);
  2963. }
  2964. else {
  2965. puts_P(_N("Not in farm mode."));
  2966. }
  2967. }
  2968. else if (code_seen("thx")) //! PRUSA thx
  2969. {
  2970. no_response = false;
  2971. }
  2972. else if (code_seen("uvlo")) //! PRUSA uvlo
  2973. {
  2974. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2975. enquecommand_P(PSTR("M24"));
  2976. }
  2977. else if (code_seen("MMURES")) //! PRUSA MMURES
  2978. {
  2979. mmu_reset();
  2980. }
  2981. else if (code_seen("RESET")) { //! PRUSA RESET
  2982. // careful!
  2983. if (farm_mode) {
  2984. #ifdef WATCHDOG
  2985. boot_app_magic = BOOT_APP_MAGIC;
  2986. boot_app_flags = BOOT_APP_FLG_RUN;
  2987. wdt_enable(WDTO_15MS);
  2988. cli();
  2989. while(1);
  2990. #else //WATCHDOG
  2991. asm volatile("jmp 0x3E000");
  2992. #endif //WATCHDOG
  2993. }
  2994. else {
  2995. MYSERIAL.println("Not in farm mode.");
  2996. }
  2997. }else if (code_seen("fv")) { //! PRUSA fv
  2998. // get file version
  2999. #ifdef SDSUPPORT
  3000. card.openFile(strchr_pointer + 3,true);
  3001. while (true) {
  3002. uint16_t readByte = card.get();
  3003. MYSERIAL.write(readByte);
  3004. if (readByte=='\n') {
  3005. break;
  3006. }
  3007. }
  3008. card.closefile();
  3009. #endif // SDSUPPORT
  3010. } else if (code_seen("M28")) { //! PRUSA M28
  3011. trace();
  3012. prusa_sd_card_upload = true;
  3013. card.openFile(strchr_pointer+4,false);
  3014. } else if (code_seen("SN")) { //! PRUSA SN
  3015. gcode_PRUSA_SN();
  3016. } else if(code_seen("Fir")){ //! PRUSA Fir
  3017. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3018. } else if(code_seen("Rev")){ //! PRUSA Rev
  3019. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3020. } else if(code_seen("Lang")) { //! PRUSA Lang
  3021. lang_reset();
  3022. } else if(code_seen("Lz")) { //! PRUSA Lz
  3023. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3024. } else if(code_seen("Beat")) { //! PRUSA Beat
  3025. // Kick farm link timer
  3026. kicktime = millis();
  3027. } else if(code_seen("FR")) { //! PRUSA FR
  3028. // Factory full reset
  3029. factory_reset(0);
  3030. }
  3031. //else if (code_seen('Cal')) {
  3032. // lcd_calibration();
  3033. // }
  3034. }
  3035. else if (code_seen('^')) {
  3036. // nothing, this is a version line
  3037. } else if(code_seen('G'))
  3038. {
  3039. gcode_in_progress = (int)code_value();
  3040. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3041. switch (gcode_in_progress)
  3042. {
  3043. case 0: // G0 -> G1
  3044. case 1: // G1
  3045. if(Stopped == false) {
  3046. #ifdef FILAMENT_RUNOUT_SUPPORT
  3047. if(READ(FR_SENS)){
  3048. int feedmultiplyBckp=feedmultiply;
  3049. float target[4];
  3050. float lastpos[4];
  3051. target[X_AXIS]=current_position[X_AXIS];
  3052. target[Y_AXIS]=current_position[Y_AXIS];
  3053. target[Z_AXIS]=current_position[Z_AXIS];
  3054. target[E_AXIS]=current_position[E_AXIS];
  3055. lastpos[X_AXIS]=current_position[X_AXIS];
  3056. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3057. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3058. lastpos[E_AXIS]=current_position[E_AXIS];
  3059. //retract by E
  3060. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3062. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3064. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3065. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3067. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3068. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3069. //finish moves
  3070. st_synchronize();
  3071. //disable extruder steppers so filament can be removed
  3072. disable_e0();
  3073. disable_e1();
  3074. disable_e2();
  3075. delay(100);
  3076. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3077. uint8_t cnt=0;
  3078. int counterBeep = 0;
  3079. lcd_wait_interact();
  3080. while(!lcd_clicked()){
  3081. cnt++;
  3082. manage_heater();
  3083. manage_inactivity(true);
  3084. //lcd_update(0);
  3085. if(cnt==0)
  3086. {
  3087. #if BEEPER > 0
  3088. if (counterBeep== 500){
  3089. counterBeep = 0;
  3090. }
  3091. SET_OUTPUT(BEEPER);
  3092. if (counterBeep== 0){
  3093. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3094. WRITE(BEEPER,HIGH);
  3095. }
  3096. if (counterBeep== 20){
  3097. WRITE(BEEPER,LOW);
  3098. }
  3099. counterBeep++;
  3100. #else
  3101. #endif
  3102. }
  3103. }
  3104. WRITE(BEEPER,LOW);
  3105. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3107. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3108. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3109. lcd_change_fil_state = 0;
  3110. lcd_loading_filament();
  3111. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3112. lcd_change_fil_state = 0;
  3113. lcd_alright();
  3114. switch(lcd_change_fil_state){
  3115. case 2:
  3116. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3117. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3118. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3119. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3120. lcd_loading_filament();
  3121. break;
  3122. case 3:
  3123. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3124. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3125. lcd_loading_color();
  3126. break;
  3127. default:
  3128. lcd_change_success();
  3129. break;
  3130. }
  3131. }
  3132. target[E_AXIS]+= 5;
  3133. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3134. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3135. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3136. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3137. //plan_set_e_position(current_position[E_AXIS]);
  3138. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3139. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3140. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3141. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3142. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3143. plan_set_e_position(lastpos[E_AXIS]);
  3144. feedmultiply=feedmultiplyBckp;
  3145. char cmd[9];
  3146. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3147. enquecommand(cmd);
  3148. }
  3149. #endif
  3150. get_coordinates(); // For X Y Z E F
  3151. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3152. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3153. }
  3154. #ifdef FWRETRACT
  3155. if(cs.autoretract_enabled)
  3156. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3157. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3158. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3159. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3160. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3161. retract(!retracted[active_extruder]);
  3162. return;
  3163. }
  3164. }
  3165. #endif //FWRETRACT
  3166. prepare_move();
  3167. //ClearToSend();
  3168. }
  3169. break;
  3170. case 2: // G2 - CW ARC
  3171. if(Stopped == false) {
  3172. get_arc_coordinates();
  3173. prepare_arc_move(true);
  3174. }
  3175. break;
  3176. case 3: // G3 - CCW ARC
  3177. if(Stopped == false) {
  3178. get_arc_coordinates();
  3179. prepare_arc_move(false);
  3180. }
  3181. break;
  3182. case 4: // G4 dwell
  3183. codenum = 0;
  3184. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3185. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3186. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3187. st_synchronize();
  3188. codenum += millis(); // keep track of when we started waiting
  3189. previous_millis_cmd = millis();
  3190. while(millis() < codenum) {
  3191. manage_heater();
  3192. manage_inactivity();
  3193. lcd_update(0);
  3194. }
  3195. break;
  3196. #ifdef FWRETRACT
  3197. case 10: // G10 retract
  3198. #if EXTRUDERS > 1
  3199. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3200. retract(true,retracted_swap[active_extruder]);
  3201. #else
  3202. retract(true);
  3203. #endif
  3204. break;
  3205. case 11: // G11 retract_recover
  3206. #if EXTRUDERS > 1
  3207. retract(false,retracted_swap[active_extruder]);
  3208. #else
  3209. retract(false);
  3210. #endif
  3211. break;
  3212. #endif //FWRETRACT
  3213. case 28: //G28 Home all Axis one at a time
  3214. {
  3215. long home_x_value = 0;
  3216. long home_y_value = 0;
  3217. long home_z_value = 0;
  3218. // Which axes should be homed?
  3219. bool home_x = code_seen(axis_codes[X_AXIS]);
  3220. home_x_value = code_value_long();
  3221. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3222. home_y_value = code_value_long();
  3223. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3224. home_z_value = code_value_long();
  3225. bool without_mbl = code_seen('W');
  3226. // calibrate?
  3227. bool calib = code_seen('C');
  3228. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3229. if ((home_x || home_y || without_mbl || home_z) == false) {
  3230. // Push the commands to the front of the message queue in the reverse order!
  3231. // There shall be always enough space reserved for these commands.
  3232. goto case_G80;
  3233. }
  3234. break;
  3235. }
  3236. #ifdef ENABLE_AUTO_BED_LEVELING
  3237. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3238. {
  3239. #if Z_MIN_PIN == -1
  3240. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3241. #endif
  3242. // Prevent user from running a G29 without first homing in X and Y
  3243. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3244. {
  3245. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3246. SERIAL_ECHO_START;
  3247. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3248. break; // abort G29, since we don't know where we are
  3249. }
  3250. st_synchronize();
  3251. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3252. //vector_3 corrected_position = plan_get_position_mm();
  3253. //corrected_position.debug("position before G29");
  3254. plan_bed_level_matrix.set_to_identity();
  3255. vector_3 uncorrected_position = plan_get_position();
  3256. //uncorrected_position.debug("position durring G29");
  3257. current_position[X_AXIS] = uncorrected_position.x;
  3258. current_position[Y_AXIS] = uncorrected_position.y;
  3259. current_position[Z_AXIS] = uncorrected_position.z;
  3260. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3261. int l_feedmultiply = setup_for_endstop_move();
  3262. feedrate = homing_feedrate[Z_AXIS];
  3263. #ifdef AUTO_BED_LEVELING_GRID
  3264. // probe at the points of a lattice grid
  3265. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3266. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3267. // solve the plane equation ax + by + d = z
  3268. // A is the matrix with rows [x y 1] for all the probed points
  3269. // B is the vector of the Z positions
  3270. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3271. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3272. // "A" matrix of the linear system of equations
  3273. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3274. // "B" vector of Z points
  3275. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3276. int probePointCounter = 0;
  3277. bool zig = true;
  3278. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3279. {
  3280. int xProbe, xInc;
  3281. if (zig)
  3282. {
  3283. xProbe = LEFT_PROBE_BED_POSITION;
  3284. //xEnd = RIGHT_PROBE_BED_POSITION;
  3285. xInc = xGridSpacing;
  3286. zig = false;
  3287. } else // zag
  3288. {
  3289. xProbe = RIGHT_PROBE_BED_POSITION;
  3290. //xEnd = LEFT_PROBE_BED_POSITION;
  3291. xInc = -xGridSpacing;
  3292. zig = true;
  3293. }
  3294. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3295. {
  3296. float z_before;
  3297. if (probePointCounter == 0)
  3298. {
  3299. // raise before probing
  3300. z_before = Z_RAISE_BEFORE_PROBING;
  3301. } else
  3302. {
  3303. // raise extruder
  3304. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3305. }
  3306. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3307. eqnBVector[probePointCounter] = measured_z;
  3308. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3309. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3310. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3311. probePointCounter++;
  3312. xProbe += xInc;
  3313. }
  3314. }
  3315. clean_up_after_endstop_move(l_feedmultiply);
  3316. // solve lsq problem
  3317. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3318. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3319. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3320. SERIAL_PROTOCOLPGM(" b: ");
  3321. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3322. SERIAL_PROTOCOLPGM(" d: ");
  3323. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3324. set_bed_level_equation_lsq(plane_equation_coefficients);
  3325. free(plane_equation_coefficients);
  3326. #else // AUTO_BED_LEVELING_GRID not defined
  3327. // Probe at 3 arbitrary points
  3328. // probe 1
  3329. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3330. // probe 2
  3331. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3332. // probe 3
  3333. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3334. clean_up_after_endstop_move(l_feedmultiply);
  3335. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3336. #endif // AUTO_BED_LEVELING_GRID
  3337. st_synchronize();
  3338. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3339. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3340. // When the bed is uneven, this height must be corrected.
  3341. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3342. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3343. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3344. z_tmp = current_position[Z_AXIS];
  3345. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3346. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3347. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3348. }
  3349. break;
  3350. #ifndef Z_PROBE_SLED
  3351. case 30: // G30 Single Z Probe
  3352. {
  3353. st_synchronize();
  3354. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3355. int l_feedmultiply = setup_for_endstop_move();
  3356. feedrate = homing_feedrate[Z_AXIS];
  3357. run_z_probe();
  3358. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3359. SERIAL_PROTOCOLPGM(" X: ");
  3360. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3361. SERIAL_PROTOCOLPGM(" Y: ");
  3362. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3363. SERIAL_PROTOCOLPGM(" Z: ");
  3364. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3365. SERIAL_PROTOCOLPGM("\n");
  3366. clean_up_after_endstop_move(l_feedmultiply);
  3367. }
  3368. break;
  3369. #else
  3370. case 31: // dock the sled
  3371. dock_sled(true);
  3372. break;
  3373. case 32: // undock the sled
  3374. dock_sled(false);
  3375. break;
  3376. #endif // Z_PROBE_SLED
  3377. #endif // ENABLE_AUTO_BED_LEVELING
  3378. #ifdef MESH_BED_LEVELING
  3379. case 30: // G30 Single Z Probe
  3380. {
  3381. st_synchronize();
  3382. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3383. int l_feedmultiply = setup_for_endstop_move();
  3384. feedrate = homing_feedrate[Z_AXIS];
  3385. find_bed_induction_sensor_point_z(-10.f, 3);
  3386. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3387. clean_up_after_endstop_move(l_feedmultiply);
  3388. }
  3389. break;
  3390. case 75:
  3391. {
  3392. for (int i = 40; i <= 110; i++)
  3393. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3394. }
  3395. break;
  3396. case 76: //! G76 - PINDA probe temperature calibration
  3397. {
  3398. #ifdef PINDA_THERMISTOR
  3399. if (true)
  3400. {
  3401. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3402. //we need to know accurate position of first calibration point
  3403. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3404. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3405. break;
  3406. }
  3407. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3408. {
  3409. // We don't know where we are! HOME!
  3410. // Push the commands to the front of the message queue in the reverse order!
  3411. // There shall be always enough space reserved for these commands.
  3412. repeatcommand_front(); // repeat G76 with all its parameters
  3413. enquecommand_front_P((PSTR("G28 W0")));
  3414. break;
  3415. }
  3416. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3417. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3418. if (result)
  3419. {
  3420. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3422. current_position[Z_AXIS] = 50;
  3423. current_position[Y_AXIS] = 180;
  3424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3425. st_synchronize();
  3426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3427. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3428. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3429. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3430. st_synchronize();
  3431. gcode_G28(false, false, true);
  3432. }
  3433. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3434. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3435. current_position[Z_AXIS] = 100;
  3436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3437. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3438. lcd_temp_cal_show_result(false);
  3439. break;
  3440. }
  3441. }
  3442. lcd_update_enable(true);
  3443. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3444. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3445. float zero_z;
  3446. int z_shift = 0; //unit: steps
  3447. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3448. if (start_temp < 35) start_temp = 35;
  3449. if (start_temp < current_temperature_pinda) start_temp += 5;
  3450. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3451. // setTargetHotend(200, 0);
  3452. setTargetBed(70 + (start_temp - 30));
  3453. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3454. custom_message_state = 1;
  3455. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3456. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3458. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3459. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3461. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3463. st_synchronize();
  3464. while (current_temperature_pinda < start_temp)
  3465. {
  3466. delay_keep_alive(1000);
  3467. serialecho_temperatures();
  3468. }
  3469. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3470. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3473. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3475. st_synchronize();
  3476. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3477. if (find_z_result == false) {
  3478. lcd_temp_cal_show_result(find_z_result);
  3479. break;
  3480. }
  3481. zero_z = current_position[Z_AXIS];
  3482. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3483. int i = -1; for (; i < 5; i++)
  3484. {
  3485. float temp = (40 + i * 5);
  3486. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3487. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3488. if (start_temp <= temp) break;
  3489. }
  3490. for (i++; i < 5; i++)
  3491. {
  3492. float temp = (40 + i * 5);
  3493. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3494. custom_message_state = i + 2;
  3495. setTargetBed(50 + 10 * (temp - 30) / 5);
  3496. // setTargetHotend(255, 0);
  3497. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3499. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3500. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3502. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3504. st_synchronize();
  3505. while (current_temperature_pinda < temp)
  3506. {
  3507. delay_keep_alive(1000);
  3508. serialecho_temperatures();
  3509. }
  3510. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3512. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3513. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3515. st_synchronize();
  3516. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3517. if (find_z_result == false) {
  3518. lcd_temp_cal_show_result(find_z_result);
  3519. break;
  3520. }
  3521. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3522. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3523. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3524. }
  3525. lcd_temp_cal_show_result(true);
  3526. break;
  3527. }
  3528. #endif //PINDA_THERMISTOR
  3529. setTargetBed(PINDA_MIN_T);
  3530. float zero_z;
  3531. int z_shift = 0; //unit: steps
  3532. int t_c; // temperature
  3533. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3534. // We don't know where we are! HOME!
  3535. // Push the commands to the front of the message queue in the reverse order!
  3536. // There shall be always enough space reserved for these commands.
  3537. repeatcommand_front(); // repeat G76 with all its parameters
  3538. enquecommand_front_P((PSTR("G28 W0")));
  3539. break;
  3540. }
  3541. puts_P(_N("PINDA probe calibration start"));
  3542. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3543. custom_message_state = 1;
  3544. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3545. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3546. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3547. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3549. st_synchronize();
  3550. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3551. delay_keep_alive(1000);
  3552. serialecho_temperatures();
  3553. }
  3554. //enquecommand_P(PSTR("M190 S50"));
  3555. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3556. delay_keep_alive(1000);
  3557. serialecho_temperatures();
  3558. }
  3559. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3560. current_position[Z_AXIS] = 5;
  3561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3562. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3563. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3565. st_synchronize();
  3566. find_bed_induction_sensor_point_z(-1.f);
  3567. zero_z = current_position[Z_AXIS];
  3568. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3569. for (int i = 0; i<5; i++) {
  3570. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3571. custom_message_state = i + 2;
  3572. t_c = 60 + i * 10;
  3573. setTargetBed(t_c);
  3574. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3575. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3576. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3578. st_synchronize();
  3579. while (degBed() < t_c) {
  3580. delay_keep_alive(1000);
  3581. serialecho_temperatures();
  3582. }
  3583. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3584. delay_keep_alive(1000);
  3585. serialecho_temperatures();
  3586. }
  3587. current_position[Z_AXIS] = 5;
  3588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3589. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3590. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3592. st_synchronize();
  3593. find_bed_induction_sensor_point_z(-1.f);
  3594. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3595. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3596. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3597. }
  3598. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3599. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3600. puts_P(_N("Temperature calibration done."));
  3601. disable_x();
  3602. disable_y();
  3603. disable_z();
  3604. disable_e0();
  3605. disable_e1();
  3606. disable_e2();
  3607. setTargetBed(0); //set bed target temperature back to 0
  3608. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3609. temp_cal_active = true;
  3610. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3611. lcd_update_enable(true);
  3612. lcd_update(2);
  3613. }
  3614. break;
  3615. #ifdef DIS
  3616. case 77:
  3617. {
  3618. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3619. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3620. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3621. float dimension_x = 40;
  3622. float dimension_y = 40;
  3623. int points_x = 40;
  3624. int points_y = 40;
  3625. float offset_x = 74;
  3626. float offset_y = 33;
  3627. if (code_seen('X')) dimension_x = code_value();
  3628. if (code_seen('Y')) dimension_y = code_value();
  3629. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3630. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3631. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3632. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3633. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3634. } break;
  3635. #endif
  3636. case 79: {
  3637. for (int i = 255; i > 0; i = i - 5) {
  3638. fanSpeed = i;
  3639. //delay_keep_alive(2000);
  3640. for (int j = 0; j < 100; j++) {
  3641. delay_keep_alive(100);
  3642. }
  3643. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3644. }
  3645. }break;
  3646. /**
  3647. * G80: Mesh-based Z probe, probes a grid and produces a
  3648. * mesh to compensate for variable bed height
  3649. *
  3650. * The S0 report the points as below
  3651. * @code{.unparsed}
  3652. * +----> X-axis
  3653. * |
  3654. * |
  3655. * v Y-axis
  3656. * @endcode
  3657. */
  3658. case 80:
  3659. #ifdef MK1BP
  3660. break;
  3661. #endif //MK1BP
  3662. case_G80:
  3663. {
  3664. mesh_bed_leveling_flag = true;
  3665. static bool run = false;
  3666. #ifdef SUPPORT_VERBOSITY
  3667. int8_t verbosity_level = 0;
  3668. if (code_seen('V')) {
  3669. // Just 'V' without a number counts as V1.
