Marlin_main.cpp 308 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. bool volumetric_enabled = false;
  179. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  180. #if EXTRUDERS > 1
  181. , DEFAULT_NOMINAL_FILAMENT_DIA
  182. #if EXTRUDERS > 2
  183. , DEFAULT_NOMINAL_FILAMENT_DIA
  184. #endif
  185. #endif
  186. };
  187. float extruder_multiplier[EXTRUDERS] = {1.0
  188. #if EXTRUDERS > 1
  189. , 1.0
  190. #if EXTRUDERS > 2
  191. , 1.0
  192. #endif
  193. #endif
  194. };
  195. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  196. //shortcuts for more readable code
  197. #define _x current_position[X_AXIS]
  198. #define _y current_position[Y_AXIS]
  199. #define _z current_position[Z_AXIS]
  200. #define _e current_position[E_AXIS]
  201. float add_homing[3]={0,0,0};
  202. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  203. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  204. bool axis_known_position[3] = {false, false, false};
  205. float zprobe_zoffset;
  206. // Extruder offset
  207. #if EXTRUDERS > 1
  208. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  209. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  210. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  211. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  212. #endif
  213. };
  214. #endif
  215. uint8_t active_extruder = 0;
  216. int fanSpeed=0;
  217. #ifdef FWRETRACT
  218. bool autoretract_enabled=false;
  219. bool retracted[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. bool retracted_swap[EXTRUDERS]={false
  228. #if EXTRUDERS > 1
  229. , false
  230. #if EXTRUDERS > 2
  231. , false
  232. #endif
  233. #endif
  234. };
  235. float retract_length = RETRACT_LENGTH;
  236. float retract_length_swap = RETRACT_LENGTH_SWAP;
  237. float retract_feedrate = RETRACT_FEEDRATE;
  238. float retract_zlift = RETRACT_ZLIFT;
  239. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  240. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  241. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  242. #endif
  243. #ifdef PS_DEFAULT_OFF
  244. bool powersupply = false;
  245. #else
  246. bool powersupply = true;
  247. #endif
  248. bool cancel_heatup = false ;
  249. #ifdef HOST_KEEPALIVE_FEATURE
  250. int busy_state = NOT_BUSY;
  251. static long prev_busy_signal_ms = -1;
  252. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  253. #else
  254. #define host_keepalive();
  255. #define KEEPALIVE_STATE(n);
  256. #endif
  257. const char errormagic[] PROGMEM = "Error:";
  258. const char echomagic[] PROGMEM = "echo:";
  259. bool no_response = false;
  260. uint8_t important_status;
  261. uint8_t saved_filament_type;
  262. // save/restore printing in case that mmu was not responding
  263. bool mmu_print_saved = false;
  264. // storing estimated time to end of print counted by slicer
  265. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  266. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  267. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  268. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  269. bool wizard_active = false; //autoload temporarily disabled during wizard
  270. //===========================================================================
  271. //=============================Private Variables=============================
  272. //===========================================================================
  273. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  274. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  275. // For tracing an arc
  276. static float offset[3] = {0.0, 0.0, 0.0};
  277. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  278. // Determines Absolute or Relative Coordinates.
  279. // Also there is bool axis_relative_modes[] per axis flag.
  280. static bool relative_mode = false;
  281. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  282. //static float tt = 0;
  283. //static float bt = 0;
  284. //Inactivity shutdown variables
  285. static unsigned long previous_millis_cmd = 0;
  286. unsigned long max_inactive_time = 0;
  287. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  288. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  289. unsigned long starttime=0;
  290. unsigned long stoptime=0;
  291. unsigned long _usb_timer = 0;
  292. bool extruder_under_pressure = true;
  293. bool Stopped=false;
  294. #if NUM_SERVOS > 0
  295. Servo servos[NUM_SERVOS];
  296. #endif
  297. bool CooldownNoWait = true;
  298. bool target_direction;
  299. //Insert variables if CHDK is defined
  300. #ifdef CHDK
  301. unsigned long chdkHigh = 0;
  302. boolean chdkActive = false;
  303. #endif
  304. //! @name RAM save/restore printing
  305. //! @{
  306. bool saved_printing = false; //!< Print is paused and saved in RAM
  307. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  308. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  309. static float saved_pos[4] = { 0, 0, 0, 0 };
  310. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  311. static float saved_feedrate2 = 0;
  312. static uint8_t saved_active_extruder = 0;
  313. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  314. static bool saved_extruder_under_pressure = false;
  315. static bool saved_extruder_relative_mode = false;
  316. static int saved_fanSpeed = 0; //!< Print fan speed
  317. //! @}
  318. //===========================================================================
  319. //=============================Routines======================================
  320. //===========================================================================
  321. static void get_arc_coordinates();
  322. static bool setTargetedHotend(int code, uint8_t &extruder);
  323. static void print_time_remaining_init();
  324. static void wait_for_heater(long codenum, uint8_t extruder);
  325. uint16_t gcode_in_progress = 0;
  326. uint16_t mcode_in_progress = 0;
  327. void serial_echopair_P(const char *s_P, float v)
  328. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  329. void serial_echopair_P(const char *s_P, double v)
  330. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  331. void serial_echopair_P(const char *s_P, unsigned long v)
  332. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  333. #ifdef SDSUPPORT
  334. #include "SdFatUtil.h"
  335. int freeMemory() { return SdFatUtil::FreeRam(); }
  336. #else
  337. extern "C" {
  338. extern unsigned int __bss_end;
  339. extern unsigned int __heap_start;
  340. extern void *__brkval;
  341. int freeMemory() {
  342. int free_memory;
  343. if ((int)__brkval == 0)
  344. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  345. else
  346. free_memory = ((int)&free_memory) - ((int)__brkval);
  347. return free_memory;
  348. }
  349. }
  350. #endif //!SDSUPPORT
  351. void setup_killpin()
  352. {
  353. #if defined(KILL_PIN) && KILL_PIN > -1
  354. SET_INPUT(KILL_PIN);
  355. WRITE(KILL_PIN,HIGH);
  356. #endif
  357. }
  358. // Set home pin
  359. void setup_homepin(void)
  360. {
  361. #if defined(HOME_PIN) && HOME_PIN > -1
  362. SET_INPUT(HOME_PIN);
  363. WRITE(HOME_PIN,HIGH);
  364. #endif
  365. }
  366. void setup_photpin()
  367. {
  368. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  369. SET_OUTPUT(PHOTOGRAPH_PIN);
  370. WRITE(PHOTOGRAPH_PIN, LOW);
  371. #endif
  372. }
  373. void setup_powerhold()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, HIGH);
  378. #endif
  379. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  380. SET_OUTPUT(PS_ON_PIN);
  381. #if defined(PS_DEFAULT_OFF)
  382. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  383. #else
  384. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  385. #endif
  386. #endif
  387. }
  388. void suicide()
  389. {
  390. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  391. SET_OUTPUT(SUICIDE_PIN);
  392. WRITE(SUICIDE_PIN, LOW);
  393. #endif
  394. }
  395. void servo_init()
  396. {
  397. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  398. servos[0].attach(SERVO0_PIN);
  399. #endif
  400. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  401. servos[1].attach(SERVO1_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  404. servos[2].attach(SERVO2_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  407. servos[3].attach(SERVO3_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 5)
  410. #error "TODO: enter initalisation code for more servos"
  411. #endif
  412. }
  413. bool fans_check_enabled = true;
  414. #ifdef TMC2130
  415. extern int8_t CrashDetectMenu;
  416. void crashdet_enable()
  417. {
  418. tmc2130_sg_stop_on_crash = true;
  419. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  420. CrashDetectMenu = 1;
  421. }
  422. void crashdet_disable()
  423. {
  424. tmc2130_sg_stop_on_crash = false;
  425. tmc2130_sg_crash = 0;
  426. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  427. CrashDetectMenu = 0;
  428. }
  429. void crashdet_stop_and_save_print()
  430. {
  431. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  432. }
  433. void crashdet_restore_print_and_continue()
  434. {
  435. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  436. // babystep_apply();
  437. }
  438. void crashdet_stop_and_save_print2()
  439. {
  440. cli();
  441. planner_abort_hard(); //abort printing
  442. cmdqueue_reset(); //empty cmdqueue
  443. card.sdprinting = false;
  444. card.closefile();
  445. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  446. st_reset_timer();
  447. sei();
  448. }
  449. void crashdet_detected(uint8_t mask)
  450. {
  451. st_synchronize();
  452. static uint8_t crashDet_counter = 0;
  453. bool automatic_recovery_after_crash = true;
  454. if (crashDet_counter++ == 0) {
  455. crashDetTimer.start();
  456. }
  457. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  458. crashDetTimer.stop();
  459. crashDet_counter = 0;
  460. }
  461. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  462. automatic_recovery_after_crash = false;
  463. crashDetTimer.stop();
  464. crashDet_counter = 0;
  465. }
  466. else {
  467. crashDetTimer.start();
  468. }
  469. lcd_update_enable(true);
  470. lcd_clear();
  471. lcd_update(2);
  472. if (mask & X_AXIS_MASK)
  473. {
  474. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  475. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  476. }
  477. if (mask & Y_AXIS_MASK)
  478. {
  479. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  480. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  481. }
  482. lcd_update_enable(true);
  483. lcd_update(2);
  484. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  485. gcode_G28(true, true, false); //home X and Y
  486. st_synchronize();
  487. if (automatic_recovery_after_crash) {
  488. enquecommand_P(PSTR("CRASH_RECOVER"));
  489. }else{
  490. setTargetHotend(0, active_extruder);
  491. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  492. lcd_update_enable(true);
  493. if (yesno)
  494. {
  495. enquecommand_P(PSTR("CRASH_RECOVER"));
  496. }
  497. else
  498. {
  499. enquecommand_P(PSTR("CRASH_CANCEL"));
  500. }
  501. }
  502. }
  503. void crashdet_recover()
  504. {
  505. crashdet_restore_print_and_continue();
  506. tmc2130_sg_stop_on_crash = true;
  507. }
  508. void crashdet_cancel()
  509. {
  510. tmc2130_sg_stop_on_crash = true;
  511. if (saved_printing_type == PRINTING_TYPE_SD) {
  512. lcd_print_stop();
  513. }else if(saved_printing_type == PRINTING_TYPE_USB){
  514. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  515. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  516. }
  517. }
  518. #endif //TMC2130
  519. void failstats_reset_print()
  520. {
  521. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  522. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  523. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  524. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  525. }
  526. #ifdef MESH_BED_LEVELING
  527. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  528. #endif
  529. // Factory reset function
  530. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  531. // Level input parameter sets depth of reset
  532. int er_progress = 0;
  533. static void factory_reset(char level)
  534. {
  535. lcd_clear();
  536. switch (level) {
  537. // Level 0: Language reset
  538. case 0:
  539. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  540. WRITE(BEEPER, HIGH);
  541. _delay_ms(100);
  542. WRITE(BEEPER, LOW);
  543. lang_reset();
  544. break;
  545. //Level 1: Reset statistics
  546. case 1:
  547. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  548. WRITE(BEEPER, HIGH);
  549. _delay_ms(100);
  550. WRITE(BEEPER, LOW);
  551. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  552. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  555. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  556. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  557. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  558. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  559. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  560. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  561. lcd_menu_statistics();
  562. break;
  563. // Level 2: Prepare for shipping
  564. case 2:
  565. //lcd_puts_P(PSTR("Factory RESET"));
  566. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  567. // Force language selection at the next boot up.
  568. lang_reset();
  569. // Force the "Follow calibration flow" message at the next boot up.
  570. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  571. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  572. farm_no = 0;
  573. farm_mode = false;
  574. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  575. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  576. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  577. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  578. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  579. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  580. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  581. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  582. #ifdef FILAMENT_SENSOR
  583. fsensor_enable();
  584. fsensor_autoload_set(true);
  585. #endif //FILAMENT_SENSOR
  586. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  587. WRITE(BEEPER, HIGH);
  588. _delay_ms(100);
  589. WRITE(BEEPER, LOW);
  590. //_delay_ms(2000);
  591. break;
  592. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  593. case 3:
  594. lcd_puts_P(PSTR("Factory RESET"));
  595. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  596. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  597. WRITE(BEEPER, HIGH);
  598. _delay_ms(100);
  599. WRITE(BEEPER, LOW);
  600. er_progress = 0;
  601. lcd_puts_at_P(3, 3, PSTR(" "));
  602. lcd_set_cursor(3, 3);
  603. lcd_print(er_progress);
  604. // Erase EEPROM
  605. for (int i = 0; i < 4096; i++) {
  606. eeprom_update_byte((uint8_t*)i, 0xFF);
  607. if (i % 41 == 0) {
  608. er_progress++;
  609. lcd_puts_at_P(3, 3, PSTR(" "));
  610. lcd_set_cursor(3, 3);
  611. lcd_print(er_progress);
  612. lcd_puts_P(PSTR("%"));
  613. }
  614. }
  615. break;
  616. case 4:
  617. bowden_menu();
  618. break;
  619. default:
  620. break;
  621. }
  622. }
  623. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  624. int uart_putchar(char c, FILE *)
  625. {
  626. MYSERIAL.write(c);
  627. return 0;
  628. }
  629. void lcd_splash()
  630. {
  631. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  632. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  633. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  634. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  635. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  636. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  637. }
  638. void factory_reset()
  639. {
  640. KEEPALIVE_STATE(PAUSED_FOR_USER);
  641. if (!READ(BTN_ENC))
  642. {
  643. _delay_ms(1000);
  644. if (!READ(BTN_ENC))
  645. {
  646. lcd_clear();
  647. lcd_puts_P(PSTR("Factory RESET"));
  648. SET_OUTPUT(BEEPER);
  649. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  650. WRITE(BEEPER, HIGH);
  651. while (!READ(BTN_ENC));
  652. WRITE(BEEPER, LOW);
  653. _delay_ms(2000);
  654. char level = reset_menu();
  655. factory_reset(level);
  656. switch (level) {
  657. case 0: _delay_ms(0); break;
  658. case 1: _delay_ms(0); break;
  659. case 2: _delay_ms(0); break;
  660. case 3: _delay_ms(0); break;
  661. }
  662. }
  663. }
  664. KEEPALIVE_STATE(IN_HANDLER);
  665. }
  666. void show_fw_version_warnings() {
  667. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  668. switch (FW_DEV_VERSION) {
  669. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  670. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  671. case(FW_VERSION_DEVEL):
  672. case(FW_VERSION_DEBUG):
  673. lcd_update_enable(false);
  674. lcd_clear();
  675. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  676. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  677. #else
  678. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  679. #endif
  680. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  681. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  682. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  683. lcd_wait_for_click();
  684. break;
  685. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  686. }
  687. lcd_update_enable(true);
  688. }
  689. uint8_t check_printer_version()
  690. {
  691. uint8_t version_changed = 0;
  692. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  693. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  694. if (printer_type != PRINTER_TYPE) {
  695. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  696. else version_changed |= 0b10;
  697. }
  698. if (motherboard != MOTHERBOARD) {
  699. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  700. else version_changed |= 0b01;
  701. }
  702. return version_changed;
  703. }
  704. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  705. {
  706. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  707. }
  708. #ifdef BOOTAPP
  709. #include "bootapp.h" //bootloader support
  710. #endif //BOOTAPP
  711. #if (LANG_MODE != 0) //secondary language support
  712. #ifdef W25X20CL
  713. // language update from external flash
  714. #define LANGBOOT_BLOCKSIZE 0x1000u
  715. #define LANGBOOT_RAMBUFFER 0x0800
  716. void update_sec_lang_from_external_flash()
  717. {
  718. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  719. {
  720. uint8_t lang = boot_reserved >> 4;
  721. uint8_t state = boot_reserved & 0xf;
  722. lang_table_header_t header;
  723. uint32_t src_addr;
  724. if (lang_get_header(lang, &header, &src_addr))
  725. {
  726. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  727. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  728. delay(100);
  729. boot_reserved = (state + 1) | (lang << 4);
  730. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  731. {
  732. cli();
  733. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  734. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  735. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  736. if (state == 0)
  737. {
  738. //TODO - check header integrity
  739. }
  740. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  741. }
  742. else
  743. {
  744. //TODO - check sec lang data integrity
  745. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  746. }
  747. }
  748. }
  749. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  750. }
  751. #ifdef DEBUG_W25X20CL
  752. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  753. {
  754. lang_table_header_t header;
  755. uint8_t count = 0;
  756. uint32_t addr = 0x00000;
  757. while (1)
  758. {
  759. printf_P(_n("LANGTABLE%d:"), count);
  760. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  761. if (header.magic != LANG_MAGIC)
  762. {
  763. printf_P(_n("NG!\n"));
  764. break;
  765. }
  766. printf_P(_n("OK\n"));
  767. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  768. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  769. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  770. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  771. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  772. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  773. addr += header.size;
  774. codes[count] = header.code;
  775. count ++;
  776. }
  777. return count;
  778. }
  779. void list_sec_lang_from_external_flash()
  780. {
  781. uint16_t codes[8];
  782. uint8_t count = lang_xflash_enum_codes(codes);
  783. printf_P(_n("XFlash lang count = %hhd\n"), count);
  784. }
  785. #endif //DEBUG_W25X20CL
  786. #endif //W25X20CL
  787. #endif //(LANG_MODE != 0)
  788. // "Setup" function is called by the Arduino framework on startup.
  789. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  790. // are initialized by the main() routine provided by the Arduino framework.
  791. void setup()
  792. {
  793. mmu_init();
  794. ultralcd_init();
  795. spi_init();
  796. lcd_splash();
  797. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  798. #ifdef W25X20CL
  799. if (!w25x20cl_init())
  800. kill(_i("External SPI flash W25X20CL not responding."));
  801. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  802. optiboot_w25x20cl_enter();
  803. #endif
  804. #if (LANG_MODE != 0) //secondary language support
  805. #ifdef W25X20CL
  806. if (w25x20cl_init())
  807. update_sec_lang_from_external_flash();
  808. #endif //W25X20CL
  809. #endif //(LANG_MODE != 0)
  810. setup_killpin();
  811. setup_powerhold();
  812. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  813. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  814. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  815. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  816. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  817. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  818. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  819. if (farm_mode)
  820. {
  821. no_response = true; //we need confirmation by recieving PRUSA thx
  822. important_status = 8;
  823. prusa_statistics(8);
  824. selectedSerialPort = 1;
  825. #ifdef TMC2130
  826. //increased extruder current (PFW363)
  827. tmc2130_current_h[E_AXIS] = 36;
  828. tmc2130_current_r[E_AXIS] = 36;
  829. #endif //TMC2130
  830. #ifdef FILAMENT_SENSOR
  831. //disabled filament autoload (PFW360)
  832. fsensor_autoload_set(false);
  833. #endif //FILAMENT_SENSOR
  834. }
  835. MYSERIAL.begin(BAUDRATE);
  836. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  837. stdout = uartout;
  838. SERIAL_PROTOCOLLNPGM("start");
  839. SERIAL_ECHO_START;
  840. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  841. #ifdef DEBUG_SEC_LANG
  842. lang_table_header_t header;
  843. uint32_t src_addr = 0x00000;
  844. if (lang_get_header(1, &header, &src_addr))
  845. {
  846. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  847. #define LT_PRINT_TEST 2
  848. // flash usage
  849. // total p.test
  850. //0 252718 t+c text code
  851. //1 253142 424 170 254
  852. //2 253040 322 164 158
  853. //3 253248 530 135 395
  854. #if (LT_PRINT_TEST==1) //not optimized printf
  855. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  856. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  857. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  858. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  859. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  860. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  861. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  862. #elif (LT_PRINT_TEST==2) //optimized printf
  863. printf_P(
  864. _n(
  865. " _src_addr = 0x%08lx\n"
  866. " _lt_magic = 0x%08lx %S\n"
  867. " _lt_size = 0x%04x (%d)\n"
  868. " _lt_count = 0x%04x (%d)\n"
  869. " _lt_chsum = 0x%04x\n"
  870. " _lt_code = 0x%04x (%c%c)\n"
  871. " _lt_resv1 = 0x%08lx\n"
  872. ),
  873. src_addr,
  874. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  875. header.size, header.size,
  876. header.count, header.count,
  877. header.checksum,
  878. header.code, header.code >> 8, header.code & 0xff,
  879. header.signature
  880. );
  881. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  882. MYSERIAL.print(" _src_addr = 0x");
  883. MYSERIAL.println(src_addr, 16);
  884. MYSERIAL.print(" _lt_magic = 0x");
  885. MYSERIAL.print(header.magic, 16);
  886. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  887. MYSERIAL.print(" _lt_size = 0x");
  888. MYSERIAL.print(header.size, 16);
  889. MYSERIAL.print(" (");
  890. MYSERIAL.print(header.size, 10);
  891. MYSERIAL.println(")");
  892. MYSERIAL.print(" _lt_count = 0x");
  893. MYSERIAL.print(header.count, 16);
  894. MYSERIAL.print(" (");
  895. MYSERIAL.print(header.count, 10);
  896. MYSERIAL.println(")");
  897. MYSERIAL.print(" _lt_chsum = 0x");
  898. MYSERIAL.println(header.checksum, 16);
  899. MYSERIAL.print(" _lt_code = 0x");
  900. MYSERIAL.print(header.code, 16);
  901. MYSERIAL.print(" (");
  902. MYSERIAL.print((char)(header.code >> 8), 0);
  903. MYSERIAL.print((char)(header.code & 0xff), 0);
  904. MYSERIAL.println(")");
  905. MYSERIAL.print(" _lt_resv1 = 0x");
  906. MYSERIAL.println(header.signature, 16);
  907. #endif //(LT_PRINT_TEST==)
  908. #undef LT_PRINT_TEST
  909. #if 0
  910. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  911. for (uint16_t i = 0; i < 1024; i++)
  912. {
  913. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  914. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  915. if ((i % 16) == 15) putchar('\n');
  916. }
  917. #endif
  918. uint16_t sum = 0;
  919. for (uint16_t i = 0; i < header.size; i++)
  920. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  921. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  922. sum -= header.checksum; //subtract checksum
  923. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  924. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  925. if (sum == header.checksum)
  926. printf_P(_n("Checksum OK\n"), sum);
  927. else
  928. printf_P(_n("Checksum NG\n"), sum);
  929. }
  930. else
  931. printf_P(_n("lang_get_header failed!\n"));
  932. #if 0
  933. for (uint16_t i = 0; i < 1024*10; i++)
  934. {
  935. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  936. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  937. if ((i % 16) == 15) putchar('\n');
  938. }
  939. #endif
  940. #if 0
  941. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  942. for (int i = 0; i < 4096; ++i) {
  943. int b = eeprom_read_byte((unsigned char*)i);
  944. if (b != 255) {
  945. SERIAL_ECHO(i);
  946. SERIAL_ECHO(":");
  947. SERIAL_ECHO(b);
  948. SERIAL_ECHOLN("");
  949. }
  950. }
  951. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  952. #endif
  953. #endif //DEBUG_SEC_LANG
  954. // Check startup - does nothing if bootloader sets MCUSR to 0
  955. byte mcu = MCUSR;
  956. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  957. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  958. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  959. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  960. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  961. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  962. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  963. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  964. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  965. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  966. MCUSR = 0;
  967. //SERIAL_ECHORPGM(MSG_MARLIN);
  968. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  969. #ifdef STRING_VERSION_CONFIG_H
  970. #ifdef STRING_CONFIG_H_AUTHOR
  971. SERIAL_ECHO_START;
  972. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  973. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  974. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  975. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  976. SERIAL_ECHOPGM("Compiled: ");
  977. SERIAL_ECHOLNPGM(__DATE__);
  978. #endif
  979. #endif
  980. SERIAL_ECHO_START;
  981. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  982. SERIAL_ECHO(freeMemory());
  983. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  984. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  985. //lcd_update_enable(false); // why do we need this?? - andre
  986. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  987. bool previous_settings_retrieved = false;
  988. uint8_t hw_changed = check_printer_version();
  989. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  990. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  991. }
  992. else { //printer version was changed so use default settings
  993. Config_ResetDefault();
  994. }
  995. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  996. tp_init(); // Initialize temperature loop
  997. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  998. plan_init(); // Initialize planner;
  999. factory_reset();
  1000. lcd_encoder_diff=0;
  1001. #ifdef TMC2130
  1002. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1003. if (silentMode == 0xff) silentMode = 0;
  1004. tmc2130_mode = TMC2130_MODE_NORMAL;
  1005. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1006. if (crashdet && !farm_mode)
  1007. {
  1008. crashdet_enable();
  1009. puts_P(_N("CrashDetect ENABLED!"));
  1010. }
  1011. else
  1012. {
  1013. crashdet_disable();
  1014. puts_P(_N("CrashDetect DISABLED"));
  1015. }
  1016. #ifdef TMC2130_LINEARITY_CORRECTION
  1017. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1018. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1019. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1020. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1021. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1022. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1023. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1024. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1025. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1026. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1027. #endif //TMC2130_LINEARITY_CORRECTION
  1028. #ifdef TMC2130_VARIABLE_RESOLUTION
  1029. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1030. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1031. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1032. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1033. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1034. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1035. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1036. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1037. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1038. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1039. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1040. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1041. #else //TMC2130_VARIABLE_RESOLUTION
  1042. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1043. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1044. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1045. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1046. #endif //TMC2130_VARIABLE_RESOLUTION
  1047. #endif //TMC2130
  1048. st_init(); // Initialize stepper, this enables interrupts!
  1049. #ifdef TMC2130
  1050. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1051. update_mode_profile();
  1052. tmc2130_init();
  1053. #endif //TMC2130
  1054. setup_photpin();
  1055. servo_init();
  1056. // Reset the machine correction matrix.
  1057. // It does not make sense to load the correction matrix until the machine is homed.
  1058. world2machine_reset();
  1059. #ifdef FILAMENT_SENSOR
  1060. fsensor_init();
  1061. #endif //FILAMENT_SENSOR
  1062. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1063. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1064. #endif
  1065. setup_homepin();
  1066. #ifdef TMC2130
  1067. if (1) {
  1068. // try to run to zero phase before powering the Z motor.
  1069. // Move in negative direction
  1070. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1071. // Round the current micro-micro steps to micro steps.
  1072. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1073. // Until the phase counter is reset to zero.
  1074. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1075. delay(2);
  1076. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1077. delay(2);
  1078. }
  1079. }
  1080. #endif //TMC2130
  1081. #if defined(Z_AXIS_ALWAYS_ON)
  1082. enable_z();
  1083. #endif
  1084. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1085. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1086. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1087. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1088. if (farm_mode)
  1089. {
  1090. prusa_statistics(8);
  1091. }
  1092. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1093. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1094. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1095. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1096. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1097. // where all the EEPROM entries are set to 0x0ff.
  1098. // Once a firmware boots up, it forces at least a language selection, which changes
  1099. // EEPROM_LANG to number lower than 0x0ff.
  1100. // 1) Set a high power mode.
  1101. #ifdef TMC2130
  1102. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1103. tmc2130_mode = TMC2130_MODE_NORMAL;
  1104. #endif //TMC2130
  1105. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1106. }
  1107. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1108. // but this times out if a blocking dialog is shown in setup().
  1109. card.initsd();
  1110. #ifdef DEBUG_SD_SPEED_TEST
  1111. if (card.cardOK)
  1112. {
  1113. uint8_t* buff = (uint8_t*)block_buffer;
  1114. uint32_t block = 0;
  1115. uint32_t sumr = 0;
  1116. uint32_t sumw = 0;
  1117. for (int i = 0; i < 1024; i++)
  1118. {
  1119. uint32_t u = micros();
  1120. bool res = card.card.readBlock(i, buff);
  1121. u = micros() - u;
  1122. if (res)
  1123. {
  1124. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1125. sumr += u;
  1126. u = micros();
  1127. res = card.card.writeBlock(i, buff);
  1128. u = micros() - u;
  1129. if (res)
  1130. {
  1131. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1132. sumw += u;
  1133. }
  1134. else
  1135. {
  1136. printf_P(PSTR("writeBlock %4d error\n"), i);
  1137. break;
  1138. }
  1139. }
  1140. else
  1141. {
  1142. printf_P(PSTR("readBlock %4d error\n"), i);
  1143. break;
  1144. }
  1145. }
  1146. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1147. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1148. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1149. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1150. }
  1151. else
  1152. printf_P(PSTR("Card NG!\n"));
  1153. #endif //DEBUG_SD_SPEED_TEST
  1154. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1155. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1156. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1157. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1158. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1159. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1160. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1161. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1162. #ifdef SNMM
  1163. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1164. int _z = BOWDEN_LENGTH;
  1165. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1166. }
  1167. #endif
  1168. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1169. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1170. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1171. #if (LANG_MODE != 0) //secondary language support
  1172. #ifdef DEBUG_W25X20CL
  1173. W25X20CL_SPI_ENTER();
  1174. uint8_t uid[8]; // 64bit unique id
  1175. w25x20cl_rd_uid(uid);
  1176. puts_P(_n("W25X20CL UID="));
  1177. for (uint8_t i = 0; i < 8; i ++)
  1178. printf_P(PSTR("%02hhx"), uid[i]);
  1179. putchar('\n');
  1180. list_sec_lang_from_external_flash();
  1181. #endif //DEBUG_W25X20CL
  1182. // lang_reset();
  1183. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1184. lcd_language();
  1185. #ifdef DEBUG_SEC_LANG
  1186. uint16_t sec_lang_code = lang_get_code(1);
  1187. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1188. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1189. // lang_print_sec_lang(uartout);
  1190. #endif //DEBUG_SEC_LANG
  1191. #endif //(LANG_MODE != 0)
  1192. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1193. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1194. temp_cal_active = false;
  1195. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1196. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1197. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1198. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1199. int16_t z_shift = 0;
  1200. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1201. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1202. temp_cal_active = false;
  1203. }
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1205. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1206. }
  1207. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1208. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1209. }
  1210. check_babystep(); //checking if Z babystep is in allowed range
  1211. #ifdef UVLO_SUPPORT
  1212. setup_uvlo_interrupt();
  1213. #endif //UVLO_SUPPORT
  1214. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1215. setup_fan_interrupt();
  1216. #endif //DEBUG_DISABLE_FANCHECK
  1217. #ifdef FILAMENT_SENSOR
  1218. fsensor_setup_interrupt();
  1219. #endif //FILAMENT_SENSOR
  1220. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1221. #ifndef DEBUG_DISABLE_STARTMSGS
  1222. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1223. show_fw_version_warnings();
  1224. switch (hw_changed) {
  1225. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1226. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1227. case(0b01):
  1228. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1229. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1230. break;
  1231. case(0b10):
  1232. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1233. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1234. break;
  1235. case(0b11):
  1236. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1237. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1238. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1239. break;
  1240. default: break; //no change, show no message
  1241. }
  1242. if (!previous_settings_retrieved) {
  1243. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1244. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1245. }
  1246. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1247. lcd_wizard(WizState::Run);
  1248. }
  1249. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1250. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1251. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1252. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1253. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1254. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1255. // Show the message.
