fsensor.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "cmdqueue.h"
  10. #include "ultralcd.h"
  11. //! @name Basic parameters
  12. //! @{
  13. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  14. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  15. //! @}
  16. //! @name Optical quality measurement parameters
  17. //! @{
  18. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  19. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  20. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  21. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  22. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  23. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  24. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  25. //! @}
  26. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  27. #define FSENSOR_INT_PIN 63 //!< filament sensor interrupt pin PK1
  28. #define FSENSOR_INT_PIN_MSK 0x02 //!< filament sensor interrupt pin mask (bit1)
  29. void fsensor_stop_and_save_print(void)
  30. {
  31. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  32. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  33. }
  34. void fsensor_restore_print_and_continue(void)
  35. {
  36. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  37. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  38. }
  39. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  40. uint8_t fsensor_int_pin_old = 0;
  41. int16_t fsensor_chunk_len = 0;
  42. //! enabled = initialized and sampled every chunk event
  43. bool fsensor_enabled = true;
  44. //! runout watching is done in fsensor_update (called from main loop)
  45. bool fsensor_watch_runout = true;
  46. //! not responding - is set if any communication error occurred during initialization or readout
  47. bool fsensor_not_responding = false;
  48. //! printing saved
  49. bool fsensor_printing_saved = false;
  50. //! number of errors, updated in ISR
  51. uint8_t fsensor_err_cnt = 0;
  52. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  53. int16_t fsensor_st_cnt = 0;
  54. //! last dy value from pat9125 sensor (used in ISR)
  55. int16_t fsensor_dy_old = 0;
  56. //! log flag: 0=log disabled, 1=log enabled
  57. uint8_t fsensor_log = 1;
  58. //! @name filament autoload variables
  59. //! @{
  60. //! autoload feature enabled
  61. bool fsensor_autoload_enabled = true;
  62. //! autoload watching enable/disable flag
  63. bool fsensor_watch_autoload = false;
  64. //
  65. uint16_t fsensor_autoload_y;
  66. //
  67. uint8_t fsensor_autoload_c;
  68. //
  69. uint32_t fsensor_autoload_last_millis;
  70. //
  71. uint8_t fsensor_autoload_sum;
  72. //! @}
  73. //! @name filament optical quality measurement variables
  74. //! @{
  75. //! Measurement enable/disable flag
  76. bool fsensor_oq_meassure = false;
  77. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  78. uint8_t fsensor_oq_skipchunk;
  79. //! number of samples from start of measurement
  80. uint8_t fsensor_oq_samples;
  81. //! sum of steps in positive direction movements
  82. uint16_t fsensor_oq_st_sum;
  83. //! sum of deltas in positive direction movements
  84. uint16_t fsensor_oq_yd_sum;
  85. //! sum of errors during measurement
  86. uint16_t fsensor_oq_er_sum;
  87. //! max error counter value during measurement
  88. uint8_t fsensor_oq_er_max;
  89. //! minimum delta value
  90. int16_t fsensor_oq_yd_min;
  91. //! maximum delta value
  92. int16_t fsensor_oq_yd_max;
  93. //! sum of shutter value
  94. uint16_t fsensor_oq_sh_sum;
  95. //! @}
  96. void fsensor_init(void)
  97. {
  98. uint8_t pat9125 = pat9125_init();
  99. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  100. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  101. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  102. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * axis_steps_per_unit[E_AXIS]);
  103. if (!pat9125)
  104. {
  105. fsensor = 0; //disable sensor
  106. fsensor_not_responding = true;
  107. }
  108. else
  109. fsensor_not_responding = false;
  110. if (fsensor)
  111. fsensor_enable();
  112. else
  113. fsensor_disable();
  114. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  115. }
  116. bool fsensor_enable(void)
  117. {
  118. uint8_t pat9125 = pat9125_init();
  119. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  120. if (pat9125)
  121. fsensor_not_responding = false;
  122. else
  123. fsensor_not_responding = true;
  124. fsensor_enabled = pat9125?true:false;
  125. fsensor_watch_runout = true;
  126. fsensor_oq_meassure = false;
  127. fsensor_err_cnt = 0;
  128. fsensor_dy_old = 0;
  129. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  130. FSensorStateMenu = fsensor_enabled?1:0;
  131. return fsensor_enabled;
  132. }
  133. void fsensor_disable(void)
  134. {
  135. fsensor_enabled = false;
  136. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  137. FSensorStateMenu = 0;
  138. }
  139. void fsensor_autoload_set(bool State)
  140. {
  141. fsensor_autoload_enabled = State;
  142. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  143. }
  144. void pciSetup(byte pin)
  145. {
