temperature.cpp 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "menu.h"
  27. #include "conv2str.h"
  28. #include "sound.h"
  29. #include "temperature.h"
  30. #include "cardreader.h"
  31. #include "SdFatUtil.h"
  32. #include <avr/wdt.h>
  33. #include "adc.h"
  34. #include "ConfigurationStore.h"
  35. #include "messages.h"
  36. #include "Timer.h"
  37. #include "Configuration_prusa.h"
  38. #include "config.h"
  39. //===========================================================================
  40. //=============================public variables============================
  41. //===========================================================================
  42. int target_temperature[EXTRUDERS] = { 0 };
  43. int target_temperature_bed = 0;
  44. int current_temperature_raw[EXTRUDERS] = { 0 };
  45. float current_temperature[EXTRUDERS] = { 0.0 };
  46. #ifdef PINDA_THERMISTOR
  47. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  48. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  49. float current_temperature_pinda = 0.0;
  50. #endif //PINDA_THERMISTOR
  51. #ifdef AMBIENT_THERMISTOR
  52. int current_temperature_raw_ambient = 0 ;
  53. float current_temperature_ambient = 0.0;
  54. #endif //AMBIENT_THERMISTOR
  55. #ifdef VOLT_PWR_PIN
  56. int current_voltage_raw_pwr = 0;
  57. #endif
  58. #ifdef VOLT_BED_PIN
  59. int current_voltage_raw_bed = 0;
  60. #endif
  61. #ifdef IR_SENSOR_ANALOG
  62. uint16_t current_voltage_raw_IR = 0;
  63. #endif //IR_SENSOR_ANALOG
  64. int current_temperature_bed_raw = 0;
  65. float current_temperature_bed = 0.0;
  66. #ifdef PIDTEMP
  67. float _Kp, _Ki, _Kd;
  68. int pid_cycle, pid_number_of_cycles;
  69. bool pid_tuning_finished = false;
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. struct
  125. {
  126. uint8_t isAltfan : 1;
  127. uint8_t altfanOverride : 1;
  128. } altfanStatus;
  129. #endif //EXTRUDER_ALTFAN_DETECT
  130. #endif
  131. #if EXTRUDERS > 3
  132. # error Unsupported number of extruders
  133. #elif EXTRUDERS > 2
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  135. #elif EXTRUDERS > 1
  136. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  137. #else
  138. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  139. #endif
  140. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  141. // Init min and max temp with extreme values to prevent false errors during startup
  142. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  143. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  144. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  145. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  146. #ifdef BED_MINTEMP
  147. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  148. #endif
  149. #ifdef BED_MAXTEMP
  150. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  151. #endif
  152. #ifdef AMBIENT_MINTEMP
  153. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  154. #endif
  155. #ifdef AMBIENT_MAXTEMP
  156. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  157. #endif
  158. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  159. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  160. static float analog2temp(int raw, uint8_t e);
  161. static float analog2tempBed(int raw);
  162. #ifdef AMBIENT_MAXTEMP
  163. static float analog2tempAmbient(int raw);
  164. #endif
  165. static void updateTemperaturesFromRawValues();
  166. enum TempRunawayStates : uint8_t
  167. {
  168. TempRunaway_INACTIVE = 0,
  169. TempRunaway_PREHEAT = 1,
  170. TempRunaway_ACTIVE = 2,
  171. };
  172. #ifndef SOFT_PWM_SCALE
  173. #define SOFT_PWM_SCALE 0
  174. #endif
  175. //===========================================================================
  176. //============================= functions ============================
  177. //===========================================================================
  178. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  179. static uint8_t temp_runaway_status[1 + EXTRUDERS];
  180. static float temp_runaway_target[1 + EXTRUDERS];
  181. static uint32_t temp_runaway_timer[1 + EXTRUDERS];
  182. static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
  183. static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  184. static void temp_runaway_stop(bool isPreheat, bool isBed);
  185. #endif
  186. #ifdef EXTRUDER_ALTFAN_DETECT
  187. ISR(INT6_vect) {
  188. fan_edge_counter[0]++;
  189. }
  190. bool extruder_altfan_detect()
  191. {
  192. setExtruderAutoFanState(3);
  193. SET_INPUT(TACH_0);
  194. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  195. if (overrideVal == EEPROM_EMPTY_VALUE)
  196. {
  197. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  198. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  199. }
  200. altfanStatus.altfanOverride = overrideVal;
  201. CRITICAL_SECTION_START;
  202. EICRB &= ~(1 << ISC61);
  203. EICRB |= (1 << ISC60);
  204. EIMSK |= (1 << INT6);
  205. fan_edge_counter[0] = 0;
  206. CRITICAL_SECTION_END;
  207. extruder_autofan_last_check = _millis();
  208. _delay(1000);
  209. EIMSK &= ~(1 << INT6);
  210. countFanSpeed();
  211. altfanStatus.isAltfan = fan_speed[0] > 100;
  212. setExtruderAutoFanState(1);
  213. return altfanStatus.isAltfan;
  214. }
  215. void altfanOverride_toggle()
  216. {
  217. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  218. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  219. }
  220. bool altfanOverride_get()
  221. {
  222. return altfanStatus.altfanOverride;
  223. }
  224. #endif //EXTRUDER_ALTFAN_DETECT
  225. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  226. bool checkAllHotends(void)
  227. {
  228. bool result=false;
  229. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  230. return(result);
  231. }
  232. // WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
  233. // codegen bug causing a stack overwrite issue in process_commands()
  234. void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
  235. {
  236. pid_number_of_cycles = ncycles;
  237. pid_tuning_finished = false;
  238. float input = 0.0;
  239. pid_cycle=0;
  240. bool heating = true;
  241. unsigned long temp_millis = _millis();
  242. unsigned long t1=temp_millis;
  243. unsigned long t2=temp_millis;
  244. long t_high = 0;
  245. long t_low = 0;
  246. long bias, d;
  247. float Ku, Tu;
  248. float max = 0, min = 10000;
  249. uint8_t safety_check_cycles = 0;
  250. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  251. float temp_ambient;
  252. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  253. unsigned long extruder_autofan_last_check = _millis();
  254. #endif
  255. if ((extruder >= EXTRUDERS)
  256. #if (TEMP_BED_PIN <= -1)
  257. ||(extruder < 0)
  258. #endif
  259. ){
  260. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  261. pid_tuning_finished = true;
  262. pid_cycle = 0;
  263. return;
  264. }
  265. SERIAL_ECHOLN("PID Autotune start");
  266. disable_heater(); // switch off all heaters.