  1256. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1257. }
  1258. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1259. // Show the message.
  1260. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1261. lcd_update_enable(true);
  1262. }
  1263. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1264. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1265. lcd_update_enable(true);
  1266. }
  1267. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1268. // Show the message.
  1269. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1270. }
  1271. }
  1272. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1273. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1274. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1275. update_current_firmware_version_to_eeprom();
  1276. lcd_selftest();
  1277. }
  1278. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1279. KEEPALIVE_STATE(IN_PROCESS);
  1280. #endif //DEBUG_DISABLE_STARTMSGS
  1281. lcd_update_enable(true);
  1282. lcd_clear();
  1283. lcd_update(2);
  1284. // Store the currently running firmware into an eeprom,
  1285. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1286. update_current_firmware_version_to_eeprom();
  1287. #ifdef TMC2130
  1288. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1289. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1290. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1291. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1292. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1293. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1294. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1295. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1296. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1297. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1298. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1299. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1300. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1301. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1302. #endif //TMC2130
  1303. #ifdef UVLO_SUPPORT
  1304. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1305. /*
  1306. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1307. else {
  1308. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1309. lcd_update_enable(true);
  1310. lcd_update(2);
  1311. lcd_setstatuspgm(_T(WELCOME_MSG));
  1312. }
  1313. */
  1314. manage_heater(); // Update temperatures
  1315. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1316. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1317. #endif
  1318. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1319. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1320. puts_P(_N("Automatic recovery!"));
  1321. #endif
  1322. recover_print(1);
  1323. }
  1324. else{
  1325. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1326. puts_P(_N("Normal recovery!"));
  1327. #endif
  1328. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1329. else {
  1330. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1331. lcd_update_enable(true);
  1332. lcd_update(2);
  1333. lcd_setstatuspgm(_T(WELCOME_MSG));
  1334. }
  1335. }
  1336. }
  1337. #endif //UVLO_SUPPORT
  1338. KEEPALIVE_STATE(NOT_BUSY);
  1339. #ifdef WATCHDOG
  1340. wdt_enable(WDTO_4S);
  1341. #endif //WATCHDOG
  1342. }
  1343. void trace();
  1344. #define CHUNK_SIZE 64 // bytes
  1345. #define SAFETY_MARGIN 1
  1346. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1347. int chunkHead = 0;
  1348. void serial_read_stream() {
  1349. setAllTargetHotends(0);
  1350. setTargetBed(0);
  1351. lcd_clear();
  1352. lcd_puts_P(PSTR(" Upload in progress"));
  1353. // first wait for how many bytes we will receive
  1354. uint32_t bytesToReceive;
  1355. // receive the four bytes
  1356. char bytesToReceiveBuffer[4];
  1357. for (int i=0; i<4; i++) {
  1358. int data;
  1359. while ((data = MYSERIAL.read()) == -1) {};
  1360. bytesToReceiveBuffer[i] = data;
  1361. }
  1362. // make it a uint32
  1363. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1364. // we're ready, notify the sender
  1365. MYSERIAL.write('+');
  1366. // lock in the routine
  1367. uint32_t receivedBytes = 0;
  1368. while (prusa_sd_card_upload) {
  1369. int i;
  1370. for (i=0; i<CHUNK_SIZE; i++) {
  1371. int data;
  1372. // check if we're not done
  1373. if (receivedBytes == bytesToReceive) {
  1374. break;
  1375. }
  1376. // read the next byte
  1377. while ((data = MYSERIAL.read()) == -1) {};
  1378. receivedBytes++;
  1379. // save it to the chunk
  1380. chunk[i] = data;
  1381. }
  1382. // write the chunk to SD
  1383. card.write_command_no_newline(&chunk[0]);
  1384. // notify the sender we're ready for more data
  1385. MYSERIAL.write('+');
  1386. // for safety
  1387. manage_heater();
  1388. // check if we're done
  1389. if(receivedBytes == bytesToReceive) {
  1390. trace(); // beep
  1391. card.closefile();
  1392. prusa_sd_card_upload = false;
  1393. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1394. }
  1395. }
  1396. }
  1397. #ifdef HOST_KEEPALIVE_FEATURE
  1398. /**
  1399. * Output a "busy" message at regular intervals
  1400. * while the machine is not accepting commands.
  1401. */
  1402. void host_keepalive() {
  1403. if (farm_mode) return;
  1404. long ms = millis();
  1405. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1406. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1407. switch (busy_state) {
  1408. case IN_HANDLER:
  1409. case IN_PROCESS:
  1410. SERIAL_ECHO_START;
  1411. SERIAL_ECHOLNPGM("busy: processing");
  1412. break;
  1413. case PAUSED_FOR_USER:
  1414. SERIAL_ECHO_START;
  1415. SERIAL_ECHOLNPGM("busy: paused for user");
  1416. break;
  1417. case PAUSED_FOR_INPUT:
  1418. SERIAL_ECHO_START;
  1419. SERIAL_ECHOLNPGM("busy: paused for input");
  1420. break;
  1421. default:
  1422. break;
  1423. }
  1424. }
  1425. prev_busy_signal_ms = ms;
  1426. }
  1427. #endif
  1428. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1429. // Before loop(), the setup() function is called by the main() routine.
  1430. void loop()
  1431. {
  1432. KEEPALIVE_STATE(NOT_BUSY);
  1433. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1434. {
  1435. is_usb_printing = true;
  1436. usb_printing_counter--;
  1437. _usb_timer = millis();
  1438. }
  1439. if (usb_printing_counter == 0)
  1440. {
  1441. is_usb_printing = false;
  1442. }
  1443. if (prusa_sd_card_upload)
  1444. {
  1445. //we read byte-by byte
  1446. serial_read_stream();
  1447. } else
  1448. {
  1449. get_command();
  1450. #ifdef SDSUPPORT
  1451. card.checkautostart(false);
  1452. #endif
  1453. if(buflen)
  1454. {
  1455. cmdbuffer_front_already_processed = false;
  1456. #ifdef SDSUPPORT
  1457. if(card.saving)
  1458. {
  1459. // Saving a G-code file onto an SD-card is in progress.
  1460. // Saving starts with M28, saving until M29 is seen.
  1461. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1462. card.write_command(CMDBUFFER_CURRENT_STRING);
  1463. if(card.logging)
  1464. process_commands();
  1465. else
  1466. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1467. } else {
  1468. card.closefile();
  1469. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1470. }
  1471. } else {
  1472. process_commands();
  1473. }
  1474. #else
  1475. process_commands();
  1476. #endif //SDSUPPORT
  1477. if (! cmdbuffer_front_already_processed && buflen)
  1478. {
  1479. // ptr points to the start of the block currently being processed.
  1480. // The first character in the block is the block type.
  1481. char *ptr = cmdbuffer + bufindr;
  1482. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1483. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1484. union {
  1485. struct {
  1486. char lo;
  1487. char hi;
  1488. } lohi;
  1489. uint16_t value;
  1490. } sdlen;
  1491. sdlen.value = 0;
  1492. {
  1493. // This block locks the interrupts globally for 3.25 us,
  1494. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1495. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1496. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1497. cli();
  1498. // Reset the command to something, which will be ignored by the power panic routine,
  1499. // so this buffer length will not be counted twice.
  1500. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1501. // Extract the current buffer length.
  1502. sdlen.lohi.lo = *ptr ++;
  1503. sdlen.lohi.hi = *ptr;
  1504. // and pass it to the planner queue.
  1505. planner_add_sd_length(sdlen.value);
  1506. sei();
  1507. }
  1508. }
  1509. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1510. cli();
  1511. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1512. // and one for each command to previous block in the planner queue.
  1513. planner_add_sd_length(1);
  1514. sei();
  1515. }
  1516. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1517. // this block's SD card length will not be counted twice as its command type has been replaced
  1518. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1519. cmdqueue_pop_front();
  1520. }
  1521. host_keepalive();
  1522. }
  1523. }
  1524. //check heater every n milliseconds
  1525. manage_heater();
  1526. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1527. checkHitEndstops();
  1528. lcd_update(0);
  1529. #ifdef FILAMENT_SENSOR
  1530. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1531. fsensor_update();
  1532. #endif //FILAMENT_SENSOR
  1533. #ifdef TMC2130
  1534. tmc2130_check_overtemp();
  1535. if (tmc2130_sg_crash)
  1536. {
  1537. uint8_t crash = tmc2130_sg_crash;
  1538. tmc2130_sg_crash = 0;
  1539. // crashdet_stop_and_save_print();
  1540. switch (crash)
  1541. {
  1542. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1543. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1544. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1545. }
  1546. }
  1547. #endif //TMC2130
  1548. mmu_loop();
  1549. }
  1550. #define DEFINE_PGM_READ_ANY(type, reader) \
  1551. static inline type pgm_read_any(const type *p) \
  1552. { return pgm_read_##reader##_near(p); }
  1553. DEFINE_PGM_READ_ANY(float, float);
  1554. DEFINE_PGM_READ_ANY(signed char, byte);
  1555. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1556. static const PROGMEM type array##_P[3] = \
  1557. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1558. static inline type array(int axis) \
  1559. { return pgm_read_any(&array##_P[axis]); } \
  1560. type array##_ext(int axis) \
  1561. { return pgm_read_any(&array##_P[axis]); }
  1562. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1563. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1564. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1565. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1566. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1567. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1568. static void axis_is_at_home(int axis) {
  1569. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1570. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1571. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1572. }
  1573. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1574. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1575. //! @return original feedmultiply
  1576. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1577. saved_feedrate = feedrate;
  1578. int l_feedmultiply = feedmultiply;
  1579. feedmultiply = 100;
  1580. previous_millis_cmd = millis();
  1581. enable_endstops(enable_endstops_now);
  1582. return l_feedmultiply;
  1583. }
  1584. //! @param original_feedmultiply feedmultiply to restore
  1585. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1586. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1587. enable_endstops(false);
  1588. #endif
  1589. feedrate = saved_feedrate;
  1590. feedmultiply = original_feedmultiply;
  1591. previous_millis_cmd = millis();
  1592. }
  1593. #ifdef ENABLE_AUTO_BED_LEVELING
  1594. #ifdef AUTO_BED_LEVELING_GRID
  1595. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1596. {
  1597. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1598. planeNormal.debug("planeNormal");
  1599. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1600. //bedLevel.debug("bedLevel");
  1601. //plan_bed_level_matrix.debug("bed level before");
  1602. //vector_3 uncorrected_position = plan_get_position_mm();
  1603. //uncorrected_position.debug("position before");
  1604. vector_3 corrected_position = plan_get_position();
  1605. // corrected_position.debug("position after");
  1606. current_position[X_AXIS] = corrected_position.x;
  1607. current_position[Y_AXIS] = corrected_position.y;
  1608. current_position[Z_AXIS] = corrected_position.z;
  1609. // put the bed at 0 so we don't go below it.
  1610. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1612. }
  1613. #else // not AUTO_BED_LEVELING_GRID
  1614. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1615. plan_bed_level_matrix.set_to_identity();
  1616. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1617. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1618. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1619. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1620. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1621. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1622. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1623. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1624. vector_3 corrected_position = plan_get_position();
  1625. current_position[X_AXIS] = corrected_position.x;
  1626. current_position[Y_AXIS] = corrected_position.y;
  1627. current_position[Z_AXIS] = corrected_position.z;
  1628. // put the bed at 0 so we don't go below it.
  1629. current_position[Z_AXIS] = zprobe_zoffset;
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. }
  1632. #endif // AUTO_BED_LEVELING_GRID
  1633. static void run_z_probe() {
  1634. plan_bed_level_matrix.set_to_identity();
  1635. feedrate = homing_feedrate[Z_AXIS];
  1636. // move down until you find the bed
  1637. float zPosition = -10;
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1639. st_synchronize();
  1640. // we have to let the planner know where we are right now as it is not where we said to go.
  1641. zPosition = st_get_position_mm(Z_AXIS);
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1643. // move up the retract distance
  1644. zPosition += home_retract_mm(Z_AXIS);
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1646. st_synchronize();
  1647. // move back down slowly to find bed
  1648. feedrate = homing_feedrate[Z_AXIS]/4;
  1649. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1651. st_synchronize();
  1652. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1653. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1655. }
  1656. static void do_blocking_move_to(float x, float y, float z) {
  1657. float oldFeedRate = feedrate;
  1658. feedrate = homing_feedrate[Z_AXIS];
  1659. current_position[Z_AXIS] = z;
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1661. st_synchronize();
  1662. feedrate = XY_TRAVEL_SPEED;
  1663. current_position[X_AXIS] = x;
  1664. current_position[Y_AXIS] = y;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1666. st_synchronize();
  1667. feedrate = oldFeedRate;
  1668. }
  1669. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1670. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1671. }
  1672. /// Probe bed height at position (x,y), returns the measured z value
  1673. static float probe_pt(float x, float y, float z_before) {
  1674. // move to right place
  1675. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1676. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1677. run_z_probe();
  1678. float measured_z = current_position[Z_AXIS];
  1679. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1680. SERIAL_PROTOCOLPGM(" x: ");
  1681. SERIAL_PROTOCOL(x);
  1682. SERIAL_PROTOCOLPGM(" y: ");
  1683. SERIAL_PROTOCOL(y);
  1684. SERIAL_PROTOCOLPGM(" z: ");
  1685. SERIAL_PROTOCOL(measured_z);
  1686. SERIAL_PROTOCOLPGM("\n");
  1687. return measured_z;
  1688. }
  1689. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1690. #ifdef LIN_ADVANCE
  1691. /**
  1692. * M900: Set and/or Get advance K factor and WH/D ratio
  1693. *
  1694. * K<factor> Set advance K factor
  1695. * R<ratio> Set ratio directly (overrides WH/D)
  1696. * W<width> H<height> D<diam> Set ratio from WH/D
  1697. */
  1698. inline void gcode_M900() {
  1699. st_synchronize();
  1700. const float newK = code_seen('K') ? code_value_float() : -1;
  1701. if (newK >= 0) extruder_advance_k = newK;
  1702. float newR = code_seen('R') ? code_value_float() : -1;
  1703. if (newR < 0) {
  1704. const float newD = code_seen('D') ? code_value_float() : -1,
  1705. newW = code_seen('W') ? code_value_float() : -1,
  1706. newH = code_seen('H') ? code_value_float() : -1;
  1707. if (newD >= 0 && newW >= 0 && newH >= 0)
  1708. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1709. }
  1710. if (newR >= 0) advance_ed_ratio = newR;
  1711. SERIAL_ECHO_START;
  1712. SERIAL_ECHOPGM("Advance K=");
  1713. SERIAL_ECHOLN(extruder_advance_k);
  1714. SERIAL_ECHOPGM(" E/D=");
  1715. const float ratio = advance_ed_ratio;
  1716. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1717. }
  1718. #endif // LIN_ADVANCE
  1719. bool check_commands() {
  1720. bool end_command_found = false;
  1721. while (buflen)
  1722. {
  1723. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1724. if (!cmdbuffer_front_already_processed)
  1725. cmdqueue_pop_front();
  1726. cmdbuffer_front_already_processed = false;
  1727. }
  1728. return end_command_found;
  1729. }
  1730. #ifdef TMC2130
  1731. bool calibrate_z_auto()
  1732. {
  1733. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1734. lcd_clear();
  1735. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1736. bool endstops_enabled = enable_endstops(true);
  1737. int axis_up_dir = -home_dir(Z_AXIS);
  1738. tmc2130_home_enter(Z_AXIS_MASK);
  1739. current_position[Z_AXIS] = 0;
  1740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1741. set_destination_to_current();
  1742. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1743. feedrate = homing_feedrate[Z_AXIS];
  1744. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1745. st_synchronize();
  1746. // current_position[axis] = 0;
  1747. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1748. tmc2130_home_exit();
  1749. enable_endstops(false);
  1750. current_position[Z_AXIS] = 0;
  1751. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1752. set_destination_to_current();
  1753. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1754. feedrate = homing_feedrate[Z_AXIS] / 2;
  1755. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1756. st_synchronize();
  1757. enable_endstops(endstops_enabled);
  1758. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1759. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1760. return true;
  1761. }
  1762. #endif //TMC2130
  1763. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1764. {
  1765. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1766. #define HOMEAXIS_DO(LETTER) \
  1767. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1768. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1769. {
  1770. int axis_home_dir = home_dir(axis);
  1771. feedrate = homing_feedrate[axis];
  1772. #ifdef TMC2130
  1773. tmc2130_home_enter(X_AXIS_MASK << axis);
  1774. #endif //TMC2130
  1775. // Move away a bit, so that the print head does not touch the end position,
  1776. // and the following movement to endstop has a chance to achieve the required velocity
  1777. // for the stall guard to work.
  1778. current_position[axis] = 0;
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. set_destination_to_current();
  1781. // destination[axis] = 11.f;
  1782. destination[axis] = -3.f * axis_home_dir;
  1783. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1784. st_synchronize();
  1785. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1786. endstops_hit_on_purpose();
  1787. enable_endstops(false);
  1788. current_position[axis] = 0;
  1789. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1790. destination[axis] = 1. * axis_home_dir;
  1791. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1792. st_synchronize();
  1793. // Now continue to move up to the left end stop with the collision detection enabled.
  1794. enable_endstops(true);
  1795. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1796. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1797. st_synchronize();
  1798. for (uint8_t i = 0; i < cnt; i++)
  1799. {
  1800. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1801. endstops_hit_on_purpose();
  1802. enable_endstops(false);
  1803. current_position[axis] = 0;
  1804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1805. destination[axis] = -10.f * axis_home_dir;
  1806. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1807. st_synchronize();
  1808. endstops_hit_on_purpose();
  1809. // Now move left up to the collision, this time with a repeatable velocity.
  1810. enable_endstops(true);
  1811. destination[axis] = 11.f * axis_home_dir;
  1812. #ifdef TMC2130
  1813. feedrate = homing_feedrate[axis];
  1814. #else //TMC2130
  1815. feedrate = homing_feedrate[axis] / 2;
  1816. #endif //TMC2130
  1817. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1818. st_synchronize();
  1819. #ifdef TMC2130
  1820. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1821. if (pstep) pstep[i] = mscnt >> 4;
  1822. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1823. #endif //TMC2130
  1824. }
  1825. endstops_hit_on_purpose();
  1826. enable_endstops(false);
  1827. #ifdef TMC2130
  1828. uint8_t orig = tmc2130_home_origin[axis];
  1829. uint8_t back = tmc2130_home_bsteps[axis];
  1830. if (tmc2130_home_enabled && (orig <= 63))
  1831. {
  1832. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1833. if (back > 0)
  1834. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1835. }
  1836. else
  1837. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1838. tmc2130_home_exit();
  1839. #endif //TMC2130
  1840. axis_is_at_home(axis);
  1841. axis_known_position[axis] = true;
  1842. // Move from minimum
  1843. #ifdef TMC2130
  1844. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1845. #else //TMC2130
  1846. float dist = - axis_home_dir * 0.01f * 64;
  1847. #endif //TMC2130
  1848. current_position[axis] -= dist;
  1849. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1850. current_position[axis] += dist;
  1851. destination[axis] = current_position[axis];
  1852. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1853. st_synchronize();
  1854. feedrate = 0.0;
  1855. }
  1856. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1857. {
  1858. #ifdef TMC2130
  1859. FORCE_HIGH_POWER_START;
  1860. #endif
  1861. int axis_home_dir = home_dir(axis);
  1862. current_position[axis] = 0;
  1863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1864. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1865. feedrate = homing_feedrate[axis];
  1866. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1867. st_synchronize();
  1868. #ifdef TMC2130
  1869. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1870. FORCE_HIGH_POWER_END;
  1871. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1872. return;
  1873. }
  1874. #endif //TMC2130
  1875. current_position[axis] = 0;
  1876. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1877. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1878. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1879. st_synchronize();
  1880. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1881. feedrate = homing_feedrate[axis]/2 ;
  1882. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1883. st_synchronize();
  1884. #ifdef TMC2130
  1885. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1886. FORCE_HIGH_POWER_END;
  1887. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1888. return;
  1889. }
  1890. #endif //TMC2130
  1891. axis_is_at_home(axis);
  1892. destination[axis] = current_position[axis];
  1893. feedrate = 0.0;
  1894. endstops_hit_on_purpose();
  1895. axis_known_position[axis] = true;
  1896. #ifdef TMC2130
  1897. FORCE_HIGH_POWER_END;
  1898. #endif
  1899. }
  1900. enable_endstops(endstops_enabled);
  1901. }
  1902. /**/
  1903. void home_xy()
  1904. {
  1905. set_destination_to_current();
  1906. homeaxis(X_AXIS);
  1907. homeaxis(Y_AXIS);
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. endstops_hit_on_purpose();
  1910. }
  1911. void refresh_cmd_timeout(void)
  1912. {
  1913. previous_millis_cmd = millis();
  1914. }
  1915. #ifdef FWRETRACT
  1916. void retract(bool retracting, bool swapretract = false) {
  1917. if(retracting && !retracted[active_extruder]) {
  1918. destination[X_AXIS]=current_position[X_AXIS];
  1919. destination[Y_AXIS]=current_position[Y_AXIS];
  1920. destination[Z_AXIS]=current_position[Z_AXIS];
  1921. destination[E_AXIS]=current_position[E_AXIS];
  1922. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1923. plan_set_e_position(current_position[E_AXIS]);
  1924. float oldFeedrate = feedrate;
  1925. feedrate=retract_feedrate*60;
  1926. retracted[active_extruder]=true;
  1927. prepare_move();
  1928. current_position[Z_AXIS]-=retract_zlift;
  1929. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1930. prepare_move();
  1931. feedrate = oldFeedrate;
  1932. } else if(!retracting && retracted[active_extruder]) {
  1933. destination[X_AXIS]=current_position[X_AXIS];
  1934. destination[Y_AXIS]=current_position[Y_AXIS];
  1935. destination[Z_AXIS]=current_position[Z_AXIS];
  1936. destination[E_AXIS]=current_position[E_AXIS];
  1937. current_position[Z_AXIS]+=retract_zlift;
  1938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1939. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1940. plan_set_e_position(current_position[E_AXIS]);
  1941. float oldFeedrate = feedrate;
  1942. feedrate=retract_recover_feedrate*60;
  1943. retracted[active_extruder]=false;
  1944. prepare_move();
  1945. feedrate = oldFeedrate;
  1946. }
  1947. } //retract
  1948. #endif //FWRETRACT
  1949. void trace() {
  1950. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1951. tone(BEEPER, 440);
  1952. delay(25);
  1953. noTone(BEEPER);
  1954. delay(20);
  1955. }
  1956. /*
  1957. void ramming() {
  1958. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1959. if (current_temperature[0] < 230) {
  1960. //PLA
  1961. max_feedrate[E_AXIS] = 50;
  1962. //current_position[E_AXIS] -= 8;
  1963. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1964. //current_position[E_AXIS] += 8;
  1965. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1966. current_position[E_AXIS] += 5.4;
  1967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1968. current_position[E_AXIS] += 3.2;
  1969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1970. current_position[E_AXIS] += 3;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1972. st_synchronize();
  1973. max_feedrate[E_AXIS] = 80;
  1974. current_position[E_AXIS] -= 82;
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1976. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1977. current_position[E_AXIS] -= 20;
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1979. current_position[E_AXIS] += 5;
  1980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1981. current_position[E_AXIS] += 5;
  1982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1983. current_position[E_AXIS] -= 10;
  1984. st_synchronize();
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1986. current_position[E_AXIS] += 10;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1988. current_position[E_AXIS] -= 10;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1990. current_position[E_AXIS] += 10;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1992. current_position[E_AXIS] -= 10;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1994. st_synchronize();
  1995. }
  1996. else {
  1997. //ABS
  1998. max_feedrate[E_AXIS] = 50;
  1999. //current_position[E_AXIS] -= 8;
  2000. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2001. //current_position[E_AXIS] += 8;
  2002. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2003. current_position[E_AXIS] += 3.1;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2005. current_position[E_AXIS] += 3.1;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2007. current_position[E_AXIS] += 4;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2009. st_synchronize();
  2010. //current_position[X_AXIS] += 23; //delay
  2011. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2012. //current_position[X_AXIS] -= 23; //delay
  2013. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2014. delay(4700);
  2015. max_feedrate[E_AXIS] = 80;
  2016. current_position[E_AXIS] -= 92;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2018. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2019. current_position[E_AXIS] -= 5;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2021. current_position[E_AXIS] += 5;
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2023. current_position[E_AXIS] -= 5;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2025. st_synchronize();
  2026. current_position[E_AXIS] += 5;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2028. current_position[E_AXIS] -= 5;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2030. current_position[E_AXIS] += 5;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2032. current_position[E_AXIS] -= 5;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2034. st_synchronize();
  2035. }
  2036. }
  2037. */
  2038. #ifdef TMC2130
  2039. void force_high_power_mode(bool start_high_power_section) {
  2040. uint8_t silent;
  2041. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2042. if (silent == 1) {
  2043. //we are in silent mode, set to normal mode to enable crash detection
  2044. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2045. st_synchronize();
  2046. cli();
  2047. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2048. update_mode_profile();
  2049. tmc2130_init();
  2050. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2051. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2052. st_reset_timer();
  2053. sei();
  2054. }
  2055. }
  2056. #endif //TMC2130
  2057. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2058. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2059. }
  2060. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2061. st_synchronize();
  2062. #if 0
  2063. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2064. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2065. #endif
  2066. // Flag for the display update routine and to disable the print cancelation during homing.
  2067. homing_flag = true;
  2068. // Which axes should be homed?
  2069. bool home_x = home_x_axis;
  2070. bool home_y = home_y_axis;
  2071. bool home_z = home_z_axis;
  2072. // Either all X,Y,Z codes are present, or none of them.
  2073. bool home_all_axes = home_x == home_y && home_x == home_z;
  2074. if (home_all_axes)
  2075. // No X/Y/Z code provided means to home all axes.
  2076. home_x = home_y = home_z = true;
  2077. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2078. if (home_all_axes) {
  2079. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2080. feedrate = homing_feedrate[Z_AXIS];
  2081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2082. st_synchronize();
  2083. }
  2084. #ifdef ENABLE_AUTO_BED_LEVELING
  2085. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2086. #endif //ENABLE_AUTO_BED_LEVELING
  2087. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2088. // the planner will not perform any adjustments in the XY plane.
  2089. // Wait for the motors to stop and update the current position with the absolute values.
  2090. world2machine_revert_to_uncorrected();
  2091. // For mesh bed leveling deactivate the matrix temporarily.
  2092. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2093. // in a single axis only.
  2094. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2095. #ifdef MESH_BED_LEVELING
  2096. uint8_t mbl_was_active = mbl.active;
  2097. mbl.active = 0;
  2098. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2099. #endif
  2100. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2101. // consumed during the first movements following this statement.
  2102. if (home_z)
  2103. babystep_undo();
  2104. saved_feedrate = feedrate;
  2105. int l_feedmultiply = feedmultiply;
  2106. feedmultiply = 100;
  2107. previous_millis_cmd = millis();
  2108. enable_endstops(true);
  2109. memcpy(destination, current_position, sizeof(destination));
  2110. feedrate = 0.0;
  2111. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2112. if(home_z)
  2113. homeaxis(Z_AXIS);
  2114. #endif
  2115. #ifdef QUICK_HOME
  2116. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2117. if(home_x && home_y) //first diagonal move
  2118. {
  2119. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2120. int x_axis_home_dir = home_dir(X_AXIS);
  2121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2122. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2123. feedrate = homing_feedrate[X_AXIS];
  2124. if(homing_feedrate[Y_AXIS]<feedrate)
  2125. feedrate = homing_feedrate[Y_AXIS];
  2126. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2127. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2128. } else {
  2129. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2130. }
  2131. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2132. st_synchronize();
  2133. axis_is_at_home(X_AXIS);
  2134. axis_is_at_home(Y_AXIS);
  2135. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2136. destination[X_AXIS] = current_position[X_AXIS];
  2137. destination[Y_AXIS] = current_position[Y_AXIS];
  2138. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2139. feedrate = 0.0;
  2140. st_synchronize();
  2141. endstops_hit_on_purpose();
  2142. current_position[X_AXIS] = destination[X_AXIS];
  2143. current_position[Y_AXIS] = destination[Y_AXIS];
  2144. current_position[Z_AXIS] = destination[Z_AXIS];
  2145. }
  2146. #endif /* QUICK_HOME */
  2147. #ifdef TMC2130
  2148. if(home_x)
  2149. {
  2150. if (!calib)
  2151. homeaxis(X_AXIS);
  2152. else
  2153. tmc2130_home_calibrate(X_AXIS);
  2154. }
  2155. if(home_y)
  2156. {
  2157. if (!calib)
  2158. homeaxis(Y_AXIS);
  2159. else
  2160. tmc2130_home_calibrate(Y_AXIS);
  2161. }
  2162. #endif //TMC2130
  2163. if(home_x_axis && home_x_value != 0)
  2164. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2165. if(home_y_axis && home_y_value != 0)
  2166. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2167. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2168. #ifndef Z_SAFE_HOMING
  2169. if(home_z) {
  2170. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2171. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2172. feedrate = max_feedrate[Z_AXIS];
  2173. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2174. st_synchronize();
  2175. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2176. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2177. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2178. {
  2179. homeaxis(X_AXIS);
  2180. homeaxis(Y_AXIS);
  2181. }
  2182. // 1st mesh bed leveling measurement point, corrected.