  3670. char c = strchr_pointer[1];
  3671. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3672. }
  3673. #endif //SUPPORT_VERBOSITY
  3674. // Firstly check if we know where we are
  3675. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3676. // We don't know where we are! HOME!
  3677. // Push the commands to the front of the message queue in the reverse order!
  3678. // There shall be always enough space reserved for these commands.
  3679. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3680. repeatcommand_front(); // repeat G80 with all its parameters
  3681. enquecommand_front_P((PSTR("G28 W0")));
  3682. }
  3683. else {
  3684. mesh_bed_leveling_flag = false;
  3685. }
  3686. break;
  3687. }
  3688. bool temp_comp_start = true;
  3689. #ifdef PINDA_THERMISTOR
  3690. temp_comp_start = false;
  3691. #endif //PINDA_THERMISTOR
  3692. if (temp_comp_start)
  3693. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3694. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3695. temp_compensation_start();
  3696. run = true;
  3697. repeatcommand_front(); // repeat G80 with all its parameters
  3698. enquecommand_front_P((PSTR("G28 W0")));
  3699. }
  3700. else {
  3701. mesh_bed_leveling_flag = false;
  3702. }
  3703. break;
  3704. }
  3705. run = false;
  3706. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3707. mesh_bed_leveling_flag = false;
  3708. break;
  3709. }
  3710. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3711. unsigned int custom_message_type_old = custom_message_type;
  3712. unsigned int custom_message_state_old = custom_message_state;
  3713. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3714. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3715. lcd_update(1);
  3716. mbl.reset(); //reset mesh bed leveling
  3717. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3718. // consumed during the first movements following this statement.
  3719. babystep_undo();
  3720. // Cycle through all points and probe them
  3721. // First move up. During this first movement, the babystepping will be reverted.
  3722. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3724. // The move to the first calibration point.
  3725. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3726. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3727. #ifdef SUPPORT_VERBOSITY
  3728. if (verbosity_level >= 1)
  3729. {
  3730. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3731. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3732. }
  3733. #endif //SUPPORT_VERBOSITY
  3734. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3736. // Wait until the move is finished.
  3737. st_synchronize();
  3738. int mesh_point = 0; //index number of calibration point
  3739. int ix = 0;
  3740. int iy = 0;
  3741. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3742. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3743. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3744. #ifdef SUPPORT_VERBOSITY
  3745. if (verbosity_level >= 1) {
  3746. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3747. }
  3748. #endif // SUPPORT_VERBOSITY
  3749. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3750. const char *kill_message = NULL;
  3751. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3752. // Get coords of a measuring point.
  3753. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3754. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3755. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3756. float z0 = 0.f;
  3757. if (has_z && mesh_point > 0) {
  3758. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3759. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3760. //#if 0
  3761. #ifdef SUPPORT_VERBOSITY
  3762. if (verbosity_level >= 1) {
  3763. SERIAL_ECHOLNPGM("");
  3764. SERIAL_ECHOPGM("Bed leveling, point: ");
  3765. MYSERIAL.print(mesh_point);
  3766. SERIAL_ECHOPGM(", calibration z: ");
  3767. MYSERIAL.print(z0, 5);
  3768. SERIAL_ECHOLNPGM("");
  3769. }
  3770. #endif // SUPPORT_VERBOSITY
  3771. //#endif
  3772. }
  3773. // Move Z up to MESH_HOME_Z_SEARCH.
  3774. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3776. st_synchronize();
  3777. // Move to XY position of the sensor point.
  3778. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3779. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3780. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3781. #ifdef SUPPORT_VERBOSITY
  3782. if (verbosity_level >= 1) {
  3783. SERIAL_PROTOCOL(mesh_point);
  3784. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3785. }
  3786. #endif // SUPPORT_VERBOSITY
  3787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3788. st_synchronize();
  3789. // Go down until endstop is hit
  3790. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3791. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3792. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3793. break;
  3794. }
  3795. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3796. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3797. break;
  3798. }
  3799. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3800. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3801. break;
  3802. }
  3803. #ifdef SUPPORT_VERBOSITY
  3804. if (verbosity_level >= 10) {
  3805. SERIAL_ECHOPGM("X: ");
  3806. MYSERIAL.print(current_position[X_AXIS], 5);
  3807. SERIAL_ECHOLNPGM("");
  3808. SERIAL_ECHOPGM("Y: ");
  3809. MYSERIAL.print(current_position[Y_AXIS], 5);
  3810. SERIAL_PROTOCOLPGM("\n");
  3811. }
  3812. #endif // SUPPORT_VERBOSITY
  3813. float offset_z = 0;
  3814. #ifdef PINDA_THERMISTOR
  3815. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3816. #endif //PINDA_THERMISTOR
  3817. // #ifdef SUPPORT_VERBOSITY
  3818. /* if (verbosity_level >= 1)
  3819. {
  3820. SERIAL_ECHOPGM("mesh bed leveling: ");
  3821. MYSERIAL.print(current_position[Z_AXIS], 5);
  3822. SERIAL_ECHOPGM(" offset: ");
  3823. MYSERIAL.print(offset_z, 5);
  3824. SERIAL_ECHOLNPGM("");
  3825. }*/
  3826. // #endif // SUPPORT_VERBOSITY
  3827. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3828. custom_message_state--;
  3829. mesh_point++;
  3830. lcd_update(1);
  3831. }
  3832. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3833. #ifdef SUPPORT_VERBOSITY
  3834. if (verbosity_level >= 20) {
  3835. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3836. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3837. MYSERIAL.print(current_position[Z_AXIS], 5);
  3838. }
  3839. #endif // SUPPORT_VERBOSITY
  3840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3841. st_synchronize();
  3842. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3843. kill(kill_message);
  3844. SERIAL_ECHOLNPGM("killed");
  3845. }
  3846. clean_up_after_endstop_move(l_feedmultiply);
  3847. // SERIAL_ECHOLNPGM("clean up finished ");
  3848. bool apply_temp_comp = true;
  3849. #ifdef PINDA_THERMISTOR
  3850. apply_temp_comp = false;
  3851. #endif
  3852. if (apply_temp_comp)
  3853. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3854. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3855. // SERIAL_ECHOLNPGM("babystep applied");
  3856. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3857. #ifdef SUPPORT_VERBOSITY
  3858. if (verbosity_level >= 1) {
  3859. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3860. }
  3861. #endif // SUPPORT_VERBOSITY
  3862. for (uint8_t i = 0; i < 4; ++i) {
  3863. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3864. long correction = 0;
  3865. if (code_seen(codes[i]))
  3866. correction = code_value_long();
  3867. else if (eeprom_bed_correction_valid) {
  3868. unsigned char *addr = (i < 2) ?
  3869. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3870. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3871. correction = eeprom_read_int8(addr);
  3872. }
  3873. if (correction == 0)
  3874. continue;
  3875. float offset = float(correction) * 0.001f;
  3876. if (fabs(offset) > 0.101f) {
  3877. SERIAL_ERROR_START;
  3878. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3879. SERIAL_ECHO(offset);
  3880. SERIAL_ECHOLNPGM(" microns");
  3881. }
  3882. else {
  3883. switch (i) {
  3884. case 0:
  3885. for (uint8_t row = 0; row < 3; ++row) {
  3886. mbl.z_values[row][1] += 0.5f * offset;
  3887. mbl.z_values[row][0] += offset;
  3888. }
  3889. break;
  3890. case 1:
  3891. for (uint8_t row = 0; row < 3; ++row) {
  3892. mbl.z_values[row][1] += 0.5f * offset;
  3893. mbl.z_values[row][2] += offset;
  3894. }
  3895. break;
  3896. case 2:
  3897. for (uint8_t col = 0; col < 3; ++col) {
  3898. mbl.z_values[1][col] += 0.5f * offset;
  3899. mbl.z_values[0][col] += offset;
  3900. }
  3901. break;
  3902. case 3:
  3903. for (uint8_t col = 0; col < 3; ++col) {
  3904. mbl.z_values[1][col] += 0.5f * offset;
  3905. mbl.z_values[2][col] += offset;
  3906. }
  3907. break;
  3908. }
  3909. }
  3910. }
  3911. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3912. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3913. // SERIAL_ECHOLNPGM("Upsample finished");
  3914. mbl.active = 1; //activate mesh bed leveling
  3915. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3916. go_home_with_z_lift();
  3917. // SERIAL_ECHOLNPGM("Go home finished");
  3918. //unretract (after PINDA preheat retraction)
  3919. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3920. current_position[E_AXIS] += default_retraction;
  3921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3922. }
  3923. KEEPALIVE_STATE(NOT_BUSY);
  3924. // Restore custom message state
  3925. lcd_setstatuspgm(_T(WELCOME_MSG));
  3926. custom_message_type = custom_message_type_old;
  3927. custom_message_state = custom_message_state_old;
  3928. mesh_bed_leveling_flag = false;
  3929. mesh_bed_run_from_menu = false;
  3930. lcd_update(2);
  3931. }
  3932. break;
  3933. /**
  3934. * G81: Print mesh bed leveling status and bed profile if activated
  3935. */
  3936. case 81:
  3937. if (mbl.active) {
  3938. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3939. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3940. SERIAL_PROTOCOLPGM(",");
  3941. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3942. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3943. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3944. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3945. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3946. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3947. SERIAL_PROTOCOLPGM(" ");
  3948. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3949. }
  3950. SERIAL_PROTOCOLPGM("\n");
  3951. }
  3952. }
  3953. else
  3954. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3955. break;
  3956. #if 0
  3957. /**
  3958. * G82: Single Z probe at current location
  3959. *
  3960. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3961. *
  3962. */
  3963. case 82:
  3964. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3965. int l_feedmultiply = setup_for_endstop_move();
  3966. find_bed_induction_sensor_point_z();
  3967. clean_up_after_endstop_move(l_feedmultiply);
  3968. SERIAL_PROTOCOLPGM("Bed found at: ");
  3969. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3970. SERIAL_PROTOCOLPGM("\n");
  3971. break;
  3972. /**
  3973. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3974. */
  3975. case 83:
  3976. {
  3977. int babystepz = code_seen('S') ? code_value() : 0;
  3978. int BabyPosition = code_seen('P') ? code_value() : 0;
  3979. if (babystepz != 0) {
  3980. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3981. // Is the axis indexed starting with zero or one?
  3982. if (BabyPosition > 4) {
  3983. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3984. }else{
  3985. // Save it to the eeprom
  3986. babystepLoadZ = babystepz;
  3987. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3988. // adjust the Z
  3989. babystepsTodoZadd(babystepLoadZ);
  3990. }
  3991. }
  3992. }
  3993. break;
  3994. /**
  3995. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3996. */
  3997. case 84:
  3998. babystepsTodoZsubtract(babystepLoadZ);
  3999. // babystepLoadZ = 0;
  4000. break;
  4001. /**
  4002. * G85: Prusa3D specific: Pick best babystep
  4003. */
  4004. case 85:
  4005. lcd_pick_babystep();
  4006. break;
  4007. #endif
  4008. /**
  4009. * G86: Prusa3D specific: Disable babystep correction after home.
  4010. * This G-code will be performed at the start of a calibration script.
  4011. */
  4012. case 86:
  4013. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4014. break;
  4015. /**
  4016. * G87: Prusa3D specific: Enable babystep correction after home
  4017. * This G-code will be performed at the end of a calibration script.
  4018. */
  4019. case 87:
  4020. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4021. break;
  4022. /**
  4023. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4024. */
  4025. case 88:
  4026. break;
  4027. #endif // ENABLE_MESH_BED_LEVELING
  4028. case 90: // G90
  4029. relative_mode = false;
  4030. break;
  4031. case 91: // G91
  4032. relative_mode = true;
  4033. break;
  4034. case 92: // G92
  4035. if(!code_seen(axis_codes[E_AXIS]))
  4036. st_synchronize();
  4037. for(int8_t i=0; i < NUM_AXIS; i++) {
  4038. if(code_seen(axis_codes[i])) {
  4039. if(i == E_AXIS) {
  4040. current_position[i] = code_value();
  4041. plan_set_e_position(current_position[E_AXIS]);
  4042. }
  4043. else {
  4044. current_position[i] = code_value()+cs.add_homing[i];
  4045. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4046. }
  4047. }
  4048. }
  4049. break;
  4050. case 98: //! G98 (activate farm mode)
  4051. farm_mode = 1;
  4052. PingTime = millis();
  4053. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4054. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4055. SilentModeMenu = SILENT_MODE_OFF;
  4056. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4057. break;
  4058. case 99: //! G99 (deactivate farm mode)
  4059. farm_mode = 0;
  4060. lcd_printer_connected();
  4061. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4062. lcd_update(2);
  4063. break;
  4064. default:
  4065. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4066. }
  4067. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4068. gcode_in_progress = 0;
  4069. } // end if(code_seen('G'))
  4070. else if(code_seen('M'))
  4071. {
  4072. int index;
  4073. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4074. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4075. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4076. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4077. } else
  4078. {
  4079. mcode_in_progress = (int)code_value();
  4080. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4081. switch(mcode_in_progress)
  4082. {
  4083. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4084. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4085. {
  4086. char *src = strchr_pointer + 2;
  4087. codenum = 0;
  4088. bool hasP = false, hasS = false;
  4089. if (code_seen('P')) {
  4090. codenum = code_value(); // milliseconds to wait
  4091. hasP = codenum > 0;
  4092. }
  4093. if (code_seen('S')) {
  4094. codenum = code_value() * 1000; // seconds to wait
  4095. hasS = codenum > 0;
  4096. }
  4097. starpos = strchr(src, '*');
  4098. if (starpos != NULL) *(starpos) = '\0';
  4099. while (*src == ' ') ++src;
  4100. if (!hasP && !hasS && *src != '\0') {
  4101. lcd_setstatus(src);
  4102. } else {
  4103. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4104. }
  4105. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4106. st_synchronize();
  4107. previous_millis_cmd = millis();
  4108. if (codenum > 0){
  4109. codenum += millis(); // keep track of when we started waiting
  4110. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4111. while(millis() < codenum && !lcd_clicked()){
  4112. manage_heater();
  4113. manage_inactivity(true);
  4114. lcd_update(0);
  4115. }
  4116. KEEPALIVE_STATE(IN_HANDLER);
  4117. lcd_ignore_click(false);
  4118. }else{
  4119. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4120. while(!lcd_clicked()){
  4121. manage_heater();
  4122. manage_inactivity(true);
  4123. lcd_update(0);
  4124. }
  4125. KEEPALIVE_STATE(IN_HANDLER);
  4126. }
  4127. if (IS_SD_PRINTING)
  4128. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4129. else
  4130. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4131. }
  4132. break;
  4133. case 17:
  4134. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4135. enable_x();
  4136. enable_y();
  4137. enable_z();
  4138. enable_e0();
  4139. enable_e1();
  4140. enable_e2();
  4141. break;
  4142. #ifdef SDSUPPORT
  4143. case 20: // M20 - list SD card
  4144. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4145. card.ls();
  4146. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4147. break;
  4148. case 21: // M21 - init SD card
  4149. card.initsd();
  4150. break;
  4151. case 22: //M22 - release SD card
  4152. card.release();
  4153. break;
  4154. case 23: //M23 - Select file
  4155. starpos = (strchr(strchr_pointer + 4,'*'));
  4156. if(starpos!=NULL)
  4157. *(starpos)='\0';
  4158. card.openFile(strchr_pointer + 4,true);
  4159. break;
  4160. case 24: //M24 - Start SD print
  4161. if (!card.paused)
  4162. failstats_reset_print();
  4163. card.startFileprint();
  4164. starttime=millis();
  4165. break;
  4166. case 25: //M25 - Pause SD print
  4167. card.pauseSDPrint();
  4168. break;
  4169. case 26: //M26 - Set SD index
  4170. if(card.cardOK && code_seen('S')) {
  4171. card.setIndex(code_value_long());
  4172. }
  4173. break;
  4174. case 27: //M27 - Get SD status
  4175. card.getStatus();
  4176. break;
  4177. case 28: //M28 - Start SD write
  4178. starpos = (strchr(strchr_pointer + 4,'*'));
  4179. if(starpos != NULL){
  4180. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4181. strchr_pointer = strchr(npos,' ') + 1;
  4182. *(starpos) = '\0';
  4183. }
  4184. card.openFile(strchr_pointer+4,false);
  4185. break;
  4186. case 29: //M29 - Stop SD write
  4187. //processed in write to file routine above
  4188. //card,saving = false;
  4189. break;
  4190. case 30: //M30 <filename> Delete File
  4191. if (card.cardOK){
  4192. card.closefile();
  4193. starpos = (strchr(strchr_pointer + 4,'*'));
  4194. if(starpos != NULL){
  4195. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4196. strchr_pointer = strchr(npos,' ') + 1;
  4197. *(starpos) = '\0';
  4198. }
  4199. card.removeFile(strchr_pointer + 4);
  4200. }
  4201. break;
  4202. case 32: //M32 - Select file and start SD print
  4203. {
  4204. if(card.sdprinting) {
  4205. st_synchronize();
  4206. }
  4207. starpos = (strchr(strchr_pointer + 4,'*'));
  4208. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4209. if(namestartpos==NULL)
  4210. {
  4211. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4212. }
  4213. else
  4214. namestartpos++; //to skip the '!'
  4215. if(starpos!=NULL)
  4216. *(starpos)='\0';
  4217. bool call_procedure=(code_seen('P'));
  4218. if(strchr_pointer>namestartpos)
  4219. call_procedure=false; //false alert, 'P' found within filename
  4220. if( card.cardOK )
  4221. {
  4222. card.openFile(namestartpos,true,!call_procedure);
  4223. if(code_seen('S'))
  4224. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4225. card.setIndex(code_value_long());
  4226. card.startFileprint();
  4227. if(!call_procedure)
  4228. starttime=millis(); //procedure calls count as normal print time.
