stepper.cpp 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #ifdef PAT9125
  33. #include "fsensor.h"
  34. int fsensor_counter = 0; //counter for e-steps
  35. #endif //PAT9125
  36. #ifdef DEBUG_STACK_MONITOR
  37. uint16_t SP_min = 0x21FF;
  38. #endif //DEBUG_STACK_MONITOR
  39. //===========================================================================
  40. //=============================public variables ============================
  41. //===========================================================================
  42. block_t *current_block; // A pointer to the block currently being traced
  43. bool x_min_endstop = false;
  44. bool x_max_endstop = false;
  45. bool y_min_endstop = false;
  46. bool y_max_endstop = false;
  47. bool z_min_endstop = false;
  48. bool z_max_endstop = false;
  49. //===========================================================================
  50. //=============================private variables ============================
  51. //===========================================================================
  52. //static makes it inpossible to be called from outside of this file by extern.!
  53. // Variables used by The Stepper Driver Interrupt
  54. static unsigned char out_bits; // The next stepping-bits to be output
  55. static dda_isteps_t
  56. counter_x, // Counter variables for the bresenham line tracer
  57. counter_y,
  58. counter_z,
  59. counter_e;
  60. volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
  61. static int32_t acceleration_time, deceleration_time;
  62. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  63. static uint16_t acc_step_rate; // needed for deccelaration start point
  64. static uint8_t step_loops;
  65. static uint16_t OCR1A_nominal;
  66. static uint8_t step_loops_nominal;
  67. volatile long endstops_trigsteps[3]={0,0,0};
  68. volatile long endstops_stepsTotal,endstops_stepsDone;
  69. static volatile bool endstop_x_hit=false;
  70. static volatile bool endstop_y_hit=false;
  71. static volatile bool endstop_z_hit=false;
  72. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  73. bool abort_on_endstop_hit = false;
  74. #endif
  75. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  76. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  77. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  79. #endif
  80. static bool old_x_min_endstop=false;
  81. static bool old_x_max_endstop=false;
  82. static bool old_y_min_endstop=false;
  83. static bool old_y_max_endstop=false;
  84. static bool old_z_min_endstop=false;
  85. static bool old_z_max_endstop=false;
  86. static bool check_endstops = true;
  87. static bool check_z_endstop = false;
  88. static bool z_endstop_invert = false;
  89. int8_t SilentMode = 0;
  90. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  91. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  92. uint8_t LastStepMask = 0;
  93. #ifdef LIN_ADVANCE
  94. static uint16_t nextMainISR = 0;
  95. static uint16_t eISR_Rate;
  96. // Extrusion steps to be executed by the stepper.
  97. // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
  98. // If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
  99. static volatile int16_t e_steps = 0;
  100. // How many extruder steps shall be ticked at a single ISR invocation?
  101. static uint8_t estep_loops;
  102. // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
  103. // as current_adv_steps.
  104. static int current_estep_rate;
  105. // The current pretension of filament expressed in extruder micro steps.
  106. static int current_adv_steps;
  107. #define _NEXT_ISR(T) nextMainISR = T
  108. #else
  109. #define _NEXT_ISR(T) OCR1A = T
  110. #endif
  111. #ifdef DEBUG_STEPPER_TIMER_MISSED
  112. extern bool stepper_timer_overflow_state;
  113. extern uint16_t stepper_timer_overflow_last;
  114. #endif /* DEBUG_STEPPER_TIMER_MISSED */
  115. //===========================================================================
  116. //=============================functions ============================
  117. //===========================================================================
  118. #ifndef _NO_ASM
  119. // intRes = intIn1 * intIn2 >> 16
  120. // uses:
  121. // r26 to store 0
  122. // r27 to store the byte 1 of the 24 bit result
  123. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  124. asm volatile ( \
  125. "clr r26 \n\t" \
  126. "mul %A1, %B2 \n\t" \
  127. "movw %A0, r0 \n\t" \
  128. "mul %A1, %A2 \n\t" \
  129. "add %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "lsr r0 \n\t" \
  132. "adc %A0, r26 \n\t" \
  133. "adc %B0, r26 \n\t" \
  134. "clr r1 \n\t" \
  135. : \
  136. "=&r" (intRes) \
  137. : \
  138. "d" (charIn1), \
  139. "d" (intIn2) \
  140. : \
  141. "r26" \
  142. )
  143. // intRes = longIn1 * longIn2 >> 24
  144. // uses:
  145. // r26 to store 0
  146. // r27 to store the byte 1 of the 48bit result
  147. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  148. asm volatile ( \
  149. "clr r26 \n\t" \
  150. "mul %A1, %B2 \n\t" \
  151. "mov r27, r1 \n\t" \
  152. "mul %B1, %C2 \n\t" \
  153. "movw %A0, r0 \n\t" \
  154. "mul %C1, %C2 \n\t" \
  155. "add %B0, r0 \n\t" \
  156. "mul %C1, %B2 \n\t" \
  157. "add %A0, r0 \n\t" \
  158. "adc %B0, r1 \n\t" \
  159. "mul %A1, %C2 \n\t" \
  160. "add r27, r0 \n\t" \
  161. "adc %A0, r1 \n\t" \
  162. "adc %B0, r26 \n\t" \
  163. "mul %B1, %B2 \n\t" \
  164. "add r27, r0 \n\t" \
  165. "adc %A0, r1 \n\t" \
  166. "adc %B0, r26 \n\t" \
  167. "mul %C1, %A2 \n\t" \
  168. "add r27, r0 \n\t" \
  169. "adc %A0, r1 \n\t" \
  170. "adc %B0, r26 \n\t" \
  171. "mul %B1, %A2 \n\t" \
  172. "add r27, r1 \n\t" \
  173. "adc %A0, r26 \n\t" \
  174. "adc %B0, r26 \n\t" \
  175. "lsr r27 \n\t" \
  176. "adc %A0, r26 \n\t" \
  177. "adc %B0, r26 \n\t" \
  178. "clr r1 \n\t" \
  179. : \
  180. "=&r" (intRes) \
  181. : \
  182. "d" (longIn1), \
  183. "d" (longIn2) \
  184. : \
  185. "r26" , "r27" \
  186. )
  187. #else //_NO_ASM
  188. void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
  189. {
  190. }
  191. void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
  192. {
  193. }
  194. #endif //_NO_ASM
  195. // Some useful constants
  196. void checkHitEndstops()
  197. {