  2183. world2machine_initialize();
  2184. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2185. world2machine_reset();
  2186. if (destination[Y_AXIS] < Y_MIN_POS)
  2187. destination[Y_AXIS] = Y_MIN_POS;
  2188. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2189. feedrate = homing_feedrate[Z_AXIS]/10;
  2190. current_position[Z_AXIS] = 0;
  2191. enable_endstops(false);
  2192. #ifdef DEBUG_BUILD
  2193. SERIAL_ECHOLNPGM("plan_set_position()");
  2194. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2195. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2196. #endif
  2197. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2198. #ifdef DEBUG_BUILD
  2199. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2200. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2201. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2202. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2203. #endif
  2204. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2205. st_synchronize();
  2206. current_position[X_AXIS] = destination[X_AXIS];
  2207. current_position[Y_AXIS] = destination[Y_AXIS];
  2208. enable_endstops(true);
  2209. endstops_hit_on_purpose();
  2210. homeaxis(Z_AXIS);
  2211. #else // MESH_BED_LEVELING
  2212. homeaxis(Z_AXIS);
  2213. #endif // MESH_BED_LEVELING
  2214. }
  2215. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2216. if(home_all_axes) {
  2217. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2218. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2219. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2220. feedrate = XY_TRAVEL_SPEED/60;
  2221. current_position[Z_AXIS] = 0;
  2222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2223. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2224. st_synchronize();
  2225. current_position[X_AXIS] = destination[X_AXIS];
  2226. current_position[Y_AXIS] = destination[Y_AXIS];
  2227. homeaxis(Z_AXIS);
  2228. }
  2229. // Let's see if X and Y are homed and probe is inside bed area.
  2230. if(home_z) {
  2231. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2232. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2233. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2234. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2235. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2236. current_position[Z_AXIS] = 0;
  2237. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2238. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2239. feedrate = max_feedrate[Z_AXIS];
  2240. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2241. st_synchronize();
  2242. homeaxis(Z_AXIS);
  2243. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2244. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2245. SERIAL_ECHO_START;
  2246. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2247. } else {
  2248. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2249. SERIAL_ECHO_START;
  2250. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2251. }
  2252. }
  2253. #endif // Z_SAFE_HOMING
  2254. #endif // Z_HOME_DIR < 0
  2255. if(home_z_axis && home_z_value != 0)
  2256. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2257. #ifdef ENABLE_AUTO_BED_LEVELING
  2258. if(home_z)
  2259. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2260. #endif
  2261. // Set the planner and stepper routine positions.
  2262. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2263. // contains the machine coordinates.
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2266. enable_endstops(false);
  2267. #endif
  2268. feedrate = saved_feedrate;
  2269. feedmultiply = l_feedmultiply;
  2270. previous_millis_cmd = millis();
  2271. endstops_hit_on_purpose();
  2272. #ifndef MESH_BED_LEVELING
  2273. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2274. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2275. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2276. lcd_adjust_z();
  2277. #endif
  2278. // Load the machine correction matrix
  2279. world2machine_initialize();
  2280. // and correct the current_position XY axes to match the transformed coordinate system.
  2281. world2machine_update_current();
  2282. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2283. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2284. {
  2285. if (! home_z && mbl_was_active) {
  2286. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2287. mbl.active = true;
  2288. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2289. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2290. }
  2291. }
  2292. else
  2293. {
  2294. st_synchronize();
  2295. homing_flag = false;
  2296. }
  2297. #endif
  2298. if (farm_mode) { prusa_statistics(20); };
  2299. homing_flag = false;
  2300. #if 0
  2301. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2302. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2303. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2304. #endif
  2305. }
  2306. void adjust_bed_reset()
  2307. {
  2308. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2309. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2310. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2311. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2312. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2313. }
  2314. //! @brief Calibrate XYZ
  2315. //! @param onlyZ if true, calibrate only Z axis
  2316. //! @param verbosity_level
  2317. //! @retval true Succeeded
  2318. //! @retval false Failed
  2319. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2320. {
  2321. bool final_result = false;
  2322. #ifdef TMC2130
  2323. FORCE_HIGH_POWER_START;
  2324. #endif // TMC2130
  2325. // Only Z calibration?
  2326. if (!onlyZ)
  2327. {
  2328. setTargetBed(0);
  2329. setAllTargetHotends(0);
  2330. adjust_bed_reset(); //reset bed level correction
  2331. }
  2332. // Disable the default update procedure of the display. We will do a modal dialog.
  2333. lcd_update_enable(false);
  2334. // Let the planner use the uncorrected coordinates.
  2335. mbl.reset();
  2336. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2337. // the planner will not perform any adjustments in the XY plane.
  2338. // Wait for the motors to stop and update the current position with the absolute values.
  2339. world2machine_revert_to_uncorrected();
  2340. // Reset the baby step value applied without moving the axes.
  2341. babystep_reset();
  2342. // Mark all axes as in a need for homing.
  2343. memset(axis_known_position, 0, sizeof(axis_known_position));
  2344. // Home in the XY plane.
  2345. //set_destination_to_current();
  2346. int l_feedmultiply = setup_for_endstop_move();
  2347. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2348. home_xy();
  2349. enable_endstops(false);
  2350. current_position[X_AXIS] += 5;
  2351. current_position[Y_AXIS] += 5;
  2352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2353. st_synchronize();
  2354. // Let the user move the Z axes up to the end stoppers.
  2355. #ifdef TMC2130
  2356. if (calibrate_z_auto())
  2357. {
  2358. #else //TMC2130
  2359. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2360. {
  2361. #endif //TMC2130
  2362. refresh_cmd_timeout();
  2363. #ifndef STEEL_SHEET
  2364. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2365. {
  2366. lcd_wait_for_cool_down();
  2367. }
  2368. #endif //STEEL_SHEET
  2369. if(!onlyZ)
  2370. {
  2371. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2372. #ifdef STEEL_SHEET
  2373. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2374. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2375. #endif //STEEL_SHEET
  2376. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2377. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2378. KEEPALIVE_STATE(IN_HANDLER);
  2379. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2380. lcd_set_cursor(0, 2);
  2381. lcd_print(1);
  2382. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2383. }
  2384. // Move the print head close to the bed.
  2385. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2386. bool endstops_enabled = enable_endstops(true);
  2387. #ifdef TMC2130
  2388. tmc2130_home_enter(Z_AXIS_MASK);
  2389. #endif //TMC2130
  2390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2391. st_synchronize();
  2392. #ifdef TMC2130
  2393. tmc2130_home_exit();
  2394. #endif //TMC2130
  2395. enable_endstops(endstops_enabled);
  2396. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2397. {
  2398. if (onlyZ)
  2399. {
  2400. clean_up_after_endstop_move(l_feedmultiply);
  2401. // Z only calibration.
  2402. // Load the machine correction matrix
  2403. world2machine_initialize();
  2404. // and correct the current_position to match the transformed coordinate system.
  2405. world2machine_update_current();
  2406. //FIXME
  2407. bool result = sample_mesh_and_store_reference();
  2408. if (result)
  2409. {
  2410. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2411. // Shipped, the nozzle height has been set already. The user can start printing now.
  2412. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2413. final_result = true;
  2414. // babystep_apply();
  2415. }
  2416. }
  2417. else
  2418. {
  2419. // Reset the baby step value and the baby step applied flag.
  2420. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2421. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2422. // Complete XYZ calibration.
  2423. uint8_t point_too_far_mask = 0;
  2424. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2425. clean_up_after_endstop_move(l_feedmultiply);
  2426. // Print head up.
  2427. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2429. st_synchronize();
  2430. //#ifndef NEW_XYZCAL
  2431. if (result >= 0)
  2432. {
  2433. #ifdef HEATBED_V2
  2434. sample_z();
  2435. #else //HEATBED_V2
  2436. point_too_far_mask = 0;
  2437. // Second half: The fine adjustment.
  2438. // Let the planner use the uncorrected coordinates.
  2439. mbl.reset();
  2440. world2machine_reset();
  2441. // Home in the XY plane.
  2442. int l_feedmultiply = setup_for_endstop_move();
  2443. home_xy();
  2444. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2445. clean_up_after_endstop_move(l_feedmultiply);
  2446. // Print head up.
  2447. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2449. st_synchronize();
  2450. // if (result >= 0) babystep_apply();
  2451. #endif //HEATBED_V2
  2452. }
  2453. //#endif //NEW_XYZCAL
  2454. lcd_update_enable(true);
  2455. lcd_update(2);
  2456. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2457. if (result >= 0)
  2458. {
  2459. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2460. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2461. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2462. final_result = true;
  2463. }
  2464. }
  2465. #ifdef TMC2130
  2466. tmc2130_home_exit();
  2467. #endif
  2468. }
  2469. else
  2470. {
  2471. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2472. final_result = false;
  2473. }
  2474. }
  2475. else
  2476. {
  2477. // Timeouted.
  2478. }
  2479. lcd_update_enable(true);
  2480. #ifdef TMC2130
  2481. FORCE_HIGH_POWER_END;
  2482. #endif // TMC2130
  2483. return final_result;
  2484. }
  2485. void gcode_M114()
  2486. {
  2487. SERIAL_PROTOCOLPGM("X:");
  2488. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2489. SERIAL_PROTOCOLPGM(" Y:");
  2490. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2491. SERIAL_PROTOCOLPGM(" Z:");
  2492. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2493. SERIAL_PROTOCOLPGM(" E:");
  2494. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2495. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2496. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2497. SERIAL_PROTOCOLPGM(" Y:");
  2498. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2499. SERIAL_PROTOCOLPGM(" Z:");
  2500. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2501. SERIAL_PROTOCOLPGM(" E:");
  2502. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2503. SERIAL_PROTOCOLLN("");
  2504. }
  2505. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2506. {
  2507. st_synchronize();
  2508. float lastpos[4];
  2509. if (farm_mode)
  2510. {
  2511. prusa_statistics(22);
  2512. }
  2513. //First backup current position and settings
  2514. int feedmultiplyBckp = feedmultiply;
  2515. float HotendTempBckp = degTargetHotend(active_extruder);
  2516. int fanSpeedBckp = fanSpeed;
  2517. lastpos[X_AXIS] = current_position[X_AXIS];
  2518. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2519. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2520. lastpos[E_AXIS] = current_position[E_AXIS];
  2521. //Retract E
  2522. current_position[E_AXIS] += e_shift;
  2523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2524. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2525. st_synchronize();
  2526. //Lift Z
  2527. current_position[Z_AXIS] += z_shift;
  2528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2529. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2530. st_synchronize();
  2531. //Move XY to side
  2532. current_position[X_AXIS] = x_position;
  2533. current_position[Y_AXIS] = y_position;
  2534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2535. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2536. st_synchronize();
  2537. //Beep, manage nozzle heater and wait for user to start unload filament
  2538. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2539. lcd_change_fil_state = 0;
  2540. // Unload filament
  2541. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2542. else unload_filament(); //unload filament for single material (used also in M702)
  2543. //finish moves
  2544. st_synchronize();
  2545. if (!mmu_enabled)
  2546. {
  2547. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2548. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2549. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2550. if (lcd_change_fil_state == 0)
  2551. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2552. lcd_update_enable(true);
  2553. }
  2554. if (mmu_enabled)
  2555. {
  2556. if (!automatic) {
  2557. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2558. mmu_M600_wait_and_beep();
  2559. if (saved_printing) {
  2560. lcd_clear();
  2561. lcd_set_cursor(0, 2);
  2562. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2563. mmu_command(MMU_CMD_R0);
  2564. manage_response(false, false);
  2565. }
  2566. }
  2567. mmu_M600_load_filament(automatic);
  2568. }
  2569. else
  2570. M600_load_filament();
  2571. if (!automatic) M600_check_state();
  2572. lcd_update_enable(true);
  2573. //Not let's go back to print
  2574. fanSpeed = fanSpeedBckp;
  2575. //Feed a little of filament to stabilize pressure
  2576. if (!automatic)
  2577. {
  2578. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2580. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2581. }
  2582. //Move XY back
  2583. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2584. FILAMENTCHANGE_XYFEED, active_extruder);
  2585. st_synchronize();
  2586. //Move Z back
  2587. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2588. FILAMENTCHANGE_ZFEED, active_extruder);
  2589. st_synchronize();
  2590. //Set E position to original
  2591. plan_set_e_position(lastpos[E_AXIS]);
  2592. memcpy(current_position, lastpos, sizeof(lastpos));
  2593. memcpy(destination, current_position, sizeof(current_position));
  2594. //Recover feed rate
  2595. feedmultiply = feedmultiplyBckp;
  2596. char cmd[9];
  2597. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2598. enquecommand(cmd);
  2599. lcd_setstatuspgm(_T(WELCOME_MSG));
  2600. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2601. }
  2602. void gcode_M701()
  2603. {
  2604. printf_P(PSTR("gcode_M701 begin\n"));
  2605. if (mmu_enabled)
  2606. {
  2607. extr_adj(tmp_extruder);//loads current extruder
  2608. mmu_extruder = tmp_extruder;
  2609. }
  2610. else
  2611. {
  2612. enable_z();
  2613. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2614. #ifdef FILAMENT_SENSOR
  2615. fsensor_oq_meassure_start(40);
  2616. #endif //FILAMENT_SENSOR
  2617. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2618. current_position[E_AXIS] += 40;
  2619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2620. st_synchronize();
  2621. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2622. current_position[E_AXIS] += 30;
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2624. st_synchronize();
  2625. current_position[E_AXIS] += 25;
  2626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2627. st_synchronize();
  2628. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2629. delay_keep_alive(50);
  2630. noTone(BEEPER);
  2631. if (!farm_mode && loading_flag) {
  2632. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2633. while (!clean) {
  2634. lcd_update_enable(true);
  2635. lcd_update(2);
  2636. current_position[E_AXIS] += 25;
  2637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2638. st_synchronize();
  2639. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2640. }
  2641. }
  2642. lcd_update_enable(true);
  2643. lcd_update(2);
  2644. lcd_setstatuspgm(_T(WELCOME_MSG));
  2645. disable_z();
  2646. loading_flag = false;
  2647. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2648. #ifdef FILAMENT_SENSOR
  2649. if (mmu_enabled == false)
  2650. {
  2651. fsensor_oq_meassure_stop();
  2652. if (!fsensor_oq_result())
  2653. {
  2654. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2655. lcd_update_enable(true);
  2656. lcd_update(2);
  2657. if (disable)
  2658. fsensor_disable();
  2659. }
  2660. }
  2661. #endif //FILAMENT_SENSOR
  2662. }
  2663. }
  2664. /**
  2665. * @brief Get serial number from 32U2 processor
  2666. *
  2667. * Typical format of S/N is:CZPX0917X003XC13518
  2668. *
  2669. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2670. *
  2671. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2672. * reply is transmitted to serial port 1 character by character.
  2673. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2674. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2675. * in any case.
  2676. */
  2677. static void gcode_PRUSA_SN()
  2678. {
  2679. if (farm_mode) {
  2680. selectedSerialPort = 0;
  2681. putchar(';');
  2682. putchar('S');
  2683. int numbersRead = 0;
  2684. ShortTimer timeout;
  2685. timeout.start();
  2686. while (numbersRead < 19) {
  2687. while (MSerial.available() > 0) {
  2688. uint8_t serial_char = MSerial.read();
  2689. selectedSerialPort = 1;
  2690. putchar(serial_char);
  2691. numbersRead++;
  2692. selectedSerialPort = 0;
  2693. }
  2694. if (timeout.expired(100u)) break;
  2695. }
  2696. selectedSerialPort = 1;
  2697. putchar('\n');
  2698. #if 0
  2699. for (int b = 0; b < 3; b++) {
  2700. tone(BEEPER, 110);
  2701. delay(50);
  2702. noTone(BEEPER);
  2703. delay(50);
  2704. }
  2705. #endif
  2706. } else {
  2707. puts_P(_N("Not in farm mode."));
  2708. }
  2709. }
  2710. #ifdef BACKLASH_X
  2711. extern uint8_t st_backlash_x;
  2712. #endif //BACKLASH_X
  2713. #ifdef BACKLASH_Y
  2714. extern uint8_t st_backlash_y;
  2715. #endif //BACKLASH_Y
  2716. //! @brief Parse and process commands
  2717. //!
  2718. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2719. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2720. //!
  2721. //! Implemented Codes
  2722. //! -------------------
  2723. //!
  2724. //!@n PRUSA CODES
  2725. //!@n P F - Returns FW versions
  2726. //!@n P R - Returns revision of printer
  2727. //!
  2728. //!@n G0 -> G1
  2729. //!@n G1 - Coordinated Movement X Y Z E
  2730. //!@n G2 - CW ARC
  2731. //!@n G3 - CCW ARC
  2732. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2733. //!@n G10 - retract filament according to settings of M207
  2734. //!@n G11 - retract recover filament according to settings of M208
  2735. //!@n G28 - Home all Axis
  2736. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2737. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2738. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2739. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2740. //!@n G80 - Automatic mesh bed leveling
  2741. //!@n G81 - Print bed profile
  2742. //!@n G90 - Use Absolute Coordinates
  2743. //!@n G91 - Use Relative Coordinates
  2744. //!@n G92 - Set current position to coordinates given
  2745. //!
  2746. //!@n M Codes
  2747. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2748. //!@n M1 - Same as M0
  2749. //!@n M17 - Enable/Power all stepper motors
  2750. //!@n M18 - Disable all stepper motors; same as M84
  2751. //!@n M20 - List SD card
  2752. //!@n M21 - Init SD card
  2753. //!@n M22 - Release SD card
  2754. //!@n M23 - Select SD file (M23 filename.g)
  2755. //!@n M24 - Start/resume SD print
  2756. //!@n M25 - Pause SD print
  2757. //!@n M26 - Set SD position in bytes (M26 S12345)
  2758. //!@n M27 - Report SD print status
  2759. //!@n M28 - Start SD write (M28 filename.g)
  2760. //!@n M29 - Stop SD write
  2761. //!@n M30 - Delete file from SD (M30 filename.g)
  2762. //!@n M31 - Output time since last M109 or SD card start to serial
  2763. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2764. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2765. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2766. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2767. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2768. //!@n M73 - Show percent done and print time remaining
  2769. //!@n M80 - Turn on Power Supply
  2770. //!@n M81 - Turn off Power Supply
  2771. //!@n M82 - Set E codes absolute (default)
  2772. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2773. //!@n M84 - Disable steppers until next move,
  2774. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2775. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2776. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2777. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2778. //!@n M104 - Set extruder target temp
  2779. //!@n M105 - Read current temp
  2780. //!@n M106 - Fan on
  2781. //!@n M107 - Fan off
  2782. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2783. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2784. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2785. //!@n M112 - Emergency stop
  2786. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2787. //!@n M114 - Output current position to serial port
  2788. //!@n M115 - Capabilities string
  2789. //!@n M117 - display message
  2790. //!@n M119 - Output Endstop status to serial port
  2791. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2792. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2793. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2794. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2795. //!@n M140 - Set bed target temp
  2796. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2797. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2798. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2799. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2800. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2801. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2802. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2803. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2804. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2805. //!@n M206 - set additional homing offset
  2806. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2807. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2808. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2809. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2810. //!@n M220 S<factor in percent>- set speed factor override percentage
  2811. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2812. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2813. //!@n M240 - Trigger a camera to take a photograph
  2814. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2815. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2816. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2817. //!@n M301 - Set PID parameters P I and D
  2818. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2819. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2820. //!@n M304 - Set bed PID parameters P I and D
  2821. //!@n M400 - Finish all moves
  2822. //!@n M401 - Lower z-probe if present
  2823. //!@n M402 - Raise z-probe if present
  2824. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2825. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2826. //!@n M406 - Turn off Filament Sensor extrusion control
  2827. //!@n M407 - Displays measured filament diameter
  2828. //!@n M500 - stores parameters in EEPROM
  2829. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2830. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2831. //!@n M503 - print the current settings (from memory not from EEPROM)
  2832. //!@n M509 - force language selection on next restart
  2833. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2834. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2835. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2836. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2837. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2838. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2839. //!@n M907 - Set digital trimpot motor current using axis codes.
  2840. //!@n M908 - Control digital trimpot directly.
  2841. //!@n M350 - Set microstepping mode.
  2842. //!@n M351 - Toggle MS1 MS2 pins directly.
  2843. //!
  2844. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2845. //!@n M999 - Restart after being stopped by error
  2846. void process_commands()
  2847. {
  2848. if (!buflen) return; //empty command
  2849. #ifdef FILAMENT_RUNOUT_SUPPORT
  2850. SET_INPUT(FR_SENS);
  2851. #endif
  2852. #ifdef CMDBUFFER_DEBUG
  2853. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2854. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2855. SERIAL_ECHOLNPGM("");
  2856. SERIAL_ECHOPGM("In cmdqueue: ");
  2857. SERIAL_ECHO(buflen);
  2858. SERIAL_ECHOLNPGM("");
  2859. #endif /* CMDBUFFER_DEBUG */
  2860. unsigned long codenum; //throw away variable
  2861. char *starpos = NULL;
  2862. #ifdef ENABLE_AUTO_BED_LEVELING
  2863. float x_tmp, y_tmp, z_tmp, real_z;
  2864. #endif
  2865. // PRUSA GCODES
  2866. KEEPALIVE_STATE(IN_HANDLER);
  2867. #ifdef SNMM
  2868. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2869. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2870. int8_t SilentMode;
  2871. #endif
  2872. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2873. starpos = (strchr(strchr_pointer + 5, '*'));
  2874. if (starpos != NULL)
  2875. *(starpos) = '\0';
  2876. lcd_setstatus(strchr_pointer + 5);
  2877. }
  2878. #ifdef TMC2130
  2879. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2880. {
  2881. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2882. {
  2883. uint8_t mask = 0;
  2884. if (code_seen('X')) mask |= X_AXIS_MASK;
  2885. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2886. crashdet_detected(mask);
  2887. }
  2888. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2889. crashdet_recover();
  2890. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2891. crashdet_cancel();
  2892. }
  2893. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2894. {
  2895. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2896. {
  2897. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2898. axis = (axis == 'E')?3:(axis - 'X');
  2899. if (axis < 4)
  2900. {
  2901. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2902. tmc2130_set_wave(axis, 247, fac);
  2903. }
  2904. }
  2905. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2906. {
  2907. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2908. axis = (axis == 'E')?3:(axis - 'X');
  2909. if (axis < 4)
  2910. {
  2911. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2912. uint16_t res = tmc2130_get_res(axis);
  2913. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2914. }
  2915. }
  2916. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2917. {
  2918. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2919. axis = (axis == 'E')?3:(axis - 'X');
  2920. if (axis < 4)
  2921. {
  2922. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2923. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2924. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2925. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2926. char* str_end = 0;
  2927. if (CMDBUFFER_CURRENT_STRING[14])
  2928. {
  2929. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2930. if (str_end && *str_end)
  2931. {
  2932. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2933. if (str_end && *str_end)
  2934. {
  2935. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2936. if (str_end && *str_end)
  2937. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2938. }
  2939. }
  2940. }
  2941. tmc2130_chopper_config[axis].toff = chop0;
  2942. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2943. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2944. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2945. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2946. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2947. }
  2948. }
  2949. }
  2950. #ifdef BACKLASH_X
  2951. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2952. {
  2953. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2954. st_backlash_x = bl;
  2955. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2956. }
  2957. #endif //BACKLASH_X
  2958. #ifdef BACKLASH_Y
  2959. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2960. {
  2961. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2962. st_backlash_y = bl;
  2963. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2964. }
  2965. #endif //BACKLASH_Y
  2966. #endif //TMC2130
  2967. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2968. fsensor_restore_print_and_continue();
  2969. }
  2970. else if(code_seen("PRUSA")){
  2971. if (code_seen("Ping")) { //! PRUSA Ping
  2972. if (farm_mode) {
  2973. PingTime = millis();
  2974. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2975. }
  2976. }
  2977. else if (code_seen("PRN")) { //! PRUSA PRN
  2978. printf_P(_N("%d"), status_number);
  2979. }else if (code_seen("FAN")) { //! PRUSA FAN
  2980. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2981. }else if (code_seen("fn")) { //! PRUSA fn
  2982. if (farm_mode) {
  2983. printf_P(_N("%d"), farm_no);
  2984. }
  2985. else {
  2986. puts_P(_N("Not in farm mode."));
  2987. }
  2988. }
  2989. else if (code_seen("thx")) //! PRUSA thx
  2990. {
  2991. no_response = false;
  2992. }
  2993. else if (code_seen("uvlo")) //! PRUSA uvlo
  2994. {
  2995. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2996. enquecommand_P(PSTR("M24"));
  2997. }
  2998. else if (code_seen("MMURES")) //! PRUSA MMURES
  2999. {
  3000. mmu_reset();
  3001. }
  3002. else if (code_seen("RESET")) { //! PRUSA RESET
  3003. // careful!
  3004. if (farm_mode) {
  3005. #ifdef WATCHDOG
  3006. boot_app_magic = BOOT_APP_MAGIC;
  3007. boot_app_flags = BOOT_APP_FLG_RUN;
  3008. wdt_enable(WDTO_15MS);
  3009. cli();
  3010. while(1);
  3011. #else //WATCHDOG
  3012. asm volatile("jmp 0x3E000");
  3013. #endif //WATCHDOG
  3014. }
  3015. else {
  3016. MYSERIAL.println("Not in farm mode.");
  3017. }
  3018. }else if (code_seen("fv")) { //! PRUSA fv
  3019. // get file version
  3020. #ifdef SDSUPPORT
  3021. card.openFile(strchr_pointer + 3,true);
  3022. while (true) {
  3023. uint16_t readByte = card.get();
  3024. MYSERIAL.write(readByte);
  3025. if (readByte=='\n') {
  3026. break;
  3027. }
  3028. }
  3029. card.closefile();
  3030. #endif // SDSUPPORT
  3031. } else if (code_seen("M28")) { //! PRUSA M28
  3032. trace();
  3033. prusa_sd_card_upload = true;
  3034. card.openFile(strchr_pointer+4,false);
  3035. } else if (code_seen("SN")) { //! PRUSA SN
  3036. gcode_PRUSA_SN();
  3037. } else if(code_seen("Fir")){ //! PRUSA Fir
  3038. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3039. } else if(code_seen("Rev")){ //! PRUSA Rev
  3040. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3041. } else if(code_seen("Lang")) { //! PRUSA Lang
  3042. lang_reset();
  3043. } else if(code_seen("Lz")) { //! PRUSA Lz
  3044. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3045. } else if(code_seen("Beat")) { //! PRUSA Beat
  3046. // Kick farm link timer
  3047. kicktime = millis();
  3048. } else if(code_seen("FR")) { //! PRUSA FR
  3049. // Factory full reset
  3050. factory_reset(0);
  3051. }
  3052. //else if (code_seen('Cal')) {
  3053. // lcd_calibration();
  3054. // }
  3055. }
  3056. else if (code_seen('^')) {
  3057. // nothing, this is a version line
  3058. } else if(code_seen('G'))
  3059. {
  3060. gcode_in_progress = (int)code_value();
  3061. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3062. switch (gcode_in_progress)
  3063. {
  3064. case 0: // G0 -> G1
  3065. case 1: // G1
  3066. if(Stopped == false) {
  3067. #ifdef FILAMENT_RUNOUT_SUPPORT
  3068. if(READ(FR_SENS)){
  3069. int feedmultiplyBckp=feedmultiply;
  3070. float target[4];
  3071. float lastpos[4];
  3072. target[X_AXIS]=current_position[X_AXIS];
  3073. target[Y_AXIS]=current_position[Y_AXIS];
  3074. target[Z_AXIS]=current_position[Z_AXIS];
  3075. target[E_AXIS]=current_position[E_AXIS];
  3076. lastpos[X_AXIS]=current_position[X_AXIS];
  3077. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3078. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3079. lastpos[E_AXIS]=current_position[E_AXIS];
  3080. //retract by E
  3081. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3083. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3084. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3085. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3086. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3087. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3088. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3089. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3090. //finish moves
  3091. st_synchronize();
  3092. //disable extruder steppers so filament can be removed
  3093. disable_e0();
  3094. disable_e1();
  3095. disable_e2();
  3096. delay(100);
  3097. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3098. uint8_t cnt=0;
  3099. int counterBeep = 0;
  3100. lcd_wait_interact();
  3101. while(!lcd_clicked()){
  3102. cnt++;
  3103. manage_heater();
  3104. manage_inactivity(true);
  3105. //lcd_update(0);
  3106. if(cnt==0)
  3107. {
  3108. #if BEEPER > 0
  3109. if (counterBeep== 500){
  3110. counterBeep = 0;
  3111. }
  3112. SET_OUTPUT(BEEPER);
  3113. if (counterBeep== 0){
  3114. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3115. WRITE(BEEPER,HIGH);
  3116. }
  3117. if (counterBeep== 20){
  3118. WRITE(BEEPER,LOW);
  3119. }
  3120. counterBeep++;
  3121. #else
  3122. #endif
  3123. }
  3124. }
  3125. WRITE(BEEPER,LOW);
  3126. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3128. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3130. lcd_change_fil_state = 0;
  3131. lcd_loading_filament();
  3132. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3133. lcd_change_fil_state = 0;
  3134. lcd_alright();
  3135. switch(lcd_change_fil_state){
  3136. case 2:
  3137. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3138. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3139. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3140. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3141. lcd_loading_filament();
  3142. break;
  3143. case 3:
  3144. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3145. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3146. lcd_loading_color();
  3147. break;
  3148. default:
  3149. lcd_change_success();
  3150. break;
  3151. }
  3152. }
  3153. target[E_AXIS]+= 5;
  3154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3155. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3157. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3158. //plan_set_e_position(current_position[E_AXIS]);
  3159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3160. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3161. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3162. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3163. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3164. plan_set_e_position(lastpos[E_AXIS]);
  3165. feedmultiply=feedmultiplyBckp;
  3166. char cmd[9];
  3167. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3168. enquecommand(cmd);
  3169. }
  3170. #endif
  3171. get_coordinates(); // For X Y Z E F
  3172. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3173. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3174. }
  3175. #ifdef FWRETRACT
  3176. if(autoretract_enabled)
  3177. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3178. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3179. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3180. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3181. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3182. retract(!retracted[active_extruder]);
  3183. return;
  3184. }
  3185. }
  3186. #endif //FWRETRACT
  3187. prepare_move();
  3188. //ClearToSend();
  3189. }
  3190. break;
  3191. case 2: // G2 - CW ARC
  3192. if(Stopped == false) {
  3193. get_arc_coordinates();
  3194. prepare_arc_move(true);
  3195. }
  3196. break;
  3197. case 3: // G3 - CCW ARC
  3198. if(Stopped == false) {
  3199. get_arc_coordinates();
  3200. prepare_arc_move(false);
  3201. }
  3202. break;
  3203. case 4: // G4 dwell
  3204. codenum = 0;
  3205. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3206. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3207. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3208. st_synchronize();
  3209. codenum += millis(); // keep track of when we started waiting
  3210. previous_millis_cmd = millis();
  3211. while(millis() < codenum) {
  3212. manage_heater();
  3213. manage_inactivity();
  3214. lcd_update(0);
  3215. }
  3216. break;
  3217. #ifdef FWRETRACT
  3218. case 10: // G10 retract
  3219. #if EXTRUDERS > 1
  3220. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3221. retract(true,retracted_swap[active_extruder]);
  3222. #else
  3223. retract(true);
  3224. #endif
  3225. break;
  3226. case 11: // G11 retract_recover
  3227. #if EXTRUDERS > 1
  3228. retract(false,retracted_swap[active_extruder]);
  3229. #else
  3230. retract(false);
  3231. #endif
  3232. break;
  3233. #endif //FWRETRACT
  3234. case 28: //G28 Home all Axis one at a time
  3235. {
  3236. long home_x_value = 0;
  3237. long home_y_value = 0;
  3238. long home_z_value = 0;
  3239. // Which axes should be homed?
