Marlin_main.cpp 390 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #ifdef ENABLE_AUTO_BED_LEVELING
  49. #include "vector_3.h"
  50. #ifdef AUTO_BED_LEVELING_GRID
  51. #include "qr_solve.h"
  52. #endif
  53. #endif // ENABLE_AUTO_BED_LEVELING
  54. #ifdef MESH_BED_LEVELING
  55. #include "mesh_bed_leveling.h"
  56. #include "mesh_bed_calibration.h"
  57. #endif
  58. #include "printers.h"
  59. #include "menu.h"
  60. #include "ultralcd.h"
  61. #include "backlight.h"
  62. #include "planner.h"
  63. #include "stepper.h"
  64. #include "temperature.h"
  65. #include "motion_control.h"
  66. #include "cardreader.h"
  67. #include "ConfigurationStore.h"
  68. #include "language.h"
  69. #include "pins_arduino.h"
  70. #include "math.h"
  71. #include "util.h"
  72. #include "Timer.h"
  73. #include <avr/wdt.h>
  74. #include <avr/pgmspace.h>
  75. #include "Dcodes.h"
  76. #include "AutoDeplete.h"
  77. #ifndef LA_NOCOMPAT
  78. #include "la10compat.h"
  79. #endif
  80. #ifdef SWSPI
  81. #include "swspi.h"
  82. #endif //SWSPI
  83. #include "spi.h"
  84. #ifdef SWI2C
  85. #include "swi2c.h"
  86. #endif //SWI2C
  87. #ifdef FILAMENT_SENSOR
  88. #include "fsensor.h"
  89. #endif //FILAMENT_SENSOR
  90. #ifdef TMC2130
  91. #include "tmc2130.h"
  92. #endif //TMC2130
  93. #ifdef W25X20CL
  94. #include "w25x20cl.h"
  95. #include "optiboot_w25x20cl.h"
  96. #endif //W25X20CL
  97. #ifdef BLINKM
  98. #include "BlinkM.h"
  99. #include "Wire.h"
  100. #endif
  101. #ifdef ULTRALCD
  102. #include "ultralcd.h"
  103. #endif
  104. #if NUM_SERVOS > 0
  105. #include "Servo.h"
  106. #endif
  107. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  108. #include <SPI.h>
  109. #endif
  110. #include "mmu.h"
  111. #define VERSION_STRING "1.0.2"
  112. #include "ultralcd.h"
  113. #include "sound.h"
  114. #include "cmdqueue.h"
  115. #include "io_atmega2560.h"
  116. // Macros for bit masks
  117. #define BIT(b) (1<<(b))
  118. #define TEST(n,b) (((n)&BIT(b))!=0)
  119. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  120. //Macro for print fan speed
  121. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  122. //filament types
  123. #define FILAMENT_DEFAULT 0
  124. #define FILAMENT_FLEX 1
  125. #define FILAMENT_PVA 2
  126. #define FILAMENT_UNDEFINED 255
  127. //Stepper Movement Variables
  128. //===========================================================================
  129. //=============================imported variables============================
  130. //===========================================================================
  131. //===========================================================================
  132. //=============================public variables=============================
  133. //===========================================================================
  134. #ifdef SDSUPPORT
  135. CardReader card;
  136. #endif
  137. unsigned long PingTime = _millis();
  138. unsigned long NcTime;
  139. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  140. //used for PINDA temp calibration and pause print
  141. #define DEFAULT_RETRACTION 1
  142. #define DEFAULT_RETRACTION_MM 4 //MM
  143. float default_retraction = DEFAULT_RETRACTION;
  144. float homing_feedrate[] = HOMING_FEEDRATE;
  145. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  146. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  147. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  148. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  149. uint8_t axis_relative_modes = 0;
  150. int feedmultiply=100; //100->1 200->2
  151. int extrudemultiply=100; //100->1 200->2
  152. int extruder_multiply[EXTRUDERS] = {100
  153. #if EXTRUDERS > 1
  154. , 100
  155. #if EXTRUDERS > 2
  156. , 100
  157. #endif
  158. #endif
  159. };
  160. int bowden_length[4] = {385, 385, 385, 385};
  161. bool is_usb_printing = false;
  162. bool homing_flag = false;
  163. unsigned long kicktime = _millis()+100000;
  164. unsigned int usb_printing_counter;
  165. int8_t lcd_change_fil_state = 0;
  166. unsigned long pause_time = 0;
  167. unsigned long start_pause_print = _millis();
  168. unsigned long t_fan_rising_edge = _millis();
  169. LongTimer safetyTimer;
  170. static LongTimer crashDetTimer;
  171. //unsigned long load_filament_time;
  172. bool mesh_bed_leveling_flag = false;
  173. bool mesh_bed_run_from_menu = false;
  174. bool prusa_sd_card_upload = false;
  175. unsigned int status_number = 0;
  176. unsigned long total_filament_used;
  177. unsigned int heating_status;
  178. unsigned int heating_status_counter;
  179. bool loading_flag = false;
  180. char snmm_filaments_used = 0;
  181. bool fan_state[2];
  182. int fan_edge_counter[2];
  183. int fan_speed[2];
  184. char dir_names[3][9];
  185. bool sortAlpha = false;
  186. float extruder_multiplier[EXTRUDERS] = {1.0
  187. #if EXTRUDERS > 1
  188. , 1.0
  189. #if EXTRUDERS > 2
  190. , 1.0
  191. #endif
  192. #endif
  193. };
  194. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  195. //shortcuts for more readable code
  196. #define _x current_position[X_AXIS]
  197. #define _y current_position[Y_AXIS]
  198. #define _z current_position[Z_AXIS]
  199. #define _e current_position[E_AXIS]
  200. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  201. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  202. bool axis_known_position[3] = {false, false, false};
  203. // Extruder offset
  204. #if EXTRUDERS > 1
  205. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  206. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  207. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  208. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  209. #endif
  210. };
  211. #endif
  212. uint8_t active_extruder = 0;
  213. int fanSpeed=0;
  214. #ifdef FWRETRACT
  215. bool retracted[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. bool retracted_swap[EXTRUDERS]={false
  224. #if EXTRUDERS > 1
  225. , false
  226. #if EXTRUDERS > 2
  227. , false
  228. #endif
  229. #endif
  230. };
  231. float retract_length_swap = RETRACT_LENGTH_SWAP;
  232. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  233. #endif
  234. #ifdef PS_DEFAULT_OFF
  235. bool powersupply = false;
  236. #else
  237. bool powersupply = true;
  238. #endif
  239. bool cancel_heatup = false ;
  240. int8_t busy_state = NOT_BUSY;
  241. static long prev_busy_signal_ms = -1;
  242. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  243. const char errormagic[] PROGMEM = "Error:";
  244. const char echomagic[] PROGMEM = "echo:";
  245. bool no_response = false;
  246. uint8_t important_status;
  247. uint8_t saved_filament_type;
  248. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  249. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  250. // save/restore printing in case that mmu was not responding
  251. bool mmu_print_saved = false;
  252. // storing estimated time to end of print counted by slicer
  253. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  254. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  255. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  256. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  257. //===========================================================================
  258. //=============================Private Variables=============================
  259. //===========================================================================
  260. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  261. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  262. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  263. // For tracing an arc
  264. static float offset[3] = {0.0, 0.0, 0.0};
  265. // Current feedrate
  266. float feedrate = 1500.0;
  267. // Feedrate for the next move
  268. static float next_feedrate;
  269. // Original feedrate saved during homing moves
  270. static float saved_feedrate;
  271. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  272. //static float tt = 0;
  273. //static float bt = 0;
  274. //Inactivity shutdown variables
  275. static unsigned long previous_millis_cmd = 0;
  276. unsigned long max_inactive_time = 0;
  277. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  278. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  279. unsigned long starttime=0;
  280. unsigned long stoptime=0;
  281. unsigned long _usb_timer = 0;
  282. bool Stopped=false;
  283. #if NUM_SERVOS > 0
  284. Servo servos[NUM_SERVOS];
  285. #endif
  286. bool target_direction;
  287. //Insert variables if CHDK is defined
  288. #ifdef CHDK
  289. unsigned long chdkHigh = 0;
  290. boolean chdkActive = false;
  291. #endif
  292. //! @name RAM save/restore printing
  293. //! @{
  294. bool saved_printing = false; //!< Print is paused and saved in RAM
  295. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  296. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  297. static float saved_pos[4] = { 0, 0, 0, 0 };
  298. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  299. static int saved_feedmultiply2 = 0;
  300. static uint8_t saved_active_extruder = 0;
  301. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  302. static bool saved_extruder_relative_mode = false;
  303. static int saved_fanSpeed = 0; //!< Print fan speed
  304. //! @}
  305. static int saved_feedmultiply_mm = 100;
  306. //===========================================================================
  307. //=============================Routines======================================
  308. //===========================================================================
  309. static void get_arc_coordinates();
  310. static bool setTargetedHotend(int code, uint8_t &extruder);
  311. static void print_time_remaining_init();
  312. static void wait_for_heater(long codenum, uint8_t extruder);
  313. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  314. static void temp_compensation_start();
  315. static void temp_compensation_apply();
  316. uint16_t gcode_in_progress = 0;
  317. uint16_t mcode_in_progress = 0;
  318. void serial_echopair_P(const char *s_P, float v)
  319. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  320. void serial_echopair_P(const char *s_P, double v)
  321. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  322. void serial_echopair_P(const char *s_P, unsigned long v)
  323. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  324. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  325. {
  326. #if 0
  327. char ch=pgm_read_byte(str);
  328. while(ch)
  329. {
  330. MYSERIAL.write(ch);
  331. ch=pgm_read_byte(++str);
  332. }
  333. #else
  334. // hmm, same size as the above version, the compiler did a good job optimizing the above
  335. while( uint8_t ch = pgm_read_byte(str) ){
  336. MYSERIAL.write((char)ch);
  337. ++str;
  338. }
  339. #endif
  340. }
  341. #ifdef SDSUPPORT
  342. #include "SdFatUtil.h"
  343. int freeMemory() { return SdFatUtil::FreeRam(); }
  344. #else
  345. extern "C" {
  346. extern unsigned int __bss_end;
  347. extern unsigned int __heap_start;
  348. extern void *__brkval;
  349. int freeMemory() {
  350. int free_memory;
  351. if ((int)__brkval == 0)
  352. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  353. else
  354. free_memory = ((int)&free_memory) - ((int)__brkval);
  355. return free_memory;
  356. }
  357. }
  358. #endif //!SDSUPPORT
  359. void setup_killpin()
  360. {
  361. #if defined(KILL_PIN) && KILL_PIN > -1
  362. SET_INPUT(KILL_PIN);
  363. WRITE(KILL_PIN,HIGH);
  364. #endif
  365. }
  366. // Set home pin
  367. void setup_homepin(void)
  368. {
  369. #if defined(HOME_PIN) && HOME_PIN > -1
  370. SET_INPUT(HOME_PIN);
  371. WRITE(HOME_PIN,HIGH);
  372. #endif
  373. }
  374. void setup_photpin()
  375. {
  376. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  377. SET_OUTPUT(PHOTOGRAPH_PIN);
  378. WRITE(PHOTOGRAPH_PIN, LOW);
  379. #endif
  380. }
  381. void setup_powerhold()
  382. {
  383. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  384. SET_OUTPUT(SUICIDE_PIN);
  385. WRITE(SUICIDE_PIN, HIGH);
  386. #endif
  387. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  388. SET_OUTPUT(PS_ON_PIN);
  389. #if defined(PS_DEFAULT_OFF)
  390. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  391. #else
  392. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  393. #endif
  394. #endif
  395. }
  396. void suicide()
  397. {
  398. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  399. SET_OUTPUT(SUICIDE_PIN);
  400. WRITE(SUICIDE_PIN, LOW);
  401. #endif
  402. }
  403. void servo_init()
  404. {
  405. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  406. servos[0].attach(SERVO0_PIN);
  407. #endif
  408. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  409. servos[1].attach(SERVO1_PIN);
  410. #endif
  411. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  412. servos[2].attach(SERVO2_PIN);
  413. #endif
  414. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  415. servos[3].attach(SERVO3_PIN);
  416. #endif
  417. #if (NUM_SERVOS >= 5)
  418. #error "TODO: enter initalisation code for more servos"
  419. #endif
  420. }
  421. bool fans_check_enabled = true;
  422. #ifdef TMC2130
  423. void crashdet_stop_and_save_print()
  424. {
  425. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  426. }
  427. void crashdet_restore_print_and_continue()
  428. {
  429. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  430. // babystep_apply();
  431. }
  432. void crashdet_stop_and_save_print2()
  433. {
  434. cli();
  435. planner_abort_hard(); //abort printing
  436. cmdqueue_reset(); //empty cmdqueue
  437. card.sdprinting = false;
  438. card.closefile();
  439. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  440. st_reset_timer();
  441. sei();
  442. }
  443. void crashdet_detected(uint8_t mask)
  444. {
  445. st_synchronize();
  446. static uint8_t crashDet_counter = 0;
  447. bool automatic_recovery_after_crash = true;
  448. if (crashDet_counter++ == 0) {
  449. crashDetTimer.start();
  450. }
  451. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  452. crashDetTimer.stop();
  453. crashDet_counter = 0;
  454. }
  455. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  456. automatic_recovery_after_crash = false;
  457. crashDetTimer.stop();
  458. crashDet_counter = 0;
  459. }
  460. else {
  461. crashDetTimer.start();
  462. }
  463. lcd_update_enable(true);
  464. lcd_clear();
  465. lcd_update(2);
  466. if (mask & X_AXIS_MASK)
  467. {
  468. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  469. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  470. }
  471. if (mask & Y_AXIS_MASK)
  472. {
  473. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  474. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  475. }
  476. lcd_update_enable(true);
  477. lcd_update(2);
  478. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  479. gcode_G28(true, true, false); //home X and Y
  480. st_synchronize();
  481. if (automatic_recovery_after_crash) {
  482. enquecommand_P(PSTR("CRASH_RECOVER"));
  483. }else{
  484. setTargetHotend(0, active_extruder);
  485. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  486. lcd_update_enable(true);
  487. if (yesno)
  488. {
  489. enquecommand_P(PSTR("CRASH_RECOVER"));
  490. }
  491. else
  492. {
  493. enquecommand_P(PSTR("CRASH_CANCEL"));
  494. }
  495. }
  496. }
  497. void crashdet_recover()
  498. {
  499. crashdet_restore_print_and_continue();
  500. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  501. }
  502. void crashdet_cancel()
  503. {
  504. saved_printing = false;
  505. tmc2130_sg_stop_on_crash = true;
  506. if (saved_printing_type == PRINTING_TYPE_SD) {
  507. lcd_print_stop();
  508. }else if(saved_printing_type == PRINTING_TYPE_USB){
  509. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  510. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  511. }
  512. }
  513. #endif //TMC2130
  514. void failstats_reset_print()
  515. {
  516. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  519. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  520. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  521. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  522. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  523. fsensor_softfail = 0;
  524. #endif
  525. }
  526. #ifdef MESH_BED_LEVELING
  527. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  528. #endif
  529. // Factory reset function
  530. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  531. // Level input parameter sets depth of reset
  532. int er_progress = 0;
  533. static void factory_reset(char level)
  534. {
  535. lcd_clear();
  536. switch (level) {
  537. // Level 0: Language reset
  538. case 0:
  539. Sound_MakeCustom(100,0,false);
  540. lang_reset();
  541. break;
  542. //Level 1: Reset statistics
  543. case 1:
  544. Sound_MakeCustom(100,0,false);
  545. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  546. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  548. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  549. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  553. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  554. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  555. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  556. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  557. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  558. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  559. lcd_menu_statistics();
  560. break;
  561. // Level 2: Prepare for shipping
  562. case 2:
  563. //lcd_puts_P(PSTR("Factory RESET"));
  564. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  565. // Force language selection at the next boot up.
  566. lang_reset();
  567. // Force the "Follow calibration flow" message at the next boot up.
  568. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  569. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  570. farm_no = 0;
  571. farm_mode = false;
  572. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  573. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  574. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  575. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  580. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  581. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  582. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  583. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  584. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  586. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  587. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  588. #ifdef FILAMENT_SENSOR
  589. fsensor_enable();
  590. fsensor_autoload_set(true);
  591. #endif //FILAMENT_SENSOR
  592. Sound_MakeCustom(100,0,false);
  593. //_delay_ms(2000);
  594. break;
  595. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  596. case 3:
  597. lcd_puts_P(PSTR("Factory RESET"));
  598. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  599. Sound_MakeCustom(100,0,false);
  600. er_progress = 0;
  601. lcd_puts_at_P(3, 3, PSTR(" "));
  602. lcd_set_cursor(3, 3);
  603. lcd_print(er_progress);
  604. // Erase EEPROM
  605. for (int i = 0; i < 4096; i++) {
  606. eeprom_update_byte((uint8_t*)i, 0xFF);
  607. if (i % 41 == 0) {
  608. er_progress++;
  609. lcd_puts_at_P(3, 3, PSTR(" "));
  610. lcd_set_cursor(3, 3);
  611. lcd_print(er_progress);
  612. lcd_puts_P(PSTR("%"));
  613. }
  614. }
  615. break;
  616. case 4:
  617. bowden_menu();
  618. break;
  619. default:
  620. break;
  621. }
  622. }
  623. extern "C" {
  624. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  625. }
  626. int uart_putchar(char c, FILE *)
  627. {
  628. MYSERIAL.write(c);
  629. return 0;
  630. }
  631. void lcd_splash()
  632. {
  633. lcd_clear(); // clears display and homes screen
  634. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if(eSoundMode!=e_SOUND_MODE_SILENT)
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. //! @brief try to check if firmware is on right type of printer
  688. static void check_if_fw_is_on_right_printer(){
  689. #ifdef FILAMENT_SENSOR
  690. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  691. #ifdef IR_SENSOR
  692. swi2c_init();
  693. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  694. if (pat9125_detected){
  695. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////c=20 r=3
  696. #endif //IR_SENSOR
  697. #ifdef PAT9125
  698. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  699. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  700. if (ir_detected){
  701. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////c=20 r=3
  702. #endif //PAT9125
  703. }
  704. #endif //FILAMENT_SENSOR
  705. }
  706. uint8_t check_printer_version()
  707. {
  708. uint8_t version_changed = 0;
  709. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  710. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  711. if (printer_type != PRINTER_TYPE) {
  712. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  713. else version_changed |= 0b10;
  714. }
  715. if (motherboard != MOTHERBOARD) {
  716. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  717. else version_changed |= 0b01;
  718. }
  719. return version_changed;
  720. }
  721. #ifdef BOOTAPP
  722. #include "bootapp.h" //bootloader support
  723. #endif //BOOTAPP
  724. #if (LANG_MODE != 0) //secondary language support
  725. #ifdef W25X20CL
  726. // language update from external flash
  727. #define LANGBOOT_BLOCKSIZE 0x1000u
  728. #define LANGBOOT_RAMBUFFER 0x0800
  729. void update_sec_lang_from_external_flash()
  730. {
  731. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  732. {
  733. uint8_t lang = boot_reserved >> 4;
  734. uint8_t state = boot_reserved & 0xf;
  735. lang_table_header_t header;
  736. uint32_t src_addr;
  737. if (lang_get_header(lang, &header, &src_addr))
  738. {
  739. lcd_puts_at_P(1,3,PSTR("Language update."));
  740. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  741. _delay(100);
  742. boot_reserved = (state + 1) | (lang << 4);
  743. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  744. {
  745. cli();
  746. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  747. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  748. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  749. if (state == 0)
  750. {
  751. //TODO - check header integrity
  752. }
  753. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  754. }
  755. else
  756. {
  757. //TODO - check sec lang data integrity
  758. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  759. }
  760. }
  761. }
  762. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  763. }
  764. #ifdef DEBUG_W25X20CL
  765. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  766. {
  767. lang_table_header_t header;
  768. uint8_t count = 0;
  769. uint32_t addr = 0x00000;
  770. while (1)
  771. {
  772. printf_P(_n("LANGTABLE%d:"), count);
  773. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  774. if (header.magic != LANG_MAGIC)
  775. {
  776. printf_P(_n("NG!\n"));
  777. break;
  778. }
  779. printf_P(_n("OK\n"));
  780. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  781. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  782. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  783. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  784. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  785. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  786. addr += header.size;
  787. codes[count] = header.code;
  788. count ++;
  789. }
  790. return count;
  791. }
  792. void list_sec_lang_from_external_flash()
  793. {
  794. uint16_t codes[8];
  795. uint8_t count = lang_xflash_enum_codes(codes);
  796. printf_P(_n("XFlash lang count = %hhd\n"), count);
  797. }
  798. #endif //DEBUG_W25X20CL
  799. #endif //W25X20CL
  800. #endif //(LANG_MODE != 0)
  801. static void w25x20cl_err_msg()
  802. {
  803. lcd_clear();
  804. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  805. }
  806. // "Setup" function is called by the Arduino framework on startup.
  807. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  808. // are initialized by the main() routine provided by the Arduino framework.
  809. void setup()
  810. {
  811. mmu_init();
  812. ultralcd_init();
  813. spi_init();
  814. lcd_splash();
  815. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  816. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  817. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  818. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  819. MYSERIAL.begin(BAUDRATE);
  820. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  821. stdout = uartout;
  822. #ifdef W25X20CL
  823. bool w25x20cl_success = w25x20cl_init();
  824. uint8_t optiboot_status = 1;
  825. if (w25x20cl_success)
  826. {
  827. optiboot_status = optiboot_w25x20cl_enter();
  828. #if (LANG_MODE != 0) //secondary language support
  829. update_sec_lang_from_external_flash();
  830. #endif //(LANG_MODE != 0)
  831. }
  832. else
  833. {
  834. w25x20cl_err_msg();
  835. }
  836. #else
  837. const bool w25x20cl_success = true;
  838. #endif //W25X20CL
  839. setup_killpin();
  840. setup_powerhold();
  841. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  842. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  843. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  844. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  845. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  846. if (farm_mode)
  847. {
  848. no_response = true; //we need confirmation by recieving PRUSA thx
  849. important_status = 8;
  850. prusa_statistics(8);
  851. selectedSerialPort = 1;
  852. MYSERIAL.begin(BAUDRATE);
  853. #ifdef TMC2130
  854. //increased extruder current (PFW363)
  855. tmc2130_current_h[E_AXIS] = 36;
  856. tmc2130_current_r[E_AXIS] = 36;
  857. #endif //TMC2130
  858. #ifdef FILAMENT_SENSOR
  859. //disabled filament autoload (PFW360)
  860. fsensor_autoload_set(false);
  861. #endif //FILAMENT_SENSOR
  862. // ~ FanCheck -> on
  863. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  864. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  865. }
  866. #ifndef W25X20CL
  867. SERIAL_PROTOCOLLNPGM("start");
  868. #else
  869. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  870. SERIAL_PROTOCOLLNPGM("start");
  871. #endif
  872. SERIAL_ECHO_START;
  873. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  874. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  875. #ifdef DEBUG_SEC_LANG
  876. lang_table_header_t header;
  877. uint32_t src_addr = 0x00000;
  878. if (lang_get_header(1, &header, &src_addr))
  879. {
  880. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  881. #define LT_PRINT_TEST 2
  882. // flash usage
  883. // total p.test
  884. //0 252718 t+c text code
  885. //1 253142 424 170 254
  886. //2 253040 322 164 158
  887. //3 253248 530 135 395
  888. #if (LT_PRINT_TEST==1) //not optimized printf
  889. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  890. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  891. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  892. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  893. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  894. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  895. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  896. #elif (LT_PRINT_TEST==2) //optimized printf
  897. printf_P(
  898. _n(
  899. " _src_addr = 0x%08lx\n"
  900. " _lt_magic = 0x%08lx %S\n"
  901. " _lt_size = 0x%04x (%d)\n"
  902. " _lt_count = 0x%04x (%d)\n"
  903. " _lt_chsum = 0x%04x\n"
  904. " _lt_code = 0x%04x (%c%c)\n"
  905. " _lt_resv1 = 0x%08lx\n"
  906. ),
  907. src_addr,
  908. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  909. header.size, header.size,
  910. header.count, header.count,
  911. header.checksum,
  912. header.code, header.code >> 8, header.code & 0xff,
  913. header.signature
  914. );
  915. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  916. MYSERIAL.print(" _src_addr = 0x");
  917. MYSERIAL.println(src_addr, 16);
  918. MYSERIAL.print(" _lt_magic = 0x");
  919. MYSERIAL.print(header.magic, 16);
  920. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  921. MYSERIAL.print(" _lt_size = 0x");
  922. MYSERIAL.print(header.size, 16);
  923. MYSERIAL.print(" (");
  924. MYSERIAL.print(header.size, 10);
  925. MYSERIAL.println(")");
  926. MYSERIAL.print(" _lt_count = 0x");
  927. MYSERIAL.print(header.count, 16);
  928. MYSERIAL.print(" (");
  929. MYSERIAL.print(header.count, 10);
  930. MYSERIAL.println(")");
  931. MYSERIAL.print(" _lt_chsum = 0x");
  932. MYSERIAL.println(header.checksum, 16);
  933. MYSERIAL.print(" _lt_code = 0x");
  934. MYSERIAL.print(header.code, 16);
  935. MYSERIAL.print(" (");
  936. MYSERIAL.print((char)(header.code >> 8), 0);
  937. MYSERIAL.print((char)(header.code & 0xff), 0);
  938. MYSERIAL.println(")");
  939. MYSERIAL.print(" _lt_resv1 = 0x");
  940. MYSERIAL.println(header.signature, 16);
  941. #endif //(LT_PRINT_TEST==)
  942. #undef LT_PRINT_TEST
  943. #if 0
  944. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  945. for (uint16_t i = 0; i < 1024; i++)
  946. {
  947. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  948. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  949. if ((i % 16) == 15) putchar('\n');
  950. }
  951. #endif
  952. uint16_t sum = 0;
  953. for (uint16_t i = 0; i < header.size; i++)
  954. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  955. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  956. sum -= header.checksum; //subtract checksum
  957. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  958. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  959. if (sum == header.checksum)
  960. printf_P(_n("Checksum OK\n"), sum);
  961. else
  962. printf_P(_n("Checksum NG\n"), sum);
  963. }
  964. else
  965. printf_P(_n("lang_get_header failed!\n"));
  966. #if 0
  967. for (uint16_t i = 0; i < 1024*10; i++)
  968. {
  969. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  970. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  971. if ((i % 16) == 15) putchar('\n');
  972. }
  973. #endif
  974. #if 0
  975. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  976. for (int i = 0; i < 4096; ++i) {
  977. int b = eeprom_read_byte((unsigned char*)i);
  978. if (b != 255) {
  979. SERIAL_ECHO(i);
  980. SERIAL_ECHO(":");
  981. SERIAL_ECHO(b);
  982. SERIAL_ECHOLN("");
  983. }
  984. }
  985. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  986. #endif
  987. #endif //DEBUG_SEC_LANG
  988. // Check startup - does nothing if bootloader sets MCUSR to 0
  989. byte mcu = MCUSR;
  990. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  991. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  992. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  993. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  994. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  995. if (mcu & 1) puts_P(MSG_POWERUP);
  996. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  997. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  998. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  999. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1000. MCUSR = 0;
  1001. //SERIAL_ECHORPGM(MSG_MARLIN);
  1002. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1003. #ifdef STRING_VERSION_CONFIG_H
  1004. #ifdef STRING_CONFIG_H_AUTHOR
  1005. SERIAL_ECHO_START;
  1006. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1007. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1008. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1009. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1010. SERIAL_ECHOPGM("Compiled: ");
  1011. SERIAL_ECHOLNPGM(__DATE__);
  1012. #endif
  1013. #endif
  1014. SERIAL_ECHO_START;
  1015. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1016. SERIAL_ECHO(freeMemory());
  1017. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1018. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1019. //lcd_update_enable(false); // why do we need this?? - andre
  1020. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1021. bool previous_settings_retrieved = false;
  1022. uint8_t hw_changed = check_printer_version();
  1023. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1024. previous_settings_retrieved = Config_RetrieveSettings();
  1025. }
  1026. else { //printer version was changed so use default settings
  1027. Config_ResetDefault();
  1028. }
  1029. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1030. tp_init(); // Initialize temperature loop
  1031. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1032. else
  1033. {
  1034. w25x20cl_err_msg();
  1035. printf_P(_n("W25X20CL not responding.\n"));
  1036. }
  1037. #ifdef EXTRUDER_ALTFAN_DETECT
  1038. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1039. if (extruder_altfan_detect())
  1040. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1041. else
  1042. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1043. #endif //EXTRUDER_ALTFAN_DETECT
  1044. plan_init(); // Initialize planner;
  1045. factory_reset();
  1046. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1047. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1048. {
  1049. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1050. // where all the EEPROM entries are set to 0x0ff.
  1051. // Once a firmware boots up, it forces at least a language selection, which changes
  1052. // EEPROM_LANG to number lower than 0x0ff.
  1053. // 1) Set a high power mode.
  1054. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1055. #ifdef TMC2130
  1056. tmc2130_mode = TMC2130_MODE_NORMAL;
  1057. #endif //TMC2130
  1058. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1059. }
  1060. lcd_encoder_diff=0;
  1061. #ifdef TMC2130
  1062. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1063. if (silentMode == 0xff) silentMode = 0;
  1064. tmc2130_mode = TMC2130_MODE_NORMAL;
  1065. if (lcd_crash_detect_enabled() && !farm_mode)
  1066. {
  1067. lcd_crash_detect_enable();
  1068. puts_P(_N("CrashDetect ENABLED!"));
  1069. }
  1070. else
  1071. {
  1072. lcd_crash_detect_disable();
  1073. puts_P(_N("CrashDetect DISABLED"));
  1074. }
  1075. #ifdef TMC2130_LINEARITY_CORRECTION
  1076. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1077. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1078. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1079. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1080. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1081. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1082. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1083. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1084. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1085. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1086. #endif //TMC2130_LINEARITY_CORRECTION
  1087. #ifdef TMC2130_VARIABLE_RESOLUTION
  1088. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1089. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1090. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1091. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1092. #else //TMC2130_VARIABLE_RESOLUTION
  1093. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1094. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1095. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1096. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1097. #endif //TMC2130_VARIABLE_RESOLUTION
  1098. #endif //TMC2130
  1099. st_init(); // Initialize stepper, this enables interrupts!
  1100. #ifdef TMC2130
  1101. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1102. update_mode_profile();
  1103. tmc2130_init();
  1104. #endif //TMC2130
  1105. #ifdef PSU_Delta
  1106. init_force_z(); // ! important for correct Z-axis initialization
  1107. #endif // PSU_Delta
  1108. setup_photpin();
  1109. servo_init();
  1110. // Reset the machine correction matrix.
  1111. // It does not make sense to load the correction matrix until the machine is homed.
  1112. world2machine_reset();
  1113. // Initialize current_position accounting for software endstops to
  1114. // avoid unexpected initial shifts on the first move
  1115. clamp_to_software_endstops(current_position);
  1116. plan_set_position_curposXYZE();
  1117. #ifdef FILAMENT_SENSOR
  1118. fsensor_init();
  1119. #endif //FILAMENT_SENSOR
  1120. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1121. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1122. #endif
  1123. setup_homepin();
  1124. #if defined(Z_AXIS_ALWAYS_ON)
  1125. enable_z();
  1126. #endif
  1127. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1128. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1129. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1130. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1131. if (farm_mode)
  1132. {
  1133. prusa_statistics(8);
  1134. }
  1135. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1136. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1137. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1138. // but this times out if a blocking dialog is shown in setup().
  1139. card.initsd();
  1140. #ifdef DEBUG_SD_SPEED_TEST
  1141. if (card.cardOK)
  1142. {
  1143. uint8_t* buff = (uint8_t*)block_buffer;
  1144. uint32_t block = 0;
  1145. uint32_t sumr = 0;
  1146. uint32_t sumw = 0;
  1147. for (int i = 0; i < 1024; i++)
  1148. {
  1149. uint32_t u = _micros();
  1150. bool res = card.card.readBlock(i, buff);
  1151. u = _micros() - u;
  1152. if (res)
  1153. {
  1154. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1155. sumr += u;
  1156. u = _micros();
  1157. res = card.card.writeBlock(i, buff);
  1158. u = _micros() - u;
  1159. if (res)
  1160. {
  1161. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1162. sumw += u;
  1163. }
  1164. else
  1165. {
  1166. printf_P(PSTR("writeBlock %4d error\n"), i);
  1167. break;
  1168. }
  1169. }
  1170. else
  1171. {
  1172. printf_P(PSTR("readBlock %4d error\n"), i);
  1173. break;
  1174. }
  1175. }
  1176. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1177. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1178. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1179. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1180. }
  1181. else
  1182. printf_P(PSTR("Card NG!\n"));
  1183. #endif //DEBUG_SD_SPEED_TEST
  1184. eeprom_init();
  1185. #ifdef SNMM
  1186. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1187. int _z = BOWDEN_LENGTH;
  1188. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1189. }
  1190. #endif
  1191. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1192. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1193. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1194. #if (LANG_MODE != 0) //secondary language support
  1195. #ifdef DEBUG_W25X20CL
  1196. W25X20CL_SPI_ENTER();
  1197. uint8_t uid[8]; // 64bit unique id
  1198. w25x20cl_rd_uid(uid);
  1199. puts_P(_n("W25X20CL UID="));
  1200. for (uint8_t i = 0; i < 8; i ++)
  1201. printf_P(PSTR("%02hhx"), uid[i]);
  1202. putchar('\n');
  1203. list_sec_lang_from_external_flash();
  1204. #endif //DEBUG_W25X20CL
  1205. // lang_reset();
  1206. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1207. lcd_language();
  1208. #ifdef DEBUG_SEC_LANG
  1209. uint16_t sec_lang_code = lang_get_code(1);
  1210. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1211. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1212. lang_print_sec_lang(uartout);
  1213. #endif //DEBUG_SEC_LANG
  1214. #endif //(LANG_MODE != 0)
  1215. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1216. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1217. }
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1219. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1220. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1221. int16_t z_shift = 0;
  1222. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1223. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1224. }
  1225. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1226. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1227. }
  1228. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1229. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1230. }
  1231. //mbl_mode_init();
  1232. mbl_settings_init();
  1233. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1234. if (SilentModeMenu_MMU == 255) {
  1235. SilentModeMenu_MMU = 1;
  1236. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1237. }
  1238. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1239. setup_fan_interrupt();
  1240. #endif //DEBUG_DISABLE_FANCHECK
  1241. #ifdef PAT9125
  1242. fsensor_setup_interrupt();
  1243. #endif //PAT9125
  1244. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1245. #ifndef DEBUG_DISABLE_STARTMSGS
  1246. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1247. if (!farm_mode) {
  1248. check_if_fw_is_on_right_printer();
  1249. show_fw_version_warnings();
  1250. }
  1251. switch (hw_changed) {
  1252. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1253. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1254. case(0b01):
  1255. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1256. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1257. break;
  1258. case(0b10):
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1260. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1261. break;
  1262. case(0b11):
  1263. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1264. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1265. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1266. break;
  1267. default: break; //no change, show no message
  1268. }
  1269. if (!previous_settings_retrieved) {
  1270. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=5
  1271. Config_StoreSettings();
  1272. }
  1273. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1274. lcd_wizard(WizState::Run);
  1275. }
  1276. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1277. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1278. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1279. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1280. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1281. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1282. // Show the message.
  1283. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1284. }
  1285. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1286. // Show the message.
  1287. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1288. lcd_update_enable(true);
  1289. }
  1290. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1291. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1292. lcd_update_enable(true);
  1293. }
  1294. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1295. // Show the message.
  1296. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1297. }
  1298. }
  1299. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1300. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1301. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1302. update_current_firmware_version_to_eeprom();
  1303. lcd_selftest();
  1304. }
  1305. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1306. KEEPALIVE_STATE(IN_PROCESS);
  1307. #endif //DEBUG_DISABLE_STARTMSGS
  1308. lcd_update_enable(true);
  1309. lcd_clear();
  1310. lcd_update(2);
  1311. // Store the currently running firmware into an eeprom,
  1312. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1313. update_current_firmware_version_to_eeprom();
  1314. #ifdef TMC2130
  1315. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1316. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1317. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1318. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1319. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1320. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1321. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1322. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1323. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1324. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1325. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1326. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1327. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1328. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1329. #endif //TMC2130
  1330. #ifdef UVLO_SUPPORT
  1331. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1332. /*
  1333. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1334. else {
  1335. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1336. lcd_update_enable(true);
  1337. lcd_update(2);
  1338. lcd_setstatuspgm(_T(WELCOME_MSG));
  1339. }
  1340. */
  1341. manage_heater(); // Update temperatures
  1342. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1343. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1344. #endif
  1345. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1346. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1347. puts_P(_N("Automatic recovery!"));
  1348. #endif
  1349. recover_print(1);
  1350. }
  1351. else{
  1352. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1353. puts_P(_N("Normal recovery!"));
  1354. #endif
  1355. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1356. else {
  1357. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1358. lcd_update_enable(true);
  1359. lcd_update(2);
  1360. lcd_setstatuspgm(_T(WELCOME_MSG));
  1361. }
  1362. }
  1363. }
  1364. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1365. // the entire state machine initialized.
  1366. setup_uvlo_interrupt();
  1367. #endif //UVLO_SUPPORT
  1368. fCheckModeInit();
  1369. fSetMmuMode(mmu_enabled);
  1370. KEEPALIVE_STATE(NOT_BUSY);
  1371. #ifdef WATCHDOG
  1372. wdt_enable(WDTO_4S);
  1373. #endif //WATCHDOG
  1374. }
  1375. void trace();
  1376. #define CHUNK_SIZE 64 // bytes
  1377. #define SAFETY_MARGIN 1
  1378. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1379. int chunkHead = 0;
  1380. void serial_read_stream() {
  1381. setAllTargetHotends(0);
  1382. setTargetBed(0);
  1383. lcd_clear();
  1384. lcd_puts_P(PSTR(" Upload in progress"));
  1385. // first wait for how many bytes we will receive
  1386. uint32_t bytesToReceive;
  1387. // receive the four bytes
  1388. char bytesToReceiveBuffer[4];
  1389. for (int i=0; i<4; i++) {
  1390. int data;
  1391. while ((data = MYSERIAL.read()) == -1) {};
  1392. bytesToReceiveBuffer[i] = data;
  1393. }
  1394. // make it a uint32
  1395. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1396. // we're ready, notify the sender
  1397. MYSERIAL.write('+');
  1398. // lock in the routine
  1399. uint32_t receivedBytes = 0;
  1400. while (prusa_sd_card_upload) {
  1401. int i;
  1402. for (i=0; i<CHUNK_SIZE; i++) {
  1403. int data;
  1404. // check if we're not done
  1405. if (receivedBytes == bytesToReceive) {
  1406. break;
  1407. }
  1408. // read the next byte
  1409. while ((data = MYSERIAL.read()) == -1) {};
  1410. receivedBytes++;
  1411. // save it to the chunk
  1412. chunk[i] = data;
  1413. }
  1414. // write the chunk to SD
  1415. card.write_command_no_newline(&chunk[0]);
  1416. // notify the sender we're ready for more data
  1417. MYSERIAL.write('+');
  1418. // for safety
  1419. manage_heater();
  1420. // check if we're done
  1421. if(receivedBytes == bytesToReceive) {
  1422. trace(); // beep
  1423. card.closefile();
  1424. prusa_sd_card_upload = false;
  1425. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1426. }
  1427. }
  1428. }
  1429. /**
  1430. * Output a "busy" message at regular intervals
  1431. * while the machine is not accepting commands.