  198. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  199. SERIAL_ECHO_START;
  200. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  201. if(endstop_x_hit) {
  202. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  203. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  204. }
  205. if(endstop_y_hit) {
  206. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  207. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  208. }
  209. if(endstop_z_hit) {
  210. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  211. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  212. }
  213. SERIAL_ECHOLN("");
  214. endstop_x_hit=false;
  215. endstop_y_hit=false;
  216. endstop_z_hit=false;
  217. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  218. if (abort_on_endstop_hit)
  219. {
  220. card.sdprinting = false;
  221. card.closefile();
  222. quickStop();
  223. setTargetHotend0(0);
  224. setTargetHotend1(0);
  225. setTargetHotend2(0);
  226. }
  227. #endif
  228. }
  229. }
  230. bool endstops_hit_on_purpose()
  231. {
  232. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  233. endstop_x_hit=false;
  234. endstop_y_hit=false;
  235. endstop_z_hit=false;
  236. return hit;
  237. }
  238. bool endstop_z_hit_on_purpose()
  239. {
  240. bool hit = endstop_z_hit;
  241. endstop_z_hit=false;
  242. return hit;
  243. }
  244. bool enable_endstops(bool check)
  245. {
  246. bool old = check_endstops;
  247. check_endstops = check;
  248. return old;
  249. }
  250. bool enable_z_endstop(bool check)
  251. {
  252. bool old = check_z_endstop;
  253. check_z_endstop = check;
  254. endstop_z_hit = false;
  255. return old;
  256. }
  257. void invert_z_endstop(bool endstop_invert)
  258. {
  259. z_endstop_invert = endstop_invert;
  260. }
  261. // __________________________
  262. // /| |\ _________________ ^
  263. // / | | \ /| |\ |
  264. // / | | \ / | | \ s
  265. // / | | | | | \ p
  266. // / | | | | | \ e
  267. // +-----+------------------------+---+--+---------------+----+ e
  268. // | BLOCK 1 | BLOCK 2 | d
  269. //
  270. // time ----->
  271. //
  272. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  273. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  274. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  275. // The slope of acceleration is calculated with the leib ramp alghorithm.
  276. FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
  277. unsigned short timer;
  278. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  279. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  280. step_rate = (step_rate >> 2)&0x3fff;
  281. step_loops = 4;
  282. }
  283. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  284. step_rate = (step_rate >> 1)&0x7fff;
  285. step_loops = 2;
  286. }
  287. else {
  288. step_loops = 1;
  289. }
  290. // step_loops = 1;
  291. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  292. step_rate -= (F_CPU/500000); // Correct for minimal speed
  293. if(step_rate >= (8*256)){ // higher step rate
  294. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  295. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  296. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  297. MultiU16X8toH16(timer, tmp_step_rate, gain);
  298. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  299. }
  300. else { // lower step rates
  301. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  302. table_address += ((step_rate)>>1) & 0xfffc;
  303. timer = (unsigned short)pgm_read_word_near(table_address);
  304. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  305. }
  306. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  307. return timer;
  308. }
  309. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  310. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  311. ISR(TIMER1_COMPA_vect) {
  312. #ifdef DEBUG_STACK_MONITOR
  313. uint16_t sp = SPL + 256 * SPH;
  314. if (sp < SP_min) SP_min = sp;
  315. #endif //DEBUG_STACK_MONITOR
  316. #ifdef LIN_ADVANCE
  317. // If there are any e_steps planned, tick them.
  318. bool run_main_isr = false;
  319. if (e_steps) {
  320. //WRITE_NC(LOGIC_ANALYZER_CH7, true);
  321. for (uint8_t i = estep_loops; e_steps && i --;) {
  322. WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  323. -- e_steps;
  324. WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
  325. }
  326. if (e_steps) {
  327. // Plan another Linear Advance tick.
  328. OCR1A = eISR_Rate;
  329. nextMainISR -= eISR_Rate;
  330. } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
  331. // The timer did not overflow and it is big enough, so it makes sense to plan it.
  332. OCR1A = nextMainISR;
  333. } else {
  334. // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
  335. // in the current interrupt tick.
  336. run_main_isr = true;
  337. //FIXME pick the serial line.
  338. }
  339. //WRITE_NC(LOGIC_ANALYZER_CH7, false);
  340. } else
  341. run_main_isr = true;
  342. if (run_main_isr)
  343. #endif
  344. isr();
  345. // Don't run the ISR faster than possible
  346. // Is there a 8us time left before the next interrupt triggers?
  347. if (OCR1A < TCNT1 + 16) {
  348. #ifdef DEBUG_STEPPER_TIMER_MISSED
  349. // Verify whether the next planned timer interrupt has not been missed already.
  350. // This debugging test takes < 1.125us
  351. // This skews the profiling slightly as the fastest stepper timer
  352. // interrupt repeats at a 100us rate (10kHz).
  353. if (OCR1A + 40 < TCNT1) {
  354. // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
  355. // Give a warning.
  356. stepper_timer_overflow_state = true;
  357. stepper_timer_overflow_last = TCNT1 - OCR1A;
  358. // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
  359. WRITE(BEEPER, HIGH);
  360. }
  361. #endif
  362. // Fix the next interrupt to be executed after 8us from now.
  363. OCR1A = TCNT1 + 16;
  364. }
  365. }
  366. FORCE_INLINE void stepper_next_block()
  367. {
  368. // Anything in the buffer?
  369. //WRITE_NC(LOGIC_ANALYZER_CH2, true);
  370. current_block = plan_get_current_block();
  371. if (current_block != NULL) {
  372. #ifdef PAT9125
  373. fsensor_counter = 0;
  374. fsensor_st_block_begin(current_block);
  375. #endif //PAT9125
  376. // The busy flag is set by the plan_get_current_block() call.