  3240. bool home_x = code_seen(axis_codes[X_AXIS]);
  3241. home_x_value = code_value_long();
  3242. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3243. home_y_value = code_value_long();
  3244. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3245. home_z_value = code_value_long();
  3246. bool without_mbl = code_seen('W');
  3247. // calibrate?
  3248. bool calib = code_seen('C');
  3249. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3250. if ((home_x || home_y || without_mbl || home_z) == false) {
  3251. // Push the commands to the front of the message queue in the reverse order!
  3252. // There shall be always enough space reserved for these commands.
  3253. goto case_G80;
  3254. }
  3255. break;
  3256. }
  3257. #ifdef ENABLE_AUTO_BED_LEVELING
  3258. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3259. {
  3260. #if Z_MIN_PIN == -1
  3261. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3262. #endif
  3263. // Prevent user from running a G29 without first homing in X and Y
  3264. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3265. {
  3266. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3267. SERIAL_ECHO_START;
  3268. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3269. break; // abort G29, since we don't know where we are
  3270. }
  3271. st_synchronize();
  3272. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3273. //vector_3 corrected_position = plan_get_position_mm();
  3274. //corrected_position.debug("position before G29");
  3275. plan_bed_level_matrix.set_to_identity();
  3276. vector_3 uncorrected_position = plan_get_position();
  3277. //uncorrected_position.debug("position durring G29");
  3278. current_position[X_AXIS] = uncorrected_position.x;
  3279. current_position[Y_AXIS] = uncorrected_position.y;
  3280. current_position[Z_AXIS] = uncorrected_position.z;
  3281. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3282. int l_feedmultiply = setup_for_endstop_move();
  3283. feedrate = homing_feedrate[Z_AXIS];
  3284. #ifdef AUTO_BED_LEVELING_GRID
  3285. // probe at the points of a lattice grid
  3286. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3287. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3288. // solve the plane equation ax + by + d = z
  3289. // A is the matrix with rows [x y 1] for all the probed points
  3290. // B is the vector of the Z positions
  3291. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3292. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3293. // "A" matrix of the linear system of equations
  3294. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3295. // "B" vector of Z points
  3296. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3297. int probePointCounter = 0;
  3298. bool zig = true;
  3299. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3300. {
  3301. int xProbe, xInc;
  3302. if (zig)
  3303. {
  3304. xProbe = LEFT_PROBE_BED_POSITION;
  3305. //xEnd = RIGHT_PROBE_BED_POSITION;
  3306. xInc = xGridSpacing;
  3307. zig = false;
  3308. } else // zag
  3309. {
  3310. xProbe = RIGHT_PROBE_BED_POSITION;
  3311. //xEnd = LEFT_PROBE_BED_POSITION;
  3312. xInc = -xGridSpacing;
  3313. zig = true;
  3314. }
  3315. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3316. {
  3317. float z_before;
  3318. if (probePointCounter == 0)
  3319. {
  3320. // raise before probing
  3321. z_before = Z_RAISE_BEFORE_PROBING;
  3322. } else
  3323. {
  3324. // raise extruder
  3325. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3326. }
  3327. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3328. eqnBVector[probePointCounter] = measured_z;
  3329. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3330. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3331. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3332. probePointCounter++;
  3333. xProbe += xInc;
  3334. }
  3335. }
  3336. clean_up_after_endstop_move(l_feedmultiply);
  3337. // solve lsq problem
  3338. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3339. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3340. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3341. SERIAL_PROTOCOLPGM(" b: ");
  3342. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3343. SERIAL_PROTOCOLPGM(" d: ");
  3344. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3345. set_bed_level_equation_lsq(plane_equation_coefficients);
  3346. free(plane_equation_coefficients);
  3347. #else // AUTO_BED_LEVELING_GRID not defined
  3348. // Probe at 3 arbitrary points
  3349. // probe 1
  3350. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3351. // probe 2
  3352. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3353. // probe 3
  3354. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3355. clean_up_after_endstop_move(l_feedmultiply);
  3356. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3357. #endif // AUTO_BED_LEVELING_GRID
  3358. st_synchronize();
  3359. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3360. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3361. // When the bed is uneven, this height must be corrected.
  3362. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3363. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3364. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3365. z_tmp = current_position[Z_AXIS];
  3366. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3367. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3369. }
  3370. break;
  3371. #ifndef Z_PROBE_SLED
  3372. case 30: // G30 Single Z Probe
  3373. {
  3374. st_synchronize();
  3375. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3376. int l_feedmultiply = setup_for_endstop_move();
  3377. feedrate = homing_feedrate[Z_AXIS];
  3378. run_z_probe();
  3379. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3380. SERIAL_PROTOCOLPGM(" X: ");
  3381. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3382. SERIAL_PROTOCOLPGM(" Y: ");
  3383. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3384. SERIAL_PROTOCOLPGM(" Z: ");
  3385. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3386. SERIAL_PROTOCOLPGM("\n");
  3387. clean_up_after_endstop_move(l_feedmultiply);
  3388. }
  3389. break;
  3390. #else
  3391. case 31: // dock the sled
  3392. dock_sled(true);
  3393. break;
  3394. case 32: // undock the sled
  3395. dock_sled(false);
  3396. break;
  3397. #endif // Z_PROBE_SLED
  3398. #endif // ENABLE_AUTO_BED_LEVELING
  3399. #ifdef MESH_BED_LEVELING
  3400. case 30: // G30 Single Z Probe
  3401. {
  3402. st_synchronize();
  3403. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3404. int l_feedmultiply = setup_for_endstop_move();
  3405. feedrate = homing_feedrate[Z_AXIS];
  3406. find_bed_induction_sensor_point_z(-10.f, 3);
  3407. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3408. clean_up_after_endstop_move(l_feedmultiply);
  3409. }
  3410. break;
  3411. case 75:
  3412. {
  3413. for (int i = 40; i <= 110; i++)
  3414. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3415. }
  3416. break;
  3417. case 76: //! G76 - PINDA probe temperature calibration
  3418. {
  3419. #ifdef PINDA_THERMISTOR
  3420. if (true)
  3421. {
  3422. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3423. //we need to know accurate position of first calibration point
  3424. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3425. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3426. break;
  3427. }
  3428. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3429. {
  3430. // We don't know where we are! HOME!
  3431. // Push the commands to the front of the message queue in the reverse order!
  3432. // There shall be always enough space reserved for these commands.
  3433. repeatcommand_front(); // repeat G76 with all its parameters
  3434. enquecommand_front_P((PSTR("G28 W0")));
  3435. break;
  3436. }
  3437. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3438. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3439. if (result)
  3440. {
  3441. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3443. current_position[Z_AXIS] = 50;
  3444. current_position[Y_AXIS] = 180;
  3445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3446. st_synchronize();
  3447. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3448. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3449. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3451. st_synchronize();
  3452. gcode_G28(false, false, true);
  3453. }
  3454. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3455. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3456. current_position[Z_AXIS] = 100;
  3457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3458. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3459. lcd_temp_cal_show_result(false);
  3460. break;
  3461. }
  3462. }
  3463. lcd_update_enable(true);
  3464. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3465. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3466. float zero_z;
  3467. int z_shift = 0; //unit: steps
  3468. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3469. if (start_temp < 35) start_temp = 35;
  3470. if (start_temp < current_temperature_pinda) start_temp += 5;
  3471. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3472. // setTargetHotend(200, 0);
  3473. setTargetBed(70 + (start_temp - 30));
  3474. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3475. custom_message_state = 1;
  3476. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3477. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3478. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3479. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3480. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3482. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3484. st_synchronize();
  3485. while (current_temperature_pinda < start_temp)
  3486. {
  3487. delay_keep_alive(1000);
  3488. serialecho_temperatures();
  3489. }
  3490. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3493. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3494. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. st_synchronize();
  3497. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3498. if (find_z_result == false) {
  3499. lcd_temp_cal_show_result(find_z_result);
  3500. break;
  3501. }
  3502. zero_z = current_position[Z_AXIS];
  3503. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3504. int i = -1; for (; i < 5; i++)
  3505. {
  3506. float temp = (40 + i * 5);
  3507. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3508. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3509. if (start_temp <= temp) break;
  3510. }
  3511. for (i++; i < 5; i++)
  3512. {
  3513. float temp = (40 + i * 5);
  3514. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3515. custom_message_state = i + 2;
  3516. setTargetBed(50 + 10 * (temp - 30) / 5);
  3517. // setTargetHotend(255, 0);
  3518. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3520. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3521. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3523. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3525. st_synchronize();
  3526. while (current_temperature_pinda < temp)
  3527. {
  3528. delay_keep_alive(1000);
  3529. serialecho_temperatures();
  3530. }
  3531. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3533. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3534. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3536. st_synchronize();
  3537. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3538. if (find_z_result == false) {
  3539. lcd_temp_cal_show_result(find_z_result);
  3540. break;
  3541. }
  3542. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3543. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3544. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3545. }
  3546. lcd_temp_cal_show_result(true);
  3547. break;
  3548. }
  3549. #endif //PINDA_THERMISTOR
  3550. setTargetBed(PINDA_MIN_T);
  3551. float zero_z;
  3552. int z_shift = 0; //unit: steps
  3553. int t_c; // temperature
  3554. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3555. // We don't know where we are! HOME!
  3556. // Push the commands to the front of the message queue in the reverse order!
  3557. // There shall be always enough space reserved for these commands.
  3558. repeatcommand_front(); // repeat G76 with all its parameters
  3559. enquecommand_front_P((PSTR("G28 W0")));
  3560. break;
  3561. }
  3562. puts_P(_N("PINDA probe calibration start"));
  3563. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3564. custom_message_state = 1;
  3565. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3566. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3567. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3568. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3570. st_synchronize();
  3571. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3572. delay_keep_alive(1000);
  3573. serialecho_temperatures();
  3574. }
  3575. //enquecommand_P(PSTR("M190 S50"));
  3576. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3577. delay_keep_alive(1000);
  3578. serialecho_temperatures();
  3579. }
  3580. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3581. current_position[Z_AXIS] = 5;
  3582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3583. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3584. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3586. st_synchronize();
  3587. find_bed_induction_sensor_point_z(-1.f);
  3588. zero_z = current_position[Z_AXIS];
  3589. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3590. for (int i = 0; i<5; i++) {
  3591. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3592. custom_message_state = i + 2;
  3593. t_c = 60 + i * 10;
  3594. setTargetBed(t_c);
  3595. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3596. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3597. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3599. st_synchronize();
  3600. while (degBed() < t_c) {
  3601. delay_keep_alive(1000);
  3602. serialecho_temperatures();
  3603. }
  3604. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3605. delay_keep_alive(1000);
  3606. serialecho_temperatures();
  3607. }
  3608. current_position[Z_AXIS] = 5;
  3609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3610. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3611. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3613. st_synchronize();
  3614. find_bed_induction_sensor_point_z(-1.f);
  3615. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3616. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3617. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3618. }
  3619. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3620. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3621. puts_P(_N("Temperature calibration done."));
  3622. disable_x();
  3623. disable_y();
  3624. disable_z();
  3625. disable_e0();
  3626. disable_e1();
  3627. disable_e2();
  3628. setTargetBed(0); //set bed target temperature back to 0
  3629. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3630. temp_cal_active = true;
  3631. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3632. lcd_update_enable(true);
  3633. lcd_update(2);
  3634. }
  3635. break;
  3636. #ifdef DIS
  3637. case 77:
  3638. {
  3639. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3640. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3641. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3642. float dimension_x = 40;
  3643. float dimension_y = 40;
  3644. int points_x = 40;
  3645. int points_y = 40;
  3646. float offset_x = 74;
  3647. float offset_y = 33;
  3648. if (code_seen('X')) dimension_x = code_value();
  3649. if (code_seen('Y')) dimension_y = code_value();
  3650. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3651. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3652. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3653. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3654. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3655. } break;
  3656. #endif
  3657. case 79: {
  3658. for (int i = 255; i > 0; i = i - 5) {
  3659. fanSpeed = i;
  3660. //delay_keep_alive(2000);
  3661. for (int j = 0; j < 100; j++) {
  3662. delay_keep_alive(100);
  3663. }
  3664. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3665. }
  3666. }break;
  3667. /**
  3668. * G80: Mesh-based Z probe, probes a grid and produces a
  3669. * mesh to compensate for variable bed height
  3670. *
  3671. * The S0 report the points as below
  3672. * @code{.unparsed}
  3673. * +----> X-axis
  3674. * |
  3675. * |
  3676. * v Y-axis
  3677. * @endcode
  3678. */
  3679. case 80:
  3680. #ifdef MK1BP
  3681. break;
  3682. #endif //MK1BP
  3683. case_G80:
  3684. {
  3685. mesh_bed_leveling_flag = true;
  3686. static bool run = false;
  3687. #ifdef SUPPORT_VERBOSITY
  3688. int8_t verbosity_level = 0;
  3689. if (code_seen('V')) {
  3690. // Just 'V' without a number counts as V1.
  3691. char c = strchr_pointer[1];
  3692. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3693. }
  3694. #endif //SUPPORT_VERBOSITY
  3695. // Firstly check if we know where we are
  3696. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3697. // We don't know where we are! HOME!
  3698. // Push the commands to the front of the message queue in the reverse order!
  3699. // There shall be always enough space reserved for these commands.
  3700. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3701. repeatcommand_front(); // repeat G80 with all its parameters
  3702. enquecommand_front_P((PSTR("G28 W0")));
  3703. }
  3704. else {
  3705. mesh_bed_leveling_flag = false;
  3706. }
  3707. break;
  3708. }
  3709. bool temp_comp_start = true;
  3710. #ifdef PINDA_THERMISTOR
  3711. temp_comp_start = false;
  3712. #endif //PINDA_THERMISTOR
  3713. if (temp_comp_start)
  3714. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3715. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3716. temp_compensation_start();
  3717. run = true;
  3718. repeatcommand_front(); // repeat G80 with all its parameters
  3719. enquecommand_front_P((PSTR("G28 W0")));
  3720. }
  3721. else {
  3722. mesh_bed_leveling_flag = false;
  3723. }
  3724. break;
  3725. }
  3726. run = false;
  3727. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3728. mesh_bed_leveling_flag = false;
  3729. break;
  3730. }
  3731. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3732. unsigned int custom_message_type_old = custom_message_type;
  3733. unsigned int custom_message_state_old = custom_message_state;
  3734. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3735. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3736. lcd_update(1);
  3737. mbl.reset(); //reset mesh bed leveling
  3738. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3739. // consumed during the first movements following this statement.
  3740. babystep_undo();
  3741. // Cycle through all points and probe them
  3742. // First move up. During this first movement, the babystepping will be reverted.
  3743. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3745. // The move to the first calibration point.
  3746. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3747. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3748. #ifdef SUPPORT_VERBOSITY
  3749. if (verbosity_level >= 1)
  3750. {
  3751. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3752. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3753. }
  3754. #endif //SUPPORT_VERBOSITY
  3755. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3757. // Wait until the move is finished.
  3758. st_synchronize();
  3759. int mesh_point = 0; //index number of calibration point
  3760. int ix = 0;
  3761. int iy = 0;
  3762. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3763. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3764. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3765. #ifdef SUPPORT_VERBOSITY
  3766. if (verbosity_level >= 1) {
  3767. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3768. }
  3769. #endif // SUPPORT_VERBOSITY
  3770. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3771. const char *kill_message = NULL;
  3772. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3773. // Get coords of a measuring point.
  3774. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3775. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3776. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3777. float z0 = 0.f;
  3778. if (has_z && mesh_point > 0) {
  3779. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3780. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3781. //#if 0
  3782. #ifdef SUPPORT_VERBOSITY
  3783. if (verbosity_level >= 1) {
  3784. SERIAL_ECHOLNPGM("");
  3785. SERIAL_ECHOPGM("Bed leveling, point: ");
  3786. MYSERIAL.print(mesh_point);
  3787. SERIAL_ECHOPGM(", calibration z: ");
  3788. MYSERIAL.print(z0, 5);
  3789. SERIAL_ECHOLNPGM("");
  3790. }
  3791. #endif // SUPPORT_VERBOSITY
  3792. //#endif
  3793. }
  3794. // Move Z up to MESH_HOME_Z_SEARCH.
  3795. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3797. st_synchronize();
  3798. // Move to XY position of the sensor point.
  3799. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3800. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3801. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3802. #ifdef SUPPORT_VERBOSITY
  3803. if (verbosity_level >= 1) {
  3804. SERIAL_PROTOCOL(mesh_point);
  3805. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3806. }
  3807. #endif // SUPPORT_VERBOSITY
  3808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3809. st_synchronize();
  3810. // Go down until endstop is hit
  3811. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3812. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3813. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3814. break;
  3815. }
  3816. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3817. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3818. break;
  3819. }
  3820. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3821. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3822. break;
  3823. }
  3824. #ifdef SUPPORT_VERBOSITY
  3825. if (verbosity_level >= 10) {
  3826. SERIAL_ECHOPGM("X: ");
  3827. MYSERIAL.print(current_position[X_AXIS], 5);
  3828. SERIAL_ECHOLNPGM("");
  3829. SERIAL_ECHOPGM("Y: ");
  3830. MYSERIAL.print(current_position[Y_AXIS], 5);
  3831. SERIAL_PROTOCOLPGM("\n");
  3832. }
  3833. #endif // SUPPORT_VERBOSITY
  3834. float offset_z = 0;
  3835. #ifdef PINDA_THERMISTOR
  3836. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3837. #endif //PINDA_THERMISTOR
  3838. // #ifdef SUPPORT_VERBOSITY
  3839. /* if (verbosity_level >= 1)
  3840. {
  3841. SERIAL_ECHOPGM("mesh bed leveling: ");
  3842. MYSERIAL.print(current_position[Z_AXIS], 5);
  3843. SERIAL_ECHOPGM(" offset: ");
  3844. MYSERIAL.print(offset_z, 5);
  3845. SERIAL_ECHOLNPGM("");
  3846. }*/
  3847. // #endif // SUPPORT_VERBOSITY
  3848. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3849. custom_message_state--;
  3850. mesh_point++;
  3851. lcd_update(1);
  3852. }
  3853. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3854. #ifdef SUPPORT_VERBOSITY
  3855. if (verbosity_level >= 20) {
  3856. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3857. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3858. MYSERIAL.print(current_position[Z_AXIS], 5);
  3859. }
  3860. #endif // SUPPORT_VERBOSITY
  3861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3862. st_synchronize();
  3863. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3864. kill(kill_message);
  3865. SERIAL_ECHOLNPGM("killed");
  3866. }
  3867. clean_up_after_endstop_move(l_feedmultiply);
  3868. // SERIAL_ECHOLNPGM("clean up finished ");
  3869. bool apply_temp_comp = true;
  3870. #ifdef PINDA_THERMISTOR
  3871. apply_temp_comp = false;
  3872. #endif
  3873. if (apply_temp_comp)
  3874. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3875. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3876. // SERIAL_ECHOLNPGM("babystep applied");
  3877. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3878. #ifdef SUPPORT_VERBOSITY
  3879. if (verbosity_level >= 1) {
  3880. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3881. }
  3882. #endif // SUPPORT_VERBOSITY
  3883. for (uint8_t i = 0; i < 4; ++i) {
  3884. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3885. long correction = 0;
  3886. if (code_seen(codes[i]))
  3887. correction = code_value_long();
  3888. else if (eeprom_bed_correction_valid) {
  3889. unsigned char *addr = (i < 2) ?
  3890. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3891. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3892. correction = eeprom_read_int8(addr);
  3893. }
  3894. if (correction == 0)
  3895. continue;
  3896. float offset = float(correction) * 0.001f;
  3897. if (fabs(offset) > 0.101f) {
  3898. SERIAL_ERROR_START;
  3899. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3900. SERIAL_ECHO(offset);
  3901. SERIAL_ECHOLNPGM(" microns");
  3902. }
  3903. else {
  3904. switch (i) {
  3905. case 0:
  3906. for (uint8_t row = 0; row < 3; ++row) {
  3907. mbl.z_values[row][1] += 0.5f * offset;
  3908. mbl.z_values[row][0] += offset;
  3909. }
  3910. break;
  3911. case 1:
  3912. for (uint8_t row = 0; row < 3; ++row) {
  3913. mbl.z_values[row][1] += 0.5f * offset;
  3914. mbl.z_values[row][2] += offset;
  3915. }
  3916. break;
  3917. case 2:
  3918. for (uint8_t col = 0; col < 3; ++col) {
  3919. mbl.z_values[1][col] += 0.5f * offset;
  3920. mbl.z_values[0][col] += offset;
  3921. }
  3922. break;
  3923. case 3:
  3924. for (uint8_t col = 0; col < 3; ++col) {
  3925. mbl.z_values[1][col] += 0.5f * offset;
  3926. mbl.z_values[2][col] += offset;
  3927. }
  3928. break;
  3929. }
  3930. }
  3931. }
  3932. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3933. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3934. // SERIAL_ECHOLNPGM("Upsample finished");
  3935. mbl.active = 1; //activate mesh bed leveling
  3936. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3937. go_home_with_z_lift();
  3938. // SERIAL_ECHOLNPGM("Go home finished");
  3939. //unretract (after PINDA preheat retraction)
  3940. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3941. current_position[E_AXIS] += default_retraction;
  3942. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3943. }
  3944. KEEPALIVE_STATE(NOT_BUSY);
  3945. // Restore custom message state
  3946. lcd_setstatuspgm(_T(WELCOME_MSG));
  3947. custom_message_type = custom_message_type_old;
  3948. custom_message_state = custom_message_state_old;
  3949. mesh_bed_leveling_flag = false;
  3950. mesh_bed_run_from_menu = false;
  3951. lcd_update(2);
  3952. }
  3953. break;
  3954. /**
  3955. * G81: Print mesh bed leveling status and bed profile if activated
  3956. */
  3957. case 81:
  3958. if (mbl.active) {
  3959. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3960. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3961. SERIAL_PROTOCOLPGM(",");
  3962. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3963. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3964. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3965. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3966. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3967. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3968. SERIAL_PROTOCOLPGM(" ");
  3969. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3970. }
  3971. SERIAL_PROTOCOLPGM("\n");
  3972. }
  3973. }
  3974. else
  3975. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3976. break;
  3977. #if 0
  3978. /**
  3979. * G82: Single Z probe at current location
  3980. *
  3981. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3982. *
  3983. */
  3984. case 82:
  3985. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3986. int l_feedmultiply = setup_for_endstop_move();
  3987. find_bed_induction_sensor_point_z();
  3988. clean_up_after_endstop_move(l_feedmultiply);
  3989. SERIAL_PROTOCOLPGM("Bed found at: ");
  3990. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3991. SERIAL_PROTOCOLPGM("\n");
  3992. break;
  3993. /**
  3994. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3995. */
  3996. case 83:
  3997. {
  3998. int babystepz = code_seen('S') ? code_value() : 0;
  3999. int BabyPosition = code_seen('P') ? code_value() : 0;
  4000. if (babystepz != 0) {
  4001. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4002. // Is the axis indexed starting with zero or one?
  4003. if (BabyPosition > 4) {
  4004. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4005. }else{
  4006. // Save it to the eeprom
  4007. babystepLoadZ = babystepz;
  4008. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4009. // adjust the Z
  4010. babystepsTodoZadd(babystepLoadZ);
  4011. }
  4012. }
  4013. }
  4014. break;
  4015. /**
  4016. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4017. */
  4018. case 84:
  4019. babystepsTodoZsubtract(babystepLoadZ);
  4020. // babystepLoadZ = 0;
  4021. break;
  4022. /**
  4023. * G85: Prusa3D specific: Pick best babystep
  4024. */
  4025. case 85:
  4026. lcd_pick_babystep();
  4027. break;
  4028. #endif
  4029. /**
  4030. * G86: Prusa3D specific: Disable babystep correction after home.
  4031. * This G-code will be performed at the start of a calibration script.
  4032. */
  4033. case 86:
  4034. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4035. break;
  4036. /**
  4037. * G87: Prusa3D specific: Enable babystep correction after home
  4038. * This G-code will be performed at the end of a calibration script.
  4039. */
  4040. case 87:
  4041. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4042. break;
  4043. /**
  4044. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4045. */
  4046. case 88:
  4047. break;
  4048. #endif // ENABLE_MESH_BED_LEVELING
  4049. case 90: // G90
  4050. relative_mode = false;
  4051. break;
  4052. case 91: // G91
  4053. relative_mode = true;
  4054. break;
  4055. case 92: // G92
  4056. if(!code_seen(axis_codes[E_AXIS]))
  4057. st_synchronize();
  4058. for(int8_t i=0; i < NUM_AXIS; i++) {
  4059. if(code_seen(axis_codes[i])) {
  4060. if(i == E_AXIS) {
  4061. current_position[i] = code_value();
  4062. plan_set_e_position(current_position[E_AXIS]);
  4063. }
  4064. else {
  4065. current_position[i] = code_value()+add_homing[i];
  4066. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4067. }
  4068. }
  4069. }
  4070. break;
  4071. case 98: //! G98 (activate farm mode)
  4072. farm_mode = 1;
  4073. PingTime = millis();
  4074. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4075. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4076. SilentModeMenu = SILENT_MODE_OFF;
  4077. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4078. break;
  4079. case 99: //! G99 (deactivate farm mode)
  4080. farm_mode = 0;
  4081. lcd_printer_connected();
  4082. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4083. lcd_update(2);
  4084. break;
  4085. default:
  4086. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4087. }
  4088. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4089. gcode_in_progress = 0;
  4090. } // end if(code_seen('G'))
  4091. else if(code_seen('M'))
  4092. {
  4093. int index;
  4094. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4095. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4096. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4097. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4098. } else
  4099. {
  4100. mcode_in_progress = (int)code_value();
  4101. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4102. switch(mcode_in_progress)
  4103. {
  4104. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4105. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4106. {
  4107. char *src = strchr_pointer + 2;
  4108. codenum = 0;
  4109. bool hasP = false, hasS = false;
  4110. if (code_seen('P')) {
  4111. codenum = code_value(); // milliseconds to wait
  4112. hasP = codenum > 0;
  4113. }
  4114. if (code_seen('S')) {
  4115. codenum = code_value() * 1000; // seconds to wait
  4116. hasS = codenum > 0;
  4117. }
  4118. starpos = strchr(src, '*');
  4119. if (starpos != NULL) *(starpos) = '\0';
  4120. while (*src == ' ') ++src;
  4121. if (!hasP && !hasS && *src != '\0') {
  4122. lcd_setstatus(src);
  4123. } else {
  4124. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4125. }
  4126. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4127. st_synchronize();
  4128. previous_millis_cmd = millis();
  4129. if (codenum > 0){
  4130. codenum += millis(); // keep track of when we started waiting
  4131. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4132. while(millis() < codenum && !lcd_clicked()){
  4133. manage_heater();
  4134. manage_inactivity(true);
  4135. lcd_update(0);
  4136. }
  4137. KEEPALIVE_STATE(IN_HANDLER);
  4138. lcd_ignore_click(false);
  4139. }else{
  4140. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4141. while(!lcd_clicked()){
  4142. manage_heater();
  4143. manage_inactivity(true);
  4144. lcd_update(0);
  4145. }
  4146. KEEPALIVE_STATE(IN_HANDLER);
  4147. }
  4148. if (IS_SD_PRINTING)
  4149. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4150. else
  4151. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4152. }
  4153. break;
  4154. case 17:
  4155. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4156. enable_x();
  4157. enable_y();
  4158. enable_z();
  4159. enable_e0();
  4160. enable_e1();
  4161. enable_e2();
  4162. break;
  4163. #ifdef SDSUPPORT
  4164. case 20: // M20 - list SD card
  4165. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4166. card.ls();
  4167. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4168. break;
  4169. case 21: // M21 - init SD card
  4170. card.initsd();
  4171. break;
  4172. case 22: //M22 - release SD card
  4173. card.release();
  4174. break;
  4175. case 23: //M23 - Select file
  4176. starpos = (strchr(strchr_pointer + 4,'*'));
  4177. if(starpos!=NULL)
  4178. *(starpos)='\0';
  4179. card.openFile(strchr_pointer + 4,true);
  4180. break;
  4181. case 24: //M24 - Start SD print
  4182. if (!card.paused)
  4183. failstats_reset_print();
  4184. card.startFileprint();
  4185. starttime=millis();
  4186. break;
  4187. case 25: //M25 - Pause SD print
  4188. card.pauseSDPrint();
  4189. break;
  4190. case 26: //M26 - Set SD index
  4191. if(card.cardOK && code_seen('S')) {
  4192. card.setIndex(code_value_long());
  4193. }
  4194. break;
  4195. case 27: //M27 - Get SD status
  4196. card.getStatus();
  4197. break;
  4198. case 28: //M28 - Start SD write
  4199. starpos = (strchr(strchr_pointer + 4,'*'));
  4200. if(starpos != NULL){
  4201. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4202. strchr_pointer = strchr(npos,' ') + 1;
  4203. *(starpos) = '\0';
  4204. }
  4205. card.openFile(strchr_pointer+4,false);
  4206. break;
  4207. case 29: //M29 - Stop SD write
  4208. //processed in write to file routine above
  4209. //card,saving = false;
  4210. break;
  4211. case 30: //M30 <filename> Delete File
  4212. if (card.cardOK){
  4213. card.closefile();
  4214. starpos = (strchr(strchr_pointer + 4,'*'));
  4215. if(starpos != NULL){
  4216. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4217. strchr_pointer = strchr(npos,' ') + 1;
  4218. *(starpos) = '\0';
  4219. }
  4220. card.removeFile(strchr_pointer + 4);
  4221. }
  4222. break;
  4223. case 32: //M32 - Select file and start SD print
  4224. {
  4225. if(card.sdprinting) {
  4226. st_synchronize();
  4227. }
  4228. starpos = (strchr(strchr_pointer + 4,'*'));
  4229. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4230. if(namestartpos==NULL)
  4231. {
  4232. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4233. }
  4234. else
  4235. namestartpos++; //to skip the '!'