  1432. */
  1433. void host_keepalive() {
  1434. #ifndef HOST_KEEPALIVE_FEATURE
  1435. return;
  1436. #endif //HOST_KEEPALIVE_FEATURE
  1437. if (farm_mode) return;
  1438. long ms = _millis();
  1439. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1440. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1441. switch (busy_state) {
  1442. case IN_HANDLER:
  1443. case IN_PROCESS:
  1444. SERIAL_ECHO_START;
  1445. SERIAL_ECHOLNPGM("busy: processing");
  1446. break;
  1447. case PAUSED_FOR_USER:
  1448. SERIAL_ECHO_START;
  1449. SERIAL_ECHOLNPGM("busy: paused for user");
  1450. break;
  1451. case PAUSED_FOR_INPUT:
  1452. SERIAL_ECHO_START;
  1453. SERIAL_ECHOLNPGM("busy: paused for input");
  1454. break;
  1455. default:
  1456. break;
  1457. }
  1458. }
  1459. prev_busy_signal_ms = ms;
  1460. }
  1461. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1462. // Before loop(), the setup() function is called by the main() routine.
  1463. void loop()
  1464. {
  1465. KEEPALIVE_STATE(NOT_BUSY);
  1466. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1467. {
  1468. is_usb_printing = true;
  1469. usb_printing_counter--;
  1470. _usb_timer = _millis();
  1471. }
  1472. if (usb_printing_counter == 0)
  1473. {
  1474. is_usb_printing = false;
  1475. }
  1476. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1477. {
  1478. is_usb_printing = true;
  1479. }
  1480. #ifdef FANCHECK
  1481. if (fan_check_error && isPrintPaused)
  1482. {
  1483. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1484. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1485. }
  1486. #endif
  1487. if (prusa_sd_card_upload)
  1488. {
  1489. //we read byte-by byte
  1490. serial_read_stream();
  1491. }
  1492. else
  1493. {
  1494. get_command();
  1495. #ifdef SDSUPPORT
  1496. card.checkautostart(false);
  1497. #endif
  1498. if(buflen)
  1499. {
  1500. cmdbuffer_front_already_processed = false;
  1501. #ifdef SDSUPPORT
  1502. if(card.saving)
  1503. {
  1504. // Saving a G-code file onto an SD-card is in progress.
  1505. // Saving starts with M28, saving until M29 is seen.
  1506. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1507. card.write_command(CMDBUFFER_CURRENT_STRING);
  1508. if(card.logging)
  1509. process_commands();
  1510. else
  1511. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1512. } else {
  1513. card.closefile();
  1514. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1515. }
  1516. } else {
  1517. process_commands();
  1518. }
  1519. #else
  1520. process_commands();
  1521. #endif //SDSUPPORT
  1522. if (! cmdbuffer_front_already_processed && buflen)
  1523. {
  1524. // ptr points to the start of the block currently being processed.
  1525. // The first character in the block is the block type.
  1526. char *ptr = cmdbuffer + bufindr;
  1527. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1528. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1529. union {
  1530. struct {
  1531. char lo;
  1532. char hi;
  1533. } lohi;
  1534. uint16_t value;
  1535. } sdlen;
  1536. sdlen.value = 0;
  1537. {
  1538. // This block locks the interrupts globally for 3.25 us,
  1539. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1540. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1541. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1542. cli();
  1543. // Reset the command to something, which will be ignored by the power panic routine,
  1544. // so this buffer length will not be counted twice.
  1545. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1546. // Extract the current buffer length.
  1547. sdlen.lohi.lo = *ptr ++;
  1548. sdlen.lohi.hi = *ptr;
  1549. // and pass it to the planner queue.
  1550. planner_add_sd_length(sdlen.value);
  1551. sei();
  1552. }
  1553. }
  1554. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1555. cli();
  1556. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1557. // and one for each command to previous block in the planner queue.
  1558. planner_add_sd_length(1);
  1559. sei();
  1560. }
  1561. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1562. // this block's SD card length will not be counted twice as its command type has been replaced
  1563. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1564. cmdqueue_pop_front();
  1565. }
  1566. host_keepalive();
  1567. }
  1568. }
  1569. //check heater every n milliseconds
  1570. manage_heater();
  1571. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1572. checkHitEndstops();
  1573. lcd_update(0);
  1574. #ifdef TMC2130
  1575. tmc2130_check_overtemp();
  1576. if (tmc2130_sg_crash)
  1577. {
  1578. uint8_t crash = tmc2130_sg_crash;
  1579. tmc2130_sg_crash = 0;
  1580. // crashdet_stop_and_save_print();
  1581. switch (crash)
  1582. {
  1583. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1584. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1585. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1586. }
  1587. }
  1588. #endif //TMC2130
  1589. mmu_loop();
  1590. }
  1591. #define DEFINE_PGM_READ_ANY(type, reader) \
  1592. static inline type pgm_read_any(const type *p) \
  1593. { return pgm_read_##reader##_near(p); }
  1594. DEFINE_PGM_READ_ANY(float, float);
  1595. DEFINE_PGM_READ_ANY(signed char, byte);
  1596. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1597. static const PROGMEM type array##_P[3] = \
  1598. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1599. static inline type array(int axis) \
  1600. { return pgm_read_any(&array##_P[axis]); } \
  1601. type array##_ext(int axis) \
  1602. { return pgm_read_any(&array##_P[axis]); }
  1603. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1604. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1605. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1606. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1607. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1608. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1609. static void axis_is_at_home(int axis) {
  1610. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1611. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1612. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1613. }
  1614. //! @return original feedmultiply
  1615. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1616. saved_feedrate = feedrate;
  1617. int l_feedmultiply = feedmultiply;
  1618. feedmultiply = 100;
  1619. previous_millis_cmd = _millis();
  1620. enable_endstops(enable_endstops_now);
  1621. return l_feedmultiply;
  1622. }
  1623. //! @param original_feedmultiply feedmultiply to restore
  1624. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1625. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1626. enable_endstops(false);
  1627. #endif
  1628. feedrate = saved_feedrate;
  1629. feedmultiply = original_feedmultiply;
  1630. previous_millis_cmd = _millis();
  1631. }
  1632. #ifdef ENABLE_AUTO_BED_LEVELING
  1633. #ifdef AUTO_BED_LEVELING_GRID
  1634. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1635. {
  1636. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1637. planeNormal.debug("planeNormal");
  1638. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1639. //bedLevel.debug("bedLevel");
  1640. //plan_bed_level_matrix.debug("bed level before");
  1641. //vector_3 uncorrected_position = plan_get_position_mm();
  1642. //uncorrected_position.debug("position before");
  1643. vector_3 corrected_position = plan_get_position();
  1644. // corrected_position.debug("position after");
  1645. current_position[X_AXIS] = corrected_position.x;
  1646. current_position[Y_AXIS] = corrected_position.y;
  1647. current_position[Z_AXIS] = corrected_position.z;
  1648. // put the bed at 0 so we don't go below it.
  1649. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1650. plan_set_position_curposXYZE();
  1651. }
  1652. #else // not AUTO_BED_LEVELING_GRID
  1653. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1654. plan_bed_level_matrix.set_to_identity();
  1655. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1656. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1657. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1658. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1659. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1660. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1661. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1662. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1663. vector_3 corrected_position = plan_get_position();
  1664. current_position[X_AXIS] = corrected_position.x;
  1665. current_position[Y_AXIS] = corrected_position.y;
  1666. current_position[Z_AXIS] = corrected_position.z;
  1667. // put the bed at 0 so we don't go below it.
  1668. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1669. plan_set_position_curposXYZE();
  1670. }
  1671. #endif // AUTO_BED_LEVELING_GRID
  1672. static void run_z_probe() {
  1673. plan_bed_level_matrix.set_to_identity();
  1674. feedrate = homing_feedrate[Z_AXIS];
  1675. // move down until you find the bed
  1676. float zPosition = -10;
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. // we have to let the planner know where we are right now as it is not where we said to go.
  1680. zPosition = st_get_position_mm(Z_AXIS);
  1681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1682. // move up the retract distance
  1683. zPosition += home_retract_mm(Z_AXIS);
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1685. st_synchronize();
  1686. // move back down slowly to find bed
  1687. feedrate = homing_feedrate[Z_AXIS]/4;
  1688. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1692. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1693. plan_set_position_curposXYZE();
  1694. }
  1695. static void do_blocking_move_to(float x, float y, float z) {
  1696. float oldFeedRate = feedrate;
  1697. feedrate = homing_feedrate[Z_AXIS];
  1698. current_position[Z_AXIS] = z;
  1699. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1700. st_synchronize();
  1701. feedrate = XY_TRAVEL_SPEED;
  1702. current_position[X_AXIS] = x;
  1703. current_position[Y_AXIS] = y;
  1704. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1705. st_synchronize();
  1706. feedrate = oldFeedRate;
  1707. }
  1708. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1709. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1710. }
  1711. /// Probe bed height at position (x,y), returns the measured z value
  1712. static float probe_pt(float x, float y, float z_before) {
  1713. // move to right place
  1714. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1715. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1716. run_z_probe();
  1717. float measured_z = current_position[Z_AXIS];
  1718. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1719. SERIAL_PROTOCOLPGM(" x: ");
  1720. SERIAL_PROTOCOL(x);
  1721. SERIAL_PROTOCOLPGM(" y: ");
  1722. SERIAL_PROTOCOL(y);
  1723. SERIAL_PROTOCOLPGM(" z: ");
  1724. SERIAL_PROTOCOL(measured_z);
  1725. SERIAL_PROTOCOLPGM("\n");
  1726. return measured_z;
  1727. }
  1728. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1729. #ifdef LIN_ADVANCE
  1730. /**
  1731. * M900: Set and/or Get advance K factor
  1732. *
  1733. * K<factor> Set advance K factor
  1734. */
  1735. inline void gcode_M900() {
  1736. float newK = code_seen('K') ? code_value_float() : -2;
  1737. #ifdef LA_NOCOMPAT
  1738. if (newK >= 0 && newK < LA_K_MAX)
  1739. extruder_advance_K = newK;
  1740. else
  1741. SERIAL_ECHOLNPGM("K out of allowed range!");
  1742. #else
  1743. if (newK == 0)
  1744. {
  1745. extruder_advance_K = 0;
  1746. la10c_reset();
  1747. }
  1748. else
  1749. {
  1750. newK = la10c_value(newK);
  1751. if (newK < 0)
  1752. SERIAL_ECHOLNPGM("K out of allowed range!");
  1753. else
  1754. extruder_advance_K = newK;
  1755. }
  1756. #endif
  1757. SERIAL_ECHO_START;
  1758. SERIAL_ECHOPGM("Advance K=");
  1759. SERIAL_ECHOLN(extruder_advance_K);
  1760. }
  1761. #endif // LIN_ADVANCE
  1762. bool check_commands() {
  1763. bool end_command_found = false;
  1764. while (buflen)
  1765. {
  1766. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1767. if (!cmdbuffer_front_already_processed)
  1768. cmdqueue_pop_front();
  1769. cmdbuffer_front_already_processed = false;
  1770. }
  1771. return end_command_found;
  1772. }
  1773. // raise_z_above: slowly raise Z to the requested height
  1774. //
  1775. // contrarily to a simple move, this function will carefully plan a move
  1776. // when the current Z position is unknown. In such cases, stallguard is
  1777. // enabled and will prevent prolonged pushing against the Z tops
  1778. void raise_z_above(float target, bool plan)
  1779. {
  1780. if (current_position[Z_AXIS] >= target)
  1781. return;
  1782. // Z needs raising
  1783. current_position[Z_AXIS] = target;
  1784. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1785. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1786. #else
  1787. bool z_min_endstop = false;
  1788. #endif
  1789. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1790. {
  1791. // current position is known or very low, it's safe to raise Z
  1792. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1793. return;
  1794. }
  1795. // ensure Z is powered in normal mode to overcome initial load
  1796. enable_z();
  1797. st_synchronize();
  1798. // rely on crashguard to limit damage
  1799. bool z_endstop_enabled = enable_z_endstop(true);
  1800. #ifdef TMC2130
  1801. tmc2130_home_enter(Z_AXIS_MASK);
  1802. #endif //TMC2130
  1803. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1804. st_synchronize();
  1805. #ifdef TMC2130
  1806. if (endstop_z_hit_on_purpose())
  1807. {
  1808. // not necessarily exact, but will avoid further vertical moves
  1809. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1810. plan_set_position_curposXYZE();
  1811. }
  1812. tmc2130_home_exit();
  1813. #endif //TMC2130
  1814. enable_z_endstop(z_endstop_enabled);
  1815. }
  1816. #ifdef TMC2130
  1817. bool calibrate_z_auto()
  1818. {
  1819. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1820. lcd_clear();
  1821. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1822. bool endstops_enabled = enable_endstops(true);
  1823. int axis_up_dir = -home_dir(Z_AXIS);
  1824. tmc2130_home_enter(Z_AXIS_MASK);
  1825. current_position[Z_AXIS] = 0;
  1826. plan_set_position_curposXYZE();
  1827. set_destination_to_current();
  1828. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1829. feedrate = homing_feedrate[Z_AXIS];
  1830. plan_buffer_line_destinationXYZE(feedrate / 60);
  1831. st_synchronize();
  1832. // current_position[axis] = 0;
  1833. // plan_set_position_curposXYZE();
  1834. tmc2130_home_exit();
  1835. enable_endstops(false);
  1836. current_position[Z_AXIS] = 0;
  1837. plan_set_position_curposXYZE();
  1838. set_destination_to_current();
  1839. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1840. feedrate = homing_feedrate[Z_AXIS] / 2;
  1841. plan_buffer_line_destinationXYZE(feedrate / 60);
  1842. st_synchronize();
  1843. enable_endstops(endstops_enabled);
  1844. if (PRINTER_TYPE == PRINTER_MK3) {
  1845. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1846. }
  1847. else {
  1848. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1849. }
  1850. plan_set_position_curposXYZE();
  1851. return true;
  1852. }
  1853. #endif //TMC2130
  1854. #ifdef TMC2130
  1855. static void check_Z_crash(void)
  1856. {
  1857. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1858. FORCE_HIGH_POWER_END;
  1859. current_position[Z_AXIS] = 0;
  1860. plan_set_position_curposXYZE();
  1861. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1862. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1863. st_synchronize();
  1864. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1865. }
  1866. }
  1867. #endif //TMC2130
  1868. #ifdef TMC2130
  1869. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1870. #else
  1871. void homeaxis(int axis, uint8_t cnt)
  1872. #endif //TMC2130
  1873. {
  1874. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1875. #define HOMEAXIS_DO(LETTER) \
  1876. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1877. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1878. {
  1879. int axis_home_dir = home_dir(axis);
  1880. feedrate = homing_feedrate[axis];
  1881. #ifdef TMC2130
  1882. tmc2130_home_enter(X_AXIS_MASK << axis);
  1883. #endif //TMC2130
  1884. // Move away a bit, so that the print head does not touch the end position,
  1885. // and the following movement to endstop has a chance to achieve the required velocity
  1886. // for the stall guard to work.
  1887. current_position[axis] = 0;
  1888. plan_set_position_curposXYZE();
  1889. set_destination_to_current();
  1890. // destination[axis] = 11.f;
  1891. destination[axis] = -3.f * axis_home_dir;
  1892. plan_buffer_line_destinationXYZE(feedrate/60);
  1893. st_synchronize();
  1894. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1895. endstops_hit_on_purpose();
  1896. enable_endstops(false);
  1897. current_position[axis] = 0;
  1898. plan_set_position_curposXYZE();
  1899. destination[axis] = 1. * axis_home_dir;
  1900. plan_buffer_line_destinationXYZE(feedrate/60);
  1901. st_synchronize();
  1902. // Now continue to move up to the left end stop with the collision detection enabled.
  1903. enable_endstops(true);
  1904. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1905. plan_buffer_line_destinationXYZE(feedrate/60);
  1906. st_synchronize();
  1907. for (uint8_t i = 0; i < cnt; i++)
  1908. {
  1909. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1910. endstops_hit_on_purpose();
  1911. enable_endstops(false);
  1912. current_position[axis] = 0;
  1913. plan_set_position_curposXYZE();
  1914. destination[axis] = -10.f * axis_home_dir;
  1915. plan_buffer_line_destinationXYZE(feedrate/60);
  1916. st_synchronize();
  1917. endstops_hit_on_purpose();
  1918. // Now move left up to the collision, this time with a repeatable velocity.
  1919. enable_endstops(true);
  1920. destination[axis] = 11.f * axis_home_dir;
  1921. #ifdef TMC2130
  1922. feedrate = homing_feedrate[axis];
  1923. #else //TMC2130
  1924. feedrate = homing_feedrate[axis] / 2;
  1925. #endif //TMC2130
  1926. plan_buffer_line_destinationXYZE(feedrate/60);
  1927. st_synchronize();
  1928. #ifdef TMC2130
  1929. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1930. if (pstep) pstep[i] = mscnt >> 4;
  1931. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1932. #endif //TMC2130
  1933. }
  1934. endstops_hit_on_purpose();
  1935. enable_endstops(false);
  1936. #ifdef TMC2130
  1937. uint8_t orig = tmc2130_home_origin[axis];
  1938. uint8_t back = tmc2130_home_bsteps[axis];
  1939. if (tmc2130_home_enabled && (orig <= 63))
  1940. {
  1941. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1942. if (back > 0)
  1943. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1944. }
  1945. else
  1946. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1947. tmc2130_home_exit();
  1948. #endif //TMC2130
  1949. axis_is_at_home(axis);
  1950. axis_known_position[axis] = true;
  1951. // Move from minimum
  1952. #ifdef TMC2130
  1953. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1954. #else //TMC2130
  1955. float dist = - axis_home_dir * 0.01f * 64;
  1956. #endif //TMC2130
  1957. current_position[axis] -= dist;
  1958. plan_set_position_curposXYZE();
  1959. current_position[axis] += dist;
  1960. destination[axis] = current_position[axis];
  1961. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  1962. st_synchronize();
  1963. feedrate = 0.0;
  1964. }
  1965. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1966. {
  1967. #ifdef TMC2130
  1968. FORCE_HIGH_POWER_START;
  1969. #endif
  1970. int axis_home_dir = home_dir(axis);
  1971. current_position[axis] = 0;
  1972. plan_set_position_curposXYZE();
  1973. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1974. feedrate = homing_feedrate[axis];
  1975. plan_buffer_line_destinationXYZE(feedrate/60);
  1976. st_synchronize();
  1977. #ifdef TMC2130
  1978. check_Z_crash();
  1979. #endif //TMC2130
  1980. current_position[axis] = 0;
  1981. plan_set_position_curposXYZE();
  1982. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1983. plan_buffer_line_destinationXYZE(feedrate/60);
  1984. st_synchronize();
  1985. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1986. feedrate = homing_feedrate[axis]/2 ;
  1987. plan_buffer_line_destinationXYZE(feedrate/60);
  1988. st_synchronize();
  1989. #ifdef TMC2130
  1990. check_Z_crash();
  1991. #endif //TMC2130
  1992. axis_is_at_home(axis);
  1993. destination[axis] = current_position[axis];
  1994. feedrate = 0.0;
  1995. endstops_hit_on_purpose();
  1996. axis_known_position[axis] = true;
  1997. #ifdef TMC2130
  1998. FORCE_HIGH_POWER_END;
  1999. #endif
  2000. }
  2001. enable_endstops(endstops_enabled);
  2002. }
  2003. /**/
  2004. void home_xy()
  2005. {
  2006. set_destination_to_current();
  2007. homeaxis(X_AXIS);
  2008. homeaxis(Y_AXIS);
  2009. plan_set_position_curposXYZE();
  2010. endstops_hit_on_purpose();
  2011. }
  2012. void refresh_cmd_timeout(void)
  2013. {
  2014. previous_millis_cmd = _millis();
  2015. }
  2016. #ifdef FWRETRACT
  2017. void retract(bool retracting, bool swapretract = false) {
  2018. if(retracting && !retracted[active_extruder]) {
  2019. destination[X_AXIS]=current_position[X_AXIS];
  2020. destination[Y_AXIS]=current_position[Y_AXIS];
  2021. destination[Z_AXIS]=current_position[Z_AXIS];
  2022. destination[E_AXIS]=current_position[E_AXIS];
  2023. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2024. plan_set_e_position(current_position[E_AXIS]);
  2025. float oldFeedrate = feedrate;
  2026. feedrate=cs.retract_feedrate*60;
  2027. retracted[active_extruder]=true;
  2028. prepare_move();
  2029. current_position[Z_AXIS]-=cs.retract_zlift;
  2030. plan_set_position_curposXYZE();
  2031. prepare_move();
  2032. feedrate = oldFeedrate;
  2033. } else if(!retracting && retracted[active_extruder]) {
  2034. destination[X_AXIS]=current_position[X_AXIS];
  2035. destination[Y_AXIS]=current_position[Y_AXIS];
  2036. destination[Z_AXIS]=current_position[Z_AXIS];
  2037. destination[E_AXIS]=current_position[E_AXIS];
  2038. current_position[Z_AXIS]+=cs.retract_zlift;
  2039. plan_set_position_curposXYZE();
  2040. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2041. plan_set_e_position(current_position[E_AXIS]);
  2042. float oldFeedrate = feedrate;
  2043. feedrate=cs.retract_recover_feedrate*60;
  2044. retracted[active_extruder]=false;
  2045. prepare_move();
  2046. feedrate = oldFeedrate;
  2047. }
  2048. } //retract
  2049. #endif //FWRETRACT
  2050. void trace() {
  2051. Sound_MakeCustom(25,440,true);
  2052. }
  2053. /*
  2054. void ramming() {
  2055. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2056. if (current_temperature[0] < 230) {
  2057. //PLA
  2058. max_feedrate[E_AXIS] = 50;
  2059. //current_position[E_AXIS] -= 8;
  2060. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2061. //current_position[E_AXIS] += 8;
  2062. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2063. current_position[E_AXIS] += 5.4;
  2064. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2065. current_position[E_AXIS] += 3.2;
  2066. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2067. current_position[E_AXIS] += 3;
  2068. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2069. st_synchronize();
  2070. max_feedrate[E_AXIS] = 80;
  2071. current_position[E_AXIS] -= 82;
  2072. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2073. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2074. current_position[E_AXIS] -= 20;
  2075. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2076. current_position[E_AXIS] += 5;
  2077. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2078. current_position[E_AXIS] += 5;
  2079. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2080. current_position[E_AXIS] -= 10;
  2081. st_synchronize();
  2082. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2083. current_position[E_AXIS] += 10;
  2084. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2085. current_position[E_AXIS] -= 10;
  2086. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2087. current_position[E_AXIS] += 10;
  2088. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2089. current_position[E_AXIS] -= 10;
  2090. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2091. st_synchronize();
  2092. }
  2093. else {
  2094. //ABS
  2095. max_feedrate[E_AXIS] = 50;
  2096. //current_position[E_AXIS] -= 8;
  2097. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2098. //current_position[E_AXIS] += 8;
  2099. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2100. current_position[E_AXIS] += 3.1;
  2101. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2102. current_position[E_AXIS] += 3.1;
  2103. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2104. current_position[E_AXIS] += 4;
  2105. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2106. st_synchronize();
  2107. //current_position[X_AXIS] += 23; //delay
  2108. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2109. //current_position[X_AXIS] -= 23; //delay
  2110. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2111. _delay(4700);
  2112. max_feedrate[E_AXIS] = 80;
  2113. current_position[E_AXIS] -= 92;
  2114. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2115. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2116. current_position[E_AXIS] -= 5;
  2117. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2118. current_position[E_AXIS] += 5;
  2119. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2120. current_position[E_AXIS] -= 5;
  2121. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2122. st_synchronize();
  2123. current_position[E_AXIS] += 5;
  2124. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2125. current_position[E_AXIS] -= 5;
  2126. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2127. current_position[E_AXIS] += 5;
  2128. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2129. current_position[E_AXIS] -= 5;
  2130. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2131. st_synchronize();
  2132. }
  2133. }
  2134. */
  2135. #ifdef TMC2130
  2136. void force_high_power_mode(bool start_high_power_section) {
  2137. #ifdef PSU_Delta
  2138. if (start_high_power_section == true) enable_force_z();
  2139. #endif //PSU_Delta
  2140. uint8_t silent;
  2141. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2142. if (silent == 1) {
  2143. //we are in silent mode, set to normal mode to enable crash detection
  2144. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2145. st_synchronize();
  2146. cli();
  2147. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2148. update_mode_profile();
  2149. tmc2130_init();
  2150. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2151. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2152. st_reset_timer();
  2153. sei();
  2154. }
  2155. }
  2156. #endif //TMC2130
  2157. #ifdef TMC2130
  2158. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2159. #else
  2160. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2161. #endif //TMC2130
  2162. {
  2163. st_synchronize();
  2164. #if 0
  2165. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2166. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2167. #endif
  2168. // Flag for the display update routine and to disable the print cancelation during homing.
  2169. homing_flag = true;
  2170. // Which axes should be homed?
  2171. bool home_x = home_x_axis;
  2172. bool home_y = home_y_axis;
  2173. bool home_z = home_z_axis;
  2174. // Either all X,Y,Z codes are present, or none of them.
  2175. bool home_all_axes = home_x == home_y && home_x == home_z;
  2176. if (home_all_axes)
  2177. // No X/Y/Z code provided means to home all axes.
  2178. home_x = home_y = home_z = true;
  2179. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2180. if (home_all_axes) {
  2181. raise_z_above(MESH_HOME_Z_SEARCH);
  2182. st_synchronize();
  2183. }
  2184. #ifdef ENABLE_AUTO_BED_LEVELING
  2185. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2186. #endif //ENABLE_AUTO_BED_LEVELING
  2187. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2188. // the planner will not perform any adjustments in the XY plane.
  2189. // Wait for the motors to stop and update the current position with the absolute values.
  2190. world2machine_revert_to_uncorrected();
  2191. // For mesh bed leveling deactivate the matrix temporarily.
  2192. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2193. // in a single axis only.
  2194. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2195. #ifdef MESH_BED_LEVELING
  2196. uint8_t mbl_was_active = mbl.active;
  2197. mbl.active = 0;
  2198. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2199. #endif
  2200. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2201. // consumed during the first movements following this statement.
  2202. if (home_z)
  2203. babystep_undo();
  2204. saved_feedrate = feedrate;
  2205. int l_feedmultiply = feedmultiply;
  2206. feedmultiply = 100;
  2207. previous_millis_cmd = _millis();
  2208. enable_endstops(true);
  2209. memcpy(destination, current_position, sizeof(destination));
  2210. feedrate = 0.0;
  2211. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2212. if(home_z)
  2213. homeaxis(Z_AXIS);
  2214. #endif
  2215. #ifdef QUICK_HOME
  2216. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2217. if(home_x && home_y) //first diagonal move
  2218. {
  2219. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2220. int x_axis_home_dir = home_dir(X_AXIS);
  2221. plan_set_position_curposXYZE();
  2222. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2223. feedrate = homing_feedrate[X_AXIS];
  2224. if(homing_feedrate[Y_AXIS]<feedrate)
  2225. feedrate = homing_feedrate[Y_AXIS];
  2226. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2227. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2228. } else {
  2229. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2230. }
  2231. plan_buffer_line_destinationXYZE(feedrate/60);
  2232. st_synchronize();
  2233. axis_is_at_home(X_AXIS);
  2234. axis_is_at_home(Y_AXIS);
  2235. plan_set_position_curposXYZE();
  2236. destination[X_AXIS] = current_position[X_AXIS];
  2237. destination[Y_AXIS] = current_position[Y_AXIS];
  2238. plan_buffer_line_destinationXYZE(feedrate/60);
  2239. feedrate = 0.0;
  2240. st_synchronize();
  2241. endstops_hit_on_purpose();
  2242. current_position[X_AXIS] = destination[X_AXIS];
  2243. current_position[Y_AXIS] = destination[Y_AXIS];
  2244. current_position[Z_AXIS] = destination[Z_AXIS];
  2245. }
  2246. #endif /* QUICK_HOME */
  2247. #ifdef TMC2130
  2248. if(home_x)
  2249. {
  2250. if (!calib)
  2251. homeaxis(X_AXIS);
  2252. else
  2253. tmc2130_home_calibrate(X_AXIS);
  2254. }
  2255. if(home_y)
  2256. {
  2257. if (!calib)
  2258. homeaxis(Y_AXIS);
  2259. else
  2260. tmc2130_home_calibrate(Y_AXIS);
  2261. }
  2262. #else //TMC2130
  2263. if(home_x) homeaxis(X_AXIS);
  2264. if(home_y) homeaxis(Y_AXIS);
  2265. #endif //TMC2130
  2266. if(home_x_axis && home_x_value != 0)
  2267. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2268. if(home_y_axis && home_y_value != 0)
  2269. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2270. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2271. #ifndef Z_SAFE_HOMING
  2272. if(home_z) {
  2273. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2274. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2275. st_synchronize();
  2276. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2277. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2278. raise_z_above(MESH_HOME_Z_SEARCH);
  2279. st_synchronize();
  2280. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2281. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2282. // 1st mesh bed leveling measurement point, corrected.
  2283. world2machine_initialize();
  2284. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2285. world2machine_reset();
  2286. if (destination[Y_AXIS] < Y_MIN_POS)
  2287. destination[Y_AXIS] = Y_MIN_POS;
  2288. feedrate = homing_feedrate[X_AXIS] / 20;
  2289. enable_endstops(false);
  2290. #ifdef DEBUG_BUILD
  2291. SERIAL_ECHOLNPGM("plan_set_position()");
  2292. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2293. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2294. #endif
  2295. plan_set_position_curposXYZE();
  2296. #ifdef DEBUG_BUILD
  2297. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2298. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2299. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2300. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2301. #endif
  2302. plan_buffer_line_destinationXYZE(feedrate);
  2303. st_synchronize();
  2304. current_position[X_AXIS] = destination[X_AXIS];
  2305. current_position[Y_AXIS] = destination[Y_AXIS];
  2306. enable_endstops(true);
  2307. endstops_hit_on_purpose();
  2308. homeaxis(Z_AXIS);
  2309. #else // MESH_BED_LEVELING
  2310. homeaxis(Z_AXIS);
  2311. #endif // MESH_BED_LEVELING
  2312. }
  2313. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2314. if(home_all_axes) {
  2315. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2316. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2317. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2318. feedrate = XY_TRAVEL_SPEED/60;
  2319. current_position[Z_AXIS] = 0;
  2320. plan_set_position_curposXYZE();
  2321. plan_buffer_line_destinationXYZE(feedrate);
  2322. st_synchronize();
  2323. current_position[X_AXIS] = destination[X_AXIS];
  2324. current_position[Y_AXIS] = destination[Y_AXIS];
  2325. homeaxis(Z_AXIS);
  2326. }
  2327. // Let's see if X and Y are homed and probe is inside bed area.
  2328. if(home_z) {
  2329. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2330. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2331. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2332. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2333. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2334. current_position[Z_AXIS] = 0;
  2335. plan_set_position_curposXYZE();
  2336. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2337. feedrate = max_feedrate[Z_AXIS];
  2338. plan_buffer_line_destinationXYZE(feedrate);
  2339. st_synchronize();
  2340. homeaxis(Z_AXIS);
  2341. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2342. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2343. SERIAL_ECHO_START;
  2344. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2345. } else {
  2346. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2347. SERIAL_ECHO_START;
  2348. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2349. }
  2350. }
  2351. #endif // Z_SAFE_HOMING
  2352. #endif // Z_HOME_DIR < 0
  2353. if(home_z_axis && home_z_value != 0)
  2354. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2355. #ifdef ENABLE_AUTO_BED_LEVELING
  2356. if(home_z)
  2357. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2358. #endif
  2359. // Set the planner and stepper routine positions.
  2360. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2361. // contains the machine coordinates.
  2362. plan_set_position_curposXYZE();
  2363. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2364. enable_endstops(false);
  2365. #endif
  2366. feedrate = saved_feedrate;
  2367. feedmultiply = l_feedmultiply;
  2368. previous_millis_cmd = _millis();
  2369. endstops_hit_on_purpose();
  2370. #ifndef MESH_BED_LEVELING
  2371. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2372. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2373. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2374. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2375. lcd_adjust_z();
  2376. #endif
  2377. // Load the machine correction matrix
  2378. world2machine_initialize();
  2379. // and correct the current_position XY axes to match the transformed coordinate system.
  2380. world2machine_update_current();
  2381. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2382. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2383. {
  2384. if (! home_z && mbl_was_active) {
  2385. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2386. mbl.active = true;
  2387. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2388. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2389. }
  2390. }
  2391. else
  2392. {
  2393. st_synchronize();
  2394. homing_flag = false;
  2395. }
  2396. #endif
  2397. if (farm_mode) { prusa_statistics(20); };
  2398. homing_flag = false;
  2399. #if 0
  2400. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2401. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2402. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2403. #endif
  2404. }
  2405. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2406. {
  2407. #ifdef TMC2130
  2408. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2409. #else
  2410. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2411. #endif //TMC2130
  2412. }
  2413. void adjust_bed_reset()
  2414. {
  2415. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2416. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2417. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2418. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2419. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2420. }
  2421. //! @brief Calibrate XYZ
  2422. //! @param onlyZ if true, calibrate only Z axis
  2423. //! @param verbosity_level
  2424. //! @retval true Succeeded
  2425. //! @retval false Failed
  2426. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2427. {
  2428. bool final_result = false;
  2429. #ifdef TMC2130
  2430. FORCE_HIGH_POWER_START;
  2431. #endif // TMC2130
  2432. FORCE_BL_ON_START;
  2433. // Only Z calibration?
  2434. if (!onlyZ)
  2435. {
  2436. setTargetBed(0);
  2437. setAllTargetHotends(0);
  2438. adjust_bed_reset(); //reset bed level correction
  2439. }
  2440. // Disable the default update procedure of the display. We will do a modal dialog.
  2441. lcd_update_enable(false);
  2442. // Let the planner use the uncorrected coordinates.
  2443. mbl.reset();
  2444. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2445. // the planner will not perform any adjustments in the XY plane.
  2446. // Wait for the motors to stop and update the current position with the absolute values.
  2447. world2machine_revert_to_uncorrected();
  2448. // Reset the baby step value applied without moving the axes.
  2449. babystep_reset();
  2450. // Mark all axes as in a need for homing.
  2451. memset(axis_known_position, 0, sizeof(axis_known_position));
  2452. // Home in the XY plane.
  2453. //set_destination_to_current();
  2454. int l_feedmultiply = setup_for_endstop_move();
  2455. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2456. home_xy();
  2457. enable_endstops(false);
  2458. current_position[X_AXIS] += 5;
  2459. current_position[Y_AXIS] += 5;
  2460. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2461. st_synchronize();
  2462. // Let the user move the Z axes up to the end stoppers.
  2463. #ifdef TMC2130
  2464. if (calibrate_z_auto())
  2465. {
  2466. #else //TMC2130
  2467. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2468. {
  2469. #endif //TMC2130
  2470. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2471. if(onlyZ){
  2472. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2473. lcd_set_cursor(0, 3);
  2474. lcd_print(1);
  2475. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2476. }else{
  2477. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2478. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2479. lcd_set_cursor(0, 2);
  2480. lcd_print(1);
  2481. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2482. }
  2483. refresh_cmd_timeout();
  2484. #ifndef STEEL_SHEET
  2485. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2486. {
  2487. lcd_wait_for_cool_down();
  2488. }
  2489. #endif //STEEL_SHEET
  2490. if(!onlyZ)
  2491. {
  2492. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2493. #ifdef STEEL_SHEET
  2494. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2495. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2496. #endif //STEEL_SHEET
  2497. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2498. KEEPALIVE_STATE(IN_HANDLER);
  2499. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2500. lcd_set_cursor(0, 2);
  2501. lcd_print(1);
  2502. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2503. }
  2504. bool endstops_enabled = enable_endstops(false);
  2505. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2506. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2507. st_synchronize();
  2508. // Move the print head close to the bed.
  2509. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2510. enable_endstops(true);
  2511. #ifdef TMC2130
  2512. tmc2130_home_enter(Z_AXIS_MASK);
  2513. #endif //TMC2130
  2514. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2515. st_synchronize();
  2516. #ifdef TMC2130
  2517. tmc2130_home_exit();
  2518. #endif //TMC2130
  2519. enable_endstops(endstops_enabled);
  2520. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2521. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2522. {
  2523. if (onlyZ)
  2524. {
  2525. clean_up_after_endstop_move(l_feedmultiply);
  2526. // Z only calibration.
  2527. // Load the machine correction matrix
  2528. world2machine_initialize();
  2529. // and correct the current_position to match the transformed coordinate system.
  2530. world2machine_update_current();
  2531. //FIXME
  2532. bool result = sample_mesh_and_store_reference();
  2533. if (result)
  2534. {
  2535. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2536. // Shipped, the nozzle height has been set already. The user can start printing now.
  2537. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2538. final_result = true;
  2539. // babystep_apply();
  2540. }
  2541. }
  2542. else
  2543. {
  2544. // Reset the baby step value and the baby step applied flag.
  2545. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2546. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2547. // Complete XYZ calibration.
  2548. uint8_t point_too_far_mask = 0;
  2549. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2550. clean_up_after_endstop_move(l_feedmultiply);
  2551. // Print head up.
  2552. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2553. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2554. st_synchronize();
  2555. //#ifndef NEW_XYZCAL
  2556. if (result >= 0)
  2557. {
  2558. #ifdef HEATBED_V2
  2559. sample_z();
  2560. #else //HEATBED_V2
  2561. point_too_far_mask = 0;
  2562. // Second half: The fine adjustment.
  2563. // Let the planner use the uncorrected coordinates.