  377. // current_block->busy = true;
  378. // Initializes the trapezoid generator from the current block. Called whenever a new
  379. // block begins.
  380. deceleration_time = 0;
  381. // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
  382. // That means, delay the initialization of nominal step rate and step loops until the steady
  383. // state is reached.
  384. step_loops_nominal = 0;
  385. acc_step_rate = uint16_t(current_block->initial_rate);
  386. acceleration_time = calc_timer(acc_step_rate);
  387. #ifdef LIN_ADVANCE
  388. current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  389. #endif /* LIN_ADVANCE */
  390. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
  391. counter_x.lo = -(current_block->step_event_count.lo >> 1);
  392. counter_y.lo = counter_x.lo;
  393. counter_z.lo = counter_x.lo;
  394. counter_e.lo = counter_x.lo;
  395. } else {
  396. counter_x.wide = -(current_block->step_event_count.wide >> 1);
  397. counter_y.wide = counter_x.wide;
  398. counter_z.wide = counter_x.wide;
  399. counter_e.wide = counter_x.wide;
  400. }
  401. step_events_completed.wide = 0;
  402. // Set directions.
  403. out_bits = current_block->direction_bits;
  404. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  405. if((out_bits & (1<<X_AXIS))!=0){
  406. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  407. count_direction[X_AXIS]=-1;
  408. } else {
  409. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  410. count_direction[X_AXIS]=1;
  411. }
  412. if((out_bits & (1<<Y_AXIS))!=0){
  413. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  414. count_direction[Y_AXIS]=-1;
  415. } else {
  416. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  417. count_direction[Y_AXIS]=1;
  418. }
  419. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  420. WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
  421. count_direction[Z_AXIS]=-1;
  422. } else { // +direction
  423. WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
  424. count_direction[Z_AXIS]=1;
  425. }
  426. if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
  427. #ifndef LIN_ADVANCE
  428. WRITE(E0_DIR_PIN,
  429. #ifdef SNMM
  430. (snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :
  431. #endif // SNMM
  432. INVERT_E0_DIR);
  433. #endif /* LIN_ADVANCE */
  434. count_direction[E_AXIS] = -1;
  435. } else { // +direction
  436. #ifndef LIN_ADVANCE
  437. WRITE(E0_DIR_PIN,
  438. #ifdef SNMM
  439. (snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :
  440. #endif // SNMM
  441. !INVERT_E0_DIR);
  442. #endif /* LIN_ADVANCE */
  443. count_direction[E_AXIS] = 1;
  444. }
  445. }
  446. else {
  447. OCR1A = 2000; // 1kHz.
  448. }
  449. //WRITE_NC(LOGIC_ANALYZER_CH2, false);
  450. }
  451. // Check limit switches.
  452. FORCE_INLINE void stepper_check_endstops()
  453. {
  454. if(check_endstops)
  455. {
  456. #ifndef COREXY
  457. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
  458. #else
  459. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
  460. #endif
  461. {
  462. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  463. #ifdef TMC2130_SG_HOMING
  464. // Stall guard homing turned on
  465. x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
  466. #else
  467. // Normal homing
  468. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  469. #endif
  470. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
  471. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  472. endstop_x_hit=true;
  473. step_events_completed.wide = current_block->step_event_count.wide;
  474. }
  475. old_x_min_endstop = x_min_endstop;
  476. #endif
  477. } else { // +direction
  478. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  479. #ifdef TMC2130_SG_HOMING
  480. // Stall guard homing turned on
  481. x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
  482. #else
  483. // Normal homing
  484. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  485. #endif
  486. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
  487. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  488. endstop_x_hit=true;
  489. step_events_completed.wide = current_block->step_event_count.wide;
  490. }
  491. old_x_max_endstop = x_max_endstop;
  492. #endif
  493. }
  494. #ifndef COREXY
  495. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  496. #else
  497. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
  498. #endif
  499. {
  500. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  501. #ifdef TMC2130_SG_HOMING
  502. // Stall guard homing turned on
  503. y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
  504. #else
  505. // Normal homing
  506. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  507. #endif
  508. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
  509. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  510. endstop_y_hit=true;
  511. step_events_completed.wide = current_block->step_event_count.wide;
  512. }
  513. old_y_min_endstop = y_min_endstop;
  514. #endif
  515. } else { // +direction
  516. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  517. #ifdef TMC2130_SG_HOMING
  518. // Stall guard homing turned on
  519. y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
  520. #else
  521. // Normal homing
  522. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  523. #endif
  524. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
  525. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  526. endstop_y_hit=true;
  527. step_events_completed.wide = current_block->step_event_count.wide;
  528. }
  529. old_y_max_endstop = y_max_endstop;
  530. #endif
  531. }
  532. if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
  533. {
  534. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  535. if (! check_z_endstop) {
  536. #ifdef TMC2130_SG_HOMING
  537. // Stall guard homing turned on
  538. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  539. #else
  540. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  541. #endif //TMC2130_SG_HOMING
  542. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
  543. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  544. endstop_z_hit=true;
  545. step_events_completed.wide = current_block->step_event_count.wide;
  546. }
  547. old_z_min_endstop = z_min_endstop;
  548. }
  549. #endif
  550. } else { // +direction
  551. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  552. #ifdef TMC2130_SG_HOMING
  553. // Stall guard homing turned on
  554. z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
  555. #else
  556. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  557. #endif //TMC2130_SG_HOMING
  558. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
  559. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  560. endstop_z_hit=true;
  561. step_events_completed.wide = current_block->step_event_count.wide;
  562. }
  563. old_z_max_endstop = z_max_endstop;
  564. #endif
  565. }
  566. }
  567. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  568. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  569. if (check_z_endstop) {
  570. // Check the Z min end-stop no matter what.
  571. // Good for searching for the center of an induction target.