  4229. }
  4230. } break;
  4231. case 928: //M928 - Start SD write
  4232. starpos = (strchr(strchr_pointer + 5,'*'));
  4233. if(starpos != NULL){
  4234. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4235. strchr_pointer = strchr(npos,' ') + 1;
  4236. *(starpos) = '\0';
  4237. }
  4238. card.openLogFile(strchr_pointer+5);
  4239. break;
  4240. #endif //SDSUPPORT
  4241. case 31: //M31 take time since the start of the SD print or an M109 command
  4242. {
  4243. stoptime=millis();
  4244. char time[30];
  4245. unsigned long t=(stoptime-starttime)/1000;
  4246. int sec,min;
  4247. min=t/60;
  4248. sec=t%60;
  4249. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4250. SERIAL_ECHO_START;
  4251. SERIAL_ECHOLN(time);
  4252. lcd_setstatus(time);
  4253. autotempShutdown();
  4254. }
  4255. break;
  4256. case 42: //M42 -Change pin status via gcode
  4257. if (code_seen('S'))
  4258. {
  4259. int pin_status = code_value();
  4260. int pin_number = LED_PIN;
  4261. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4262. pin_number = code_value();
  4263. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4264. {
  4265. if (sensitive_pins[i] == pin_number)
  4266. {
  4267. pin_number = -1;
  4268. break;
  4269. }
  4270. }
  4271. #if defined(FAN_PIN) && FAN_PIN > -1
  4272. if (pin_number == FAN_PIN)
  4273. fanSpeed = pin_status;
  4274. #endif
  4275. if (pin_number > -1)
  4276. {
  4277. pinMode(pin_number, OUTPUT);
  4278. digitalWrite(pin_number, pin_status);
  4279. analogWrite(pin_number, pin_status);
  4280. }
  4281. }
  4282. break;
  4283. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4284. // Reset the baby step value and the baby step applied flag.
  4285. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4286. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4287. // Reset the skew and offset in both RAM and EEPROM.
  4288. reset_bed_offset_and_skew();
  4289. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4290. // the planner will not perform any adjustments in the XY plane.
  4291. // Wait for the motors to stop and update the current position with the absolute values.
  4292. world2machine_revert_to_uncorrected();
  4293. break;
  4294. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4295. {
  4296. int8_t verbosity_level = 0;
  4297. bool only_Z = code_seen('Z');
  4298. #ifdef SUPPORT_VERBOSITY
  4299. if (code_seen('V'))
  4300. {
  4301. // Just 'V' without a number counts as V1.
  4302. char c = strchr_pointer[1];
  4303. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4304. }
  4305. #endif //SUPPORT_VERBOSITY
  4306. gcode_M45(only_Z, verbosity_level);
  4307. }
  4308. break;
  4309. /*
  4310. case 46:
  4311. {
  4312. // M46: Prusa3D: Show the assigned IP address.
  4313. uint8_t ip[4];
  4314. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4315. if (hasIP) {
  4316. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4317. SERIAL_ECHO(int(ip[0]));
  4318. SERIAL_ECHOPGM(".");
  4319. SERIAL_ECHO(int(ip[1]));
  4320. SERIAL_ECHOPGM(".");
  4321. SERIAL_ECHO(int(ip[2]));
  4322. SERIAL_ECHOPGM(".");
  4323. SERIAL_ECHO(int(ip[3]));
  4324. SERIAL_ECHOLNPGM("");
  4325. } else {
  4326. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4327. }
  4328. break;
  4329. }
  4330. */
  4331. case 47:
  4332. //! M47: Prusa3D: Show end stops dialog on the display.
  4333. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4334. lcd_diag_show_end_stops();
  4335. KEEPALIVE_STATE(IN_HANDLER);
  4336. break;
  4337. #if 0
  4338. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4339. {
  4340. // Disable the default update procedure of the display. We will do a modal dialog.
  4341. lcd_update_enable(false);
  4342. // Let the planner use the uncorrected coordinates.
  4343. mbl.reset();
  4344. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4345. // the planner will not perform any adjustments in the XY plane.
  4346. // Wait for the motors to stop and update the current position with the absolute values.
  4347. world2machine_revert_to_uncorrected();
  4348. // Move the print head close to the bed.
  4349. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4351. st_synchronize();
  4352. // Home in the XY plane.
  4353. set_destination_to_current();
  4354. int l_feedmultiply = setup_for_endstop_move();
  4355. home_xy();
  4356. int8_t verbosity_level = 0;
  4357. if (code_seen('V')) {
  4358. // Just 'V' without a number counts as V1.
  4359. char c = strchr_pointer[1];
  4360. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4361. }
  4362. bool success = scan_bed_induction_points(verbosity_level);
  4363. clean_up_after_endstop_move(l_feedmultiply);
  4364. // Print head up.
  4365. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4367. st_synchronize();
  4368. lcd_update_enable(true);
  4369. break;
  4370. }
  4371. #endif
  4372. #ifdef ENABLE_AUTO_BED_LEVELING
  4373. #ifdef Z_PROBE_REPEATABILITY_TEST
  4374. //! M48 Z-Probe repeatability measurement function.
  4375. //!
  4376. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4377. //!
  4378. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4379. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4380. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4381. //! regenerated.
  4382. //!
  4383. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4384. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4385. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4386. //!
  4387. case 48: // M48 Z-Probe repeatability
  4388. {
  4389. #if Z_MIN_PIN == -1
  4390. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4391. #endif
  4392. double sum=0.0;
  4393. double mean=0.0;
  4394. double sigma=0.0;
  4395. double sample_set[50];
  4396. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4397. double X_current, Y_current, Z_current;
  4398. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4399. if (code_seen('V') || code_seen('v')) {
  4400. verbose_level = code_value();
  4401. if (verbose_level<0 || verbose_level>4 ) {
  4402. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4403. goto Sigma_Exit;
  4404. }
  4405. }
  4406. if (verbose_level > 0) {
  4407. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4408. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4409. }
  4410. if (code_seen('n')) {
  4411. n_samples = code_value();
  4412. if (n_samples<4 || n_samples>50 ) {
  4413. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4414. goto Sigma_Exit;
  4415. }
  4416. }
  4417. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4418. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4419. Z_current = st_get_position_mm(Z_AXIS);
  4420. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4421. ext_position = st_get_position_mm(E_AXIS);
  4422. if (code_seen('X') || code_seen('x') ) {
  4423. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4424. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4425. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4426. goto Sigma_Exit;
  4427. }
  4428. }
  4429. if (code_seen('Y') || code_seen('y') ) {
  4430. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4431. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4432. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4433. goto Sigma_Exit;
  4434. }
  4435. }
  4436. if (code_seen('L') || code_seen('l') ) {
  4437. n_legs = code_value();
  4438. if ( n_legs==1 )
  4439. n_legs = 2;
  4440. if ( n_legs<0 || n_legs>15 ) {
  4441. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4442. goto Sigma_Exit;
  4443. }
  4444. }
  4445. //
  4446. // Do all the preliminary setup work. First raise the probe.
  4447. //
  4448. st_synchronize();
  4449. plan_bed_level_matrix.set_to_identity();
  4450. plan_buffer_line( X_current, Y_current, Z_start_location,
  4451. ext_position,
  4452. homing_feedrate[Z_AXIS]/60,
  4453. active_extruder);
  4454. st_synchronize();
  4455. //
  4456. // Now get everything to the specified probe point So we can safely do a probe to
  4457. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4458. // use that as a starting point for each probe.
  4459. //
  4460. if (verbose_level > 2)
  4461. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4462. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4463. ext_position,
  4464. homing_feedrate[X_AXIS]/60,
  4465. active_extruder);
  4466. st_synchronize();
  4467. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4468. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4469. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4470. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4471. //
  4472. // OK, do the inital probe to get us close to the bed.
  4473. // Then retrace the right amount and use that in subsequent probes
  4474. //
  4475. int l_feedmultiply = setup_for_endstop_move();
  4476. run_z_probe();
  4477. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4478. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4479. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4480. ext_position,
  4481. homing_feedrate[X_AXIS]/60,
  4482. active_extruder);
  4483. st_synchronize();
  4484. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4485. for( n=0; n<n_samples; n++) {
  4486. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4487. if ( n_legs) {
  4488. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4489. int rotational_direction, l;
  4490. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4491. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4492. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4493. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4494. //SERIAL_ECHOPAIR(" theta: ",theta);
  4495. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4496. //SERIAL_PROTOCOLLNPGM("");
  4497. for( l=0; l<n_legs-1; l++) {
  4498. if (rotational_direction==1)
  4499. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4500. else
  4501. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4502. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4503. if ( radius<0.0 )
  4504. radius = -radius;
  4505. X_current = X_probe_location + cos(theta) * radius;
  4506. Y_current = Y_probe_location + sin(theta) * radius;
  4507. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4508. X_current = X_MIN_POS;
  4509. if ( X_current>X_MAX_POS)
  4510. X_current = X_MAX_POS;
  4511. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4512. Y_current = Y_MIN_POS;
  4513. if ( Y_current>Y_MAX_POS)
  4514. Y_current = Y_MAX_POS;
  4515. if (verbose_level>3 ) {
  4516. SERIAL_ECHOPAIR("x: ", X_current);
  4517. SERIAL_ECHOPAIR("y: ", Y_current);
  4518. SERIAL_PROTOCOLLNPGM("");
  4519. }
  4520. do_blocking_move_to( X_current, Y_current, Z_current );
  4521. }
  4522. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4523. }
  4524. int l_feedmultiply = setup_for_endstop_move();
  4525. run_z_probe();
  4526. sample_set[n] = current_position[Z_AXIS];
  4527. //
  4528. // Get the current mean for the data points we have so far
  4529. //
  4530. sum=0.0;
  4531. for( j=0; j<=n; j++) {
  4532. sum = sum + sample_set[j];
  4533. }
  4534. mean = sum / (double (n+1));
  4535. //
  4536. // Now, use that mean to calculate the standard deviation for the
  4537. // data points we have so far
  4538. //
  4539. sum=0.0;
  4540. for( j=0; j<=n; j++) {
  4541. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4542. }
  4543. sigma = sqrt( sum / (double (n+1)) );
  4544. if (verbose_level > 1) {
  4545. SERIAL_PROTOCOL(n+1);
  4546. SERIAL_PROTOCOL(" of ");
  4547. SERIAL_PROTOCOL(n_samples);
  4548. SERIAL_PROTOCOLPGM(" z: ");
  4549. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4550. }
  4551. if (verbose_level > 2) {
  4552. SERIAL_PROTOCOL(" mean: ");
  4553. SERIAL_PROTOCOL_F(mean,6);
  4554. SERIAL_PROTOCOL(" sigma: ");
  4555. SERIAL_PROTOCOL_F(sigma,6);
  4556. }
  4557. if (verbose_level > 0)
  4558. SERIAL_PROTOCOLPGM("\n");
  4559. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4560. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4561. st_synchronize();
  4562. }
  4563. delay(1000);
  4564. clean_up_after_endstop_move(l_feedmultiply);
  4565. // enable_endstops(true);
  4566. if (verbose_level > 0) {
  4567. SERIAL_PROTOCOLPGM("Mean: ");
  4568. SERIAL_PROTOCOL_F(mean, 6);
  4569. SERIAL_PROTOCOLPGM("\n");
  4570. }
  4571. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4572. SERIAL_PROTOCOL_F(sigma, 6);
  4573. SERIAL_PROTOCOLPGM("\n\n");
  4574. Sigma_Exit:
  4575. break;
  4576. }
  4577. #endif // Z_PROBE_REPEATABILITY_TEST
  4578. #endif // ENABLE_AUTO_BED_LEVELING
  4579. case 73: //M73 show percent done and time remaining
  4580. if(code_seen('P')) print_percent_done_normal = code_value();
  4581. if(code_seen('R')) print_time_remaining_normal = code_value();
  4582. if(code_seen('Q')) print_percent_done_silent = code_value();
  4583. if(code_seen('S')) print_time_remaining_silent = code_value();
  4584. {
  4585. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4586. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4587. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4588. }
  4589. break;
  4590. case 104: // M104
  4591. {
  4592. uint8_t extruder;
  4593. if(setTargetedHotend(104,extruder)){
  4594. break;
  4595. }
  4596. if (code_seen('S'))
  4597. {
  4598. setTargetHotendSafe(code_value(), extruder);
  4599. }
  4600. setWatch();
  4601. break;
  4602. }
  4603. case 112: // M112 -Emergency Stop
  4604. kill(_n(""), 3);
  4605. break;
  4606. case 140: // M140 set bed temp
  4607. if (code_seen('S')) setTargetBed(code_value());
  4608. break;
  4609. case 105 : // M105
  4610. {
  4611. uint8_t extruder;
  4612. if(setTargetedHotend(105, extruder)){
  4613. break;
  4614. }
  4615. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4616. SERIAL_PROTOCOLPGM("ok T:");
  4617. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4618. SERIAL_PROTOCOLPGM(" /");
  4619. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4620. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4621. SERIAL_PROTOCOLPGM(" B:");
  4622. SERIAL_PROTOCOL_F(degBed(),1);
  4623. SERIAL_PROTOCOLPGM(" /");
  4624. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4625. #endif //TEMP_BED_PIN
  4626. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4627. SERIAL_PROTOCOLPGM(" T");
  4628. SERIAL_PROTOCOL(cur_extruder);
  4629. SERIAL_PROTOCOLPGM(":");
  4630. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4631. SERIAL_PROTOCOLPGM(" /");
  4632. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4633. }
  4634. #else
  4635. SERIAL_ERROR_START;
  4636. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4637. #endif
  4638. SERIAL_PROTOCOLPGM(" @:");
  4639. #ifdef EXTRUDER_WATTS
  4640. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4641. SERIAL_PROTOCOLPGM("W");
  4642. #else
  4643. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4644. #endif
  4645. SERIAL_PROTOCOLPGM(" B@:");
  4646. #ifdef BED_WATTS
  4647. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4648. SERIAL_PROTOCOLPGM("W");
  4649. #else
  4650. SERIAL_PROTOCOL(getHeaterPower(-1));
  4651. #endif
  4652. #ifdef PINDA_THERMISTOR
  4653. SERIAL_PROTOCOLPGM(" P:");
  4654. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4655. #endif //PINDA_THERMISTOR
  4656. #ifdef AMBIENT_THERMISTOR
  4657. SERIAL_PROTOCOLPGM(" A:");
  4658. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4659. #endif //AMBIENT_THERMISTOR
  4660. #ifdef SHOW_TEMP_ADC_VALUES
  4661. {float raw = 0.0;
  4662. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4663. SERIAL_PROTOCOLPGM(" ADC B:");
  4664. SERIAL_PROTOCOL_F(degBed(),1);
  4665. SERIAL_PROTOCOLPGM("C->");
  4666. raw = rawBedTemp();
  4667. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4668. SERIAL_PROTOCOLPGM(" Rb->");
  4669. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4670. SERIAL_PROTOCOLPGM(" Rxb->");
  4671. SERIAL_PROTOCOL_F(raw, 5);
  4672. #endif
  4673. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4674. SERIAL_PROTOCOLPGM(" T");
  4675. SERIAL_PROTOCOL(cur_extruder);
  4676. SERIAL_PROTOCOLPGM(":");
  4677. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4678. SERIAL_PROTOCOLPGM("C->");
  4679. raw = rawHotendTemp(cur_extruder);
  4680. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4681. SERIAL_PROTOCOLPGM(" Rt");
  4682. SERIAL_PROTOCOL(cur_extruder);
  4683. SERIAL_PROTOCOLPGM("->");
  4684. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4685. SERIAL_PROTOCOLPGM(" Rx");
  4686. SERIAL_PROTOCOL(cur_extruder);
  4687. SERIAL_PROTOCOLPGM("->");
  4688. SERIAL_PROTOCOL_F(raw, 5);
  4689. }}
  4690. #endif
  4691. SERIAL_PROTOCOLLN("");
  4692. KEEPALIVE_STATE(NOT_BUSY);
  4693. return;
  4694. break;
  4695. }
  4696. case 109:
  4697. {// M109 - Wait for extruder heater to reach target.
  4698. uint8_t extruder;
  4699. if(setTargetedHotend(109, extruder)){
  4700. break;
  4701. }
  4702. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4703. heating_status = 1;
  4704. if (farm_mode) { prusa_statistics(1); };
  4705. #ifdef AUTOTEMP
  4706. autotemp_enabled=false;
  4707. #endif
  4708. if (code_seen('S')) {
  4709. setTargetHotendSafe(code_value(), extruder);
  4710. CooldownNoWait = true;
  4711. } else if (code_seen('R')) {
  4712. setTargetHotendSafe(code_value(), extruder);
  4713. CooldownNoWait = false;
  4714. }
  4715. #ifdef AUTOTEMP
  4716. if (code_seen('S')) autotemp_min=code_value();
  4717. if (code_seen('B')) autotemp_max=code_value();
  4718. if (code_seen('F'))
  4719. {
  4720. autotemp_factor=code_value();
  4721. autotemp_enabled=true;
  4722. }
  4723. #endif
  4724. setWatch();
  4725. codenum = millis();
  4726. /* See if we are heating up or cooling down */
  4727. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4728. KEEPALIVE_STATE(NOT_BUSY);
  4729. cancel_heatup = false;
  4730. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4731. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4732. KEEPALIVE_STATE(IN_HANDLER);
  4733. heating_status = 2;
  4734. if (farm_mode) { prusa_statistics(2); };
  4735. //starttime=millis();
  4736. previous_millis_cmd = millis();
  4737. }
  4738. break;
  4739. case 190: // M190 - Wait for bed heater to reach target.
  4740. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4741. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4742. heating_status = 3;
  4743. if (farm_mode) { prusa_statistics(1); };
  4744. if (code_seen('S'))
  4745. {
  4746. setTargetBed(code_value());
  4747. CooldownNoWait = true;
  4748. }
  4749. else if (code_seen('R'))
  4750. {
  4751. setTargetBed(code_value());
  4752. CooldownNoWait = false;
  4753. }
  4754. codenum = millis();
  4755. cancel_heatup = false;
  4756. target_direction = isHeatingBed(); // true if heating, false if cooling
  4757. KEEPALIVE_STATE(NOT_BUSY);
  4758. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4759. {
  4760. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4761. {
  4762. if (!farm_mode) {
  4763. float tt = degHotend(active_extruder);
  4764. SERIAL_PROTOCOLPGM("T:");
  4765. SERIAL_PROTOCOL(tt);
  4766. SERIAL_PROTOCOLPGM(" E:");
  4767. SERIAL_PROTOCOL((int)active_extruder);
  4768. SERIAL_PROTOCOLPGM(" B:");
  4769. SERIAL_PROTOCOL_F(degBed(), 1);
  4770. SERIAL_PROTOCOLLN("");
  4771. }
  4772. codenum = millis();
  4773. }
  4774. manage_heater();
  4775. manage_inactivity();
  4776. lcd_update(0);
  4777. }
  4778. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4779. KEEPALIVE_STATE(IN_HANDLER);
  4780. heating_status = 4;
  4781. previous_millis_cmd = millis();
  4782. #endif
  4783. break;
  4784. #if defined(FAN_PIN) && FAN_PIN > -1
  4785. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4786. if (code_seen('S')){
  4787. fanSpeed=constrain(code_value(),0,255);
  4788. }
  4789. else {
  4790. fanSpeed=255;
  4791. }
  4792. break;
  4793. case 107: //M107 Fan Off
  4794. fanSpeed = 0;
  4795. break;
  4796. #endif //FAN_PIN
  4797. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4798. case 80: // M80 - Turn on Power Supply
  4799. SET_OUTPUT(PS_ON_PIN); //GND
  4800. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4801. // If you have a switch on suicide pin, this is useful
  4802. // if you want to start another print with suicide feature after
  4803. // a print without suicide...