  267. if (extruder<0)
  268. {
  269. soft_pwm_bed = (MAX_BED_POWER)/2;
  270. timer02_set_pwm0(soft_pwm_bed << 1);
  271. bias = d = (MAX_BED_POWER)/2;
  272. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  273. }
  274. else
  275. {
  276. soft_pwm[extruder] = (PID_MAX)/2;
  277. bias = d = (PID_MAX)/2;
  278. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  279. }
  280. for(;;) {
  281. #ifdef WATCHDOG
  282. wdt_reset();
  283. #endif //WATCHDOG
  284. if(temp_meas_ready == true) { // temp sample ready
  285. updateTemperaturesFromRawValues();
  286. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  287. max=max(max,input);
  288. min=min(min,input);
  289. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  290. if(_millis() - extruder_autofan_last_check > 2500) {
  291. checkExtruderAutoFans();
  292. extruder_autofan_last_check = _millis();
  293. }
  294. #endif
  295. if(heating == true && input > temp) {
  296. if(_millis() - t2 > 5000) {
  297. heating=false;
  298. if (extruder<0)
  299. {
  300. soft_pwm_bed = (bias - d) >> 1;
  301. timer02_set_pwm0(soft_pwm_bed << 1);
  302. }
  303. else
  304. soft_pwm[extruder] = (bias - d) >> 1;
  305. t1=_millis();
  306. t_high=t1 - t2;
  307. max=temp;
  308. }
  309. }
  310. if(heating == false && input < temp) {
  311. if(_millis() - t1 > 5000) {
  312. heating=true;
  313. t2=_millis();
  314. t_low=t2 - t1;
  315. if(pid_cycle > 0) {
  316. bias += (d*(t_high - t_low))/(t_low + t_high);
  317. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  318. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  319. else d = bias;
  320. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  321. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  322. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  323. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  324. if(pid_cycle > 2) {
  325. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  326. Tu = ((float)(t_low + t_high)/1000.0);
  327. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  328. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  329. _Kp = 0.6*Ku;
  330. _Ki = 2*_Kp/Tu;
  331. _Kd = _Kp*Tu/8;
  332. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  333. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  334. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  335. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  336. /*
  337. _Kp = 0.33*Ku;
  338. _Ki = _Kp/Tu;
  339. _Kd = _Kp*Tu/3;
  340. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  341. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  342. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  343. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  344. _Kp = 0.2*Ku;
  345. _Ki = 2*_Kp/Tu;
  346. _Kd = _Kp*Tu/3;
  347. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  348. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  349. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  350. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  351. */
  352. }
  353. }
  354. if (extruder<0)
  355. {
  356. soft_pwm_bed = (bias + d) >> 1;
  357. timer02_set_pwm0(soft_pwm_bed << 1);
  358. }
  359. else
  360. soft_pwm[extruder] = (bias + d) >> 1;
  361. pid_cycle++;
  362. min=temp;
  363. }
  364. }
  365. }
  366. if(input > (temp + 20)) {
  367. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  368. pid_tuning_finished = true;
  369. pid_cycle = 0;
  370. return;
  371. }
  372. if(_millis() - temp_millis > 2000) {
  373. int p;
  374. if (extruder<0){
  375. p=soft_pwm_bed;
  376. SERIAL_PROTOCOLPGM("B:");
  377. }else{
  378. p=soft_pwm[extruder];
  379. SERIAL_PROTOCOLPGM("T:");
  380. }
  381. SERIAL_PROTOCOL(input);
  382. SERIAL_PROTOCOLPGM(" @:");
  383. SERIAL_PROTOCOLLN(p);
  384. if (safety_check_cycles == 0) { //save ambient temp
  385. temp_ambient = input;
  386. //SERIAL_ECHOPGM("Ambient T: ");
  387. //MYSERIAL.println(temp_ambient);
  388. safety_check_cycles++;
  389. }
  390. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  391. safety_check_cycles++;
  392. }
  393. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  394. safety_check_cycles++;
  395. //SERIAL_ECHOPGM("Time from beginning: ");
  396. //MYSERIAL.print(safety_check_cycles_count * 2);
  397. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  398. //MYSERIAL.println(input - temp_ambient);
  399. if (fabs(input - temp_ambient) < 5.0) {
  400. temp_runaway_stop(false, (extruder<0));
  401. pid_tuning_finished = true;
  402. return;
  403. }
  404. }
  405. temp_millis = _millis();
  406. }
  407. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  408. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  409. pid_tuning_finished = true;
  410. pid_cycle = 0;
  411. return;
  412. }
  413. if(pid_cycle > ncycles) {
  414. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  415. pid_tuning_finished = true;
  416. pid_cycle = 0;
  417. return;
  418. }
  419. lcd_update(0);
  420. }
  421. }
  422. void updatePID()
  423. {
  424. #ifdef PIDTEMP
  425. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  426. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  427. }
  428. #endif
  429. #ifdef PIDTEMPBED
  430. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  431. #endif
  432. }
  433. int getHeaterPower(int heater) {
  434. if (heater<0)
  435. return soft_pwm_bed;
  436. return soft_pwm[heater];
  437. }
  438. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  439. #if defined(FAN_PIN) && FAN_PIN > -1
  440. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  441. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  442. #endif
  443. #endif
  444. void setExtruderAutoFanState(uint8_t state)
  445. {
  446. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  447. //the fan to either On or Off during certain tests/errors.
  448. fanState = state;
  449. newFanSpeed = 0;
  450. if (fanState & 0x01)
  451. {
  452. #ifdef EXTRUDER_ALTFAN_DETECT
  453. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  454. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  455. #else //EXTRUDER_ALTFAN_DETECT
  456. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  457. #endif //EXTRUDER_ALTFAN_DETECT
  458. }
  459. timer4_set_fan0(newFanSpeed);
  460. }
  461. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  462. void countFanSpeed()
  463. {
  464. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  465. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  466. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  467. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  468. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  469. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  470. SERIAL_ECHOLNPGM(" ");*/
  471. fan_edge_counter[0] = 0;
  472. fan_edge_counter[1] = 0;
  473. }
  474. void checkFanSpeed()
  475. {
  476. uint8_t max_fan_errors[2];
  477. #ifdef FAN_SOFT_PWM
  478. max_fan_errors[1] = 3; // 15 seconds (Print fan)
  479. max_fan_errors[0] = 2; // 10 seconds (Extruder fan)
  480. #else //FAN_SOFT_PWM
  481. max_fan_errors[1] = 15; // 15 seconds (Print fan)
  482. max_fan_errors[0] = 5; // 5 seconds (Extruder fan)
  483. #endif //FAN_SOFT_PWM
  484. if(fans_check_enabled)
  485. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  486. static uint8_t fan_speed_errors[2] = { 0,0 };
  487. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  488. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  489. else fan_speed_errors[0] = 0;
  490. #endif
  491. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  492. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  493. else fan_speed_errors[1] = 0;
  494. #endif
  495. // drop the fan_check_error flag when both fans are ok
  496. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  497. // we may even send some info to the LCD from here
  498. fan_check_error = EFCE_FIXED;
  499. }
  500. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  501. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  502. lcd_reset_alert_level(); //for another fan speed error
  503. }
  504. if (fans_check_enabled && (fan_check_error == EFCE_OK))
  505. {
  506. for (uint8_t fan = 0; fan < 2; fan++)
  507. {
  508. if (fan_speed_errors[fan] > max_fan_errors[fan])
  509. {
  510. fan_speed_errors[fan] = 0;
  511. fanSpeedError(fan);
  512. }
  513. }
  514. }
  515. }
  516. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  517. //! Extracted from fanSpeedError to save some space.
  518. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  519. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  520. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  521. SERIAL_ECHOLNRPGM(serialMsg);
  522. if (get_message_level() == 0) {
  523. Sound_MakeCustom(200,0,true);
  524. LCD_ALERTMESSAGERPGM(lcdMsg);
  525. }
  526. }
  527. void fanSpeedError(unsigned char _fan) {
  528. if (get_message_level() != 0 && isPrintPaused) return;
  529. //to ensure that target temp. is not set to zero in case that we are resuming print
  530. if (card.sdprinting || usb_timer.running()) {
  531. if (heating_status != HeatingStatus::NO_HEATING) {
  532. lcd_print_stop();
  533. }
  534. else {
  535. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  536. }
  537. }
  538. else {
  539. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? usb_timer.running() would be true in that case, so there is no need for this.