  572. #ifdef TMC2130_SG_HOMING
  573. // Stall guard homing turned on
  574. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  575. #else
  576. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  577. #endif //TMC2130_SG_HOMING
  578. if(z_min_endstop && old_z_min_endstop) {
  579. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  580. endstop_z_hit=true;
  581. step_events_completed.wide = current_block->step_event_count.wide;
  582. }
  583. old_z_min_endstop = z_min_endstop;
  584. }
  585. #endif
  586. }
  587. FORCE_INLINE void stepper_tick_lowres()
  588. {
  589. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  590. MSerial.checkRx(); // Check for serial chars.
  591. // Step in X axis
  592. counter_x.lo += current_block->steps_x.lo;
  593. if (counter_x.lo > 0) {
  594. WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
  595. LastStepMask |= X_AXIS_MASK;
  596. #ifdef DEBUG_XSTEP_DUP_PIN
  597. WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  598. #endif //DEBUG_XSTEP_DUP_PIN
  599. counter_x.lo -= current_block->step_event_count.lo;
  600. count_position[X_AXIS]+=count_direction[X_AXIS];
  601. WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
  602. #ifdef DEBUG_XSTEP_DUP_PIN
  603. WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  604. #endif //DEBUG_XSTEP_DUP_PIN
  605. }
  606. // Step in Y axis
  607. counter_y.lo += current_block->steps_y.lo;
  608. if (counter_y.lo > 0) {
  609. WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  610. LastStepMask |= Y_AXIS_MASK;
  611. #ifdef DEBUG_YSTEP_DUP_PIN
  612. WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  613. #endif //DEBUG_YSTEP_DUP_PIN
  614. counter_y.lo -= current_block->step_event_count.lo;
  615. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  616. WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  617. #ifdef DEBUG_YSTEP_DUP_PIN
  618. WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  619. #endif //DEBUG_YSTEP_DUP_PIN
  620. }
  621. // Step in Z axis
  622. counter_z.lo += current_block->steps_z.lo;
  623. if (counter_z.lo > 0) {
  624. WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  625. LastStepMask |= Z_AXIS_MASK;
  626. counter_z.lo -= current_block->step_event_count.lo;
  627. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  628. WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  629. }
  630. // Step in E axis
  631. counter_e.lo += current_block->steps_e.lo;
  632. if (counter_e.lo > 0) {
  633. #ifndef LIN_ADVANCE
  634. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  635. #endif /* LIN_ADVANCE */
  636. counter_e.lo -= current_block->step_event_count.lo;
  637. count_position[E_AXIS] += count_direction[E_AXIS];
  638. #ifdef LIN_ADVANCE
  639. ++ e_steps;
  640. #else
  641. #ifdef PAT9125
  642. ++ fsensor_counter;
  643. #endif //PAT9125
  644. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  645. #endif
  646. }
  647. if(++ step_events_completed.lo >= current_block->step_event_count.lo)
  648. break;
  649. }
  650. }
  651. FORCE_INLINE void stepper_tick_highres()
  652. {
  653. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  654. MSerial.checkRx(); // Check for serial chars.
  655. // Step in X axis
  656. counter_x.wide += current_block->steps_x.wide;
  657. if (counter_x.wide > 0) {
  658. WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
  659. LastStepMask |= X_AXIS_MASK;
  660. #ifdef DEBUG_XSTEP_DUP_PIN
  661. WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  662. #endif //DEBUG_XSTEP_DUP_PIN
  663. counter_x.wide -= current_block->step_event_count.wide;
  664. count_position[X_AXIS]+=count_direction[X_AXIS];
  665. WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
  666. #ifdef DEBUG_XSTEP_DUP_PIN
  667. WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  668. #endif //DEBUG_XSTEP_DUP_PIN
  669. }
  670. // Step in Y axis
  671. counter_y.wide += current_block->steps_y.wide;
  672. if (counter_y.wide > 0) {
  673. WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  674. LastStepMask |= Y_AXIS_MASK;
  675. #ifdef DEBUG_YSTEP_DUP_PIN
  676. WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  677. #endif //DEBUG_YSTEP_DUP_PIN
  678. counter_y.wide -= current_block->step_event_count.wide;
  679. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  680. WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  681. #ifdef DEBUG_YSTEP_DUP_PIN
  682. WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  683. #endif //DEBUG_YSTEP_DUP_PIN
  684. }
  685. // Step in Z axis
  686. counter_z.wide += current_block->steps_z.wide;
  687. if (counter_z.wide > 0) {
  688. WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  689. LastStepMask |= Z_AXIS_MASK;
  690. counter_z.wide -= current_block->step_event_count.wide;
  691. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  692. WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  693. }
  694. // Step in E axis
  695. counter_e.wide += current_block->steps_e.wide;
  696. if (counter_e.wide > 0) {
  697. #ifndef LIN_ADVANCE
  698. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  699. #endif /* LIN_ADVANCE */
  700. counter_e.wide -= current_block->step_event_count.wide;
  701. count_position[E_AXIS]+=count_direction[E_AXIS];
  702. #ifdef LIN_ADVANCE
  703. ++ e_steps;
  704. #else
  705. #ifdef PAT9125
  706. ++ fsensor_counter;
  707. #endif //PAT9125
  708. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  709. #endif
  710. }
  711. if(++ step_events_completed.wide >= current_block->step_event_count.wide)
  712. break;
  713. }
  714. }
  715. // 50us delay
  716. #define LIN_ADV_FIRST_TICK_DELAY 100
  717. FORCE_INLINE void isr() {
  718. //WRITE_NC(LOGIC_ANALYZER_CH0, true);
  719. //if (UVLO) uvlo();
  720. // If there is no current block, attempt to pop one from the buffer
  721. if (current_block == NULL)
  722. stepper_next_block();
  723. LastStepMask = 0;
  724. if (current_block != NULL)
  725. {
  726. stepper_check_endstops();
  727. #ifdef LIN_ADVANCE
  728. e_steps = 0;
  729. #endif /* LIN_ADVANCE */
  730. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
  731. stepper_tick_lowres();
  732. else
  733. stepper_tick_highres();
  734. #ifdef LIN_ADVANCE
  735. if (out_bits&(1<<E_AXIS))
  736. // Move in negative direction.