  4804. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4805. SET_OUTPUT(SUICIDE_PIN);
  4806. WRITE(SUICIDE_PIN, HIGH);
  4807. #endif
  4808. powersupply = true;
  4809. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4810. lcd_update(0);
  4811. break;
  4812. #endif
  4813. case 81: // M81 - Turn off Power Supply
  4814. disable_heater();
  4815. st_synchronize();
  4816. disable_e0();
  4817. disable_e1();
  4818. disable_e2();
  4819. finishAndDisableSteppers();
  4820. fanSpeed = 0;
  4821. delay(1000); // Wait a little before to switch off
  4822. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4823. st_synchronize();
  4824. suicide();
  4825. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4826. SET_OUTPUT(PS_ON_PIN);
  4827. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4828. #endif
  4829. powersupply = false;
  4830. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4831. lcd_update(0);
  4832. break;
  4833. case 82:
  4834. axis_relative_modes[3] = false;
  4835. break;
  4836. case 83:
  4837. axis_relative_modes[3] = true;
  4838. break;
  4839. case 18: //compatibility
  4840. case 84: // M84
  4841. if(code_seen('S')){
  4842. stepper_inactive_time = code_value() * 1000;
  4843. }
  4844. else
  4845. {
  4846. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4847. if(all_axis)
  4848. {
  4849. st_synchronize();
  4850. disable_e0();
  4851. disable_e1();
  4852. disable_e2();
  4853. finishAndDisableSteppers();
  4854. }
  4855. else
  4856. {
  4857. st_synchronize();
  4858. if (code_seen('X')) disable_x();
  4859. if (code_seen('Y')) disable_y();
  4860. if (code_seen('Z')) disable_z();
  4861. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4862. if (code_seen('E')) {
  4863. disable_e0();
  4864. disable_e1();
  4865. disable_e2();
  4866. }
  4867. #endif
  4868. }
  4869. }
  4870. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4871. print_time_remaining_init();
  4872. snmm_filaments_used = 0;
  4873. break;
  4874. case 85: // M85
  4875. if(code_seen('S')) {
  4876. max_inactive_time = code_value() * 1000;
  4877. }
  4878. break;
  4879. #ifdef SAFETYTIMER
  4880. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4881. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4882. if (code_seen('S')) {
  4883. safetytimer_inactive_time = code_value() * 1000;
  4884. safetyTimer.start();
  4885. }
  4886. break;
  4887. #endif
  4888. case 92: // M92
  4889. for(int8_t i=0; i < NUM_AXIS; i++)
  4890. {
  4891. if(code_seen(axis_codes[i]))
  4892. {
  4893. if(i == 3) { // E
  4894. float value = code_value();
  4895. if(value < 20.0) {
  4896. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4897. cs.max_jerk[E_AXIS] *= factor;
  4898. max_feedrate[i] *= factor;
  4899. axis_steps_per_sqr_second[i] *= factor;
  4900. }
  4901. cs.axis_steps_per_unit[i] = value;
  4902. }
  4903. else {
  4904. cs.axis_steps_per_unit[i] = code_value();
  4905. }
  4906. }
  4907. }
  4908. break;
  4909. case 110: //! M110 N<line number> - reset line pos
  4910. if (code_seen('N'))
  4911. gcode_LastN = code_value_long();
  4912. break;
  4913. #ifdef HOST_KEEPALIVE_FEATURE
  4914. case 113: // M113 - Get or set Host Keepalive interval
  4915. if (code_seen('S')) {
  4916. host_keepalive_interval = (uint8_t)code_value_short();
  4917. // NOMORE(host_keepalive_interval, 60);
  4918. }
  4919. else {
  4920. SERIAL_ECHO_START;
  4921. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4922. SERIAL_PROTOCOLLN("");
  4923. }
  4924. break;
  4925. #endif
  4926. case 115: // M115
  4927. if (code_seen('V')) {
  4928. // Report the Prusa version number.
  4929. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4930. } else if (code_seen('U')) {
  4931. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4932. // pause the print and ask the user to upgrade the firmware.
  4933. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4934. } else {
  4935. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4936. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4937. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4938. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4939. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4940. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4941. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4942. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4943. SERIAL_ECHOPGM(" UUID:");
  4944. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4945. }
  4946. break;
  4947. /* case 117: // M117 display message
  4948. starpos = (strchr(strchr_pointer + 5,'*'));
  4949. if(starpos!=NULL)
  4950. *(starpos)='\0';
  4951. lcd_setstatus(strchr_pointer + 5);
  4952. break;*/
  4953. case 114: // M114
  4954. gcode_M114();
  4955. break;
  4956. case 120: //! M120 - Disable endstops
  4957. enable_endstops(false) ;
  4958. break;
  4959. case 121: //! M121 - Enable endstops
  4960. enable_endstops(true) ;
  4961. break;
  4962. case 119: // M119
  4963. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4964. SERIAL_PROTOCOLLN("");
  4965. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4966. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4967. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4968. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4969. }else{
  4970. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4971. }
  4972. SERIAL_PROTOCOLLN("");
  4973. #endif
  4974. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4975. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4976. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4977. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4978. }else{
  4979. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4980. }
  4981. SERIAL_PROTOCOLLN("");
  4982. #endif
  4983. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4984. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4985. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4986. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4987. }else{
  4988. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4989. }
  4990. SERIAL_PROTOCOLLN("");
  4991. #endif
  4992. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4993. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4994. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4995. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4996. }else{
  4997. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4998. }
  4999. SERIAL_PROTOCOLLN("");
  5000. #endif
  5001. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5002. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5003. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5004. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5005. }else{
  5006. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5007. }
  5008. SERIAL_PROTOCOLLN("");
  5009. #endif
  5010. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5011. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5012. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5013. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5014. }else{
  5015. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5016. }
  5017. SERIAL_PROTOCOLLN("");
  5018. #endif
  5019. break;
  5020. //TODO: update for all axis, use for loop
  5021. #ifdef BLINKM
  5022. case 150: // M150
  5023. {
  5024. byte red;
  5025. byte grn;
  5026. byte blu;
  5027. if(code_seen('R')) red = code_value();
  5028. if(code_seen('U')) grn = code_value();
  5029. if(code_seen('B')) blu = code_value();
  5030. SendColors(red,grn,blu);
  5031. }
  5032. break;
  5033. #endif //BLINKM
  5034. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5035. {
  5036. uint8_t extruder = active_extruder;
  5037. if(code_seen('T')) {
  5038. extruder = code_value();
  5039. if(extruder >= EXTRUDERS) {
  5040. SERIAL_ECHO_START;
  5041. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5042. break;
  5043. }
  5044. }
  5045. if(code_seen('D')) {
  5046. float diameter = (float)code_value();
  5047. if (diameter == 0.0) {
  5048. // setting any extruder filament size disables volumetric on the assumption that
  5049. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5050. // for all extruders
  5051. cs.volumetric_enabled = false;
  5052. } else {
  5053. cs.filament_size[extruder] = (float)code_value();
  5054. // make sure all extruders have some sane value for the filament size
  5055. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5056. #if EXTRUDERS > 1
  5057. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5058. #if EXTRUDERS > 2
  5059. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5060. #endif
  5061. #endif
  5062. cs.volumetric_enabled = true;
  5063. }
  5064. } else {
  5065. //reserved for setting filament diameter via UFID or filament measuring device
  5066. break;
  5067. }
  5068. calculate_extruder_multipliers();
  5069. }
  5070. break;
  5071. case 201: // M201
  5072. for (int8_t i = 0; i < NUM_AXIS; i++)
  5073. {
  5074. if (code_seen(axis_codes[i]))
  5075. {
  5076. unsigned long val = code_value();
  5077. #ifdef TMC2130
  5078. unsigned long val_silent = val;
  5079. if ((i == X_AXIS) || (i == Y_AXIS))
  5080. {
  5081. if (val > NORMAL_MAX_ACCEL_XY)
  5082. val = NORMAL_MAX_ACCEL_XY;
  5083. if (val_silent > SILENT_MAX_ACCEL_XY)
  5084. val_silent = SILENT_MAX_ACCEL_XY;
  5085. }
  5086. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5087. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5088. #else //TMC2130
  5089. max_acceleration_units_per_sq_second[i] = val;
  5090. #endif //TMC2130
  5091. }
  5092. }
  5093. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5094. reset_acceleration_rates();
  5095. break;
  5096. #if 0 // Not used for Sprinter/grbl gen6
  5097. case 202: // M202
  5098. for(int8_t i=0; i < NUM_AXIS; i++) {
  5099. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5100. }
  5101. break;
  5102. #endif
  5103. case 203: // M203 max feedrate mm/sec
  5104. for (int8_t i = 0; i < NUM_AXIS; i++)
  5105. {
  5106. if (code_seen(axis_codes[i]))
  5107. {
  5108. float val = code_value();
  5109. #ifdef TMC2130
  5110. float val_silent = val;
  5111. if ((i == X_AXIS) || (i == Y_AXIS))
  5112. {
  5113. if (val > NORMAL_MAX_FEEDRATE_XY)
  5114. val = NORMAL_MAX_FEEDRATE_XY;
  5115. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5116. val_silent = SILENT_MAX_FEEDRATE_XY;
  5117. }
  5118. cs.max_feedrate_normal[i] = val;
  5119. cs.max_feedrate_silent[i] = val_silent;
  5120. #else //TMC2130
  5121. max_feedrate[i] = val;
  5122. #endif //TMC2130
  5123. }
  5124. }
  5125. break;
  5126. case 204:
  5127. //! M204 acclereration settings.
  5128. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5129. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5130. {
  5131. if(code_seen('S')) {
  5132. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5133. // and it is also generated by Slic3r to control acceleration per extrusion type
  5134. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5135. cs.acceleration = code_value();
  5136. // Interpret the T value as retract acceleration in the old Marlin format.
  5137. if(code_seen('T'))
  5138. cs.retract_acceleration = code_value();
  5139. } else {
  5140. // New acceleration format, compatible with the upstream Marlin.
  5141. if(code_seen('P'))
  5142. cs.acceleration = code_value();
  5143. if(code_seen('R'))
  5144. cs.retract_acceleration = code_value();
  5145. if(code_seen('T')) {
  5146. // Interpret the T value as the travel acceleration in the new Marlin format.
  5147. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5148. // travel_acceleration = code_value();
  5149. }
  5150. }
  5151. }
  5152. break;
  5153. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5154. {
  5155. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5156. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5157. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5158. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5159. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5160. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5161. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5162. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5163. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5164. }
  5165. break;
  5166. case 206: // M206 additional homing offset
  5167. for(int8_t i=0; i < 3; i++)
  5168. {
  5169. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5170. }
  5171. break;
  5172. #ifdef FWRETRACT
  5173. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5174. {
  5175. if(code_seen('S'))
  5176. {
  5177. cs.retract_length = code_value() ;
  5178. }
  5179. if(code_seen('F'))
  5180. {
  5181. cs.retract_feedrate = code_value()/60 ;
  5182. }
  5183. if(code_seen('Z'))
  5184. {
  5185. cs.retract_zlift = code_value() ;
  5186. }
  5187. }break;
  5188. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5189. {
  5190. if(code_seen('S'))
  5191. {
  5192. cs.retract_recover_length = code_value() ;
  5193. }
  5194. if(code_seen('F'))
  5195. {
  5196. cs.retract_recover_feedrate = code_value()/60 ;
  5197. }
  5198. }break;
  5199. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5200. {
  5201. if(code_seen('S'))
  5202. {
  5203. int t= code_value() ;
  5204. switch(t)
  5205. {
  5206. case 0:
  5207. {
  5208. cs.autoretract_enabled=false;
  5209. retracted[0]=false;
  5210. #if EXTRUDERS > 1
  5211. retracted[1]=false;
  5212. #endif
  5213. #if EXTRUDERS > 2
  5214. retracted[2]=false;
  5215. #endif
  5216. }break;
  5217. case 1:
  5218. {
  5219. cs.autoretract_enabled=true;
  5220. retracted[0]=false;
  5221. #if EXTRUDERS > 1
  5222. retracted[1]=false;
  5223. #endif
  5224. #if EXTRUDERS > 2
  5225. retracted[2]=false;
  5226. #endif
  5227. }break;
  5228. default:
  5229. SERIAL_ECHO_START;
  5230. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5231. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5232. SERIAL_ECHOLNPGM("\"(1)");
  5233. }
  5234. }
  5235. }break;
  5236. #endif // FWRETRACT
  5237. #if EXTRUDERS > 1
  5238. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5239. {
  5240. uint8_t extruder;
  5241. if(setTargetedHotend(218, extruder)){
  5242. break;
  5243. }
  5244. if(code_seen('X'))
  5245. {
  5246. extruder_offset[X_AXIS][extruder] = code_value();
  5247. }
  5248. if(code_seen('Y'))
  5249. {
  5250. extruder_offset[Y_AXIS][extruder] = code_value();
  5251. }
  5252. SERIAL_ECHO_START;
  5253. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5254. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5255. {
  5256. SERIAL_ECHO(" ");
  5257. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5258. SERIAL_ECHO(",");
  5259. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5260. }
  5261. SERIAL_ECHOLN("");
  5262. }break;
  5263. #endif
  5264. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5265. {
  5266. if(code_seen('S'))
  5267. {
  5268. feedmultiply = code_value() ;
  5269. }
  5270. }
  5271. break;
  5272. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5273. {
  5274. if(code_seen('S'))
  5275. {
  5276. int tmp_code = code_value();
  5277. if (code_seen('T'))
  5278. {
  5279. uint8_t extruder;
  5280. if(setTargetedHotend(221, extruder)){
  5281. break;
  5282. }
  5283. extruder_multiply[extruder] = tmp_code;
  5284. }
  5285. else
  5286. {
  5287. extrudemultiply = tmp_code ;
  5288. }
  5289. }
  5290. calculate_extruder_multipliers();
  5291. }
  5292. break;
  5293. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5294. {
  5295. if(code_seen('P')){
  5296. int pin_number = code_value(); // pin number
  5297. int pin_state = -1; // required pin state - default is inverted
  5298. if(code_seen('S')) pin_state = code_value(); // required pin state
  5299. if(pin_state >= -1 && pin_state <= 1){
  5300. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5301. {
  5302. if (sensitive_pins[i] == pin_number)
  5303. {
  5304. pin_number = -1;
  5305. break;
  5306. }
  5307. }
  5308. if (pin_number > -1)
  5309. {
  5310. int target = LOW;
  5311. st_synchronize();
  5312. pinMode(pin_number, INPUT);
  5313. switch(pin_state){
  5314. case 1:
  5315. target = HIGH;
  5316. break;
  5317. case 0:
  5318. target = LOW;
  5319. break;
  5320. case -1:
  5321. target = !digitalRead(pin_number);
  5322. break;
  5323. }
  5324. while(digitalRead(pin_number) != target){
  5325. manage_heater();
  5326. manage_inactivity();
  5327. lcd_update(0);
  5328. }
  5329. }
  5330. }
  5331. }
  5332. }
  5333. break;
  5334. #if NUM_SERVOS > 0
  5335. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5336. {
  5337. int servo_index = -1;
  5338. int servo_position = 0;
  5339. if (code_seen('P'))
  5340. servo_index = code_value();
  5341. if (code_seen('S')) {
  5342. servo_position = code_value();
  5343. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5344. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5345. servos[servo_index].attach(0);
  5346. #endif
  5347. servos[servo_index].write(servo_position);
  5348. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5349. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5350. servos[servo_index].detach();
  5351. #endif
  5352. }
  5353. else {
  5354. SERIAL_ECHO_START;
  5355. SERIAL_ECHO("Servo ");
  5356. SERIAL_ECHO(servo_index);
  5357. SERIAL_ECHOLN(" out of range");
  5358. }
  5359. }
  5360. else if (servo_index >= 0) {
  5361. SERIAL_PROTOCOL(_T(MSG_OK));
  5362. SERIAL_PROTOCOL(" Servo ");
  5363. SERIAL_PROTOCOL(servo_index);
  5364. SERIAL_PROTOCOL(": ");
  5365. SERIAL_PROTOCOL(servos[servo_index].read());
  5366. SERIAL_PROTOCOLLN("");
  5367. }
  5368. }
  5369. break;
  5370. #endif // NUM_SERVOS > 0
  5371. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5372. case 300: // M300
  5373. {
  5374. int beepS = code_seen('S') ? code_value() : 110;
  5375. int beepP = code_seen('P') ? code_value() : 1000;
  5376. if (beepS > 0)
  5377. {
  5378. #if BEEPER > 0
  5379. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5380. tone(BEEPER, beepS);
  5381. delay(beepP);
  5382. noTone(BEEPER);
  5383. #endif
  5384. }
  5385. else
  5386. {
  5387. delay(beepP);
  5388. }
  5389. }
  5390. break;
  5391. #endif // M300
  5392. #ifdef PIDTEMP
  5393. case 301: // M301
  5394. {
  5395. if(code_seen('P')) cs.Kp = code_value();
  5396. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5397. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5398. #ifdef PID_ADD_EXTRUSION_RATE
  5399. if(code_seen('C')) Kc = code_value();
  5400. #endif
  5401. updatePID();
  5402. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5403. SERIAL_PROTOCOL(" p:");
  5404. SERIAL_PROTOCOL(cs.Kp);
  5405. SERIAL_PROTOCOL(" i:");
  5406. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5407. SERIAL_PROTOCOL(" d:");
  5408. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5409. #ifdef PID_ADD_EXTRUSION_RATE
  5410. SERIAL_PROTOCOL(" c:");
  5411. //Kc does not have scaling applied above, or in resetting defaults
  5412. SERIAL_PROTOCOL(Kc);
  5413. #endif
  5414. SERIAL_PROTOCOLLN("");
  5415. }
  5416. break;
  5417. #endif //PIDTEMP
  5418. #ifdef PIDTEMPBED
  5419. case 304: // M304
  5420. {
  5421. if(code_seen('P')) cs.bedKp = code_value();
  5422. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5423. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5424. updatePID();
  5425. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5426. SERIAL_PROTOCOL(" p:");
  5427. SERIAL_PROTOCOL(cs.bedKp);
  5428. SERIAL_PROTOCOL(" i:");
  5429. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5430. SERIAL_PROTOCOL(" d:");
  5431. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5432. SERIAL_PROTOCOLLN("");
  5433. }
  5434. break;
  5435. #endif //PIDTEMP
  5436. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5437. {
  5438. #ifdef CHDK
  5439. SET_OUTPUT(CHDK);
  5440. WRITE(CHDK, HIGH);
  5441. chdkHigh = millis();
  5442. chdkActive = true;
  5443. #else
  5444. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5445. const uint8_t NUM_PULSES=16;
  5446. const float PULSE_LENGTH=0.01524;
  5447. for(int i=0; i < NUM_PULSES; i++) {
  5448. WRITE(PHOTOGRAPH_PIN, HIGH);
  5449. _delay_ms(PULSE_LENGTH);
  5450. WRITE(PHOTOGRAPH_PIN, LOW);
  5451. _delay_ms(PULSE_LENGTH);
  5452. }
  5453. delay(7.33);
  5454. for(int i=0; i < NUM_PULSES; i++) {
  5455. WRITE(PHOTOGRAPH_PIN, HIGH);
  5456. _delay_ms(PULSE_LENGTH);
  5457. WRITE(PHOTOGRAPH_PIN, LOW);
  5458. _delay_ms(PULSE_LENGTH);
  5459. }
  5460. #endif
  5461. #endif //chdk end if
  5462. }
  5463. break;
  5464. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5465. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5466. {
  5467. float temp = .0;
  5468. if (code_seen('S')) temp=code_value();
  5469. set_extrude_min_temp(temp);
  5470. }
  5471. break;
  5472. #endif