  146. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  147. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  148. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  149. }
  150. void fsensor_autoload_check_start(void)
  151. {
  152. // puts_P(_N("fsensor_autoload_check_start\n"));
  153. if (!fsensor_enabled) return;
  154. if (!fsensor_autoload_enabled) return;
  155. if (fsensor_watch_autoload) return;
  156. if (!pat9125_update_y()) //update sensor
  157. {
  158. fsensor_disable();
  159. fsensor_not_responding = true;
  160. fsensor_watch_autoload = false;
  161. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  162. return;
  163. }
  164. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  165. fsensor_autoload_y = pat9125_y; //save current y value
  166. fsensor_autoload_c = 0; //reset number of changes counter
  167. fsensor_autoload_sum = 0;
  168. fsensor_autoload_last_millis = millis();
  169. fsensor_watch_runout = false;
  170. fsensor_watch_autoload = true;
  171. fsensor_err_cnt = 0;
  172. }
  173. void fsensor_autoload_check_stop(void)
  174. {
  175. // puts_P(_N("fsensor_autoload_check_stop\n"));
  176. if (!fsensor_enabled) return;
  177. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  178. if (!fsensor_autoload_enabled) return;
  179. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  180. if (!fsensor_watch_autoload) return;
  181. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  182. fsensor_autoload_sum = 0;
  183. fsensor_watch_autoload = false;
  184. fsensor_watch_runout = true;
  185. fsensor_err_cnt = 0;
  186. }
  187. bool fsensor_check_autoload(void)
  188. {
  189. if (!fsensor_enabled) return false;
  190. if (!fsensor_autoload_enabled) return false;
  191. if (!fsensor_watch_autoload)
  192. {
  193. fsensor_autoload_check_start();
  194. return false;
  195. }
  196. #if 0
  197. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  198. #endif
  199. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  200. fsensor_autoload_last_millis = millis();
  201. if (!pat9125_update_y()) //update sensor
  202. {
  203. fsensor_disable();
  204. fsensor_not_responding = true;
  205. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  206. return false;
  207. }
  208. int16_t dy = pat9125_y - fsensor_autoload_y;
  209. if (dy) //? dy value is nonzero
  210. {
  211. if (dy > 0) //? delta-y value is positive (inserting)
  212. {
  213. fsensor_autoload_sum += dy;
  214. fsensor_autoload_c += 3; //increment change counter by 3
  215. }
  216. else if (fsensor_autoload_c > 1)
  217. fsensor_autoload_c -= 2; //decrement change counter by 2
  218. fsensor_autoload_y = pat9125_y; //save current value
  219. }
  220. else if (fsensor_autoload_c > 0)
  221. fsensor_autoload_c--;
  222. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  223. #if 0
  224. puts_P(_N("fsensor_check_autoload\n"));
  225. if (fsensor_autoload_c != fsensor_autoload_c_old)
  226. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  227. #endif
  228. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  229. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  230. {
  231. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  232. return true;
  233. }
  234. return false;
  235. }
  236. void fsensor_oq_meassure_start(uint8_t skip)
  237. {
  238. if (!fsensor_enabled) return;
  239. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  240. fsensor_oq_skipchunk = skip;
  241. fsensor_oq_samples = 0;
  242. fsensor_oq_st_sum = 0;
  243. fsensor_oq_yd_sum = 0;
  244. fsensor_oq_er_sum = 0;
  245. fsensor_oq_er_max = 0;
  246. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  247. fsensor_oq_yd_max = 0;
  248. fsensor_oq_sh_sum = 0;
  249. pat9125_update();
  250. pat9125_y = 0;
  251. fsensor_watch_runout = false;
  252. fsensor_oq_meassure = true;
  253. }
  254. void fsensor_oq_meassure_stop(void)
  255. {
  256. if (!fsensor_enabled) return;
  257. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  258. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  259. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  260. fsensor_oq_meassure = false;
  261. fsensor_watch_runout = true;
  262. fsensor_err_cnt = 0;
  263. }
  264. const char _OK[] PROGMEM = "OK";
  265. const char _NG[] PROGMEM = "NG!";
  266. bool fsensor_oq_result(void)
  267. {
  268. if (!fsensor_enabled) return true;
  269. printf_P(_N("fsensor_oq_result\n"));
  270. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  271. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  272. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  273. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  274. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  275. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  276. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  277. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  278. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  279. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  280. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  281. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  282. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  283. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  284. printf_P(_N(" yd_qua = %u\n"), yd_qua);