  2564. mbl.reset();
  2565. world2machine_reset();
  2566. // Home in the XY plane.
  2567. int l_feedmultiply = setup_for_endstop_move();
  2568. home_xy();
  2569. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2570. clean_up_after_endstop_move(l_feedmultiply);
  2571. // Print head up.
  2572. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2573. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2574. st_synchronize();
  2575. // if (result >= 0) babystep_apply();
  2576. #endif //HEATBED_V2
  2577. }
  2578. //#endif //NEW_XYZCAL
  2579. lcd_update_enable(true);
  2580. lcd_update(2);
  2581. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2582. if (result >= 0)
  2583. {
  2584. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2585. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2586. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2587. final_result = true;
  2588. }
  2589. }
  2590. #ifdef TMC2130
  2591. tmc2130_home_exit();
  2592. #endif
  2593. }
  2594. else
  2595. {
  2596. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2597. final_result = false;
  2598. }
  2599. }
  2600. else
  2601. {
  2602. // Timeouted.
  2603. }
  2604. lcd_update_enable(true);
  2605. #ifdef TMC2130
  2606. FORCE_HIGH_POWER_END;
  2607. #endif // TMC2130
  2608. FORCE_BL_ON_END;
  2609. return final_result;
  2610. }
  2611. void gcode_M114()
  2612. {
  2613. SERIAL_PROTOCOLPGM("X:");
  2614. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2615. SERIAL_PROTOCOLPGM(" Y:");
  2616. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2617. SERIAL_PROTOCOLPGM(" Z:");
  2618. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2619. SERIAL_PROTOCOLPGM(" E:");
  2620. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2621. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2622. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2623. SERIAL_PROTOCOLPGM(" Y:");
  2624. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2625. SERIAL_PROTOCOLPGM(" Z:");
  2626. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2627. SERIAL_PROTOCOLPGM(" E:");
  2628. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2629. SERIAL_PROTOCOLLN("");
  2630. }
  2631. //! extracted code to compute z_shift for M600 in case of filament change operation
  2632. //! requested from fsensors.
  2633. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2634. //! unlike the previous implementation, which was adding 25mm even when the head was
  2635. //! printing at e.g. 24mm height.
  2636. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2637. //! the printout.
  2638. //! This function is templated to enable fast change of computation data type.
  2639. //! @return new z_shift value
  2640. template<typename T>
  2641. static T gcode_M600_filament_change_z_shift()
  2642. {
  2643. #ifdef FILAMENTCHANGE_ZADD
  2644. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2645. // avoid floating point arithmetics when not necessary - results in shorter code
  2646. T ztmp = T( current_position[Z_AXIS] );
  2647. T z_shift = 0;
  2648. if(ztmp < T(25)){
  2649. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2650. }
  2651. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2652. #else
  2653. return T(0);
  2654. #endif
  2655. }
  2656. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2657. {
  2658. st_synchronize();
  2659. float lastpos[4];
  2660. if (farm_mode)
  2661. {
  2662. prusa_statistics(22);
  2663. }
  2664. //First backup current position and settings
  2665. int feedmultiplyBckp = feedmultiply;
  2666. float HotendTempBckp = degTargetHotend(active_extruder);
  2667. int fanSpeedBckp = fanSpeed;
  2668. lastpos[X_AXIS] = current_position[X_AXIS];
  2669. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2670. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2671. lastpos[E_AXIS] = current_position[E_AXIS];
  2672. //Retract E
  2673. current_position[E_AXIS] += e_shift;
  2674. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  2675. st_synchronize();
  2676. //Lift Z
  2677. current_position[Z_AXIS] += z_shift;
  2678. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  2679. st_synchronize();
  2680. //Move XY to side
  2681. current_position[X_AXIS] = x_position;
  2682. current_position[Y_AXIS] = y_position;
  2683. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2684. st_synchronize();
  2685. //Beep, manage nozzle heater and wait for user to start unload filament
  2686. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2687. lcd_change_fil_state = 0;
  2688. // Unload filament
  2689. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2690. else unload_filament(); //unload filament for single material (used also in M702)
  2691. //finish moves
  2692. st_synchronize();
  2693. if (!mmu_enabled)
  2694. {
  2695. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2696. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2697. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2698. if (lcd_change_fil_state == 0)
  2699. {
  2700. lcd_clear();
  2701. lcd_set_cursor(0, 2);
  2702. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2703. current_position[X_AXIS] -= 100;
  2704. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2705. st_synchronize();
  2706. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2707. }
  2708. }
  2709. if (mmu_enabled)
  2710. {
  2711. if (!automatic) {
  2712. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2713. mmu_M600_wait_and_beep();
  2714. if (saved_printing) {
  2715. lcd_clear();
  2716. lcd_set_cursor(0, 2);
  2717. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2718. mmu_command(MmuCmd::R0);
  2719. manage_response(false, false);
  2720. }
  2721. }
  2722. mmu_M600_load_filament(automatic, HotendTempBckp);
  2723. }
  2724. else
  2725. M600_load_filament();
  2726. if (!automatic) M600_check_state(HotendTempBckp);
  2727. lcd_update_enable(true);
  2728. //Not let's go back to print
  2729. fanSpeed = fanSpeedBckp;
  2730. //Retract filament to prevent drooling
  2731. if (!automatic)
  2732. {
  2733. current_position[E_AXIS] -= FILAMENTCHANGE_LOADRETRACT;
  2734. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  2735. st_synchronize();
  2736. }
  2737. //Move XY back
  2738. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2739. FILAMENTCHANGE_XYFEED, active_extruder);
  2740. st_synchronize();
  2741. //Move Z back
  2742. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2743. FILAMENTCHANGE_ZFEED, active_extruder);
  2744. st_synchronize();
  2745. //Restore filament
  2746. if (!automatic)
  2747. {
  2748. current_position[E_AXIS] += FILAMENTCHANGE_LOADRETRACT;
  2749. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2750. FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  2751. st_synchronize();
  2752. }
  2753. //Set E position to original
  2754. plan_set_e_position(lastpos[E_AXIS]);
  2755. memcpy(current_position, lastpos, sizeof(lastpos));
  2756. memcpy(destination, current_position, sizeof(current_position));
  2757. //Recover feed rate
  2758. feedmultiply = feedmultiplyBckp;
  2759. char cmd[9];
  2760. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2761. enquecommand(cmd);
  2762. #ifdef IR_SENSOR
  2763. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2764. fsensor_check_autoload();
  2765. #endif //IR_SENSOR
  2766. lcd_setstatuspgm(_T(WELCOME_MSG));
  2767. custom_message_type = CustomMsg::Status;
  2768. }
  2769. void gcode_M701()
  2770. {
  2771. printf_P(PSTR("gcode_M701 begin\n"));
  2772. if (farm_mode)
  2773. {
  2774. prusa_statistics(22);
  2775. }
  2776. if (mmu_enabled)
  2777. {
  2778. extr_adj(tmp_extruder);//loads current extruder
  2779. mmu_extruder = tmp_extruder;
  2780. }
  2781. else
  2782. {
  2783. enable_z();
  2784. custom_message_type = CustomMsg::FilamentLoading;
  2785. #ifdef FSENSOR_QUALITY
  2786. fsensor_oq_meassure_start(40);
  2787. #endif //FSENSOR_QUALITY
  2788. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2789. current_position[E_AXIS] += 40;
  2790. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2791. st_synchronize();
  2792. raise_z_above(MIN_Z_FOR_LOAD, false);
  2793. current_position[E_AXIS] += 30;
  2794. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2795. load_filament_final_feed(); //slow sequence
  2796. st_synchronize();
  2797. Sound_MakeCustom(50,500,false);
  2798. if (!farm_mode && loading_flag) {
  2799. lcd_load_filament_color_check();
  2800. }
  2801. load_filament_final_retract();
  2802. lcd_update_enable(true);
  2803. lcd_update(2);
  2804. lcd_setstatuspgm(_T(WELCOME_MSG));
  2805. disable_z();
  2806. loading_flag = false;
  2807. custom_message_type = CustomMsg::Status;
  2808. #ifdef FSENSOR_QUALITY
  2809. fsensor_oq_meassure_stop();
  2810. if (!fsensor_oq_result())
  2811. {
  2812. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2813. lcd_update_enable(true);
  2814. lcd_update(2);
  2815. if (disable)
  2816. fsensor_disable();
  2817. }
  2818. #endif //FSENSOR_QUALITY
  2819. }
  2820. }
  2821. /**
  2822. * @brief Get serial number from 32U2 processor
  2823. *
  2824. * Typical format of S/N is:CZPX0917X003XC13518
  2825. *
  2826. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2827. *
  2828. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2829. * reply is transmitted to serial port 1 character by character.
  2830. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2831. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2832. * in any case.
  2833. */
  2834. static void gcode_PRUSA_SN()
  2835. {
  2836. if (farm_mode) {
  2837. selectedSerialPort = 0;
  2838. putchar(';');
  2839. putchar('S');
  2840. int numbersRead = 0;
  2841. ShortTimer timeout;
  2842. timeout.start();
  2843. while (numbersRead < 19) {
  2844. while (MSerial.available() > 0) {
  2845. uint8_t serial_char = MSerial.read();
  2846. selectedSerialPort = 1;
  2847. putchar(serial_char);
  2848. numbersRead++;
  2849. selectedSerialPort = 0;
  2850. }
  2851. if (timeout.expired(100u)) break;
  2852. }
  2853. selectedSerialPort = 1;
  2854. putchar('\n');
  2855. #if 0
  2856. for (int b = 0; b < 3; b++) {
  2857. _tone(BEEPER, 110);
  2858. _delay(50);
  2859. _noTone(BEEPER);
  2860. _delay(50);
  2861. }
  2862. #endif
  2863. } else {
  2864. puts_P(_N("Not in farm mode."));
  2865. }
  2866. }
  2867. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2868. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2869. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2870. //! it may even interfere with other functions of the printer! You have been warned!
  2871. //! The test idea is to measure the time necessary to charge the capacitor.
  2872. //! So the algorithm is as follows:
  2873. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2874. //! 2. Wait a few ms
  2875. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2876. //! Repeat 1.-3. several times
  2877. //! Good RAMBo's times are in the range of approx. 260-320 us
  2878. //! Bad RAMBo's times are approx. 260-1200 us
  2879. //! So basically we are interested in maximum time, the minima are mostly the same.
  2880. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2881. static void gcode_PRUSA_BadRAMBoFanTest(){
  2882. //printf_P(PSTR("Enter fan pin test\n"));
  2883. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2884. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2885. unsigned long tach1max = 0;
  2886. uint8_t tach1cntr = 0;
  2887. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2888. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2889. SET_OUTPUT(TACH_1);
  2890. WRITE(TACH_1, LOW);
  2891. _delay(20); // the delay may be lower
  2892. unsigned long tachMeasure = _micros();
  2893. cli();
  2894. SET_INPUT(TACH_1);
  2895. // just wait brutally in an endless cycle until we reach HIGH
  2896. // if this becomes a problem it may be improved to non-endless cycle
  2897. while( READ(TACH_1) == 0 ) ;
  2898. sei();
  2899. tachMeasure = _micros() - tachMeasure;
  2900. if( tach1max < tachMeasure )
  2901. tach1max = tachMeasure;
  2902. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2903. }
  2904. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2905. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2906. if( tach1max > 500 ){
  2907. // bad RAMBo
  2908. SERIAL_PROTOCOLLNPGM("BAD");
  2909. } else {
  2910. SERIAL_PROTOCOLLNPGM("OK");
  2911. }
  2912. // cleanup after the test function
  2913. SET_INPUT(TACH_1);
  2914. WRITE(TACH_1, HIGH);
  2915. #endif
  2916. }
  2917. // G92 - Set current position to coordinates given
  2918. static void gcode_G92()
  2919. {
  2920. bool codes[NUM_AXIS];
  2921. float values[NUM_AXIS];
  2922. // Check which axes need to be set
  2923. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  2924. {
  2925. codes[i] = code_seen(axis_codes[i]);
  2926. if(codes[i])
  2927. values[i] = code_value();
  2928. }
  2929. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  2930. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  2931. {
  2932. // As a special optimization, when _just_ clearing the E position
  2933. // we schedule a flag asynchronously along with the next block to
  2934. // reset the starting E position instead of stopping the planner
  2935. current_position[E_AXIS] = 0;
  2936. plan_reset_next_e();
  2937. }
  2938. else
  2939. {
  2940. // In any other case we're forced to synchronize
  2941. st_synchronize();
  2942. for(uint8_t i = 0; i < 3; ++i)
  2943. {
  2944. if(codes[i])
  2945. current_position[i] = values[i] + cs.add_homing[i];
  2946. }
  2947. if(codes[E_AXIS])
  2948. current_position[E_AXIS] = values[E_AXIS];
  2949. // Set all at once
  2950. plan_set_position_curposXYZE();
  2951. }
  2952. }
  2953. #ifdef BACKLASH_X
  2954. extern uint8_t st_backlash_x;
  2955. #endif //BACKLASH_X
  2956. #ifdef BACKLASH_Y
  2957. extern uint8_t st_backlash_y;
  2958. #endif //BACKLASH_Y
  2959. //! \ingroup marlin_main
  2960. //! @brief Parse and process commands
  2961. //!
  2962. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2963. //!
  2964. //!
  2965. //! Implemented Codes
  2966. //! -------------------
  2967. //!
  2968. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2969. //!
  2970. //!@n PRUSA CODES
  2971. //!@n P F - Returns FW versions
  2972. //!@n P R - Returns revision of printer
  2973. //!
  2974. //!@n G0 -> G1
  2975. //!@n G1 - Coordinated Movement X Y Z E
  2976. //!@n G2 - CW ARC
  2977. //!@n G3 - CCW ARC
  2978. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2979. //!@n G10 - retract filament according to settings of M207
  2980. //!@n G11 - retract recover filament according to settings of M208
  2981. //!@n G28 - Home all Axes
  2982. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2983. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2984. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2985. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2986. //!@n G80 - Automatic mesh bed leveling
  2987. //!@n G81 - Print bed profile
  2988. //!@n G90 - Use Absolute Coordinates
  2989. //!@n G91 - Use Relative Coordinates
  2990. //!@n G92 - Set current position to coordinates given
  2991. //!
  2992. //!@n M Codes
  2993. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2994. //!@n M1 - Same as M0
  2995. //!@n M17 - Enable/Power all stepper motors
  2996. //!@n M18 - Disable all stepper motors; same as M84
  2997. //!@n M20 - List SD card
  2998. //!@n M21 - Init SD card
  2999. //!@n M22 - Release SD card
  3000. //!@n M23 - Select SD file (M23 filename.g)
  3001. //!@n M24 - Start/resume SD print
  3002. //!@n M25 - Pause SD print
  3003. //!@n M26 - Set SD position in bytes (M26 S12345)
  3004. //!@n M27 - Report SD print status
  3005. //!@n M28 - Start SD write (M28 filename.g)
  3006. //!@n M29 - Stop SD write
  3007. //!@n M30 - Delete file from SD (M30 filename.g)
  3008. //!@n M31 - Output time since last M109 or SD card start to serial
  3009. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3010. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3011. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3012. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3013. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3014. //!@n M73 - Show percent done and print time remaining
  3015. //!@n M80 - Turn on Power Supply
  3016. //!@n M81 - Turn off Power Supply
  3017. //!@n M82 - Set E codes absolute (default)
  3018. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3019. //!@n M84 - Disable steppers until next move,
  3020. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3021. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3022. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3023. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3024. //!@n M104 - Set extruder target temp
  3025. //!@n M105 - Read current temp
  3026. //!@n M106 - Fan on
  3027. //!@n M107 - Fan off
  3028. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3029. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3030. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3031. //!@n M112 - Emergency stop
  3032. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3033. //!@n M114 - Output current position to serial port
  3034. //!@n M115 - Capabilities string
  3035. //!@n M117 - display message
  3036. //!@n M119 - Output Endstop status to serial port
  3037. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3038. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3039. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3040. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3041. //!@n M140 - Set bed target temp
  3042. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3043. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3044. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3045. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3046. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3047. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3048. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3049. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3050. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3051. //!@n M206 - set additional homing offset
  3052. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3053. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3054. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3055. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3056. //!@n M220 S<factor in percent>- set speed factor override percentage
  3057. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3058. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3059. //!@n M240 - Trigger a camera to take a photograph
  3060. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3061. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3062. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3063. //!@n M301 - Set PID parameters P I and D
  3064. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3065. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3066. //!@n M304 - Set bed PID parameters P I and D
  3067. //!@n M400 - Finish all moves
  3068. //!@n M401 - Lower z-probe if present
  3069. //!@n M402 - Raise z-probe if present
  3070. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3071. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3072. //!@n M406 - Turn off Filament Sensor extrusion control
  3073. //!@n M407 - Displays measured filament diameter
  3074. //!@n M500 - stores parameters in EEPROM
  3075. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3076. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3077. //!@n M503 - print the current settings (from memory not from EEPROM)
  3078. //!@n M509 - force language selection on next restart
  3079. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3080. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3081. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3082. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3083. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3084. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3085. //!@n M907 - Set digital trimpot motor current using axis codes.
  3086. //!@n M908 - Control digital trimpot directly.
  3087. //!@n M350 - Set microstepping mode.
  3088. //!@n M351 - Toggle MS1 MS2 pins directly.
  3089. //!
  3090. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3091. //!@n M999 - Restart after being stopped by error
  3092. //! <br><br>
  3093. /** @defgroup marlin_main Marlin main */
  3094. /** \ingroup GCodes */
  3095. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3096. /**
  3097. They are shown in order of appearance in the code.
  3098. There are reasons why some G Codes aren't in numerical order.
  3099. */
  3100. void process_commands()
  3101. {
  3102. #ifdef FANCHECK
  3103. if(fan_check_error){
  3104. if(fan_check_error == EFCE_DETECTED){
  3105. fan_check_error = EFCE_REPORTED;
  3106. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3107. lcd_pause_print();
  3108. } // otherwise it has already been reported, so just ignore further processing
  3109. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3110. }
  3111. #endif
  3112. if (!buflen) return; //empty command
  3113. #ifdef FILAMENT_RUNOUT_SUPPORT
  3114. SET_INPUT(FR_SENS);
  3115. #endif
  3116. #ifdef CMDBUFFER_DEBUG
  3117. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3118. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3119. SERIAL_ECHOLNPGM("");
  3120. SERIAL_ECHOPGM("In cmdqueue: ");
  3121. SERIAL_ECHO(buflen);
  3122. SERIAL_ECHOLNPGM("");
  3123. #endif /* CMDBUFFER_DEBUG */
  3124. unsigned long codenum; //throw away variable
  3125. char *starpos = NULL;
  3126. #ifdef ENABLE_AUTO_BED_LEVELING
  3127. float x_tmp, y_tmp, z_tmp, real_z;
  3128. #endif
  3129. // PRUSA GCODES
  3130. KEEPALIVE_STATE(IN_HANDLER);
  3131. #ifdef SNMM
  3132. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3133. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3134. int8_t SilentMode;
  3135. #endif
  3136. /*!
  3137. ---------------------------------------------------------------------------------
  3138. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3139. This causes the given message to be shown in the status line on an attached LCD.
  3140. It is processed early as to allow printing messages that contain G, M, N or T.
  3141. ---------------------------------------------------------------------------------
  3142. ### Special internal commands
  3143. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3144. They are processed early as the commands are complex (strings).
  3145. These are only available on the MK3(S) as these require TMC2130 drivers:
  3146. - CRASH DETECTED
  3147. - CRASH RECOVER
  3148. - CRASH_CANCEL
  3149. - TMC_SET_WAVE
  3150. - TMC_SET_STEP
  3151. - TMC_SET_CHOP
  3152. */
  3153. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3154. starpos = (strchr(strchr_pointer + 5, '*'));
  3155. if (starpos != NULL)
  3156. *(starpos) = '\0';
  3157. lcd_setstatus(strchr_pointer + 5);
  3158. }
  3159. #ifdef TMC2130
  3160. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3161. {
  3162. // ### CRASH_DETECTED - TMC2130
  3163. // ---------------------------------
  3164. if(code_seen("CRASH_DETECTED"))
  3165. {
  3166. uint8_t mask = 0;
  3167. if (code_seen('X')) mask |= X_AXIS_MASK;
  3168. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3169. crashdet_detected(mask);
  3170. }
  3171. // ### CRASH_RECOVER - TMC2130
  3172. // ----------------------------------
  3173. else if(code_seen("CRASH_RECOVER"))
  3174. crashdet_recover();
  3175. // ### CRASH_CANCEL - TMC2130
  3176. // ----------------------------------
  3177. else if(code_seen("CRASH_CANCEL"))
  3178. crashdet_cancel();
  3179. }
  3180. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3181. {
  3182. // ### TMC_SET_WAVE_
  3183. // --------------------
  3184. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3185. {
  3186. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3187. axis = (axis == 'E')?3:(axis - 'X');
  3188. if (axis < 4)
  3189. {
  3190. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3191. tmc2130_set_wave(axis, 247, fac);
  3192. }
  3193. }
  3194. // ### TMC_SET_STEP_
  3195. // ------------------
  3196. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3197. {
  3198. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3199. axis = (axis == 'E')?3:(axis - 'X');
  3200. if (axis < 4)
  3201. {
  3202. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3203. uint16_t res = tmc2130_get_res(axis);
  3204. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3205. }
  3206. }
  3207. // ### TMC_SET_CHOP_
  3208. // -------------------
  3209. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3210. {
  3211. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3212. axis = (axis == 'E')?3:(axis - 'X');
  3213. if (axis < 4)
  3214. {
  3215. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3216. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3217. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3218. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3219. char* str_end = 0;
  3220. if (CMDBUFFER_CURRENT_STRING[14])
  3221. {
  3222. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3223. if (str_end && *str_end)
  3224. {
  3225. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3226. if (str_end && *str_end)
  3227. {
  3228. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3229. if (str_end && *str_end)
  3230. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3231. }
  3232. }
  3233. }
  3234. tmc2130_chopper_config[axis].toff = chop0;
  3235. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3236. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3237. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3238. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3239. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3240. }
  3241. }
  3242. }
  3243. #ifdef BACKLASH_X
  3244. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3245. {
  3246. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3247. st_backlash_x = bl;
  3248. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3249. }
  3250. #endif //BACKLASH_X
  3251. #ifdef BACKLASH_Y
  3252. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3253. {
  3254. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3255. st_backlash_y = bl;
  3256. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3257. }
  3258. #endif //BACKLASH_Y
  3259. #endif //TMC2130
  3260. else if(code_seen("PRUSA")){
  3261. /*!
  3262. ---------------------------------------------------------------------------------
  3263. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3264. Set of internal PRUSA commands
  3265. #### Usage
  3266. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3267. #### Parameters
  3268. - `Ping`
  3269. - `PRN` - Prints revision of the printer
  3270. - `FAN` - Prints fan details
  3271. - `fn` - Prints farm no.
  3272. - `thx`
  3273. - `uvlo`
  3274. - `MMURES` - Reset MMU
  3275. - `RESET` - (Careful!)
  3276. - `fv` - ?
  3277. - `M28`
  3278. - `SN`
  3279. - `Fir` - Prints firmware version
  3280. - `Rev`- Prints filament size, elelectronics, nozzle type
  3281. - `Lang` - Reset the language
  3282. - `Lz`
  3283. - `Beat` - Kick farm link timer
  3284. - `FR` - Full factory reset
  3285. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3286. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3287. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3288. */
  3289. if (code_seen("Ping")) { // PRUSA Ping
  3290. if (farm_mode) {
  3291. PingTime = _millis();
  3292. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3293. }
  3294. }
  3295. else if (code_seen("PRN")) { // PRUSA PRN
  3296. printf_P(_N("%d"), status_number);
  3297. } else if( code_seen("FANPINTST") ){
  3298. gcode_PRUSA_BadRAMBoFanTest();
  3299. }else if (code_seen("FAN")) { // PRUSA FAN
  3300. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3301. }else if (code_seen("fn")) { // PRUSA fn
  3302. if (farm_mode) {
  3303. printf_P(_N("%d"), farm_no);
  3304. }
  3305. else {
  3306. puts_P(_N("Not in farm mode."));
  3307. }
  3308. }
  3309. else if (code_seen("thx")) // PRUSA thx
  3310. {
  3311. no_response = false;
  3312. }
  3313. else if (code_seen("uvlo")) // PRUSA uvlo
  3314. {
  3315. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3316. enquecommand_P(PSTR("M24"));
  3317. }
  3318. else if (code_seen("MMURES")) // PRUSA MMURES
  3319. {
  3320. mmu_reset();
  3321. }
  3322. else if (code_seen("RESET")) { // PRUSA RESET
  3323. // careful!
  3324. if (farm_mode) {
  3325. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3326. boot_app_magic = BOOT_APP_MAGIC;
  3327. boot_app_flags = BOOT_APP_FLG_RUN;
  3328. wdt_enable(WDTO_15MS);
  3329. cli();
  3330. while(1);
  3331. #else //WATCHDOG
  3332. asm volatile("jmp 0x3E000");
  3333. #endif //WATCHDOG
  3334. }
  3335. else {
  3336. MYSERIAL.println("Not in farm mode.");
  3337. }
  3338. }else if (code_seen("fv")) { // PRUSA fv
  3339. // get file version
  3340. #ifdef SDSUPPORT
  3341. card.openFile(strchr_pointer + 3,true);
  3342. while (true) {
  3343. uint16_t readByte = card.get();
  3344. MYSERIAL.write(readByte);
  3345. if (readByte=='\n') {
  3346. break;
  3347. }
  3348. }
  3349. card.closefile();
  3350. #endif // SDSUPPORT
  3351. } else if (code_seen("M28")) { // PRUSA M28
  3352. trace();
  3353. prusa_sd_card_upload = true;
  3354. card.openFile(strchr_pointer+4,false);
  3355. } else if (code_seen("SN")) { // PRUSA SN
  3356. gcode_PRUSA_SN();
  3357. } else if(code_seen("Fir")){ // PRUSA Fir
  3358. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3359. } else if(code_seen("Rev")){ // PRUSA Rev
  3360. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3361. } else if(code_seen("Lang")) { // PRUSA Lang
  3362. lang_reset();
  3363. } else if(code_seen("Lz")) { // PRUSA Lz
  3364. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3365. } else if(code_seen("Beat")) { // PRUSA Beat
  3366. // Kick farm link timer
  3367. kicktime = _millis();
  3368. } else if(code_seen("FR")) { // PRUSA FR
  3369. // Factory full reset
  3370. factory_reset(0);
  3371. } else if(code_seen("MBL")) { // PRUSA MBL
  3372. // Change the MBL status without changing the logical Z position.
  3373. if(code_seen("V")) {
  3374. bool value = code_value_short();
  3375. st_synchronize();
  3376. if(value != mbl.active) {
  3377. mbl.active = value;
  3378. // Use plan_set_z_position to reset the physical values
  3379. plan_set_z_position(current_position[Z_AXIS]);
  3380. }
  3381. }
  3382. //-//
  3383. /*
  3384. } else if(code_seen("rrr")) {
  3385. MYSERIAL.println("=== checking ===");
  3386. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3387. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3388. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3389. MYSERIAL.println(farm_mode,DEC);
  3390. MYSERIAL.println(eCheckMode,DEC);
  3391. } else if(code_seen("www")) {
  3392. MYSERIAL.println("=== @ FF ===");
  3393. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3394. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3395. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3396. */
  3397. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3398. uint16_t nDiameter;
  3399. if(code_seen('D'))
  3400. {
  3401. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3402. nozzle_diameter_check(nDiameter);
  3403. }
  3404. else if(code_seen("set") && farm_mode)
  3405. {
  3406. strchr_pointer++; // skip 1st char (~ 's')
  3407. strchr_pointer++; // skip 2nd char (~ 'e')
  3408. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3409. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3410. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3411. }
  3412. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3413. //-// !!! SupportMenu
  3414. /*
  3415. // musi byt PRED "PRUSA model"
  3416. } else if (code_seen("smodel")) { //! PRUSA smodel
  3417. size_t nOffset;
  3418. // ! -> "l"
  3419. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3420. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3421. if(*(strchr_pointer+1+nOffset))
  3422. printer_smodel_check(strchr_pointer);
  3423. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3424. } else if (code_seen("model")) { //! PRUSA model
  3425. uint16_t nPrinterModel;
  3426. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3427. nPrinterModel=(uint16_t)code_value_long();
  3428. if(nPrinterModel!=0)
  3429. printer_model_check(nPrinterModel);
  3430. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3431. } else if (code_seen("version")) { //! PRUSA version
  3432. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3433. while(*strchr_pointer==' ') // skip leading spaces
  3434. strchr_pointer++;
  3435. if(*strchr_pointer!=0)
  3436. fw_version_check(strchr_pointer);
  3437. else SERIAL_PROTOCOLLN(FW_VERSION);
  3438. } else if (code_seen("gcode")) { //! PRUSA gcode
  3439. uint16_t nGcodeLevel;
  3440. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3441. nGcodeLevel=(uint16_t)code_value_long();
  3442. if(nGcodeLevel!=0)
  3443. gcode_level_check(nGcodeLevel);
  3444. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3445. */
  3446. }
  3447. //else if (code_seen('Cal')) {
  3448. // lcd_calibration();
  3449. // }
  3450. }
  3451. // This prevents reading files with "^" in their names.
  3452. // Since it is unclear, if there is some usage of this construct,
  3453. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3454. // else if (code_seen('^')) {
  3455. // // nothing, this is a version line
  3456. // }
  3457. else if(code_seen('G'))
  3458. {
  3459. gcode_in_progress = (int)code_value();
  3460. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3461. switch (gcode_in_progress)
  3462. {
  3463. /*!
  3464. ---------------------------------------------------------------------------------
  3465. # G Codes
  3466. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3467. In Prusa Firmware G0 and G1 are the same.
  3468. #### Usage
  3469. G0 [ X | Y | Z | E | F | S ]
  3470. G1 [ X | Y | Z | E | F | S ]
  3471. #### Parameters
  3472. - `X` - The position to move to on the X axis
  3473. - `Y` - The position to move to on the Y axis
  3474. - `Z` - The position to move to on the Z axis
  3475. - `E` - The amount to extrude between the starting point and ending point
  3476. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3477. */
  3478. case 0: // G0 -> G1
  3479. case 1: // G1
  3480. if(Stopped == false) {
  3481. #ifdef FILAMENT_RUNOUT_SUPPORT
  3482. if(READ(FR_SENS)){
  3483. int feedmultiplyBckp=feedmultiply;
  3484. float target[4];
  3485. float lastpos[4];
  3486. target[X_AXIS]=current_position[X_AXIS];
  3487. target[Y_AXIS]=current_position[Y_AXIS];
  3488. target[Z_AXIS]=current_position[Z_AXIS];
  3489. target[E_AXIS]=current_position[E_AXIS];
  3490. lastpos[X_AXIS]=current_position[X_AXIS];
  3491. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3492. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3493. lastpos[E_AXIS]=current_position[E_AXIS];
  3494. //retract by E
  3495. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3496. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3497. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3498. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3499. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3500. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3501. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3502. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3504. //finish moves
  3505. st_synchronize();
  3506. //disable extruder steppers so filament can be removed
  3507. disable_e0();
  3508. disable_e1();
  3509. disable_e2();
  3510. _delay(100);
  3511. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3512. uint8_t cnt=0;
  3513. int counterBeep = 0;
  3514. lcd_wait_interact();
  3515. while(!lcd_clicked()){
  3516. cnt++;
  3517. manage_heater();
  3518. manage_inactivity(true);
  3519. //lcd_update(0);
  3520. if(cnt==0)
  3521. {
  3522. #if BEEPER > 0
  3523. if (counterBeep== 500){
  3524. counterBeep = 0;
  3525. }
  3526. SET_OUTPUT(BEEPER);
  3527. if (counterBeep== 0){
  3528. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3529. WRITE(BEEPER,HIGH);
  3530. }
  3531. if (counterBeep== 20){
  3532. WRITE(BEEPER,LOW);
  3533. }
  3534. counterBeep++;
  3535. #else
  3536. #endif
  3537. }
  3538. }
  3539. WRITE(BEEPER,LOW);
  3540. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3542. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3544. lcd_change_fil_state = 0;
  3545. lcd_loading_filament();
  3546. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3547. lcd_change_fil_state = 0;
  3548. lcd_alright();
  3549. switch(lcd_change_fil_state){
  3550. case 2:
  3551. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3553. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3554. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3555. lcd_loading_filament();
  3556. break;
  3557. case 3:
  3558. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3560. lcd_loading_color();
  3561. break;
  3562. default:
  3563. lcd_change_success();
  3564. break;
  3565. }
  3566. }
  3567. target[E_AXIS]+= 5;
  3568. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3569. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3571. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3572. //plan_set_e_position(current_position[E_AXIS]);
  3573. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3574. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3575. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3576. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3577. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3578. plan_set_e_position(lastpos[E_AXIS]);
  3579. feedmultiply=feedmultiplyBckp;
  3580. char cmd[9];
  3581. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3582. enquecommand(cmd);
  3583. }
  3584. #endif
  3585. get_coordinates(); // For X Y Z E F
  3586. // When recovering from a previous print move, restore the originally
  3587. // calculated target position on the first USB/SD command. This accounts
  3588. // properly for relative moves
  3589. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3590. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3591. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3592. {
  3593. memcpy(destination, saved_target, sizeof(destination));
  3594. saved_target[0] = SAVED_TARGET_UNSET;
  3595. }
  3596. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3597. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3598. }
  3599. #ifdef FWRETRACT
  3600. if(cs.autoretract_enabled)
  3601. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3602. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3603. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3604. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3605. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3606. retract(!retracted[active_extruder]);
  3607. return;
  3608. }
  3609. }
  3610. #endif //FWRETRACT
  3611. prepare_move();
  3612. //ClearToSend();
  3613. }
  3614. break;
  3615. /*!
  3616. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3617. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  3618. #### Usage
  3619. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3620. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3621. #### Parameters
  3622. - `X` - The position to move to on the X axis
  3623. - `Y` - The position to move to on the Y axis
  3624. - `I` - The point in X space from the current X position to maintain a constant distance from
  3625. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3626. - `E` - The amount to extrude between the starting point and ending point
  3627. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3628. */
  3629. case 2:
  3630. if(Stopped == false) {
  3631. get_arc_coordinates();
  3632. prepare_arc_move(true);
  3633. }
  3634. break;
  3635. // -------------------------------
  3636. case 3:
  3637. if(Stopped == false) {
  3638. get_arc_coordinates();
  3639. prepare_arc_move(false);
  3640. }
  3641. break;
  3642. /*!
  3643. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3644. Pause the machine for a period of time.
  3645. #### Usage
  3646. G4 [ P | S ]
  3647. #### Parameters
  3648. - `P` - Time to wait, in milliseconds
  3649. - `S` - Time to wait, in seconds
  3650. */
  3651. case 4:
  3652. codenum = 0;
  3653. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3654. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3655. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3656. st_synchronize();
  3657. codenum += _millis(); // keep track of when we started waiting
  3658. previous_millis_cmd = _millis();
  3659. while(_millis() < codenum) {
  3660. manage_heater();
  3661. manage_inactivity();
  3662. lcd_update(0);
  3663. }
  3664. break;
  3665. #ifdef FWRETRACT
  3666. /*!
  3667. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3668. Retracts filament according to settings of `M207`
  3669. */
  3670. case 10:
  3671. #if EXTRUDERS > 1
  3672. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3673. retract(true,retracted_swap[active_extruder]);
  3674. #else
  3675. retract(true);
  3676. #endif
  3677. break;
  3678. /*!
  3679. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3680. Unretracts/recovers filament according to settings of `M208`
  3681. */
  3682. case 11:
  3683. #if EXTRUDERS > 1
  3684. retract(false,retracted_swap[active_extruder]);
  3685. #else
  3686. retract(false);
  3687. #endif
  3688. break;
  3689. #endif //FWRETRACT
  3690. /*!
  3691. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3692. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  3693. #### Usage
  3694. G28 [ X | Y | Z | W | C ]
  3695. #### Parameters
  3696. - `X` - Flag to go back to the X axis origin
  3697. - `Y` - Flag to go back to the Y axis origin
  3698. - `Z` - Flag to go back to the Z axis origin
  3699. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  3700. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3701. */
  3702. case 28:
  3703. {
  3704. long home_x_value = 0;
  3705. long home_y_value = 0;
  3706. long home_z_value = 0;
  3707. // Which axes should be homed?
  3708. bool home_x = code_seen(axis_codes[X_AXIS]);
  3709. home_x_value = code_value_long();
  3710. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3711. home_y_value = code_value_long();
  3712. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3713. home_z_value = code_value_long();
  3714. bool without_mbl = code_seen('W');
  3715. // calibrate?
  3716. #ifdef TMC2130
  3717. bool calib = code_seen('C');
  3718. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3719. #else
  3720. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3721. #endif //TMC2130
  3722. if ((home_x || home_y || without_mbl || home_z) == false) {
  3723. // Push the commands to the front of the message queue in the reverse order!
  3724. // There shall be always enough space reserved for these commands.
  3725. goto case_G80;
  3726. }
  3727. break;
  3728. }
  3729. #ifdef ENABLE_AUTO_BED_LEVELING
  3730. /*!