  5473. case 303: // M303 PID autotune
  5474. {
  5475. float temp = 150.0;
  5476. int e=0;
  5477. int c=5;
  5478. if (code_seen('E')) e=code_value();
  5479. if (e<0)
  5480. temp=70;
  5481. if (code_seen('S')) temp=code_value();
  5482. if (code_seen('C')) c=code_value();
  5483. PID_autotune(temp, e, c);
  5484. }
  5485. break;
  5486. case 400: // M400 finish all moves
  5487. {
  5488. st_synchronize();
  5489. }
  5490. break;
  5491. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5492. {
  5493. //! currently three different materials are needed (default, flex and PVA)
  5494. //! add storing this information for different load/unload profiles etc. in the future
  5495. //!firmware does not wait for "ok" from mmu
  5496. if (mmu_enabled)
  5497. {
  5498. uint8_t extruder = 255;
  5499. uint8_t filament = FILAMENT_UNDEFINED;
  5500. if(code_seen('E')) extruder = code_value();
  5501. if(code_seen('F')) filament = code_value();
  5502. mmu_set_filament_type(extruder, filament);
  5503. }
  5504. }
  5505. break;
  5506. case 500: // M500 Store settings in EEPROM
  5507. {
  5508. Config_StoreSettings();
  5509. }
  5510. break;
  5511. case 501: // M501 Read settings from EEPROM
  5512. {
  5513. Config_RetrieveSettings();
  5514. }
  5515. break;
  5516. case 502: // M502 Revert to default settings
  5517. {
  5518. Config_ResetDefault();
  5519. }
  5520. break;
  5521. case 503: // M503 print settings currently in memory
  5522. {
  5523. Config_PrintSettings();
  5524. }
  5525. break;
  5526. case 509: //M509 Force language selection
  5527. {
  5528. lang_reset();
  5529. SERIAL_ECHO_START;
  5530. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5531. }
  5532. break;
  5533. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5534. case 540:
  5535. {
  5536. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5537. }
  5538. break;
  5539. #endif
  5540. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5541. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5542. {
  5543. float value;
  5544. if (code_seen('Z'))
  5545. {
  5546. value = code_value();
  5547. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5548. {
  5549. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5550. SERIAL_ECHO_START;
  5551. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5552. SERIAL_PROTOCOLLN("");
  5553. }
  5554. else
  5555. {
  5556. SERIAL_ECHO_START;
  5557. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5558. SERIAL_ECHORPGM(MSG_Z_MIN);
  5559. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5560. SERIAL_ECHORPGM(MSG_Z_MAX);
  5561. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5562. SERIAL_PROTOCOLLN("");
  5563. }
  5564. }
  5565. else
  5566. {
  5567. SERIAL_ECHO_START;
  5568. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5569. SERIAL_ECHO(-cs.zprobe_zoffset);
  5570. SERIAL_PROTOCOLLN("");
  5571. }
  5572. break;
  5573. }
  5574. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5575. #ifdef FILAMENTCHANGEENABLE
  5576. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5577. {
  5578. st_synchronize();
  5579. float x_position = current_position[X_AXIS];
  5580. float y_position = current_position[Y_AXIS];
  5581. float z_shift = 0;
  5582. float e_shift_init = 0;
  5583. float e_shift_late = 0;
  5584. bool automatic = false;
  5585. //Retract extruder
  5586. if(code_seen('E'))
  5587. {
  5588. e_shift_init = code_value();
  5589. }
  5590. else
  5591. {
  5592. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5593. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5594. #endif
  5595. }
  5596. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5597. if (code_seen('L'))
  5598. {
  5599. e_shift_late = code_value();
  5600. }
  5601. else
  5602. {
  5603. #ifdef FILAMENTCHANGE_FINALRETRACT
  5604. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5605. #endif
  5606. }
  5607. //Lift Z
  5608. if(code_seen('Z'))
  5609. {
  5610. z_shift = code_value();
  5611. }
  5612. else
  5613. {
  5614. #ifdef FILAMENTCHANGE_ZADD
  5615. z_shift= FILAMENTCHANGE_ZADD ;
  5616. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5617. #endif
  5618. }
  5619. //Move XY to side
  5620. if(code_seen('X'))
  5621. {
  5622. x_position = code_value();
  5623. }
  5624. else
  5625. {
  5626. #ifdef FILAMENTCHANGE_XPOS
  5627. x_position = FILAMENTCHANGE_XPOS;
  5628. #endif
  5629. }
  5630. if(code_seen('Y'))
  5631. {
  5632. y_position = code_value();
  5633. }
  5634. else
  5635. {
  5636. #ifdef FILAMENTCHANGE_YPOS
  5637. y_position = FILAMENTCHANGE_YPOS ;
  5638. #endif
  5639. }
  5640. if (mmu_enabled && code_seen("AUTO"))
  5641. automatic = true;
  5642. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5643. }
  5644. break;
  5645. #endif //FILAMENTCHANGEENABLE
  5646. case 601: //! M601 - Pause print
  5647. {
  5648. lcd_pause_print();
  5649. }
  5650. break;
  5651. case 602: { //! M602 - Resume print
  5652. lcd_resume_print();
  5653. }
  5654. break;
  5655. #ifdef PINDA_THERMISTOR
  5656. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5657. {
  5658. int set_target_pinda = 0;
  5659. if (code_seen('S')) {
  5660. set_target_pinda = code_value();
  5661. }
  5662. else {
  5663. break;
  5664. }
  5665. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5666. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5667. SERIAL_PROTOCOL(set_target_pinda);
  5668. SERIAL_PROTOCOLLN("");
  5669. codenum = millis();
  5670. cancel_heatup = false;
  5671. bool is_pinda_cooling = false;
  5672. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5673. is_pinda_cooling = true;
  5674. }
  5675. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5676. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5677. {
  5678. SERIAL_PROTOCOLPGM("P:");
  5679. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5680. SERIAL_PROTOCOLPGM("/");
  5681. SERIAL_PROTOCOL(set_target_pinda);
  5682. SERIAL_PROTOCOLLN("");
  5683. codenum = millis();
  5684. }
  5685. manage_heater();
  5686. manage_inactivity();
  5687. lcd_update(0);
  5688. }
  5689. LCD_MESSAGERPGM(_T(MSG_OK));
  5690. break;
  5691. }
  5692. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5693. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5694. uint8_t cal_status = calibration_status_pinda();
  5695. int16_t usteps = 0;
  5696. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5697. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5698. for (uint8_t i = 0; i < 6; i++)
  5699. {
  5700. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5701. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5702. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5703. SERIAL_PROTOCOLPGM(", ");
  5704. SERIAL_PROTOCOL(35 + (i * 5));
  5705. SERIAL_PROTOCOLPGM(", ");
  5706. SERIAL_PROTOCOL(usteps);
  5707. SERIAL_PROTOCOLPGM(", ");
  5708. SERIAL_PROTOCOL(mm * 1000);
  5709. SERIAL_PROTOCOLLN("");
  5710. }
  5711. }
  5712. else if (code_seen('!')) { // ! - Set factory default values
  5713. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5714. int16_t z_shift = 8; //40C - 20um - 8usteps
  5715. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5716. z_shift = 24; //45C - 60um - 24usteps
  5717. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5718. z_shift = 48; //50C - 120um - 48usteps
  5719. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5720. z_shift = 80; //55C - 200um - 80usteps
  5721. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5722. z_shift = 120; //60C - 300um - 120usteps
  5723. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5724. SERIAL_PROTOCOLLN("factory restored");
  5725. }
  5726. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5727. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5728. int16_t z_shift = 0;
  5729. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5730. SERIAL_PROTOCOLLN("zerorized");
  5731. }
  5732. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5733. int16_t usteps = code_value();
  5734. if (code_seen('I')) {
  5735. uint8_t index = code_value();
  5736. if (index < 5) {
  5737. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5738. SERIAL_PROTOCOLLN("OK");
  5739. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5740. for (uint8_t i = 0; i < 6; i++)
  5741. {
  5742. usteps = 0;
  5743. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5744. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5745. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5746. SERIAL_PROTOCOLPGM(", ");
  5747. SERIAL_PROTOCOL(35 + (i * 5));
  5748. SERIAL_PROTOCOLPGM(", ");
  5749. SERIAL_PROTOCOL(usteps);
  5750. SERIAL_PROTOCOLPGM(", ");
  5751. SERIAL_PROTOCOL(mm * 1000);
  5752. SERIAL_PROTOCOLLN("");
  5753. }
  5754. }
  5755. }
  5756. }
  5757. else {
  5758. SERIAL_PROTOCOLPGM("no valid command");
  5759. }
  5760. break;
  5761. #endif //PINDA_THERMISTOR
  5762. #ifdef LIN_ADVANCE
  5763. case 900: // M900: Set LIN_ADVANCE options.
  5764. gcode_M900();
  5765. break;
  5766. #endif
  5767. case 907: // M907 Set digital trimpot motor current using axis codes.
  5768. {
  5769. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5770. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5771. if(code_seen('B')) st_current_set(4,code_value());
  5772. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5773. #endif
  5774. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5775. if(code_seen('X')) st_current_set(0, code_value());
  5776. #endif
  5777. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5778. if(code_seen('Z')) st_current_set(1, code_value());
  5779. #endif
  5780. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5781. if(code_seen('E')) st_current_set(2, code_value());
  5782. #endif
  5783. }
  5784. break;
  5785. case 908: // M908 Control digital trimpot directly.
  5786. {
  5787. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5788. uint8_t channel,current;
  5789. if(code_seen('P')) channel=code_value();
  5790. if(code_seen('S')) current=code_value();
  5791. digitalPotWrite(channel, current);
  5792. #endif
  5793. }
  5794. break;
  5795. #ifdef TMC2130
  5796. case 910: //! M910 - TMC2130 init
  5797. {
  5798. tmc2130_init();
  5799. }
  5800. break;
  5801. case 911: //! M911 - Set TMC2130 holding currents
  5802. {
  5803. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5804. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5805. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5806. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5807. }
  5808. break;
  5809. case 912: //! M912 - Set TMC2130 running currents
  5810. {
  5811. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5812. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5813. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5814. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5815. }
  5816. break;
  5817. case 913: //! M913 - Print TMC2130 currents
  5818. {
  5819. tmc2130_print_currents();
  5820. }
  5821. break;
  5822. case 914: //! M914 - Set normal mode
  5823. {
  5824. tmc2130_mode = TMC2130_MODE_NORMAL;
  5825. update_mode_profile();
  5826. tmc2130_init();
  5827. }
  5828. break;
  5829. case 915: //! M915 - Set silent mode
  5830. {
  5831. tmc2130_mode = TMC2130_MODE_SILENT;
  5832. update_mode_profile();
  5833. tmc2130_init();
  5834. }
  5835. break;
  5836. case 916: //! M916 - Set sg_thrs
  5837. {
  5838. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5839. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5840. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5841. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5842. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5843. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5844. }
  5845. break;
  5846. case 917: //! M917 - Set TMC2130 pwm_ampl
  5847. {
  5848. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5849. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5850. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5851. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5852. }
  5853. break;
  5854. case 918: //! M918 - Set TMC2130 pwm_grad
  5855. {
  5856. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5857. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5858. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5859. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5860. }
  5861. break;
  5862. #endif //TMC2130
  5863. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5864. {
  5865. #ifdef TMC2130
  5866. if(code_seen('E'))
  5867. {
  5868. uint16_t res_new = code_value();
  5869. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5870. {
  5871. st_synchronize();
  5872. uint8_t axis = E_AXIS;
  5873. uint16_t res = tmc2130_get_res(axis);
  5874. tmc2130_set_res(axis, res_new);
  5875. if (res_new > res)
  5876. {
  5877. uint16_t fac = (res_new / res);
  5878. cs.axis_steps_per_unit[axis] *= fac;
  5879. position[E_AXIS] *= fac;
  5880. }
  5881. else
  5882. {
  5883. uint16_t fac = (res / res_new);
  5884. cs.axis_steps_per_unit[axis] /= fac;
  5885. position[E_AXIS] /= fac;
  5886. }
  5887. }
  5888. }
  5889. #else //TMC2130
  5890. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5891. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5892. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5893. if(code_seen('B')) microstep_mode(4,code_value());
  5894. microstep_readings();
  5895. #endif
  5896. #endif //TMC2130
  5897. }
  5898. break;
  5899. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5900. {
  5901. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5902. if(code_seen('S')) switch((int)code_value())
  5903. {
  5904. case 1:
  5905. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5906. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5907. break;
  5908. case 2:
  5909. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5910. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5911. break;
  5912. }
  5913. microstep_readings();
  5914. #endif
  5915. }
  5916. break;
  5917. case 701: //! M701 - load filament
  5918. {
  5919. if (mmu_enabled && code_seen('E'))
  5920. tmp_extruder = code_value();
  5921. gcode_M701();
  5922. }
  5923. break;
  5924. case 702: //! M702 [U C] -
  5925. {
  5926. if (mmu_enabled)
  5927. {
  5928. if (code_seen('U'))
  5929. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  5930. else if (code_seen('C'))
  5931. extr_unload(); //! if "C" unload just current filament
  5932. else
  5933. extr_unload_all(); //! otherwise unload all filaments
  5934. }
  5935. else
  5936. unload_filament();
  5937. }
  5938. break;
  5939. case 999: // M999: Restart after being stopped
  5940. Stopped = false;
  5941. lcd_reset_alert_level();
  5942. gcode_LastN = Stopped_gcode_LastN;
  5943. FlushSerialRequestResend();
  5944. break;
  5945. default:
  5946. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5947. }
  5948. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5949. mcode_in_progress = 0;
  5950. }
  5951. } // end if(code_seen('M')) (end of M codes)
  5952. //! T<extruder nr.> - select extruder in case of multi extruder printer
  5953. //! select filament in case of MMU_V2
  5954. //! if extruder is "?", open menu to let the user select extruder/filament
  5955. //!
  5956. //! For MMU_V2:
  5957. //! @n T<n> Gcode to extrude must follow immediately to load to extruder wheels
  5958. //! @n T? Gcode to extrude doesn't have to follow, load to extruder wheels is done automatically
  5959. else if(code_seen('T'))
  5960. {
  5961. int index;
  5962. st_synchronize();
  5963. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5964. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5965. SERIAL_ECHOLNPGM("Invalid T code.");
  5966. }
  5967. else {
  5968. if (*(strchr_pointer + index) == '?')
  5969. {
  5970. if(mmu_enabled)
  5971. {
  5972. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  5973. } else
  5974. {
  5975. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  5976. }
  5977. }
  5978. else {
  5979. tmp_extruder = code_value();
  5980. }
  5981. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5982. if (mmu_enabled)
  5983. {
  5984. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5985. manage_response(true, true);
  5986. mmu_command(MMU_CMD_C0);
  5987. mmu_extruder = tmp_extruder; //filament change is finished
  5988. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5989. {
  5990. mmu_load_to_nozzle();
  5991. }
  5992. }
  5993. else
  5994. {
  5995. #ifdef SNMM
  5996. #ifdef LIN_ADVANCE
  5997. if (mmu_extruder != tmp_extruder)
  5998. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5999. #endif
  6000. mmu_extruder = tmp_extruder;
  6001. delay(100);
  6002. disable_e0();
  6003. disable_e1();
  6004. disable_e2();
  6005. pinMode(E_MUX0_PIN, OUTPUT);
  6006. pinMode(E_MUX1_PIN, OUTPUT);
  6007. delay(100);
  6008. SERIAL_ECHO_START;
  6009. SERIAL_ECHO("T:");
  6010. SERIAL_ECHOLN((int)tmp_extruder);
  6011. switch (tmp_extruder) {
  6012. case 1:
  6013. WRITE(E_MUX0_PIN, HIGH);
  6014. WRITE(E_MUX1_PIN, LOW);
  6015. break;
  6016. case 2:
  6017. WRITE(E_MUX0_PIN, LOW);
  6018. WRITE(E_MUX1_PIN, HIGH);
  6019. break;
  6020. case 3:
  6021. WRITE(E_MUX0_PIN, HIGH);
  6022. WRITE(E_MUX1_PIN, HIGH);
  6023. break;
  6024. default:
  6025. WRITE(E_MUX0_PIN, LOW);
  6026. WRITE(E_MUX1_PIN, LOW);
  6027. break;
  6028. }
  6029. delay(100);
  6030. #else //SNMM
  6031. if (tmp_extruder >= EXTRUDERS) {
  6032. SERIAL_ECHO_START;
  6033. SERIAL_ECHOPGM("T");
  6034. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6035. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6036. }
  6037. else {
  6038. #if EXTRUDERS > 1
  6039. boolean make_move = false;
  6040. #endif
  6041. if (code_seen('F')) {
  6042. #if EXTRUDERS > 1
  6043. make_move = true;
  6044. #endif
  6045. next_feedrate = code_value();
  6046. if (next_feedrate > 0.0) {
  6047. feedrate = next_feedrate;
  6048. }
  6049. }
  6050. #if EXTRUDERS > 1
  6051. if (tmp_extruder != active_extruder) {
  6052. // Save current position to return to after applying extruder offset
  6053. memcpy(destination, current_position, sizeof(destination));
  6054. // Offset extruder (only by XY)
  6055. int i;
  6056. for (i = 0; i < 2; i++) {
  6057. current_position[i] = current_position[i] -
  6058. extruder_offset[i][active_extruder] +
  6059. extruder_offset[i][tmp_extruder];
  6060. }
  6061. // Set the new active extruder and position
  6062. active_extruder = tmp_extruder;
  6063. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6064. // Move to the old position if 'F' was in the parameters
  6065. if (make_move && Stopped == false) {
  6066. prepare_move();
  6067. }
  6068. }
  6069. #endif
  6070. SERIAL_ECHO_START;
  6071. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6072. SERIAL_PROTOCOLLN((int)active_extruder);
  6073. }
  6074. #endif //SNMM
  6075. }
  6076. }
  6077. } // end if(code_seen('T')) (end of T codes)
  6078. else if (code_seen('D')) // D codes (debug)
  6079. {
  6080. switch((int)code_value())
  6081. {
  6082. #ifdef DEBUG_DCODES
  6083. case -1: //! D-1 - Endless loop
  6084. dcode__1(); break;
  6085. case 0: //! D0 - Reset
  6086. dcode_0(); break;
  6087. case 1: //! D1 - Clear EEPROM
  6088. dcode_1(); break;
  6089. case 2: //! D2 - Read/Write RAM
  6090. dcode_2(); break;
  6091. #endif //DEBUG_DCODES
  6092. #ifdef DEBUG_DCODE3
  6093. case 3: //! D3 - Read/Write EEPROM
  6094. dcode_3(); break;
  6095. #endif //DEBUG_DCODE3
  6096. #ifdef DEBUG_DCODES
  6097. case 4: //! D4 - Read/Write PIN
  6098. dcode_4(); break;
  6099. case 5: //! D5 - Read/Write FLASH
  6100. // dcode_5(); break;
  6101. break;
  6102. case 6: //! D6 - Read/Write external FLASH
  6103. dcode_6(); break;
  6104. case 7: //! D7 - Read/Write Bootloader
  6105. dcode_7(); break;
  6106. case 8: //! D8 - Read/Write PINDA
  6107. dcode_8(); break;
  6108. case 9: //! D9 - Read/Write ADC
  6109. dcode_9(); break;
  6110. case 10: //! D10 - XYZ calibration = OK
  6111. dcode_10(); break;
  6112. #ifdef TMC2130
  6113. case 2130: //! D2130 - TMC2130
  6114. dcode_2130(); break;
  6115. #endif //TMC2130
  6116. #ifdef FILAMENT_SENSOR
  6117. case 9125: //! D9125 - FILAMENT_SENSOR
  6118. dcode_9125(); break;
  6119. #endif //FILAMENT_SENSOR
  6120. #endif //DEBUG_DCODES
  6121. }
  6122. }
  6123. else
  6124. {
  6125. SERIAL_ECHO_START;
  6126. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6127. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6128. SERIAL_ECHOLNPGM("\"(2)");
  6129. }
  6130. KEEPALIVE_STATE(NOT_BUSY);
  6131. ClearToSend();
  6132. }
  6133. void FlushSerialRequestResend()
  6134. {
  6135. //char cmdbuffer[bufindr][100]="Resend:";
  6136. MYSERIAL.flush();
  6137. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6138. }
  6139. // Confirm the execution of a command, if sent from a serial line.