  285. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  286. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  287. if (yd_qua >= 8) res_sh_avg = true;
  288. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  289. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  290. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  291. return res;
  292. }
  293. ISR(PCINT2_vect)
  294. {
  295. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  296. fsensor_int_pin_old = PINK;
  297. static bool _lock = false;
  298. if (_lock) return;
  299. _lock = true;
  300. int st_cnt = fsensor_st_cnt;
  301. fsensor_st_cnt = 0;
  302. sei();
  303. uint8_t old_err_cnt = fsensor_err_cnt;
  304. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  305. if (!pat9125_res)
  306. {
  307. fsensor_disable();
  308. fsensor_not_responding = true;
  309. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  310. }
  311. if (st_cnt != 0)
  312. { //movement
  313. if (st_cnt > 0) //positive movement
  314. {
  315. if (pat9125_y < 0)
  316. {
  317. if (fsensor_err_cnt)
  318. fsensor_err_cnt += 2;
  319. else
  320. fsensor_err_cnt++;
  321. }
  322. else if (pat9125_y > 0)
  323. {
  324. if (fsensor_err_cnt)
  325. fsensor_err_cnt--;
  326. }
  327. else //(pat9125_y == 0)
  328. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  329. fsensor_err_cnt++;
  330. if (fsensor_oq_meassure)
  331. {
  332. if (fsensor_oq_skipchunk)
  333. {
  334. fsensor_oq_skipchunk--;
  335. fsensor_err_cnt = 0;
  336. }
  337. else
  338. {
  339. if (st_cnt == fsensor_chunk_len)
  340. {
  341. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  342. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  343. }
  344. fsensor_oq_samples++;
  345. fsensor_oq_st_sum += st_cnt;
  346. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  347. if (fsensor_err_cnt > old_err_cnt)
  348. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  349. if (fsensor_oq_er_max < fsensor_err_cnt)
  350. fsensor_oq_er_max = fsensor_err_cnt;
  351. fsensor_oq_sh_sum += pat9125_s;
  352. }
  353. }
  354. }
  355. else //negative movement
  356. {
  357. }
  358. }
  359. else
  360. { //no movement
  361. }
  362. #ifdef DEBUG_FSENSOR_LOG
  363. if (fsensor_log)
  364. {
  365. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  366. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  367. }
  368. #endif //DEBUG_FSENSOR_LOG
  369. fsensor_dy_old = pat9125_y;
  370. pat9125_y = 0;
  371. _lock = false;
  372. return;
  373. }
  374. void fsensor_st_block_begin(block_t* bl)
  375. {
  376. if (!fsensor_enabled) return;
  377. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  378. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  379. {
  380. if (_READ(63)) _WRITE(63, LOW);
  381. else _WRITE(63, HIGH);
  382. }
  383. }
  384. void fsensor_st_block_chunk(block_t* bl, int cnt)
  385. {
  386. if (!fsensor_enabled) return;
  387. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  388. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  389. {
  390. if (_READ(63)) _WRITE(63, LOW);
  391. else _WRITE(63, HIGH);
  392. }
  393. }
  394. //! @brief filament sensor update (perform M600 on filament runout)
  395. //!
  396. //! Works only if filament sensor is enabled.
  397. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  398. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  399. void fsensor_update(void)
  400. {
  401. if (fsensor_enabled)
  402. {
  403. if (fsensor_printing_saved)
  404. {
  405. fsensor_restore_print_and_continue();
  406. fsensor_printing_saved = false;
  407. fsensor_watch_runout = true;
  408. fsensor_err_cnt = 0;
  409. }
  410. else if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  411. {
  412. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  413. fsensor_autoload_enabled = false;
  414. fsensor_stop_and_save_print();
  415. fsensor_printing_saved = true;
  416. fsensor_err_cnt = 0;
  417. fsensor_oq_meassure_start(0);
  418. enquecommand_front_P((PSTR("G1 E-3 F200")));
  419. process_commands();
  420. cmdqueue_pop_front();
  421. st_synchronize();
  422. enquecommand_front_P((PSTR("G1 E3 F200")));
  423. process_commands();
  424. cmdqueue_pop_front();
  425. st_synchronize();
  426. fsensor_oq_meassure_stop();
  427. bool err = false;
  428. err |= (fsensor_oq_er_sum > 1);
  429. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  430. if (!err)
  431. {
  432. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  433. fsensor_restore_print_and_continue();
  434. fsensor_printing_saved = false;
  435. }
  436. else
  437. {
  438. printf_P(PSTR("fsensor_update - M600\n"));
  439. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  440. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  441. enquecommand_front_P((PSTR("M600")));
  442. fsensor_watch_runout = false;
  443. }
  444. fsensor_autoload_enabled = autoload_enabled_tmp;
  445. }
  446. }
  447. }
  448. void fsensor_setup_interrupt(void)
  449. {
  450. pinMode(FSENSOR_INT_PIN, OUTPUT);
  451. digitalWrite(FSENSOR_INT_PIN, LOW);
  452. fsensor_int_pin_old = 0;
  453. pciSetup(FSENSOR_INT_PIN);
  454. }