  737. e_steps = - e_steps;
  738. if (current_block->use_advance_lead) {
  739. //int esteps_inc = 0;
  740. //esteps_inc = current_estep_rate - current_adv_steps;
  741. //e_steps += esteps_inc;
  742. e_steps += current_estep_rate - current_adv_steps;
  743. #if 0
  744. if (abs(esteps_inc) > 4) {
  745. LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
  746. if (esteps_inc < -511 || esteps_inc > 511)
  747. LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
  748. }
  749. #endif
  750. current_adv_steps = current_estep_rate;
  751. }
  752. // If we have esteps to execute, step some of them now.
  753. if (e_steps) {
  754. //WRITE_NC(LOGIC_ANALYZER_CH7, true);
  755. // Set the step direction.
  756. {
  757. bool neg = e_steps < 0;
  758. bool dir =
  759. #ifdef SNMM
  760. (neg == (snmm_extruder & 1))
  761. #else
  762. neg
  763. #endif
  764. ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
  765. WRITE_NC(E0_DIR_PIN, dir);
  766. if (neg)
  767. // Flip the e_steps counter to be always positive.
  768. e_steps = - e_steps;
  769. }
  770. // Tick min(step_loops, abs(e_steps)).
  771. estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
  772. if (step_loops < estep_loops)
  773. estep_loops = step_loops;
  774. #ifdef PAT9125
  775. fsensor_counter += estep_loops;
  776. #endif //PAT9125
  777. do {
  778. WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  779. -- e_steps;
  780. WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
  781. } while (-- estep_loops != 0);
  782. //WRITE_NC(LOGIC_ANALYZER_CH7, false);
  783. MSerial.checkRx(); // Check for serial chars.
  784. }
  785. #endif
  786. // Calculare new timer value
  787. // 13.38-14.63us for steady state,
  788. // 25.12us for acceleration / deceleration.
  789. {
  790. //WRITE_NC(LOGIC_ANALYZER_CH1, true);
  791. if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
  792. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  793. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  794. acc_step_rate += uint16_t(current_block->initial_rate);
  795. // upper limit
  796. if(acc_step_rate > uint16_t(current_block->nominal_rate))
  797. acc_step_rate = current_block->nominal_rate;
  798. // step_rate to timer interval
  799. uint16_t timer = calc_timer(acc_step_rate);
  800. _NEXT_ISR(timer);
  801. acceleration_time += timer;
  802. #ifdef LIN_ADVANCE
  803. if (current_block->use_advance_lead)
  804. // int32_t = (uint16_t * uint32_t) >> 17
  805. current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  806. #endif
  807. }
  808. else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
  809. uint16_t step_rate;
  810. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  811. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  812. if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
  813. // Result is negative or too small.
  814. step_rate = uint16_t(current_block->final_rate);
  815. }
  816. // Step_rate to timer interval.
  817. uint16_t timer = calc_timer(step_rate);
  818. _NEXT_ISR(timer);
  819. deceleration_time += timer;
  820. #ifdef LIN_ADVANCE
  821. if (current_block->use_advance_lead)
  822. current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  823. #endif
  824. }
  825. else {
  826. if (! step_loops_nominal) {
  827. // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
  828. // the initial interrupt blocking.
  829. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
  830. step_loops_nominal = step_loops;
  831. #ifdef LIN_ADVANCE
  832. if (current_block->use_advance_lead)
  833. current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  834. #endif
  835. }
  836. _NEXT_ISR(OCR1A_nominal);
  837. }
  838. //WRITE_NC(LOGIC_ANALYZER_CH1, false);
  839. }
  840. #ifdef LIN_ADVANCE
  841. if (e_steps && current_block->use_advance_lead) {
  842. //WRITE_NC(LOGIC_ANALYZER_CH7, true);
  843. MSerial.checkRx(); // Check for serial chars.
  844. // Some of the E steps were not ticked yet. Plan additional interrupts.
  845. uint16_t now = TCNT1;
  846. // Plan the first linear advance interrupt after 50us from now.
  847. uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
  848. eISR_Rate = 0;
  849. if ((to_go & 0x8000) == 0) {
  850. // The to_go number is not negative.
  851. // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
  852. uint8_t ticks = to_go >> 8;
  853. if (ticks == 1) {
  854. // Avoid running the following loop for a very short interval.
  855. estep_loops = 255;
  856. eISR_Rate = 1;
  857. } else if ((e_steps & 0x0ff00) == 0) {
  858. // e_steps <= 0x0ff
  859. if (uint8_t(e_steps) <= ticks) {
  860. // Spread the e_steps along the whole go_to interval.
  861. eISR_Rate = to_go / uint8_t(e_steps);
  862. estep_loops = 1;
  863. } else if (ticks != 0) {
  864. // At least one tick fits into the to_go interval. Calculate the e-step grouping.
  865. uint8_t e = uint8_t(e_steps) >> 1;
  866. estep_loops = 2;
  867. while (e > ticks) {
  868. e >>= 1;
  869. estep_loops <<= 1;
  870. }
  871. // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
  872. // to squeeze enough of Linear Advance ticks until nextMainISR.
  873. // Calculate the tick rate.
  874. eISR_Rate = to_go / ticks;
  875. }
  876. } else {
  877. // This is an exterme case with too many e_steps inserted by the linear advance.
  878. // At least one tick fits into the to_go interval. Calculate the e-step grouping.
  879. estep_loops = 2;
  880. uint16_t e = e_steps >> 1;
  881. while (e & 0x0ff00) {
  882. e >>= 1;
  883. estep_loops <<= 1;
  884. }
  885. while (uint8_t(e) > ticks) {
  886. e >>= 1;
  887. estep_loops <<= 1;
  888. }
  889. // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
  890. // to squeeze enough of Linear Advance ticks until nextMainISR.
  891. // Calculate the tick rate.
  892. eISR_Rate = to_go / ticks;
  893. }
  894. }
  895. if (eISR_Rate == 0) {
  896. // There is not enough time to fit even a single additional tick.
  897. // Tick all the extruder ticks now.