  540. setTargetHotend0(0);
  541. heating_status = HeatingStatus::NO_HEATING;
  542. fan_check_error = EFCE_REPORTED;
  543. }
  544. switch (_fan) {
  545. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  546. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  547. break;
  548. case 1:
  549. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  550. break;
  551. }
  552. }
  553. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  554. void checkExtruderAutoFans()
  555. {
  556. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  557. if (!(fanState & 0x02))
  558. {
  559. fanState &= ~1;
  560. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  561. }
  562. setExtruderAutoFanState(fanState);
  563. #endif
  564. }
  565. #endif // any extruder auto fan pins set
  566. // ready for eventually parameters adjusting
  567. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  568. //void resetPID(uint8_t extruder)
  569. {
  570. }
  571. void manage_heater()
  572. {
  573. #ifdef WATCHDOG
  574. wdt_reset();
  575. #endif //WATCHDOG
  576. float pid_input;
  577. float pid_output;
  578. if(temp_meas_ready != true) //better readability
  579. return;
  580. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  581. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  582. updateTemperaturesFromRawValues();
  583. check_max_temp();
  584. check_min_temp();
  585. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  586. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  587. #endif
  588. for(uint8_t e = 0; e < EXTRUDERS; e++)
  589. {
  590. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  591. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  592. #endif
  593. #ifdef PIDTEMP
  594. pid_input = current_temperature[e];
  595. #ifndef PID_OPENLOOP
  596. if(target_temperature[e] == 0) {
  597. pid_output = 0;
  598. pid_reset[e] = true;
  599. } else {
  600. pid_error[e] = target_temperature[e] - pid_input;
  601. if(pid_reset[e]) {
  602. iState_sum[e] = 0.0;
  603. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  604. pid_reset[e] = false;
  605. }
  606. #ifndef PonM
  607. pTerm[e] = cs.Kp * pid_error[e];
  608. iState_sum[e] += pid_error[e];
  609. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  610. iTerm[e] = cs.Ki * iState_sum[e];
  611. // PID_K1 defined in Configuration.h in the PID settings
  612. #define K2 (1.0-PID_K1)
  613. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  614. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  615. if (pid_output > PID_MAX) {
  616. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  617. pid_output=PID_MAX;
  618. } else if (pid_output < 0) {
  619. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  620. pid_output=0;
  621. }
  622. #else // PonM ("Proportional on Measurement" method)
  623. iState_sum[e] += cs.Ki * pid_error[e];
  624. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  625. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  626. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  627. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  628. pid_output = constrain(pid_output, 0, PID_MAX);
  629. #endif // PonM
  630. }
  631. dState_last[e] = pid_input;
  632. #else
  633. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  634. #endif //PID_OPENLOOP
  635. #ifdef PID_DEBUG
  636. SERIAL_ECHO_START;
  637. SERIAL_ECHO(" PID_DEBUG ");
  638. SERIAL_ECHO(e);
  639. SERIAL_ECHO(": Input ");
  640. SERIAL_ECHO(pid_input);
  641. SERIAL_ECHO(" Output ");
  642. SERIAL_ECHO(pid_output);
  643. SERIAL_ECHO(" pTerm ");
  644. SERIAL_ECHO(pTerm[e]);
  645. SERIAL_ECHO(" iTerm ");
  646. SERIAL_ECHO(iTerm[e]);
  647. SERIAL_ECHO(" dTerm ");
  648. SERIAL_ECHOLN(-dTerm[e]);
  649. #endif //PID_DEBUG
  650. #else /* PID off */
  651. pid_output = 0;
  652. if(current_temperature[e] < target_temperature[e]) {
  653. pid_output = PID_MAX;
  654. }
  655. #endif
  656. // Check if temperature is within the correct range
  657. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  658. {
  659. soft_pwm[e] = (int)pid_output >> 1;
  660. }
  661. else
  662. {
  663. soft_pwm[e] = 0;
  664. }
  665. } // End extruder for loop
  666. #define FAN_CHECK_PERIOD 5000 //5s
  667. #define FAN_CHECK_DURATION 100 //100ms
  668. #ifndef DEBUG_DISABLE_FANCHECK
  669. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  670. #ifdef FAN_SOFT_PWM
  671. #ifdef FANCHECK
  672. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  673. extruder_autofan_last_check = _millis();
  674. fanSpeedBckp = fanSpeedSoftPwm;
  675. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  676. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  677. fanSpeedSoftPwm = 255;
  678. }
  679. fan_measuring = true;
  680. }
  681. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  682. countFanSpeed();
  683. checkFanSpeed();
  684. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  685. fanSpeedSoftPwm = fanSpeedBckp;
  686. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  687. extruder_autofan_last_check = _millis();
  688. fan_measuring = false;
  689. }
  690. #endif //FANCHECK
  691. checkExtruderAutoFans();
  692. #else //FAN_SOFT_PWM
  693. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  694. {
  695. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  696. countFanSpeed();
  697. checkFanSpeed();
  698. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  699. checkExtruderAutoFans();
  700. extruder_autofan_last_check = _millis();
  701. }
  702. #endif //FAN_SOFT_PWM
  703. #endif
  704. #endif //DEBUG_DISABLE_FANCHECK
  705. #ifndef PIDTEMPBED
  706. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  707. return;
  708. previous_millis_bed_heater = _millis();
  709. #endif
  710. #if TEMP_SENSOR_BED != 0
  711. #ifdef PIDTEMPBED
  712. pid_input = current_temperature_bed;
  713. #ifndef PID_OPENLOOP
  714. pid_error_bed = target_temperature_bed - pid_input;
  715. pTerm_bed = cs.bedKp * pid_error_bed;
  716. temp_iState_bed += pid_error_bed;
  717. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  718. iTerm_bed = cs.bedKi * temp_iState_bed;
  719. //PID_K1 defined in Configuration.h in the PID settings
  720. #define K2 (1.0-PID_K1)
  721. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  722. temp_dState_bed = pid_input;
  723. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  724. if (pid_output > MAX_BED_POWER) {
  725. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  726. pid_output=MAX_BED_POWER;
  727. } else if (pid_output < 0){
  728. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  729. pid_output=0;
  730. }
  731. #else
  732. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  733. #endif //PID_OPENLOOP
  734. if(current_temperature_bed < BED_MAXTEMP)
  735. {
  736. soft_pwm_bed = (int)pid_output >> 1;
  737. timer02_set_pwm0(soft_pwm_bed << 1);
  738. }
  739. else {
  740. soft_pwm_bed = 0;
  741. timer02_set_pwm0(soft_pwm_bed << 1);
  742. }
  743. #elif !defined(BED_LIMIT_SWITCHING)
  744. // Check if temperature is within the correct range
  745. if(current_temperature_bed < BED_MAXTEMP)
  746. {
  747. if(current_temperature_bed >= target_temperature_bed)
  748. {
  749. soft_pwm_bed = 0;
  750. timer02_set_pwm0(soft_pwm_bed << 1);
  751. }
  752. else
  753. {
  754. soft_pwm_bed = MAX_BED_POWER>>1;
  755. timer02_set_pwm0(soft_pwm_bed << 1);
  756. }
  757. }
  758. else
  759. {
  760. soft_pwm_bed = 0;
  761. timer02_set_pwm0(soft_pwm_bed << 1);
  762. WRITE(HEATER_BED_PIN,LOW);
  763. }
  764. #else //#ifdef BED_LIMIT_SWITCHING
  765. // Check if temperature is within the correct band
  766. if(current_temperature_bed < BED_MAXTEMP)
  767. {
  768. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  769. {
  770. soft_pwm_bed = 0;
  771. timer02_set_pwm0(soft_pwm_bed << 1);
  772. }
  773. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  774. {
  775. soft_pwm_bed = MAX_BED_POWER>>1;
  776. timer02_set_pwm0(soft_pwm_bed << 1);
  777. }
  778. }
  779. else
  780. {
  781. soft_pwm_bed = 0;
  782. timer02_set_pwm0(soft_pwm_bed << 1);
  783. WRITE(HEATER_BED_PIN,LOW);
  784. }
  785. #endif
  786. if(target_temperature_bed==0)
  787. {
  788. soft_pwm_bed = 0;
  789. timer02_set_pwm0(soft_pwm_bed << 1);
  790. }
  791. #endif
  792. }
  793. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  794. // Derived from RepRap FiveD extruder::getTemperature()
  795. // For hot end temperature measurement.
  796. static float analog2temp(int raw, uint8_t e) {
  797. if(e >= EXTRUDERS)
  798. {
  799. SERIAL_ERROR_START;
  800. SERIAL_ERROR((int)e);
  801. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  802. kill(NULL, 6);
  803. return 0.0;
  804. }
  805. #ifdef HEATER_0_USES_MAX6675
  806. if (e == 0)
  807. {
  808. return 0.25 * raw;
  809. }
  810. #endif
  811. if(heater_ttbl_map[e] != NULL)
  812. {
  813. float celsius = 0;
  814. uint8_t i;
  815. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  816. for (i=1; i<heater_ttbllen_map[e]; i++)
  817. {
  818. if (PGM_RD_W((*tt)[i][0]) > raw)
  819. {
  820. celsius = PGM_RD_W((*tt)[i-1][1]) +
  821. (raw - PGM_RD_W((*tt)[i-1][0])) *
  822. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  823. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  824. break;
  825. }
  826. }
  827. // Overflow: Set to last value in the table
  828. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  829. return celsius;
  830. }
  831. #if defined(HEATER_0_USES_AD595)
  832. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  833. #elif defined (HEATER_0_USES_AD8495)
  834. return ((raw * 5.0 / 1024.0 / OVERSAMPLENR) / 0.005 * TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET; //for 5V 10bit ADC
  835. #endif
  836. }
  837. // Derived from RepRap FiveD extruder::getTemperature()
  838. // For bed temperature measurement.