  3731. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3732. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3733. See `G81`
  3734. */
  3735. case 29:
  3736. {
  3737. #if Z_MIN_PIN == -1
  3738. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3739. #endif
  3740. // Prevent user from running a G29 without first homing in X and Y
  3741. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3742. {
  3743. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3744. SERIAL_ECHO_START;
  3745. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3746. break; // abort G29, since we don't know where we are
  3747. }
  3748. st_synchronize();
  3749. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3750. //vector_3 corrected_position = plan_get_position_mm();
  3751. //corrected_position.debug("position before G29");
  3752. plan_bed_level_matrix.set_to_identity();
  3753. vector_3 uncorrected_position = plan_get_position();
  3754. //uncorrected_position.debug("position durring G29");
  3755. current_position[X_AXIS] = uncorrected_position.x;
  3756. current_position[Y_AXIS] = uncorrected_position.y;
  3757. current_position[Z_AXIS] = uncorrected_position.z;
  3758. plan_set_position_curposXYZE();
  3759. int l_feedmultiply = setup_for_endstop_move();
  3760. feedrate = homing_feedrate[Z_AXIS];
  3761. #ifdef AUTO_BED_LEVELING_GRID
  3762. // probe at the points of a lattice grid
  3763. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3764. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3765. // solve the plane equation ax + by + d = z
  3766. // A is the matrix with rows [x y 1] for all the probed points
  3767. // B is the vector of the Z positions
  3768. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3769. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3770. // "A" matrix of the linear system of equations
  3771. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3772. // "B" vector of Z points
  3773. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3774. int probePointCounter = 0;
  3775. bool zig = true;
  3776. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3777. {
  3778. int xProbe, xInc;
  3779. if (zig)
  3780. {
  3781. xProbe = LEFT_PROBE_BED_POSITION;
  3782. //xEnd = RIGHT_PROBE_BED_POSITION;
  3783. xInc = xGridSpacing;
  3784. zig = false;
  3785. } else // zag
  3786. {
  3787. xProbe = RIGHT_PROBE_BED_POSITION;
  3788. //xEnd = LEFT_PROBE_BED_POSITION;
  3789. xInc = -xGridSpacing;
  3790. zig = true;
  3791. }
  3792. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3793. {
  3794. float z_before;
  3795. if (probePointCounter == 0)
  3796. {
  3797. // raise before probing
  3798. z_before = Z_RAISE_BEFORE_PROBING;
  3799. } else
  3800. {
  3801. // raise extruder
  3802. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3803. }
  3804. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3805. eqnBVector[probePointCounter] = measured_z;
  3806. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3807. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3808. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3809. probePointCounter++;
  3810. xProbe += xInc;
  3811. }
  3812. }
  3813. clean_up_after_endstop_move(l_feedmultiply);
  3814. // solve lsq problem
  3815. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3816. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3817. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3818. SERIAL_PROTOCOLPGM(" b: ");
  3819. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3820. SERIAL_PROTOCOLPGM(" d: ");
  3821. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3822. set_bed_level_equation_lsq(plane_equation_coefficients);
  3823. free(plane_equation_coefficients);
  3824. #else // AUTO_BED_LEVELING_GRID not defined
  3825. // Probe at 3 arbitrary points
  3826. // probe 1
  3827. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3828. // probe 2
  3829. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3830. // probe 3
  3831. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3832. clean_up_after_endstop_move(l_feedmultiply);
  3833. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3834. #endif // AUTO_BED_LEVELING_GRID
  3835. st_synchronize();
  3836. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3837. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3838. // When the bed is uneven, this height must be corrected.
  3839. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3840. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3841. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3842. z_tmp = current_position[Z_AXIS];
  3843. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3844. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3845. plan_set_position_curposXYZE();
  3846. }
  3847. break;
  3848. #ifndef Z_PROBE_SLED
  3849. /*!
  3850. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3851. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3852. */
  3853. case 30:
  3854. {
  3855. st_synchronize();
  3856. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3857. int l_feedmultiply = setup_for_endstop_move();
  3858. feedrate = homing_feedrate[Z_AXIS];
  3859. run_z_probe();
  3860. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3861. SERIAL_PROTOCOLPGM(" X: ");
  3862. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3863. SERIAL_PROTOCOLPGM(" Y: ");
  3864. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3865. SERIAL_PROTOCOLPGM(" Z: ");
  3866. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3867. SERIAL_PROTOCOLPGM("\n");
  3868. clean_up_after_endstop_move(l_feedmultiply);
  3869. }
  3870. break;
  3871. #else
  3872. /*!
  3873. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3874. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3875. */
  3876. case 31:
  3877. dock_sled(true);
  3878. break;
  3879. /*!
  3880. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3881. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3882. */
  3883. case 32:
  3884. dock_sled(false);
  3885. break;
  3886. #endif // Z_PROBE_SLED
  3887. #endif // ENABLE_AUTO_BED_LEVELING
  3888. #ifdef MESH_BED_LEVELING
  3889. /*!
  3890. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3891. Sensor must be over the bed.
  3892. The maximum travel distance before an error is triggered is 10mm.
  3893. */
  3894. case 30:
  3895. {
  3896. st_synchronize();
  3897. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3898. int l_feedmultiply = setup_for_endstop_move();
  3899. feedrate = homing_feedrate[Z_AXIS];
  3900. find_bed_induction_sensor_point_z(-10.f, 3);
  3901. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3902. clean_up_after_endstop_move(l_feedmultiply);
  3903. }
  3904. break;
  3905. /*!
  3906. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3907. Show/print PINDA temperature interpolating.
  3908. */
  3909. case 75:
  3910. {
  3911. for (int i = 40; i <= 110; i++)
  3912. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3913. }
  3914. break;
  3915. /*!
  3916. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  3917. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  3918. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  3919. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  3920. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  3921. If PINDA_THERMISTOR and DETECT_SUPERPINDA is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  3922. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  3923. #### Example
  3924. ```
  3925. G76
  3926. echo PINDA probe calibration start
  3927. echo start temperature: 35.0°
  3928. echo ...
  3929. echo PINDA temperature -- Z shift (mm): 0.---
  3930. ```
  3931. */
  3932. case 76:
  3933. {
  3934. #ifdef PINDA_THERMISTOR
  3935. if (!has_temperature_compensation())
  3936. {
  3937. SERIAL_ECHOLNPGM("No PINDA thermistor");
  3938. break;
  3939. }
  3940. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3941. //we need to know accurate position of first calibration point
  3942. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3943. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3944. break;
  3945. }
  3946. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3947. {
  3948. // We don't know where we are! HOME!
  3949. // Push the commands to the front of the message queue in the reverse order!
  3950. // There shall be always enough space reserved for these commands.
  3951. repeatcommand_front(); // repeat G76 with all its parameters
  3952. enquecommand_front_P((PSTR("G28 W0")));
  3953. break;
  3954. }
  3955. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3956. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3957. if (result)
  3958. {
  3959. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3960. plan_buffer_line_curposXYZE(3000 / 60);
  3961. current_position[Z_AXIS] = 50;
  3962. current_position[Y_AXIS] = 180;
  3963. plan_buffer_line_curposXYZE(3000 / 60);
  3964. st_synchronize();
  3965. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3966. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3967. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3968. plan_buffer_line_curposXYZE(3000 / 60);
  3969. st_synchronize();
  3970. gcode_G28(false, false, true);
  3971. }
  3972. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3973. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3974. current_position[Z_AXIS] = 100;
  3975. plan_buffer_line_curposXYZE(3000 / 60);
  3976. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3977. lcd_temp_cal_show_result(false);
  3978. break;
  3979. }
  3980. }
  3981. lcd_update_enable(true);
  3982. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3983. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3984. float zero_z;
  3985. int z_shift = 0; //unit: steps
  3986. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3987. if (start_temp < 35) start_temp = 35;
  3988. if (start_temp < current_temperature_pinda) start_temp += 5;
  3989. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3990. // setTargetHotend(200, 0);
  3991. setTargetBed(70 + (start_temp - 30));
  3992. custom_message_type = CustomMsg::TempCal;
  3993. custom_message_state = 1;
  3994. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3995. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3996. plan_buffer_line_curposXYZE(3000 / 60);
  3997. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3998. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3999. plan_buffer_line_curposXYZE(3000 / 60);
  4000. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4001. plan_buffer_line_curposXYZE(3000 / 60);
  4002. st_synchronize();
  4003. while (current_temperature_pinda < start_temp)
  4004. {
  4005. delay_keep_alive(1000);
  4006. serialecho_temperatures();
  4007. }
  4008. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4009. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4010. plan_buffer_line_curposXYZE(3000 / 60);
  4011. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4012. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4013. plan_buffer_line_curposXYZE(3000 / 60);
  4014. st_synchronize();
  4015. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4016. if (find_z_result == false) {
  4017. lcd_temp_cal_show_result(find_z_result);
  4018. break;
  4019. }
  4020. zero_z = current_position[Z_AXIS];
  4021. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4022. int i = -1; for (; i < 5; i++)
  4023. {
  4024. float temp = (40 + i * 5);
  4025. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4026. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4027. if (start_temp <= temp) break;
  4028. }
  4029. for (i++; i < 5; i++)
  4030. {
  4031. float temp = (40 + i * 5);
  4032. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4033. custom_message_state = i + 2;
  4034. setTargetBed(50 + 10 * (temp - 30) / 5);
  4035. // setTargetHotend(255, 0);
  4036. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4037. plan_buffer_line_curposXYZE(3000 / 60);
  4038. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4039. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4040. plan_buffer_line_curposXYZE(3000 / 60);
  4041. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4042. plan_buffer_line_curposXYZE(3000 / 60);
  4043. st_synchronize();
  4044. while (current_temperature_pinda < temp)
  4045. {
  4046. delay_keep_alive(1000);
  4047. serialecho_temperatures();
  4048. }
  4049. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4050. plan_buffer_line_curposXYZE(3000 / 60);
  4051. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4052. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4053. plan_buffer_line_curposXYZE(3000 / 60);
  4054. st_synchronize();
  4055. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4056. if (find_z_result == false) {
  4057. lcd_temp_cal_show_result(find_z_result);
  4058. break;
  4059. }
  4060. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4061. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4062. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4063. }
  4064. lcd_temp_cal_show_result(true);
  4065. #else //PINDA_THERMISTOR
  4066. setTargetBed(PINDA_MIN_T);
  4067. float zero_z;
  4068. int z_shift = 0; //unit: steps
  4069. int t_c; // temperature
  4070. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4071. // We don't know where we are! HOME!
  4072. // Push the commands to the front of the message queue in the reverse order!
  4073. // There shall be always enough space reserved for these commands.
  4074. repeatcommand_front(); // repeat G76 with all its parameters
  4075. enquecommand_front_P((PSTR("G28 W0")));
  4076. break;
  4077. }
  4078. puts_P(_N("PINDA probe calibration start"));
  4079. custom_message_type = CustomMsg::TempCal;
  4080. custom_message_state = 1;
  4081. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4082. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4083. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4084. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4085. plan_buffer_line_curposXYZE(3000 / 60);
  4086. st_synchronize();
  4087. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4088. delay_keep_alive(1000);
  4089. serialecho_temperatures();
  4090. }
  4091. //enquecommand_P(PSTR("M190 S50"));
  4092. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4093. delay_keep_alive(1000);
  4094. serialecho_temperatures();
  4095. }
  4096. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4097. current_position[Z_AXIS] = 5;
  4098. plan_buffer_line_curposXYZE(3000 / 60);
  4099. current_position[X_AXIS] = BED_X0;
  4100. current_position[Y_AXIS] = BED_Y0;
  4101. plan_buffer_line_curposXYZE(3000 / 60);
  4102. st_synchronize();
  4103. find_bed_induction_sensor_point_z(-1.f);
  4104. zero_z = current_position[Z_AXIS];
  4105. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4106. for (int i = 0; i<5; i++) {
  4107. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4108. custom_message_state = i + 2;
  4109. t_c = 60 + i * 10;
  4110. setTargetBed(t_c);
  4111. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4112. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4113. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4114. plan_buffer_line_curposXYZE(3000 / 60);
  4115. st_synchronize();
  4116. while (degBed() < t_c) {
  4117. delay_keep_alive(1000);
  4118. serialecho_temperatures();
  4119. }
  4120. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4121. delay_keep_alive(1000);
  4122. serialecho_temperatures();
  4123. }
  4124. current_position[Z_AXIS] = 5;
  4125. plan_buffer_line_curposXYZE(3000 / 60);
  4126. current_position[X_AXIS] = BED_X0;
  4127. current_position[Y_AXIS] = BED_Y0;
  4128. plan_buffer_line_curposXYZE(3000 / 60);
  4129. st_synchronize();
  4130. find_bed_induction_sensor_point_z(-1.f);
  4131. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4132. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4133. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4134. }
  4135. custom_message_type = CustomMsg::Status;
  4136. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4137. puts_P(_N("Temperature calibration done."));
  4138. disable_x();
  4139. disable_y();
  4140. disable_z();
  4141. disable_e0();
  4142. disable_e1();
  4143. disable_e2();
  4144. setTargetBed(0); //set bed target temperature back to 0
  4145. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4146. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4147. lcd_update_enable(true);
  4148. lcd_update(2);
  4149. #endif //PINDA_THERMISTOR
  4150. }
  4151. break;
  4152. /*!
  4153. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4154. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4155. #### Usage
  4156. G80 [ N | R | V | L | R | F | B ]
  4157. #### Parameters
  4158. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4159. - `R` - Probe retries. Default 3 max. 10
  4160. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4161. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4162. #### Additional Parameters
  4163. - `L` - Left Bed Level correct value in um.
  4164. - `R` - Right Bed Level correct value in um.
  4165. - `F` - Front Bed Level correct value in um.
  4166. - `B` - Back Bed Level correct value in um.
  4167. */
  4168. /*
  4169. * Probes a grid and produces a mesh to compensate for variable bed height
  4170. * The S0 report the points as below
  4171. * +----> X-axis
  4172. * |
  4173. * |
  4174. * v Y-axis
  4175. */
  4176. case 80:
  4177. #ifdef MK1BP
  4178. break;
  4179. #endif //MK1BP
  4180. case_G80:
  4181. {
  4182. mesh_bed_leveling_flag = true;
  4183. #ifndef PINDA_THERMISTOR
  4184. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4185. #endif // ndef PINDA_THERMISTOR
  4186. #ifdef SUPPORT_VERBOSITY
  4187. int8_t verbosity_level = 0;
  4188. if (code_seen('V')) {
  4189. // Just 'V' without a number counts as V1.
  4190. char c = strchr_pointer[1];
  4191. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4192. }
  4193. #endif //SUPPORT_VERBOSITY
  4194. // Firstly check if we know where we are
  4195. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4196. // We don't know where we are! HOME!
  4197. // Push the commands to the front of the message queue in the reverse order!
  4198. // There shall be always enough space reserved for these commands.
  4199. repeatcommand_front(); // repeat G80 with all its parameters
  4200. enquecommand_front_P((PSTR("G28 W0")));
  4201. break;
  4202. }
  4203. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4204. if (code_seen('N')) {
  4205. nMeasPoints = code_value_uint8();
  4206. if (nMeasPoints != 7) {
  4207. nMeasPoints = 3;
  4208. }
  4209. }
  4210. else {
  4211. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4212. }
  4213. uint8_t nProbeRetry = 3;
  4214. if (code_seen('R')) {
  4215. nProbeRetry = code_value_uint8();
  4216. if (nProbeRetry > 10) {
  4217. nProbeRetry = 10;
  4218. }
  4219. }
  4220. else {
  4221. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4222. }
  4223. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4224. #ifndef PINDA_THERMISTOR
  4225. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4226. {
  4227. temp_compensation_start();
  4228. run = true;
  4229. repeatcommand_front(); // repeat G80 with all its parameters
  4230. enquecommand_front_P((PSTR("G28 W0")));
  4231. break;
  4232. }
  4233. run = false;
  4234. #endif //PINDA_THERMISTOR
  4235. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4236. CustomMsg custom_message_type_old = custom_message_type;
  4237. unsigned int custom_message_state_old = custom_message_state;
  4238. custom_message_type = CustomMsg::MeshBedLeveling;
  4239. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4240. lcd_update(1);
  4241. mbl.reset(); //reset mesh bed leveling
  4242. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4243. // consumed during the first movements following this statement.
  4244. babystep_undo();
  4245. // Cycle through all points and probe them
  4246. // First move up. During this first movement, the babystepping will be reverted.
  4247. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4248. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  4249. // The move to the first calibration point.
  4250. current_position[X_AXIS] = BED_X0;
  4251. current_position[Y_AXIS] = BED_Y0;
  4252. #ifdef SUPPORT_VERBOSITY
  4253. if (verbosity_level >= 1)
  4254. {
  4255. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4256. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4257. }
  4258. #else //SUPPORT_VERBOSITY
  4259. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4260. #endif //SUPPORT_VERBOSITY
  4261. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30);
  4262. // Wait until the move is finished.
  4263. st_synchronize();
  4264. uint8_t mesh_point = 0; //index number of calibration point
  4265. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4266. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4267. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4268. #ifdef SUPPORT_VERBOSITY
  4269. if (verbosity_level >= 1) {
  4270. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4271. }
  4272. #endif // SUPPORT_VERBOSITY
  4273. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4274. while (mesh_point != nMeasPoints * nMeasPoints) {
  4275. // Get coords of a measuring point.
  4276. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4277. uint8_t iy = mesh_point / nMeasPoints;
  4278. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4279. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4280. custom_message_state--;
  4281. mesh_point++;
  4282. continue; //skip
  4283. }*/
  4284. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4285. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4286. {
  4287. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4288. }
  4289. float z0 = 0.f;
  4290. if (has_z && (mesh_point > 0)) {
  4291. uint16_t z_offset_u = 0;
  4292. if (nMeasPoints == 7) {
  4293. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4294. }
  4295. else {
  4296. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4297. }
  4298. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4299. #ifdef SUPPORT_VERBOSITY
  4300. if (verbosity_level >= 1) {
  4301. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4302. }
  4303. #endif // SUPPORT_VERBOSITY
  4304. }
  4305. // Move Z up to MESH_HOME_Z_SEARCH.
  4306. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4307. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4308. float init_z_bckp = current_position[Z_AXIS];
  4309. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4310. st_synchronize();
  4311. // Move to XY position of the sensor point.
  4312. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4313. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4314. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4315. #ifdef SUPPORT_VERBOSITY
  4316. if (verbosity_level >= 1) {
  4317. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4318. SERIAL_PROTOCOL(mesh_point);
  4319. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4320. }
  4321. #else //SUPPORT_VERBOSITY
  4322. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4323. #endif // SUPPORT_VERBOSITY
  4324. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4325. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  4326. st_synchronize();
  4327. // Go down until endstop is hit
  4328. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4329. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4330. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4331. break;
  4332. }
  4333. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4334. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4335. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4336. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4337. st_synchronize();
  4338. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4339. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4340. break;
  4341. }
  4342. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4343. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4344. break;
  4345. }
  4346. }
  4347. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4348. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4349. break;
  4350. }
  4351. #ifdef SUPPORT_VERBOSITY
  4352. if (verbosity_level >= 10) {
  4353. SERIAL_ECHOPGM("X: ");
  4354. MYSERIAL.print(current_position[X_AXIS], 5);
  4355. SERIAL_ECHOLNPGM("");
  4356. SERIAL_ECHOPGM("Y: ");
  4357. MYSERIAL.print(current_position[Y_AXIS], 5);
  4358. SERIAL_PROTOCOLPGM("\n");
  4359. }
  4360. #endif // SUPPORT_VERBOSITY
  4361. float offset_z = 0;
  4362. #ifdef PINDA_THERMISTOR
  4363. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4364. #endif //PINDA_THERMISTOR
  4365. // #ifdef SUPPORT_VERBOSITY
  4366. /* if (verbosity_level >= 1)
  4367. {
  4368. SERIAL_ECHOPGM("mesh bed leveling: ");
  4369. MYSERIAL.print(current_position[Z_AXIS], 5);
  4370. SERIAL_ECHOPGM(" offset: ");
  4371. MYSERIAL.print(offset_z, 5);
  4372. SERIAL_ECHOLNPGM("");
  4373. }*/
  4374. // #endif // SUPPORT_VERBOSITY
  4375. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4376. custom_message_state--;
  4377. mesh_point++;
  4378. lcd_update(1);
  4379. }
  4380. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4381. #ifdef SUPPORT_VERBOSITY
  4382. if (verbosity_level >= 20) {
  4383. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4384. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4385. MYSERIAL.print(current_position[Z_AXIS], 5);
  4386. }
  4387. #endif // SUPPORT_VERBOSITY
  4388. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4389. st_synchronize();
  4390. if (mesh_point != nMeasPoints * nMeasPoints) {
  4391. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4392. bool bState;
  4393. do { // repeat until Z-leveling o.k.
  4394. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4395. #ifdef TMC2130
  4396. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4397. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4398. #else // TMC2130
  4399. lcd_wait_for_click_delay(0); // ~ no timeout
  4400. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4401. #endif // TMC2130
  4402. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4403. bState=enable_z_endstop(false);
  4404. current_position[Z_AXIS] -= 1;
  4405. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4406. st_synchronize();
  4407. enable_z_endstop(true);
  4408. #ifdef TMC2130
  4409. tmc2130_home_enter(Z_AXIS_MASK);
  4410. #endif // TMC2130
  4411. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4412. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4413. st_synchronize();
  4414. #ifdef TMC2130
  4415. tmc2130_home_exit();
  4416. #endif // TMC2130
  4417. enable_z_endstop(bState);
  4418. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4419. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4420. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4421. lcd_update_enable(true); // display / status-line recovery
  4422. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4423. repeatcommand_front(); // re-run (i.e. of "G80")
  4424. break;
  4425. }
  4426. clean_up_after_endstop_move(l_feedmultiply);
  4427. // SERIAL_ECHOLNPGM("clean up finished ");
  4428. #ifndef PINDA_THERMISTOR
  4429. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4430. #endif
  4431. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4432. // SERIAL_ECHOLNPGM("babystep applied");
  4433. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4434. #ifdef SUPPORT_VERBOSITY
  4435. if (verbosity_level >= 1) {
  4436. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4437. }
  4438. #endif // SUPPORT_VERBOSITY
  4439. for (uint8_t i = 0; i < 4; ++i) {
  4440. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4441. long correction = 0;
  4442. if (code_seen(codes[i]))
  4443. correction = code_value_long();
  4444. else if (eeprom_bed_correction_valid) {
  4445. unsigned char *addr = (i < 2) ?
  4446. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4447. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4448. correction = eeprom_read_int8(addr);
  4449. }
  4450. if (correction == 0)
  4451. continue;
  4452. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4453. SERIAL_ERROR_START;
  4454. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4455. SERIAL_ECHO(correction);
  4456. SERIAL_ECHOLNPGM(" microns");
  4457. }
  4458. else {
  4459. float offset = float(correction) * 0.001f;
  4460. switch (i) {
  4461. case 0:
  4462. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4463. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4464. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4465. }
  4466. }
  4467. break;
  4468. case 1:
  4469. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4470. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4471. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4472. }
  4473. }
  4474. break;
  4475. case 2:
  4476. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4477. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4478. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4479. }
  4480. }
  4481. break;
  4482. case 3:
  4483. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4484. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4485. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4486. }
  4487. }
  4488. break;
  4489. }
  4490. }
  4491. }
  4492. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4493. if (nMeasPoints == 3) {
  4494. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4495. }
  4496. /*
  4497. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4498. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4499. SERIAL_PROTOCOLPGM(",");
  4500. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4501. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4502. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4503. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4504. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4505. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4506. SERIAL_PROTOCOLPGM(" ");
  4507. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4508. }
  4509. SERIAL_PROTOCOLPGM("\n");
  4510. }
  4511. */
  4512. if (nMeasPoints == 7 && magnet_elimination) {
  4513. mbl_interpolation(nMeasPoints);
  4514. }
  4515. /*
  4516. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4517. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4518. SERIAL_PROTOCOLPGM(",");
  4519. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4520. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4521. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4522. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4523. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4524. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4525. SERIAL_PROTOCOLPGM(" ");
  4526. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4527. }
  4528. SERIAL_PROTOCOLPGM("\n");
  4529. }
  4530. */
  4531. // SERIAL_ECHOLNPGM("Upsample finished");
  4532. mbl.active = 1; //activate mesh bed leveling
  4533. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4534. go_home_with_z_lift();
  4535. // SERIAL_ECHOLNPGM("Go home finished");
  4536. //unretract (after PINDA preheat retraction)
  4537. if ((degHotend(active_extruder) > EXTRUDE_MINTEMP) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  4538. current_position[E_AXIS] += default_retraction;
  4539. plan_buffer_line_curposXYZE(400);
  4540. }
  4541. KEEPALIVE_STATE(NOT_BUSY);
  4542. // Restore custom message state
  4543. lcd_setstatuspgm(_T(WELCOME_MSG));
  4544. custom_message_type = custom_message_type_old;
  4545. custom_message_state = custom_message_state_old;
  4546. mesh_bed_leveling_flag = false;
  4547. mesh_bed_run_from_menu = false;
  4548. lcd_update(2);
  4549. }
  4550. break;
  4551. /*!
  4552. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4553. Prints mesh bed leveling status and bed profile if activated.
  4554. */
  4555. case 81:
  4556. if (mbl.active) {
  4557. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4558. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4559. SERIAL_PROTOCOL(',');
  4560. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4561. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4562. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4563. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4564. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4565. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4566. SERIAL_PROTOCOLPGM(" ");
  4567. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4568. }
  4569. SERIAL_PROTOCOLLN();
  4570. }
  4571. }
  4572. else
  4573. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4574. break;
  4575. #if 0
  4576. /*!
  4577. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4578. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4579. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4580. */
  4581. case 82:
  4582. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4583. int l_feedmultiply = setup_for_endstop_move();
  4584. find_bed_induction_sensor_point_z();
  4585. clean_up_after_endstop_move(l_feedmultiply);
  4586. SERIAL_PROTOCOLPGM("Bed found at: ");
  4587. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4588. SERIAL_PROTOCOLPGM("\n");
  4589. break;
  4590. /*!
  4591. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4592. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4593. */
  4594. case 83:
  4595. {
  4596. int babystepz = code_seen('S') ? code_value() : 0;
  4597. int BabyPosition = code_seen('P') ? code_value() : 0;
  4598. if (babystepz != 0) {
  4599. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4600. // Is the axis indexed starting with zero or one?
  4601. if (BabyPosition > 4) {
  4602. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4603. }else{
  4604. // Save it to the eeprom
  4605. babystepLoadZ = babystepz;
  4606. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4607. // adjust the Z
  4608. babystepsTodoZadd(babystepLoadZ);
  4609. }
  4610. }
  4611. }
  4612. break;
  4613. /*!
  4614. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4615. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4616. */
  4617. case 84:
  4618. babystepsTodoZsubtract(babystepLoadZ);
  4619. // babystepLoadZ = 0;
  4620. break;
  4621. /*!
  4622. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4623. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4624. */
  4625. case 85:
  4626. lcd_pick_babystep();
  4627. break;
  4628. #endif
  4629. /*!
  4630. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4631. This G-code will be performed at the start of a calibration script.
  4632. (Prusa3D specific)
  4633. */
  4634. case 86:
  4635. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4636. break;
  4637. /*!
  4638. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4639. This G-code will be performed at the end of a calibration script.
  4640. (Prusa3D specific)
  4641. */
  4642. case 87:
  4643. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4644. break;
  4645. /*!
  4646. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4647. Currently has no effect.
  4648. */
  4649. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4650. case 88:
  4651. break;
  4652. #endif // ENABLE_MESH_BED_LEVELING
  4653. /*!
  4654. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4655. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4656. */
  4657. case 90: {
  4658. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4659. }
  4660. break;
  4661. /*!
  4662. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4663. All coordinates from now on are relative to the last position. E axis is left intact.
  4664. */
  4665. case 91: {
  4666. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4667. }
  4668. break;
  4669. /*!
  4670. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4671. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4672. If a parameter is omitted, that axis will not be affected.
  4673. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4674. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4675. #### Usage
  4676. G92 [ X | Y | Z | E ]
  4677. #### Parameters
  4678. - `X` - new X axis position
  4679. - `Y` - new Y axis position
  4680. - `Z` - new Z axis position
  4681. - `E` - new extruder position
  4682. */
  4683. case 92: {
  4684. gcode_G92();
  4685. }
  4686. break;
  4687. /*!
  4688. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4689. Enable Prusa-specific Farm functions and g-code.
  4690. See Internal Prusa commands.
  4691. */
  4692. case 98:
  4693. farm_mode = 1;
  4694. PingTime = _millis();
  4695. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4696. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4697. SilentModeMenu = SILENT_MODE_OFF;
  4698. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4699. fCheckModeInit(); // alternatively invoke printer reset
  4700. break;
  4701. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4702. Disables Prusa-specific Farm functions and g-code.
  4703. */
  4704. case 99:
  4705. farm_mode = 0;
  4706. lcd_printer_connected();
  4707. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4708. lcd_update(2);
  4709. fCheckModeInit(); // alternatively invoke printer reset
  4710. break;
  4711. default:
  4712. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4713. }
  4714. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4715. gcode_in_progress = 0;
  4716. } // end if(code_seen('G'))
  4717. /*!
  4718. ### End of G-Codes
  4719. */
  4720. /*!
  4721. ---------------------------------------------------------------------------------
  4722. # M Commands
  4723. */
  4724. else if(code_seen('M'))
  4725. {
  4726. int index;
  4727. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4728. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4729. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4730. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4731. } else
  4732. {
  4733. mcode_in_progress = (int)code_value();
  4734. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4735. switch(mcode_in_progress)
  4736. {
  4737. /*!
  4738. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  4739. */
  4740. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4741. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4742. {
  4743. char *src = strchr_pointer + 2;
  4744. codenum = 0;
  4745. bool hasP = false, hasS = false;
  4746. if (code_seen('P')) {
  4747. codenum = code_value(); // milliseconds to wait
  4748. hasP = codenum > 0;
  4749. }
  4750. if (code_seen('S')) {
  4751. codenum = code_value() * 1000; // seconds to wait
  4752. hasS = codenum > 0;
  4753. }
  4754. starpos = strchr(src, '*');
  4755. if (starpos != NULL) *(starpos) = '\0';
  4756. while (*src == ' ') ++src;
  4757. if (!hasP && !hasS && *src != '\0') {
  4758. lcd_setstatus(src);
  4759. } else {
  4760. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4761. }
  4762. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4763. st_synchronize();
  4764. previous_millis_cmd = _millis();
  4765. if (codenum > 0){
  4766. codenum += _millis(); // keep track of when we started waiting
  4767. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4768. while(_millis() < codenum && !lcd_clicked()){
  4769. manage_heater();
  4770. manage_inactivity(true);
  4771. lcd_update(0);
  4772. }
  4773. KEEPALIVE_STATE(IN_HANDLER);
  4774. lcd_ignore_click(false);
  4775. }else{
  4776. marlin_wait_for_click();
  4777. }
  4778. if (IS_SD_PRINTING)
  4779. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4780. else
  4781. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4782. }
  4783. break;
  4784. /*!
  4785. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4786. */
  4787. case 17:
  4788. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4789. enable_x();
  4790. enable_y();
  4791. enable_z();
  4792. enable_e0();
  4793. enable_e1();
  4794. enable_e2();
  4795. break;
  4796. #ifdef SDSUPPORT
  4797. /*!
  4798. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4799. */
  4800. case 20:
  4801. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4802. card.ls();
  4803. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4804. break;
  4805. /*!
  4806. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4807. */
  4808. case 21:
  4809. card.initsd();
  4810. break;
  4811. /*!
  4812. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4813. */
  4814. case 22:
  4815. card.release();
  4816. break;
  4817. /*!
  4818. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4819. #### Usage
  4820. M23 [filename]
  4821. */
  4822. case 23:
  4823. starpos = (strchr(strchr_pointer + 4,'*'));
  4824. if(starpos!=NULL)
  4825. *(starpos)='\0';
  4826. card.openFile(strchr_pointer + 4,true);
  4827. break;
  4828. /*!
  4829. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4830. */
  4831. case 24:
  4832. if (isPrintPaused)
  4833. lcd_resume_print();
  4834. else
  4835. {
  4836. if (!card.get_sdpos())
  4837. {
  4838. // A new print has started from scratch, reset stats
  4839. failstats_reset_print();
  4840. #ifndef LA_NOCOMPAT
  4841. la10c_reset();
  4842. #endif
  4843. }
  4844. card.startFileprint();
  4845. starttime=_millis();
  4846. }
  4847. break;
  4848. /*!
  4849. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4850. Set position in SD card file to index in bytes.
  4851. This command is expected to be called after M23 and before M24.
  4852. Otherwise effect of this command is undefined.
  4853. #### Usage
  4854. M26 [ S ]
  4855. #### Parameters
  4856. - `S` - Index in bytes
  4857. */
  4858. case 26:
  4859. if(card.cardOK && code_seen('S')) {
  4860. long index = code_value_long();
  4861. card.setIndex(index);
  4862. // We don't disable interrupt during update of sdpos_atomic
  4863. // as we expect, that SD card print is not active in this moment
  4864. sdpos_atomic = index;
  4865. }
  4866. break;
  4867. /*!
  4868. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4869. */
  4870. case 27:
  4871. card.getStatus();
  4872. break;
  4873. /*!
  4874. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4875. */
  4876. case 28:
  4877. starpos = (strchr(strchr_pointer + 4,'*'));
  4878. if(starpos != NULL){
  4879. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4880. strchr_pointer = strchr(npos,' ') + 1;
  4881. *(starpos) = '\0';
  4882. }
  4883. card.openFile(strchr_pointer+4,false);
  4884. break;
  4885. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4886. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  4887. */
  4888. case 29:
  4889. //processed in write to file routine above
  4890. //card,saving = false;
  4891. break;
  4892. /*!
  4893. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4894. #### Usage
  4895. M30 [filename]
  4896. */
  4897. case 30:
  4898. if (card.cardOK){
  4899. card.closefile();
  4900. starpos = (strchr(strchr_pointer + 4,'*'));
  4901. if(starpos != NULL){
  4902. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4903. strchr_pointer = strchr(npos,' ') + 1;
  4904. *(starpos) = '\0';
  4905. }
  4906. card.removeFile(strchr_pointer + 4);
  4907. }
  4908. break;
  4909. /*!
  4910. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4911. @todo What are the parameters P and S for in M32?
  4912. */
  4913. case 32:
  4914. {
  4915. if(card.sdprinting) {
  4916. st_synchronize();
  4917. }
  4918. starpos = (strchr(strchr_pointer + 4,'*'));
  4919. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4920. if(namestartpos==NULL)
  4921. {
  4922. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4923. }
  4924. else
  4925. namestartpos++; //to skip the '!'
  4926. if(starpos!=NULL)
  4927. *(starpos)='\0';
  4928. bool call_procedure=(code_seen('P'));
  4929. if(strchr_pointer>namestartpos)
  4930. call_procedure=false; //false alert, 'P' found within filename
  4931. if( card.cardOK )
  4932. {
  4933. card.openFile(namestartpos,true,!call_procedure);
  4934. if(code_seen('S'))
  4935. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4936. card.setIndex(code_value_long());
  4937. card.startFileprint();
  4938. if(!call_procedure)
  4939. {
  4940. if(!card.get_sdpos())
  4941. {
  4942. // A new print has started from scratch, reset stats
  4943. failstats_reset_print();
  4944. #ifndef LA_NOCOMPAT
  4945. la10c_reset();
  4946. #endif
  4947. }
  4948. starttime=_millis(); // procedure calls count as normal print time.
  4949. }
  4950. }
  4951. } break;
  4952. /*!
  4953. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  4954. #### Usage
  4955. M928 [filename]
  4956. */
  4957. case 928:
  4958. starpos = (strchr(strchr_pointer + 5,'*'));
  4959. if(starpos != NULL){
  4960. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4961. strchr_pointer = strchr(npos,' ') + 1;
  4962. *(starpos) = '\0';
  4963. }
  4964. card.openLogFile(strchr_pointer+5);
  4965. break;
  4966. #endif //SDSUPPORT
  4967. /*!
  4968. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  4969. */
  4970. case 31: //M31 take time since the start of the SD print or an M109 command
  4971. {
  4972. stoptime=_millis();
  4973. char time[30];
  4974. unsigned long t=(stoptime-starttime)/1000;
  4975. int sec,min;
  4976. min=t/60;
  4977. sec=t%60;
  4978. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4979. SERIAL_ECHO_START;
  4980. SERIAL_ECHOLN(time);
  4981. lcd_setstatus(time);
  4982. autotempShutdown();
  4983. }
  4984. break;
  4985. /*!
  4986. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  4987. #### Usage
  4988. M42 [ P | S ]
  4989. #### Parameters
  4990. - `P` - Pin number.
  4991. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  4992. */
  4993. case 42:
  4994. if (code_seen('S'))
  4995. {
  4996. int pin_status = code_value();
  4997. int pin_number = LED_PIN;
  4998. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4999. pin_number = code_value();
  5000. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5001. {
  5002. if (sensitive_pins[i] == pin_number)
  5003. {
  5004. pin_number = -1;
  5005. break;
  5006. }
  5007. }
  5008. #if defined(FAN_PIN) && FAN_PIN > -1
  5009. if (pin_number == FAN_PIN)
  5010. fanSpeed = pin_status;
  5011. #endif
  5012. if (pin_number > -1)
  5013. {
  5014. pinMode(pin_number, OUTPUT);
  5015. digitalWrite(pin_number, pin_status);
  5016. analogWrite(pin_number, pin_status);
  5017. }
  5018. }
  5019. break;
  5020. /*!
  5021. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5022. */
  5023. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5024. // Reset the baby step value and the baby step applied flag.
  5025. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5026. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5027. // Reset the skew and offset in both RAM and EEPROM.
  5028. reset_bed_offset_and_skew();
  5029. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5030. // the planner will not perform any adjustments in the XY plane.
  5031. // Wait for the motors to stop and update the current position with the absolute values.
  5032. world2machine_revert_to_uncorrected();
  5033. break;
  5034. /*!
  5035. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5036. #### Usage
  5037. M45 [ V ]
  5038. #### Parameters
  5039. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5040. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5041. */
  5042. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5043. {
  5044. int8_t verbosity_level = 0;
  5045. bool only_Z = code_seen('Z');
  5046. #ifdef SUPPORT_VERBOSITY
  5047. if (code_seen('V'))
  5048. {
  5049. // Just 'V' without a number counts as V1.
  5050. char c = strchr_pointer[1];
  5051. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5052. }
  5053. #endif //SUPPORT_VERBOSITY
  5054. gcode_M45(only_Z, verbosity_level);
  5055. }
  5056. break;
  5057. /*!
  5058. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5059. */
  5060. /*
  5061. case 46:
  5062. {
  5063. // M46: Prusa3D: Show the assigned IP address.
  5064. uint8_t ip[4];
  5065. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  5066. if (hasIP) {
  5067. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  5068. SERIAL_ECHO(int(ip[0]));
  5069. SERIAL_ECHOPGM(".");
  5070. SERIAL_ECHO(int(ip[1]));
  5071. SERIAL_ECHOPGM(".");
  5072. SERIAL_ECHO(int(ip[2]));
  5073. SERIAL_ECHOPGM(".");
  5074. SERIAL_ECHO(int(ip[3]));
  5075. SERIAL_ECHOLNPGM("");
  5076. } else {
  5077. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  5078. }
  5079. break;
  5080. }
  5081. */
  5082. /*!
  5083. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5084. */
  5085. case 47:
  5086. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5087. lcd_diag_show_end_stops();
  5088. KEEPALIVE_STATE(IN_HANDLER);
  5089. break;
  5090. #if 0
  5091. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5092. {
  5093. // Disable the default update procedure of the display. We will do a modal dialog.
  5094. lcd_update_enable(false);
  5095. // Let the planner use the uncorrected coordinates.