  898. #ifdef PAT9125
  899. fsensor_counter += e_steps;
  900. #endif //PAT9125
  901. MSerial.checkRx(); // Check for serial chars.
  902. do {
  903. WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  904. -- e_steps;
  905. WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
  906. } while (e_steps);
  907. OCR1A = nextMainISR;
  908. } else {
  909. // Tick the 1st Linear Advance interrupt after 50us from now.
  910. nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
  911. OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
  912. }
  913. //WRITE_NC(LOGIC_ANALYZER_CH7, false);
  914. } else
  915. OCR1A = nextMainISR;
  916. #endif
  917. // If current block is finished, reset pointer
  918. if (step_events_completed.wide >= current_block->step_event_count.wide) {
  919. #ifdef PAT9125
  920. fsensor_st_block_chunk(current_block, fsensor_counter);
  921. fsensor_counter = 0;
  922. #endif //PAT9125
  923. current_block = NULL;
  924. plan_discard_current_block();
  925. }
  926. #ifdef PAT9125
  927. else if (fsensor_counter >= fsensor_chunk_len)
  928. {
  929. fsensor_st_block_chunk(current_block, fsensor_counter);
  930. fsensor_counter = 0;
  931. }
  932. #endif //PAT9125
  933. }
  934. #ifdef TMC2130
  935. tmc2130_st_isr(LastStepMask);
  936. #endif //TMC2130
  937. //WRITE_NC(LOGIC_ANALYZER_CH0, false);
  938. }
  939. #ifdef LIN_ADVANCE
  940. void clear_current_adv_vars() {
  941. e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
  942. current_adv_steps = 0;
  943. }
  944. #endif // LIN_ADVANCE
  945. void st_init()
  946. {
  947. #ifdef TMC2130
  948. tmc2130_init();
  949. #endif //TMC2130
  950. digipot_init(); //Initialize Digipot Motor Current
  951. microstep_init(); //Initialize Microstepping Pins
  952. //Initialize Dir Pins
  953. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  954. SET_OUTPUT(X_DIR_PIN);
  955. #endif
  956. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  957. SET_OUTPUT(X2_DIR_PIN);
  958. #endif
  959. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  960. SET_OUTPUT(Y_DIR_PIN);
  961. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  962. SET_OUTPUT(Y2_DIR_PIN);
  963. #endif
  964. #endif
  965. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  966. SET_OUTPUT(Z_DIR_PIN);
  967. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  968. SET_OUTPUT(Z2_DIR_PIN);
  969. #endif
  970. #endif
  971. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  972. SET_OUTPUT(E0_DIR_PIN);
  973. #endif
  974. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  975. SET_OUTPUT(E1_DIR_PIN);
  976. #endif
  977. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  978. SET_OUTPUT(E2_DIR_PIN);
  979. #endif
  980. //Initialize Enable Pins - steppers default to disabled.
  981. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  982. SET_OUTPUT(X_ENABLE_PIN);
  983. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  984. #endif
  985. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  986. SET_OUTPUT(X2_ENABLE_PIN);
  987. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  988. #endif
  989. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  990. SET_OUTPUT(Y_ENABLE_PIN);
  991. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  992. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  993. SET_OUTPUT(Y2_ENABLE_PIN);
  994. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  995. #endif
  996. #endif
  997. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  998. SET_OUTPUT(Z_ENABLE_PIN);
  999. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  1000. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  1001. SET_OUTPUT(Z2_ENABLE_PIN);
  1002. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  1003. #endif
  1004. #endif
  1005. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  1006. SET_OUTPUT(E0_ENABLE_PIN);
  1007. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  1008. #endif
  1009. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  1010. SET_OUTPUT(E1_ENABLE_PIN);
  1011. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  1012. #endif
  1013. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  1014. SET_OUTPUT(E2_ENABLE_PIN);
  1015. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  1016. #endif
  1017. //endstops and pullups
  1018. #ifdef TMC2130_SG_HOMING
  1019. SET_INPUT(X_TMC2130_DIAG);
  1020. WRITE(X_TMC2130_DIAG,HIGH);
  1021. SET_INPUT(Y_TMC2130_DIAG);
  1022. WRITE(Y_TMC2130_DIAG,HIGH);
  1023. SET_INPUT(Z_TMC2130_DIAG);
  1024. WRITE(Z_TMC2130_DIAG,HIGH);
  1025. SET_INPUT(E0_TMC2130_DIAG);
  1026. WRITE(E0_TMC2130_DIAG,HIGH);
  1027. #endif
  1028. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1029. SET_INPUT(X_MIN_PIN);
  1030. #ifdef ENDSTOPPULLUP_XMIN
  1031. WRITE(X_MIN_PIN,HIGH);
  1032. #endif
  1033. #endif
  1034. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1035. SET_INPUT(Y_MIN_PIN);
  1036. #ifdef ENDSTOPPULLUP_YMIN
  1037. WRITE(Y_MIN_PIN,HIGH);
  1038. #endif
  1039. #endif
  1040. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1041. SET_INPUT(Z_MIN_PIN);
  1042. #ifdef ENDSTOPPULLUP_ZMIN
  1043. WRITE(Z_MIN_PIN,HIGH);
  1044. #endif
  1045. #endif
  1046. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1047. SET_INPUT(X_MAX_PIN);
  1048. #ifdef ENDSTOPPULLUP_XMAX
  1049. WRITE(X_MAX_PIN,HIGH);
  1050. #endif
  1051. #endif
  1052. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1053. SET_INPUT(Y_MAX_PIN);
  1054. #ifdef ENDSTOPPULLUP_YMAX
  1055. WRITE(Y_MAX_PIN,HIGH);
  1056. #endif
  1057. #endif
  1058. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1059. SET_INPUT(Z_MAX_PIN);
  1060. #ifdef ENDSTOPPULLUP_ZMAX
  1061. WRITE(Z_MAX_PIN,HIGH);
  1062. #endif
  1063. #endif
  1064. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1065. SET_INPUT(TACH_0);
  1066. #ifdef TACH0PULLUP
  1067. WRITE(TACH_0, HIGH);
  1068. #endif
  1069. #endif
  1070. //Initialize Step Pins
  1071. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  1072. SET_OUTPUT(X_STEP_PIN);
  1073. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  1074. #ifdef DEBUG_XSTEP_DUP_PIN