  839. static float analog2tempBed(int raw) {
  840. #ifdef BED_USES_THERMISTOR
  841. float celsius = 0;
  842. byte i;
  843. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  844. {
  845. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  846. {
  847. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  848. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  849. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  850. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  851. break;
  852. }
  853. }
  854. // Overflow: Set to last value in the table
  855. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  856. // temperature offset adjustment
  857. #ifdef BED_OFFSET
  858. float _offset = BED_OFFSET;
  859. float _offset_center = BED_OFFSET_CENTER;
  860. float _offset_start = BED_OFFSET_START;
  861. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  862. float _second_koef = (_offset / 2) / (100 - _offset_center);
  863. if (celsius >= _offset_start && celsius <= _offset_center)
  864. {
  865. celsius = celsius + (_first_koef * (celsius - _offset_start));
  866. }
  867. else if (celsius > _offset_center && celsius <= 100)
  868. {
  869. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  870. }
  871. else if (celsius > 100)
  872. {
  873. celsius = celsius + _offset;
  874. }
  875. #endif
  876. return celsius;
  877. #elif defined BED_USES_AD595
  878. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  879. #else
  880. return 0;
  881. #endif
  882. }
  883. #ifdef AMBIENT_THERMISTOR
  884. static float analog2tempAmbient(int raw)
  885. {
  886. float celsius = 0;
  887. byte i;
  888. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  889. {
  890. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  891. {
  892. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  893. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  894. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  895. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  896. break;
  897. }
  898. }
  899. // Overflow: Set to last value in the table
  900. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  901. return celsius;
  902. }
  903. #endif //AMBIENT_THERMISTOR
  904. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  905. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  906. static void updateTemperaturesFromRawValues()
  907. {
  908. for(uint8_t e=0;e<EXTRUDERS;e++)
  909. {
  910. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  911. }
  912. #ifdef PINDA_THERMISTOR
  913. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  914. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  915. #endif
  916. #ifdef AMBIENT_THERMISTOR
  917. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  918. #endif
  919. #ifdef DEBUG_HEATER_BED_SIM
  920. current_temperature_bed = target_temperature_bed;
  921. #else //DEBUG_HEATER_BED_SIM
  922. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  923. #endif //DEBUG_HEATER_BED_SIM
  924. CRITICAL_SECTION_START;
  925. temp_meas_ready = false;
  926. CRITICAL_SECTION_END;
  927. }
  928. void tp_init()
  929. {
  930. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  931. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  932. MCUCR=(1<<JTD);
  933. MCUCR=(1<<JTD);
  934. #endif
  935. // Finish init of mult extruder arrays
  936. for(int e = 0; e < EXTRUDERS; e++) {
  937. // populate with the first value
  938. maxttemp[e] = maxttemp[0];
  939. #ifdef PIDTEMP
  940. iState_sum_min[e] = 0.0;
  941. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  942. #endif //PIDTEMP
  943. #ifdef PIDTEMPBED
  944. temp_iState_min_bed = 0.0;
  945. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  946. #endif //PIDTEMPBED
  947. }
  948. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  949. SET_OUTPUT(HEATER_0_PIN);
  950. #endif
  951. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  952. SET_OUTPUT(HEATER_1_PIN);
  953. #endif
  954. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  955. SET_OUTPUT(HEATER_2_PIN);
  956. #endif
  957. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  958. SET_OUTPUT(HEATER_BED_PIN);
  959. #endif
  960. #if defined(FAN_PIN) && (FAN_PIN > -1)
  961. SET_OUTPUT(FAN_PIN);
  962. #ifdef FAST_PWM_FAN
  963. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  964. #endif
  965. #ifdef FAN_SOFT_PWM
  966. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  967. #endif
  968. #endif
  969. #ifdef HEATER_0_USES_MAX6675
  970. #ifndef SDSUPPORT
  971. SET_OUTPUT(SCK_PIN);
  972. WRITE(SCK_PIN,0);
  973. SET_OUTPUT(MOSI_PIN);
  974. WRITE(MOSI_PIN,1);
  975. SET_INPUT(MISO_PIN);
  976. WRITE(MISO_PIN,1);
  977. #endif
  978. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  979. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  980. pinMode(SS_PIN, OUTPUT);
  981. digitalWrite(SS_PIN,0);
  982. pinMode(MAX6675_SS, OUTPUT);
  983. digitalWrite(MAX6675_SS,1);
  984. #endif
  985. adc_init();
  986. timer0_init(); //enables the heatbed timer.
  987. // timer2 already enabled earlier in the code
  988. // now enable the COMPB temperature interrupt
  989. OCR2B = 128;
  990. TIMSK2 |= (1<<OCIE2B);
  991. timer4_init(); //for tone and Extruder fan PWM
  992. // Wait for temperature measurement to settle
  993. _delay(250);
  994. #ifdef HEATER_0_MINTEMP
  995. minttemp[0] = HEATER_0_MINTEMP;
  996. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  997. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  998. minttemp_raw[0] += OVERSAMPLENR;
  999. #else
  1000. minttemp_raw[0] -= OVERSAMPLENR;
  1001. #endif
  1002. }
  1003. #endif //MINTEMP
  1004. #ifdef HEATER_0_MAXTEMP
  1005. maxttemp[0] = HEATER_0_MAXTEMP;
  1006. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1007. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1008. maxttemp_raw[0] -= OVERSAMPLENR;
  1009. #else
  1010. maxttemp_raw[0] += OVERSAMPLENR;
  1011. #endif
  1012. }
  1013. #endif //MAXTEMP
  1014. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1015. minttemp[1] = HEATER_1_MINTEMP;
  1016. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1017. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1018. minttemp_raw[1] += OVERSAMPLENR;
  1019. #else
  1020. minttemp_raw[1] -= OVERSAMPLENR;
  1021. #endif
  1022. }
  1023. #endif // MINTEMP 1
  1024. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1025. maxttemp[1] = HEATER_1_MAXTEMP;
  1026. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1027. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1028. maxttemp_raw[1] -= OVERSAMPLENR;
  1029. #else
  1030. maxttemp_raw[1] += OVERSAMPLENR;
  1031. #endif
  1032. }
  1033. #endif //MAXTEMP 1
  1034. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1035. minttemp[2] = HEATER_2_MINTEMP;
  1036. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1037. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1038. minttemp_raw[2] += OVERSAMPLENR;
  1039. #else
  1040. minttemp_raw[2] -= OVERSAMPLENR;
  1041. #endif
  1042. }
  1043. #endif //MINTEMP 2
  1044. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1045. maxttemp[2] = HEATER_2_MAXTEMP;
  1046. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1047. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1048. maxttemp_raw[2] -= OVERSAMPLENR;
  1049. #else
  1050. maxttemp_raw[2] += OVERSAMPLENR;
  1051. #endif
  1052. }
  1053. #endif //MAXTEMP 2
  1054. #ifdef BED_MINTEMP
  1055. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1056. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1057. bed_minttemp_raw += OVERSAMPLENR;
  1058. #else
  1059. bed_minttemp_raw -= OVERSAMPLENR;
  1060. #endif
  1061. }
  1062. #endif //BED_MINTEMP
  1063. #ifdef BED_MAXTEMP
  1064. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1065. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1066. bed_maxttemp_raw -= OVERSAMPLENR;
  1067. #else
  1068. bed_maxttemp_raw += OVERSAMPLENR;
  1069. #endif
  1070. }
  1071. #endif //BED_MAXTEMP
  1072. #ifdef AMBIENT_MINTEMP
  1073. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1074. #if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
  1075. ambient_minttemp_raw += OVERSAMPLENR;
  1076. #else
  1077. ambient_minttemp_raw -= OVERSAMPLENR;
  1078. #endif
  1079. }
  1080. #endif //AMBIENT_MINTEMP
  1081. #ifdef AMBIENT_MAXTEMP
  1082. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1083. #if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