  4236. if(starpos!=NULL)
  4237. *(starpos)='\0';
  4238. bool call_procedure=(code_seen('P'));
  4239. if(strchr_pointer>namestartpos)
  4240. call_procedure=false; //false alert, 'P' found within filename
  4241. if( card.cardOK )
  4242. {
  4243. card.openFile(namestartpos,true,!call_procedure);
  4244. if(code_seen('S'))
  4245. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4246. card.setIndex(code_value_long());
  4247. card.startFileprint();
  4248. if(!call_procedure)
  4249. starttime=millis(); //procedure calls count as normal print time.
  4250. }
  4251. } break;
  4252. case 928: //M928 - Start SD write
  4253. starpos = (strchr(strchr_pointer + 5,'*'));
  4254. if(starpos != NULL){
  4255. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4256. strchr_pointer = strchr(npos,' ') + 1;
  4257. *(starpos) = '\0';
  4258. }
  4259. card.openLogFile(strchr_pointer+5);
  4260. break;
  4261. #endif //SDSUPPORT
  4262. case 31: //M31 take time since the start of the SD print or an M109 command
  4263. {
  4264. stoptime=millis();
  4265. char time[30];
  4266. unsigned long t=(stoptime-starttime)/1000;
  4267. int sec,min;
  4268. min=t/60;
  4269. sec=t%60;
  4270. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4271. SERIAL_ECHO_START;
  4272. SERIAL_ECHOLN(time);
  4273. lcd_setstatus(time);
  4274. autotempShutdown();
  4275. }
  4276. break;
  4277. case 42: //M42 -Change pin status via gcode
  4278. if (code_seen('S'))
  4279. {
  4280. int pin_status = code_value();
  4281. int pin_number = LED_PIN;
  4282. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4283. pin_number = code_value();
  4284. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4285. {
  4286. if (sensitive_pins[i] == pin_number)
  4287. {
  4288. pin_number = -1;
  4289. break;
  4290. }
  4291. }
  4292. #if defined(FAN_PIN) && FAN_PIN > -1
  4293. if (pin_number == FAN_PIN)
  4294. fanSpeed = pin_status;
  4295. #endif
  4296. if (pin_number > -1)
  4297. {
  4298. pinMode(pin_number, OUTPUT);
  4299. digitalWrite(pin_number, pin_status);
  4300. analogWrite(pin_number, pin_status);
  4301. }
  4302. }
  4303. break;
  4304. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4305. // Reset the baby step value and the baby step applied flag.
  4306. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4307. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4308. // Reset the skew and offset in both RAM and EEPROM.
  4309. reset_bed_offset_and_skew();
  4310. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4311. // the planner will not perform any adjustments in the XY plane.
  4312. // Wait for the motors to stop and update the current position with the absolute values.
  4313. world2machine_revert_to_uncorrected();
  4314. break;
  4315. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4316. {
  4317. int8_t verbosity_level = 0;
  4318. bool only_Z = code_seen('Z');
  4319. #ifdef SUPPORT_VERBOSITY
  4320. if (code_seen('V'))
  4321. {
  4322. // Just 'V' without a number counts as V1.
  4323. char c = strchr_pointer[1];
  4324. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4325. }
  4326. #endif //SUPPORT_VERBOSITY
  4327. gcode_M45(only_Z, verbosity_level);
  4328. }
  4329. break;
  4330. /*
  4331. case 46:
  4332. {
  4333. // M46: Prusa3D: Show the assigned IP address.
  4334. uint8_t ip[4];
  4335. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4336. if (hasIP) {
  4337. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4338. SERIAL_ECHO(int(ip[0]));
  4339. SERIAL_ECHOPGM(".");
  4340. SERIAL_ECHO(int(ip[1]));
  4341. SERIAL_ECHOPGM(".");
  4342. SERIAL_ECHO(int(ip[2]));
  4343. SERIAL_ECHOPGM(".");
  4344. SERIAL_ECHO(int(ip[3]));
  4345. SERIAL_ECHOLNPGM("");
  4346. } else {
  4347. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4348. }
  4349. break;
  4350. }
  4351. */
  4352. case 47:
  4353. //! M47: Prusa3D: Show end stops dialog on the display.
  4354. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4355. lcd_diag_show_end_stops();
  4356. KEEPALIVE_STATE(IN_HANDLER);
  4357. break;
  4358. #if 0
  4359. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4360. {
  4361. // Disable the default update procedure of the display. We will do a modal dialog.
  4362. lcd_update_enable(false);
  4363. // Let the planner use the uncorrected coordinates.
  4364. mbl.reset();
  4365. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4366. // the planner will not perform any adjustments in the XY plane.
  4367. // Wait for the motors to stop and update the current position with the absolute values.
  4368. world2machine_revert_to_uncorrected();
  4369. // Move the print head close to the bed.
  4370. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4371. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4372. st_synchronize();
  4373. // Home in the XY plane.
  4374. set_destination_to_current();
  4375. int l_feedmultiply = setup_for_endstop_move();
  4376. home_xy();
  4377. int8_t verbosity_level = 0;
  4378. if (code_seen('V')) {
  4379. // Just 'V' without a number counts as V1.
  4380. char c = strchr_pointer[1];
  4381. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4382. }
  4383. bool success = scan_bed_induction_points(verbosity_level);
  4384. clean_up_after_endstop_move(l_feedmultiply);
  4385. // Print head up.
  4386. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4387. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4388. st_synchronize();
  4389. lcd_update_enable(true);
  4390. break;
  4391. }
  4392. #endif
  4393. #ifdef ENABLE_AUTO_BED_LEVELING
  4394. #ifdef Z_PROBE_REPEATABILITY_TEST
  4395. //! M48 Z-Probe repeatability measurement function.
  4396. //!
  4397. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4398. //!
  4399. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4400. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4401. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4402. //! regenerated.
  4403. //!
  4404. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4405. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4406. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4407. //!
  4408. case 48: // M48 Z-Probe repeatability
  4409. {
  4410. #if Z_MIN_PIN == -1
  4411. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4412. #endif
  4413. double sum=0.0;
  4414. double mean=0.0;
  4415. double sigma=0.0;
  4416. double sample_set[50];
  4417. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4418. double X_current, Y_current, Z_current;
  4419. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4420. if (code_seen('V') || code_seen('v')) {
  4421. verbose_level = code_value();
  4422. if (verbose_level<0 || verbose_level>4 ) {
  4423. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4424. goto Sigma_Exit;
  4425. }
  4426. }
  4427. if (verbose_level > 0) {
  4428. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4429. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4430. }
  4431. if (code_seen('n')) {
  4432. n_samples = code_value();
  4433. if (n_samples<4 || n_samples>50 ) {
  4434. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4435. goto Sigma_Exit;
  4436. }
  4437. }
  4438. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4439. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4440. Z_current = st_get_position_mm(Z_AXIS);
  4441. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4442. ext_position = st_get_position_mm(E_AXIS);
  4443. if (code_seen('X') || code_seen('x') ) {
  4444. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4445. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4446. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4447. goto Sigma_Exit;
  4448. }
  4449. }
  4450. if (code_seen('Y') || code_seen('y') ) {
  4451. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4452. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4453. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4454. goto Sigma_Exit;
  4455. }
  4456. }
  4457. if (code_seen('L') || code_seen('l') ) {
  4458. n_legs = code_value();
  4459. if ( n_legs==1 )
  4460. n_legs = 2;
  4461. if ( n_legs<0 || n_legs>15 ) {
  4462. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4463. goto Sigma_Exit;
  4464. }
  4465. }
  4466. //
  4467. // Do all the preliminary setup work. First raise the probe.
  4468. //
  4469. st_synchronize();
  4470. plan_bed_level_matrix.set_to_identity();
  4471. plan_buffer_line( X_current, Y_current, Z_start_location,
  4472. ext_position,
  4473. homing_feedrate[Z_AXIS]/60,
  4474. active_extruder);
  4475. st_synchronize();
  4476. //
  4477. // Now get everything to the specified probe point So we can safely do a probe to
  4478. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4479. // use that as a starting point for each probe.
  4480. //
  4481. if (verbose_level > 2)
  4482. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4483. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4484. ext_position,
  4485. homing_feedrate[X_AXIS]/60,
  4486. active_extruder);
  4487. st_synchronize();
  4488. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4489. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4490. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4491. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4492. //
  4493. // OK, do the inital probe to get us close to the bed.
  4494. // Then retrace the right amount and use that in subsequent probes
  4495. //
  4496. int l_feedmultiply = setup_for_endstop_move();
  4497. run_z_probe();
  4498. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4499. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4500. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4501. ext_position,
  4502. homing_feedrate[X_AXIS]/60,
  4503. active_extruder);
  4504. st_synchronize();
  4505. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4506. for( n=0; n<n_samples; n++) {
  4507. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4508. if ( n_legs) {
  4509. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4510. int rotational_direction, l;
  4511. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4512. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4513. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4514. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4515. //SERIAL_ECHOPAIR(" theta: ",theta);
  4516. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4517. //SERIAL_PROTOCOLLNPGM("");
  4518. for( l=0; l<n_legs-1; l++) {
  4519. if (rotational_direction==1)
  4520. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4521. else
  4522. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4523. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4524. if ( radius<0.0 )
  4525. radius = -radius;
  4526. X_current = X_probe_location + cos(theta) * radius;
  4527. Y_current = Y_probe_location + sin(theta) * radius;
  4528. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4529. X_current = X_MIN_POS;
  4530. if ( X_current>X_MAX_POS)
  4531. X_current = X_MAX_POS;
  4532. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4533. Y_current = Y_MIN_POS;
  4534. if ( Y_current>Y_MAX_POS)
  4535. Y_current = Y_MAX_POS;
  4536. if (verbose_level>3 ) {
  4537. SERIAL_ECHOPAIR("x: ", X_current);
  4538. SERIAL_ECHOPAIR("y: ", Y_current);
  4539. SERIAL_PROTOCOLLNPGM("");
  4540. }
  4541. do_blocking_move_to( X_current, Y_current, Z_current );
  4542. }
  4543. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4544. }
  4545. int l_feedmultiply = setup_for_endstop_move();
  4546. run_z_probe();
  4547. sample_set[n] = current_position[Z_AXIS];
  4548. //
  4549. // Get the current mean for the data points we have so far
  4550. //
  4551. sum=0.0;
  4552. for( j=0; j<=n; j++) {
  4553. sum = sum + sample_set[j];
  4554. }
  4555. mean = sum / (double (n+1));
  4556. //
  4557. // Now, use that mean to calculate the standard deviation for the
  4558. // data points we have so far
  4559. //
  4560. sum=0.0;
  4561. for( j=0; j<=n; j++) {
  4562. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4563. }
  4564. sigma = sqrt( sum / (double (n+1)) );
  4565. if (verbose_level > 1) {
  4566. SERIAL_PROTOCOL(n+1);
  4567. SERIAL_PROTOCOL(" of ");
  4568. SERIAL_PROTOCOL(n_samples);
  4569. SERIAL_PROTOCOLPGM(" z: ");
  4570. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4571. }
  4572. if (verbose_level > 2) {
  4573. SERIAL_PROTOCOL(" mean: ");
  4574. SERIAL_PROTOCOL_F(mean,6);
  4575. SERIAL_PROTOCOL(" sigma: ");
  4576. SERIAL_PROTOCOL_F(sigma,6);
  4577. }
  4578. if (verbose_level > 0)
  4579. SERIAL_PROTOCOLPGM("\n");
  4580. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4581. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4582. st_synchronize();
  4583. }
  4584. delay(1000);
  4585. clean_up_after_endstop_move(l_feedmultiply);
  4586. // enable_endstops(true);
  4587. if (verbose_level > 0) {
  4588. SERIAL_PROTOCOLPGM("Mean: ");
  4589. SERIAL_PROTOCOL_F(mean, 6);
  4590. SERIAL_PROTOCOLPGM("\n");
  4591. }
  4592. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4593. SERIAL_PROTOCOL_F(sigma, 6);
  4594. SERIAL_PROTOCOLPGM("\n\n");
  4595. Sigma_Exit:
  4596. break;
  4597. }
  4598. #endif // Z_PROBE_REPEATABILITY_TEST
  4599. #endif // ENABLE_AUTO_BED_LEVELING
  4600. case 73: //M73 show percent done and time remaining
  4601. if(code_seen('P')) print_percent_done_normal = code_value();
  4602. if(code_seen('R')) print_time_remaining_normal = code_value();
  4603. if(code_seen('Q')) print_percent_done_silent = code_value();
  4604. if(code_seen('S')) print_time_remaining_silent = code_value();
  4605. {
  4606. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4607. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4608. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4609. }
  4610. break;
  4611. case 104: // M104
  4612. {
  4613. uint8_t extruder;
  4614. if(setTargetedHotend(104,extruder)){
  4615. break;
  4616. }
  4617. if (code_seen('S'))
  4618. {
  4619. setTargetHotendSafe(code_value(), extruder);
  4620. }
  4621. setWatch();
  4622. break;
  4623. }
  4624. case 112: // M112 -Emergency Stop
  4625. kill(_n(""), 3);
  4626. break;
  4627. case 140: // M140 set bed temp
  4628. if (code_seen('S')) setTargetBed(code_value());
  4629. break;
  4630. case 105 : // M105
  4631. {
  4632. uint8_t extruder;
  4633. if(setTargetedHotend(105, extruder)){
  4634. break;
  4635. }
  4636. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4637. SERIAL_PROTOCOLPGM("ok T:");
  4638. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4639. SERIAL_PROTOCOLPGM(" /");
  4640. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4641. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4642. SERIAL_PROTOCOLPGM(" B:");
  4643. SERIAL_PROTOCOL_F(degBed(),1);
  4644. SERIAL_PROTOCOLPGM(" /");
  4645. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4646. #endif //TEMP_BED_PIN
  4647. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4648. SERIAL_PROTOCOLPGM(" T");
  4649. SERIAL_PROTOCOL(cur_extruder);
  4650. SERIAL_PROTOCOLPGM(":");
  4651. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4652. SERIAL_PROTOCOLPGM(" /");
  4653. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4654. }
  4655. #else
  4656. SERIAL_ERROR_START;
  4657. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4658. #endif
  4659. SERIAL_PROTOCOLPGM(" @:");
  4660. #ifdef EXTRUDER_WATTS
  4661. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4662. SERIAL_PROTOCOLPGM("W");
  4663. #else
  4664. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4665. #endif
  4666. SERIAL_PROTOCOLPGM(" B@:");
  4667. #ifdef BED_WATTS
  4668. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4669. SERIAL_PROTOCOLPGM("W");
  4670. #else
  4671. SERIAL_PROTOCOL(getHeaterPower(-1));
  4672. #endif
  4673. #ifdef PINDA_THERMISTOR
  4674. SERIAL_PROTOCOLPGM(" P:");
  4675. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4676. #endif //PINDA_THERMISTOR
  4677. #ifdef AMBIENT_THERMISTOR
  4678. SERIAL_PROTOCOLPGM(" A:");
  4679. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4680. #endif //AMBIENT_THERMISTOR
  4681. #ifdef SHOW_TEMP_ADC_VALUES
  4682. {float raw = 0.0;
  4683. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4684. SERIAL_PROTOCOLPGM(" ADC B:");
  4685. SERIAL_PROTOCOL_F(degBed(),1);
  4686. SERIAL_PROTOCOLPGM("C->");
  4687. raw = rawBedTemp();
  4688. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4689. SERIAL_PROTOCOLPGM(" Rb->");
  4690. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4691. SERIAL_PROTOCOLPGM(" Rxb->");
  4692. SERIAL_PROTOCOL_F(raw, 5);
  4693. #endif
  4694. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4695. SERIAL_PROTOCOLPGM(" T");
  4696. SERIAL_PROTOCOL(cur_extruder);
  4697. SERIAL_PROTOCOLPGM(":");
  4698. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4699. SERIAL_PROTOCOLPGM("C->");
  4700. raw = rawHotendTemp(cur_extruder);
  4701. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4702. SERIAL_PROTOCOLPGM(" Rt");
  4703. SERIAL_PROTOCOL(cur_extruder);
  4704. SERIAL_PROTOCOLPGM("->");
  4705. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4706. SERIAL_PROTOCOLPGM(" Rx");
  4707. SERIAL_PROTOCOL(cur_extruder);
  4708. SERIAL_PROTOCOLPGM("->");
  4709. SERIAL_PROTOCOL_F(raw, 5);
  4710. }}
  4711. #endif
  4712. SERIAL_PROTOCOLLN("");
  4713. KEEPALIVE_STATE(NOT_BUSY);
  4714. return;
  4715. break;
  4716. }
  4717. case 109:
  4718. {// M109 - Wait for extruder heater to reach target.
  4719. uint8_t extruder;
  4720. if(setTargetedHotend(109, extruder)){
  4721. break;
  4722. }
  4723. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4724. heating_status = 1;
  4725. if (farm_mode) { prusa_statistics(1); };
  4726. #ifdef AUTOTEMP
  4727. autotemp_enabled=false;
  4728. #endif
  4729. if (code_seen('S')) {
  4730. setTargetHotendSafe(code_value(), extruder);
  4731. CooldownNoWait = true;
  4732. } else if (code_seen('R')) {
  4733. setTargetHotendSafe(code_value(), extruder);
  4734. CooldownNoWait = false;
  4735. }
  4736. #ifdef AUTOTEMP
  4737. if (code_seen('S')) autotemp_min=code_value();
  4738. if (code_seen('B')) autotemp_max=code_value();
  4739. if (code_seen('F'))
  4740. {
  4741. autotemp_factor=code_value();
  4742. autotemp_enabled=true;
  4743. }
  4744. #endif
  4745. setWatch();
  4746. codenum = millis();
  4747. /* See if we are heating up or cooling down */
  4748. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4749. KEEPALIVE_STATE(NOT_BUSY);
  4750. cancel_heatup = false;
  4751. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4752. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4753. KEEPALIVE_STATE(IN_HANDLER);
  4754. heating_status = 2;
  4755. if (farm_mode) { prusa_statistics(2); };
  4756. //starttime=millis();
  4757. previous_millis_cmd = millis();
  4758. }
  4759. break;
  4760. case 190: // M190 - Wait for bed heater to reach target.
  4761. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4762. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4763. heating_status = 3;
  4764. if (farm_mode) { prusa_statistics(1); };
  4765. if (code_seen('S'))
  4766. {
  4767. setTargetBed(code_value());
  4768. CooldownNoWait = true;
  4769. }
  4770. else if (code_seen('R'))
  4771. {
  4772. setTargetBed(code_value());
  4773. CooldownNoWait = false;
  4774. }
  4775. codenum = millis();
  4776. cancel_heatup = false;
  4777. target_direction = isHeatingBed(); // true if heating, false if cooling
  4778. KEEPALIVE_STATE(NOT_BUSY);
  4779. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4780. {
  4781. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4782. {
  4783. if (!farm_mode) {
  4784. float tt = degHotend(active_extruder);
  4785. SERIAL_PROTOCOLPGM("T:");
  4786. SERIAL_PROTOCOL(tt);
  4787. SERIAL_PROTOCOLPGM(" E:");
  4788. SERIAL_PROTOCOL((int)active_extruder);
  4789. SERIAL_PROTOCOLPGM(" B:");
  4790. SERIAL_PROTOCOL_F(degBed(), 1);
  4791. SERIAL_PROTOCOLLN("");
  4792. }
  4793. codenum = millis();
  4794. }
  4795. manage_heater();
  4796. manage_inactivity();
  4797. lcd_update(0);
  4798. }
  4799. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4800. KEEPALIVE_STATE(IN_HANDLER);
  4801. heating_status = 4;
  4802. previous_millis_cmd = millis();
  4803. #endif
  4804. break;
  4805. #if defined(FAN_PIN) && FAN_PIN > -1
  4806. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4807. if (code_seen('S')){
  4808. fanSpeed=constrain(code_value(),0,255);
  4809. }
  4810. else {
  4811. fanSpeed=255;
  4812. }
  4813. break;
  4814. case 107: //M107 Fan Off
  4815. fanSpeed = 0;
  4816. break;
  4817. #endif //FAN_PIN
  4818. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4819. case 80: // M80 - Turn on Power Supply
  4820. SET_OUTPUT(PS_ON_PIN); //GND
  4821. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4822. // If you have a switch on suicide pin, this is useful
  4823. // if you want to start another print with suicide feature after
  4824. // a print without suicide...
  4825. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4826. SET_OUTPUT(SUICIDE_PIN);
  4827. WRITE(SUICIDE_PIN, HIGH);
  4828. #endif
  4829. powersupply = true;
  4830. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4831. lcd_update(0);
  4832. break;
  4833. #endif
  4834. case 81: // M81 - Turn off Power Supply
  4835. disable_heater();
  4836. st_synchronize();
  4837. disable_e0();
  4838. disable_e1();
  4839. disable_e2();
  4840. finishAndDisableSteppers();
  4841. fanSpeed = 0;
  4842. delay(1000); // Wait a little before to switch off
  4843. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4844. st_synchronize();
  4845. suicide();
  4846. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4847. SET_OUTPUT(PS_ON_PIN);
  4848. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4849. #endif
  4850. powersupply = false;
  4851. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4852. lcd_update(0);
  4853. break;
  4854. case 82:
  4855. axis_relative_modes[3] = false;
  4856. break;
  4857. case 83:
  4858. axis_relative_modes[3] = true;
  4859. break;
  4860. case 18: //compatibility
  4861. case 84: // M84
  4862. if(code_seen('S')){
  4863. stepper_inactive_time = code_value() * 1000;
  4864. }
  4865. else
  4866. {
  4867. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4868. if(all_axis)
  4869. {
  4870. st_synchronize();
  4871. disable_e0();
  4872. disable_e1();
  4873. disable_e2();
  4874. finishAndDisableSteppers();
  4875. }
  4876. else
  4877. {
  4878. st_synchronize();
  4879. if (code_seen('X')) disable_x();
  4880. if (code_seen('Y')) disable_y();
  4881. if (code_seen('Z')) disable_z();
  4882. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4883. if (code_seen('E')) {
  4884. disable_e0();
  4885. disable_e1();
  4886. disable_e2();
  4887. }
  4888. #endif
  4889. }
  4890. }
  4891. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4892. print_time_remaining_init();
  4893. snmm_filaments_used = 0;
  4894. break;
  4895. case 85: // M85
  4896. if(code_seen('S')) {
  4897. max_inactive_time = code_value() * 1000;
  4898. }
  4899. break;
  4900. #ifdef SAFETYTIMER
  4901. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4902. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4903. if (code_seen('S')) {
  4904. safetytimer_inactive_time = code_value() * 1000;
  4905. safetyTimer.start();
  4906. }
  4907. break;
  4908. #endif
  4909. case 92: // M92
  4910. for(int8_t i=0; i < NUM_AXIS; i++)
  4911. {
  4912. if(code_seen(axis_codes[i]))
  4913. {
  4914. if(i == 3) { // E
  4915. float value = code_value();
  4916. if(value < 20.0) {
  4917. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4918. max_jerk[E_AXIS] *= factor;
  4919. max_feedrate[i] *= factor;
  4920. axis_steps_per_sqr_second[i] *= factor;
  4921. }
  4922. axis_steps_per_unit[i] = value;
  4923. }
  4924. else {
  4925. axis_steps_per_unit[i] = code_value();
  4926. }
  4927. }
  4928. }
  4929. break;
  4930. case 110: //! M110 N<line number> - reset line pos
  4931. if (code_seen('N'))
  4932. gcode_LastN = code_value_long();
  4933. break;
  4934. #ifdef HOST_KEEPALIVE_FEATURE
  4935. case 113: // M113 - Get or set Host Keepalive interval
  4936. if (code_seen('S')) {
  4937. host_keepalive_interval = (uint8_t)code_value_short();
  4938. // NOMORE(host_keepalive_interval, 60);
  4939. }
  4940. else {
  4941. SERIAL_ECHO_START;
  4942. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4943. SERIAL_PROTOCOLLN("");
  4944. }
  4945. break;
  4946. #endif
  4947. case 115: // M115
  4948. if (code_seen('V')) {
  4949. // Report the Prusa version number.
  4950. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4951. } else if (code_seen('U')) {
  4952. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4953. // pause the print and ask the user to upgrade the firmware.
  4954. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4955. } else {
  4956. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4957. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4958. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4959. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4960. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4961. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4962. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4963. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4964. SERIAL_ECHOPGM(" UUID:");
  4965. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4966. }
  4967. break;
  4968. /* case 117: // M117 display message
  4969. starpos = (strchr(strchr_pointer + 5,'*'));
  4970. if(starpos!=NULL)
  4971. *(starpos)='\0';
  4972. lcd_setstatus(strchr_pointer + 5);
  4973. break;*/
  4974. case 114: // M114
  4975. gcode_M114();
  4976. break;
  4977. case 120: //! M120 - Disable endstops
  4978. enable_endstops(false) ;
  4979. break;
  4980. case 121: //! M121 - Enable endstops
  4981. enable_endstops(true) ;
  4982. break;
  4983. case 119: // M119
  4984. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4985. SERIAL_PROTOCOLLN("");
  4986. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4987. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4988. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4989. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4990. }else{
  4991. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4992. }
  4993. SERIAL_PROTOCOLLN("");
  4994. #endif
  4995. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4996. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4997. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4998. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4999. }else{
  5000. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5001. }
  5002. SERIAL_PROTOCOLLN("");
  5003. #endif
  5004. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5005. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5006. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5007. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5008. }else{
  5009. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5010. }
  5011. SERIAL_PROTOCOLLN("");
  5012. #endif
  5013. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5014. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5015. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5016. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5017. }else{
  5018. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5019. }
  5020. SERIAL_PROTOCOLLN("");
  5021. #endif
  5022. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5023. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5024. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5025. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5026. }else{
  5027. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5028. }
  5029. SERIAL_PROTOCOLLN("");
  5030. #endif
  5031. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5032. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5033. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5034. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5035. }else{
  5036. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5037. }
  5038. SERIAL_PROTOCOLLN("");
  5039. #endif
  5040. break;
  5041. //TODO: update for all axis, use for loop
  5042. #ifdef BLINKM
  5043. case 150: // M150
  5044. {
  5045. byte red;
  5046. byte grn;
  5047. byte blu;
  5048. if(code_seen('R')) red = code_value();
  5049. if(code_seen('U')) grn = code_value();
  5050. if(code_seen('B')) blu = code_value();
  5051. SendColors(red,grn,blu);
  5052. }
  5053. break;
  5054. #endif //BLINKM
  5055. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5056. {
  5057. uint8_t extruder = active_extruder;
  5058. if(code_seen('T')) {
  5059. extruder = code_value();
  5060. if(extruder >= EXTRUDERS) {
  5061. SERIAL_ECHO_START;
  5062. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5063. break;
  5064. }
  5065. }
  5066. if(code_seen('D')) {
  5067. float diameter = (float)code_value();
  5068. if (diameter == 0.0) {
  5069. // setting any extruder filament size disables volumetric on the assumption that
  5070. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5071. // for all extruders
  5072. volumetric_enabled = false;
  5073. } else {
  5074. filament_size[extruder] = (float)code_value();
  5075. // make sure all extruders have some sane value for the filament size
  5076. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5077. #if EXTRUDERS > 1
  5078. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5079. #if EXTRUDERS > 2
  5080. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5081. #endif
  5082. #endif
  5083. volumetric_enabled = true;
  5084. }
  5085. } else {
  5086. //reserved for setting filament diameter via UFID or filament measuring device
  5087. break;
  5088. }
  5089. calculate_extruder_multipliers();
  5090. }
  5091. break;
  5092. case 201: // M201
  5093. for (int8_t i = 0; i < NUM_AXIS; i++)
  5094. {
  5095. if (code_seen(axis_codes[i]))
  5096. {
  5097. unsigned long val = code_value();
  5098. #ifdef TMC2130
  5099. unsigned long val_silent = val;
  5100. if ((i == X_AXIS) || (i == Y_AXIS))
  5101. {
  5102. if (val > NORMAL_MAX_ACCEL_XY)
  5103. val = NORMAL_MAX_ACCEL_XY;
  5104. if (val_silent > SILENT_MAX_ACCEL_XY)
  5105. val_silent = SILENT_MAX_ACCEL_XY;
  5106. }
  5107. max_acceleration_units_per_sq_second_normal[i] = val;
  5108. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5109. #else //TMC2130
  5110. max_acceleration_units_per_sq_second[i] = val;
  5111. #endif //TMC2130
  5112. }
  5113. }
  5114. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5115. reset_acceleration_rates();
  5116. break;
  5117. #if 0 // Not used for Sprinter/grbl gen6
  5118. case 202: // M202
  5119. for(int8_t i=0; i < NUM_AXIS; i++) {
  5120. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5121. }
  5122. break;
  5123. #endif
  5124. case 203: // M203 max feedrate mm/sec
  5125. for (int8_t i = 0; i < NUM_AXIS; i++)
  5126. {
  5127. if (code_seen(axis_codes[i]))
  5128. {
  5129. float val = code_value();
  5130. #ifdef TMC2130
  5131. float val_silent = val;
  5132. if ((i == X_AXIS) || (i == Y_AXIS))
  5133. {
  5134. if (val > NORMAL_MAX_FEEDRATE_XY)
  5135. val = NORMAL_MAX_FEEDRATE_XY;
  5136. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5137. val_silent = SILENT_MAX_FEEDRATE_XY;
  5138. }
  5139. max_feedrate_normal[i] = val;
  5140. max_feedrate_silent[i] = val_silent;
  5141. #else //TMC2130
  5142. max_feedrate[i] = val;
  5143. #endif //TMC2130
  5144. }
  5145. }
  5146. break;
  5147. case 204:
  5148. //! M204 acclereration settings.