  1075. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  1076. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1077. #endif //DEBUG_XSTEP_DUP_PIN
  1078. disable_x();
  1079. #endif
  1080. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  1081. SET_OUTPUT(X2_STEP_PIN);
  1082. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  1083. disable_x();
  1084. #endif
  1085. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  1086. SET_OUTPUT(Y_STEP_PIN);
  1087. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  1088. #ifdef DEBUG_YSTEP_DUP_PIN
  1089. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  1090. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1091. #endif //DEBUG_YSTEP_DUP_PIN
  1092. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  1093. SET_OUTPUT(Y2_STEP_PIN);
  1094. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  1095. #endif
  1096. disable_y();
  1097. #endif
  1098. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  1099. SET_OUTPUT(Z_STEP_PIN);
  1100. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  1101. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  1102. SET_OUTPUT(Z2_STEP_PIN);
  1103. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  1104. #endif
  1105. disable_z();
  1106. #endif
  1107. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  1108. SET_OUTPUT(E0_STEP_PIN);
  1109. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  1110. disable_e0();
  1111. #endif
  1112. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  1113. SET_OUTPUT(E1_STEP_PIN);
  1114. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  1115. disable_e1();
  1116. #endif
  1117. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  1118. SET_OUTPUT(E2_STEP_PIN);
  1119. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  1120. disable_e2();
  1121. #endif
  1122. // waveform generation = 0100 = CTC
  1123. TCCR1B &= ~(1<<WGM13);
  1124. TCCR1B |= (1<<WGM12);
  1125. TCCR1A &= ~(1<<WGM11);
  1126. TCCR1A &= ~(1<<WGM10);
  1127. // output mode = 00 (disconnected)
  1128. TCCR1A &= ~(3<<COM1A0);
  1129. TCCR1A &= ~(3<<COM1B0);
  1130. // Set the timer pre-scaler
  1131. // Generally we use a divider of 8, resulting in a 2MHz timer
  1132. // frequency on a 16MHz MCU. If you are going to change this, be
  1133. // sure to regenerate speed_lookuptable.h with
  1134. // create_speed_lookuptable.py
  1135. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  1136. // Plan the first interrupt after 8ms from now.
  1137. OCR1A = 0x4000;
  1138. TCNT1 = 0;
  1139. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1140. #ifdef LIN_ADVANCE
  1141. e_steps = 0;
  1142. current_adv_steps = 0;
  1143. #endif
  1144. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  1145. sei();
  1146. }
  1147. // Block until all buffered steps are executed
  1148. void st_synchronize()
  1149. {
  1150. while(blocks_queued())
  1151. {
  1152. #ifdef TMC2130
  1153. manage_heater();
  1154. // Vojtech: Don't disable motors inside the planner!
  1155. if (!tmc2130_update_sg())
  1156. {
  1157. manage_inactivity(true);
  1158. lcd_update();
  1159. }
  1160. #else //TMC2130
  1161. manage_heater();
  1162. // Vojtech: Don't disable motors inside the planner!
  1163. manage_inactivity(true);
  1164. lcd_update();
  1165. #endif //TMC2130
  1166. }
  1167. }
  1168. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1169. {
  1170. CRITICAL_SECTION_START;
  1171. // Copy 4x4B.
  1172. // This block locks the interrupts globally for 4.56 us,
  1173. // which corresponds to a maximum repeat frequency of 219.18 kHz.
  1174. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1175. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1176. count_position[X_AXIS] = x;
  1177. count_position[Y_AXIS] = y;
  1178. count_position[Z_AXIS] = z;
  1179. count_position[E_AXIS] = e;
  1180. CRITICAL_SECTION_END;
  1181. }
  1182. void st_set_e_position(const long &e)
  1183. {
  1184. CRITICAL_SECTION_START;
  1185. count_position[E_AXIS] = e;
  1186. CRITICAL_SECTION_END;
  1187. }
  1188. long st_get_position(uint8_t axis)
  1189. {
  1190. long count_pos;
  1191. CRITICAL_SECTION_START;
  1192. count_pos = count_position[axis];
  1193. CRITICAL_SECTION_END;
  1194. return count_pos;
  1195. }
  1196. void st_get_position_xy(long &x, long &y)
  1197. {
  1198. CRITICAL_SECTION_START;
  1199. x = count_position[X_AXIS];
  1200. y = count_position[Y_AXIS];
  1201. CRITICAL_SECTION_END;
  1202. }
  1203. float st_get_position_mm(uint8_t axis)
  1204. {
  1205. float steper_position_in_steps = st_get_position(axis);
  1206. return steper_position_in_steps / axis_steps_per_unit[axis];
  1207. }
  1208. void finishAndDisableSteppers()
  1209. {
  1210. st_synchronize();
  1211. disable_x();
  1212. disable_y();
  1213. disable_z();
  1214. disable_e0();
  1215. disable_e1();
  1216. disable_e2();
  1217. }
  1218. void quickStop()
  1219. {
  1220. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1221. while (blocks_queued()) plan_discard_current_block();
  1222. current_block = NULL;
  1223. st_reset_timer();
  1224. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1225. }
  1226. #ifdef BABYSTEPPING
  1227. void babystep(const uint8_t axis,const bool direction)
  1228. {
  1229. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1230. //store initial pin states
  1231. switch(axis)
  1232. {
  1233. case X_AXIS:
  1234. {
  1235. enable_x();
  1236. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1237. //setup new step
  1238. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1239. //perform step
  1240. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1241. LastStepMask |= X_AXIS_MASK;
  1242. #ifdef DEBUG_XSTEP_DUP_PIN
  1243. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  1244. #endif //DEBUG_XSTEP_DUP_PIN
  1245. {
  1246. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1247. }
  1248. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1249. #ifdef DEBUG_XSTEP_DUP_PIN
  1250. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1251. #endif //DEBUG_XSTEP_DUP_PIN
  1252. //get old pin state back.