  1084. ambient_maxttemp_raw -= OVERSAMPLENR;
  1085. #else
  1086. ambient_maxttemp_raw += OVERSAMPLENR;
  1087. #endif
  1088. }
  1089. #endif //AMBIENT_MAXTEMP
  1090. }
  1091. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1092. void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1093. {
  1094. float __delta;
  1095. float __hysteresis = 0;
  1096. uint16_t __timeout = 0;
  1097. bool temp_runaway_check_active = false;
  1098. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1099. static uint8_t __preheat_counter[2] = { 0,0};
  1100. static uint8_t __preheat_errors[2] = { 0,0};
  1101. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1102. {
  1103. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1104. if (_isbed)
  1105. {
  1106. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1107. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1108. }
  1109. #endif
  1110. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1111. if (!_isbed)
  1112. {
  1113. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1114. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1115. }
  1116. #endif
  1117. temp_runaway_timer[_heater_id] = _millis();
  1118. if (_output == 0)
  1119. {
  1120. temp_runaway_check_active = false;
  1121. temp_runaway_error_counter[_heater_id] = 0;
  1122. }
  1123. if (temp_runaway_target[_heater_id] != _target_temperature)
  1124. {
  1125. if (_target_temperature > 0)
  1126. {
  1127. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1128. temp_runaway_target[_heater_id] = _target_temperature;
  1129. __preheat_start[_heater_id] = _current_temperature;
  1130. __preheat_counter[_heater_id] = 0;
  1131. }
  1132. else
  1133. {
  1134. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1135. temp_runaway_target[_heater_id] = _target_temperature;
  1136. }
  1137. }
  1138. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1139. {
  1140. __preheat_counter[_heater_id]++;
  1141. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1142. {
  1143. /*SERIAL_ECHOPGM("Heater:");
  1144. MYSERIAL.print(_heater_id);
  1145. SERIAL_ECHOPGM(" T:");
  1146. MYSERIAL.print(_current_temperature);
  1147. SERIAL_ECHOPGM(" Tstart:");
  1148. MYSERIAL.print(__preheat_start[_heater_id]);
  1149. SERIAL_ECHOPGM(" delta:");
  1150. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1151. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1152. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1153. __delta=2.0;
  1154. if(_isbed)
  1155. {
  1156. __delta=3.0;
  1157. if(_current_temperature>90.0) __delta=2.0;
  1158. if(_current_temperature>105.0) __delta=0.6;
  1159. }
  1160. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1161. __preheat_errors[_heater_id]++;
  1162. /*SERIAL_ECHOPGM(" Preheat errors:");
  1163. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1164. }
  1165. else {
  1166. //SERIAL_ECHOLNPGM("");
  1167. __preheat_errors[_heater_id] = 0;
  1168. }
  1169. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1170. {
  1171. if (farm_mode) { prusa_statistics(0); }
  1172. temp_runaway_stop(true, _isbed);
  1173. if (farm_mode) { prusa_statistics(91); }
  1174. }
  1175. __preheat_start[_heater_id] = _current_temperature;
  1176. __preheat_counter[_heater_id] = 0;
  1177. }
  1178. }
  1179. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1180. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1181. {
  1182. /*SERIAL_ECHOPGM("Heater:");
  1183. MYSERIAL.print(_heater_id);
  1184. MYSERIAL.println(" ->tempRunaway");*/
  1185. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1186. temp_runaway_check_active = false;
  1187. temp_runaway_error_counter[_heater_id] = 0;
  1188. }
  1189. if (_output > 0)
  1190. {
  1191. temp_runaway_check_active = true;
  1192. }
  1193. if (temp_runaway_check_active)
  1194. {
  1195. // we are in range
  1196. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1197. {
  1198. temp_runaway_check_active = false;
  1199. temp_runaway_error_counter[_heater_id] = 0;
  1200. }
  1201. else
  1202. {
  1203. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1204. {
  1205. temp_runaway_error_counter[_heater_id]++;
  1206. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1207. {
  1208. if (farm_mode) { prusa_statistics(0); }
  1209. temp_runaway_stop(false, _isbed);
  1210. if (farm_mode) { prusa_statistics(90); }
  1211. }
  1212. }
  1213. }
  1214. }
  1215. }
  1216. }
  1217. void temp_runaway_stop(bool isPreheat, bool isBed)
  1218. {
  1219. disable_heater();
  1220. Sound_MakeCustom(200,0,true);
  1221. if (isPreheat)
  1222. {
  1223. lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
  1224. SERIAL_ERROR_START;
  1225. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
  1226. #ifdef EXTRUDER_ALTFAN_DETECT
  1227. altfanStatus.altfanOverride = 1; //full speed
  1228. #endif //EXTRUDER_ALTFAN_DETECT
  1229. setExtruderAutoFanState(3);
  1230. SET_OUTPUT(FAN_PIN);
  1231. #ifdef FAN_SOFT_PWM
  1232. fanSpeedSoftPwm = 255;
  1233. #else //FAN_SOFT_PWM
  1234. analogWrite(FAN_PIN, 255);
  1235. #endif //FAN_SOFT_PWM
  1236. fanSpeed = 255;
  1237. }
  1238. else
  1239. {
  1240. lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
  1241. SERIAL_ERROR_START;
  1242. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1243. }
  1244. Stop();
  1245. }
  1246. #endif
  1247. void disable_heater()
  1248. {
  1249. setAllTargetHotends(0);
  1250. setTargetBed(0);
  1251. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1252. target_temperature[0]=0;
  1253. soft_pwm[0]=0;
  1254. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1255. WRITE(HEATER_0_PIN,LOW);
  1256. #endif
  1257. #endif
  1258. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1
  1259. target_temperature[1]=0;
  1260. soft_pwm[1]=0;
  1261. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1262. WRITE(HEATER_1_PIN,LOW);
  1263. #endif
  1264. #endif
  1265. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1266. target_temperature[2]=0;
  1267. soft_pwm[2]=0;
  1268. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1269. WRITE(HEATER_2_PIN,LOW);
  1270. #endif
  1271. #endif
  1272. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1273. target_temperature_bed=0;
  1274. soft_pwm_bed=0;
  1275. timer02_set_pwm0(soft_pwm_bed << 1);
  1276. bedPWMDisabled = 0;
  1277. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1278. //WRITE(HEATER_BED_PIN,LOW);
  1279. #endif
  1280. #endif
  1281. }
  1282. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1283. //! than raw const char * of the messages themselves.
  1284. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1285. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1286. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1287. //! remember the last alert message sent to the LCD
  1288. //! to prevent flicker and improve speed
  1289. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1290. //! update the current temperature error message
  1291. //! @param type short error abbreviation (PROGMEM)
  1292. void temp_update_messagepgm(const char* PROGMEM type)
  1293. {
  1294. char msg[LCD_WIDTH];
  1295. strcpy_P(msg, PSTR("Err: "));
  1296. strcat_P(msg, type);
  1297. lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
  1298. }
  1299. //! signal a temperature error on both the lcd and serial
  1300. //! @param type short error abbreviation (PROGMEM)
  1301. //! @param e optional extruder index for hotend errors
  1302. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1303. {
  1304. temp_update_messagepgm(type);
  1305. SERIAL_ERROR_START;
  1306. if(e != EXTRUDERS) {
  1307. SERIAL_ERROR((int)e);
  1308. SERIAL_ERRORPGM(": ");
  1309. }
  1310. SERIAL_ERRORPGM("Heaters switched off. ");
  1311. SERIAL_ERRORRPGM(type);
  1312. SERIAL_ERRORLNPGM(" triggered!");
  1313. }
  1314. void max_temp_error(uint8_t e) {
  1315. disable_heater();
  1316. if(IsStopped() == false) {
  1317. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1318. }
  1319. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1320. Stop();
  1321. #endif
  1322. SET_OUTPUT(FAN_PIN);
  1323. SET_OUTPUT(BEEPER);
  1324. WRITE(FAN_PIN, 1);
  1325. WRITE(BEEPER, 1);
  1326. #ifdef EXTRUDER_ALTFAN_DETECT
  1327. altfanStatus.altfanOverride = 1; //full speed
  1328. #endif //EXTRUDER_ALTFAN_DETECT
  1329. setExtruderAutoFanState(3);
  1330. // fanSpeed will consumed by the check_axes_activity() routine.