  5096. mbl.reset();
  5097. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5098. // the planner will not perform any adjustments in the XY plane.
  5099. // Wait for the motors to stop and update the current position with the absolute values.
  5100. world2machine_revert_to_uncorrected();
  5101. // Move the print head close to the bed.
  5102. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5104. st_synchronize();
  5105. // Home in the XY plane.
  5106. set_destination_to_current();
  5107. int l_feedmultiply = setup_for_endstop_move();
  5108. home_xy();
  5109. int8_t verbosity_level = 0;
  5110. if (code_seen('V')) {
  5111. // Just 'V' without a number counts as V1.
  5112. char c = strchr_pointer[1];
  5113. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5114. }
  5115. bool success = scan_bed_induction_points(verbosity_level);
  5116. clean_up_after_endstop_move(l_feedmultiply);
  5117. // Print head up.
  5118. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5120. st_synchronize();
  5121. lcd_update_enable(true);
  5122. break;
  5123. }
  5124. #endif
  5125. #ifdef ENABLE_AUTO_BED_LEVELING
  5126. #ifdef Z_PROBE_REPEATABILITY_TEST
  5127. /*!
  5128. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5129. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5130. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5131. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5132. #### Usage
  5133. M48 [ n | X | Y | V | L ]
  5134. #### Parameters
  5135. - `n` - Number of samples. Valid values 4-50
  5136. - `X` - X position for samples
  5137. - `Y` - Y position for samples
  5138. - `V` - Verbose level. Valid values 1-4
  5139. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5140. */
  5141. case 48: // M48 Z-Probe repeatability
  5142. {
  5143. #if Z_MIN_PIN == -1
  5144. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5145. #endif
  5146. double sum=0.0;
  5147. double mean=0.0;
  5148. double sigma=0.0;
  5149. double sample_set[50];
  5150. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5151. double X_current, Y_current, Z_current;
  5152. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5153. if (code_seen('V') || code_seen('v')) {
  5154. verbose_level = code_value();
  5155. if (verbose_level<0 || verbose_level>4 ) {
  5156. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5157. goto Sigma_Exit;
  5158. }
  5159. }
  5160. if (verbose_level > 0) {
  5161. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5162. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5163. }
  5164. if (code_seen('n')) {
  5165. n_samples = code_value();
  5166. if (n_samples<4 || n_samples>50 ) {
  5167. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5168. goto Sigma_Exit;
  5169. }
  5170. }
  5171. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5172. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5173. Z_current = st_get_position_mm(Z_AXIS);
  5174. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5175. ext_position = st_get_position_mm(E_AXIS);
  5176. if (code_seen('X') || code_seen('x') ) {
  5177. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5178. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5179. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5180. goto Sigma_Exit;
  5181. }
  5182. }
  5183. if (code_seen('Y') || code_seen('y') ) {
  5184. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5185. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5186. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5187. goto Sigma_Exit;
  5188. }
  5189. }
  5190. if (code_seen('L') || code_seen('l') ) {
  5191. n_legs = code_value();
  5192. if ( n_legs==1 )
  5193. n_legs = 2;
  5194. if ( n_legs<0 || n_legs>15 ) {
  5195. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5196. goto Sigma_Exit;
  5197. }
  5198. }
  5199. //
  5200. // Do all the preliminary setup work. First raise the probe.
  5201. //
  5202. st_synchronize();
  5203. plan_bed_level_matrix.set_to_identity();
  5204. plan_buffer_line( X_current, Y_current, Z_start_location,
  5205. ext_position,
  5206. homing_feedrate[Z_AXIS]/60,
  5207. active_extruder);
  5208. st_synchronize();
  5209. //
  5210. // Now get everything to the specified probe point So we can safely do a probe to
  5211. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5212. // use that as a starting point for each probe.
  5213. //
  5214. if (verbose_level > 2)
  5215. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5216. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5217. ext_position,
  5218. homing_feedrate[X_AXIS]/60,
  5219. active_extruder);
  5220. st_synchronize();
  5221. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5222. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5223. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5224. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5225. //
  5226. // OK, do the inital probe to get us close to the bed.
  5227. // Then retrace the right amount and use that in subsequent probes
  5228. //
  5229. int l_feedmultiply = setup_for_endstop_move();
  5230. run_z_probe();
  5231. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5232. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5233. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5234. ext_position,
  5235. homing_feedrate[X_AXIS]/60,
  5236. active_extruder);
  5237. st_synchronize();
  5238. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5239. for( n=0; n<n_samples; n++) {
  5240. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5241. if ( n_legs) {
  5242. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5243. int rotational_direction, l;
  5244. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5245. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5246. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5247. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5248. //SERIAL_ECHOPAIR(" theta: ",theta);
  5249. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5250. //SERIAL_PROTOCOLLNPGM("");
  5251. for( l=0; l<n_legs-1; l++) {
  5252. if (rotational_direction==1)
  5253. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5254. else
  5255. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5256. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5257. if ( radius<0.0 )
  5258. radius = -radius;
  5259. X_current = X_probe_location + cos(theta) * radius;
  5260. Y_current = Y_probe_location + sin(theta) * radius;
  5261. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5262. X_current = X_MIN_POS;
  5263. if ( X_current>X_MAX_POS)
  5264. X_current = X_MAX_POS;
  5265. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5266. Y_current = Y_MIN_POS;
  5267. if ( Y_current>Y_MAX_POS)
  5268. Y_current = Y_MAX_POS;
  5269. if (verbose_level>3 ) {
  5270. SERIAL_ECHOPAIR("x: ", X_current);
  5271. SERIAL_ECHOPAIR("y: ", Y_current);
  5272. SERIAL_PROTOCOLLNPGM("");
  5273. }
  5274. do_blocking_move_to( X_current, Y_current, Z_current );
  5275. }
  5276. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5277. }
  5278. int l_feedmultiply = setup_for_endstop_move();
  5279. run_z_probe();
  5280. sample_set[n] = current_position[Z_AXIS];
  5281. //
  5282. // Get the current mean for the data points we have so far
  5283. //
  5284. sum=0.0;
  5285. for( j=0; j<=n; j++) {
  5286. sum = sum + sample_set[j];
  5287. }
  5288. mean = sum / (double (n+1));
  5289. //
  5290. // Now, use that mean to calculate the standard deviation for the
  5291. // data points we have so far
  5292. //
  5293. sum=0.0;
  5294. for( j=0; j<=n; j++) {
  5295. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5296. }
  5297. sigma = sqrt( sum / (double (n+1)) );
  5298. if (verbose_level > 1) {
  5299. SERIAL_PROTOCOL(n+1);
  5300. SERIAL_PROTOCOL(" of ");
  5301. SERIAL_PROTOCOL(n_samples);
  5302. SERIAL_PROTOCOLPGM(" z: ");
  5303. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5304. }
  5305. if (verbose_level > 2) {
  5306. SERIAL_PROTOCOL(" mean: ");
  5307. SERIAL_PROTOCOL_F(mean,6);
  5308. SERIAL_PROTOCOL(" sigma: ");
  5309. SERIAL_PROTOCOL_F(sigma,6);
  5310. }
  5311. if (verbose_level > 0)
  5312. SERIAL_PROTOCOLPGM("\n");
  5313. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5314. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5315. st_synchronize();
  5316. }
  5317. _delay(1000);
  5318. clean_up_after_endstop_move(l_feedmultiply);
  5319. // enable_endstops(true);
  5320. if (verbose_level > 0) {
  5321. SERIAL_PROTOCOLPGM("Mean: ");
  5322. SERIAL_PROTOCOL_F(mean, 6);
  5323. SERIAL_PROTOCOLPGM("\n");
  5324. }
  5325. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5326. SERIAL_PROTOCOL_F(sigma, 6);
  5327. SERIAL_PROTOCOLPGM("\n\n");
  5328. Sigma_Exit:
  5329. break;
  5330. }
  5331. #endif // Z_PROBE_REPEATABILITY_TEST
  5332. #endif // ENABLE_AUTO_BED_LEVELING
  5333. /*!
  5334. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5335. #### Usage
  5336. M73 [ P | R | Q | S ]
  5337. #### Parameters
  5338. - `P` - Percent in normal mode
  5339. - `R` - Time remaining in normal mode
  5340. - `Q` - Percent in silent mode
  5341. - `S` - Time in silent mode
  5342. */
  5343. case 73: //M73 show percent done and time remaining
  5344. if(code_seen('P')) print_percent_done_normal = code_value();
  5345. if(code_seen('R')) print_time_remaining_normal = code_value();
  5346. if(code_seen('Q')) print_percent_done_silent = code_value();
  5347. if(code_seen('S')) print_time_remaining_silent = code_value();
  5348. {
  5349. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5350. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5351. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5352. }
  5353. break;
  5354. /*!
  5355. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5356. #### Usage
  5357. M104 [ S ]
  5358. #### Parameters
  5359. - `S` - Target temperature
  5360. */
  5361. case 104: // M104
  5362. {
  5363. uint8_t extruder;
  5364. if(setTargetedHotend(104,extruder)){
  5365. break;
  5366. }
  5367. if (code_seen('S'))
  5368. {
  5369. setTargetHotendSafe(code_value(), extruder);
  5370. }
  5371. break;
  5372. }
  5373. /*!
  5374. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5375. It is processed much earlier as to bypass the cmdqueue.
  5376. */
  5377. case 112:
  5378. kill(MSG_M112_KILL, 3);
  5379. break;
  5380. /*!
  5381. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5382. #### Usage
  5383. M140 [ S ]
  5384. #### Parameters
  5385. - `S` - Target temperature
  5386. */
  5387. case 140:
  5388. if (code_seen('S')) setTargetBed(code_value());
  5389. break;
  5390. /*!
  5391. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5392. Prints temperatures:
  5393. - `T:` - Hotend (actual / target)
  5394. - `B:` - Bed (actual / target)
  5395. - `Tx:` - x Tool (actual / target)
  5396. - `@:` - Hotend power
  5397. - `B@:` - Bed power
  5398. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5399. - `A:` - Ambient actual (only MK3/s)
  5400. _Example:_
  5401. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5402. */
  5403. case 105:
  5404. {
  5405. uint8_t extruder;
  5406. if(setTargetedHotend(105, extruder)){
  5407. break;
  5408. }
  5409. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5410. SERIAL_PROTOCOLPGM("ok T:");
  5411. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5412. SERIAL_PROTOCOLPGM(" /");
  5413. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5414. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5415. SERIAL_PROTOCOLPGM(" B:");
  5416. SERIAL_PROTOCOL_F(degBed(),1);
  5417. SERIAL_PROTOCOLPGM(" /");
  5418. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5419. #endif //TEMP_BED_PIN
  5420. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5421. SERIAL_PROTOCOLPGM(" T");
  5422. SERIAL_PROTOCOL(cur_extruder);
  5423. SERIAL_PROTOCOL(':');
  5424. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5425. SERIAL_PROTOCOLPGM(" /");
  5426. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5427. }
  5428. #else
  5429. SERIAL_ERROR_START;
  5430. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5431. #endif
  5432. SERIAL_PROTOCOLPGM(" @:");
  5433. #ifdef EXTRUDER_WATTS
  5434. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5435. SERIAL_PROTOCOLPGM("W");
  5436. #else
  5437. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5438. #endif
  5439. SERIAL_PROTOCOLPGM(" B@:");
  5440. #ifdef BED_WATTS
  5441. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5442. SERIAL_PROTOCOLPGM("W");
  5443. #else
  5444. SERIAL_PROTOCOL(getHeaterPower(-1));
  5445. #endif
  5446. #ifdef PINDA_THERMISTOR
  5447. SERIAL_PROTOCOLPGM(" P:");
  5448. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5449. #endif //PINDA_THERMISTOR
  5450. #ifdef AMBIENT_THERMISTOR
  5451. SERIAL_PROTOCOLPGM(" A:");
  5452. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5453. #endif //AMBIENT_THERMISTOR
  5454. #ifdef SHOW_TEMP_ADC_VALUES
  5455. {float raw = 0.0;
  5456. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5457. SERIAL_PROTOCOLPGM(" ADC B:");
  5458. SERIAL_PROTOCOL_F(degBed(),1);
  5459. SERIAL_PROTOCOLPGM("C->");
  5460. raw = rawBedTemp();
  5461. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5462. SERIAL_PROTOCOLPGM(" Rb->");
  5463. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5464. SERIAL_PROTOCOLPGM(" Rxb->");
  5465. SERIAL_PROTOCOL_F(raw, 5);
  5466. #endif
  5467. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5468. SERIAL_PROTOCOLPGM(" T");
  5469. SERIAL_PROTOCOL(cur_extruder);
  5470. SERIAL_PROTOCOLPGM(":");
  5471. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5472. SERIAL_PROTOCOLPGM("C->");
  5473. raw = rawHotendTemp(cur_extruder);
  5474. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5475. SERIAL_PROTOCOLPGM(" Rt");
  5476. SERIAL_PROTOCOL(cur_extruder);
  5477. SERIAL_PROTOCOLPGM("->");
  5478. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5479. SERIAL_PROTOCOLPGM(" Rx");
  5480. SERIAL_PROTOCOL(cur_extruder);
  5481. SERIAL_PROTOCOLPGM("->");
  5482. SERIAL_PROTOCOL_F(raw, 5);
  5483. }}
  5484. #endif
  5485. SERIAL_PROTOCOLLN("");
  5486. KEEPALIVE_STATE(NOT_BUSY);
  5487. return;
  5488. break;
  5489. }
  5490. /*!
  5491. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5492. #### Usage
  5493. M104 [ B | R | S ]
  5494. #### Parameters (not mandatory)
  5495. - `S` - Set extruder temperature
  5496. - `R` - Set extruder temperature
  5497. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5498. Parameters S and R are treated identically.
  5499. Command always waits for both cool down and heat up.
  5500. If no parameters are supplied waits for previously set extruder temperature.
  5501. */
  5502. case 109:
  5503. {
  5504. uint8_t extruder;
  5505. if(setTargetedHotend(109, extruder)){
  5506. break;
  5507. }
  5508. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5509. heating_status = 1;
  5510. if (farm_mode) { prusa_statistics(1); };
  5511. #ifdef AUTOTEMP
  5512. autotemp_enabled=false;
  5513. #endif
  5514. if (code_seen('S')) {
  5515. setTargetHotendSafe(code_value(), extruder);
  5516. } else if (code_seen('R')) {
  5517. setTargetHotendSafe(code_value(), extruder);
  5518. }
  5519. #ifdef AUTOTEMP
  5520. if (code_seen('S')) autotemp_min=code_value();
  5521. if (code_seen('B')) autotemp_max=code_value();
  5522. if (code_seen('F'))
  5523. {
  5524. autotemp_factor=code_value();
  5525. autotemp_enabled=true;
  5526. }
  5527. #endif
  5528. codenum = _millis();
  5529. /* See if we are heating up or cooling down */
  5530. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5531. KEEPALIVE_STATE(NOT_BUSY);
  5532. cancel_heatup = false;
  5533. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5534. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5535. KEEPALIVE_STATE(IN_HANDLER);
  5536. heating_status = 2;
  5537. if (farm_mode) { prusa_statistics(2); };
  5538. //starttime=_millis();
  5539. previous_millis_cmd = _millis();
  5540. }
  5541. break;
  5542. /*!
  5543. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5544. #### Usage
  5545. M190 [ R | S ]
  5546. #### Parameters (not mandatory)
  5547. - `S` - Set extruder temperature and wait for heating
  5548. - `R` - Set extruder temperature and wait for heating or cooling
  5549. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5550. */
  5551. case 190:
  5552. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5553. {
  5554. bool CooldownNoWait = false;
  5555. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5556. heating_status = 3;
  5557. if (farm_mode) { prusa_statistics(1); };
  5558. if (code_seen('S'))
  5559. {
  5560. setTargetBed(code_value());
  5561. CooldownNoWait = true;
  5562. }
  5563. else if (code_seen('R'))
  5564. {
  5565. setTargetBed(code_value());
  5566. }
  5567. codenum = _millis();
  5568. cancel_heatup = false;
  5569. target_direction = isHeatingBed(); // true if heating, false if cooling
  5570. KEEPALIVE_STATE(NOT_BUSY);
  5571. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5572. {
  5573. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5574. {
  5575. if (!farm_mode) {
  5576. float tt = degHotend(active_extruder);
  5577. SERIAL_PROTOCOLPGM("T:");
  5578. SERIAL_PROTOCOL(tt);
  5579. SERIAL_PROTOCOLPGM(" E:");
  5580. SERIAL_PROTOCOL((int)active_extruder);
  5581. SERIAL_PROTOCOLPGM(" B:");
  5582. SERIAL_PROTOCOL_F(degBed(), 1);
  5583. SERIAL_PROTOCOLLN("");
  5584. }
  5585. codenum = _millis();
  5586. }
  5587. manage_heater();
  5588. manage_inactivity();
  5589. lcd_update(0);
  5590. }
  5591. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5592. KEEPALIVE_STATE(IN_HANDLER);
  5593. heating_status = 4;
  5594. previous_millis_cmd = _millis();
  5595. }
  5596. #endif
  5597. break;
  5598. #if defined(FAN_PIN) && FAN_PIN > -1
  5599. /*!
  5600. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5601. #### Usage
  5602. M106 [ S ]
  5603. #### Parameters
  5604. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5605. */
  5606. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5607. if (code_seen('S')){
  5608. fanSpeed=constrain(code_value(),0,255);
  5609. }
  5610. else {
  5611. fanSpeed=255;
  5612. }
  5613. break;
  5614. /*!
  5615. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5616. */
  5617. case 107:
  5618. fanSpeed = 0;
  5619. break;
  5620. #endif //FAN_PIN
  5621. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5622. /*!
  5623. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5624. Only works if the firmware is compiled with PS_ON_PIN defined.
  5625. */
  5626. case 80:
  5627. SET_OUTPUT(PS_ON_PIN); //GND
  5628. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5629. // If you have a switch on suicide pin, this is useful
  5630. // if you want to start another print with suicide feature after
  5631. // a print without suicide...
  5632. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5633. SET_OUTPUT(SUICIDE_PIN);
  5634. WRITE(SUICIDE_PIN, HIGH);
  5635. #endif
  5636. powersupply = true;
  5637. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5638. lcd_update(0);
  5639. break;
  5640. /*!
  5641. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5642. Only works if the firmware is compiled with PS_ON_PIN defined.
  5643. */
  5644. case 81:
  5645. disable_heater();
  5646. st_synchronize();
  5647. disable_e0();
  5648. disable_e1();
  5649. disable_e2();
  5650. finishAndDisableSteppers();
  5651. fanSpeed = 0;
  5652. _delay(1000); // Wait a little before to switch off
  5653. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5654. st_synchronize();
  5655. suicide();
  5656. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5657. SET_OUTPUT(PS_ON_PIN);
  5658. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5659. #endif
  5660. powersupply = false;
  5661. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5662. lcd_update(0);
  5663. break;
  5664. #endif
  5665. /*!
  5666. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5667. Makes the extruder interpret extrusion as absolute positions.
  5668. */
  5669. case 82:
  5670. axis_relative_modes &= ~E_AXIS_MASK;
  5671. break;
  5672. /*!
  5673. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5674. Makes the extruder interpret extrusion values as relative positions.
  5675. */
  5676. case 83:
  5677. axis_relative_modes |= E_AXIS_MASK;
  5678. break;
  5679. /*!
  5680. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5681. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5682. This command can be used without any additional parameters. In that case all steppers are disabled.
  5683. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5684. M84 [ S | X | Y | Z | E ]
  5685. - `S` - Seconds
  5686. - `X` - X axis
  5687. - `Y` - Y axis
  5688. - `Z` - Z axis
  5689. - `E` - Exruder
  5690. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5691. Equal to M84 (compatibility)
  5692. */
  5693. case 18: //compatibility
  5694. case 84: // M84
  5695. if(code_seen('S')){
  5696. stepper_inactive_time = code_value() * 1000;
  5697. }
  5698. else
  5699. {
  5700. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5701. if(all_axis)
  5702. {
  5703. st_synchronize();
  5704. disable_e0();
  5705. disable_e1();
  5706. disable_e2();
  5707. finishAndDisableSteppers();
  5708. }
  5709. else
  5710. {
  5711. st_synchronize();
  5712. if (code_seen('X')) disable_x();
  5713. if (code_seen('Y')) disable_y();
  5714. if (code_seen('Z')) disable_z();
  5715. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5716. if (code_seen('E')) {
  5717. disable_e0();
  5718. disable_e1();
  5719. disable_e2();
  5720. }
  5721. #endif
  5722. }
  5723. }
  5724. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5725. print_time_remaining_init();
  5726. snmm_filaments_used = 0;
  5727. break;
  5728. /*!
  5729. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5730. #### Usage
  5731. M85 [ S ]
  5732. #### Parameters
  5733. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5734. */
  5735. case 85: // M85
  5736. if(code_seen('S')) {
  5737. max_inactive_time = code_value() * 1000;
  5738. }
  5739. break;
  5740. #ifdef SAFETYTIMER
  5741. /*!
  5742. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5743. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5744. #### Usage
  5745. M86 [ S ]
  5746. #### Parameters
  5747. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5748. */
  5749. case 86:
  5750. if (code_seen('S')) {
  5751. safetytimer_inactive_time = code_value() * 1000;
  5752. safetyTimer.start();
  5753. }
  5754. break;
  5755. #endif
  5756. /*!
  5757. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5758. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5759. #### Usage
  5760. M92 [ X | Y | Z | E ]
  5761. #### Parameters
  5762. - `X` - Steps per unit for the X drive
  5763. - `Y` - Steps per unit for the Y drive
  5764. - `Z` - Steps per unit for the Z drive
  5765. - `E` - Steps per unit for the extruder drive
  5766. */
  5767. case 92:
  5768. for(int8_t i=0; i < NUM_AXIS; i++)
  5769. {
  5770. if(code_seen(axis_codes[i]))
  5771. {
  5772. if(i == E_AXIS) { // E
  5773. float value = code_value();
  5774. if(value < 20.0) {
  5775. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5776. cs.max_jerk[E_AXIS] *= factor;
  5777. max_feedrate[i] *= factor;
  5778. axis_steps_per_sqr_second[i] *= factor;
  5779. }
  5780. cs.axis_steps_per_unit[i] = value;
  5781. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5782. fsensor_set_axis_steps_per_unit(value);
  5783. #endif
  5784. }
  5785. else {
  5786. cs.axis_steps_per_unit[i] = code_value();
  5787. }
  5788. }
  5789. }
  5790. break;
  5791. /*!
  5792. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5793. Sets the line number in G-code
  5794. #### Usage
  5795. M110 [ N ]
  5796. #### Parameters
  5797. - `N` - Line number
  5798. */
  5799. case 110:
  5800. if (code_seen('N'))
  5801. gcode_LastN = code_value_long();
  5802. break;
  5803. /*!
  5804. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5805. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5806. #### Usage
  5807. M113 [ S ]
  5808. #### Parameters
  5809. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5810. */
  5811. case 113:
  5812. if (code_seen('S')) {
  5813. host_keepalive_interval = (uint8_t)code_value_short();
  5814. // NOMORE(host_keepalive_interval, 60);
  5815. }
  5816. else {
  5817. SERIAL_ECHO_START;
  5818. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5819. SERIAL_PROTOCOLLN("");
  5820. }
  5821. break;
  5822. /*!
  5823. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5824. Print the firmware info and capabilities
  5825. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5826. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5827. _Examples:_
  5828. `M115` results:
  5829. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5830. `M115 V` results:
  5831. `3.8.1`
  5832. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5833. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5834. #### Usage
  5835. M115 [ V | U ]
  5836. #### Parameters
  5837. - V - Report current installed firmware version
  5838. - U - Firmware version provided by G-code to be compared to current one.
  5839. */
  5840. case 115: // M115
  5841. if (code_seen('V')) {
  5842. // Report the Prusa version number.
  5843. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5844. } else if (code_seen('U')) {
  5845. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5846. // pause the print for 30s and ask the user to upgrade the firmware.
  5847. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5848. } else {
  5849. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5850. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5851. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5852. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5853. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5854. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5855. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5856. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5857. SERIAL_ECHOPGM(" UUID:");
  5858. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5859. }
  5860. break;
  5861. /*!
  5862. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5863. */
  5864. case 114:
  5865. gcode_M114();
  5866. break;
  5867. /*
  5868. M117 moved up to get the high priority
  5869. case 117: // M117 display message
  5870. starpos = (strchr(strchr_pointer + 5,'*'));
  5871. if(starpos!=NULL)
  5872. *(starpos)='\0';
  5873. lcd_setstatus(strchr_pointer + 5);
  5874. break;*/
  5875. /*!
  5876. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5877. */
  5878. case 120:
  5879. enable_endstops(false) ;
  5880. break;
  5881. /*!
  5882. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5883. */
  5884. case 121:
  5885. enable_endstops(true) ;
  5886. break;
  5887. /*!
  5888. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5889. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5890. */
  5891. case 119:
  5892. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5893. SERIAL_PROTOCOLLN("");
  5894. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5895. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5896. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5897. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5898. }else{
  5899. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5900. }
  5901. SERIAL_PROTOCOLLN("");
  5902. #endif
  5903. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5904. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5905. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5906. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5907. }else{
  5908. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5909. }
  5910. SERIAL_PROTOCOLLN("");
  5911. #endif
  5912. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5913. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5914. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5915. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5916. }else{
  5917. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5918. }
  5919. SERIAL_PROTOCOLLN("");
  5920. #endif
  5921. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5922. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5923. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5924. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5925. }else{
  5926. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5927. }
  5928. SERIAL_PROTOCOLLN("");
  5929. #endif
  5930. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5931. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5932. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5933. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5934. }else{
  5935. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5936. }
  5937. SERIAL_PROTOCOLLN("");
  5938. #endif
  5939. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5940. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5941. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5942. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5943. }else{
  5944. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5945. }
  5946. SERIAL_PROTOCOLLN("");
  5947. #endif
  5948. break;
  5949. //!@todo update for all axes, use for loop
  5950. #ifdef BLINKM
  5951. /*!
  5952. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5953. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5954. #### Usage
  5955. M150 [ R | U | B ]
  5956. #### Parameters
  5957. - `R` - Red color value
  5958. - `U` - Green color value. It is NOT `G`!
  5959. - `B` - Blue color value
  5960. */
  5961. case 150:
  5962. {
  5963. byte red;
  5964. byte grn;
  5965. byte blu;
  5966. if(code_seen('R')) red = code_value();
  5967. if(code_seen('U')) grn = code_value();
  5968. if(code_seen('B')) blu = code_value();
  5969. SendColors(red,grn,blu);
  5970. }
  5971. break;
  5972. #endif //BLINKM
  5973. /*!
  5974. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  5975. #### Usage
  5976. M200 [ D | T ]
  5977. #### Parameters
  5978. - `D` - Diameter in mm
  5979. - `T` - Number of extruder (MMUs)
  5980. */
  5981. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5982. {
  5983. uint8_t extruder = active_extruder;
  5984. if(code_seen('T')) {
  5985. extruder = code_value();
  5986. if(extruder >= EXTRUDERS) {
  5987. SERIAL_ECHO_START;
  5988. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5989. break;
  5990. }
  5991. }
  5992. if(code_seen('D')) {
  5993. float diameter = (float)code_value();
  5994. if (diameter == 0.0) {
  5995. // setting any extruder filament size disables volumetric on the assumption that
  5996. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5997. // for all extruders
  5998. cs.volumetric_enabled = false;
  5999. } else {
  6000. cs.filament_size[extruder] = (float)code_value();
  6001. // make sure all extruders have some sane value for the filament size
  6002. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6003. #if EXTRUDERS > 1
  6004. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6005. #if EXTRUDERS > 2
  6006. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6007. #endif
  6008. #endif
  6009. cs.volumetric_enabled = true;
  6010. }
  6011. } else {
  6012. //reserved for setting filament diameter via UFID or filament measuring device
  6013. break;
  6014. }
  6015. calculate_extruder_multipliers();
  6016. }
  6017. break;
  6018. /*!
  6019. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6020. For each axis individually.
  6021. */
  6022. case 201:
  6023. for (int8_t i = 0; i < NUM_AXIS; i++)
  6024. {
  6025. if (code_seen(axis_codes[i]))
  6026. {
  6027. unsigned long val = code_value();
  6028. #ifdef TMC2130
  6029. unsigned long val_silent = val;
  6030. if ((i == X_AXIS) || (i == Y_AXIS))
  6031. {
  6032. if (val > NORMAL_MAX_ACCEL_XY)
  6033. val = NORMAL_MAX_ACCEL_XY;
  6034. if (val_silent > SILENT_MAX_ACCEL_XY)
  6035. val_silent = SILENT_MAX_ACCEL_XY;
  6036. }
  6037. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6038. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6039. #else //TMC2130
  6040. max_acceleration_units_per_sq_second[i] = val;
  6041. #endif //TMC2130
  6042. }
  6043. }
  6044. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6045. reset_acceleration_rates();
  6046. break;
  6047. #if 0 // Not used for Sprinter/grbl gen6
  6048. case 202: // M202
  6049. for(int8_t i=0; i < NUM_AXIS; i++) {
  6050. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6051. }
  6052. break;
  6053. #endif
  6054. /*!
  6055. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6056. For each axis individually.
  6057. */
  6058. case 203: // M203 max feedrate mm/sec
  6059. for (int8_t i = 0; i < NUM_AXIS; i++)
  6060. {
  6061. if (code_seen(axis_codes[i]))
  6062. {
  6063. float val = code_value();
  6064. #ifdef TMC2130
  6065. float val_silent = val;
  6066. if ((i == X_AXIS) || (i == Y_AXIS))
  6067. {
  6068. if (val > NORMAL_MAX_FEEDRATE_XY)
  6069. val = NORMAL_MAX_FEEDRATE_XY;
  6070. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6071. val_silent = SILENT_MAX_FEEDRATE_XY;
  6072. }
  6073. cs.max_feedrate_normal[i] = val;
  6074. cs.max_feedrate_silent[i] = val_silent;
  6075. #else //TMC2130
  6076. max_feedrate[i] = val;
  6077. #endif //TMC2130
  6078. }
  6079. }
  6080. break;
  6081. /*!
  6082. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6083. #### Old format:
  6084. ##### Usage
  6085. M204 [ S | T ]
  6086. ##### Parameters
  6087. - `S` - normal moves
  6088. - `T` - filmanent only moves
  6089. #### New format:
  6090. ##### Usage
  6091. M204 [ P | R | T ]
  6092. ##### Parameters
  6093. - `P` - printing moves
  6094. - `R` - filmanent only moves
  6095. - `T` - travel moves (as of now T is ignored)
  6096. */
  6097. case 204:
  6098. {
  6099. if(code_seen('S')) {
  6100. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6101. // and it is also generated by Slic3r to control acceleration per extrusion type
  6102. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6103. cs.acceleration = code_value();
  6104. // Interpret the T value as retract acceleration in the old Marlin format.
  6105. if(code_seen('T'))
  6106. cs.retract_acceleration = code_value();
  6107. } else {
  6108. // New acceleration format, compatible with the upstream Marlin.
  6109. if(code_seen('P'))
  6110. cs.acceleration = code_value();
  6111. if(code_seen('R'))
  6112. cs.retract_acceleration = code_value();
  6113. if(code_seen('T')) {
  6114. // Interpret the T value as the travel acceleration in the new Marlin format.
  6115. /*!
  6116. @todo Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  6117. */
  6118. // travel_acceleration = code_value();
  6119. }
  6120. }
  6121. }
  6122. break;
  6123. /*!
  6124. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6125. Set some advanced settings related to movement.
  6126. #### Usage
  6127. M205 [ S | T | B | X | Y | Z | E ]
  6128. #### Parameters
  6129. - `S` - Minimum feedrate for print moves (unit/s)
  6130. - `T` - Minimum feedrate for travel moves (units/s)
  6131. - `B` - Minimum segment time (us)
  6132. - `X` - Maximum X jerk (units/s)
  6133. - `Y` - Maximum Y jerk (units/s)
  6134. - `Z` - Maximum Z jerk (units/s)
  6135. - `E` - Maximum E jerk (units/s)
  6136. */
  6137. case 205:
  6138. {
  6139. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6140. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6141. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6142. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6143. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6144. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6145. if(code_seen('E'))
  6146. {
  6147. float e = code_value();
  6148. #ifndef LA_NOCOMPAT
  6149. e = la10c_jerk(e);
  6150. #endif
  6151. cs.max_jerk[E_AXIS] = e;
  6152. }
  6153. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6154. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6155. }
  6156. break;
  6157. /*!
  6158. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6159. #### Usage
  6160. M206 [ X | Y | Z ]
  6161. #### Parameters
  6162. - `X` - X axis offset
  6163. - `Y` - Y axis offset
  6164. - `Z` - Z axis offset
  6165. */
  6166. case 206:
  6167. for(int8_t i=0; i < 3; i++)
  6168. {
  6169. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6170. }
  6171. break;
  6172. #ifdef FWRETRACT
  6173. /*!
  6174. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6175. #### Usage
  6176. M207 [ S | F | Z ]
  6177. #### Parameters
  6178. - `S` - positive length to retract, in mm
  6179. - `F` - retraction feedrate, in mm/min
  6180. - `Z` - additional zlift/hop
  6181. */
  6182. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6183. {
  6184. if(code_seen('S'))
  6185. {
  6186. cs.retract_length = code_value() ;
  6187. }
  6188. if(code_seen('F'))
  6189. {
  6190. cs.retract_feedrate = code_value()/60 ;
  6191. }
  6192. if(code_seen('Z'))
  6193. {
  6194. cs.retract_zlift = code_value() ;
  6195. }
  6196. }break;
  6197. /*!
  6198. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6199. #### Usage
  6200. M208 [ S | F ]
  6201. #### Parameters
  6202. - `S` - positive length surplus to the M207 Snnn, in mm
  6203. - `F` - feedrate, in mm/sec
  6204. */
  6205. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6206. {
  6207. if(code_seen('S'))
  6208. {
  6209. cs.retract_recover_length = code_value() ;
  6210. }
  6211. if(code_seen('F'))
  6212. {
  6213. cs.retract_recover_feedrate = code_value()/60 ;
  6214. }
  6215. }break;
  6216. /*!
  6217. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6218. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6219. #### Usage
  6220. M209 [ S ]
  6221. #### Parameters
  6222. - `S` - 1=true or 0=false
  6223. */
  6224. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6225. {
  6226. if(code_seen('S'))
  6227. {
  6228. int t= code_value() ;
  6229. switch(t)
  6230. {
  6231. case 0:
  6232. {
  6233. cs.autoretract_enabled=false;
  6234. retracted[0]=false;
  6235. #if EXTRUDERS > 1
  6236. retracted[1]=false;
  6237. #endif
  6238. #if EXTRUDERS > 2
  6239. retracted[2]=false;
  6240. #endif
  6241. }break;
  6242. case 1:
  6243. {
  6244. cs.autoretract_enabled=true;
  6245. retracted[0]=false;
  6246. #if EXTRUDERS > 1
  6247. retracted[1]=false;
  6248. #endif
  6249. #if EXTRUDERS > 2
  6250. retracted[2]=false;
  6251. #endif
  6252. }break;
  6253. default:
  6254. SERIAL_ECHO_START;
  6255. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6256. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6257. SERIAL_ECHOLNPGM("\"(1)");
  6258. }
  6259. }
  6260. }break;
  6261. #endif // FWRETRACT
  6262. #if EXTRUDERS > 1
  6263. /*!
  6264. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6265. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6266. #### Usage
  6267. M218 [ X | Y ]
  6268. #### Parameters
  6269. - `X` - X offset
  6270. - `Y` - Y offset
  6271. */
  6272. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6273. {
  6274. uint8_t extruder;
  6275. if(setTargetedHotend(218, extruder)){
  6276. break;
  6277. }
  6278. if(code_seen('X'))
  6279. {
  6280. extruder_offset[X_AXIS][extruder] = code_value();
  6281. }
  6282. if(code_seen('Y'))
  6283. {
  6284. extruder_offset[Y_AXIS][extruder] = code_value();
  6285. }
  6286. SERIAL_ECHO_START;
  6287. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6288. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6289. {
  6290. SERIAL_ECHO(" ");
  6291. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6292. SERIAL_ECHO(",");
  6293. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6294. }
  6295. SERIAL_ECHOLN("");
  6296. }break;
  6297. #endif
  6298. /*!
  6299. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6300. #### Usage
  6301. M220 [ B | S | R ]
  6302. #### Parameters
  6303. - `B` - Backup current speed factor
  6304. - `S` - Speed factor override percentage (0..100 or higher)
  6305. - `R` - Restore previous speed factor
  6306. */
  6307. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6308. {
  6309. if (code_seen('B')) //backup current speed factor
  6310. {
  6311. saved_feedmultiply_mm = feedmultiply;
  6312. }
  6313. if(code_seen('S'))
  6314. {
  6315. feedmultiply = code_value() ;
  6316. }
  6317. if (code_seen('R')) { //restore previous feedmultiply
  6318. feedmultiply = saved_feedmultiply_mm;
  6319. }
  6320. }
  6321. break;
  6322. /*!
  6323. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6324. #### Usage
  6325. M221 [ S | T ]
  6326. #### Parameters
  6327. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6328. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6329. */
  6330. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6331. {
  6332. if(code_seen('S'))
  6333. {
  6334. int tmp_code = code_value();
  6335. if (code_seen('T'))
  6336. {
  6337. uint8_t extruder;
  6338. if(setTargetedHotend(221, extruder)){
  6339. break;
  6340. }
  6341. extruder_multiply[extruder] = tmp_code;
  6342. }
  6343. else
  6344. {
  6345. extrudemultiply = tmp_code ;
  6346. }
  6347. }
  6348. calculate_extruder_multipliers();
  6349. }
  6350. break;
  6351. /*!
  6352. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6353. Wait until the specified pin reaches the state required
  6354. #### Usage
  6355. M226 [ P | S ]
  6356. #### Parameters
  6357. - `P` - pin number
  6358. - `S` - pin state
  6359. */
  6360. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6361. {
  6362. if(code_seen('P')){
  6363. int pin_number = code_value(); // pin number
  6364. int pin_state = -1; // required pin state - default is inverted
  6365. if(code_seen('S')) pin_state = code_value(); // required pin state
  6366. if(pin_state >= -1 && pin_state <= 1){
  6367. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6368. {
  6369. if (sensitive_pins[i] == pin_number)
  6370. {
  6371. pin_number = -1;
  6372. break;
  6373. }
  6374. }
  6375. if (pin_number > -1)
  6376. {
  6377. int target = LOW;
  6378. st_synchronize();
  6379. pinMode(pin_number, INPUT);
  6380. switch(pin_state){
  6381. case 1:
  6382. target = HIGH;
  6383. break;
  6384. case 0:
  6385. target = LOW;
  6386. break;
  6387. case -1:
  6388. target = !digitalRead(pin_number);
  6389. break;
  6390. }
  6391. while(digitalRead(pin_number) != target){
  6392. manage_heater();
  6393. manage_inactivity();
  6394. lcd_update(0);
  6395. }
  6396. }
  6397. }
  6398. }
  6399. }
  6400. break;
  6401. #if NUM_SERVOS > 0
  6402. /*!