  1253. WRITE(X_DIR_PIN,old_x_dir_pin);
  1254. }
  1255. break;
  1256. case Y_AXIS:
  1257. {
  1258. enable_y();
  1259. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1260. //setup new step
  1261. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1262. //perform step
  1263. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1264. LastStepMask |= Y_AXIS_MASK;
  1265. #ifdef DEBUG_YSTEP_DUP_PIN
  1266. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  1267. #endif //DEBUG_YSTEP_DUP_PIN
  1268. {
  1269. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1270. }
  1271. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1272. #ifdef DEBUG_YSTEP_DUP_PIN
  1273. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1274. #endif //DEBUG_YSTEP_DUP_PIN
  1275. //get old pin state back.
  1276. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1277. }
  1278. break;
  1279. case Z_AXIS:
  1280. {
  1281. enable_z();
  1282. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1283. //setup new step
  1284. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1285. #ifdef Z_DUAL_STEPPER_DRIVERS
  1286. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1287. #endif
  1288. //perform step
  1289. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1290. LastStepMask |= Z_AXIS_MASK;
  1291. #ifdef Z_DUAL_STEPPER_DRIVERS
  1292. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1293. #endif
  1294. //wait a tiny bit
  1295. {
  1296. volatile float x=1./float(axis+1); //absolutely useless
  1297. }
  1298. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1299. #ifdef Z_DUAL_STEPPER_DRIVERS
  1300. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1301. #endif
  1302. //get old pin state back.
  1303. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1304. #ifdef Z_DUAL_STEPPER_DRIVERS
  1305. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1306. #endif
  1307. }
  1308. break;
  1309. default: break;
  1310. }
  1311. }
  1312. #endif //BABYSTEPPING
  1313. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1314. {
  1315. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1316. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1317. SPI.transfer(address); // send in the address and value via SPI:
  1318. SPI.transfer(value);
  1319. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1320. //delay(10);
  1321. #endif
  1322. }
  1323. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1324. {
  1325. do
  1326. {
  1327. *value = eeprom_read_byte((unsigned char*)pos);
  1328. pos++;
  1329. value++;
  1330. }while(--size);
  1331. }
  1332. void digipot_init() //Initialize Digipot Motor Current
  1333. {
  1334. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1335. SilentModeMenu = SilentMode;
  1336. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1337. if(SilentMode == 0){
  1338. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  1339. }else{
  1340. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1341. }
  1342. SPI.begin();
  1343. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1344. for(int i=0;i<=4;i++)
  1345. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1346. digipot_current(i,digipot_motor_current[i]);
  1347. #endif
  1348. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1349. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1350. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1351. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1352. if((SilentMode == 0) || (farm_mode) ){
  1353. motor_current_setting[0] = motor_current_setting_loud[0];
  1354. motor_current_setting[1] = motor_current_setting_loud[1];
  1355. motor_current_setting[2] = motor_current_setting_loud[2];
  1356. }else{
  1357. motor_current_setting[0] = motor_current_setting_silent[0];
  1358. motor_current_setting[1] = motor_current_setting_silent[1];
  1359. motor_current_setting[2] = motor_current_setting_silent[2];
  1360. }
  1361. digipot_current(0, motor_current_setting[0]);
  1362. digipot_current(1, motor_current_setting[1]);
  1363. digipot_current(2, motor_current_setting[2]);
  1364. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1365. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1366. #endif
  1367. }
  1368. void digipot_current(uint8_t driver, int current)
  1369. {
  1370. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1371. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1372. digitalPotWrite(digipot_ch[driver], current);
  1373. #endif
  1374. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1375. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1376. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1377. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1378. #endif
  1379. }
  1380. void microstep_init()
  1381. {
  1382. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1383. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1384. pinMode(E1_MS1_PIN,OUTPUT);
  1385. pinMode(E1_MS2_PIN,OUTPUT);
  1386. #endif
  1387. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1388. pinMode(X_MS1_PIN,OUTPUT);
  1389. pinMode(X_MS2_PIN,OUTPUT);
  1390. pinMode(Y_MS1_PIN,OUTPUT);
  1391. pinMode(Y_MS2_PIN,OUTPUT);
  1392. pinMode(Z_MS1_PIN,OUTPUT);
  1393. pinMode(Z_MS2_PIN,OUTPUT);
  1394. pinMode(E0_MS1_PIN,OUTPUT);
  1395. pinMode(E0_MS2_PIN,OUTPUT);
  1396. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1397. #endif
  1398. }
  1399. #ifndef TMC2130
  1400. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1401. {
  1402. if(ms1 > -1) switch(driver)
  1403. {
  1404. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1405. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1406. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1407. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1408. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1409. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1410. #endif
  1411. }
  1412. if(ms2 > -1) switch(driver)
  1413. {
  1414. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1415. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1416. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1417. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1418. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1419. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1420. #endif
  1421. }
  1422. }
  1423. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1424. {
  1425. switch(stepping_mode)
  1426. {
  1427. case 1: microstep_ms(driver,MICROSTEP1); break;
  1428. case 2: microstep_ms(driver,MICROSTEP2); break;
  1429. case 4: microstep_ms(driver,MICROSTEP4); break;
  1430. case 8: microstep_ms(driver,MICROSTEP8); break;
  1431. case 16: microstep_ms(driver,MICROSTEP16); break;
  1432. }
  1433. }
  1434. void microstep_readings()
  1435. {
  1436. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1437. SERIAL_PROTOCOLPGM("X: ");
  1438. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1439. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1440. SERIAL_PROTOCOLPGM("Y: ");
  1441. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1442. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1443. SERIAL_PROTOCOLPGM("Z: ");
  1444. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1445. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1446. SERIAL_PROTOCOLPGM("E0: ");
  1447. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1448. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1449. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1450. SERIAL_PROTOCOLPGM("E1: ");
  1451. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1452. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1453. #endif
  1454. }
  1455. #endif //TMC2130