  1331. fanSpeed=255;
  1332. if (farm_mode) { prusa_statistics(93); }
  1333. }
  1334. void min_temp_error(uint8_t e) {
  1335. #ifdef DEBUG_DISABLE_MINTEMP
  1336. return;
  1337. #endif
  1338. disable_heater();
  1339. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1340. static const char err[] PROGMEM = "MINTEMP";
  1341. if(IsStopped() == false) {
  1342. temp_error_messagepgm(err, e);
  1343. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1344. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1345. // we are already stopped due to some error, only update the status message without flickering
  1346. temp_update_messagepgm(err);
  1347. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1348. }
  1349. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1350. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1351. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1352. // lcd_print_stop();
  1353. // }
  1354. Stop();
  1355. #endif
  1356. if (farm_mode) { prusa_statistics(92); }
  1357. }
  1358. void bed_max_temp_error(void) {
  1359. disable_heater();
  1360. if(IsStopped() == false) {
  1361. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1362. }
  1363. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1364. Stop();
  1365. #endif
  1366. }
  1367. void bed_min_temp_error(void) {
  1368. #ifdef DEBUG_DISABLE_MINTEMP
  1369. return;
  1370. #endif
  1371. disable_heater();
  1372. static const char err[] PROGMEM = "MINTEMP BED";
  1373. if(IsStopped() == false) {
  1374. temp_error_messagepgm(err);
  1375. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1376. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1377. // we are already stopped due to some error, only update the status message without flickering
  1378. temp_update_messagepgm(err);
  1379. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1380. }
  1381. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1382. Stop();
  1383. #endif
  1384. }
  1385. #ifdef AMBIENT_THERMISTOR
  1386. void ambient_max_temp_error(void) {
  1387. disable_heater();
  1388. if(IsStopped() == false) {
  1389. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1390. }
  1391. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1392. Stop();
  1393. #endif
  1394. }
  1395. void ambient_min_temp_error(void) {
  1396. #ifdef DEBUG_DISABLE_MINTEMP
  1397. return;
  1398. #endif
  1399. disable_heater();
  1400. if(IsStopped() == false) {
  1401. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1402. }
  1403. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1404. Stop();
  1405. #endif
  1406. }
  1407. #endif
  1408. #ifdef HEATER_0_USES_MAX6675
  1409. #define MAX6675_HEAT_INTERVAL 250
  1410. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1411. int max6675_temp = 2000;
  1412. int read_max6675()
  1413. {
  1414. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1415. return max6675_temp;
  1416. max6675_previous_millis = _millis();
  1417. max6675_temp = 0;
  1418. #ifdef PRR
  1419. PRR &= ~(1<<PRSPI);
  1420. #elif defined PRR0
  1421. PRR0 &= ~(1<<PRSPI);
  1422. #endif
  1423. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1424. // enable TT_MAX6675
  1425. WRITE(MAX6675_SS, 0);
  1426. // ensure 100ns delay - a bit extra is fine
  1427. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1428. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1429. // read MSB
  1430. SPDR = 0;
  1431. for (;(SPSR & (1<<SPIF)) == 0;);
  1432. max6675_temp = SPDR;
  1433. max6675_temp <<= 8;
  1434. // read LSB
  1435. SPDR = 0;
  1436. for (;(SPSR & (1<<SPIF)) == 0;);
  1437. max6675_temp |= SPDR;
  1438. // disable TT_MAX6675
  1439. WRITE(MAX6675_SS, 1);
  1440. if (max6675_temp & 4)
  1441. {
  1442. // thermocouple open
  1443. max6675_temp = 2000;
  1444. }
  1445. else
  1446. {
  1447. max6675_temp = max6675_temp >> 3;
  1448. }
  1449. return max6675_temp;
  1450. }
  1451. #endif
  1452. extern "C" {
  1453. void adc_ready(void) //callback from adc when sampling finished
  1454. {
  1455. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_1_PIN)]; //heater
  1456. #ifdef PINDA_THERMISTOR
  1457. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1458. #endif //PINDA_THERMISTOR
  1459. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1460. #ifdef VOLT_PWR_PIN
  1461. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1462. #endif
  1463. #ifdef AMBIENT_THERMISTOR
  1464. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1465. #endif //AMBIENT_THERMISTOR
  1466. #ifdef VOLT_BED_PIN
  1467. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1468. #endif
  1469. #ifdef IR_SENSOR_ANALOG
  1470. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1471. #endif //IR_SENSOR_ANALOG
  1472. temp_meas_ready = true;
  1473. }
  1474. } // extern "C"
  1475. FORCE_INLINE static void temperature_isr()
  1476. {
  1477. #ifdef DEBUG_PULLUP_CRASH
  1478. // check for faulty pull-ups enabled on thermistor inputs
  1479. if ((PORTF & (uint8_t)(ADC_DIDR_MSK & 0xff)) || (PORTK & (uint8_t)((ADC_DIDR_MSK >> 8) & 0xff)))
  1480. pullup_error(true);
  1481. #else
  1482. PORTF &= ~(uint8_t)(ADC_DIDR_MSK & 0xff);
  1483. PORTK &= ~(uint8_t)((ADC_DIDR_MSK >> 8) & 0xff);
  1484. #endif // DEBUG_PULLUP_CRASH
  1485. if (!temp_meas_ready) adc_cycle();
  1486. lcd_buttons_update();
  1487. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1488. static uint8_t soft_pwm_0;
  1489. #ifdef SLOW_PWM_HEATERS
  1490. static unsigned char slow_pwm_count = 0;
  1491. static unsigned char state_heater_0 = 0;
  1492. static unsigned char state_timer_heater_0 = 0;
  1493. #endif
  1494. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1495. static unsigned char soft_pwm_1;
  1496. #ifdef SLOW_PWM_HEATERS
  1497. static unsigned char state_heater_1 = 0;
  1498. static unsigned char state_timer_heater_1 = 0;
  1499. #endif
  1500. #endif
  1501. #if EXTRUDERS > 2
  1502. static unsigned char soft_pwm_2;
  1503. #ifdef SLOW_PWM_HEATERS
  1504. static unsigned char state_heater_2 = 0;
  1505. static unsigned char state_timer_heater_2 = 0;
  1506. #endif
  1507. #endif
  1508. #if HEATER_BED_PIN > -1
  1509. // @@DR static unsigned char soft_pwm_b;
  1510. #ifdef SLOW_PWM_HEATERS
  1511. static unsigned char state_heater_b = 0;
  1512. static unsigned char state_timer_heater_b = 0;
  1513. #endif
  1514. #endif
  1515. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1516. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1517. #endif
  1518. #ifndef SLOW_PWM_HEATERS
  1519. /*
  1520. * standard PWM modulation
  1521. */
  1522. if (pwm_count == 0)
  1523. {
  1524. soft_pwm_0 = soft_pwm[0];
  1525. if(soft_pwm_0 > 0)
  1526. {
  1527. WRITE(HEATER_0_PIN,1);
  1528. #ifdef HEATERS_PARALLEL
  1529. WRITE(HEATER_1_PIN,1);
  1530. #endif
  1531. } else WRITE(HEATER_0_PIN,0);
  1532. #if EXTRUDERS > 1
  1533. soft_pwm_1 = soft_pwm[1];
  1534. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1535. #endif
  1536. #if EXTRUDERS > 2
  1537. soft_pwm_2 = soft_pwm[2];
  1538. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1539. #endif
  1540. }
  1541. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1542. #if 0 // @@DR vypnuto pro hw pwm bedu
  1543. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1544. // teoreticky by se tato cast uz vubec nemusela poustet
  1545. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1546. {
  1547. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1548. # ifndef SYSTEM_TIMER_2
  1549. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1550. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1551. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1552. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1553. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1554. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1555. # endif //SYSTEM_TIMER_2
  1556. }
  1557. #endif
  1558. #endif
  1559. #ifdef FAN_SOFT_PWM
  1560. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1561. {
  1562. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1563. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1564. }
  1565. #endif
  1566. if(soft_pwm_0 < pwm_count)
  1567. {
  1568. WRITE(HEATER_0_PIN,0);
  1569. #ifdef HEATERS_PARALLEL
  1570. WRITE(HEATER_1_PIN,0);
  1571. #endif
  1572. }
  1573. #if EXTRUDERS > 1
  1574. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1575. #endif