  6403. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6404. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6405. #### Usage
  6406. M280 [ P | S ]
  6407. #### Parameters
  6408. - `P` - Servo index (id)
  6409. - `S` - Target position
  6410. */
  6411. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6412. {
  6413. int servo_index = -1;
  6414. int servo_position = 0;
  6415. if (code_seen('P'))
  6416. servo_index = code_value();
  6417. if (code_seen('S')) {
  6418. servo_position = code_value();
  6419. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6420. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6421. servos[servo_index].attach(0);
  6422. #endif
  6423. servos[servo_index].write(servo_position);
  6424. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6425. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6426. servos[servo_index].detach();
  6427. #endif
  6428. }
  6429. else {
  6430. SERIAL_ECHO_START;
  6431. SERIAL_ECHO("Servo ");
  6432. SERIAL_ECHO(servo_index);
  6433. SERIAL_ECHOLN(" out of range");
  6434. }
  6435. }
  6436. else if (servo_index >= 0) {
  6437. SERIAL_PROTOCOL(MSG_OK);
  6438. SERIAL_PROTOCOL(" Servo ");
  6439. SERIAL_PROTOCOL(servo_index);
  6440. SERIAL_PROTOCOL(": ");
  6441. SERIAL_PROTOCOL(servos[servo_index].read());
  6442. SERIAL_PROTOCOLLN("");
  6443. }
  6444. }
  6445. break;
  6446. #endif // NUM_SERVOS > 0
  6447. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6448. /*!
  6449. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6450. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6451. #### Usage
  6452. M300 [ S | P ]
  6453. #### Parameters
  6454. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6455. - `P` - duration in milliseconds
  6456. */
  6457. case 300: // M300
  6458. {
  6459. int beepS = code_seen('S') ? code_value() : 110;
  6460. int beepP = code_seen('P') ? code_value() : 1000;
  6461. if (beepS > 0)
  6462. {
  6463. #if BEEPER > 0
  6464. Sound_MakeCustom(beepP,beepS,false);
  6465. #endif
  6466. }
  6467. else
  6468. {
  6469. _delay(beepP);
  6470. }
  6471. }
  6472. break;
  6473. #endif // M300
  6474. #ifdef PIDTEMP
  6475. /*!
  6476. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6477. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6478. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6479. #### Usage
  6480. M301 [ P | I | D | C ]
  6481. #### Parameters
  6482. - `P` - proportional (Kp)
  6483. - `I` - integral (Ki)
  6484. - `D` - derivative (Kd)
  6485. - `C` - heating power=Kc*(e_speed0)
  6486. */
  6487. case 301:
  6488. {
  6489. if(code_seen('P')) cs.Kp = code_value();
  6490. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6491. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6492. #ifdef PID_ADD_EXTRUSION_RATE
  6493. if(code_seen('C')) Kc = code_value();
  6494. #endif
  6495. updatePID();
  6496. SERIAL_PROTOCOLRPGM(MSG_OK);
  6497. SERIAL_PROTOCOL(" p:");
  6498. SERIAL_PROTOCOL(cs.Kp);
  6499. SERIAL_PROTOCOL(" i:");
  6500. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6501. SERIAL_PROTOCOL(" d:");
  6502. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6503. #ifdef PID_ADD_EXTRUSION_RATE
  6504. SERIAL_PROTOCOL(" c:");
  6505. //Kc does not have scaling applied above, or in resetting defaults
  6506. SERIAL_PROTOCOL(Kc);
  6507. #endif
  6508. SERIAL_PROTOCOLLN("");
  6509. }
  6510. break;
  6511. #endif //PIDTEMP
  6512. #ifdef PIDTEMPBED
  6513. /*!
  6514. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6515. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6516. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6517. #### Usage
  6518. M304 [ P | I | D ]
  6519. #### Parameters
  6520. - `P` - proportional (Kp)
  6521. - `I` - integral (Ki)
  6522. - `D` - derivative (Kd)
  6523. */
  6524. case 304:
  6525. {
  6526. if(code_seen('P')) cs.bedKp = code_value();
  6527. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6528. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6529. updatePID();
  6530. SERIAL_PROTOCOLRPGM(MSG_OK);
  6531. SERIAL_PROTOCOL(" p:");
  6532. SERIAL_PROTOCOL(cs.bedKp);
  6533. SERIAL_PROTOCOL(" i:");
  6534. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6535. SERIAL_PROTOCOL(" d:");
  6536. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6537. SERIAL_PROTOCOLLN("");
  6538. }
  6539. break;
  6540. #endif //PIDTEMP
  6541. /*!
  6542. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6543. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6544. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6545. */
  6546. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6547. {
  6548. #ifdef CHDK
  6549. SET_OUTPUT(CHDK);
  6550. WRITE(CHDK, HIGH);
  6551. chdkHigh = _millis();
  6552. chdkActive = true;
  6553. #else
  6554. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6555. const uint8_t NUM_PULSES=16;
  6556. const float PULSE_LENGTH=0.01524;
  6557. for(int i=0; i < NUM_PULSES; i++) {
  6558. WRITE(PHOTOGRAPH_PIN, HIGH);
  6559. _delay_ms(PULSE_LENGTH);
  6560. WRITE(PHOTOGRAPH_PIN, LOW);
  6561. _delay_ms(PULSE_LENGTH);
  6562. }
  6563. _delay(7.33);
  6564. for(int i=0; i < NUM_PULSES; i++) {
  6565. WRITE(PHOTOGRAPH_PIN, HIGH);
  6566. _delay_ms(PULSE_LENGTH);
  6567. WRITE(PHOTOGRAPH_PIN, LOW);
  6568. _delay_ms(PULSE_LENGTH);
  6569. }
  6570. #endif
  6571. #endif //chdk end if
  6572. }
  6573. break;
  6574. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6575. /*!
  6576. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6577. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6578. #### Usage
  6579. M302 [ S ]
  6580. #### Parameters
  6581. - `S` - Cold extrude minimum temperature
  6582. */
  6583. case 302:
  6584. {
  6585. float temp = .0;
  6586. if (code_seen('S')) temp=code_value();
  6587. set_extrude_min_temp(temp);
  6588. }
  6589. break;
  6590. #endif
  6591. /*!
  6592. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6593. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6594. #### Usage
  6595. M303 [ E | S | C ]
  6596. #### Parameters
  6597. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6598. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6599. - `C` - Cycles, default `5`
  6600. */
  6601. case 303:
  6602. {
  6603. float temp = 150.0;
  6604. int e=0;
  6605. int c=5;
  6606. if (code_seen('E')) e=code_value();
  6607. if (e<0)
  6608. temp=70;
  6609. if (code_seen('S')) temp=code_value();
  6610. if (code_seen('C')) c=code_value();
  6611. PID_autotune(temp, e, c);
  6612. }
  6613. break;
  6614. /*!
  6615. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6616. Finishes all current moves and and thus clears the buffer.
  6617. Equivalent to `G4` with no parameters.
  6618. */
  6619. case 400:
  6620. {
  6621. st_synchronize();
  6622. }
  6623. break;
  6624. /*!
  6625. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6626. Currently three different materials are needed (default, flex and PVA).
  6627. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6628. #### Usage
  6629. M403 [ E | F ]
  6630. #### Parameters
  6631. - `E` - Extruder number. 0-indexed.
  6632. - `F` - Filament type
  6633. */
  6634. case 403:
  6635. {
  6636. // currently three different materials are needed (default, flex and PVA)
  6637. // add storing this information for different load/unload profiles etc. in the future
  6638. // firmware does not wait for "ok" from mmu
  6639. if (mmu_enabled)
  6640. {
  6641. uint8_t extruder = 255;
  6642. uint8_t filament = FILAMENT_UNDEFINED;
  6643. if(code_seen('E')) extruder = code_value();
  6644. if(code_seen('F')) filament = code_value();
  6645. mmu_set_filament_type(extruder, filament);
  6646. }
  6647. }
  6648. break;
  6649. /*!
  6650. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6651. Save current parameters to EEPROM.
  6652. */
  6653. case 500:
  6654. {
  6655. Config_StoreSettings();
  6656. }
  6657. break;
  6658. /*!
  6659. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6660. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6661. */
  6662. case 501:
  6663. {
  6664. Config_RetrieveSettings();
  6665. }
  6666. break;
  6667. /*!
  6668. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6669. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6670. */
  6671. case 502:
  6672. {
  6673. Config_ResetDefault();
  6674. }
  6675. break;
  6676. /*!
  6677. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6678. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6679. */
  6680. case 503:
  6681. {
  6682. Config_PrintSettings();
  6683. }
  6684. break;
  6685. /*!
  6686. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6687. Resets the language to English.
  6688. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6689. */
  6690. case 509:
  6691. {
  6692. lang_reset();
  6693. SERIAL_ECHO_START;
  6694. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6695. }
  6696. break;
  6697. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6698. /*!
  6699. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6700. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6701. #### Usage
  6702. M540 [ S ]
  6703. #### Parameters
  6704. - `S` - disabled=0, enabled=1
  6705. */
  6706. case 540:
  6707. {
  6708. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6709. }
  6710. break;
  6711. #endif
  6712. /*!
  6713. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6714. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6715. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6716. #### Usage
  6717. M851 [ Z ]
  6718. #### Parameters
  6719. - `Z` - Z offset probe to nozzle.
  6720. */
  6721. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6722. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6723. {
  6724. float value;
  6725. if (code_seen('Z'))
  6726. {
  6727. value = code_value();
  6728. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6729. {
  6730. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6731. SERIAL_ECHO_START;
  6732. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6733. SERIAL_PROTOCOLLN("");
  6734. }
  6735. else
  6736. {
  6737. SERIAL_ECHO_START;
  6738. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6739. SERIAL_ECHORPGM(MSG_Z_MIN);
  6740. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6741. SERIAL_ECHORPGM(MSG_Z_MAX);
  6742. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6743. SERIAL_PROTOCOLLN("");
  6744. }
  6745. }
  6746. else
  6747. {
  6748. SERIAL_ECHO_START;
  6749. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6750. SERIAL_ECHO(-cs.zprobe_zoffset);
  6751. SERIAL_PROTOCOLLN("");
  6752. }
  6753. break;
  6754. }
  6755. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6756. #ifdef FILAMENTCHANGEENABLE
  6757. /*!
  6758. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6759. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6760. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6761. #### Usage
  6762. M600 [ X | Y | Z | E | L | AUTO ]
  6763. - `X` - X position, default 211
  6764. - `Y` - Y position, default 0
  6765. - `Z` - relative lift Z, default 2.
  6766. - `E` - initial retract, default -2
  6767. - `L` - later retract distance for removal, default -80
  6768. - `AUTO` - Automatically (only with MMU)
  6769. */
  6770. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6771. {
  6772. st_synchronize();
  6773. float x_position = current_position[X_AXIS];
  6774. float y_position = current_position[Y_AXIS];
  6775. float z_shift = 0; // is it necessary to be a float?
  6776. float e_shift_init = 0;
  6777. float e_shift_late = 0;
  6778. bool automatic = false;
  6779. //Retract extruder
  6780. if(code_seen('E'))
  6781. {
  6782. e_shift_init = code_value();
  6783. }
  6784. else
  6785. {
  6786. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6787. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6788. #endif
  6789. }
  6790. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6791. if (code_seen('L'))
  6792. {
  6793. e_shift_late = code_value();
  6794. }
  6795. else
  6796. {
  6797. #ifdef FILAMENTCHANGE_FINALRETRACT
  6798. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6799. #endif
  6800. }
  6801. //Lift Z
  6802. if(code_seen('Z'))
  6803. {
  6804. z_shift = code_value();
  6805. }
  6806. else
  6807. {
  6808. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6809. }
  6810. //Move XY to side
  6811. if(code_seen('X'))
  6812. {
  6813. x_position = code_value();
  6814. }
  6815. else
  6816. {
  6817. #ifdef FILAMENTCHANGE_XPOS
  6818. x_position = FILAMENTCHANGE_XPOS;
  6819. #endif
  6820. }
  6821. if(code_seen('Y'))
  6822. {
  6823. y_position = code_value();
  6824. }
  6825. else
  6826. {
  6827. #ifdef FILAMENTCHANGE_YPOS
  6828. y_position = FILAMENTCHANGE_YPOS ;
  6829. #endif
  6830. }
  6831. if (mmu_enabled && code_seen("AUTO"))
  6832. automatic = true;
  6833. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6834. }
  6835. break;
  6836. #endif //FILAMENTCHANGEENABLE
  6837. /*!
  6838. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6839. */
  6840. /*!
  6841. ### M125 - Pause print (TODO: not implemented)
  6842. */
  6843. /*!
  6844. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6845. */
  6846. case 25:
  6847. case 601:
  6848. {
  6849. if (!isPrintPaused)
  6850. {
  6851. st_synchronize();
  6852. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6853. lcd_pause_print();
  6854. }
  6855. }
  6856. break;
  6857. /*!
  6858. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6859. */
  6860. case 602: {
  6861. if (isPrintPaused)
  6862. lcd_resume_print();
  6863. }
  6864. break;
  6865. /*!
  6866. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6867. */
  6868. case 603: {
  6869. lcd_print_stop();
  6870. }
  6871. break;
  6872. #ifdef PINDA_THERMISTOR
  6873. /*!
  6874. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6875. Wait for PINDA thermistor to reach target temperature
  6876. #### Usage
  6877. M860 [ S ]
  6878. #### Parameters
  6879. - `S` - Target temperature
  6880. */
  6881. case 860:
  6882. {
  6883. int set_target_pinda = 0;
  6884. if (code_seen('S')) {
  6885. set_target_pinda = code_value();
  6886. }
  6887. else {
  6888. break;
  6889. }
  6890. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6891. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6892. SERIAL_PROTOCOL(set_target_pinda);
  6893. SERIAL_PROTOCOLLN("");
  6894. codenum = _millis();
  6895. cancel_heatup = false;
  6896. bool is_pinda_cooling = false;
  6897. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6898. is_pinda_cooling = true;
  6899. }
  6900. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6901. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6902. {
  6903. SERIAL_PROTOCOLPGM("P:");
  6904. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6905. SERIAL_PROTOCOL('/');
  6906. SERIAL_PROTOCOLLN(set_target_pinda);
  6907. codenum = _millis();
  6908. }
  6909. manage_heater();
  6910. manage_inactivity();
  6911. lcd_update(0);
  6912. }
  6913. LCD_MESSAGERPGM(MSG_OK);
  6914. break;
  6915. }
  6916. /*!
  6917. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6918. Set compensation ustep value `S` for compensation table index `I`.
  6919. #### Usage
  6920. M861 [ ? | ! | Z | S | I ]
  6921. #### Parameters
  6922. - `?` - Print current EEPROM offset values
  6923. - `!` - Set factory default values
  6924. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6925. - `S` - Microsteps
  6926. - `I` - Table index
  6927. */
  6928. case 861:
  6929. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6930. uint8_t cal_status = calibration_status_pinda();
  6931. int16_t usteps = 0;
  6932. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6933. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6934. for (uint8_t i = 0; i < 6; i++)
  6935. {
  6936. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6937. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6938. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6939. SERIAL_PROTOCOLPGM(", ");
  6940. SERIAL_PROTOCOL(35 + (i * 5));
  6941. SERIAL_PROTOCOLPGM(", ");
  6942. SERIAL_PROTOCOL(usteps);
  6943. SERIAL_PROTOCOLPGM(", ");
  6944. SERIAL_PROTOCOL(mm * 1000);
  6945. SERIAL_PROTOCOLLN("");
  6946. }
  6947. }
  6948. else if (code_seen('!')) { // ! - Set factory default values
  6949. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6950. int16_t z_shift = 8; //40C - 20um - 8usteps
  6951. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6952. z_shift = 24; //45C - 60um - 24usteps
  6953. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6954. z_shift = 48; //50C - 120um - 48usteps
  6955. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6956. z_shift = 80; //55C - 200um - 80usteps
  6957. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6958. z_shift = 120; //60C - 300um - 120usteps
  6959. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6960. SERIAL_PROTOCOLLN("factory restored");
  6961. }
  6962. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6963. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6964. int16_t z_shift = 0;
  6965. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6966. SERIAL_PROTOCOLLN("zerorized");
  6967. }
  6968. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6969. int16_t usteps = code_value();
  6970. if (code_seen('I')) {
  6971. uint8_t index = code_value();
  6972. if (index < 5) {
  6973. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6974. SERIAL_PROTOCOLLN("OK");
  6975. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6976. for (uint8_t i = 0; i < 6; i++)
  6977. {
  6978. usteps = 0;
  6979. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6980. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6981. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6982. SERIAL_PROTOCOLPGM(", ");
  6983. SERIAL_PROTOCOL(35 + (i * 5));
  6984. SERIAL_PROTOCOLPGM(", ");
  6985. SERIAL_PROTOCOL(usteps);
  6986. SERIAL_PROTOCOLPGM(", ");
  6987. SERIAL_PROTOCOL(mm * 1000);
  6988. SERIAL_PROTOCOLLN("");
  6989. }
  6990. }
  6991. }
  6992. }
  6993. else {
  6994. SERIAL_PROTOCOLPGM("no valid command");
  6995. }
  6996. break;
  6997. #endif //PINDA_THERMISTOR
  6998. /*!
  6999. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7000. Checks the parameters of the printer and gcode and performs compatibility check
  7001. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7002. - M862.2 { P<model_code> | Q }
  7003. - M862.3 { P"<model_name>" | Q }
  7004. - M862.4 { P<fw_version> | Q }
  7005. - M862.5 { P<gcode_level> | Q }
  7006. When run with P<> argument, the check is performed against the input value.
  7007. When run with Q argument, the current value is shown.
  7008. M862.3 accepts text identifiers of printer types too.
  7009. The syntax of M862.3 is (note the quotes around the type):
  7010. M862.3 P "MK3S"
  7011. Accepted printer type identifiers and their numeric counterparts:
  7012. - MK1 (100)
  7013. - MK2 (200)
  7014. - MK2MM (201)
  7015. - MK2S (202)
  7016. - MK2SMM (203)
  7017. - MK2.5 (250)
  7018. - MK2.5MMU2 (20250)
  7019. - MK2.5S (252)
  7020. - MK2.5SMMU2S (20252)
  7021. - MK3 (300)
  7022. - MK3MMU2 (20300)
  7023. - MK3S (302)
  7024. - MK3SMMU2S (20302)
  7025. */
  7026. case 862: // M862: print checking
  7027. float nDummy;
  7028. uint8_t nCommand;
  7029. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7030. switch((ClPrintChecking)nCommand)
  7031. {
  7032. case ClPrintChecking::_Nozzle: // ~ .1
  7033. uint16_t nDiameter;
  7034. if(code_seen('P'))
  7035. {
  7036. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7037. nozzle_diameter_check(nDiameter);
  7038. }
  7039. /*
  7040. else if(code_seen('S')&&farm_mode)
  7041. {
  7042. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7043. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7044. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7045. }
  7046. */
  7047. else if(code_seen('Q'))
  7048. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7049. break;
  7050. case ClPrintChecking::_Model: // ~ .2
  7051. if(code_seen('P'))
  7052. {
  7053. uint16_t nPrinterModel;
  7054. nPrinterModel=(uint16_t)code_value_long();
  7055. printer_model_check(nPrinterModel);
  7056. }
  7057. else if(code_seen('Q'))
  7058. SERIAL_PROTOCOLLN(nPrinterType);
  7059. break;
  7060. case ClPrintChecking::_Smodel: // ~ .3
  7061. if(code_seen('P'))
  7062. printer_smodel_check(strchr_pointer);
  7063. else if(code_seen('Q'))
  7064. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7065. break;
  7066. case ClPrintChecking::_Version: // ~ .4
  7067. if(code_seen('P'))
  7068. fw_version_check(++strchr_pointer);
  7069. else if(code_seen('Q'))
  7070. SERIAL_PROTOCOLLN(FW_VERSION);
  7071. break;
  7072. case ClPrintChecking::_Gcode: // ~ .5
  7073. if(code_seen('P'))
  7074. {
  7075. uint16_t nGcodeLevel;
  7076. nGcodeLevel=(uint16_t)code_value_long();
  7077. gcode_level_check(nGcodeLevel);
  7078. }
  7079. else if(code_seen('Q'))
  7080. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7081. break;
  7082. }
  7083. break;
  7084. #ifdef LIN_ADVANCE
  7085. /*!
  7086. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7087. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7088. #### Usage
  7089. M900 [ K | R | W | H | D]
  7090. #### Parameters
  7091. - `K` - Advance K factor
  7092. - `R` - Set ratio directly (overrides WH/D)
  7093. - `W` - Width
  7094. - `H` - Height
  7095. - `D` - Diameter Set ratio from WH/D
  7096. */
  7097. case 900:
  7098. gcode_M900();
  7099. break;
  7100. #endif
  7101. /*!
  7102. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7103. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7104. #### Usage
  7105. M907 [ X | Y | Z | E | B | S ]
  7106. #### Parameters
  7107. - `X` - X motor driver
  7108. - `Y` - Y motor driver
  7109. - `Z` - Z motor driver
  7110. - `E` - Extruder motor driver
  7111. - `B` - Second Extruder motor driver
  7112. - `S` - All motors
  7113. */
  7114. case 907:
  7115. {
  7116. #ifdef TMC2130
  7117. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7118. for (int i = 0; i < NUM_AXIS; i++)
  7119. if(code_seen(axis_codes[i]))
  7120. {
  7121. long cur_mA = code_value_long();
  7122. uint8_t val = tmc2130_cur2val(cur_mA);
  7123. tmc2130_set_current_h(i, val);
  7124. tmc2130_set_current_r(i, val);
  7125. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7126. }
  7127. #else //TMC2130
  7128. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7129. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7130. if(code_seen('B')) st_current_set(4,code_value());
  7131. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7132. #endif
  7133. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7134. if(code_seen('X')) st_current_set(0, code_value());
  7135. #endif
  7136. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7137. if(code_seen('Z')) st_current_set(1, code_value());
  7138. #endif
  7139. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7140. if(code_seen('E')) st_current_set(2, code_value());
  7141. #endif
  7142. #endif //TMC2130
  7143. }
  7144. break;
  7145. /*!
  7146. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7147. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7148. #### Usage
  7149. M908 [ P | S ]
  7150. #### Parameters
  7151. - `P` - channel
  7152. - `S` - current
  7153. */
  7154. case 908:
  7155. {
  7156. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7157. uint8_t channel,current;
  7158. if(code_seen('P')) channel=code_value();
  7159. if(code_seen('S')) current=code_value();
  7160. digitalPotWrite(channel, current);
  7161. #endif
  7162. }
  7163. break;
  7164. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7165. /*!
  7166. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7167. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7168. */
  7169. case 910:
  7170. {
  7171. tmc2130_init();
  7172. }
  7173. break;
  7174. /*!
  7175. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7176. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7177. #### Usage
  7178. M911 [ X | Y | Z | E ]
  7179. #### Parameters
  7180. - `X` - X stepper driver holding current value
  7181. - `Y` - Y stepper driver holding current value
  7182. - `Z` - Z stepper driver holding current value
  7183. - `E` - Extruder stepper driver holding current value
  7184. */
  7185. case 911:
  7186. {
  7187. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7188. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7189. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7190. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7191. }
  7192. break;
  7193. /*!
  7194. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7195. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7196. #### Usage
  7197. M912 [ X | Y | Z | E ]
  7198. #### Parameters
  7199. - `X` - X stepper driver running current value
  7200. - `Y` - Y stepper driver running current value
  7201. - `Z` - Z stepper driver running current value
  7202. - `E` - Extruder stepper driver running current value
  7203. */
  7204. case 912:
  7205. {
  7206. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7207. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7208. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7209. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7210. }
  7211. break;
  7212. /*!
  7213. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7214. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7215. Shows TMC2130 currents.
  7216. */
  7217. case 913:
  7218. {
  7219. tmc2130_print_currents();
  7220. }
  7221. break;
  7222. /*!
  7223. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7224. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7225. */
  7226. case 914:
  7227. {
  7228. tmc2130_mode = TMC2130_MODE_NORMAL;
  7229. update_mode_profile();
  7230. tmc2130_init();
  7231. }
  7232. break;
  7233. /*!
  7234. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7235. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7236. */
  7237. case 915:
  7238. {
  7239. tmc2130_mode = TMC2130_MODE_SILENT;
  7240. update_mode_profile();
  7241. tmc2130_init();
  7242. }
  7243. break;
  7244. /*!
  7245. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7246. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7247. #### Usage
  7248. M916 [ X | Y | Z | E ]
  7249. #### Parameters
  7250. - `X` - X stepper driver stallguard sensitivity threshold value
  7251. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7252. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7253. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7254. */
  7255. case 916:
  7256. {
  7257. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7258. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7259. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7260. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7261. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7262. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7263. }
  7264. break;
  7265. /*!
  7266. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7267. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7268. #### Usage
  7269. M917 [ X | Y | Z | E ]
  7270. #### Parameters
  7271. - `X` - X stepper driver PWM amplitude offset value
  7272. - `Y` - Y stepper driver PWM amplitude offset value
  7273. - `Z` - Z stepper driver PWM amplitude offset value
  7274. - `E` - Extruder stepper driver PWM amplitude offset value
  7275. */
  7276. case 917:
  7277. {
  7278. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7279. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7280. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7281. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7282. }
  7283. break;
  7284. /*!
  7285. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7286. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7287. #### Usage
  7288. M918 [ X | Y | Z | E ]
  7289. #### Parameters
  7290. - `X` - X stepper driver PWM amplitude gradient value
  7291. - `Y` - Y stepper driver PWM amplitude gradient value
  7292. - `Z` - Z stepper driver PWM amplitude gradient value
  7293. - `E` - Extruder stepper driver PWM amplitude gradient value
  7294. */
  7295. case 918:
  7296. {
  7297. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7298. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7299. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7300. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7301. }
  7302. break;
  7303. #endif //TMC2130_SERVICE_CODES_M910_M918
  7304. /*!
  7305. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7306. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7307. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7308. #### Usage
  7309. M350 [ X | Y | Z | E | B | S ]
  7310. #### Parameters
  7311. - `X` - X new resolution
  7312. - `Y` - Y new resolution
  7313. - `Z` - Z new resolution
  7314. - `E` - E new resolution
  7315. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7316. - `B` - Second extruder new resolution
  7317. - `S` - All axes new resolution
  7318. */
  7319. case 350:
  7320. {
  7321. #ifdef TMC2130
  7322. for (int i=0; i<NUM_AXIS; i++)
  7323. {
  7324. if(code_seen(axis_codes[i]))
  7325. {
  7326. uint16_t res_new = code_value();
  7327. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7328. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7329. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7330. if (res_valid)
  7331. {
  7332. st_synchronize();
  7333. uint16_t res = tmc2130_get_res(i);
  7334. tmc2130_set_res(i, res_new);
  7335. cs.axis_ustep_resolution[i] = res_new;
  7336. if (res_new > res)
  7337. {
  7338. uint16_t fac = (res_new / res);
  7339. cs.axis_steps_per_unit[i] *= fac;
  7340. position[i] *= fac;
  7341. }
  7342. else
  7343. {
  7344. uint16_t fac = (res / res_new);
  7345. cs.axis_steps_per_unit[i] /= fac;
  7346. position[i] /= fac;
  7347. }
  7348. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7349. if (i == E_AXIS)
  7350. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7351. #endif
  7352. }
  7353. }
  7354. }
  7355. #else //TMC2130
  7356. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7357. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7358. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7359. if(code_seen('B')) microstep_mode(4,code_value());
  7360. microstep_readings();
  7361. #endif
  7362. #endif //TMC2130
  7363. }
  7364. break;
  7365. /*!
  7366. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7367. Toggle MS1 MS2 pins directly.
  7368. #### Usage
  7369. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7370. #### Parameters
  7371. - `X` - Update X axis
  7372. - `Y` - Update Y axis
  7373. - `Z` - Update Z axis
  7374. - `E` - Update E axis
  7375. - `S` - which MSx pin to toggle
  7376. - `B` - new pin value
  7377. */
  7378. case 351:
  7379. {
  7380. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7381. if(code_seen('S')) switch((int)code_value())
  7382. {
  7383. case 1:
  7384. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7385. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7386. break;
  7387. case 2:
  7388. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7389. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7390. break;
  7391. }
  7392. microstep_readings();
  7393. #endif
  7394. }
  7395. break;
  7396. /*!
  7397. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7398. */
  7399. case 701:
  7400. {
  7401. if (mmu_enabled && code_seen('E'))
  7402. tmp_extruder = code_value();
  7403. gcode_M701();
  7404. }
  7405. break;
  7406. /*!
  7407. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7408. #### Usage
  7409. M702 [ U | C ]
  7410. #### Parameters
  7411. - `U` - Unload all filaments used in current print
  7412. - `C` - Unload just current filament
  7413. - without any parameters unload all filaments
  7414. */
  7415. case 702:
  7416. {
  7417. #ifdef SNMM
  7418. if (code_seen('U'))
  7419. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7420. else if (code_seen('C'))
  7421. extr_unload(); //! if "C" unload just current filament
  7422. else
  7423. extr_unload_all(); //! otherwise unload all filaments
  7424. #else
  7425. if (code_seen('C')) {
  7426. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7427. }
  7428. else {
  7429. if(mmu_enabled) extr_unload(); //! unload current filament
  7430. else unload_filament();
  7431. }
  7432. #endif //SNMM
  7433. }
  7434. break;
  7435. /*!
  7436. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7437. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7438. */
  7439. case 999:
  7440. Stopped = false;
  7441. lcd_reset_alert_level();
  7442. gcode_LastN = Stopped_gcode_LastN;
  7443. FlushSerialRequestResend();
  7444. break;
  7445. /*!
  7446. #### End of M-Commands
  7447. */
  7448. default:
  7449. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7450. }
  7451. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7452. mcode_in_progress = 0;
  7453. }
  7454. }
  7455. // end if(code_seen('M')) (end of M codes)
  7456. /*!
  7457. -----------------------------------------------------------------------------------------
  7458. # T Codes
  7459. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7460. #### For MMU_V2:
  7461. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7462. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7463. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7464. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7465. */
  7466. else if(code_seen('T'))
  7467. {
  7468. int index;
  7469. bool load_to_nozzle = false;
  7470. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7471. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7472. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7473. SERIAL_ECHOLNPGM("Invalid T code.");
  7474. }
  7475. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7476. if (mmu_enabled)
  7477. {
  7478. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7479. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7480. {
  7481. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7482. }
  7483. else
  7484. {
  7485. st_synchronize();
  7486. mmu_command(MmuCmd::T0 + tmp_extruder);
  7487. manage_response(true, true, MMU_TCODE_MOVE);
  7488. }
  7489. }
  7490. }
  7491. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7492. if (mmu_enabled)
  7493. {
  7494. st_synchronize();
  7495. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7496. mmu_extruder = tmp_extruder; //filament change is finished
  7497. mmu_load_to_nozzle();
  7498. }
  7499. }
  7500. else {
  7501. if (*(strchr_pointer + index) == '?')
  7502. {
  7503. if(mmu_enabled)
  7504. {
  7505. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7506. load_to_nozzle = true;
  7507. } else
  7508. {
  7509. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7510. }
  7511. }
  7512. else {
  7513. tmp_extruder = code_value();
  7514. if (mmu_enabled && lcd_autoDepleteEnabled())
  7515. {
  7516. tmp_extruder = ad_getAlternative(tmp_extruder);
  7517. }
  7518. }
  7519. st_synchronize();
  7520. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7521. if (mmu_enabled)
  7522. {
  7523. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7524. {
  7525. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7526. }
  7527. else
  7528. {
  7529. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7530. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7531. {
  7532. mmu_command(MmuCmd::K0 + tmp_extruder);
  7533. manage_response(true, true, MMU_UNLOAD_MOVE);
  7534. }
  7535. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7536. mmu_command(MmuCmd::T0 + tmp_extruder);
  7537. manage_response(true, true, MMU_TCODE_MOVE);
  7538. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7539. mmu_extruder = tmp_extruder; //filament change is finished
  7540. if (load_to_nozzle)// for single material usage with mmu
  7541. {
  7542. mmu_load_to_nozzle();
  7543. }
  7544. }
  7545. }
  7546. else
  7547. {
  7548. #ifdef SNMM
  7549. mmu_extruder = tmp_extruder;
  7550. _delay(100);
  7551. disable_e0();
  7552. disable_e1();
  7553. disable_e2();
  7554. pinMode(E_MUX0_PIN, OUTPUT);
  7555. pinMode(E_MUX1_PIN, OUTPUT);
  7556. _delay(100);
  7557. SERIAL_ECHO_START;
  7558. SERIAL_ECHO("T:");
  7559. SERIAL_ECHOLN((int)tmp_extruder);
  7560. switch (tmp_extruder) {
  7561. case 1:
  7562. WRITE(E_MUX0_PIN, HIGH);
  7563. WRITE(E_MUX1_PIN, LOW);
  7564. break;
  7565. case 2:
  7566. WRITE(E_MUX0_PIN, LOW);
  7567. WRITE(E_MUX1_PIN, HIGH);
  7568. break;
  7569. case 3:
  7570. WRITE(E_MUX0_PIN, HIGH);
  7571. WRITE(E_MUX1_PIN, HIGH);
  7572. break;
  7573. default:
  7574. WRITE(E_MUX0_PIN, LOW);
  7575. WRITE(E_MUX1_PIN, LOW);
  7576. break;
  7577. }
  7578. _delay(100);
  7579. #else //SNMM
  7580. if (tmp_extruder >= EXTRUDERS) {
  7581. SERIAL_ECHO_START;
  7582. SERIAL_ECHO('T');
  7583. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7584. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7585. }
  7586. else {
  7587. #if EXTRUDERS > 1
  7588. boolean make_move = false;
  7589. #endif
  7590. if (code_seen('F')) {
  7591. #if EXTRUDERS > 1
  7592. make_move = true;
  7593. #endif
  7594. next_feedrate = code_value();
  7595. if (next_feedrate > 0.0) {
  7596. feedrate = next_feedrate;
  7597. }
  7598. }
  7599. #if EXTRUDERS > 1
  7600. if (tmp_extruder != active_extruder) {
  7601. // Save current position to return to after applying extruder offset
  7602. memcpy(destination, current_position, sizeof(destination));
  7603. // Offset extruder (only by XY)
  7604. int i;
  7605. for (i = 0; i < 2; i++) {
  7606. current_position[i] = current_position[i] -
  7607. extruder_offset[i][active_extruder] +
  7608. extruder_offset[i][tmp_extruder];
  7609. }
  7610. // Set the new active extruder and position
  7611. active_extruder = tmp_extruder;
  7612. plan_set_position_curposXYZE();
  7613. // Move to the old position if 'F' was in the parameters
  7614. if (make_move && Stopped == false) {
  7615. prepare_move();
  7616. }
  7617. }
  7618. #endif
  7619. SERIAL_ECHO_START;
  7620. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7621. SERIAL_PROTOCOLLN((int)active_extruder);
  7622. }
  7623. #endif //SNMM
  7624. }
  7625. }
  7626. } // end if(code_seen('T')) (end of T codes)
  7627. /*!
  7628. #### End of T-Codes
  7629. */
  7630. /**
  7631. *---------------------------------------------------------------------------------
  7632. *# D codes
  7633. */
  7634. else if (code_seen('D')) // D codes (debug)
  7635. {
  7636. switch((int)code_value())
  7637. {
  7638. /*!
  7639. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7640. */
  7641. case -1:
  7642. dcode__1(); break;
  7643. #ifdef DEBUG_DCODES
  7644. /*!
  7645. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7646. #### Usage
  7647. D0 [ B ]
  7648. #### Parameters
  7649. - `B` - Bootloader
  7650. */
  7651. case 0:
  7652. dcode_0(); break;
  7653. /*!
  7654. *
  7655. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7656. D1
  7657. *
  7658. */
  7659. case 1:
  7660. dcode_1(); break;
  7661. /*!
  7662. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7663. This command can be used without any additional parameters. It will read the entire RAM.
  7664. #### Usage
  7665. D2 [ A | C | X ]
  7666. #### Parameters
  7667. - `A` - Address (x0000-x1fff)
  7668. - `C` - Count (1-8192)
  7669. - `X` - Data
  7670. #### Notes
  7671. - The hex address needs to be lowercase without the 0 before the x
  7672. - Count is decimal
  7673. - The hex data needs to be lowercase
  7674. */
  7675. case 2:
  7676. dcode_2(); break;
  7677. #endif //DEBUG_DCODES
  7678. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7679. /*!
  7680. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7681. This command can be used without any additional parameters. It will read the entire eeprom.
  7682. #### Usage
  7683. D3 [ A | C | X ]
  7684. #### Parameters
  7685. - `A` - Address (x0000-x0fff)
  7686. - `C` - Count (1-4096)
  7687. - `X` - Data (hex)
  7688. #### Notes
  7689. - The hex address needs to be lowercase without the 0 before the x
  7690. - Count is decimal
  7691. - The hex data needs to be lowercase
  7692. */
  7693. case 3:
  7694. dcode_3(); break;
  7695. #endif //DEBUG_DCODE3
  7696. #ifdef DEBUG_DCODES
  7697. /*!
  7698. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7699. To read the digital value of a pin you need only to define the pin number.
  7700. #### Usage
  7701. D4 [ P | F | V ]
  7702. #### Parameters
  7703. - `P` - Pin (0-255)
  7704. - `F` - Function in/out (0/1)
  7705. - `V` - Value (0/1)
  7706. */
  7707. case 4:
  7708. dcode_4(); break;
  7709. #endif //DEBUG_DCODES
  7710. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7711. /*!
  7712. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7713. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7714. #### Usage
  7715. D5 [ A | C | X | E ]
  7716. #### Parameters
  7717. - `A` - Address (x00000-x3ffff)
  7718. - `C` - Count (1-8192)
  7719. - `X` - Data (hex)
  7720. - `E` - Erase
  7721. #### Notes
  7722. - The hex address needs to be lowercase without the 0 before the x
  7723. - Count is decimal
  7724. - The hex data needs to be lowercase
  7725. */
  7726. case 5:
  7727. dcode_5(); break;
  7728. #endif //DEBUG_DCODE5
  7729. #ifdef DEBUG_DCODES
  7730. /*!