  5149. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5150. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5151. {
  5152. if(code_seen('S')) {
  5153. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5154. // and it is also generated by Slic3r to control acceleration per extrusion type
  5155. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5156. acceleration = code_value();
  5157. // Interpret the T value as retract acceleration in the old Marlin format.
  5158. if(code_seen('T'))
  5159. retract_acceleration = code_value();
  5160. } else {
  5161. // New acceleration format, compatible with the upstream Marlin.
  5162. if(code_seen('P'))
  5163. acceleration = code_value();
  5164. if(code_seen('R'))
  5165. retract_acceleration = code_value();
  5166. if(code_seen('T')) {
  5167. // Interpret the T value as the travel acceleration in the new Marlin format.
  5168. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5169. // travel_acceleration = code_value();
  5170. }
  5171. }
  5172. }
  5173. break;
  5174. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5175. {
  5176. if(code_seen('S')) minimumfeedrate = code_value();
  5177. if(code_seen('T')) mintravelfeedrate = code_value();
  5178. if(code_seen('B')) minsegmenttime = code_value() ;
  5179. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5180. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5181. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5182. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5183. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5184. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5185. }
  5186. break;
  5187. case 206: // M206 additional homing offset
  5188. for(int8_t i=0; i < 3; i++)
  5189. {
  5190. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5191. }
  5192. break;
  5193. #ifdef FWRETRACT
  5194. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5195. {
  5196. if(code_seen('S'))
  5197. {
  5198. retract_length = code_value() ;
  5199. }
  5200. if(code_seen('F'))
  5201. {
  5202. retract_feedrate = code_value()/60 ;
  5203. }
  5204. if(code_seen('Z'))
  5205. {
  5206. retract_zlift = code_value() ;
  5207. }
  5208. }break;
  5209. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5210. {
  5211. if(code_seen('S'))
  5212. {
  5213. retract_recover_length = code_value() ;
  5214. }
  5215. if(code_seen('F'))
  5216. {
  5217. retract_recover_feedrate = code_value()/60 ;
  5218. }
  5219. }break;
  5220. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5221. {
  5222. if(code_seen('S'))
  5223. {
  5224. int t= code_value() ;
  5225. switch(t)
  5226. {
  5227. case 0:
  5228. {
  5229. autoretract_enabled=false;
  5230. retracted[0]=false;
  5231. #if EXTRUDERS > 1
  5232. retracted[1]=false;
  5233. #endif
  5234. #if EXTRUDERS > 2
  5235. retracted[2]=false;
  5236. #endif
  5237. }break;
  5238. case 1:
  5239. {
  5240. autoretract_enabled=true;
  5241. retracted[0]=false;
  5242. #if EXTRUDERS > 1
  5243. retracted[1]=false;
  5244. #endif
  5245. #if EXTRUDERS > 2
  5246. retracted[2]=false;
  5247. #endif
  5248. }break;
  5249. default:
  5250. SERIAL_ECHO_START;
  5251. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5252. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5253. SERIAL_ECHOLNPGM("\"(1)");
  5254. }
  5255. }
  5256. }break;
  5257. #endif // FWRETRACT
  5258. #if EXTRUDERS > 1
  5259. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5260. {
  5261. uint8_t extruder;
  5262. if(setTargetedHotend(218, extruder)){
  5263. break;
  5264. }
  5265. if(code_seen('X'))
  5266. {
  5267. extruder_offset[X_AXIS][extruder] = code_value();
  5268. }
  5269. if(code_seen('Y'))
  5270. {
  5271. extruder_offset[Y_AXIS][extruder] = code_value();
  5272. }
  5273. SERIAL_ECHO_START;
  5274. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5275. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5276. {
  5277. SERIAL_ECHO(" ");
  5278. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5279. SERIAL_ECHO(",");
  5280. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5281. }
  5282. SERIAL_ECHOLN("");
  5283. }break;
  5284. #endif
  5285. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5286. {
  5287. if(code_seen('S'))
  5288. {
  5289. feedmultiply = code_value() ;
  5290. }
  5291. }
  5292. break;
  5293. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5294. {
  5295. if(code_seen('S'))
  5296. {
  5297. int tmp_code = code_value();
  5298. if (code_seen('T'))
  5299. {
  5300. uint8_t extruder;
  5301. if(setTargetedHotend(221, extruder)){
  5302. break;
  5303. }
  5304. extruder_multiply[extruder] = tmp_code;
  5305. }
  5306. else
  5307. {
  5308. extrudemultiply = tmp_code ;
  5309. }
  5310. }
  5311. calculate_extruder_multipliers();
  5312. }
  5313. break;
  5314. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5315. {
  5316. if(code_seen('P')){
  5317. int pin_number = code_value(); // pin number
  5318. int pin_state = -1; // required pin state - default is inverted
  5319. if(code_seen('S')) pin_state = code_value(); // required pin state
  5320. if(pin_state >= -1 && pin_state <= 1){
  5321. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5322. {
  5323. if (sensitive_pins[i] == pin_number)
  5324. {
  5325. pin_number = -1;
  5326. break;
  5327. }
  5328. }
  5329. if (pin_number > -1)
  5330. {
  5331. int target = LOW;
  5332. st_synchronize();
  5333. pinMode(pin_number, INPUT);
  5334. switch(pin_state){
  5335. case 1:
  5336. target = HIGH;
  5337. break;
  5338. case 0:
  5339. target = LOW;
  5340. break;
  5341. case -1:
  5342. target = !digitalRead(pin_number);
  5343. break;
  5344. }
  5345. while(digitalRead(pin_number) != target){
  5346. manage_heater();
  5347. manage_inactivity();
  5348. lcd_update(0);
  5349. }
  5350. }
  5351. }
  5352. }
  5353. }
  5354. break;
  5355. #if NUM_SERVOS > 0
  5356. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5357. {
  5358. int servo_index = -1;
  5359. int servo_position = 0;
  5360. if (code_seen('P'))
  5361. servo_index = code_value();
  5362. if (code_seen('S')) {
  5363. servo_position = code_value();
  5364. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5365. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5366. servos[servo_index].attach(0);
  5367. #endif
  5368. servos[servo_index].write(servo_position);
  5369. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5370. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5371. servos[servo_index].detach();
  5372. #endif
  5373. }
  5374. else {
  5375. SERIAL_ECHO_START;
  5376. SERIAL_ECHO("Servo ");
  5377. SERIAL_ECHO(servo_index);
  5378. SERIAL_ECHOLN(" out of range");
  5379. }
  5380. }
  5381. else if (servo_index >= 0) {
  5382. SERIAL_PROTOCOL(_T(MSG_OK));
  5383. SERIAL_PROTOCOL(" Servo ");
  5384. SERIAL_PROTOCOL(servo_index);
  5385. SERIAL_PROTOCOL(": ");
  5386. SERIAL_PROTOCOL(servos[servo_index].read());
  5387. SERIAL_PROTOCOLLN("");
  5388. }
  5389. }
  5390. break;
  5391. #endif // NUM_SERVOS > 0
  5392. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5393. case 300: // M300
  5394. {
  5395. int beepS = code_seen('S') ? code_value() : 110;
  5396. int beepP = code_seen('P') ? code_value() : 1000;
  5397. if (beepS > 0)
  5398. {
  5399. #if BEEPER > 0
  5400. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5401. tone(BEEPER, beepS);
  5402. delay(beepP);
  5403. noTone(BEEPER);
  5404. #endif
  5405. }
  5406. else
  5407. {
  5408. delay(beepP);
  5409. }
  5410. }
  5411. break;
  5412. #endif // M300
  5413. #ifdef PIDTEMP
  5414. case 301: // M301
  5415. {
  5416. if(code_seen('P')) Kp = code_value();
  5417. if(code_seen('I')) Ki = scalePID_i(code_value());
  5418. if(code_seen('D')) Kd = scalePID_d(code_value());
  5419. #ifdef PID_ADD_EXTRUSION_RATE
  5420. if(code_seen('C')) Kc = code_value();
  5421. #endif
  5422. updatePID();
  5423. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5424. SERIAL_PROTOCOL(" p:");
  5425. SERIAL_PROTOCOL(Kp);
  5426. SERIAL_PROTOCOL(" i:");
  5427. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5428. SERIAL_PROTOCOL(" d:");
  5429. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5430. #ifdef PID_ADD_EXTRUSION_RATE
  5431. SERIAL_PROTOCOL(" c:");
  5432. //Kc does not have scaling applied above, or in resetting defaults
  5433. SERIAL_PROTOCOL(Kc);
  5434. #endif
  5435. SERIAL_PROTOCOLLN("");
  5436. }
  5437. break;
  5438. #endif //PIDTEMP
  5439. #ifdef PIDTEMPBED
  5440. case 304: // M304
  5441. {
  5442. if(code_seen('P')) bedKp = code_value();
  5443. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5444. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5445. updatePID();
  5446. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5447. SERIAL_PROTOCOL(" p:");
  5448. SERIAL_PROTOCOL(bedKp);
  5449. SERIAL_PROTOCOL(" i:");
  5450. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5451. SERIAL_PROTOCOL(" d:");
  5452. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5453. SERIAL_PROTOCOLLN("");
  5454. }
  5455. break;
  5456. #endif //PIDTEMP
  5457. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5458. {
  5459. #ifdef CHDK
  5460. SET_OUTPUT(CHDK);
  5461. WRITE(CHDK, HIGH);
  5462. chdkHigh = millis();
  5463. chdkActive = true;
  5464. #else
  5465. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5466. const uint8_t NUM_PULSES=16;
  5467. const float PULSE_LENGTH=0.01524;
  5468. for(int i=0; i < NUM_PULSES; i++) {
  5469. WRITE(PHOTOGRAPH_PIN, HIGH);
  5470. _delay_ms(PULSE_LENGTH);
  5471. WRITE(PHOTOGRAPH_PIN, LOW);
  5472. _delay_ms(PULSE_LENGTH);
  5473. }
  5474. delay(7.33);
  5475. for(int i=0; i < NUM_PULSES; i++) {
  5476. WRITE(PHOTOGRAPH_PIN, HIGH);
  5477. _delay_ms(PULSE_LENGTH);
  5478. WRITE(PHOTOGRAPH_PIN, LOW);
  5479. _delay_ms(PULSE_LENGTH);
  5480. }
  5481. #endif
  5482. #endif //chdk end if
  5483. }
  5484. break;
  5485. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5486. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5487. {
  5488. float temp = .0;
  5489. if (code_seen('S')) temp=code_value();
  5490. set_extrude_min_temp(temp);
  5491. }
  5492. break;
  5493. #endif
  5494. case 303: // M303 PID autotune
  5495. {
  5496. float temp = 150.0;
  5497. int e=0;
  5498. int c=5;
  5499. if (code_seen('E')) e=code_value();
  5500. if (e<0)
  5501. temp=70;
  5502. if (code_seen('S')) temp=code_value();
  5503. if (code_seen('C')) c=code_value();
  5504. PID_autotune(temp, e, c);
  5505. }
  5506. break;
  5507. case 400: // M400 finish all moves
  5508. {
  5509. st_synchronize();
  5510. }
  5511. break;
  5512. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5513. {
  5514. //! currently three different materials are needed (default, flex and PVA)
  5515. //! add storing this information for different load/unload profiles etc. in the future
  5516. //!firmware does not wait for "ok" from mmu
  5517. if (mmu_enabled)
  5518. {
  5519. uint8_t extruder = 255;
  5520. uint8_t filament = FILAMENT_UNDEFINED;
  5521. if(code_seen('E')) extruder = code_value();
  5522. if(code_seen('F')) filament = code_value();
  5523. mmu_set_filament_type(extruder, filament);
  5524. }
  5525. }
  5526. break;
  5527. case 500: // M500 Store settings in EEPROM
  5528. {
  5529. Config_StoreSettings(EEPROM_OFFSET);
  5530. }
  5531. break;
  5532. case 501: // M501 Read settings from EEPROM
  5533. {
  5534. Config_RetrieveSettings(EEPROM_OFFSET);
  5535. }
  5536. break;
  5537. case 502: // M502 Revert to default settings
  5538. {
  5539. Config_ResetDefault();
  5540. }
  5541. break;
  5542. case 503: // M503 print settings currently in memory
  5543. {
  5544. Config_PrintSettings();
  5545. }
  5546. break;
  5547. case 509: //M509 Force language selection
  5548. {
  5549. lang_reset();
  5550. SERIAL_ECHO_START;
  5551. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5552. }
  5553. break;
  5554. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5555. case 540:
  5556. {
  5557. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5558. }
  5559. break;
  5560. #endif
  5561. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5562. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5563. {
  5564. float value;
  5565. if (code_seen('Z'))
  5566. {
  5567. value = code_value();
  5568. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5569. {
  5570. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5571. SERIAL_ECHO_START;
  5572. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5573. SERIAL_PROTOCOLLN("");
  5574. }
  5575. else
  5576. {
  5577. SERIAL_ECHO_START;
  5578. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5579. SERIAL_ECHORPGM(MSG_Z_MIN);
  5580. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5581. SERIAL_ECHORPGM(MSG_Z_MAX);
  5582. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5583. SERIAL_PROTOCOLLN("");
  5584. }
  5585. }
  5586. else
  5587. {
  5588. SERIAL_ECHO_START;
  5589. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5590. SERIAL_ECHO(-zprobe_zoffset);
  5591. SERIAL_PROTOCOLLN("");
  5592. }
  5593. break;
  5594. }
  5595. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5596. #ifdef FILAMENTCHANGEENABLE
  5597. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5598. {
  5599. st_synchronize();
  5600. float x_position = current_position[X_AXIS];
  5601. float y_position = current_position[Y_AXIS];
  5602. float z_shift = 0;
  5603. float e_shift_init = 0;
  5604. float e_shift_late = 0;
  5605. bool automatic = false;
  5606. //Retract extruder
  5607. if(code_seen('E'))
  5608. {
  5609. e_shift_init = code_value();
  5610. }
  5611. else
  5612. {
  5613. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5614. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5615. #endif
  5616. }
  5617. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5618. if (code_seen('L'))
  5619. {
  5620. e_shift_late = code_value();
  5621. }
  5622. else
  5623. {
  5624. #ifdef FILAMENTCHANGE_FINALRETRACT
  5625. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5626. #endif
  5627. }
  5628. //Lift Z
  5629. if(code_seen('Z'))
  5630. {
  5631. z_shift = code_value();
  5632. }
  5633. else
  5634. {
  5635. #ifdef FILAMENTCHANGE_ZADD
  5636. z_shift= FILAMENTCHANGE_ZADD ;
  5637. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5638. #endif
  5639. }
  5640. //Move XY to side
  5641. if(code_seen('X'))
  5642. {
  5643. x_position = code_value();
  5644. }
  5645. else
  5646. {
  5647. #ifdef FILAMENTCHANGE_XPOS
  5648. x_position = FILAMENTCHANGE_XPOS;
  5649. #endif
  5650. }
  5651. if(code_seen('Y'))
  5652. {
  5653. y_position = code_value();
  5654. }
  5655. else
  5656. {
  5657. #ifdef FILAMENTCHANGE_YPOS
  5658. y_position = FILAMENTCHANGE_YPOS ;
  5659. #endif
  5660. }
  5661. if (mmu_enabled && code_seen("AUTO"))
  5662. automatic = true;
  5663. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5664. }
  5665. break;
  5666. #endif //FILAMENTCHANGEENABLE
  5667. case 601: //! M601 - Pause print
  5668. {
  5669. lcd_pause_print();
  5670. }
  5671. break;
  5672. case 602: { //! M602 - Resume print
  5673. lcd_resume_print();
  5674. }
  5675. break;
  5676. #ifdef PINDA_THERMISTOR
  5677. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5678. {
  5679. int set_target_pinda = 0;
  5680. if (code_seen('S')) {
  5681. set_target_pinda = code_value();
  5682. }
  5683. else {
  5684. break;
  5685. }
  5686. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5687. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5688. SERIAL_PROTOCOL(set_target_pinda);
  5689. SERIAL_PROTOCOLLN("");
  5690. codenum = millis();
  5691. cancel_heatup = false;
  5692. bool is_pinda_cooling = false;
  5693. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5694. is_pinda_cooling = true;
  5695. }
  5696. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5697. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5698. {
  5699. SERIAL_PROTOCOLPGM("P:");
  5700. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5701. SERIAL_PROTOCOLPGM("/");
  5702. SERIAL_PROTOCOL(set_target_pinda);
  5703. SERIAL_PROTOCOLLN("");
  5704. codenum = millis();
  5705. }
  5706. manage_heater();
  5707. manage_inactivity();
  5708. lcd_update(0);
  5709. }
  5710. LCD_MESSAGERPGM(_T(MSG_OK));
  5711. break;
  5712. }
  5713. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5714. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5715. uint8_t cal_status = calibration_status_pinda();
  5716. int16_t usteps = 0;
  5717. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5718. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5719. for (uint8_t i = 0; i < 6; i++)
  5720. {
  5721. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5722. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5723. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5724. SERIAL_PROTOCOLPGM(", ");
  5725. SERIAL_PROTOCOL(35 + (i * 5));
  5726. SERIAL_PROTOCOLPGM(", ");
  5727. SERIAL_PROTOCOL(usteps);
  5728. SERIAL_PROTOCOLPGM(", ");
  5729. SERIAL_PROTOCOL(mm * 1000);
  5730. SERIAL_PROTOCOLLN("");
  5731. }
  5732. }
  5733. else if (code_seen('!')) { // ! - Set factory default values
  5734. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5735. int16_t z_shift = 8; //40C - 20um - 8usteps
  5736. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5737. z_shift = 24; //45C - 60um - 24usteps
  5738. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5739. z_shift = 48; //50C - 120um - 48usteps
  5740. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5741. z_shift = 80; //55C - 200um - 80usteps
  5742. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5743. z_shift = 120; //60C - 300um - 120usteps
  5744. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5745. SERIAL_PROTOCOLLN("factory restored");
  5746. }
  5747. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5748. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5749. int16_t z_shift = 0;
  5750. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5751. SERIAL_PROTOCOLLN("zerorized");
  5752. }
  5753. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5754. int16_t usteps = code_value();
  5755. if (code_seen('I')) {
  5756. uint8_t index = code_value();
  5757. if (index < 5) {
  5758. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5759. SERIAL_PROTOCOLLN("OK");
  5760. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5761. for (uint8_t i = 0; i < 6; i++)
  5762. {
  5763. usteps = 0;
  5764. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5765. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5766. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5767. SERIAL_PROTOCOLPGM(", ");
  5768. SERIAL_PROTOCOL(35 + (i * 5));
  5769. SERIAL_PROTOCOLPGM(", ");
  5770. SERIAL_PROTOCOL(usteps);
  5771. SERIAL_PROTOCOLPGM(", ");
  5772. SERIAL_PROTOCOL(mm * 1000);
  5773. SERIAL_PROTOCOLLN("");
  5774. }
  5775. }
  5776. }
  5777. }
  5778. else {
  5779. SERIAL_PROTOCOLPGM("no valid command");
  5780. }
  5781. break;
  5782. #endif //PINDA_THERMISTOR
  5783. #ifdef LIN_ADVANCE
  5784. case 900: // M900: Set LIN_ADVANCE options.
  5785. gcode_M900();
  5786. break;
  5787. #endif
  5788. case 907: // M907 Set digital trimpot motor current using axis codes.
  5789. {
  5790. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5791. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5792. if(code_seen('B')) st_current_set(4,code_value());
  5793. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5794. #endif
  5795. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5796. if(code_seen('X')) st_current_set(0, code_value());
  5797. #endif
  5798. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5799. if(code_seen('Z')) st_current_set(1, code_value());
  5800. #endif
  5801. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5802. if(code_seen('E')) st_current_set(2, code_value());
  5803. #endif
  5804. }
  5805. break;
  5806. case 908: // M908 Control digital trimpot directly.
  5807. {
  5808. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5809. uint8_t channel,current;
  5810. if(code_seen('P')) channel=code_value();
  5811. if(code_seen('S')) current=code_value();
  5812. digitalPotWrite(channel, current);
  5813. #endif
  5814. }
  5815. break;
  5816. #ifdef TMC2130
  5817. case 910: //! M910 - TMC2130 init
  5818. {
  5819. tmc2130_init();
  5820. }
  5821. break;
  5822. case 911: //! M911 - Set TMC2130 holding currents
  5823. {
  5824. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5825. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5826. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5827. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5828. }
  5829. break;
  5830. case 912: //! M912 - Set TMC2130 running currents
  5831. {
  5832. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5833. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5834. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5835. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5836. }
  5837. break;
  5838. case 913: //! M913 - Print TMC2130 currents
  5839. {
  5840. tmc2130_print_currents();
  5841. }
  5842. break;
  5843. case 914: //! M914 - Set normal mode
  5844. {
  5845. tmc2130_mode = TMC2130_MODE_NORMAL;
  5846. update_mode_profile();
  5847. tmc2130_init();
  5848. }
  5849. break;
  5850. case 915: //! M915 - Set silent mode
  5851. {
  5852. tmc2130_mode = TMC2130_MODE_SILENT;
  5853. update_mode_profile();
  5854. tmc2130_init();
  5855. }
  5856. break;
  5857. case 916: //! M916 - Set sg_thrs
  5858. {
  5859. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5860. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5861. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5862. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5863. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5864. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5865. }
  5866. break;
  5867. case 917: //! M917 - Set TMC2130 pwm_ampl
  5868. {
  5869. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5870. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5871. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5872. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5873. }
  5874. break;
  5875. case 918: //! M918 - Set TMC2130 pwm_grad
  5876. {
  5877. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5878. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5879. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5880. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5881. }
  5882. break;
  5883. #endif //TMC2130
  5884. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5885. {
  5886. #ifdef TMC2130
  5887. if(code_seen('E'))
  5888. {
  5889. uint16_t res_new = code_value();
  5890. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5891. {
  5892. st_synchronize();
  5893. uint8_t axis = E_AXIS;
  5894. uint16_t res = tmc2130_get_res(axis);
  5895. tmc2130_set_res(axis, res_new);
  5896. if (res_new > res)
  5897. {
  5898. uint16_t fac = (res_new / res);
  5899. axis_steps_per_unit[axis] *= fac;
  5900. position[E_AXIS] *= fac;
  5901. }
  5902. else
  5903. {
  5904. uint16_t fac = (res / res_new);
  5905. axis_steps_per_unit[axis] /= fac;
  5906. position[E_AXIS] /= fac;
  5907. }
  5908. }
  5909. }
  5910. #else //TMC2130
  5911. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5912. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5913. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5914. if(code_seen('B')) microstep_mode(4,code_value());
  5915. microstep_readings();
  5916. #endif
  5917. #endif //TMC2130
  5918. }
  5919. break;
  5920. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5921. {
  5922. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5923. if(code_seen('S')) switch((int)code_value())
  5924. {
  5925. case 1:
  5926. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5927. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5928. break;
  5929. case 2:
  5930. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5931. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5932. break;
  5933. }
  5934. microstep_readings();
  5935. #endif
  5936. }
  5937. break;
  5938. case 701: //! M701 - load filament
  5939. {
  5940. if (mmu_enabled && code_seen('E'))
  5941. tmp_extruder = code_value();
  5942. gcode_M701();
  5943. }
  5944. break;
  5945. case 702: //! M702 [U C] -
  5946. {
  5947. if (mmu_enabled)
  5948. {
  5949. if (code_seen('U'))
  5950. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  5951. else if (code_seen('C'))
  5952. extr_unload(); //! if "C" unload just current filament
  5953. else
  5954. extr_unload_all(); //! otherwise unload all filaments
  5955. }
  5956. else
  5957. unload_filament();
  5958. }
  5959. break;
  5960. case 999: // M999: Restart after being stopped
  5961. Stopped = false;
  5962. lcd_reset_alert_level();
  5963. gcode_LastN = Stopped_gcode_LastN;
  5964. FlushSerialRequestResend();
  5965. break;
  5966. default:
  5967. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5968. }
  5969. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5970. mcode_in_progress = 0;
  5971. }
  5972. } // end if(code_seen('M')) (end of M codes)
  5973. //! T<extruder nr.> - select extruder in case of multi extruder printer
  5974. //! select filament in case of MMU_V2
  5975. //! if extruder is "?", open menu to let the user select extruder/filament
  5976. //!
  5977. //! For MMU_V2:
  5978. //! @n T<n> Gcode to extrude must follow immediately to load to extruder wheels
  5979. //! @n T? Gcode to extrude doesn't have to follow, load to extruder wheels is done automatically
  5980. else if(code_seen('T'))
  5981. {
  5982. int index;
  5983. st_synchronize();
  5984. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5985. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5986. SERIAL_ECHOLNPGM("Invalid T code.");
  5987. }
  5988. else {
  5989. if (*(strchr_pointer + index) == '?')