  1576. #if EXTRUDERS > 2
  1577. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1578. #endif
  1579. #if 0 // @@DR
  1580. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1581. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1582. //WRITE(HEATER_BED_PIN,0);
  1583. }
  1584. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1585. #endif
  1586. #endif
  1587. #ifdef FAN_SOFT_PWM
  1588. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1589. #endif
  1590. pwm_count += (1 << SOFT_PWM_SCALE);
  1591. pwm_count &= 0x7f;
  1592. #else //ifndef SLOW_PWM_HEATERS
  1593. /*
  1594. * SLOW PWM HEATERS
  1595. *
  1596. * for heaters drived by relay
  1597. */
  1598. #ifndef MIN_STATE_TIME
  1599. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1600. #endif
  1601. if (slow_pwm_count == 0) {
  1602. // EXTRUDER 0
  1603. soft_pwm_0 = soft_pwm[0];
  1604. if (soft_pwm_0 > 0) {
  1605. // turn ON heather only if the minimum time is up
  1606. if (state_timer_heater_0 == 0) {
  1607. // if change state set timer
  1608. if (state_heater_0 == 0) {
  1609. state_timer_heater_0 = MIN_STATE_TIME;
  1610. }
  1611. state_heater_0 = 1;
  1612. WRITE(HEATER_0_PIN, 1);
  1613. #ifdef HEATERS_PARALLEL
  1614. WRITE(HEATER_1_PIN, 1);
  1615. #endif
  1616. }
  1617. } else {
  1618. // turn OFF heather only if the minimum time is up
  1619. if (state_timer_heater_0 == 0) {
  1620. // if change state set timer
  1621. if (state_heater_0 == 1) {
  1622. state_timer_heater_0 = MIN_STATE_TIME;
  1623. }
  1624. state_heater_0 = 0;
  1625. WRITE(HEATER_0_PIN, 0);
  1626. #ifdef HEATERS_PARALLEL
  1627. WRITE(HEATER_1_PIN, 0);
  1628. #endif
  1629. }
  1630. }
  1631. #if EXTRUDERS > 1
  1632. // EXTRUDER 1
  1633. soft_pwm_1 = soft_pwm[1];
  1634. if (soft_pwm_1 > 0) {
  1635. // turn ON heather only if the minimum time is up
  1636. if (state_timer_heater_1 == 0) {
  1637. // if change state set timer
  1638. if (state_heater_1 == 0) {
  1639. state_timer_heater_1 = MIN_STATE_TIME;
  1640. }
  1641. state_heater_1 = 1;
  1642. WRITE(HEATER_1_PIN, 1);
  1643. }
  1644. } else {
  1645. // turn OFF heather only if the minimum time is up
  1646. if (state_timer_heater_1 == 0) {
  1647. // if change state set timer
  1648. if (state_heater_1 == 1) {
  1649. state_timer_heater_1 = MIN_STATE_TIME;
  1650. }
  1651. state_heater_1 = 0;
  1652. WRITE(HEATER_1_PIN, 0);
  1653. }
  1654. }
  1655. #endif
  1656. #if EXTRUDERS > 2
  1657. // EXTRUDER 2
  1658. soft_pwm_2 = soft_pwm[2];
  1659. if (soft_pwm_2 > 0) {
  1660. // turn ON heather only if the minimum time is up
  1661. if (state_timer_heater_2 == 0) {
  1662. // if change state set timer
  1663. if (state_heater_2 == 0) {
  1664. state_timer_heater_2 = MIN_STATE_TIME;
  1665. }
  1666. state_heater_2 = 1;
  1667. WRITE(HEATER_2_PIN, 1);
  1668. }
  1669. } else {
  1670. // turn OFF heather only if the minimum time is up
  1671. if (state_timer_heater_2 == 0) {
  1672. // if change state set timer
  1673. if (state_heater_2 == 1) {
  1674. state_timer_heater_2 = MIN_STATE_TIME;
  1675. }
  1676. state_heater_2 = 0;
  1677. WRITE(HEATER_2_PIN, 0);
  1678. }
  1679. }
  1680. #endif
  1681. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1682. // BED
  1683. soft_pwm_b = soft_pwm_bed;
  1684. if (soft_pwm_b > 0) {
  1685. // turn ON heather only if the minimum time is up
  1686. if (state_timer_heater_b == 0) {
  1687. // if change state set timer
  1688. if (state_heater_b == 0) {
  1689. state_timer_heater_b = MIN_STATE_TIME;
  1690. }
  1691. state_heater_b = 1;
  1692. //WRITE(HEATER_BED_PIN, 1);
  1693. }
  1694. } else {
  1695. // turn OFF heather only if the minimum time is up
  1696. if (state_timer_heater_b == 0) {
  1697. // if change state set timer
  1698. if (state_heater_b == 1) {
  1699. state_timer_heater_b = MIN_STATE_TIME;
  1700. }
  1701. state_heater_b = 0;
  1702. WRITE(HEATER_BED_PIN, 0);
  1703. }
  1704. }
  1705. #endif
  1706. } // if (slow_pwm_count == 0)
  1707. // EXTRUDER 0
  1708. if (soft_pwm_0 < slow_pwm_count) {
  1709. // turn OFF heather only if the minimum time is up
  1710. if (state_timer_heater_0 == 0) {
  1711. // if change state set timer
  1712. if (state_heater_0 == 1) {
  1713. state_timer_heater_0 = MIN_STATE_TIME;
  1714. }
  1715. state_heater_0 = 0;
  1716. WRITE(HEATER_0_PIN, 0);
  1717. #ifdef HEATERS_PARALLEL
  1718. WRITE(HEATER_1_PIN, 0);
  1719. #endif
  1720. }
  1721. }
  1722. #if EXTRUDERS > 1
  1723. // EXTRUDER 1
  1724. if (soft_pwm_1 < slow_pwm_count) {
  1725. // turn OFF heather only if the minimum time is up
  1726. if (state_timer_heater_1 == 0) {
  1727. // if change state set timer
  1728. if (state_heater_1 == 1) {
  1729. state_timer_heater_1 = MIN_STATE_TIME;
  1730. }
  1731. state_heater_1 = 0;
  1732. WRITE(HEATER_1_PIN, 0);
  1733. }
  1734. }
  1735. #endif
  1736. #if EXTRUDERS > 2
  1737. // EXTRUDER 2
  1738. if (soft_pwm_2 < slow_pwm_count) {
  1739. // turn OFF heather only if the minimum time is up
  1740. if (state_timer_heater_2 == 0) {
  1741. // if change state set timer
  1742. if (state_heater_2 == 1) {
  1743. state_timer_heater_2 = MIN_STATE_TIME;
  1744. }
  1745. state_heater_2 = 0;
  1746. WRITE(HEATER_2_PIN, 0);
  1747. }
  1748. }
  1749. #endif
  1750. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1751. // BED
  1752. if (soft_pwm_b < slow_pwm_count) {
  1753. // turn OFF heather only if the minimum time is up
  1754. if (state_timer_heater_b == 0) {
  1755. // if change state set timer
  1756. if (state_heater_b == 1) {
  1757. state_timer_heater_b = MIN_STATE_TIME;
  1758. }
  1759. state_heater_b = 0;
  1760. WRITE(HEATER_BED_PIN, 0);
  1761. }
  1762. }
  1763. #endif
  1764. #ifdef FAN_SOFT_PWM
  1765. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1766. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1767. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1768. }
  1769. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1770. #endif
  1771. pwm_count += (1 << SOFT_PWM_SCALE);
  1772. pwm_count &= 0x7f;
  1773. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1774. if ((pwm_count % 64) == 0) {
  1775. slow_pwm_count++;
  1776. slow_pwm_count &= 0x7f;
  1777. // Extruder 0
  1778. if (state_timer_heater_0 > 0) {
  1779. state_timer_heater_0--;
  1780. }
  1781. #if EXTRUDERS > 1
  1782. // Extruder 1
  1783. if (state_timer_heater_1 > 0)
  1784. state_timer_heater_1--;
  1785. #endif
  1786. #if EXTRUDERS > 2
  1787. // Extruder 2
  1788. if (state_timer_heater_2 > 0)
  1789. state_timer_heater_2--;
  1790. #endif
  1791. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1792. // Bed
  1793. if (state_timer_heater_b > 0)
  1794. state_timer_heater_b--;
  1795. #endif
  1796. } //if ((pwm_count % 64) == 0) {
  1797. #endif //ifndef SLOW_PWM_HEATERS
  1798. #ifdef BABYSTEPPING
  1799. for(uint8_t axis=0;axis<3;axis++)
  1800. {
  1801. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1802. if(curTodo>0)
  1803. {
  1804. CRITICAL_SECTION_START;
  1805. babystep(axis,/*fwd*/true);
  1806. babystepsTodo[axis]--; //less to do next time
  1807. CRITICAL_SECTION_END;
  1808. }
  1809. else
  1810. if(curTodo<0)
  1811. {
  1812. CRITICAL_SECTION_START;
  1813. babystep(axis,/*fwd*/false);
  1814. babystepsTodo[axis]++; //less to do next time
  1815. CRITICAL_SECTION_END;
  1816. }
  1817. }
  1818. #endif //BABYSTEPPING
  1819. // Check if a stack overflow happened
  1820. if (!SdFatUtil::test_stack_integrity()) stack_error();
  1821. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1822. check_fans();
  1823. #endif //(defined(TACH_0))
  1824. }
  1825. // Timer2 (originaly timer0) is shared with millies
  1826. #ifdef SYSTEM_TIMER_2
  1827. ISR(TIMER2_COMPB_vect)
  1828. #else //SYSTEM_TIMER_2
  1829. ISR(TIMER0_COMPB_vect)
  1830. #endif //SYSTEM_TIMER_2
  1831. {
  1832. static bool _lock = false;
  1833. if (!_lock)
  1834. {
  1835. _lock = true;
  1836. sei();
  1837. temperature_isr();
  1838. cli();
  1839. _lock = false;
  1840. }
  1841. }
  1842. void check_max_temp()
  1843. {
  1844. //heater
  1845. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1846. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1847. #else
  1848. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1849. #endif
  1850. max_temp_error(0);
  1851. }
  1852. //bed