  7731. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7732. Reserved
  7733. */
  7734. case 6:
  7735. dcode_6(); break;
  7736. /*!
  7737. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7738. Reserved
  7739. */
  7740. case 7:
  7741. dcode_7(); break;
  7742. /*!
  7743. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7744. #### Usage
  7745. D8 [ ? | ! | P | Z ]
  7746. #### Parameters
  7747. - `?` - Read PINDA temperature shift values
  7748. - `!` - Reset PINDA temperature shift values to default
  7749. - `P` - Pinda temperature [C]
  7750. - `Z` - Z Offset [mm]
  7751. */
  7752. case 8:
  7753. dcode_8(); break;
  7754. /*!
  7755. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7756. #### Usage
  7757. D9 [ I | V ]
  7758. #### Parameters
  7759. - `I` - ADC channel index
  7760. - `0` - Heater 0 temperature
  7761. - `1` - Heater 1 temperature
  7762. - `2` - Bed temperature
  7763. - `3` - PINDA temperature
  7764. - `4` - PWR voltage
  7765. - `5` - Ambient temperature
  7766. - `6` - BED voltage
  7767. - `V` Value to be written as simulated
  7768. */
  7769. case 9:
  7770. dcode_9(); break;
  7771. /*!
  7772. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7773. */
  7774. case 10:
  7775. dcode_10(); break;
  7776. /*!
  7777. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7778. Writes the current time in the log file.
  7779. */
  7780. #endif //DEBUG_DCODES
  7781. #ifdef HEATBED_ANALYSIS
  7782. /*!
  7783. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7784. This command will log data to SD card file "mesh.txt".
  7785. #### Usage
  7786. D80 [ E | F | G | H | I | J ]
  7787. #### Parameters
  7788. - `E` - Dimension X (default 40)
  7789. - `F` - Dimention Y (default 40)
  7790. - `G` - Points X (default 40)
  7791. - `H` - Points Y (default 40)
  7792. - `I` - Offset X (default 74)
  7793. - `J` - Offset Y (default 34)
  7794. */
  7795. case 80:
  7796. dcode_80(); break;
  7797. /*!
  7798. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7799. This command will log data to SD card file "wldsd.txt".
  7800. #### Usage
  7801. D81 [ E | F | G | H | I | J ]
  7802. #### Parameters
  7803. - `E` - Dimension X (default 40)
  7804. - `F` - Dimention Y (default 40)
  7805. - `G` - Points X (default 40)
  7806. - `H` - Points Y (default 40)
  7807. - `I` - Offset X (default 74)
  7808. - `J` - Offset Y (default 34)
  7809. */
  7810. case 81:
  7811. dcode_81(); break;
  7812. #endif //HEATBED_ANALYSIS
  7813. #ifdef DEBUG_DCODES
  7814. /*!
  7815. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7816. */
  7817. case 106:
  7818. dcode_106(); break;
  7819. #ifdef TMC2130
  7820. /*!
  7821. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7822. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7823. #### Usage
  7824. D2130 [ Axis | Command | Subcommand | Value ]
  7825. #### Parameters
  7826. - Axis
  7827. - `X` - X stepper driver
  7828. - `Y` - Y stepper driver
  7829. - `Z` - Z stepper driver
  7830. - `E` - Extruder stepper driver
  7831. - Commands
  7832. - `0` - Current off
  7833. - `1` - Current on
  7834. - `+` - Single step
  7835. - `-` - Single step oposite direction
  7836. - `NNN` - Value sereval steps
  7837. - `?` - Read register
  7838. - Subcommands for read register
  7839. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7840. - `step` - Step
  7841. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7842. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7843. - `wave` - Microstep linearity compensation curve
  7844. - `!` - Set register
  7845. - Subcommands for set register
  7846. - `mres` - Micro step resolution
  7847. - `step` - Step
  7848. - `wave` - Microstep linearity compensation curve
  7849. - Values for set register
  7850. - `0, 180 --> 250` - Off
  7851. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7852. - `@` - Home calibrate axis
  7853. Examples:
  7854. D2130E?wave
  7855. Print extruder microstep linearity compensation curve
  7856. D2130E!wave0
  7857. Disable extruder linearity compensation curve, (sine curve is used)
  7858. D2130E!wave220
  7859. (sin(x))^1.1 extruder microstep compensation curve used
  7860. Notes:
  7861. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7862. *
  7863. */
  7864. case 2130:
  7865. dcode_2130(); break;
  7866. #endif //TMC2130
  7867. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7868. /*!
  7869. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7870. #### Usage
  7871. D9125 [ ? | ! | R | X | Y | L ]
  7872. #### Parameters
  7873. - `?` - Print values
  7874. - `!` - Print values
  7875. - `R` - Resolution. Not active in code
  7876. - `X` - X values
  7877. - `Y` - Y values
  7878. - `L` - Activate filament sensor log
  7879. */
  7880. case 9125:
  7881. dcode_9125(); break;
  7882. #endif //FILAMENT_SENSOR
  7883. #endif //DEBUG_DCODES
  7884. }
  7885. }
  7886. else
  7887. {
  7888. SERIAL_ECHO_START;
  7889. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7890. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7891. SERIAL_ECHOLNPGM("\"(2)");
  7892. }
  7893. KEEPALIVE_STATE(NOT_BUSY);
  7894. ClearToSend();
  7895. }
  7896. /*!
  7897. #### End of D-Codes
  7898. */
  7899. /** @defgroup GCodes G-Code List
  7900. */
  7901. // ---------------------------------------------------
  7902. void FlushSerialRequestResend()
  7903. {
  7904. //char cmdbuffer[bufindr][100]="Resend:";
  7905. MYSERIAL.flush();
  7906. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7907. }
  7908. // Confirm the execution of a command, if sent from a serial line.
  7909. // Execution of a command from a SD card will not be confirmed.
  7910. void ClearToSend()
  7911. {
  7912. previous_millis_cmd = _millis();
  7913. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7914. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7915. }
  7916. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7917. void update_currents() {
  7918. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7919. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7920. float tmp_motor[3];
  7921. //SERIAL_ECHOLNPGM("Currents updated: ");
  7922. if (destination[Z_AXIS] < Z_SILENT) {
  7923. //SERIAL_ECHOLNPGM("LOW");
  7924. for (uint8_t i = 0; i < 3; i++) {
  7925. st_current_set(i, current_low[i]);
  7926. /*MYSERIAL.print(int(i));
  7927. SERIAL_ECHOPGM(": ");
  7928. MYSERIAL.println(current_low[i]);*/
  7929. }
  7930. }
  7931. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7932. //SERIAL_ECHOLNPGM("HIGH");
  7933. for (uint8_t i = 0; i < 3; i++) {
  7934. st_current_set(i, current_high[i]);
  7935. /*MYSERIAL.print(int(i));
  7936. SERIAL_ECHOPGM(": ");
  7937. MYSERIAL.println(current_high[i]);*/
  7938. }
  7939. }
  7940. else {
  7941. for (uint8_t i = 0; i < 3; i++) {
  7942. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7943. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7944. st_current_set(i, tmp_motor[i]);
  7945. /*MYSERIAL.print(int(i));
  7946. SERIAL_ECHOPGM(": ");
  7947. MYSERIAL.println(tmp_motor[i]);*/
  7948. }
  7949. }
  7950. }
  7951. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7952. void get_coordinates()
  7953. {
  7954. bool seen[4]={false,false,false,false};
  7955. for(int8_t i=0; i < NUM_AXIS; i++) {
  7956. if(code_seen(axis_codes[i]))
  7957. {
  7958. bool relative = axis_relative_modes & (1 << i);
  7959. destination[i] = (float)code_value();
  7960. if (i == E_AXIS) {
  7961. float emult = extruder_multiplier[active_extruder];
  7962. if (emult != 1.) {
  7963. if (! relative) {
  7964. destination[i] -= current_position[i];
  7965. relative = true;
  7966. }
  7967. destination[i] *= emult;
  7968. }
  7969. }
  7970. if (relative)
  7971. destination[i] += current_position[i];
  7972. seen[i]=true;
  7973. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7974. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7975. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7976. }
  7977. else destination[i] = current_position[i]; //Are these else lines really needed?
  7978. }
  7979. if(code_seen('F')) {
  7980. next_feedrate = code_value();
  7981. #ifdef MAX_SILENT_FEEDRATE
  7982. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7983. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7984. #endif //MAX_SILENT_FEEDRATE
  7985. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7986. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7987. {
  7988. // float e_max_speed =
  7989. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7990. }
  7991. }
  7992. }
  7993. void get_arc_coordinates()
  7994. {
  7995. #ifdef SF_ARC_FIX
  7996. bool relative_mode_backup = relative_mode;
  7997. relative_mode = true;
  7998. #endif
  7999. get_coordinates();
  8000. #ifdef SF_ARC_FIX
  8001. relative_mode=relative_mode_backup;
  8002. #endif
  8003. if(code_seen('I')) {
  8004. offset[0] = code_value();
  8005. }
  8006. else {
  8007. offset[0] = 0.0;
  8008. }
  8009. if(code_seen('J')) {
  8010. offset[1] = code_value();
  8011. }
  8012. else {
  8013. offset[1] = 0.0;
  8014. }
  8015. }
  8016. void clamp_to_software_endstops(float target[3])
  8017. {
  8018. #ifdef DEBUG_DISABLE_SWLIMITS
  8019. return;
  8020. #endif //DEBUG_DISABLE_SWLIMITS
  8021. world2machine_clamp(target[0], target[1]);
  8022. // Clamp the Z coordinate.
  8023. if (min_software_endstops) {
  8024. float negative_z_offset = 0;
  8025. #ifdef ENABLE_AUTO_BED_LEVELING
  8026. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8027. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8028. #endif
  8029. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8030. }
  8031. if (max_software_endstops) {
  8032. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8033. }
  8034. }
  8035. #ifdef MESH_BED_LEVELING
  8036. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8037. float dx = x - current_position[X_AXIS];
  8038. float dy = y - current_position[Y_AXIS];
  8039. int n_segments = 0;
  8040. if (mbl.active) {
  8041. float len = abs(dx) + abs(dy);
  8042. if (len > 0)
  8043. // Split to 3cm segments or shorter.
  8044. n_segments = int(ceil(len / 30.f));
  8045. }
  8046. if (n_segments > 1) {
  8047. // In a multi-segment move explicitly set the final target in the plan
  8048. // as the move will be recalculated in it's entirety
  8049. float gcode_target[NUM_AXIS];
  8050. gcode_target[X_AXIS] = x;
  8051. gcode_target[Y_AXIS] = y;
  8052. gcode_target[Z_AXIS] = z;
  8053. gcode_target[E_AXIS] = e;
  8054. float dz = z - current_position[Z_AXIS];
  8055. float de = e - current_position[E_AXIS];
  8056. for (int i = 1; i < n_segments; ++ i) {
  8057. float t = float(i) / float(n_segments);
  8058. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8059. current_position[Y_AXIS] + t * dy,
  8060. current_position[Z_AXIS] + t * dz,
  8061. current_position[E_AXIS] + t * de,
  8062. feed_rate, extruder, gcode_target);
  8063. if (waiting_inside_plan_buffer_line_print_aborted)
  8064. return;
  8065. }
  8066. }
  8067. // The rest of the path.
  8068. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8069. }
  8070. #endif // MESH_BED_LEVELING
  8071. void prepare_move()
  8072. {
  8073. clamp_to_software_endstops(destination);
  8074. previous_millis_cmd = _millis();
  8075. // Do not use feedmultiply for E or Z only moves
  8076. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8077. plan_buffer_line_destinationXYZE(feedrate/60);
  8078. }
  8079. else {
  8080. #ifdef MESH_BED_LEVELING
  8081. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8082. #else
  8083. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8084. #endif
  8085. }
  8086. set_current_to_destination();
  8087. }
  8088. void prepare_arc_move(char isclockwise) {
  8089. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8090. // Trace the arc
  8091. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8092. // As far as the parser is concerned, the position is now == target. In reality the
  8093. // motion control system might still be processing the action and the real tool position
  8094. // in any intermediate location.
  8095. for(int8_t i=0; i < NUM_AXIS; i++) {
  8096. current_position[i] = destination[i];
  8097. }
  8098. previous_millis_cmd = _millis();
  8099. }
  8100. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8101. #if defined(FAN_PIN)
  8102. #if CONTROLLERFAN_PIN == FAN_PIN
  8103. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8104. #endif
  8105. #endif
  8106. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8107. unsigned long lastMotorCheck = 0;
  8108. void controllerFan()
  8109. {
  8110. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8111. {
  8112. lastMotorCheck = _millis();
  8113. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8114. #if EXTRUDERS > 2
  8115. || !READ(E2_ENABLE_PIN)
  8116. #endif
  8117. #if EXTRUDER > 1
  8118. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8119. || !READ(X2_ENABLE_PIN)
  8120. #endif
  8121. || !READ(E1_ENABLE_PIN)
  8122. #endif
  8123. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8124. {
  8125. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8126. }
  8127. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8128. {
  8129. digitalWrite(CONTROLLERFAN_PIN, 0);
  8130. analogWrite(CONTROLLERFAN_PIN, 0);
  8131. }
  8132. else
  8133. {
  8134. // allows digital or PWM fan output to be used (see M42 handling)
  8135. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8136. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8137. }
  8138. }
  8139. }
  8140. #endif
  8141. #ifdef TEMP_STAT_LEDS
  8142. static bool blue_led = false;
  8143. static bool red_led = false;
  8144. static uint32_t stat_update = 0;
  8145. void handle_status_leds(void) {
  8146. float max_temp = 0.0;
  8147. if(_millis() > stat_update) {
  8148. stat_update += 500; // Update every 0.5s
  8149. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  8150. max_temp = max(max_temp, degHotend(cur_extruder));
  8151. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  8152. }
  8153. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  8154. max_temp = max(max_temp, degTargetBed());
  8155. max_temp = max(max_temp, degBed());
  8156. #endif
  8157. if((max_temp > 55.0) && (red_led == false)) {
  8158. digitalWrite(STAT_LED_RED, 1);
  8159. digitalWrite(STAT_LED_BLUE, 0);
  8160. red_led = true;
  8161. blue_led = false;
  8162. }
  8163. if((max_temp < 54.0) && (blue_led == false)) {
  8164. digitalWrite(STAT_LED_RED, 0);
  8165. digitalWrite(STAT_LED_BLUE, 1);
  8166. red_led = false;
  8167. blue_led = true;
  8168. }
  8169. }
  8170. }
  8171. #endif
  8172. #ifdef SAFETYTIMER
  8173. /**
  8174. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8175. *
  8176. * Full screen blocking notification message is shown after heater turning off.
  8177. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8178. * damage print.
  8179. *
  8180. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8181. */
  8182. static void handleSafetyTimer()
  8183. {
  8184. #if (EXTRUDERS > 1)
  8185. #error Implemented only for one extruder.
  8186. #endif //(EXTRUDERS > 1)
  8187. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8188. {
  8189. safetyTimer.stop();
  8190. }
  8191. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8192. {
  8193. safetyTimer.start();
  8194. }
  8195. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8196. {
  8197. setTargetBed(0);
  8198. setAllTargetHotends(0);
  8199. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8200. }
  8201. }
  8202. #endif //SAFETYTIMER
  8203. #ifdef IR_SENSOR_ANALOG
  8204. #define FS_CHECK_COUNT 16
  8205. /// Switching mechanism of the fsensor type.
  8206. /// Called from 2 spots which have a very similar behavior
  8207. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8208. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8209. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8210. bool bTemp = (!CHECK_ALL_HEATERS);
  8211. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8212. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8213. bTemp = bTemp && fsensor_enabled;
  8214. if (bTemp) {
  8215. nFSCheckCount++;
  8216. if (nFSCheckCount > FS_CHECK_COUNT) {
  8217. nFSCheckCount = 0; // not necessary
  8218. oFsensorPCB = switchTo;
  8219. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8220. printf_IRSensorAnalogBoardChange();
  8221. lcd_setstatuspgm(statusLineTxt_P);
  8222. }
  8223. } else {
  8224. nFSCheckCount = 0;
  8225. }
  8226. }
  8227. #endif
  8228. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8229. {
  8230. #ifdef FILAMENT_SENSOR
  8231. bool bInhibitFlag;
  8232. #ifdef IR_SENSOR_ANALOG
  8233. static uint16_t nFSCheckCount=0;
  8234. #endif // IR_SENSOR_ANALOG
  8235. if (mmu_enabled == false)
  8236. {
  8237. //-// if (mcode_in_progress != 600) //M600 not in progress
  8238. #ifdef PAT9125
  8239. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8240. #endif // PAT9125
  8241. #ifdef IR_SENSOR
  8242. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8243. #ifdef IR_SENSOR_ANALOG
  8244. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Settings::HWsetup::FSdetect menu active
  8245. #endif // IR_SENSOR_ANALOG
  8246. #endif // IR_SENSOR
  8247. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8248. {
  8249. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8250. {
  8251. #ifdef IR_SENSOR_ANALOG
  8252. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8253. // detect min-max, some long term sliding window for filtration may be added
  8254. // avoiding floating point operations, thus computing in raw
  8255. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8256. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8257. #if 0 // Start: IR Sensor debug info
  8258. { // debug print
  8259. static uint16_t lastVolt = ~0U;
  8260. if( current_voltage_raw_IR != lastVolt ){
  8261. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8262. lastVolt = current_voltage_raw_IR;
  8263. }
  8264. }
  8265. #endif // End: IR Sensor debug info
  8266. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8267. //! to be detected as the new fsensor
  8268. //! We can either fake it by extending the detection window to a looooong time
  8269. //! or do some other countermeasures
  8270. //! what we want to detect:
  8271. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8272. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8273. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8274. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8275. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8276. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8277. ){
  8278. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////c=18
  8279. }
  8280. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8281. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8282. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8283. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8284. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8285. ){
  8286. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////c=18
  8287. }
  8288. #endif // IR_SENSOR_ANALOG
  8289. if (fsensor_check_autoload())
  8290. {
  8291. #ifdef PAT9125
  8292. fsensor_autoload_check_stop();
  8293. #endif //PAT9125
  8294. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8295. if(0)
  8296. {
  8297. Sound_MakeCustom(50,1000,false);
  8298. loading_flag = true;
  8299. enquecommand_front_P((PSTR("M701")));
  8300. }
  8301. else
  8302. {
  8303. /*
  8304. lcd_update_enable(false);
  8305. show_preheat_nozzle_warning();
  8306. lcd_update_enable(true);
  8307. */
  8308. eFilamentAction=FilamentAction::AutoLoad;
  8309. bFilamentFirstRun=false;
  8310. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8311. bFilamentPreheatState=true;
  8312. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8313. menu_submenu(mFilamentItemForce);
  8314. } else {
  8315. menu_submenu(lcd_generic_preheat_menu);
  8316. lcd_timeoutToStatus.start();
  8317. }
  8318. }
  8319. }
  8320. }
  8321. else
  8322. {
  8323. #ifdef PAT9125
  8324. fsensor_autoload_check_stop();
  8325. #endif //PAT9125
  8326. if (fsensor_enabled && !saved_printing)
  8327. fsensor_update();
  8328. }
  8329. }
  8330. }
  8331. #endif //FILAMENT_SENSOR
  8332. #ifdef SAFETYTIMER
  8333. handleSafetyTimer();
  8334. #endif //SAFETYTIMER
  8335. #if defined(KILL_PIN) && KILL_PIN > -1
  8336. static int killCount = 0; // make the inactivity button a bit less responsive
  8337. const int KILL_DELAY = 10000;
  8338. #endif
  8339. if(buflen < (BUFSIZE-1)){
  8340. get_command();
  8341. }
  8342. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8343. if(max_inactive_time)
  8344. kill(_n("Inactivity Shutdown"), 4);
  8345. if(stepper_inactive_time) {
  8346. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8347. {
  8348. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8349. disable_x();
  8350. disable_y();
  8351. disable_z();
  8352. disable_e0();
  8353. disable_e1();
  8354. disable_e2();
  8355. }
  8356. }
  8357. }
  8358. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8359. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8360. {
  8361. chdkActive = false;
  8362. WRITE(CHDK, LOW);
  8363. }
  8364. #endif
  8365. #if defined(KILL_PIN) && KILL_PIN > -1
  8366. // Check if the kill button was pressed and wait just in case it was an accidental
  8367. // key kill key press
  8368. // -------------------------------------------------------------------------------
  8369. if( 0 == READ(KILL_PIN) )
  8370. {
  8371. killCount++;
  8372. }
  8373. else if (killCount > 0)
  8374. {
  8375. killCount--;
  8376. }
  8377. // Exceeded threshold and we can confirm that it was not accidental
  8378. // KILL the machine
  8379. // ----------------------------------------------------------------
  8380. if ( killCount >= KILL_DELAY)
  8381. {
  8382. kill(NULL, 5);
  8383. }
  8384. #endif
  8385. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8386. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8387. #endif
  8388. #ifdef EXTRUDER_RUNOUT_PREVENT
  8389. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8390. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8391. {
  8392. bool oldstatus=READ(E0_ENABLE_PIN);
  8393. enable_e0();
  8394. float oldepos=current_position[E_AXIS];
  8395. float oldedes=destination[E_AXIS];
  8396. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8397. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8398. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8399. current_position[E_AXIS]=oldepos;
  8400. destination[E_AXIS]=oldedes;
  8401. plan_set_e_position(oldepos);
  8402. previous_millis_cmd=_millis();
  8403. st_synchronize();
  8404. WRITE(E0_ENABLE_PIN,oldstatus);
  8405. }
  8406. #endif
  8407. #ifdef TEMP_STAT_LEDS
  8408. handle_status_leds();
  8409. #endif
  8410. check_axes_activity();
  8411. mmu_loop();
  8412. }
  8413. void kill(const char *full_screen_message, unsigned char id)
  8414. {
  8415. printf_P(_N("KILL: %d\n"), id);
  8416. //return;
  8417. cli(); // Stop interrupts
  8418. disable_heater();
  8419. disable_x();
  8420. // SERIAL_ECHOLNPGM("kill - disable Y");
  8421. disable_y();
  8422. poweroff_z();
  8423. disable_e0();
  8424. disable_e1();
  8425. disable_e2();
  8426. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8427. pinMode(PS_ON_PIN,INPUT);
  8428. #endif
  8429. SERIAL_ERROR_START;
  8430. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8431. if (full_screen_message != NULL) {
  8432. SERIAL_ERRORLNRPGM(full_screen_message);
  8433. lcd_display_message_fullscreen_P(full_screen_message);
  8434. } else {
  8435. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8436. }
  8437. // FMC small patch to update the LCD before ending
  8438. sei(); // enable interrupts
  8439. for ( int i=5; i--; lcd_update(0))
  8440. {
  8441. _delay(200);
  8442. }
  8443. cli(); // disable interrupts
  8444. suicide();
  8445. while(1)
  8446. {
  8447. #ifdef WATCHDOG
  8448. wdt_reset();
  8449. #endif //WATCHDOG
  8450. /* Intentionally left empty */
  8451. } // Wait for reset
  8452. }
  8453. // Stop: Emergency stop used by overtemp functions which allows recovery
  8454. //
  8455. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8456. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8457. // manually started from scratch with the LCD.
  8458. //
  8459. // Note that the current instruction is completely discarded, so resuming from Stop()
  8460. // will introduce either over/under extrusion on the current segment, and will not
  8461. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8462. // the addition of disabling the headers) could allow true recovery in the future.
  8463. void Stop()
  8464. {
  8465. disable_heater();
  8466. if(Stopped == false) {
  8467. Stopped = true;
  8468. lcd_print_stop();
  8469. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8470. SERIAL_ERROR_START;
  8471. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8472. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8473. }
  8474. }
  8475. bool IsStopped() { return Stopped; };
  8476. void finishAndDisableSteppers()
  8477. {
  8478. st_synchronize();
  8479. disable_x();
  8480. disable_y();
  8481. disable_z();
  8482. disable_e0();
  8483. disable_e1();
  8484. disable_e2();
  8485. #ifndef LA_NOCOMPAT
  8486. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8487. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8488. // state for the next print.
  8489. la10c_reset();
  8490. #endif
  8491. }
  8492. #ifdef FAST_PWM_FAN
  8493. void setPwmFrequency(uint8_t pin, int val)
  8494. {
  8495. val &= 0x07;
  8496. switch(digitalPinToTimer(pin))
  8497. {
  8498. #if defined(TCCR0A)
  8499. case TIMER0A:
  8500. case TIMER0B:
  8501. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8502. // TCCR0B |= val;
  8503. break;
  8504. #endif
  8505. #if defined(TCCR1A)
  8506. case TIMER1A:
  8507. case TIMER1B:
  8508. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8509. // TCCR1B |= val;
  8510. break;
  8511. #endif
  8512. #if defined(TCCR2)
  8513. case TIMER2:
  8514. case TIMER2:
  8515. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8516. TCCR2 |= val;
  8517. break;
  8518. #endif
  8519. #if defined(TCCR2A)
  8520. case TIMER2A:
  8521. case TIMER2B:
  8522. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8523. TCCR2B |= val;
  8524. break;
  8525. #endif
  8526. #if defined(TCCR3A)
  8527. case TIMER3A:
  8528. case TIMER3B:
  8529. case TIMER3C:
  8530. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8531. TCCR3B |= val;
  8532. break;
  8533. #endif
  8534. #if defined(TCCR4A)
  8535. case TIMER4A:
  8536. case TIMER4B:
  8537. case TIMER4C:
  8538. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8539. TCCR4B |= val;
  8540. break;
  8541. #endif
  8542. #if defined(TCCR5A)
  8543. case TIMER5A:
  8544. case TIMER5B:
  8545. case TIMER5C:
  8546. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8547. TCCR5B |= val;
  8548. break;
  8549. #endif
  8550. }
  8551. }
  8552. #endif //FAST_PWM_FAN
  8553. //! @brief Get and validate extruder number
  8554. //!
  8555. //! If it is not specified, active_extruder is returned in parameter extruder.
  8556. //! @param [in] code M code number
  8557. //! @param [out] extruder
  8558. //! @return error
  8559. //! @retval true Invalid extruder specified in T code
  8560. //! @retval false Valid extruder specified in T code, or not specifiead
  8561. bool setTargetedHotend(int code, uint8_t &extruder)
  8562. {
  8563. extruder = active_extruder;
  8564. if(code_seen('T')) {
  8565. extruder = code_value();
  8566. if(extruder >= EXTRUDERS) {
  8567. SERIAL_ECHO_START;
  8568. switch(code){
  8569. case 104:
  8570. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8571. break;
  8572. case 105:
  8573. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8574. break;
  8575. case 109:
  8576. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8577. break;
  8578. case 218:
  8579. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8580. break;
  8581. case 221:
  8582. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8583. break;
  8584. }
  8585. SERIAL_PROTOCOLLN((int)extruder);
  8586. return true;
  8587. }
  8588. }
  8589. return false;
  8590. }
  8591. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8592. {
  8593. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8594. {
  8595. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8596. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8597. }
  8598. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8599. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8600. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8601. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8602. total_filament_used = 0;
  8603. }
  8604. float calculate_extruder_multiplier(float diameter) {
  8605. float out = 1.f;
  8606. if (cs.volumetric_enabled && diameter > 0.f) {
  8607. float area = M_PI * diameter * diameter * 0.25;
  8608. out = 1.f / area;
  8609. }
  8610. if (extrudemultiply != 100)
  8611. out *= float(extrudemultiply) * 0.01f;
  8612. return out;
  8613. }
  8614. void calculate_extruder_multipliers() {
  8615. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8616. #if EXTRUDERS > 1
  8617. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8618. #if EXTRUDERS > 2
  8619. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8620. #endif
  8621. #endif
  8622. }
  8623. void delay_keep_alive(unsigned int ms)
  8624. {
  8625. for (;;) {
  8626. manage_heater();
  8627. // Manage inactivity, but don't disable steppers on timeout.
  8628. manage_inactivity(true);
  8629. lcd_update(0);
  8630. if (ms == 0)
  8631. break;
  8632. else if (ms >= 50) {
  8633. _delay(50);
  8634. ms -= 50;
  8635. } else {
  8636. _delay(ms);
  8637. ms = 0;
  8638. }
  8639. }
  8640. }
  8641. static void wait_for_heater(long codenum, uint8_t extruder) {
  8642. if (!degTargetHotend(extruder))
  8643. return;
  8644. #ifdef TEMP_RESIDENCY_TIME
  8645. long residencyStart;
  8646. residencyStart = -1;
  8647. /* continue to loop until we have reached the target temp
  8648. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8649. cancel_heatup = false;
  8650. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8651. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8652. #else
  8653. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8654. #endif //TEMP_RESIDENCY_TIME
  8655. if ((_millis() - codenum) > 1000UL)
  8656. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8657. if (!farm_mode) {
  8658. SERIAL_PROTOCOLPGM("T:");
  8659. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8660. SERIAL_PROTOCOLPGM(" E:");
  8661. SERIAL_PROTOCOL((int)extruder);
  8662. #ifdef TEMP_RESIDENCY_TIME
  8663. SERIAL_PROTOCOLPGM(" W:");
  8664. if (residencyStart > -1)
  8665. {
  8666. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8667. SERIAL_PROTOCOLLN(codenum);
  8668. }
  8669. else
  8670. {
  8671. SERIAL_PROTOCOLLN('?');
  8672. }
  8673. }
  8674. #else
  8675. SERIAL_PROTOCOLLN("");
  8676. #endif
  8677. codenum = _millis();
  8678. }
  8679. manage_heater();
  8680. manage_inactivity(true); //do not disable steppers
  8681. lcd_update(0);
  8682. #ifdef TEMP_RESIDENCY_TIME
  8683. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8684. or when current temp falls outside the hysteresis after target temp was reached */
  8685. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8686. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8687. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8688. {
  8689. residencyStart = _millis();
  8690. }
  8691. #endif //TEMP_RESIDENCY_TIME
  8692. }
  8693. }
  8694. void check_babystep()
  8695. {
  8696. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8697. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8698. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8699. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8700. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8701. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8702. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8703. babystep_z);
  8704. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8705. lcd_update_enable(true);
  8706. }
  8707. }
  8708. #ifdef HEATBED_ANALYSIS
  8709. void d_setup()
  8710. {
  8711. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8712. pinMode(D_DATA, INPUT_PULLUP);
  8713. pinMode(D_REQUIRE, OUTPUT);
  8714. digitalWrite(D_REQUIRE, HIGH);
  8715. }
  8716. float d_ReadData()
  8717. {
  8718. int digit[13];
  8719. String mergeOutput;
  8720. float output;
  8721. digitalWrite(D_REQUIRE, HIGH);
  8722. for (int i = 0; i<13; i++)
  8723. {
  8724. for (int j = 0; j < 4; j++)
  8725. {
  8726. while (digitalRead(D_DATACLOCK) == LOW) {}
  8727. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8728. bitWrite(digit[i], j, digitalRead(D_DATA));
  8729. }
  8730. }
  8731. digitalWrite(D_REQUIRE, LOW);
  8732. mergeOutput = "";
  8733. output = 0;
  8734. for (int r = 5; r <= 10; r++) //Merge digits
  8735. {
  8736. mergeOutput += digit[r];
  8737. }
  8738. output = mergeOutput.toFloat();
  8739. if (digit[4] == 8) //Handle sign
  8740. {
  8741. output *= -1;
  8742. }
  8743. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8744. {
  8745. output /= 10;
  8746. }
  8747. return output;
  8748. }
  8749. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8750. int t1 = 0;
  8751. int t_delay = 0;
  8752. int digit[13];
  8753. int m;
  8754. char str[3];
  8755. //String mergeOutput;
  8756. char mergeOutput[15];
  8757. float output;
  8758. int mesh_point = 0; //index number of calibration point
  8759. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8760. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8761. float mesh_home_z_search = 4;
  8762. float measure_z_height = 0.2f;
  8763. float row[x_points_num];
  8764. int ix = 0;
  8765. int iy = 0;
  8766. const char* filename_wldsd = "mesh.txt";
  8767. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8768. char numb_wldsd[8]; // (" -A.BCD" + null)
  8769. #ifdef MICROMETER_LOGGING
  8770. d_setup();
  8771. #endif //MICROMETER_LOGGING
  8772. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8773. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8774. unsigned int custom_message_type_old = custom_message_type;
  8775. unsigned int custom_message_state_old = custom_message_state;
  8776. custom_message_type = CustomMsg::MeshBedLeveling;
  8777. custom_message_state = (x_points_num * y_points_num) + 10;
  8778. lcd_update(1);
  8779. //mbl.reset();
  8780. babystep_undo();
  8781. card.openFile(filename_wldsd, false);
  8782. /*destination[Z_AXIS] = mesh_home_z_search;
  8783. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8784. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8785. for(int8_t i=0; i < NUM_AXIS; i++) {
  8786. current_position[i] = destination[i];
  8787. }
  8788. st_synchronize();
  8789. */
  8790. destination[Z_AXIS] = measure_z_height;
  8791. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8792. for(int8_t i=0; i < NUM_AXIS; i++) {
  8793. current_position[i] = destination[i];
  8794. }
  8795. st_synchronize();
  8796. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8797. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8798. SERIAL_PROTOCOL(x_points_num);
  8799. SERIAL_PROTOCOLPGM(",");
  8800. SERIAL_PROTOCOL(y_points_num);
  8801. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8802. SERIAL_PROTOCOL(mesh_home_z_search);
  8803. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8804. SERIAL_PROTOCOL(x_dimension);
  8805. SERIAL_PROTOCOLPGM(",");
  8806. SERIAL_PROTOCOL(y_dimension);
  8807. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8808. while (mesh_point != x_points_num * y_points_num) {
  8809. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8810. iy = mesh_point / x_points_num;
  8811. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8812. float z0 = 0.f;
  8813. /*destination[Z_AXIS] = mesh_home_z_search;
  8814. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8815. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8816. for(int8_t i=0; i < NUM_AXIS; i++) {
  8817. current_position[i] = destination[i];
  8818. }
  8819. st_synchronize();*/
  8820. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8821. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8822. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8823. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8824. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  8825. set_current_to_destination();
  8826. st_synchronize();
  8827. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8828. delay_keep_alive(1000);
  8829. #ifdef MICROMETER_LOGGING
  8830. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8831. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8832. //strcat(data_wldsd, numb_wldsd);
  8833. //MYSERIAL.println(data_wldsd);
  8834. //delay(1000);
  8835. //delay(3000);
  8836. //t1 = millis();
  8837. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8838. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8839. memset(digit, 0, sizeof(digit));
  8840. //cli();
  8841. digitalWrite(D_REQUIRE, LOW);
  8842. for (int i = 0; i<13; i++)
  8843. {
  8844. //t1 = millis();
  8845. for (int j = 0; j < 4; j++)
  8846. {
  8847. while (digitalRead(D_DATACLOCK) == LOW) {}
  8848. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8849. //printf_P(PSTR("Done %d\n"), j);
  8850. bitWrite(digit[i], j, digitalRead(D_DATA));
  8851. }
  8852. //t_delay = (millis() - t1);
  8853. //SERIAL_PROTOCOLPGM(" ");
  8854. //SERIAL_PROTOCOL_F(t_delay, 5);
  8855. //SERIAL_PROTOCOLPGM(" ");
  8856. }
  8857. //sei();
  8858. digitalWrite(D_REQUIRE, HIGH);
  8859. mergeOutput[0] = '\0';
  8860. output = 0;
  8861. for (int r = 5; r <= 10; r++) //Merge digits
  8862. {
  8863. sprintf(str, "%d", digit[r]);
  8864. strcat(mergeOutput, str);
  8865. }
  8866. output = atof(mergeOutput);
  8867. if (digit[4] == 8) //Handle sign
  8868. {
  8869. output *= -1;
  8870. }
  8871. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8872. {
  8873. output *= 0.1;
  8874. }
  8875. //output = d_ReadData();
  8876. //row[ix] = current_position[Z_AXIS];
  8877. //row[ix] = d_ReadData();
  8878. row[ix] = output;
  8879. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8880. memset(data_wldsd, 0, sizeof(data_wldsd));
  8881. for (int i = 0; i < x_points_num; i++) {
  8882. SERIAL_PROTOCOLPGM(" ");
  8883. SERIAL_PROTOCOL_F(row[i], 5);
  8884. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8885. dtostrf(row[i], 7, 3, numb_wldsd);
  8886. strcat(data_wldsd, numb_wldsd);
  8887. }
  8888. card.write_command(data_wldsd);
  8889. SERIAL_PROTOCOLPGM("\n");
  8890. }
  8891. custom_message_state--;
  8892. mesh_point++;
  8893. lcd_update(1);
  8894. }
  8895. #endif //MICROMETER_LOGGING
  8896. card.closefile();
  8897. //clean_up_after_endstop_move(l_feedmultiply);
  8898. }
  8899. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8900. int t1 = 0;
  8901. int t_delay = 0;
  8902. int digit[13];
  8903. int m;
  8904. char str[3];
  8905. //String mergeOutput;
  8906. char mergeOutput[15];
  8907. float output;
  8908. int mesh_point = 0; //index number of calibration point
  8909. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8910. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8911. float mesh_home_z_search = 4;
  8912. float row[x_points_num];
  8913. int ix = 0;
  8914. int iy = 0;
  8915. const char* filename_wldsd = "wldsd.txt";
  8916. char data_wldsd[70];
  8917. char numb_wldsd[10];
  8918. d_setup();
  8919. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8920. // We don't know where we are! HOME!
  8921. // Push the commands to the front of the message queue in the reverse order!
  8922. // There shall be always enough space reserved for these commands.