  5990. {
  5991. if(mmu_enabled)
  5992. {
  5993. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  5994. } else
  5995. {
  5996. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  5997. }
  5998. }
  5999. else {
  6000. tmp_extruder = code_value();
  6001. }
  6002. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6003. if (mmu_enabled)
  6004. {
  6005. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6006. manage_response(true, true);
  6007. mmu_command(MMU_CMD_C0);
  6008. mmu_extruder = tmp_extruder; //filament change is finished
  6009. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  6010. {
  6011. mmu_load_to_nozzle();
  6012. }
  6013. }
  6014. else
  6015. {
  6016. #ifdef SNMM
  6017. #ifdef LIN_ADVANCE
  6018. if (mmu_extruder != tmp_extruder)
  6019. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6020. #endif
  6021. mmu_extruder = tmp_extruder;
  6022. delay(100);
  6023. disable_e0();
  6024. disable_e1();
  6025. disable_e2();
  6026. pinMode(E_MUX0_PIN, OUTPUT);
  6027. pinMode(E_MUX1_PIN, OUTPUT);
  6028. delay(100);
  6029. SERIAL_ECHO_START;
  6030. SERIAL_ECHO("T:");
  6031. SERIAL_ECHOLN((int)tmp_extruder);
  6032. switch (tmp_extruder) {
  6033. case 1:
  6034. WRITE(E_MUX0_PIN, HIGH);
  6035. WRITE(E_MUX1_PIN, LOW);
  6036. break;
  6037. case 2:
  6038. WRITE(E_MUX0_PIN, LOW);
  6039. WRITE(E_MUX1_PIN, HIGH);
  6040. break;
  6041. case 3:
  6042. WRITE(E_MUX0_PIN, HIGH);
  6043. WRITE(E_MUX1_PIN, HIGH);
  6044. break;
  6045. default:
  6046. WRITE(E_MUX0_PIN, LOW);
  6047. WRITE(E_MUX1_PIN, LOW);
  6048. break;
  6049. }
  6050. delay(100);
  6051. #else //SNMM
  6052. if (tmp_extruder >= EXTRUDERS) {
  6053. SERIAL_ECHO_START;
  6054. SERIAL_ECHOPGM("T");
  6055. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6056. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6057. }
  6058. else {
  6059. #if EXTRUDERS > 1
  6060. boolean make_move = false;
  6061. #endif
  6062. if (code_seen('F')) {
  6063. #if EXTRUDERS > 1
  6064. make_move = true;
  6065. #endif
  6066. next_feedrate = code_value();
  6067. if (next_feedrate > 0.0) {
  6068. feedrate = next_feedrate;
  6069. }
  6070. }
  6071. #if EXTRUDERS > 1
  6072. if (tmp_extruder != active_extruder) {
  6073. // Save current position to return to after applying extruder offset
  6074. memcpy(destination, current_position, sizeof(destination));
  6075. // Offset extruder (only by XY)
  6076. int i;
  6077. for (i = 0; i < 2; i++) {
  6078. current_position[i] = current_position[i] -
  6079. extruder_offset[i][active_extruder] +
  6080. extruder_offset[i][tmp_extruder];
  6081. }
  6082. // Set the new active extruder and position
  6083. active_extruder = tmp_extruder;
  6084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6085. // Move to the old position if 'F' was in the parameters
  6086. if (make_move && Stopped == false) {
  6087. prepare_move();
  6088. }
  6089. }
  6090. #endif
  6091. SERIAL_ECHO_START;
  6092. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6093. SERIAL_PROTOCOLLN((int)active_extruder);
  6094. }
  6095. #endif //SNMM
  6096. }
  6097. }
  6098. } // end if(code_seen('T')) (end of T codes)
  6099. else if (code_seen('D')) // D codes (debug)
  6100. {
  6101. switch((int)code_value())
  6102. {
  6103. #ifdef DEBUG_DCODES
  6104. case -1: //! D-1 - Endless loop
  6105. dcode__1(); break;
  6106. case 0: //! D0 - Reset
  6107. dcode_0(); break;
  6108. case 1: //! D1 - Clear EEPROM
  6109. dcode_1(); break;
  6110. case 2: //! D2 - Read/Write RAM
  6111. dcode_2(); break;
  6112. #endif //DEBUG_DCODES
  6113. #ifdef DEBUG_DCODE3
  6114. case 3: //! D3 - Read/Write EEPROM
  6115. dcode_3(); break;
  6116. #endif //DEBUG_DCODE3
  6117. #ifdef DEBUG_DCODES
  6118. case 4: //! D4 - Read/Write PIN
  6119. dcode_4(); break;
  6120. case 5: //! D5 - Read/Write FLASH
  6121. // dcode_5(); break;
  6122. break;
  6123. case 6: //! D6 - Read/Write external FLASH
  6124. dcode_6(); break;
  6125. case 7: //! D7 - Read/Write Bootloader
  6126. dcode_7(); break;
  6127. case 8: //! D8 - Read/Write PINDA
  6128. dcode_8(); break;
  6129. case 9: //! D9 - Read/Write ADC
  6130. dcode_9(); break;
  6131. case 10: //! D10 - XYZ calibration = OK
  6132. dcode_10(); break;
  6133. #ifdef TMC2130
  6134. case 2130: //! D2130 - TMC2130
  6135. dcode_2130(); break;
  6136. #endif //TMC2130
  6137. #ifdef FILAMENT_SENSOR
  6138. case 9125: //! D9125 - FILAMENT_SENSOR
  6139. dcode_9125(); break;
  6140. #endif //FILAMENT_SENSOR
  6141. #endif //DEBUG_DCODES
  6142. }
  6143. }
  6144. else
  6145. {
  6146. SERIAL_ECHO_START;
  6147. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6148. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6149. SERIAL_ECHOLNPGM("\"(2)");
  6150. }
  6151. KEEPALIVE_STATE(NOT_BUSY);
  6152. ClearToSend();
  6153. }
  6154. void FlushSerialRequestResend()
  6155. {
  6156. //char cmdbuffer[bufindr][100]="Resend:";
  6157. MYSERIAL.flush();
  6158. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6159. }
  6160. // Confirm the execution of a command, if sent from a serial line.
  6161. // Execution of a command from a SD card will not be confirmed.
  6162. void ClearToSend()
  6163. {
  6164. previous_millis_cmd = millis();
  6165. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6166. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6167. }
  6168. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6169. void update_currents() {
  6170. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6171. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6172. float tmp_motor[3];
  6173. //SERIAL_ECHOLNPGM("Currents updated: ");
  6174. if (destination[Z_AXIS] < Z_SILENT) {
  6175. //SERIAL_ECHOLNPGM("LOW");
  6176. for (uint8_t i = 0; i < 3; i++) {
  6177. st_current_set(i, current_low[i]);
  6178. /*MYSERIAL.print(int(i));
  6179. SERIAL_ECHOPGM(": ");
  6180. MYSERIAL.println(current_low[i]);*/
  6181. }
  6182. }
  6183. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6184. //SERIAL_ECHOLNPGM("HIGH");
  6185. for (uint8_t i = 0; i < 3; i++) {
  6186. st_current_set(i, current_high[i]);
  6187. /*MYSERIAL.print(int(i));
  6188. SERIAL_ECHOPGM(": ");
  6189. MYSERIAL.println(current_high[i]);*/
  6190. }
  6191. }
  6192. else {
  6193. for (uint8_t i = 0; i < 3; i++) {
  6194. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6195. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6196. st_current_set(i, tmp_motor[i]);
  6197. /*MYSERIAL.print(int(i));
  6198. SERIAL_ECHOPGM(": ");
  6199. MYSERIAL.println(tmp_motor[i]);*/
  6200. }
  6201. }
  6202. }
  6203. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6204. void get_coordinates()
  6205. {
  6206. bool seen[4]={false,false,false,false};
  6207. for(int8_t i=0; i < NUM_AXIS; i++) {
  6208. if(code_seen(axis_codes[i]))
  6209. {
  6210. bool relative = axis_relative_modes[i] || relative_mode;
  6211. destination[i] = (float)code_value();
  6212. if (i == E_AXIS) {
  6213. float emult = extruder_multiplier[active_extruder];
  6214. if (emult != 1.) {
  6215. if (! relative) {
  6216. destination[i] -= current_position[i];
  6217. relative = true;
  6218. }
  6219. destination[i] *= emult;
  6220. }
  6221. }
  6222. if (relative)
  6223. destination[i] += current_position[i];
  6224. seen[i]=true;
  6225. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6226. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6227. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6228. }
  6229. else destination[i] = current_position[i]; //Are these else lines really needed?
  6230. }
  6231. if(code_seen('F')) {
  6232. next_feedrate = code_value();
  6233. #ifdef MAX_SILENT_FEEDRATE
  6234. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6235. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6236. #endif //MAX_SILENT_FEEDRATE
  6237. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6238. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6239. {
  6240. // float e_max_speed =
  6241. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6242. }
  6243. }
  6244. }
  6245. void get_arc_coordinates()
  6246. {
  6247. #ifdef SF_ARC_FIX
  6248. bool relative_mode_backup = relative_mode;
  6249. relative_mode = true;
  6250. #endif
  6251. get_coordinates();
  6252. #ifdef SF_ARC_FIX
  6253. relative_mode=relative_mode_backup;
  6254. #endif
  6255. if(code_seen('I')) {
  6256. offset[0] = code_value();
  6257. }
  6258. else {
  6259. offset[0] = 0.0;
  6260. }
  6261. if(code_seen('J')) {
  6262. offset[1] = code_value();
  6263. }
  6264. else {
  6265. offset[1] = 0.0;
  6266. }
  6267. }
  6268. void clamp_to_software_endstops(float target[3])
  6269. {
  6270. #ifdef DEBUG_DISABLE_SWLIMITS
  6271. return;
  6272. #endif //DEBUG_DISABLE_SWLIMITS
  6273. world2machine_clamp(target[0], target[1]);
  6274. // Clamp the Z coordinate.
  6275. if (min_software_endstops) {
  6276. float negative_z_offset = 0;
  6277. #ifdef ENABLE_AUTO_BED_LEVELING
  6278. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6279. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6280. #endif
  6281. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6282. }
  6283. if (max_software_endstops) {
  6284. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6285. }
  6286. }
  6287. #ifdef MESH_BED_LEVELING
  6288. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6289. float dx = x - current_position[X_AXIS];
  6290. float dy = y - current_position[Y_AXIS];
  6291. float dz = z - current_position[Z_AXIS];
  6292. int n_segments = 0;
  6293. if (mbl.active) {
  6294. float len = abs(dx) + abs(dy);
  6295. if (len > 0)
  6296. // Split to 3cm segments or shorter.
  6297. n_segments = int(ceil(len / 30.f));
  6298. }
  6299. if (n_segments > 1) {
  6300. float de = e - current_position[E_AXIS];
  6301. for (int i = 1; i < n_segments; ++ i) {
  6302. float t = float(i) / float(n_segments);
  6303. if (saved_printing || (mbl.active == false)) return;
  6304. plan_buffer_line(
  6305. current_position[X_AXIS] + t * dx,
  6306. current_position[Y_AXIS] + t * dy,
  6307. current_position[Z_AXIS] + t * dz,
  6308. current_position[E_AXIS] + t * de,
  6309. feed_rate, extruder);
  6310. }
  6311. }
  6312. // The rest of the path.
  6313. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6314. current_position[X_AXIS] = x;
  6315. current_position[Y_AXIS] = y;
  6316. current_position[Z_AXIS] = z;
  6317. current_position[E_AXIS] = e;
  6318. }
  6319. #endif // MESH_BED_LEVELING
  6320. void prepare_move()
  6321. {
  6322. clamp_to_software_endstops(destination);
  6323. previous_millis_cmd = millis();
  6324. // Do not use feedmultiply for E or Z only moves
  6325. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6326. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6327. }
  6328. else {
  6329. #ifdef MESH_BED_LEVELING
  6330. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6331. #else
  6332. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6333. #endif
  6334. }
  6335. for(int8_t i=0; i < NUM_AXIS; i++) {
  6336. current_position[i] = destination[i];
  6337. }
  6338. }
  6339. void prepare_arc_move(char isclockwise) {
  6340. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6341. // Trace the arc
  6342. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6343. // As far as the parser is concerned, the position is now == target. In reality the
  6344. // motion control system might still be processing the action and the real tool position
  6345. // in any intermediate location.
  6346. for(int8_t i=0; i < NUM_AXIS; i++) {
  6347. current_position[i] = destination[i];
  6348. }
  6349. previous_millis_cmd = millis();
  6350. }
  6351. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6352. #if defined(FAN_PIN)
  6353. #if CONTROLLERFAN_PIN == FAN_PIN
  6354. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6355. #endif
  6356. #endif
  6357. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6358. unsigned long lastMotorCheck = 0;
  6359. void controllerFan()
  6360. {
  6361. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6362. {
  6363. lastMotorCheck = millis();
  6364. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6365. #if EXTRUDERS > 2
  6366. || !READ(E2_ENABLE_PIN)
  6367. #endif
  6368. #if EXTRUDER > 1
  6369. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6370. || !READ(X2_ENABLE_PIN)
  6371. #endif
  6372. || !READ(E1_ENABLE_PIN)
  6373. #endif
  6374. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6375. {
  6376. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6377. }
  6378. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6379. {
  6380. digitalWrite(CONTROLLERFAN_PIN, 0);
  6381. analogWrite(CONTROLLERFAN_PIN, 0);
  6382. }
  6383. else
  6384. {
  6385. // allows digital or PWM fan output to be used (see M42 handling)
  6386. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6387. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6388. }
  6389. }
  6390. }
  6391. #endif
  6392. #ifdef TEMP_STAT_LEDS
  6393. static bool blue_led = false;
  6394. static bool red_led = false;
  6395. static uint32_t stat_update = 0;
  6396. void handle_status_leds(void) {
  6397. float max_temp = 0.0;
  6398. if(millis() > stat_update) {
  6399. stat_update += 500; // Update every 0.5s
  6400. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6401. max_temp = max(max_temp, degHotend(cur_extruder));
  6402. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6403. }
  6404. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6405. max_temp = max(max_temp, degTargetBed());
  6406. max_temp = max(max_temp, degBed());
  6407. #endif
  6408. if((max_temp > 55.0) && (red_led == false)) {
  6409. digitalWrite(STAT_LED_RED, 1);
  6410. digitalWrite(STAT_LED_BLUE, 0);
  6411. red_led = true;
  6412. blue_led = false;
  6413. }
  6414. if((max_temp < 54.0) && (blue_led == false)) {
  6415. digitalWrite(STAT_LED_RED, 0);
  6416. digitalWrite(STAT_LED_BLUE, 1);
  6417. red_led = false;
  6418. blue_led = true;
  6419. }
  6420. }
  6421. }
  6422. #endif
  6423. #ifdef SAFETYTIMER
  6424. /**
  6425. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6426. *
  6427. * Full screen blocking notification message is shown after heater turning off.
  6428. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6429. * damage print.
  6430. *
  6431. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6432. */
  6433. static void handleSafetyTimer()
  6434. {
  6435. #if (EXTRUDERS > 1)
  6436. #error Implemented only for one extruder.
  6437. #endif //(EXTRUDERS > 1)
  6438. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6439. {
  6440. safetyTimer.stop();
  6441. }
  6442. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6443. {
  6444. safetyTimer.start();
  6445. }
  6446. else if (safetyTimer.expired(safetytimer_inactive_time))
  6447. {
  6448. setTargetBed(0);
  6449. setAllTargetHotends(0);
  6450. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6451. }
  6452. }
  6453. #endif //SAFETYTIMER
  6454. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6455. {
  6456. #ifdef FILAMENT_SENSOR
  6457. if (mmu_enabled == false)
  6458. {
  6459. if (mcode_in_progress != 600) //M600 not in progress
  6460. {
  6461. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6462. {
  6463. if (fsensor_check_autoload())
  6464. {
  6465. fsensor_autoload_check_stop();
  6466. if (degHotend0() > EXTRUDE_MINTEMP)
  6467. {
  6468. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6469. tone(BEEPER, 1000);
  6470. delay_keep_alive(50);
  6471. noTone(BEEPER);
  6472. loading_flag = true;
  6473. enquecommand_front_P((PSTR("M701")));
  6474. }
  6475. else
  6476. {
  6477. lcd_update_enable(false);
  6478. lcd_clear();
  6479. lcd_set_cursor(0, 0);
  6480. lcd_puts_P(_T(MSG_ERROR));
  6481. lcd_set_cursor(0, 2);
  6482. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6483. delay(2000);
  6484. lcd_clear();
  6485. lcd_update_enable(true);
  6486. }
  6487. }
  6488. }
  6489. else
  6490. fsensor_autoload_check_stop();
  6491. }
  6492. }
  6493. #endif //FILAMENT_SENSOR
  6494. #ifdef SAFETYTIMER
  6495. handleSafetyTimer();
  6496. #endif //SAFETYTIMER
  6497. #if defined(KILL_PIN) && KILL_PIN > -1
  6498. static int killCount = 0; // make the inactivity button a bit less responsive
  6499. const int KILL_DELAY = 10000;
  6500. #endif
  6501. if(buflen < (BUFSIZE-1)){
  6502. get_command();
  6503. }
  6504. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6505. if(max_inactive_time)
  6506. kill(_n(""), 4);
  6507. if(stepper_inactive_time) {
  6508. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6509. {
  6510. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6511. disable_x();
  6512. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6513. disable_y();
  6514. disable_z();
  6515. disable_e0();
  6516. disable_e1();
  6517. disable_e2();
  6518. }
  6519. }
  6520. }
  6521. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6522. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6523. {
  6524. chdkActive = false;
  6525. WRITE(CHDK, LOW);
  6526. }
  6527. #endif
  6528. #if defined(KILL_PIN) && KILL_PIN > -1
  6529. // Check if the kill button was pressed and wait just in case it was an accidental
  6530. // key kill key press
  6531. // -------------------------------------------------------------------------------
  6532. if( 0 == READ(KILL_PIN) )
  6533. {
  6534. killCount++;
  6535. }
  6536. else if (killCount > 0)
  6537. {
  6538. killCount--;
  6539. }
  6540. // Exceeded threshold and we can confirm that it was not accidental
  6541. // KILL the machine
  6542. // ----------------------------------------------------------------
  6543. if ( killCount >= KILL_DELAY)
  6544. {
  6545. kill("", 5);
  6546. }
  6547. #endif
  6548. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6549. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6550. #endif
  6551. #ifdef EXTRUDER_RUNOUT_PREVENT
  6552. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6553. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6554. {
  6555. bool oldstatus=READ(E0_ENABLE_PIN);
  6556. enable_e0();
  6557. float oldepos=current_position[E_AXIS];
  6558. float oldedes=destination[E_AXIS];
  6559. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6560. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6561. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6562. current_position[E_AXIS]=oldepos;
  6563. destination[E_AXIS]=oldedes;
  6564. plan_set_e_position(oldepos);
  6565. previous_millis_cmd=millis();
  6566. st_synchronize();
  6567. WRITE(E0_ENABLE_PIN,oldstatus);
  6568. }
  6569. #endif
  6570. #ifdef TEMP_STAT_LEDS
  6571. handle_status_leds();
  6572. #endif
  6573. check_axes_activity();
  6574. mmu_loop();
  6575. }
  6576. void kill(const char *full_screen_message, unsigned char id)
  6577. {
  6578. printf_P(_N("KILL: %d\n"), id);
  6579. //return;
  6580. cli(); // Stop interrupts
  6581. disable_heater();
  6582. disable_x();
  6583. // SERIAL_ECHOLNPGM("kill - disable Y");
  6584. disable_y();
  6585. disable_z();
  6586. disable_e0();
  6587. disable_e1();
  6588. disable_e2();
  6589. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6590. pinMode(PS_ON_PIN,INPUT);
  6591. #endif
  6592. SERIAL_ERROR_START;
  6593. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6594. if (full_screen_message != NULL) {
  6595. SERIAL_ERRORLNRPGM(full_screen_message);
  6596. lcd_display_message_fullscreen_P(full_screen_message);
  6597. } else {
  6598. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6599. }
  6600. // FMC small patch to update the LCD before ending
  6601. sei(); // enable interrupts
  6602. for ( int i=5; i--; lcd_update(0))
  6603. {
  6604. delay(200);
  6605. }
  6606. cli(); // disable interrupts
  6607. suicide();
  6608. while(1)
  6609. {
  6610. #ifdef WATCHDOG
  6611. wdt_reset();
  6612. #endif //WATCHDOG
  6613. /* Intentionally left empty */
  6614. } // Wait for reset
  6615. }
  6616. void Stop()
  6617. {
  6618. disable_heater();
  6619. if(Stopped == false) {
  6620. Stopped = true;
  6621. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6622. SERIAL_ERROR_START;
  6623. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6624. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6625. }
  6626. }
  6627. bool IsStopped() { return Stopped; };
  6628. #ifdef FAST_PWM_FAN
  6629. void setPwmFrequency(uint8_t pin, int val)
  6630. {
  6631. val &= 0x07;
  6632. switch(digitalPinToTimer(pin))
  6633. {
  6634. #if defined(TCCR0A)
  6635. case TIMER0A:
  6636. case TIMER0B:
  6637. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6638. // TCCR0B |= val;
  6639. break;
  6640. #endif
  6641. #if defined(TCCR1A)
  6642. case TIMER1A:
  6643. case TIMER1B:
  6644. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6645. // TCCR1B |= val;
  6646. break;
  6647. #endif
  6648. #if defined(TCCR2)
  6649. case TIMER2:
  6650. case TIMER2:
  6651. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6652. TCCR2 |= val;
  6653. break;
  6654. #endif
  6655. #if defined(TCCR2A)
  6656. case TIMER2A:
  6657. case TIMER2B:
  6658. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6659. TCCR2B |= val;
  6660. break;
  6661. #endif
  6662. #if defined(TCCR3A)
  6663. case TIMER3A:
  6664. case TIMER3B:
  6665. case TIMER3C:
  6666. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6667. TCCR3B |= val;
  6668. break;
  6669. #endif
  6670. #if defined(TCCR4A)
  6671. case TIMER4A:
  6672. case TIMER4B:
  6673. case TIMER4C:
  6674. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6675. TCCR4B |= val;
  6676. break;
  6677. #endif
  6678. #if defined(TCCR5A)
  6679. case TIMER5A:
  6680. case TIMER5B:
  6681. case TIMER5C:
  6682. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6683. TCCR5B |= val;
  6684. break;
  6685. #endif
  6686. }
  6687. }
  6688. #endif //FAST_PWM_FAN
  6689. //! @brief Get and validate extruder number
  6690. //!
  6691. //! If it is not specified, active_extruder is returned in parameter extruder.
  6692. //! @param [in] code M code number
  6693. //! @param [out] extruder
  6694. //! @return error
  6695. //! @retval true Invalid extruder specified in T code
  6696. //! @retval false Valid extruder specified in T code, or not specifiead
  6697. bool setTargetedHotend(int code, uint8_t &extruder)
  6698. {
  6699. extruder = active_extruder;
  6700. if(code_seen('T')) {
  6701. extruder = code_value();
  6702. if(extruder >= EXTRUDERS) {
  6703. SERIAL_ECHO_START;
  6704. switch(code){
  6705. case 104:
  6706. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6707. break;
  6708. case 105:
  6709. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6710. break;
  6711. case 109:
  6712. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6713. break;
  6714. case 218:
  6715. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6716. break;
  6717. case 221:
  6718. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6719. break;
  6720. }
  6721. SERIAL_PROTOCOLLN((int)extruder);
  6722. return true;
  6723. }
  6724. }
  6725. return false;
  6726. }
  6727. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6728. {
  6729. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6730. {
  6731. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6732. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6733. }
  6734. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6735. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6736. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6737. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6738. total_filament_used = 0;
  6739. }
  6740. float calculate_extruder_multiplier(float diameter) {
  6741. float out = 1.f;
  6742. if (volumetric_enabled && diameter > 0.f) {
  6743. float area = M_PI * diameter * diameter * 0.25;
  6744. out = 1.f / area;
  6745. }
  6746. if (extrudemultiply != 100)
  6747. out *= float(extrudemultiply) * 0.01f;
  6748. return out;
  6749. }
  6750. void calculate_extruder_multipliers() {
  6751. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6752. #if EXTRUDERS > 1
  6753. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6754. #if EXTRUDERS > 2
  6755. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6756. #endif
  6757. #endif
  6758. }
  6759. void delay_keep_alive(unsigned int ms)
  6760. {
  6761. for (;;) {
  6762. manage_heater();
  6763. // Manage inactivity, but don't disable steppers on timeout.
  6764. manage_inactivity(true);
  6765. lcd_update(0);
  6766. if (ms == 0)
  6767. break;
  6768. else if (ms >= 50) {
  6769. delay(50);
  6770. ms -= 50;
  6771. } else {
  6772. delay(ms);
  6773. ms = 0;
  6774. }
  6775. }
  6776. }
  6777. static void wait_for_heater(long codenum, uint8_t extruder) {
  6778. #ifdef TEMP_RESIDENCY_TIME
  6779. long residencyStart;
  6780. residencyStart = -1;
  6781. /* continue to loop until we have reached the target temp
  6782. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6783. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6784. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6785. #else
  6786. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6787. #endif //TEMP_RESIDENCY_TIME
  6788. if ((millis() - codenum) > 1000UL)
  6789. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6790. if (!farm_mode) {
  6791. SERIAL_PROTOCOLPGM("T:");
  6792. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6793. SERIAL_PROTOCOLPGM(" E:");
  6794. SERIAL_PROTOCOL((int)extruder);
  6795. #ifdef TEMP_RESIDENCY_TIME
  6796. SERIAL_PROTOCOLPGM(" W:");
  6797. if (residencyStart > -1)
  6798. {
  6799. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6800. SERIAL_PROTOCOLLN(codenum);
  6801. }
  6802. else
  6803. {
  6804. SERIAL_PROTOCOLLN("?");
  6805. }
  6806. }
  6807. #else
  6808. SERIAL_PROTOCOLLN("");
  6809. #endif
  6810. codenum = millis();
  6811. }
  6812. manage_heater();
  6813. manage_inactivity();
  6814. lcd_update(0);
  6815. #ifdef TEMP_RESIDENCY_TIME
  6816. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6817. or when current temp falls outside the hysteresis after target temp was reached */
  6818. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6819. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6820. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6821. {
  6822. residencyStart = millis();
  6823. }
  6824. #endif //TEMP_RESIDENCY_TIME
  6825. }
  6826. }
  6827. void check_babystep()
  6828. {
  6829. int babystep_z;
  6830. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6831. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6832. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6833. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6834. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6835. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6836. lcd_update_enable(true);
  6837. }
  6838. }
  6839. #ifdef DIS
  6840. void d_setup()
  6841. {
  6842. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6843. pinMode(D_DATA, INPUT_PULLUP);
  6844. pinMode(D_REQUIRE, OUTPUT);
  6845. digitalWrite(D_REQUIRE, HIGH);
  6846. }
  6847. float d_ReadData()
  6848. {
  6849. int digit[13];
  6850. String mergeOutput;
  6851. float output;
  6852. digitalWrite(D_REQUIRE, HIGH);
  6853. for (int i = 0; i<13; i++)
  6854. {
  6855. for (int j = 0; j < 4; j++)
  6856. {
  6857. while (digitalRead(D_DATACLOCK) == LOW) {}
  6858. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6859. bitWrite(digit[i], j, digitalRead(D_DATA));
  6860. }
  6861. }
  6862. digitalWrite(D_REQUIRE, LOW);
  6863. mergeOutput = "";
  6864. output = 0;
  6865. for (int r = 5; r <= 10; r++) //Merge digits
  6866. {
  6867. mergeOutput += digit[r];
  6868. }
  6869. output = mergeOutput.toFloat();
  6870. if (digit[4] == 8) //Handle sign
  6871. {
  6872. output *= -1;
  6873. }
  6874. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6875. {
  6876. output /= 10;
  6877. }
  6878. return output;
  6879. }
  6880. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6881. int t1 = 0;
  6882. int t_delay = 0;
  6883. int digit[13];
  6884. int m;
  6885. char str[3];
  6886. //String mergeOutput;
  6887. char mergeOutput[15];
  6888. float output;
  6889. int mesh_point = 0; //index number of calibration point
  6890. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6891. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6892. float mesh_home_z_search = 4;
  6893. float row[x_points_num];
  6894. int ix = 0;
  6895. int iy = 0;
  6896. const char* filename_wldsd = "wldsd.txt";
  6897. char data_wldsd[70];
  6898. char numb_wldsd[10];
  6899. d_setup();
  6900. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6901. // We don't know where we are! HOME!
  6902. // Push the commands to the front of the message queue in the reverse order!
  6903. // There shall be always enough space reserved for these commands.