  6140. // Execution of a command from a SD card will not be confirmed.
  6141. void ClearToSend()
  6142. {
  6143. previous_millis_cmd = millis();
  6144. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6145. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6146. }
  6147. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6148. void update_currents() {
  6149. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6150. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6151. float tmp_motor[3];
  6152. //SERIAL_ECHOLNPGM("Currents updated: ");
  6153. if (destination[Z_AXIS] < Z_SILENT) {
  6154. //SERIAL_ECHOLNPGM("LOW");
  6155. for (uint8_t i = 0; i < 3; i++) {
  6156. st_current_set(i, current_low[i]);
  6157. /*MYSERIAL.print(int(i));
  6158. SERIAL_ECHOPGM(": ");
  6159. MYSERIAL.println(current_low[i]);*/
  6160. }
  6161. }
  6162. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6163. //SERIAL_ECHOLNPGM("HIGH");
  6164. for (uint8_t i = 0; i < 3; i++) {
  6165. st_current_set(i, current_high[i]);
  6166. /*MYSERIAL.print(int(i));
  6167. SERIAL_ECHOPGM(": ");
  6168. MYSERIAL.println(current_high[i]);*/
  6169. }
  6170. }
  6171. else {
  6172. for (uint8_t i = 0; i < 3; i++) {
  6173. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6174. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6175. st_current_set(i, tmp_motor[i]);
  6176. /*MYSERIAL.print(int(i));
  6177. SERIAL_ECHOPGM(": ");
  6178. MYSERIAL.println(tmp_motor[i]);*/
  6179. }
  6180. }
  6181. }
  6182. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6183. void get_coordinates()
  6184. {
  6185. bool seen[4]={false,false,false,false};
  6186. for(int8_t i=0; i < NUM_AXIS; i++) {
  6187. if(code_seen(axis_codes[i]))
  6188. {
  6189. bool relative = axis_relative_modes[i] || relative_mode;
  6190. destination[i] = (float)code_value();
  6191. if (i == E_AXIS) {
  6192. float emult = extruder_multiplier[active_extruder];
  6193. if (emult != 1.) {
  6194. if (! relative) {
  6195. destination[i] -= current_position[i];
  6196. relative = true;
  6197. }
  6198. destination[i] *= emult;
  6199. }
  6200. }
  6201. if (relative)
  6202. destination[i] += current_position[i];
  6203. seen[i]=true;
  6204. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6205. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6206. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6207. }
  6208. else destination[i] = current_position[i]; //Are these else lines really needed?
  6209. }
  6210. if(code_seen('F')) {
  6211. next_feedrate = code_value();
  6212. #ifdef MAX_SILENT_FEEDRATE
  6213. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6214. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6215. #endif //MAX_SILENT_FEEDRATE
  6216. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6217. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6218. {
  6219. // float e_max_speed =
  6220. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6221. }
  6222. }
  6223. }
  6224. void get_arc_coordinates()
  6225. {
  6226. #ifdef SF_ARC_FIX
  6227. bool relative_mode_backup = relative_mode;
  6228. relative_mode = true;
  6229. #endif
  6230. get_coordinates();
  6231. #ifdef SF_ARC_FIX
  6232. relative_mode=relative_mode_backup;
  6233. #endif
  6234. if(code_seen('I')) {
  6235. offset[0] = code_value();
  6236. }
  6237. else {
  6238. offset[0] = 0.0;
  6239. }
  6240. if(code_seen('J')) {
  6241. offset[1] = code_value();
  6242. }
  6243. else {
  6244. offset[1] = 0.0;
  6245. }
  6246. }
  6247. void clamp_to_software_endstops(float target[3])
  6248. {
  6249. #ifdef DEBUG_DISABLE_SWLIMITS
  6250. return;
  6251. #endif //DEBUG_DISABLE_SWLIMITS
  6252. world2machine_clamp(target[0], target[1]);
  6253. // Clamp the Z coordinate.
  6254. if (min_software_endstops) {
  6255. float negative_z_offset = 0;
  6256. #ifdef ENABLE_AUTO_BED_LEVELING
  6257. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6258. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6259. #endif
  6260. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6261. }
  6262. if (max_software_endstops) {
  6263. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6264. }
  6265. }
  6266. #ifdef MESH_BED_LEVELING
  6267. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6268. float dx = x - current_position[X_AXIS];
  6269. float dy = y - current_position[Y_AXIS];
  6270. float dz = z - current_position[Z_AXIS];
  6271. int n_segments = 0;
  6272. if (mbl.active) {
  6273. float len = abs(dx) + abs(dy);
  6274. if (len > 0)
  6275. // Split to 3cm segments or shorter.
  6276. n_segments = int(ceil(len / 30.f));
  6277. }
  6278. if (n_segments > 1) {
  6279. float de = e - current_position[E_AXIS];
  6280. for (int i = 1; i < n_segments; ++ i) {
  6281. float t = float(i) / float(n_segments);
  6282. if (saved_printing || (mbl.active == false)) return;
  6283. plan_buffer_line(
  6284. current_position[X_AXIS] + t * dx,
  6285. current_position[Y_AXIS] + t * dy,
  6286. current_position[Z_AXIS] + t * dz,
  6287. current_position[E_AXIS] + t * de,
  6288. feed_rate, extruder);
  6289. }
  6290. }
  6291. // The rest of the path.
  6292. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6293. current_position[X_AXIS] = x;
  6294. current_position[Y_AXIS] = y;
  6295. current_position[Z_AXIS] = z;
  6296. current_position[E_AXIS] = e;
  6297. }
  6298. #endif // MESH_BED_LEVELING
  6299. void prepare_move()
  6300. {
  6301. clamp_to_software_endstops(destination);
  6302. previous_millis_cmd = millis();
  6303. // Do not use feedmultiply for E or Z only moves
  6304. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6305. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6306. }
  6307. else {
  6308. #ifdef MESH_BED_LEVELING
  6309. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6310. #else
  6311. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6312. #endif
  6313. }
  6314. for(int8_t i=0; i < NUM_AXIS; i++) {
  6315. current_position[i] = destination[i];
  6316. }
  6317. }
  6318. void prepare_arc_move(char isclockwise) {
  6319. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6320. // Trace the arc
  6321. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6322. // As far as the parser is concerned, the position is now == target. In reality the
  6323. // motion control system might still be processing the action and the real tool position
  6324. // in any intermediate location.
  6325. for(int8_t i=0; i < NUM_AXIS; i++) {
  6326. current_position[i] = destination[i];
  6327. }
  6328. previous_millis_cmd = millis();
  6329. }
  6330. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6331. #if defined(FAN_PIN)
  6332. #if CONTROLLERFAN_PIN == FAN_PIN
  6333. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6334. #endif
  6335. #endif
  6336. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6337. unsigned long lastMotorCheck = 0;
  6338. void controllerFan()
  6339. {
  6340. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6341. {
  6342. lastMotorCheck = millis();
  6343. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6344. #if EXTRUDERS > 2
  6345. || !READ(E2_ENABLE_PIN)
  6346. #endif
  6347. #if EXTRUDER > 1
  6348. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6349. || !READ(X2_ENABLE_PIN)
  6350. #endif
  6351. || !READ(E1_ENABLE_PIN)
  6352. #endif
  6353. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6354. {
  6355. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6356. }
  6357. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6358. {
  6359. digitalWrite(CONTROLLERFAN_PIN, 0);
  6360. analogWrite(CONTROLLERFAN_PIN, 0);
  6361. }
  6362. else
  6363. {
  6364. // allows digital or PWM fan output to be used (see M42 handling)
  6365. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6366. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6367. }
  6368. }
  6369. }
  6370. #endif
  6371. #ifdef TEMP_STAT_LEDS
  6372. static bool blue_led = false;
  6373. static bool red_led = false;
  6374. static uint32_t stat_update = 0;
  6375. void handle_status_leds(void) {
  6376. float max_temp = 0.0;
  6377. if(millis() > stat_update) {
  6378. stat_update += 500; // Update every 0.5s
  6379. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6380. max_temp = max(max_temp, degHotend(cur_extruder));
  6381. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6382. }
  6383. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6384. max_temp = max(max_temp, degTargetBed());
  6385. max_temp = max(max_temp, degBed());
  6386. #endif
  6387. if((max_temp > 55.0) && (red_led == false)) {
  6388. digitalWrite(STAT_LED_RED, 1);
  6389. digitalWrite(STAT_LED_BLUE, 0);
  6390. red_led = true;
  6391. blue_led = false;
  6392. }
  6393. if((max_temp < 54.0) && (blue_led == false)) {
  6394. digitalWrite(STAT_LED_RED, 0);
  6395. digitalWrite(STAT_LED_BLUE, 1);
  6396. red_led = false;
  6397. blue_led = true;
  6398. }
  6399. }
  6400. }
  6401. #endif
  6402. #ifdef SAFETYTIMER
  6403. /**
  6404. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6405. *
  6406. * Full screen blocking notification message is shown after heater turning off.
  6407. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6408. * damage print.
  6409. *
  6410. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6411. */
  6412. static void handleSafetyTimer()
  6413. {
  6414. #if (EXTRUDERS > 1)
  6415. #error Implemented only for one extruder.
  6416. #endif //(EXTRUDERS > 1)
  6417. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6418. {
  6419. safetyTimer.stop();
  6420. }
  6421. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6422. {
  6423. safetyTimer.start();
  6424. }
  6425. else if (safetyTimer.expired(safetytimer_inactive_time))
  6426. {
  6427. setTargetBed(0);
  6428. setAllTargetHotends(0);
  6429. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6430. }
  6431. }
  6432. #endif //SAFETYTIMER
  6433. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6434. {
  6435. #ifdef FILAMENT_SENSOR
  6436. if (mmu_enabled == false)
  6437. {
  6438. if (mcode_in_progress != 600) //M600 not in progress
  6439. {
  6440. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6441. {
  6442. if (fsensor_check_autoload())
  6443. {
  6444. fsensor_autoload_check_stop();
  6445. if (degHotend0() > EXTRUDE_MINTEMP)
  6446. {
  6447. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6448. tone(BEEPER, 1000);
  6449. delay_keep_alive(50);
  6450. noTone(BEEPER);
  6451. loading_flag = true;
  6452. enquecommand_front_P((PSTR("M701")));
  6453. }
  6454. else
  6455. {
  6456. lcd_update_enable(false);
  6457. lcd_clear();
  6458. lcd_set_cursor(0, 0);
  6459. lcd_puts_P(_T(MSG_ERROR));
  6460. lcd_set_cursor(0, 2);
  6461. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6462. delay(2000);
  6463. lcd_clear();
  6464. lcd_update_enable(true);
  6465. }
  6466. }
  6467. }
  6468. else
  6469. fsensor_autoload_check_stop();
  6470. }
  6471. }
  6472. #endif //FILAMENT_SENSOR
  6473. #ifdef SAFETYTIMER
  6474. handleSafetyTimer();
  6475. #endif //SAFETYTIMER
  6476. #if defined(KILL_PIN) && KILL_PIN > -1
  6477. static int killCount = 0; // make the inactivity button a bit less responsive
  6478. const int KILL_DELAY = 10000;
  6479. #endif
  6480. if(buflen < (BUFSIZE-1)){
  6481. get_command();
  6482. }
  6483. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6484. if(max_inactive_time)
  6485. kill(_n(""), 4);
  6486. if(stepper_inactive_time) {
  6487. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6488. {
  6489. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6490. disable_x();
  6491. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6492. disable_y();
  6493. disable_z();
  6494. disable_e0();
  6495. disable_e1();
  6496. disable_e2();
  6497. }
  6498. }
  6499. }
  6500. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6501. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6502. {
  6503. chdkActive = false;
  6504. WRITE(CHDK, LOW);
  6505. }
  6506. #endif
  6507. #if defined(KILL_PIN) && KILL_PIN > -1
  6508. // Check if the kill button was pressed and wait just in case it was an accidental
  6509. // key kill key press
  6510. // -------------------------------------------------------------------------------
  6511. if( 0 == READ(KILL_PIN) )
  6512. {
  6513. killCount++;
  6514. }
  6515. else if (killCount > 0)
  6516. {
  6517. killCount--;
  6518. }
  6519. // Exceeded threshold and we can confirm that it was not accidental
  6520. // KILL the machine
  6521. // ----------------------------------------------------------------
  6522. if ( killCount >= KILL_DELAY)
  6523. {
  6524. kill("", 5);
  6525. }
  6526. #endif
  6527. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6528. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6529. #endif
  6530. #ifdef EXTRUDER_RUNOUT_PREVENT
  6531. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6532. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6533. {
  6534. bool oldstatus=READ(E0_ENABLE_PIN);
  6535. enable_e0();
  6536. float oldepos=current_position[E_AXIS];
  6537. float oldedes=destination[E_AXIS];
  6538. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6539. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6540. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6541. current_position[E_AXIS]=oldepos;
  6542. destination[E_AXIS]=oldedes;
  6543. plan_set_e_position(oldepos);
  6544. previous_millis_cmd=millis();
  6545. st_synchronize();
  6546. WRITE(E0_ENABLE_PIN,oldstatus);
  6547. }
  6548. #endif
  6549. #ifdef TEMP_STAT_LEDS
  6550. handle_status_leds();
  6551. #endif
  6552. check_axes_activity();
  6553. mmu_loop();
  6554. }
  6555. void kill(const char *full_screen_message, unsigned char id)
  6556. {
  6557. printf_P(_N("KILL: %d\n"), id);
  6558. //return;
  6559. cli(); // Stop interrupts
  6560. disable_heater();
  6561. disable_x();
  6562. // SERIAL_ECHOLNPGM("kill - disable Y");
  6563. disable_y();
  6564. disable_z();
  6565. disable_e0();
  6566. disable_e1();
  6567. disable_e2();
  6568. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6569. pinMode(PS_ON_PIN,INPUT);
  6570. #endif
  6571. SERIAL_ERROR_START;
  6572. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6573. if (full_screen_message != NULL) {
  6574. SERIAL_ERRORLNRPGM(full_screen_message);
  6575. lcd_display_message_fullscreen_P(full_screen_message);
  6576. } else {
  6577. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6578. }
  6579. // FMC small patch to update the LCD before ending
  6580. sei(); // enable interrupts
  6581. for ( int i=5; i--; lcd_update(0))
  6582. {
  6583. delay(200);
  6584. }
  6585. cli(); // disable interrupts
  6586. suicide();
  6587. while(1)
  6588. {
  6589. #ifdef WATCHDOG
  6590. wdt_reset();
  6591. #endif //WATCHDOG
  6592. /* Intentionally left empty */
  6593. } // Wait for reset
  6594. }
  6595. void Stop()
  6596. {
  6597. disable_heater();
  6598. if(Stopped == false) {
  6599. Stopped = true;
  6600. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6601. SERIAL_ERROR_START;
  6602. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6603. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6604. }
  6605. }
  6606. bool IsStopped() { return Stopped; };
  6607. #ifdef FAST_PWM_FAN
  6608. void setPwmFrequency(uint8_t pin, int val)
  6609. {
  6610. val &= 0x07;
  6611. switch(digitalPinToTimer(pin))
  6612. {
  6613. #if defined(TCCR0A)
  6614. case TIMER0A:
  6615. case TIMER0B:
  6616. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6617. // TCCR0B |= val;
  6618. break;
  6619. #endif
  6620. #if defined(TCCR1A)
  6621. case TIMER1A:
  6622. case TIMER1B:
  6623. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6624. // TCCR1B |= val;
  6625. break;
  6626. #endif
  6627. #if defined(TCCR2)
  6628. case TIMER2:
  6629. case TIMER2:
  6630. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6631. TCCR2 |= val;
  6632. break;
  6633. #endif
  6634. #if defined(TCCR2A)
  6635. case TIMER2A:
  6636. case TIMER2B:
  6637. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6638. TCCR2B |= val;
  6639. break;
  6640. #endif
  6641. #if defined(TCCR3A)
  6642. case TIMER3A:
  6643. case TIMER3B:
  6644. case TIMER3C:
  6645. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6646. TCCR3B |= val;
  6647. break;
  6648. #endif
  6649. #if defined(TCCR4A)
  6650. case TIMER4A:
  6651. case TIMER4B:
  6652. case TIMER4C:
  6653. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6654. TCCR4B |= val;
  6655. break;
  6656. #endif
  6657. #if defined(TCCR5A)
  6658. case TIMER5A:
  6659. case TIMER5B:
  6660. case TIMER5C:
  6661. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6662. TCCR5B |= val;
  6663. break;
  6664. #endif
  6665. }
  6666. }
  6667. #endif //FAST_PWM_FAN
  6668. //! @brief Get and validate extruder number
  6669. //!
  6670. //! If it is not specified, active_extruder is returned in parameter extruder.
  6671. //! @param [in] code M code number
  6672. //! @param [out] extruder
  6673. //! @return error
  6674. //! @retval true Invalid extruder specified in T code
  6675. //! @retval false Valid extruder specified in T code, or not specifiead
  6676. bool setTargetedHotend(int code, uint8_t &extruder)
  6677. {
  6678. extruder = active_extruder;
  6679. if(code_seen('T')) {
  6680. extruder = code_value();
  6681. if(extruder >= EXTRUDERS) {
  6682. SERIAL_ECHO_START;
  6683. switch(code){
  6684. case 104:
  6685. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6686. break;
  6687. case 105:
  6688. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6689. break;
  6690. case 109:
  6691. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6692. break;
  6693. case 218:
  6694. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6695. break;
  6696. case 221:
  6697. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6698. break;
  6699. }
  6700. SERIAL_PROTOCOLLN((int)extruder);
  6701. return true;
  6702. }
  6703. }
  6704. return false;
  6705. }
  6706. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6707. {
  6708. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6709. {
  6710. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6711. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6712. }
  6713. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6714. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6715. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6716. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6717. total_filament_used = 0;
  6718. }
  6719. float calculate_extruder_multiplier(float diameter) {
  6720. float out = 1.f;
  6721. if (cs.volumetric_enabled && diameter > 0.f) {
  6722. float area = M_PI * diameter * diameter * 0.25;
  6723. out = 1.f / area;
  6724. }
  6725. if (extrudemultiply != 100)
  6726. out *= float(extrudemultiply) * 0.01f;
  6727. return out;
  6728. }
  6729. void calculate_extruder_multipliers() {
  6730. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6731. #if EXTRUDERS > 1
  6732. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6733. #if EXTRUDERS > 2
  6734. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6735. #endif
  6736. #endif
  6737. }
  6738. void delay_keep_alive(unsigned int ms)
  6739. {
  6740. for (;;) {
  6741. manage_heater();
  6742. // Manage inactivity, but don't disable steppers on timeout.