  8923. repeatcommand_front(); // repeat G80 with all its parameters
  8924. enquecommand_front_P((PSTR("G28 W0")));
  8925. enquecommand_front_P((PSTR("G1 Z5")));
  8926. return;
  8927. }
  8928. unsigned int custom_message_type_old = custom_message_type;
  8929. unsigned int custom_message_state_old = custom_message_state;
  8930. custom_message_type = CustomMsg::MeshBedLeveling;
  8931. custom_message_state = (x_points_num * y_points_num) + 10;
  8932. lcd_update(1);
  8933. mbl.reset();
  8934. babystep_undo();
  8935. card.openFile(filename_wldsd, false);
  8936. current_position[Z_AXIS] = mesh_home_z_search;
  8937. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8938. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8939. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8940. int l_feedmultiply = setup_for_endstop_move(false);
  8941. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8942. SERIAL_PROTOCOL(x_points_num);
  8943. SERIAL_PROTOCOLPGM(",");
  8944. SERIAL_PROTOCOL(y_points_num);
  8945. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8946. SERIAL_PROTOCOL(mesh_home_z_search);
  8947. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8948. SERIAL_PROTOCOL(x_dimension);
  8949. SERIAL_PROTOCOLPGM(",");
  8950. SERIAL_PROTOCOL(y_dimension);
  8951. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8952. while (mesh_point != x_points_num * y_points_num) {
  8953. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8954. iy = mesh_point / x_points_num;
  8955. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8956. float z0 = 0.f;
  8957. current_position[Z_AXIS] = mesh_home_z_search;
  8958. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8959. st_synchronize();
  8960. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8961. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8962. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8963. st_synchronize();
  8964. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8965. break;
  8966. card.closefile();
  8967. }
  8968. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8969. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8970. //strcat(data_wldsd, numb_wldsd);
  8971. //MYSERIAL.println(data_wldsd);
  8972. //_delay(1000);
  8973. //_delay(3000);
  8974. //t1 = _millis();
  8975. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8976. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8977. memset(digit, 0, sizeof(digit));
  8978. //cli();
  8979. digitalWrite(D_REQUIRE, LOW);
  8980. for (int i = 0; i<13; i++)
  8981. {
  8982. //t1 = _millis();
  8983. for (int j = 0; j < 4; j++)
  8984. {
  8985. while (digitalRead(D_DATACLOCK) == LOW) {}
  8986. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8987. bitWrite(digit[i], j, digitalRead(D_DATA));
  8988. }
  8989. //t_delay = (_millis() - t1);
  8990. //SERIAL_PROTOCOLPGM(" ");
  8991. //SERIAL_PROTOCOL_F(t_delay, 5);
  8992. //SERIAL_PROTOCOLPGM(" ");
  8993. }
  8994. //sei();
  8995. digitalWrite(D_REQUIRE, HIGH);
  8996. mergeOutput[0] = '\0';
  8997. output = 0;
  8998. for (int r = 5; r <= 10; r++) //Merge digits
  8999. {
  9000. sprintf(str, "%d", digit[r]);
  9001. strcat(mergeOutput, str);
  9002. }
  9003. output = atof(mergeOutput);
  9004. if (digit[4] == 8) //Handle sign
  9005. {
  9006. output *= -1;
  9007. }
  9008. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9009. {
  9010. output *= 0.1;
  9011. }
  9012. //output = d_ReadData();
  9013. //row[ix] = current_position[Z_AXIS];
  9014. memset(data_wldsd, 0, sizeof(data_wldsd));
  9015. for (int i = 0; i <3; i++) {
  9016. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9017. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9018. strcat(data_wldsd, numb_wldsd);
  9019. strcat(data_wldsd, ";");
  9020. }
  9021. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9022. dtostrf(output, 8, 5, numb_wldsd);
  9023. strcat(data_wldsd, numb_wldsd);
  9024. //strcat(data_wldsd, ";");
  9025. card.write_command(data_wldsd);
  9026. //row[ix] = d_ReadData();
  9027. row[ix] = output; // current_position[Z_AXIS];
  9028. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9029. for (int i = 0; i < x_points_num; i++) {
  9030. SERIAL_PROTOCOLPGM(" ");
  9031. SERIAL_PROTOCOL_F(row[i], 5);
  9032. }
  9033. SERIAL_PROTOCOLPGM("\n");
  9034. }
  9035. custom_message_state--;
  9036. mesh_point++;
  9037. lcd_update(1);
  9038. }
  9039. card.closefile();
  9040. clean_up_after_endstop_move(l_feedmultiply);
  9041. }
  9042. #endif //HEATBED_ANALYSIS
  9043. #ifndef PINDA_THERMISTOR
  9044. static void temp_compensation_start() {
  9045. custom_message_type = CustomMsg::TempCompPreheat;
  9046. custom_message_state = PINDA_HEAT_T + 1;
  9047. lcd_update(2);
  9048. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9049. current_position[E_AXIS] -= default_retraction;
  9050. }
  9051. plan_buffer_line_curposXYZE(400, active_extruder);
  9052. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9053. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9054. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9055. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9056. st_synchronize();
  9057. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9058. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9059. delay_keep_alive(1000);
  9060. custom_message_state = PINDA_HEAT_T - i;
  9061. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9062. else lcd_update(1);
  9063. }
  9064. custom_message_type = CustomMsg::Status;
  9065. custom_message_state = 0;
  9066. }
  9067. static void temp_compensation_apply() {
  9068. int i_add;
  9069. int z_shift = 0;
  9070. float z_shift_mm;
  9071. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9072. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9073. i_add = (target_temperature_bed - 60) / 10;
  9074. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  9075. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9076. }else {
  9077. //interpolation
  9078. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9079. }
  9080. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9082. st_synchronize();
  9083. plan_set_z_position(current_position[Z_AXIS]);
  9084. }
  9085. else {
  9086. //we have no temp compensation data
  9087. }
  9088. }
  9089. #endif //ndef PINDA_THERMISTOR
  9090. float temp_comp_interpolation(float inp_temperature) {
  9091. //cubic spline interpolation
  9092. int n, i, j;
  9093. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9094. int shift[10];
  9095. int temp_C[10];
  9096. n = 6; //number of measured points
  9097. shift[0] = 0;
  9098. for (i = 0; i < n; i++) {
  9099. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  9100. temp_C[i] = 50 + i * 10; //temperature in C
  9101. #ifdef PINDA_THERMISTOR
  9102. constexpr int start_compensating_temp = 35;
  9103. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9104. #ifdef DETECT_SUPERPINDA
  9105. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9106. #endif //DETECT_SUPERPINDA
  9107. #else
  9108. temp_C[i] = 50 + i * 10; //temperature in C
  9109. #endif
  9110. x[i] = (float)temp_C[i];
  9111. f[i] = (float)shift[i];
  9112. }
  9113. if (inp_temperature < x[0]) return 0;
  9114. for (i = n - 1; i>0; i--) {
  9115. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9116. h[i - 1] = x[i] - x[i - 1];
  9117. }
  9118. //*********** formation of h, s , f matrix **************
  9119. for (i = 1; i<n - 1; i++) {
  9120. m[i][i] = 2 * (h[i - 1] + h[i]);
  9121. if (i != 1) {
  9122. m[i][i - 1] = h[i - 1];
  9123. m[i - 1][i] = h[i - 1];
  9124. }
  9125. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9126. }
  9127. //*********** forward elimination **************
  9128. for (i = 1; i<n - 2; i++) {
  9129. temp = (m[i + 1][i] / m[i][i]);
  9130. for (j = 1; j <= n - 1; j++)
  9131. m[i + 1][j] -= temp*m[i][j];
  9132. }
  9133. //*********** backward substitution *********
  9134. for (i = n - 2; i>0; i--) {
  9135. sum = 0;
  9136. for (j = i; j <= n - 2; j++)
  9137. sum += m[i][j] * s[j];
  9138. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9139. }
  9140. for (i = 0; i<n - 1; i++)
  9141. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9142. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9143. b = s[i] / 2;
  9144. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9145. d = f[i];
  9146. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9147. }
  9148. return sum;
  9149. }
  9150. #ifdef PINDA_THERMISTOR
  9151. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9152. {
  9153. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9154. if (!calibration_status_pinda()) return 0;
  9155. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9156. }
  9157. #endif //PINDA_THERMISTOR
  9158. void long_pause() //long pause print
  9159. {
  9160. st_synchronize();
  9161. start_pause_print = _millis();
  9162. // Stop heaters
  9163. setAllTargetHotends(0);
  9164. //lift z
  9165. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9166. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9167. plan_buffer_line_curposXYZE(15);
  9168. //Move XY to side
  9169. current_position[X_AXIS] = X_PAUSE_POS;
  9170. current_position[Y_AXIS] = Y_PAUSE_POS;
  9171. plan_buffer_line_curposXYZE(50);
  9172. // Turn off the print fan
  9173. fanSpeed = 0;
  9174. }
  9175. void serialecho_temperatures() {
  9176. float tt = degHotend(active_extruder);
  9177. SERIAL_PROTOCOLPGM("T:");
  9178. SERIAL_PROTOCOL(tt);
  9179. SERIAL_PROTOCOLPGM(" E:");
  9180. SERIAL_PROTOCOL((int)active_extruder);
  9181. SERIAL_PROTOCOLPGM(" B:");
  9182. SERIAL_PROTOCOL_F(degBed(), 1);
  9183. SERIAL_PROTOCOLLN("");
  9184. }
  9185. #ifdef UVLO_SUPPORT
  9186. void uvlo_drain_reset()
  9187. {
  9188. // burn all that residual power
  9189. wdt_enable(WDTO_1S);
  9190. WRITE(BEEPER,HIGH);
  9191. lcd_clear();
  9192. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9193. while(1);
  9194. }
  9195. void uvlo_()
  9196. {
  9197. unsigned long time_start = _millis();
  9198. bool sd_print = card.sdprinting;
  9199. // Conserve power as soon as possible.
  9200. #ifdef LCD_BL_PIN
  9201. backlightMode = BACKLIGHT_MODE_DIM;
  9202. backlightLevel_LOW = 0;
  9203. backlight_update();
  9204. #endif //LCD_BL_PIN
  9205. disable_x();
  9206. disable_y();
  9207. #ifdef TMC2130
  9208. tmc2130_set_current_h(Z_AXIS, 20);
  9209. tmc2130_set_current_r(Z_AXIS, 20);
  9210. tmc2130_set_current_h(E_AXIS, 20);
  9211. tmc2130_set_current_r(E_AXIS, 20);
  9212. #endif //TMC2130
  9213. // Stop all heaters
  9214. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9215. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9216. setAllTargetHotends(0);
  9217. setTargetBed(0);
  9218. // Calculate the file position, from which to resume this print.
  9219. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9220. {
  9221. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9222. sd_position -= sdlen_planner;
  9223. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9224. sd_position -= sdlen_cmdqueue;
  9225. if (sd_position < 0) sd_position = 0;
  9226. }
  9227. // save the global state at planning time
  9228. uint16_t feedrate_bckp;
  9229. if (current_block)
  9230. {
  9231. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9232. feedrate_bckp = current_block->gcode_feedrate;
  9233. }
  9234. else
  9235. {
  9236. saved_target[0] = SAVED_TARGET_UNSET;
  9237. feedrate_bckp = feedrate;
  9238. }
  9239. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9240. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9241. // get the physical Z for further manipulation.
  9242. bool mbl_was_active = mbl.active;
  9243. mbl.active = false;
  9244. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9245. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9246. // are in action.
  9247. planner_abort_hard();
  9248. // Store the print logical Z position, which we need to recover (a slight error here would be
  9249. // recovered on the next Gcode instruction, while a physical location error would not)
  9250. float logical_z = current_position[Z_AXIS];
  9251. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9252. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9253. // Store the print E position before we lose track
  9254. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9255. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9256. // Clean the input command queue, inhibit serial processing using saved_printing
  9257. cmdqueue_reset();
  9258. card.sdprinting = false;
  9259. saved_printing = true;
  9260. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9261. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9262. sei();
  9263. // Retract
  9264. current_position[E_AXIS] -= default_retraction;
  9265. plan_buffer_line_curposXYZE(95);
  9266. st_synchronize();
  9267. disable_e0();
  9268. // Read out the current Z motor microstep counter to move the axis up towards
  9269. // a full step before powering off. NOTE: we need to ensure to schedule more
  9270. // than "dropsegments" steps in order to move (this is always the case here
  9271. // due to UVLO_Z_AXIS_SHIFT being used)
  9272. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9273. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9274. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9275. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9276. + UVLO_Z_AXIS_SHIFT;
  9277. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9278. st_synchronize();
  9279. poweroff_z();
  9280. // Write the file position.
  9281. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9282. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9283. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9284. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9285. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9286. // Scale the z value to 1u resolution.
  9287. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9288. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9289. }
  9290. // Write the _final_ Z position and motor microstep counter (unused).
  9291. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9292. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9293. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9294. // Store the current position.
  9295. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9296. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9297. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9298. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9299. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9300. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9301. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9302. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9303. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9304. #if EXTRUDERS > 1
  9305. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9306. #if EXTRUDERS > 2
  9307. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9308. #endif
  9309. #endif
  9310. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9311. // Store the saved target
  9312. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9313. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9314. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9315. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9316. #ifdef LIN_ADVANCE
  9317. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9318. #endif
  9319. // Finaly store the "power outage" flag.
  9320. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9321. // Increment power failure counter
  9322. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9323. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9324. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9325. WRITE(BEEPER,HIGH);
  9326. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9327. poweron_z();
  9328. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9329. plan_buffer_line_curposXYZE(500);
  9330. st_synchronize();
  9331. wdt_enable(WDTO_1S);
  9332. while(1);
  9333. }
  9334. void uvlo_tiny()
  9335. {
  9336. unsigned long time_start = _millis();
  9337. // Conserve power as soon as possible.
  9338. disable_x();
  9339. disable_y();
  9340. disable_e0();
  9341. #ifdef TMC2130
  9342. tmc2130_set_current_h(Z_AXIS, 20);
  9343. tmc2130_set_current_r(Z_AXIS, 20);
  9344. #endif //TMC2130
  9345. // Stop all heaters
  9346. setAllTargetHotends(0);
  9347. setTargetBed(0);
  9348. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9349. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9350. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9351. // Disable MBL (if not already) to work with physical coordinates.
  9352. mbl.active = false;
  9353. planner_abort_hard();
  9354. // Allow for small roundoffs to be ignored
  9355. if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9356. {
  9357. // Clean the input command queue, inhibit serial processing using saved_printing
  9358. cmdqueue_reset();
  9359. card.sdprinting = false;
  9360. saved_printing = true;
  9361. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9362. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9363. sei();
  9364. // The axis was moved: adjust Z as done on a regular UVLO.
  9365. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9366. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9367. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9368. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9369. + UVLO_TINY_Z_AXIS_SHIFT;
  9370. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9371. st_synchronize();
  9372. poweroff_z();
  9373. // Update Z position
  9374. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9375. // Update the _final_ Z motor microstep counter (unused).
  9376. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9377. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9378. }
  9379. // Update the the "power outage" flag.
  9380. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9381. // Increment power failure counter
  9382. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9383. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9384. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9385. uvlo_drain_reset();
  9386. }
  9387. #endif //UVLO_SUPPORT
  9388. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9389. void setup_fan_interrupt() {
  9390. //INT7
  9391. DDRE &= ~(1 << 7); //input pin
  9392. PORTE &= ~(1 << 7); //no internal pull-up
  9393. //start with sensing rising edge
  9394. EICRB &= ~(1 << 6);
  9395. EICRB |= (1 << 7);
  9396. //enable INT7 interrupt
  9397. EIMSK |= (1 << 7);
  9398. }
  9399. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9400. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9401. ISR(INT7_vect) {
  9402. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9403. #ifdef FAN_SOFT_PWM
  9404. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9405. #else //FAN_SOFT_PWM
  9406. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9407. #endif //FAN_SOFT_PWM
  9408. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9409. t_fan_rising_edge = millis_nc();
  9410. }
  9411. else { //interrupt was triggered by falling edge
  9412. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9413. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9414. }
  9415. }
  9416. EICRB ^= (1 << 6); //change edge
  9417. }
  9418. #endif
  9419. #ifdef UVLO_SUPPORT
  9420. void setup_uvlo_interrupt() {
  9421. DDRE &= ~(1 << 4); //input pin
  9422. PORTE &= ~(1 << 4); //no internal pull-up
  9423. // sensing falling edge
  9424. EICRB |= (1 << 0);
  9425. EICRB &= ~(1 << 1);
  9426. // enable INT4 interrupt
  9427. EIMSK |= (1 << 4);
  9428. // check if power was lost before we armed the interrupt
  9429. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9430. {
  9431. SERIAL_ECHOLNPGM("INT4");
  9432. uvlo_drain_reset();
  9433. }
  9434. }
  9435. ISR(INT4_vect) {
  9436. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9437. SERIAL_ECHOLNPGM("INT4");
  9438. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9439. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9440. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9441. }
  9442. void recover_print(uint8_t automatic) {
  9443. char cmd[30];
  9444. lcd_update_enable(true);
  9445. lcd_update(2);
  9446. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20
  9447. // Recover position, temperatures and extrude_multipliers
  9448. bool mbl_was_active = recover_machine_state_after_power_panic();
  9449. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9450. // and second also so one may remove the excess priming material.
  9451. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9452. {
  9453. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9454. enquecommand(cmd);
  9455. }
  9456. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9457. // transformation status. G28 will not touch Z when MBL is off.
  9458. enquecommand_P(PSTR("G28 X Y"));
  9459. // Set the target bed and nozzle temperatures and wait.
  9460. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9461. enquecommand(cmd);
  9462. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9463. enquecommand(cmd);
  9464. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9465. enquecommand(cmd);
  9466. enquecommand_P(PSTR("M83")); //E axis relative mode
  9467. // If not automatically recoreverd (long power loss)
  9468. if(automatic == 0){
  9469. //Extrude some filament to stabilize the pressure
  9470. enquecommand_P(PSTR("G1 E5 F120"));
  9471. // Retract to be consistent with a short pause
  9472. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9473. enquecommand(cmd);
  9474. }
  9475. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9476. // Restart the print.
  9477. restore_print_from_eeprom(mbl_was_active);
  9478. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9479. }
  9480. bool recover_machine_state_after_power_panic()
  9481. {
  9482. // 1) Preset some dummy values for the XY axes
  9483. current_position[X_AXIS] = 0;
  9484. current_position[Y_AXIS] = 0;
  9485. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9486. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9487. bool mbl_was_active = false;
  9488. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9489. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9490. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9491. // Scale the z value to 10u resolution.
  9492. int16_t v;
  9493. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9494. if (v != 0)
  9495. mbl_was_active = true;
  9496. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9497. }
  9498. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9499. // The current position after power panic is moved to the next closest 0th full step.
  9500. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9501. // Recover last E axis position
  9502. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9503. memcpy(destination, current_position, sizeof(destination));
  9504. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9505. print_world_coordinates();
  9506. // 3) Initialize the logical to physical coordinate system transformation.
  9507. world2machine_initialize();
  9508. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9509. // print_mesh_bed_leveling_table();
  9510. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9511. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9512. babystep_load();
  9513. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9514. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9515. plan_set_position_curposXYZE();
  9516. // 6) Power up the Z motors, mark their positions as known.
  9517. axis_known_position[Z_AXIS] = true;
  9518. enable_z();
  9519. // 7) Recover the target temperatures.
  9520. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9521. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9522. // 8) Recover extruder multipilers
  9523. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9524. #if EXTRUDERS > 1
  9525. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9526. #if EXTRUDERS > 2
  9527. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9528. #endif
  9529. #endif
  9530. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9531. // 9) Recover the saved target
  9532. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9533. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9534. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9535. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9536. #ifdef LIN_ADVANCE
  9537. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9538. #endif
  9539. return mbl_was_active;
  9540. }
  9541. void restore_print_from_eeprom(bool mbl_was_active) {
  9542. int feedrate_rec;
  9543. int feedmultiply_rec;
  9544. uint8_t fan_speed_rec;
  9545. char cmd[30];
  9546. char filename[13];
  9547. uint8_t depth = 0;
  9548. char dir_name[9];
  9549. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9550. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9551. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9552. SERIAL_ECHOPGM("Feedrate:");
  9553. MYSERIAL.print(feedrate_rec);
  9554. SERIAL_ECHOPGM(", feedmultiply:");
  9555. MYSERIAL.println(feedmultiply_rec);
  9556. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9557. MYSERIAL.println(int(depth));
  9558. for (int i = 0; i < depth; i++) {
  9559. for (int j = 0; j < 8; j++) {
  9560. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9561. }
  9562. dir_name[8] = '\0';
  9563. MYSERIAL.println(dir_name);
  9564. strcpy(dir_names[i], dir_name);
  9565. card.chdir(dir_name);
  9566. }
  9567. for (int i = 0; i < 8; i++) {
  9568. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9569. }
  9570. filename[8] = '\0';
  9571. MYSERIAL.print(filename);
  9572. strcat_P(filename, PSTR(".gco"));
  9573. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9574. enquecommand(cmd);
  9575. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9576. SERIAL_ECHOPGM("Position read from eeprom:");
  9577. MYSERIAL.println(position);
  9578. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9579. // without shifting Z along the way. This requires performing the move without mbl.
  9580. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"),
  9581. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
  9582. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
  9583. enquecommand(cmd);
  9584. // Enable MBL and switch to logical positioning
  9585. if (mbl_was_active)
  9586. enquecommand_P(PSTR("PRUSA MBL V1"));
  9587. // Move the Z axis down to the print, in logical coordinates.
  9588. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9589. enquecommand(cmd);
  9590. // Unretract.
  9591. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9592. enquecommand(cmd);
  9593. // Recover final E axis position and mode
  9594. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9595. sprintf_P(cmd, PSTR("G92 E"));
  9596. dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
  9597. enquecommand(cmd);
  9598. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9599. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9600. // Set the feedrates saved at the power panic.
  9601. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9602. enquecommand(cmd);
  9603. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9604. enquecommand(cmd);
  9605. // Set the fan speed saved at the power panic.
  9606. strcpy_P(cmd, PSTR("M106 S"));
  9607. strcat(cmd, itostr3(int(fan_speed_rec)));
  9608. enquecommand(cmd);
  9609. // Set a position in the file.
  9610. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9611. enquecommand(cmd);
  9612. enquecommand_P(PSTR("G4 S0"));
  9613. enquecommand_P(PSTR("PRUSA uvlo"));
  9614. }
  9615. #endif //UVLO_SUPPORT
  9616. //! @brief Immediately stop print moves
  9617. //!
  9618. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9619. //! If printing from sd card, position in file is saved.
  9620. //! If printing from USB, line number is saved.
  9621. //!
  9622. //! @param z_move
  9623. //! @param e_move
  9624. void stop_and_save_print_to_ram(float z_move, float e_move)
  9625. {
  9626. if (saved_printing) return;
  9627. #if 0
  9628. unsigned char nplanner_blocks;
  9629. #endif
  9630. unsigned char nlines;
  9631. uint16_t sdlen_planner;
  9632. uint16_t sdlen_cmdqueue;
  9633. cli();
  9634. if (card.sdprinting) {
  9635. #if 0
  9636. nplanner_blocks = number_of_blocks();
  9637. #endif
  9638. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9639. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9640. saved_sdpos -= sdlen_planner;
  9641. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9642. saved_sdpos -= sdlen_cmdqueue;
  9643. saved_printing_type = PRINTING_TYPE_SD;
  9644. }
  9645. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9646. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9647. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9648. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9649. saved_sdpos -= nlines;
  9650. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9651. saved_printing_type = PRINTING_TYPE_USB;
  9652. }
  9653. else {
  9654. saved_printing_type = PRINTING_TYPE_NONE;
  9655. //not sd printing nor usb printing
  9656. }
  9657. #if 0
  9658. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9659. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9660. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9661. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9662. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9663. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9664. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9665. {
  9666. card.setIndex(saved_sdpos);
  9667. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9668. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9669. MYSERIAL.print(char(card.get()));
  9670. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9671. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9672. MYSERIAL.print(char(card.get()));
  9673. SERIAL_ECHOLNPGM("End of command buffer");
  9674. }
  9675. {
  9676. // Print the content of the planner buffer, line by line:
  9677. card.setIndex(saved_sdpos);
  9678. int8_t iline = 0;
  9679. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9680. SERIAL_ECHOPGM("Planner line (from file): ");
  9681. MYSERIAL.print(int(iline), DEC);
  9682. SERIAL_ECHOPGM(", length: ");
  9683. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9684. SERIAL_ECHOPGM(", steps: (");
  9685. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9686. SERIAL_ECHOPGM(",");
  9687. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9688. SERIAL_ECHOPGM(",");
  9689. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9690. SERIAL_ECHOPGM(",");
  9691. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9692. SERIAL_ECHOPGM("), events: ");
  9693. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9694. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9695. MYSERIAL.print(char(card.get()));
  9696. }
  9697. }
  9698. {
  9699. // Print the content of the command buffer, line by line:
  9700. int8_t iline = 0;
  9701. union {
  9702. struct {
  9703. char lo;
  9704. char hi;
  9705. } lohi;
  9706. uint16_t value;
  9707. } sdlen_single;
  9708. int _bufindr = bufindr;
  9709. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9710. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9711. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9712. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9713. }
  9714. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9715. MYSERIAL.print(int(iline), DEC);
  9716. SERIAL_ECHOPGM(", type: ");
  9717. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9718. SERIAL_ECHOPGM(", len: ");
  9719. MYSERIAL.println(sdlen_single.value, DEC);
  9720. // Print the content of the buffer line.
  9721. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9722. SERIAL_ECHOPGM("Buffer line (from file): ");
  9723. MYSERIAL.println(int(iline), DEC);
  9724. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9725. MYSERIAL.print(char(card.get()));
  9726. if (-- _buflen == 0)
  9727. break;
  9728. // First skip the current command ID and iterate up to the end of the string.
  9729. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9730. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9731. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9732. // If the end of the buffer was empty,
  9733. if (_bufindr == sizeof(cmdbuffer)) {
  9734. // skip to the start and find the nonzero command.
  9735. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9736. }
  9737. }
  9738. }
  9739. #endif
  9740. // save the global state at planning time
  9741. if (current_block)
  9742. {
  9743. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9744. saved_feedrate2 = current_block->gcode_feedrate;
  9745. }
  9746. else
  9747. {
  9748. saved_target[0] = SAVED_TARGET_UNSET;
  9749. saved_feedrate2 = feedrate;
  9750. }
  9751. planner_abort_hard(); //abort printing
  9752. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9753. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9754. saved_active_extruder = active_extruder; //save active_extruder
  9755. saved_extruder_temperature = degTargetHotend(active_extruder);
  9756. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9757. saved_fanSpeed = fanSpeed;
  9758. cmdqueue_reset(); //empty cmdqueue
  9759. card.sdprinting = false;
  9760. // card.closefile();
  9761. saved_printing = true;
  9762. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9763. st_reset_timer();
  9764. sei();
  9765. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9766. #if 1
  9767. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9768. // the caller can continue processing. This is used during powerpanic to save the state as we
  9769. // move away from the print.
  9770. char buf[48];
  9771. if(e_move)
  9772. {
  9773. // First unretract (relative extrusion)
  9774. if(!saved_extruder_relative_mode){
  9775. enquecommand(PSTR("M83"), true);
  9776. }
  9777. //retract 45mm/s
  9778. // A single sprintf may not be faster, but is definitely 20B shorter
  9779. // than a sequence of commands building the string piece by piece
  9780. // A snprintf would have been a safer call, but since it is not used
  9781. // in the whole program, its implementation would bring more bytes to the total size
  9782. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9783. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9784. enquecommand(buf, false);
  9785. }
  9786. if(z_move)
  9787. {
  9788. // Then lift Z axis
  9789. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9790. enquecommand(buf, false);
  9791. }
  9792. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9793. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9794. repeatcommand_front();
  9795. #else
  9796. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9797. st_synchronize(); //wait moving
  9798. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9799. memcpy(destination, current_position, sizeof(destination));
  9800. #endif
  9801. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9802. }
  9803. }
  9804. //! @brief Restore print from ram
  9805. //!
  9806. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9807. //! print fan speed, waits for extruder temperature restore, then restores
  9808. //! position and continues print moves.
  9809. //!
  9810. //! Internally lcd_update() is called by wait_for_heater().
  9811. //!
  9812. //! @param e_move
  9813. void restore_print_from_ram_and_continue(float e_move)
  9814. {
  9815. if (!saved_printing) return;
  9816. #ifdef FANCHECK
  9817. // Do not allow resume printing if fans are still not ok
  9818. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9819. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9820. #endif
  9821. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  9822. // current_position[axis] = st_get_position_mm(axis);
  9823. active_extruder = saved_active_extruder; //restore active_extruder
  9824. fanSpeed = saved_fanSpeed;
  9825. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  9826. {
  9827. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9828. heating_status = 1;
  9829. wait_for_heater(_millis(), saved_active_extruder);
  9830. heating_status = 2;
  9831. }
  9832. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  9833. float e = saved_pos[E_AXIS] - e_move;
  9834. plan_set_e_position(e);
  9835. #ifdef FANCHECK
  9836. fans_check_enabled = false;
  9837. #endif
  9838. //first move print head in XY to the saved position:
  9839. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9840. //then move Z
  9841. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9842. //and finaly unretract (35mm/s)
  9843. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  9844. st_synchronize();
  9845. #ifdef FANCHECK
  9846. fans_check_enabled = true;
  9847. #endif
  9848. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9849. feedrate = saved_feedrate2;
  9850. feedmultiply = saved_feedmultiply2;
  9851. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9852. memcpy(destination, current_position, sizeof(destination));
  9853. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9854. card.setIndex(saved_sdpos);
  9855. sdpos_atomic = saved_sdpos;
  9856. card.sdprinting = true;
  9857. }
  9858. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9859. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9860. serial_count = 0;
  9861. FlushSerialRequestResend();
  9862. }
  9863. else {
  9864. //not sd printing nor usb printing
  9865. }
  9866. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9867. lcd_setstatuspgm(_T(WELCOME_MSG));
  9868. saved_printing_type = PRINTING_TYPE_NONE;
  9869. saved_printing = false;
  9870. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9871. }
  9872. // Cancel the state related to a currently saved print
  9873. void cancel_saved_printing()
  9874. {
  9875. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  9876. saved_target[0] = SAVED_TARGET_UNSET;
  9877. saved_printing_type = PRINTING_TYPE_NONE;
  9878. saved_printing = false;
  9879. }
  9880. void print_world_coordinates()
  9881. {
  9882. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9883. }
  9884. void print_physical_coordinates()
  9885. {
  9886. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9887. }
  9888. void print_mesh_bed_leveling_table()
  9889. {
  9890. SERIAL_ECHOPGM("mesh bed leveling: ");
  9891. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9892. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9893. MYSERIAL.print(mbl.z_values[y][x], 3);
  9894. SERIAL_ECHO(' ');
  9895. }
  9896. SERIAL_ECHOLN();
  9897. }
  9898. uint16_t print_time_remaining() {
  9899. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9900. #ifdef TMC2130
  9901. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9902. else print_t = print_time_remaining_silent;
  9903. #else
  9904. print_t = print_time_remaining_normal;
  9905. #endif //TMC2130
  9906. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9907. return print_t;
  9908. }
  9909. uint8_t calc_percent_done()
  9910. {
  9911. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9912. uint8_t percent_done = 0;
  9913. #ifdef TMC2130
  9914. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9915. percent_done = print_percent_done_normal;
  9916. }
  9917. else if (print_percent_done_silent <= 100) {
  9918. percent_done = print_percent_done_silent;
  9919. }
  9920. #else
  9921. if (print_percent_done_normal <= 100) {
  9922. percent_done = print_percent_done_normal;
  9923. }
  9924. #endif //TMC2130
  9925. else {
  9926. percent_done = card.percentDone();
  9927. }
  9928. return percent_done;
  9929. }
  9930. static void print_time_remaining_init()
  9931. {
  9932. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9933. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9934. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9935. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9936. }
  9937. void load_filament_final_feed()
  9938. {
  9939. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9940. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  9941. }
  9942. void load_filament_final_retract()
  9943. {
  9944. current_position[E_AXIS] -= FILAMENTCHANGE_LOADRETRACT;
  9945. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  9946. }
  9947. //! @brief Wait for user to check the state
  9948. //! @par nozzle_temp nozzle temperature to load filament
  9949. void M600_check_state(float nozzle_temp)
  9950. {
  9951. lcd_change_fil_state = 0;
  9952. while (lcd_change_fil_state != 1)
  9953. {
  9954. lcd_change_fil_state = 0;
  9955. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9956. lcd_alright();
  9957. KEEPALIVE_STATE(IN_HANDLER);
  9958. switch(lcd_change_fil_state)
  9959. {
  9960. // Filament failed to load so load it again
  9961. case 2:
  9962. if (mmu_enabled)
  9963. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9964. else
  9965. M600_load_filament_movements();
  9966. break;
  9967. // Filament loaded properly but color is not clear
  9968. case 3:
  9969. st_synchronize();
  9970. load_filament_final_feed();
  9971. lcd_loading_color();
  9972. st_synchronize();
  9973. break;
  9974. // Everything good
  9975. default:
  9976. lcd_change_success();
  9977. break;
  9978. }
  9979. }
  9980. }
  9981. //! @brief Wait for user action
  9982. //!
  9983. //! Beep, manage nozzle heater and wait for user to start unload filament
  9984. //! If times out, active extruder temperature is set to 0.
  9985. //!
  9986. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9987. void M600_wait_for_user(float HotendTempBckp) {
  9988. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9989. int counterBeep = 0;
  9990. unsigned long waiting_start_time = _millis();
  9991. uint8_t wait_for_user_state = 0;
  9992. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9993. bool bFirst=true;
  9994. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9995. manage_heater();
  9996. manage_inactivity(true);
  9997. #if BEEPER > 0
  9998. if (counterBeep == 500) {
  9999. counterBeep = 0;
  10000. }
  10001. SET_OUTPUT(BEEPER);
  10002. if (counterBeep == 0) {
  10003. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10004. {
  10005. bFirst=false;
  10006. WRITE(BEEPER, HIGH);
  10007. }
  10008. }
  10009. if (counterBeep == 20) {
  10010. WRITE(BEEPER, LOW);
  10011. }
  10012. counterBeep++;
  10013. #endif //BEEPER > 0
  10014. switch (wait_for_user_state) {
  10015. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10016. delay_keep_alive(4);
  10017. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10018. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10019. wait_for_user_state = 1;
  10020. setAllTargetHotends(0);
  10021. st_synchronize();
  10022. disable_e0();
  10023. disable_e1();
  10024. disable_e2();
  10025. }
  10026. break;
  10027. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10028. delay_keep_alive(4);
  10029. if (lcd_clicked()) {
  10030. setTargetHotend(HotendTempBckp, active_extruder);
  10031. lcd_wait_for_heater();
  10032. wait_for_user_state = 2;
  10033. }
  10034. break;
  10035. case 2: //waiting for nozzle to reach target temperature
  10036. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10037. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10038. waiting_start_time = _millis();
  10039. wait_for_user_state = 0;
  10040. }
  10041. else {
  10042. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10043. lcd_set_cursor(1, 4);
  10044. lcd_print(ftostr3(degHotend(active_extruder)));
  10045. }
  10046. break;
  10047. }
  10048. }
  10049. WRITE(BEEPER, LOW);
  10050. }
  10051. void M600_load_filament_movements()
  10052. {
  10053. #ifdef SNMM
  10054. display_loading();
  10055. do
  10056. {
  10057. current_position[E_AXIS] += 0.002;
  10058. plan_buffer_line_curposXYZE(500, active_extruder);
  10059. delay_keep_alive(2);
  10060. }
  10061. while (!lcd_clicked());
  10062. st_synchronize();
  10063. current_position[E_AXIS] += bowden_length[mmu_extruder];
  10064. plan_buffer_line_curposXYZE(3000, active_extruder);
  10065. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  10066. plan_buffer_line_curposXYZE(1400, active_extruder);
  10067. current_position[E_AXIS] += 40;
  10068. plan_buffer_line_curposXYZE(400, active_extruder);
  10069. current_position[E_AXIS] += 10;
  10070. plan_buffer_line_curposXYZE(50, active_extruder);
  10071. #else
  10072. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  10073. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10074. #endif
  10075. load_filament_final_feed();
  10076. lcd_loading_filament();
  10077. st_synchronize();
  10078. }
  10079. void M600_load_filament() {
  10080. //load filament for single material and SNMM
  10081. lcd_wait_interact();
  10082. //load_filament_time = _millis();
  10083. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10084. #ifdef PAT9125
  10085. fsensor_autoload_check_start();
  10086. #endif //PAT9125
  10087. while(!lcd_clicked())
  10088. {
  10089. manage_heater();
  10090. manage_inactivity(true);
  10091. #ifdef FILAMENT_SENSOR
  10092. if (fsensor_check_autoload())
  10093. {
  10094. Sound_MakeCustom(50,1000,false);
  10095. break;
  10096. }
  10097. #endif //FILAMENT_SENSOR
  10098. }
  10099. #ifdef PAT9125
  10100. fsensor_autoload_check_stop();
  10101. #endif //PAT9125
  10102. KEEPALIVE_STATE(IN_HANDLER);
  10103. #ifdef FSENSOR_QUALITY
  10104. fsensor_oq_meassure_start(70);
  10105. #endif //FSENSOR_QUALITY
  10106. M600_load_filament_movements();
  10107. Sound_MakeCustom(50,1000,false);
  10108. #ifdef FSENSOR_QUALITY
  10109. fsensor_oq_meassure_stop();
  10110. if (!fsensor_oq_result())
  10111. {
  10112. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10113. lcd_update_enable(true);
  10114. lcd_update(2);
  10115. if (disable)
  10116. fsensor_disable();
  10117. }
  10118. #endif //FSENSOR_QUALITY
  10119. lcd_update_enable(false);
  10120. }
  10121. //! @brief Wait for click
  10122. //!
  10123. //! Set
  10124. void marlin_wait_for_click()
  10125. {
  10126. int8_t busy_state_backup = busy_state;
  10127. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10128. lcd_consume_click();
  10129. while(!lcd_clicked())
  10130. {
  10131. manage_heater();
  10132. manage_inactivity(true);
  10133. lcd_update(0);
  10134. }
  10135. KEEPALIVE_STATE(busy_state_backup);
  10136. }
  10137. #define FIL_LOAD_LENGTH 60
  10138. #ifdef PSU_Delta
  10139. bool bEnableForce_z;
  10140. void init_force_z()
  10141. {
  10142. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10143. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10144. disable_force_z();
  10145. }
  10146. void check_force_z()
  10147. {
  10148. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10149. init_force_z(); // causes enforced switching into disable-state
  10150. }
  10151. void disable_force_z()
  10152. {
  10153. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10154. bEnableForce_z=false;
  10155. // switching to silent mode
  10156. #ifdef TMC2130
  10157. tmc2130_mode=TMC2130_MODE_SILENT;
  10158. update_mode_profile();
  10159. tmc2130_init(true);
  10160. #endif // TMC2130
  10161. }
  10162. void enable_force_z()
  10163. {
  10164. if(bEnableForce_z)
  10165. return; // motor already enabled (may be ;-p )
  10166. bEnableForce_z=true;
  10167. // mode recovering
  10168. #ifdef TMC2130
  10169. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10170. update_mode_profile();
  10171. tmc2130_init(true);
  10172. #endif // TMC2130
  10173. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10174. }
  10175. #endif // PSU_Delta