  6904. repeatcommand_front(); // repeat G80 with all its parameters
  6905. enquecommand_front_P((PSTR("G28 W0")));
  6906. enquecommand_front_P((PSTR("G1 Z5")));
  6907. return;
  6908. }
  6909. unsigned int custom_message_type_old = custom_message_type;
  6910. unsigned int custom_message_state_old = custom_message_state;
  6911. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6912. custom_message_state = (x_points_num * y_points_num) + 10;
  6913. lcd_update(1);
  6914. mbl.reset();
  6915. babystep_undo();
  6916. card.openFile(filename_wldsd, false);
  6917. current_position[Z_AXIS] = mesh_home_z_search;
  6918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6919. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6920. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6921. int l_feedmultiply = setup_for_endstop_move(false);
  6922. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6923. SERIAL_PROTOCOL(x_points_num);
  6924. SERIAL_PROTOCOLPGM(",");
  6925. SERIAL_PROTOCOL(y_points_num);
  6926. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6927. SERIAL_PROTOCOL(mesh_home_z_search);
  6928. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6929. SERIAL_PROTOCOL(x_dimension);
  6930. SERIAL_PROTOCOLPGM(",");
  6931. SERIAL_PROTOCOL(y_dimension);
  6932. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6933. while (mesh_point != x_points_num * y_points_num) {
  6934. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6935. iy = mesh_point / x_points_num;
  6936. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6937. float z0 = 0.f;
  6938. current_position[Z_AXIS] = mesh_home_z_search;
  6939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6940. st_synchronize();
  6941. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6942. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6944. st_synchronize();
  6945. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6946. break;
  6947. card.closefile();
  6948. }
  6949. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6950. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6951. //strcat(data_wldsd, numb_wldsd);
  6952. //MYSERIAL.println(data_wldsd);
  6953. //delay(1000);
  6954. //delay(3000);
  6955. //t1 = millis();
  6956. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6957. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6958. memset(digit, 0, sizeof(digit));
  6959. //cli();
  6960. digitalWrite(D_REQUIRE, LOW);
  6961. for (int i = 0; i<13; i++)
  6962. {
  6963. //t1 = millis();
  6964. for (int j = 0; j < 4; j++)
  6965. {
  6966. while (digitalRead(D_DATACLOCK) == LOW) {}
  6967. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6968. bitWrite(digit[i], j, digitalRead(D_DATA));
  6969. }
  6970. //t_delay = (millis() - t1);
  6971. //SERIAL_PROTOCOLPGM(" ");
  6972. //SERIAL_PROTOCOL_F(t_delay, 5);
  6973. //SERIAL_PROTOCOLPGM(" ");
  6974. }
  6975. //sei();
  6976. digitalWrite(D_REQUIRE, HIGH);
  6977. mergeOutput[0] = '\0';
  6978. output = 0;
  6979. for (int r = 5; r <= 10; r++) //Merge digits
  6980. {
  6981. sprintf(str, "%d", digit[r]);
  6982. strcat(mergeOutput, str);
  6983. }
  6984. output = atof(mergeOutput);
  6985. if (digit[4] == 8) //Handle sign
  6986. {
  6987. output *= -1;
  6988. }
  6989. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6990. {
  6991. output *= 0.1;
  6992. }
  6993. //output = d_ReadData();
  6994. //row[ix] = current_position[Z_AXIS];
  6995. memset(data_wldsd, 0, sizeof(data_wldsd));
  6996. for (int i = 0; i <3; i++) {
  6997. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6998. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6999. strcat(data_wldsd, numb_wldsd);
  7000. strcat(data_wldsd, ";");
  7001. }
  7002. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7003. dtostrf(output, 8, 5, numb_wldsd);
  7004. strcat(data_wldsd, numb_wldsd);
  7005. //strcat(data_wldsd, ";");
  7006. card.write_command(data_wldsd);
  7007. //row[ix] = d_ReadData();
  7008. row[ix] = output; // current_position[Z_AXIS];
  7009. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7010. for (int i = 0; i < x_points_num; i++) {
  7011. SERIAL_PROTOCOLPGM(" ");
  7012. SERIAL_PROTOCOL_F(row[i], 5);
  7013. }
  7014. SERIAL_PROTOCOLPGM("\n");
  7015. }
  7016. custom_message_state--;
  7017. mesh_point++;
  7018. lcd_update(1);
  7019. }
  7020. card.closefile();
  7021. clean_up_after_endstop_move(l_feedmultiply);
  7022. }
  7023. #endif
  7024. void temp_compensation_start() {
  7025. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7026. custom_message_state = PINDA_HEAT_T + 1;
  7027. lcd_update(2);
  7028. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7029. current_position[E_AXIS] -= default_retraction;
  7030. }
  7031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7032. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7033. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7034. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7036. st_synchronize();
  7037. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7038. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7039. delay_keep_alive(1000);
  7040. custom_message_state = PINDA_HEAT_T - i;
  7041. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7042. else lcd_update(1);
  7043. }
  7044. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7045. custom_message_state = 0;
  7046. }
  7047. void temp_compensation_apply() {
  7048. int i_add;
  7049. int z_shift = 0;
  7050. float z_shift_mm;
  7051. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7052. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7053. i_add = (target_temperature_bed - 60) / 10;
  7054. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7055. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7056. }else {
  7057. //interpolation
  7058. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7059. }
  7060. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7062. st_synchronize();
  7063. plan_set_z_position(current_position[Z_AXIS]);
  7064. }
  7065. else {
  7066. //we have no temp compensation data
  7067. }
  7068. }
  7069. float temp_comp_interpolation(float inp_temperature) {
  7070. //cubic spline interpolation
  7071. int n, i, j;
  7072. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7073. int shift[10];
  7074. int temp_C[10];
  7075. n = 6; //number of measured points
  7076. shift[0] = 0;
  7077. for (i = 0; i < n; i++) {
  7078. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7079. temp_C[i] = 50 + i * 10; //temperature in C
  7080. #ifdef PINDA_THERMISTOR
  7081. temp_C[i] = 35 + i * 5; //temperature in C
  7082. #else
  7083. temp_C[i] = 50 + i * 10; //temperature in C
  7084. #endif
  7085. x[i] = (float)temp_C[i];
  7086. f[i] = (float)shift[i];
  7087. }
  7088. if (inp_temperature < x[0]) return 0;
  7089. for (i = n - 1; i>0; i--) {
  7090. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7091. h[i - 1] = x[i] - x[i - 1];
  7092. }
  7093. //*********** formation of h, s , f matrix **************
  7094. for (i = 1; i<n - 1; i++) {
  7095. m[i][i] = 2 * (h[i - 1] + h[i]);
  7096. if (i != 1) {
  7097. m[i][i - 1] = h[i - 1];
  7098. m[i - 1][i] = h[i - 1];
  7099. }
  7100. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7101. }
  7102. //*********** forward elimination **************
  7103. for (i = 1; i<n - 2; i++) {
  7104. temp = (m[i + 1][i] / m[i][i]);
  7105. for (j = 1; j <= n - 1; j++)
  7106. m[i + 1][j] -= temp*m[i][j];
  7107. }
  7108. //*********** backward substitution *********
  7109. for (i = n - 2; i>0; i--) {
  7110. sum = 0;
  7111. for (j = i; j <= n - 2; j++)
  7112. sum += m[i][j] * s[j];
  7113. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7114. }
  7115. for (i = 0; i<n - 1; i++)
  7116. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7117. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7118. b = s[i] / 2;
  7119. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7120. d = f[i];
  7121. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7122. }
  7123. return sum;
  7124. }
  7125. #ifdef PINDA_THERMISTOR
  7126. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7127. {
  7128. if (!temp_cal_active) return 0;
  7129. if (!calibration_status_pinda()) return 0;
  7130. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7131. }
  7132. #endif //PINDA_THERMISTOR
  7133. void long_pause() //long pause print
  7134. {
  7135. st_synchronize();
  7136. start_pause_print = millis();
  7137. //retract
  7138. current_position[E_AXIS] -= default_retraction;
  7139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7140. //lift z
  7141. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7142. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7144. //Move XY to side
  7145. current_position[X_AXIS] = X_PAUSE_POS;
  7146. current_position[Y_AXIS] = Y_PAUSE_POS;
  7147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7148. // Turn off the print fan
  7149. fanSpeed = 0;
  7150. st_synchronize();
  7151. }
  7152. void serialecho_temperatures() {
  7153. float tt = degHotend(active_extruder);
  7154. SERIAL_PROTOCOLPGM("T:");
  7155. SERIAL_PROTOCOL(tt);
  7156. SERIAL_PROTOCOLPGM(" E:");
  7157. SERIAL_PROTOCOL((int)active_extruder);
  7158. SERIAL_PROTOCOLPGM(" B:");
  7159. SERIAL_PROTOCOL_F(degBed(), 1);
  7160. SERIAL_PROTOCOLLN("");
  7161. }
  7162. extern uint32_t sdpos_atomic;
  7163. #ifdef UVLO_SUPPORT
  7164. void uvlo_()
  7165. {
  7166. unsigned long time_start = millis();
  7167. bool sd_print = card.sdprinting;
  7168. // Conserve power as soon as possible.
  7169. disable_x();
  7170. disable_y();
  7171. #ifdef TMC2130
  7172. tmc2130_set_current_h(Z_AXIS, 20);
  7173. tmc2130_set_current_r(Z_AXIS, 20);
  7174. tmc2130_set_current_h(E_AXIS, 20);
  7175. tmc2130_set_current_r(E_AXIS, 20);
  7176. #endif //TMC2130
  7177. // Indicate that the interrupt has been triggered.
  7178. // SERIAL_ECHOLNPGM("UVLO");
  7179. // Read out the current Z motor microstep counter. This will be later used
  7180. // for reaching the zero full step before powering off.
  7181. uint16_t z_microsteps = 0;
  7182. #ifdef TMC2130
  7183. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7184. #endif //TMC2130
  7185. // Calculate the file position, from which to resume this print.
  7186. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7187. {
  7188. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7189. sd_position -= sdlen_planner;
  7190. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7191. sd_position -= sdlen_cmdqueue;
  7192. if (sd_position < 0) sd_position = 0;
  7193. }
  7194. // Backup the feedrate in mm/min.
  7195. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7196. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7197. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7198. // are in action.
  7199. planner_abort_hard();
  7200. // Store the current extruder position.
  7201. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7202. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7203. // Clean the input command queue.
  7204. cmdqueue_reset();
  7205. card.sdprinting = false;
  7206. // card.closefile();
  7207. // Enable stepper driver interrupt to move Z axis.
  7208. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7209. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7210. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7211. sei();
  7212. plan_buffer_line(
  7213. current_position[X_AXIS],
  7214. current_position[Y_AXIS],
  7215. current_position[Z_AXIS],
  7216. current_position[E_AXIS] - default_retraction,
  7217. 95, active_extruder);
  7218. st_synchronize();
  7219. disable_e0();
  7220. plan_buffer_line(
  7221. current_position[X_AXIS],
  7222. current_position[Y_AXIS],
  7223. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7224. current_position[E_AXIS] - default_retraction,
  7225. 40, active_extruder);
  7226. st_synchronize();
  7227. disable_e0();
  7228. plan_buffer_line(
  7229. current_position[X_AXIS],
  7230. current_position[Y_AXIS],
  7231. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7232. current_position[E_AXIS] - default_retraction,
  7233. 40, active_extruder);
  7234. st_synchronize();
  7235. disable_e0();
  7236. disable_z();
  7237. // Move Z up to the next 0th full step.
  7238. // Write the file position.
  7239. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7240. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7241. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7242. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7243. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7244. // Scale the z value to 1u resolution.
  7245. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7246. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7247. }
  7248. // Read out the current Z motor microstep counter. This will be later used
  7249. // for reaching the zero full step before powering off.
  7250. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7251. // Store the current position.
  7252. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7253. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7254. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7255. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7256. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7257. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7258. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7259. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7260. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7261. #if EXTRUDERS > 1
  7262. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7263. #if EXTRUDERS > 2
  7264. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7265. #endif
  7266. #endif
  7267. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7268. // Finaly store the "power outage" flag.
  7269. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7270. st_synchronize();
  7271. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7272. disable_z();
  7273. // Increment power failure counter
  7274. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7275. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7276. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7277. #if 0
  7278. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7279. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7280. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7281. st_synchronize();
  7282. #endif
  7283. wdt_enable(WDTO_500MS);
  7284. WRITE(BEEPER,HIGH);
  7285. while(1)
  7286. ;
  7287. }
  7288. void uvlo_tiny()
  7289. {
  7290. uint16_t z_microsteps=0;
  7291. // Conserve power as soon as possible.
  7292. disable_x();
  7293. disable_y();
  7294. disable_e0();
  7295. #ifdef TMC2130
  7296. tmc2130_set_current_h(Z_AXIS, 20);
  7297. tmc2130_set_current_r(Z_AXIS, 20);
  7298. #endif //TMC2130
  7299. // Read out the current Z motor microstep counter
  7300. #ifdef TMC2130
  7301. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7302. #endif //TMC2130
  7303. planner_abort_hard();
  7304. sei();
  7305. plan_buffer_line(
  7306. current_position[X_AXIS],
  7307. current_position[Y_AXIS],
  7308. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7309. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7310. current_position[E_AXIS],
  7311. 40, active_extruder);
  7312. st_synchronize();
  7313. disable_z();
  7314. // Finaly store the "power outage" flag.
  7315. //if(sd_print)
  7316. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7317. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7318. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7319. // Increment power failure counter
  7320. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7321. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7322. wdt_enable(WDTO_500MS);
  7323. WRITE(BEEPER,HIGH);
  7324. while(1)
  7325. ;
  7326. }
  7327. #endif //UVLO_SUPPORT
  7328. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7329. void setup_fan_interrupt() {
  7330. //INT7
  7331. DDRE &= ~(1 << 7); //input pin
  7332. PORTE &= ~(1 << 7); //no internal pull-up
  7333. //start with sensing rising edge
  7334. EICRB &= ~(1 << 6);
  7335. EICRB |= (1 << 7);
  7336. //enable INT7 interrupt
  7337. EIMSK |= (1 << 7);
  7338. }
  7339. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7340. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7341. ISR(INT7_vect) {
  7342. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7343. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7344. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7345. t_fan_rising_edge = millis_nc();
  7346. }
  7347. else { //interrupt was triggered by falling edge
  7348. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7349. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7350. }
  7351. }
  7352. EICRB ^= (1 << 6); //change edge
  7353. }
  7354. #endif
  7355. #ifdef UVLO_SUPPORT
  7356. void setup_uvlo_interrupt() {
  7357. DDRE &= ~(1 << 4); //input pin
  7358. PORTE &= ~(1 << 4); //no internal pull-up
  7359. //sensing falling edge
  7360. EICRB |= (1 << 0);
  7361. EICRB &= ~(1 << 1);
  7362. //enable INT4 interrupt
  7363. EIMSK |= (1 << 4);
  7364. }
  7365. ISR(INT4_vect) {
  7366. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7367. SERIAL_ECHOLNPGM("INT4");
  7368. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7369. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7370. }
  7371. void recover_print(uint8_t automatic) {
  7372. char cmd[30];
  7373. lcd_update_enable(true);
  7374. lcd_update(2);
  7375. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7376. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7377. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7378. // Lift the print head, so one may remove the excess priming material.
  7379. if(!bTiny&&(current_position[Z_AXIS]<25))
  7380. enquecommand_P(PSTR("G1 Z25 F800"));
  7381. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7382. enquecommand_P(PSTR("G28 X Y"));
  7383. // Set the target bed and nozzle temperatures and wait.
  7384. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7385. enquecommand(cmd);
  7386. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7387. enquecommand(cmd);
  7388. enquecommand_P(PSTR("M83")); //E axis relative mode
  7389. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7390. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7391. if(automatic == 0){
  7392. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7393. }
  7394. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7395. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7396. // Restart the print.
  7397. restore_print_from_eeprom();
  7398. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7399. }
  7400. void recover_machine_state_after_power_panic(bool bTiny)
  7401. {
  7402. char cmd[30];
  7403. // 1) Recover the logical cordinates at the time of the power panic.
  7404. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7405. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7406. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7407. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7408. // The current position after power panic is moved to the next closest 0th full step.
  7409. if(bTiny)
  7410. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7411. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7412. else
  7413. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7414. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7415. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7416. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7417. sprintf_P(cmd, PSTR("G92 E"));
  7418. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7419. enquecommand(cmd);
  7420. }
  7421. memcpy(destination, current_position, sizeof(destination));
  7422. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7423. print_world_coordinates();
  7424. // 2) Initialize the logical to physical coordinate system transformation.
  7425. world2machine_initialize();
  7426. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7427. mbl.active = false;
  7428. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7429. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7430. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7431. // Scale the z value to 10u resolution.
  7432. int16_t v;
  7433. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7434. if (v != 0)
  7435. mbl.active = true;
  7436. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7437. }
  7438. if (mbl.active)
  7439. mbl.upsample_3x3();
  7440. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7441. // print_mesh_bed_leveling_table();
  7442. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7443. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7444. babystep_load();
  7445. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7446. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7447. // 6) Power up the motors, mark their positions as known.
  7448. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7449. axis_known_position[X_AXIS] = true; enable_x();
  7450. axis_known_position[Y_AXIS] = true; enable_y();
  7451. axis_known_position[Z_AXIS] = true; enable_z();
  7452. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7453. print_physical_coordinates();
  7454. // 7) Recover the target temperatures.
  7455. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7456. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7457. // 8) Recover extruder multipilers
  7458. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7459. #if EXTRUDERS > 1
  7460. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7461. #if EXTRUDERS > 2
  7462. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7463. #endif
  7464. #endif
  7465. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7466. }
  7467. void restore_print_from_eeprom() {
  7468. int feedrate_rec;
  7469. uint8_t fan_speed_rec;
  7470. char cmd[30];
  7471. char filename[13];
  7472. uint8_t depth = 0;
  7473. char dir_name[9];
  7474. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7475. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7476. SERIAL_ECHOPGM("Feedrate:");
  7477. MYSERIAL.println(feedrate_rec);
  7478. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7479. MYSERIAL.println(int(depth));
  7480. for (int i = 0; i < depth; i++) {
  7481. for (int j = 0; j < 8; j++) {
  7482. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7483. }
  7484. dir_name[8] = '\0';
  7485. MYSERIAL.println(dir_name);
  7486. strcpy(dir_names[i], dir_name);
  7487. card.chdir(dir_name);
  7488. }
  7489. for (int i = 0; i < 8; i++) {
  7490. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7491. }
  7492. filename[8] = '\0';
  7493. MYSERIAL.print(filename);
  7494. strcat_P(filename, PSTR(".gco"));
  7495. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7496. enquecommand(cmd);
  7497. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7498. SERIAL_ECHOPGM("Position read from eeprom:");
  7499. MYSERIAL.println(position);
  7500. // E axis relative mode.
  7501. enquecommand_P(PSTR("M83"));
  7502. // Move to the XY print position in logical coordinates, where the print has been killed.
  7503. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7504. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7505. strcat_P(cmd, PSTR(" F2000"));
  7506. enquecommand(cmd);
  7507. // Move the Z axis down to the print, in logical coordinates.
  7508. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7509. enquecommand(cmd);
  7510. // Unretract.
  7511. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7512. // Set the feedrate saved at the power panic.
  7513. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7514. enquecommand(cmd);
  7515. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7516. {
  7517. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7518. }
  7519. // Set the fan speed saved at the power panic.
  7520. strcpy_P(cmd, PSTR("M106 S"));
  7521. strcat(cmd, itostr3(int(fan_speed_rec)));
  7522. enquecommand(cmd);
  7523. // Set a position in the file.
  7524. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7525. enquecommand(cmd);
  7526. enquecommand_P(PSTR("G4 S0"));
  7527. enquecommand_P(PSTR("PRUSA uvlo"));
  7528. }
  7529. #endif //UVLO_SUPPORT
  7530. //! @brief Immediately stop print moves
  7531. //!
  7532. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7533. //! If printing from sd card, position in file is saved.
  7534. //! If printing from USB, line number is saved.
  7535. //!
  7536. //! @param z_move
  7537. //! @param e_move
  7538. void stop_and_save_print_to_ram(float z_move, float e_move)
  7539. {
  7540. if (saved_printing) return;
  7541. #if 0
  7542. unsigned char nplanner_blocks;
  7543. #endif
  7544. unsigned char nlines;
  7545. uint16_t sdlen_planner;
  7546. uint16_t sdlen_cmdqueue;
  7547. cli();
  7548. if (card.sdprinting) {
  7549. #if 0
  7550. nplanner_blocks = number_of_blocks();
  7551. #endif
  7552. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7553. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7554. saved_sdpos -= sdlen_planner;
  7555. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7556. saved_sdpos -= sdlen_cmdqueue;
  7557. saved_printing_type = PRINTING_TYPE_SD;
  7558. }
  7559. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7560. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7561. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7562. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7563. saved_sdpos -= nlines;
  7564. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7565. saved_printing_type = PRINTING_TYPE_USB;
  7566. }
  7567. else {
  7568. //not sd printing nor usb printing
  7569. }
  7570. #if 0
  7571. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7572. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7573. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7574. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7575. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7576. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7577. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7578. {
  7579. card.setIndex(saved_sdpos);
  7580. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7581. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7582. MYSERIAL.print(char(card.get()));
  7583. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7584. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7585. MYSERIAL.print(char(card.get()));
  7586. SERIAL_ECHOLNPGM("End of command buffer");
  7587. }
  7588. {
  7589. // Print the content of the planner buffer, line by line:
  7590. card.setIndex(saved_sdpos);
  7591. int8_t iline = 0;
  7592. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7593. SERIAL_ECHOPGM("Planner line (from file): ");
  7594. MYSERIAL.print(int(iline), DEC);
  7595. SERIAL_ECHOPGM(", length: ");
  7596. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7597. SERIAL_ECHOPGM(", steps: (");
  7598. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7599. SERIAL_ECHOPGM(",");
  7600. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7601. SERIAL_ECHOPGM(",");
  7602. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7603. SERIAL_ECHOPGM(",");
  7604. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7605. SERIAL_ECHOPGM("), events: ");
  7606. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7607. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7608. MYSERIAL.print(char(card.get()));
  7609. }
  7610. }
  7611. {
  7612. // Print the content of the command buffer, line by line:
  7613. int8_t iline = 0;
  7614. union {
  7615. struct {
  7616. char lo;
  7617. char hi;
  7618. } lohi;
  7619. uint16_t value;
  7620. } sdlen_single;
  7621. int _bufindr = bufindr;
  7622. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7623. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7624. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7625. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7626. }
  7627. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7628. MYSERIAL.print(int(iline), DEC);
  7629. SERIAL_ECHOPGM(", type: ");
  7630. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7631. SERIAL_ECHOPGM(", len: ");
  7632. MYSERIAL.println(sdlen_single.value, DEC);
  7633. // Print the content of the buffer line.
  7634. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7635. SERIAL_ECHOPGM("Buffer line (from file): ");
  7636. MYSERIAL.println(int(iline), DEC);
  7637. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7638. MYSERIAL.print(char(card.get()));
  7639. if (-- _buflen == 0)
  7640. break;
  7641. // First skip the current command ID and iterate up to the end of the string.
  7642. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7643. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7644. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7645. // If the end of the buffer was empty,
  7646. if (_bufindr == sizeof(cmdbuffer)) {
  7647. // skip to the start and find the nonzero command.
  7648. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7649. }
  7650. }
  7651. }
  7652. #endif
  7653. #if 0
  7654. saved_feedrate2 = feedrate; //save feedrate
  7655. #else
  7656. // Try to deduce the feedrate from the first block of the planner.
  7657. // Speed is in mm/min.
  7658. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7659. #endif
  7660. planner_abort_hard(); //abort printing
  7661. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7662. saved_active_extruder = active_extruder; //save active_extruder
  7663. saved_extruder_temperature = degTargetHotend(active_extruder);
  7664. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7665. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7666. saved_fanSpeed = fanSpeed;
  7667. cmdqueue_reset(); //empty cmdqueue
  7668. card.sdprinting = false;
  7669. // card.closefile();
  7670. saved_printing = true;
  7671. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7672. st_reset_timer();
  7673. sei();
  7674. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7675. #if 1
  7676. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7677. char buf[48];
  7678. // First unretract (relative extrusion)
  7679. if(!saved_extruder_relative_mode){
  7680. strcpy_P(buf, PSTR("M83"));
  7681. enquecommand(buf, false);
  7682. }
  7683. //retract 45mm/s
  7684. strcpy_P(buf, PSTR("G1 E"));
  7685. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7686. strcat_P(buf, PSTR(" F"));
  7687. dtostrf(2700, 8, 3, buf + strlen(buf));
  7688. enquecommand(buf, false);
  7689. // Then lift Z axis
  7690. strcpy_P(buf, PSTR("G1 Z"));
  7691. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7692. strcat_P(buf, PSTR(" F"));
  7693. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7694. // At this point the command queue is empty.
  7695. enquecommand(buf, false);
  7696. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7697. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7698. repeatcommand_front();
  7699. #else
  7700. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7701. st_synchronize(); //wait moving
  7702. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7703. memcpy(destination, current_position, sizeof(destination));
  7704. #endif
  7705. }
  7706. }
  7707. //! @brief Restore print from ram
  7708. //!
  7709. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7710. //! waits for extruder temperature restore, then restores position and continues
  7711. //! print moves.
  7712. //! Internaly lcd_update() is called by wait_for_heater().
  7713. //!
  7714. //! @param e_move
  7715. void restore_print_from_ram_and_continue(float e_move)
  7716. {
  7717. if (!saved_printing) return;
  7718. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7719. // current_position[axis] = st_get_position_mm(axis);
  7720. active_extruder = saved_active_extruder; //restore active_extruder
  7721. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7722. heating_status = 1;
  7723. wait_for_heater(millis(),saved_active_extruder);
  7724. heating_status = 2;
  7725. feedrate = saved_feedrate2; //restore feedrate
  7726. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7727. fanSpeed = saved_fanSpeed;
  7728. float e = saved_pos[E_AXIS] - e_move;
  7729. plan_set_e_position(e);
  7730. //first move print head in XY to the saved position:
  7731. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7732. st_synchronize();
  7733. //then move Z
  7734. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7735. st_synchronize();
  7736. //and finaly unretract (35mm/s)
  7737. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7738. st_synchronize();
  7739. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7740. memcpy(destination, current_position, sizeof(destination));
  7741. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7742. card.setIndex(saved_sdpos);
  7743. sdpos_atomic = saved_sdpos;
  7744. card.sdprinting = true;
  7745. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7746. }
  7747. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7748. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7749. serial_count = 0;
  7750. FlushSerialRequestResend();
  7751. }
  7752. else {
  7753. //not sd printing nor usb printing
  7754. }
  7755. lcd_setstatuspgm(_T(WELCOME_MSG));
  7756. saved_printing = false;
  7757. }
  7758. void print_world_coordinates()
  7759. {
  7760. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7761. }
  7762. void print_physical_coordinates()
  7763. {
  7764. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7765. }
  7766. void print_mesh_bed_leveling_table()
  7767. {
  7768. SERIAL_ECHOPGM("mesh bed leveling: ");
  7769. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7770. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7771. MYSERIAL.print(mbl.z_values[y][x], 3);
  7772. SERIAL_ECHOPGM(" ");
  7773. }
  7774. SERIAL_ECHOLNPGM("");
  7775. }
  7776. uint16_t print_time_remaining() {
  7777. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7778. #ifdef TMC2130
  7779. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7780. else print_t = print_time_remaining_silent;
  7781. #else
  7782. print_t = print_time_remaining_normal;
  7783. #endif //TMC2130
  7784. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7785. return print_t;
  7786. }
  7787. uint8_t calc_percent_done()
  7788. {
  7789. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7790. uint8_t percent_done = 0;
  7791. #ifdef TMC2130
  7792. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7793. percent_done = print_percent_done_normal;
  7794. }
  7795. else if (print_percent_done_silent <= 100) {
  7796. percent_done = print_percent_done_silent;
  7797. }
  7798. #else
  7799. if (print_percent_done_normal <= 100) {
  7800. percent_done = print_percent_done_normal;
  7801. }
  7802. #endif //TMC2130
  7803. else {
  7804. percent_done = card.percentDone();
  7805. }
  7806. return percent_done;
  7807. }
  7808. static void print_time_remaining_init()
  7809. {
  7810. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7811. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7812. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7813. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7814. }
  7815. void M600_check_state()
  7816. {
  7817. //Wait for user to check the state
  7818. lcd_change_fil_state = 0;
  7819. while (lcd_change_fil_state != 1){
  7820. lcd_change_fil_state = 0;
  7821. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7822. lcd_alright();
  7823. KEEPALIVE_STATE(IN_HANDLER);
  7824. switch(lcd_change_fil_state){
  7825. // Filament failed to load so load it again
  7826. case 2:
  7827. if (mmu_enabled)
  7828. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7829. else
  7830. M600_load_filament_movements();
  7831. break;
  7832. // Filament loaded properly but color is not clear
  7833. case 3:
  7834. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7836. lcd_loading_color();
  7837. break;
  7838. // Everything good
  7839. default:
  7840. lcd_change_success();
  7841. break;
  7842. }
  7843. }
  7844. }
  7845. //! @brief Wait for user action
  7846. //!
  7847. //! Beep, manage nozzle heater and wait for user to start unload filament
  7848. //! If times out, active extruder temperature is set to 0.
  7849. //!
  7850. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7851. void M600_wait_for_user(float HotendTempBckp) {
  7852. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7853. int counterBeep = 0;
  7854. unsigned long waiting_start_time = millis();
  7855. uint8_t wait_for_user_state = 0;
  7856. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7857. bool bFirst=true;
  7858. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7859. manage_heater();
  7860. manage_inactivity(true);
  7861. #if BEEPER > 0
  7862. if (counterBeep == 500) {
  7863. counterBeep = 0;
  7864. }
  7865. SET_OUTPUT(BEEPER);
  7866. if (counterBeep == 0) {
  7867. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7868. {
  7869. bFirst=false;
  7870. WRITE(BEEPER, HIGH);
  7871. }
  7872. }
  7873. if (counterBeep == 20) {
  7874. WRITE(BEEPER, LOW);
  7875. }
  7876. counterBeep++;
  7877. #endif //BEEPER > 0
  7878. switch (wait_for_user_state) {
  7879. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7880. delay_keep_alive(4);
  7881. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7882. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7883. wait_for_user_state = 1;
  7884. setAllTargetHotends(0);
  7885. st_synchronize();
  7886. disable_e0();
  7887. disable_e1();
  7888. disable_e2();
  7889. }
  7890. break;
  7891. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7892. delay_keep_alive(4);
  7893. if (lcd_clicked()) {
  7894. setTargetHotend(HotendTempBckp, active_extruder);
  7895. lcd_wait_for_heater();
  7896. wait_for_user_state = 2;
  7897. }
  7898. break;
  7899. case 2: //waiting for nozzle to reach target temperature
  7900. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7901. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7902. waiting_start_time = millis();
  7903. wait_for_user_state = 0;
  7904. }
  7905. else {
  7906. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7907. lcd_set_cursor(1, 4);
  7908. lcd_print(ftostr3(degHotend(active_extruder)));
  7909. }
  7910. break;
  7911. }
  7912. }
  7913. WRITE(BEEPER, LOW);
  7914. }
  7915. void M600_load_filament_movements()
  7916. {
  7917. #ifdef SNMM
  7918. display_loading();
  7919. do
  7920. {
  7921. current_position[E_AXIS] += 0.002;
  7922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7923. delay_keep_alive(2);
  7924. }
  7925. while (!lcd_clicked());
  7926. st_synchronize();
  7927. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7929. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7931. current_position[E_AXIS] += 40;
  7932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7933. current_position[E_AXIS] += 10;
  7934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7935. #else
  7936. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7938. #endif
  7939. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7941. lcd_loading_filament();
  7942. }
  7943. void M600_load_filament() {
  7944. //load filament for single material and SNMM
  7945. lcd_wait_interact();
  7946. //load_filament_time = millis();
  7947. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7948. #ifdef FILAMENT_SENSOR
  7949. fsensor_autoload_check_start();
  7950. #endif //FILAMENT_SENSOR
  7951. while(!lcd_clicked())
  7952. {
  7953. manage_heater();
  7954. manage_inactivity(true);
  7955. #ifdef FILAMENT_SENSOR
  7956. if (fsensor_check_autoload())
  7957. {
  7958. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7959. tone(BEEPER, 1000);
  7960. delay_keep_alive(50);
  7961. noTone(BEEPER);
  7962. break;
  7963. }
  7964. #endif //FILAMENT_SENSOR
  7965. }
  7966. #ifdef FILAMENT_SENSOR
  7967. fsensor_autoload_check_stop();
  7968. #endif //FILAMENT_SENSOR
  7969. KEEPALIVE_STATE(IN_HANDLER);
  7970. #ifdef FILAMENT_SENSOR
  7971. fsensor_oq_meassure_start(70);
  7972. #endif //FILAMENT_SENSOR
  7973. M600_load_filament_movements();
  7974. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7975. tone(BEEPER, 500);
  7976. delay_keep_alive(50);
  7977. noTone(BEEPER);
  7978. #ifdef FILAMENT_SENSOR
  7979. fsensor_oq_meassure_stop();
  7980. if (!fsensor_oq_result())
  7981. {
  7982. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7983. lcd_update_enable(true);
  7984. lcd_update(2);
  7985. if (disable)
  7986. fsensor_disable();
  7987. }
  7988. #endif //FILAMENT_SENSOR
  7989. lcd_update_enable(false);
  7990. }
  7991. #define FIL_LOAD_LENGTH 60