  6743. manage_inactivity(true);
  6744. lcd_update(0);
  6745. if (ms == 0)
  6746. break;
  6747. else if (ms >= 50) {
  6748. delay(50);
  6749. ms -= 50;
  6750. } else {
  6751. delay(ms);
  6752. ms = 0;
  6753. }
  6754. }
  6755. }
  6756. static void wait_for_heater(long codenum, uint8_t extruder) {
  6757. #ifdef TEMP_RESIDENCY_TIME
  6758. long residencyStart;
  6759. residencyStart = -1;
  6760. /* continue to loop until we have reached the target temp
  6761. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6762. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6763. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6764. #else
  6765. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6766. #endif //TEMP_RESIDENCY_TIME
  6767. if ((millis() - codenum) > 1000UL)
  6768. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6769. if (!farm_mode) {
  6770. SERIAL_PROTOCOLPGM("T:");
  6771. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6772. SERIAL_PROTOCOLPGM(" E:");
  6773. SERIAL_PROTOCOL((int)extruder);
  6774. #ifdef TEMP_RESIDENCY_TIME
  6775. SERIAL_PROTOCOLPGM(" W:");
  6776. if (residencyStart > -1)
  6777. {
  6778. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6779. SERIAL_PROTOCOLLN(codenum);
  6780. }
  6781. else
  6782. {
  6783. SERIAL_PROTOCOLLN("?");
  6784. }
  6785. }
  6786. #else
  6787. SERIAL_PROTOCOLLN("");
  6788. #endif
  6789. codenum = millis();
  6790. }
  6791. manage_heater();
  6792. manage_inactivity();
  6793. lcd_update(0);
  6794. #ifdef TEMP_RESIDENCY_TIME
  6795. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6796. or when current temp falls outside the hysteresis after target temp was reached */
  6797. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6798. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6799. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6800. {
  6801. residencyStart = millis();
  6802. }
  6803. #endif //TEMP_RESIDENCY_TIME
  6804. }
  6805. }
  6806. void check_babystep()
  6807. {
  6808. int babystep_z;
  6809. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6810. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6811. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6812. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6813. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6814. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6815. lcd_update_enable(true);
  6816. }
  6817. }
  6818. #ifdef DIS
  6819. void d_setup()
  6820. {
  6821. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6822. pinMode(D_DATA, INPUT_PULLUP);
  6823. pinMode(D_REQUIRE, OUTPUT);
  6824. digitalWrite(D_REQUIRE, HIGH);
  6825. }
  6826. float d_ReadData()
  6827. {
  6828. int digit[13];
  6829. String mergeOutput;
  6830. float output;
  6831. digitalWrite(D_REQUIRE, HIGH);
  6832. for (int i = 0; i<13; i++)
  6833. {
  6834. for (int j = 0; j < 4; j++)
  6835. {
  6836. while (digitalRead(D_DATACLOCK) == LOW) {}
  6837. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6838. bitWrite(digit[i], j, digitalRead(D_DATA));
  6839. }
  6840. }
  6841. digitalWrite(D_REQUIRE, LOW);
  6842. mergeOutput = "";
  6843. output = 0;
  6844. for (int r = 5; r <= 10; r++) //Merge digits
  6845. {
  6846. mergeOutput += digit[r];
  6847. }
  6848. output = mergeOutput.toFloat();
  6849. if (digit[4] == 8) //Handle sign
  6850. {
  6851. output *= -1;
  6852. }
  6853. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6854. {
  6855. output /= 10;
  6856. }
  6857. return output;
  6858. }
  6859. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6860. int t1 = 0;
  6861. int t_delay = 0;
  6862. int digit[13];
  6863. int m;
  6864. char str[3];
  6865. //String mergeOutput;
  6866. char mergeOutput[15];
  6867. float output;
  6868. int mesh_point = 0; //index number of calibration point
  6869. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6870. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6871. float mesh_home_z_search = 4;
  6872. float row[x_points_num];
  6873. int ix = 0;
  6874. int iy = 0;
  6875. const char* filename_wldsd = "wldsd.txt";
  6876. char data_wldsd[70];
  6877. char numb_wldsd[10];
  6878. d_setup();
  6879. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6880. // We don't know where we are! HOME!
  6881. // Push the commands to the front of the message queue in the reverse order!
  6882. // There shall be always enough space reserved for these commands.
  6883. repeatcommand_front(); // repeat G80 with all its parameters
  6884. enquecommand_front_P((PSTR("G28 W0")));
  6885. enquecommand_front_P((PSTR("G1 Z5")));
  6886. return;
  6887. }
  6888. unsigned int custom_message_type_old = custom_message_type;
  6889. unsigned int custom_message_state_old = custom_message_state;
  6890. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6891. custom_message_state = (x_points_num * y_points_num) + 10;
  6892. lcd_update(1);
  6893. mbl.reset();
  6894. babystep_undo();
  6895. card.openFile(filename_wldsd, false);
  6896. current_position[Z_AXIS] = mesh_home_z_search;
  6897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6898. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6899. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6900. int l_feedmultiply = setup_for_endstop_move(false);
  6901. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6902. SERIAL_PROTOCOL(x_points_num);
  6903. SERIAL_PROTOCOLPGM(",");
  6904. SERIAL_PROTOCOL(y_points_num);
  6905. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6906. SERIAL_PROTOCOL(mesh_home_z_search);
  6907. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6908. SERIAL_PROTOCOL(x_dimension);
  6909. SERIAL_PROTOCOLPGM(",");
  6910. SERIAL_PROTOCOL(y_dimension);
  6911. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6912. while (mesh_point != x_points_num * y_points_num) {
  6913. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6914. iy = mesh_point / x_points_num;
  6915. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6916. float z0 = 0.f;
  6917. current_position[Z_AXIS] = mesh_home_z_search;
  6918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6919. st_synchronize();
  6920. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6921. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6923. st_synchronize();
  6924. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6925. break;
  6926. card.closefile();
  6927. }
  6928. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6929. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6930. //strcat(data_wldsd, numb_wldsd);
  6931. //MYSERIAL.println(data_wldsd);
  6932. //delay(1000);
  6933. //delay(3000);
  6934. //t1 = millis();
  6935. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6936. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6937. memset(digit, 0, sizeof(digit));
  6938. //cli();
  6939. digitalWrite(D_REQUIRE, LOW);
  6940. for (int i = 0; i<13; i++)
  6941. {
  6942. //t1 = millis();
  6943. for (int j = 0; j < 4; j++)
  6944. {
  6945. while (digitalRead(D_DATACLOCK) == LOW) {}
  6946. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6947. bitWrite(digit[i], j, digitalRead(D_DATA));
  6948. }
  6949. //t_delay = (millis() - t1);
  6950. //SERIAL_PROTOCOLPGM(" ");
  6951. //SERIAL_PROTOCOL_F(t_delay, 5);
  6952. //SERIAL_PROTOCOLPGM(" ");
  6953. }
  6954. //sei();
  6955. digitalWrite(D_REQUIRE, HIGH);
  6956. mergeOutput[0] = '\0';
  6957. output = 0;
  6958. for (int r = 5; r <= 10; r++) //Merge digits
  6959. {
  6960. sprintf(str, "%d", digit[r]);
  6961. strcat(mergeOutput, str);
  6962. }
  6963. output = atof(mergeOutput);
  6964. if (digit[4] == 8) //Handle sign
  6965. {
  6966. output *= -1;
  6967. }
  6968. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6969. {
  6970. output *= 0.1;
  6971. }
  6972. //output = d_ReadData();
  6973. //row[ix] = current_position[Z_AXIS];
  6974. memset(data_wldsd, 0, sizeof(data_wldsd));
  6975. for (int i = 0; i <3; i++) {
  6976. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6977. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6978. strcat(data_wldsd, numb_wldsd);
  6979. strcat(data_wldsd, ";");
  6980. }
  6981. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6982. dtostrf(output, 8, 5, numb_wldsd);
  6983. strcat(data_wldsd, numb_wldsd);
  6984. //strcat(data_wldsd, ";");
  6985. card.write_command(data_wldsd);
  6986. //row[ix] = d_ReadData();
  6987. row[ix] = output; // current_position[Z_AXIS];
  6988. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6989. for (int i = 0; i < x_points_num; i++) {
  6990. SERIAL_PROTOCOLPGM(" ");
  6991. SERIAL_PROTOCOL_F(row[i], 5);
  6992. }
  6993. SERIAL_PROTOCOLPGM("\n");
  6994. }
  6995. custom_message_state--;
  6996. mesh_point++;
  6997. lcd_update(1);
  6998. }
  6999. card.closefile();
  7000. clean_up_after_endstop_move(l_feedmultiply);
  7001. }
  7002. #endif
  7003. void temp_compensation_start() {
  7004. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7005. custom_message_state = PINDA_HEAT_T + 1;
  7006. lcd_update(2);
  7007. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7008. current_position[E_AXIS] -= default_retraction;
  7009. }
  7010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7011. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7012. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7013. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7015. st_synchronize();
  7016. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7017. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7018. delay_keep_alive(1000);
  7019. custom_message_state = PINDA_HEAT_T - i;
  7020. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7021. else lcd_update(1);
  7022. }
  7023. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7024. custom_message_state = 0;
  7025. }
  7026. void temp_compensation_apply() {
  7027. int i_add;
  7028. int z_shift = 0;
  7029. float z_shift_mm;
  7030. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7031. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7032. i_add = (target_temperature_bed - 60) / 10;
  7033. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7034. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7035. }else {
  7036. //interpolation
  7037. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7038. }
  7039. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7041. st_synchronize();
  7042. plan_set_z_position(current_position[Z_AXIS]);
  7043. }
  7044. else {
  7045. //we have no temp compensation data
  7046. }
  7047. }
  7048. float temp_comp_interpolation(float inp_temperature) {
  7049. //cubic spline interpolation
  7050. int n, i, j;
  7051. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7052. int shift[10];
  7053. int temp_C[10];
  7054. n = 6; //number of measured points
  7055. shift[0] = 0;
  7056. for (i = 0; i < n; i++) {
  7057. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7058. temp_C[i] = 50 + i * 10; //temperature in C
  7059. #ifdef PINDA_THERMISTOR
  7060. temp_C[i] = 35 + i * 5; //temperature in C
  7061. #else
  7062. temp_C[i] = 50 + i * 10; //temperature in C
  7063. #endif
  7064. x[i] = (float)temp_C[i];
  7065. f[i] = (float)shift[i];
  7066. }
  7067. if (inp_temperature < x[0]) return 0;
  7068. for (i = n - 1; i>0; i--) {
  7069. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7070. h[i - 1] = x[i] - x[i - 1];
  7071. }
  7072. //*********** formation of h, s , f matrix **************
  7073. for (i = 1; i<n - 1; i++) {
  7074. m[i][i] = 2 * (h[i - 1] + h[i]);
  7075. if (i != 1) {
  7076. m[i][i - 1] = h[i - 1];
  7077. m[i - 1][i] = h[i - 1];
  7078. }
  7079. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7080. }
  7081. //*********** forward elimination **************
  7082. for (i = 1; i<n - 2; i++) {
  7083. temp = (m[i + 1][i] / m[i][i]);
  7084. for (j = 1; j <= n - 1; j++)
  7085. m[i + 1][j] -= temp*m[i][j];
  7086. }
  7087. //*********** backward substitution *********
  7088. for (i = n - 2; i>0; i--) {
  7089. sum = 0;
  7090. for (j = i; j <= n - 2; j++)
  7091. sum += m[i][j] * s[j];
  7092. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7093. }
  7094. for (i = 0; i<n - 1; i++)
  7095. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7096. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7097. b = s[i] / 2;
  7098. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7099. d = f[i];
  7100. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7101. }
  7102. return sum;
  7103. }
  7104. #ifdef PINDA_THERMISTOR
  7105. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7106. {
  7107. if (!temp_cal_active) return 0;
  7108. if (!calibration_status_pinda()) return 0;
  7109. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7110. }
  7111. #endif //PINDA_THERMISTOR
  7112. void long_pause() //long pause print
  7113. {
  7114. st_synchronize();
  7115. start_pause_print = millis();
  7116. //retract
  7117. current_position[E_AXIS] -= default_retraction;
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7119. //lift z
  7120. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7121. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7123. //Move XY to side
  7124. current_position[X_AXIS] = X_PAUSE_POS;
  7125. current_position[Y_AXIS] = Y_PAUSE_POS;
  7126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7127. // Turn off the print fan
  7128. fanSpeed = 0;
  7129. st_synchronize();
  7130. }
  7131. void serialecho_temperatures() {
  7132. float tt = degHotend(active_extruder);
  7133. SERIAL_PROTOCOLPGM("T:");
  7134. SERIAL_PROTOCOL(tt);
  7135. SERIAL_PROTOCOLPGM(" E:");
  7136. SERIAL_PROTOCOL((int)active_extruder);
  7137. SERIAL_PROTOCOLPGM(" B:");
  7138. SERIAL_PROTOCOL_F(degBed(), 1);
  7139. SERIAL_PROTOCOLLN("");
  7140. }
  7141. extern uint32_t sdpos_atomic;
  7142. #ifdef UVLO_SUPPORT
  7143. void uvlo_()
  7144. {
  7145. unsigned long time_start = millis();
  7146. bool sd_print = card.sdprinting;
  7147. // Conserve power as soon as possible.
  7148. disable_x();
  7149. disable_y();
  7150. #ifdef TMC2130
  7151. tmc2130_set_current_h(Z_AXIS, 20);
  7152. tmc2130_set_current_r(Z_AXIS, 20);
  7153. tmc2130_set_current_h(E_AXIS, 20);
  7154. tmc2130_set_current_r(E_AXIS, 20);
  7155. #endif //TMC2130
  7156. // Indicate that the interrupt has been triggered.
  7157. // SERIAL_ECHOLNPGM("UVLO");
  7158. // Read out the current Z motor microstep counter. This will be later used
  7159. // for reaching the zero full step before powering off.
  7160. uint16_t z_microsteps = 0;
  7161. #ifdef TMC2130
  7162. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7163. #endif //TMC2130
  7164. // Calculate the file position, from which to resume this print.
  7165. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7166. {
  7167. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7168. sd_position -= sdlen_planner;
  7169. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7170. sd_position -= sdlen_cmdqueue;
  7171. if (sd_position < 0) sd_position = 0;
  7172. }
  7173. // Backup the feedrate in mm/min.
  7174. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7175. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7176. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7177. // are in action.
  7178. planner_abort_hard();
  7179. // Store the current extruder position.
  7180. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7181. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7182. // Clean the input command queue.
  7183. cmdqueue_reset();
  7184. card.sdprinting = false;
  7185. // card.closefile();
  7186. // Enable stepper driver interrupt to move Z axis.
  7187. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7188. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7189. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7190. sei();
  7191. plan_buffer_line(
  7192. current_position[X_AXIS],
  7193. current_position[Y_AXIS],
  7194. current_position[Z_AXIS],
  7195. current_position[E_AXIS] - default_retraction,
  7196. 95, active_extruder);
  7197. st_synchronize();
  7198. disable_e0();
  7199. plan_buffer_line(
  7200. current_position[X_AXIS],
  7201. current_position[Y_AXIS],
  7202. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7203. current_position[E_AXIS] - default_retraction,
  7204. 40, active_extruder);
  7205. st_synchronize();
  7206. disable_e0();
  7207. plan_buffer_line(
  7208. current_position[X_AXIS],
  7209. current_position[Y_AXIS],
  7210. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7211. current_position[E_AXIS] - default_retraction,
  7212. 40, active_extruder);
  7213. st_synchronize();
  7214. disable_e0();
  7215. disable_z();
  7216. // Move Z up to the next 0th full step.
  7217. // Write the file position.
  7218. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7219. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7220. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7221. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7222. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7223. // Scale the z value to 1u resolution.
  7224. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7225. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7226. }
  7227. // Read out the current Z motor microstep counter. This will be later used
  7228. // for reaching the zero full step before powering off.
  7229. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7230. // Store the current position.
  7231. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7232. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7233. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7234. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7235. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7236. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7237. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7238. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7239. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7240. #if EXTRUDERS > 1
  7241. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7242. #if EXTRUDERS > 2
  7243. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7244. #endif
  7245. #endif
  7246. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7247. // Finaly store the "power outage" flag.
  7248. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7249. st_synchronize();
  7250. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7251. disable_z();
  7252. // Increment power failure counter
  7253. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7254. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7255. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7256. #if 0
  7257. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7258. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7260. st_synchronize();
  7261. #endif
  7262. wdt_enable(WDTO_500MS);
  7263. WRITE(BEEPER,HIGH);
  7264. while(1)
  7265. ;
  7266. }
  7267. void uvlo_tiny()
  7268. {
  7269. uint16_t z_microsteps=0;
  7270. // Conserve power as soon as possible.
  7271. disable_x();
  7272. disable_y();
  7273. disable_e0();
  7274. #ifdef TMC2130
  7275. tmc2130_set_current_h(Z_AXIS, 20);
  7276. tmc2130_set_current_r(Z_AXIS, 20);
  7277. #endif //TMC2130
  7278. // Read out the current Z motor microstep counter
  7279. #ifdef TMC2130
  7280. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7281. #endif //TMC2130
  7282. planner_abort_hard();
  7283. sei();
  7284. plan_buffer_line(
  7285. current_position[X_AXIS],
  7286. current_position[Y_AXIS],
  7287. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7288. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7289. current_position[E_AXIS],
  7290. 40, active_extruder);
  7291. st_synchronize();
  7292. disable_z();
  7293. // Finaly store the "power outage" flag.
  7294. //if(sd_print)
  7295. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7296. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7297. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7298. // Increment power failure counter
  7299. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7300. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7301. wdt_enable(WDTO_500MS);
  7302. WRITE(BEEPER,HIGH);
  7303. while(1)
  7304. ;
  7305. }
  7306. #endif //UVLO_SUPPORT
  7307. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7308. void setup_fan_interrupt() {
  7309. //INT7
  7310. DDRE &= ~(1 << 7); //input pin
  7311. PORTE &= ~(1 << 7); //no internal pull-up
  7312. //start with sensing rising edge
  7313. EICRB &= ~(1 << 6);
  7314. EICRB |= (1 << 7);
  7315. //enable INT7 interrupt
  7316. EIMSK |= (1 << 7);
  7317. }
  7318. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7319. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7320. ISR(INT7_vect) {
  7321. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7322. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7323. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7324. t_fan_rising_edge = millis_nc();
  7325. }
  7326. else { //interrupt was triggered by falling edge
  7327. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7328. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7329. }
  7330. }
  7331. EICRB ^= (1 << 6); //change edge
  7332. }
  7333. #endif
  7334. #ifdef UVLO_SUPPORT
  7335. void setup_uvlo_interrupt() {
  7336. DDRE &= ~(1 << 4); //input pin
  7337. PORTE &= ~(1 << 4); //no internal pull-up
  7338. //sensing falling edge
  7339. EICRB |= (1 << 0);
  7340. EICRB &= ~(1 << 1);
  7341. //enable INT4 interrupt
  7342. EIMSK |= (1 << 4);
  7343. }
  7344. ISR(INT4_vect) {
  7345. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7346. SERIAL_ECHOLNPGM("INT4");
  7347. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7348. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7349. }
  7350. void recover_print(uint8_t automatic) {
  7351. char cmd[30];
  7352. lcd_update_enable(true);
  7353. lcd_update(2);
  7354. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7355. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7356. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7357. // Lift the print head, so one may remove the excess priming material.