  1853. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1854. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1855. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1856. #else
  1857. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1858. #endif
  1859. bed_max_temp_error();
  1860. }
  1861. #endif
  1862. //ambient
  1863. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1864. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1865. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1866. #else
  1867. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1868. #endif
  1869. ambient_max_temp_error();
  1870. }
  1871. #endif
  1872. }
  1873. //! number of repeating the same state with consecutive step() calls
  1874. //! used to slow down text switching
  1875. struct alert_automaton_mintemp {
  1876. const char *m2;
  1877. alert_automaton_mintemp(const char *m2):m2(m2){}
  1878. private:
  1879. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1880. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1881. States state = States::Init;
  1882. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1883. void substep(States next_state){
  1884. if( repeat == 0 ){
  1885. state = next_state; // advance to the next state
  1886. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1887. } else {
  1888. --repeat;
  1889. }
  1890. }
  1891. public:
  1892. //! brief state automaton step routine
  1893. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1894. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1895. void step(float current_temp, float mintemp){
  1896. static const char m1[] PROGMEM = "Please restart";
  1897. switch(state){
  1898. case States::Init: // initial state - check hysteresis
  1899. if( current_temp > mintemp ){
  1900. state = States::TempAboveMintemp;
  1901. }
  1902. // otherwise keep the Err MINTEMP alert message on the display,
  1903. // i.e. do not transfer to state 1
  1904. break;
  1905. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1906. lcd_setalertstatuspgm(m2);
  1907. substep(States::ShowMintemp);
  1908. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1909. break;
  1910. case States::ShowPleaseRestart: // displaying "Please restart"
  1911. lcd_updatestatuspgm(m1);
  1912. substep(States::ShowMintemp);
  1913. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1914. break;
  1915. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1916. lcd_updatestatuspgm(m2);
  1917. substep(States::ShowPleaseRestart);
  1918. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1919. break;
  1920. }
  1921. }
  1922. };
  1923. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1924. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1925. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1926. void check_min_temp_heater0()
  1927. {
  1928. //heater
  1929. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1930. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1931. #else
  1932. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1933. #endif
  1934. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1935. min_temp_error(0);
  1936. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1937. // no recovery, just force the user to restart the printer
  1938. // which is a safer variant than just continuing printing
  1939. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1940. // we shall signalize, that MINTEMP has been fixed
  1941. // Code notice: normally the alert_automaton instance would have been placed here
  1942. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1943. // due to stupid compiler that takes 16 more bytes.
  1944. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1945. }
  1946. }
  1947. void check_min_temp_bed()
  1948. {
  1949. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1950. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1951. #else
  1952. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1953. #endif
  1954. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1955. bed_min_temp_error();
  1956. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1957. // no recovery, just force the user to restart the printer
  1958. // which is a safer variant than just continuing printing
  1959. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1960. }
  1961. }
  1962. #ifdef AMBIENT_MINTEMP
  1963. void check_min_temp_ambient()
  1964. {
  1965. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1966. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1967. #else
  1968. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1969. #endif
  1970. ambient_min_temp_error();
  1971. }
  1972. }
  1973. #endif
  1974. void check_min_temp()
  1975. {
  1976. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1977. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1978. #ifdef AMBIENT_THERMISTOR
  1979. #ifdef AMBIENT_MINTEMP
  1980. check_min_temp_ambient();
  1981. #endif
  1982. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1983. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1984. #else
  1985. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1986. #endif
  1987. { // ambient temperature is low
  1988. #endif //AMBIENT_THERMISTOR
  1989. // *** 'common' part of code for MK2.5 & MK3
  1990. // * nozzle checking
  1991. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1992. { // ~ nozzle heating is on
  1993. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1994. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1995. {
  1996. bCheckingOnHeater=true; // not necessary
  1997. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1998. }
  1999. }
  2000. else { // ~ nozzle heating is off
  2001. oTimer4minTempHeater.start();
  2002. bCheckingOnHeater=false;
  2003. }
  2004. // * bed checking
  2005. if(target_temperature_bed>BED_MINTEMP)
  2006. { // ~ bed heating is on
  2007. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  2008. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  2009. {
  2010. bCheckingOnBed=true; // not necessary
  2011. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2012. }
  2013. }
  2014. else { // ~ bed heating is off
  2015. oTimer4minTempBed.start();
  2016. bCheckingOnBed=false;
  2017. }
  2018. // *** end of 'common' part
  2019. #ifdef AMBIENT_THERMISTOR
  2020. }
  2021. else { // ambient temperature is standard
  2022. check_min_temp_heater0();
  2023. check_min_temp_bed();
  2024. }
  2025. #endif //AMBIENT_THERMISTOR
  2026. }
  2027. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2028. void check_fans() {
  2029. #ifdef FAN_SOFT_PWM
  2030. if (READ(TACH_0) != fan_state[0]) {
  2031. if(fan_measuring) fan_edge_counter[0] ++;
  2032. fan_state[0] = !fan_state[0];
  2033. }
  2034. #else //FAN_SOFT_PWM
  2035. if (READ(TACH_0) != fan_state[0]) {
  2036. fan_edge_counter[0] ++;
  2037. fan_state[0] = !fan_state[0];
  2038. }
  2039. #endif
  2040. //if (READ(TACH_1) != fan_state[1]) {
  2041. // fan_edge_counter[1] ++;
  2042. // fan_state[1] = !fan_state[1];
  2043. //}
  2044. }
  2045. #endif //TACH_0
  2046. #ifdef PIDTEMP
  2047. // Apply the scale factors to the PID values
  2048. float scalePID_i(float i)
  2049. {
  2050. return i*PID_dT;
  2051. }
  2052. float unscalePID_i(float i)
  2053. {
  2054. return i/PID_dT;
  2055. }
  2056. float scalePID_d(float d)
  2057. {
  2058. return d/PID_dT;
  2059. }
  2060. float unscalePID_d(float d)
  2061. {
  2062. return d*PID_dT;
  2063. }
  2064. #endif //PIDTEMP
  2065. #ifdef PINDA_THERMISTOR
  2066. //! @brief PINDA thermistor detected
  2067. //!
  2068. //! @retval true firmware should do temperature compensation and allow calibration
  2069. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2070. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2071. //!
  2072. bool has_temperature_compensation()
  2073. {
  2074. #ifdef SUPERPINDA_SUPPORT
  2075. #ifdef PINDA_TEMP_COMP
  2076. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2077. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2078. {
  2079. #endif //PINDA_TEMP_COMP
  2080. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2081. #ifdef PINDA_TEMP_COMP
  2082. }
  2083. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2084. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2085. #endif //PINDA_TEMP_COMP
  2086. #else
  2087. return true;
  2088. #endif
  2089. }
  2090. #endif //PINDA_THERMISTOR