  7358. if(!bTiny&&(current_position[Z_AXIS]<25))
  7359. enquecommand_P(PSTR("G1 Z25 F800"));
  7360. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7361. enquecommand_P(PSTR("G28 X Y"));
  7362. // Set the target bed and nozzle temperatures and wait.
  7363. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7364. enquecommand(cmd);
  7365. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7366. enquecommand(cmd);
  7367. enquecommand_P(PSTR("M83")); //E axis relative mode
  7368. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7369. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7370. if(automatic == 0){
  7371. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7372. }
  7373. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7374. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7375. // Restart the print.
  7376. restore_print_from_eeprom();
  7377. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7378. }
  7379. void recover_machine_state_after_power_panic(bool bTiny)
  7380. {
  7381. char cmd[30];
  7382. // 1) Recover the logical cordinates at the time of the power panic.
  7383. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7384. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7385. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7386. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7387. // The current position after power panic is moved to the next closest 0th full step.
  7388. if(bTiny)
  7389. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7390. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7391. else
  7392. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7393. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7394. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7395. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7396. sprintf_P(cmd, PSTR("G92 E"));
  7397. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7398. enquecommand(cmd);
  7399. }
  7400. memcpy(destination, current_position, sizeof(destination));
  7401. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7402. print_world_coordinates();
  7403. // 2) Initialize the logical to physical coordinate system transformation.
  7404. world2machine_initialize();
  7405. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7406. mbl.active = false;
  7407. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7408. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7409. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7410. // Scale the z value to 10u resolution.
  7411. int16_t v;
  7412. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7413. if (v != 0)
  7414. mbl.active = true;
  7415. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7416. }
  7417. if (mbl.active)
  7418. mbl.upsample_3x3();
  7419. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7420. // print_mesh_bed_leveling_table();
  7421. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7422. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7423. babystep_load();
  7424. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7425. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7426. // 6) Power up the motors, mark their positions as known.
  7427. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7428. axis_known_position[X_AXIS] = true; enable_x();
  7429. axis_known_position[Y_AXIS] = true; enable_y();
  7430. axis_known_position[Z_AXIS] = true; enable_z();
  7431. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7432. print_physical_coordinates();
  7433. // 7) Recover the target temperatures.
  7434. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7435. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7436. // 8) Recover extruder multipilers
  7437. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7438. #if EXTRUDERS > 1
  7439. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7440. #if EXTRUDERS > 2
  7441. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7442. #endif
  7443. #endif
  7444. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7445. }
  7446. void restore_print_from_eeprom() {
  7447. int feedrate_rec;
  7448. uint8_t fan_speed_rec;
  7449. char cmd[30];
  7450. char filename[13];
  7451. uint8_t depth = 0;
  7452. char dir_name[9];
  7453. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7454. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7455. SERIAL_ECHOPGM("Feedrate:");
  7456. MYSERIAL.println(feedrate_rec);
  7457. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7458. MYSERIAL.println(int(depth));
  7459. for (int i = 0; i < depth; i++) {
  7460. for (int j = 0; j < 8; j++) {
  7461. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7462. }
  7463. dir_name[8] = '\0';
  7464. MYSERIAL.println(dir_name);
  7465. strcpy(dir_names[i], dir_name);
  7466. card.chdir(dir_name);
  7467. }
  7468. for (int i = 0; i < 8; i++) {
  7469. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7470. }
  7471. filename[8] = '\0';
  7472. MYSERIAL.print(filename);
  7473. strcat_P(filename, PSTR(".gco"));
  7474. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7475. enquecommand(cmd);
  7476. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7477. SERIAL_ECHOPGM("Position read from eeprom:");
  7478. MYSERIAL.println(position);
  7479. // E axis relative mode.
  7480. enquecommand_P(PSTR("M83"));
  7481. // Move to the XY print position in logical coordinates, where the print has been killed.
  7482. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7483. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7484. strcat_P(cmd, PSTR(" F2000"));
  7485. enquecommand(cmd);
  7486. // Move the Z axis down to the print, in logical coordinates.
  7487. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7488. enquecommand(cmd);
  7489. // Unretract.
  7490. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7491. // Set the feedrate saved at the power panic.
  7492. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7493. enquecommand(cmd);
  7494. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7495. {
  7496. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7497. }
  7498. // Set the fan speed saved at the power panic.
  7499. strcpy_P(cmd, PSTR("M106 S"));
  7500. strcat(cmd, itostr3(int(fan_speed_rec)));
  7501. enquecommand(cmd);
  7502. // Set a position in the file.
  7503. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7504. enquecommand(cmd);
  7505. enquecommand_P(PSTR("G4 S0"));
  7506. enquecommand_P(PSTR("PRUSA uvlo"));
  7507. }
  7508. #endif //UVLO_SUPPORT
  7509. //! @brief Immediately stop print moves
  7510. //!
  7511. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7512. //! If printing from sd card, position in file is saved.
  7513. //! If printing from USB, line number is saved.
  7514. //!
  7515. //! @param z_move
  7516. //! @param e_move
  7517. void stop_and_save_print_to_ram(float z_move, float e_move)
  7518. {
  7519. if (saved_printing) return;
  7520. #if 0
  7521. unsigned char nplanner_blocks;
  7522. #endif
  7523. unsigned char nlines;
  7524. uint16_t sdlen_planner;
  7525. uint16_t sdlen_cmdqueue;
  7526. cli();
  7527. if (card.sdprinting) {
  7528. #if 0
  7529. nplanner_blocks = number_of_blocks();
  7530. #endif
  7531. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7532. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7533. saved_sdpos -= sdlen_planner;
  7534. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7535. saved_sdpos -= sdlen_cmdqueue;
  7536. saved_printing_type = PRINTING_TYPE_SD;
  7537. }
  7538. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7539. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7540. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7541. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7542. saved_sdpos -= nlines;
  7543. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7544. saved_printing_type = PRINTING_TYPE_USB;
  7545. }
  7546. else {
  7547. //not sd printing nor usb printing
  7548. }
  7549. #if 0
  7550. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7551. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7552. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7553. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7554. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7555. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7556. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7557. {
  7558. card.setIndex(saved_sdpos);
  7559. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7560. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7561. MYSERIAL.print(char(card.get()));
  7562. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7563. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7564. MYSERIAL.print(char(card.get()));
  7565. SERIAL_ECHOLNPGM("End of command buffer");
  7566. }
  7567. {
  7568. // Print the content of the planner buffer, line by line:
  7569. card.setIndex(saved_sdpos);
  7570. int8_t iline = 0;
  7571. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7572. SERIAL_ECHOPGM("Planner line (from file): ");
  7573. MYSERIAL.print(int(iline), DEC);
  7574. SERIAL_ECHOPGM(", length: ");
  7575. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7576. SERIAL_ECHOPGM(", steps: (");
  7577. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7578. SERIAL_ECHOPGM(",");
  7579. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7580. SERIAL_ECHOPGM(",");
  7581. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7582. SERIAL_ECHOPGM(",");
  7583. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7584. SERIAL_ECHOPGM("), events: ");
  7585. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7586. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7587. MYSERIAL.print(char(card.get()));
  7588. }
  7589. }
  7590. {
  7591. // Print the content of the command buffer, line by line:
  7592. int8_t iline = 0;
  7593. union {
  7594. struct {
  7595. char lo;
  7596. char hi;
  7597. } lohi;
  7598. uint16_t value;
  7599. } sdlen_single;
  7600. int _bufindr = bufindr;
  7601. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7602. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7603. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7604. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7605. }
  7606. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7607. MYSERIAL.print(int(iline), DEC);
  7608. SERIAL_ECHOPGM(", type: ");
  7609. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7610. SERIAL_ECHOPGM(", len: ");
  7611. MYSERIAL.println(sdlen_single.value, DEC);
  7612. // Print the content of the buffer line.
  7613. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7614. SERIAL_ECHOPGM("Buffer line (from file): ");
  7615. MYSERIAL.println(int(iline), DEC);
  7616. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7617. MYSERIAL.print(char(card.get()));
  7618. if (-- _buflen == 0)
  7619. break;
  7620. // First skip the current command ID and iterate up to the end of the string.
  7621. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7622. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7623. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7624. // If the end of the buffer was empty,
  7625. if (_bufindr == sizeof(cmdbuffer)) {
  7626. // skip to the start and find the nonzero command.
  7627. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7628. }
  7629. }
  7630. }
  7631. #endif
  7632. #if 0
  7633. saved_feedrate2 = feedrate; //save feedrate
  7634. #else
  7635. // Try to deduce the feedrate from the first block of the planner.
  7636. // Speed is in mm/min.
  7637. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7638. #endif
  7639. planner_abort_hard(); //abort printing
  7640. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7641. saved_active_extruder = active_extruder; //save active_extruder
  7642. saved_extruder_temperature = degTargetHotend(active_extruder);
  7643. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7644. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7645. saved_fanSpeed = fanSpeed;
  7646. cmdqueue_reset(); //empty cmdqueue
  7647. card.sdprinting = false;
  7648. // card.closefile();
  7649. saved_printing = true;
  7650. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7651. st_reset_timer();
  7652. sei();
  7653. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7654. #if 1
  7655. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7656. char buf[48];
  7657. // First unretract (relative extrusion)
  7658. if(!saved_extruder_relative_mode){
  7659. strcpy_P(buf, PSTR("M83"));
  7660. enquecommand(buf, false);
  7661. }
  7662. //retract 45mm/s
  7663. strcpy_P(buf, PSTR("G1 E"));
  7664. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7665. strcat_P(buf, PSTR(" F"));
  7666. dtostrf(2700, 8, 3, buf + strlen(buf));
  7667. enquecommand(buf, false);
  7668. // Then lift Z axis
  7669. strcpy_P(buf, PSTR("G1 Z"));
  7670. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7671. strcat_P(buf, PSTR(" F"));
  7672. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7673. // At this point the command queue is empty.
  7674. enquecommand(buf, false);
  7675. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7676. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7677. repeatcommand_front();
  7678. #else
  7679. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7680. st_synchronize(); //wait moving
  7681. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7682. memcpy(destination, current_position, sizeof(destination));
  7683. #endif
  7684. }
  7685. }
  7686. //! @brief Restore print from ram
  7687. //!
  7688. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7689. //! waits for extruder temperature restore, then restores position and continues
  7690. //! print moves.
  7691. //! Internaly lcd_update() is called by wait_for_heater().
  7692. //!
  7693. //! @param e_move
  7694. void restore_print_from_ram_and_continue(float e_move)
  7695. {
  7696. if (!saved_printing) return;
  7697. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7698. // current_position[axis] = st_get_position_mm(axis);
  7699. active_extruder = saved_active_extruder; //restore active_extruder
  7700. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7701. heating_status = 1;
  7702. wait_for_heater(millis(),saved_active_extruder);
  7703. heating_status = 2;
  7704. feedrate = saved_feedrate2; //restore feedrate
  7705. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7706. fanSpeed = saved_fanSpeed;
  7707. float e = saved_pos[E_AXIS] - e_move;
  7708. plan_set_e_position(e);
  7709. //first move print head in XY to the saved position:
  7710. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7711. st_synchronize();
  7712. //then move Z
  7713. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7714. st_synchronize();
  7715. //and finaly unretract (35mm/s)
  7716. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7717. st_synchronize();
  7718. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7719. memcpy(destination, current_position, sizeof(destination));
  7720. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7721. card.setIndex(saved_sdpos);
  7722. sdpos_atomic = saved_sdpos;
  7723. card.sdprinting = true;
  7724. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7725. }
  7726. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7727. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7728. serial_count = 0;
  7729. FlushSerialRequestResend();
  7730. }
  7731. else {
  7732. //not sd printing nor usb printing
  7733. }
  7734. lcd_setstatuspgm(_T(WELCOME_MSG));
  7735. saved_printing = false;
  7736. }
  7737. void print_world_coordinates()
  7738. {
  7739. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7740. }
  7741. void print_physical_coordinates()
  7742. {
  7743. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7744. }
  7745. void print_mesh_bed_leveling_table()
  7746. {
  7747. SERIAL_ECHOPGM("mesh bed leveling: ");
  7748. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7749. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7750. MYSERIAL.print(mbl.z_values[y][x], 3);
  7751. SERIAL_ECHOPGM(" ");
  7752. }
  7753. SERIAL_ECHOLNPGM("");
  7754. }
  7755. uint16_t print_time_remaining() {
  7756. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7757. #ifdef TMC2130
  7758. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7759. else print_t = print_time_remaining_silent;
  7760. #else
  7761. print_t = print_time_remaining_normal;
  7762. #endif //TMC2130
  7763. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7764. return print_t;
  7765. }
  7766. uint8_t calc_percent_done()
  7767. {
  7768. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7769. uint8_t percent_done = 0;
  7770. #ifdef TMC2130
  7771. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7772. percent_done = print_percent_done_normal;
  7773. }
  7774. else if (print_percent_done_silent <= 100) {
  7775. percent_done = print_percent_done_silent;
  7776. }
  7777. #else
  7778. if (print_percent_done_normal <= 100) {
  7779. percent_done = print_percent_done_normal;
  7780. }
  7781. #endif //TMC2130
  7782. else {
  7783. percent_done = card.percentDone();
  7784. }
  7785. return percent_done;
  7786. }
  7787. static void print_time_remaining_init()
  7788. {
  7789. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7790. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7791. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7792. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7793. }
  7794. void M600_check_state()
  7795. {
  7796. //Wait for user to check the state
  7797. lcd_change_fil_state = 0;
  7798. while (lcd_change_fil_state != 1){
  7799. lcd_change_fil_state = 0;
  7800. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7801. lcd_alright();
  7802. KEEPALIVE_STATE(IN_HANDLER);
  7803. switch(lcd_change_fil_state){
  7804. // Filament failed to load so load it again
  7805. case 2:
  7806. if (mmu_enabled)
  7807. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7808. else
  7809. M600_load_filament_movements();
  7810. break;
  7811. // Filament loaded properly but color is not clear
  7812. case 3:
  7813. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7815. lcd_loading_color();
  7816. break;
  7817. // Everything good
  7818. default:
  7819. lcd_change_success();
  7820. break;
  7821. }
  7822. }
  7823. }
  7824. //! @brief Wait for user action
  7825. //!
  7826. //! Beep, manage nozzle heater and wait for user to start unload filament
  7827. //! If times out, active extruder temperature is set to 0.
  7828. //!
  7829. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7830. void M600_wait_for_user(float HotendTempBckp) {
  7831. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7832. int counterBeep = 0;
  7833. unsigned long waiting_start_time = millis();
  7834. uint8_t wait_for_user_state = 0;
  7835. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7836. bool bFirst=true;
  7837. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7838. manage_heater();
  7839. manage_inactivity(true);
  7840. #if BEEPER > 0
  7841. if (counterBeep == 500) {
  7842. counterBeep = 0;
  7843. }
  7844. SET_OUTPUT(BEEPER);
  7845. if (counterBeep == 0) {
  7846. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7847. {
  7848. bFirst=false;
  7849. WRITE(BEEPER, HIGH);
  7850. }
  7851. }
  7852. if (counterBeep == 20) {
  7853. WRITE(BEEPER, LOW);
  7854. }
  7855. counterBeep++;
  7856. #endif //BEEPER > 0
  7857. switch (wait_for_user_state) {
  7858. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7859. delay_keep_alive(4);
  7860. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7861. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7862. wait_for_user_state = 1;
  7863. setAllTargetHotends(0);
  7864. st_synchronize();
  7865. disable_e0();
  7866. disable_e1();
  7867. disable_e2();
  7868. }
  7869. break;
  7870. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7871. delay_keep_alive(4);
  7872. if (lcd_clicked()) {
  7873. setTargetHotend(HotendTempBckp, active_extruder);
  7874. lcd_wait_for_heater();
  7875. wait_for_user_state = 2;
  7876. }
  7877. break;
  7878. case 2: //waiting for nozzle to reach target temperature
  7879. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7880. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7881. waiting_start_time = millis();
  7882. wait_for_user_state = 0;
  7883. }
  7884. else {
  7885. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7886. lcd_set_cursor(1, 4);
  7887. lcd_print(ftostr3(degHotend(active_extruder)));
  7888. }
  7889. break;
  7890. }
  7891. }
  7892. WRITE(BEEPER, LOW);
  7893. }
  7894. void M600_load_filament_movements()
  7895. {
  7896. #ifdef SNMM
  7897. display_loading();
  7898. do
  7899. {
  7900. current_position[E_AXIS] += 0.002;
  7901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7902. delay_keep_alive(2);
  7903. }
  7904. while (!lcd_clicked());
  7905. st_synchronize();
  7906. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7908. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7910. current_position[E_AXIS] += 40;
  7911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7912. current_position[E_AXIS] += 10;
  7913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7914. #else
  7915. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7917. #endif
  7918. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7920. lcd_loading_filament();
  7921. }
  7922. void M600_load_filament() {
  7923. //load filament for single material and SNMM
  7924. lcd_wait_interact();
  7925. //load_filament_time = millis();
  7926. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7927. #ifdef FILAMENT_SENSOR
  7928. fsensor_autoload_check_start();
  7929. #endif //FILAMENT_SENSOR
  7930. while(!lcd_clicked())
  7931. {
  7932. manage_heater();
  7933. manage_inactivity(true);
  7934. #ifdef FILAMENT_SENSOR
  7935. if (fsensor_check_autoload())
  7936. {
  7937. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7938. tone(BEEPER, 1000);
  7939. delay_keep_alive(50);
  7940. noTone(BEEPER);
  7941. break;
  7942. }
  7943. #endif //FILAMENT_SENSOR
  7944. }
  7945. #ifdef FILAMENT_SENSOR
  7946. fsensor_autoload_check_stop();
  7947. #endif //FILAMENT_SENSOR
  7948. KEEPALIVE_STATE(IN_HANDLER);
  7949. #ifdef FILAMENT_SENSOR
  7950. fsensor_oq_meassure_start(70);
  7951. #endif //FILAMENT_SENSOR
  7952. M600_load_filament_movements();
  7953. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7954. tone(BEEPER, 500);
  7955. delay_keep_alive(50);
  7956. noTone(BEEPER);
  7957. #ifdef FILAMENT_SENSOR
  7958. fsensor_oq_meassure_stop();
  7959. if (!fsensor_oq_result())
  7960. {
  7961. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7962. lcd_update_enable(true);
  7963. lcd_update(2);
  7964. if (disable)
  7965. fsensor_disable();
  7966. }
  7967. #endif //FILAMENT_SENSOR
  7968. lcd_update_enable(false);
  7969. }
  7970. #define FIL_LOAD_LENGTH 60