temperature.cpp 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. int current_temperature_raw_pinda = 0 ;
  43. float current_temperature_pinda = 0.0;
  44. #endif //PINDA_THERMISTOR
  45. #ifdef AMBIENT_THERMISTOR
  46. int current_temperature_raw_ambient = 0 ;
  47. float current_temperature_ambient = 0.0;
  48. #endif //AMBIENT_THERMISTOR
  49. #ifdef VOLT_PWR_PIN
  50. int current_voltage_raw_pwr = 0;
  51. #endif
  52. #ifdef VOLT_BED_PIN
  53. int current_voltage_raw_bed = 0;
  54. #endif
  55. int current_temperature_bed_raw = 0;
  56. float current_temperature_bed = 0.0;
  57. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  58. int redundant_temperature_raw = 0;
  59. float redundant_temperature = 0.0;
  60. #endif
  61. #ifdef PIDTEMP
  62. float _Kp, _Ki, _Kd;
  63. int pid_cycle, pid_number_of_cycles;
  64. bool pid_tuning_finished = false;
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef FAN_SOFT_PWM
  70. unsigned char fanSpeedSoftPwm;
  71. #endif
  72. unsigned char soft_pwm_bed;
  73. #ifdef BABYSTEPPING
  74. volatile int babystepsTodo[3]={0,0,0};
  75. #endif
  76. //===========================================================================
  77. //=============================private variables============================
  78. //===========================================================================
  79. static volatile bool temp_meas_ready = false;
  80. #ifdef PIDTEMP
  81. //static cannot be external:
  82. static float iState_sum[EXTRUDERS] = { 0 };
  83. static float dState_last[EXTRUDERS] = { 0 };
  84. static float pTerm[EXTRUDERS];
  85. static float iTerm[EXTRUDERS];
  86. static float dTerm[EXTRUDERS];
  87. //int output;
  88. static float pid_error[EXTRUDERS];
  89. static float iState_sum_min[EXTRUDERS];
  90. static float iState_sum_max[EXTRUDERS];
  91. // static float pid_input[EXTRUDERS];
  92. // static float pid_output[EXTRUDERS];
  93. static bool pid_reset[EXTRUDERS];
  94. #endif //PIDTEMP
  95. #ifdef PIDTEMPBED
  96. //static cannot be external:
  97. static float temp_iState_bed = { 0 };
  98. static float temp_dState_bed = { 0 };
  99. static float pTerm_bed;
  100. static float iTerm_bed;
  101. static float dTerm_bed;
  102. //int output;
  103. static float pid_error_bed;
  104. static float temp_iState_min_bed;
  105. static float temp_iState_max_bed;
  106. #else //PIDTEMPBED
  107. static unsigned long previous_millis_bed_heater;
  108. #endif //PIDTEMPBED
  109. static unsigned char soft_pwm[EXTRUDERS];
  110. #ifdef FAN_SOFT_PWM
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  114. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  116. unsigned long extruder_autofan_last_check = _millis();
  117. uint8_t fanSpeedBckp = 255;
  118. bool fan_measuring = false;
  119. #endif
  120. #if EXTRUDERS > 3
  121. # error Unsupported number of extruders
  122. #elif EXTRUDERS > 2
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  124. #elif EXTRUDERS > 1
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  126. #else
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  128. #endif
  129. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  130. // Init min and max temp with extreme values to prevent false errors during startup
  131. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  132. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  133. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  134. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  135. #ifdef BED_MINTEMP
  136. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  137. #endif
  138. #ifdef BED_MAXTEMP
  139. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  140. #endif
  141. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  142. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  143. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  144. #else
  145. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  146. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  147. #endif
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static void updateTemperaturesFromRawValues();
  152. enum TempRunawayStates
  153. {
  154. TempRunaway_INACTIVE = 0,
  155. TempRunaway_PREHEAT = 1,
  156. TempRunaway_ACTIVE = 2,
  157. };
  158. #ifdef WATCH_TEMP_PERIOD
  159. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  160. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. #endif //WATCH_TEMP_PERIOD
  162. #ifndef SOFT_PWM_SCALE
  163. #define SOFT_PWM_SCALE 0
  164. #endif
  165. //===========================================================================
  166. //============================= functions ============================
  167. //===========================================================================
  168. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  169. static float temp_runaway_status[4];
  170. static float temp_runaway_target[4];
  171. static float temp_runaway_timer[4];
  172. static int temp_runaway_error_counter[4];
  173. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  174. static void temp_runaway_stop(bool isPreheat, bool isBed);
  175. #endif
  176. void PID_autotune(float temp, int extruder, int ncycles)
  177. {
  178. pid_number_of_cycles = ncycles;
  179. pid_tuning_finished = false;
  180. float input = 0.0;
  181. pid_cycle=0;
  182. bool heating = true;
  183. unsigned long temp_millis = _millis();
  184. unsigned long t1=temp_millis;
  185. unsigned long t2=temp_millis;
  186. long t_high = 0;
  187. long t_low = 0;
  188. long bias, d;
  189. float Ku, Tu;
  190. float max = 0, min = 10000;
  191. uint8_t safety_check_cycles = 0;
  192. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  193. float temp_ambient;
  194. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = _millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. timer02_set_pwm0(soft_pwm_bed << 1);
  215. bias = d = (MAX_BED_POWER)/2;
  216. }
  217. else
  218. {
  219. soft_pwm[extruder] = (PID_MAX)/2;
  220. bias = d = (PID_MAX)/2;
  221. }
  222. for(;;) {
  223. #ifdef WATCHDOG
  224. wdt_reset();
  225. #endif //WATCHDOG
  226. if(temp_meas_ready == true) { // temp sample ready
  227. updateTemperaturesFromRawValues();
  228. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  229. max=max(max,input);
  230. min=min(min,input);
  231. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  232. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  233. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  234. if(_millis() - extruder_autofan_last_check > 2500) {
  235. checkExtruderAutoFans();
  236. extruder_autofan_last_check = _millis();
  237. }
  238. #endif
  239. if(heating == true && input > temp) {
  240. if(_millis() - t2 > 5000) {
  241. heating=false;
  242. if (extruder<0)
  243. {
  244. soft_pwm_bed = (bias - d) >> 1;
  245. timer02_set_pwm0(soft_pwm_bed << 1);
  246. }
  247. else
  248. soft_pwm[extruder] = (bias - d) >> 1;
  249. t1=_millis();
  250. t_high=t1 - t2;
  251. max=temp;
  252. }
  253. }
  254. if(heating == false && input < temp) {
  255. if(_millis() - t1 > 5000) {
  256. heating=true;
  257. t2=_millis();
  258. t_low=t2 - t1;
  259. if(pid_cycle > 0) {
  260. bias += (d*(t_high - t_low))/(t_low + t_high);
  261. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  262. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  263. else d = bias;
  264. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  265. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  266. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  267. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  268. if(pid_cycle > 2) {
  269. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  270. Tu = ((float)(t_low + t_high)/1000.0);
  271. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  272. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  273. _Kp = 0.6*Ku;
  274. _Ki = 2*_Kp/Tu;
  275. _Kd = _Kp*Tu/8;
  276. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  277. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  278. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  279. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  280. /*
  281. _Kp = 0.33*Ku;
  282. _Ki = _Kp/Tu;
  283. _Kd = _Kp*Tu/3;
  284. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  285. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  286. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  287. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  288. _Kp = 0.2*Ku;
  289. _Ki = 2*_Kp/Tu;
  290. _Kd = _Kp*Tu/3;
  291. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  292. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  293. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  294. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  295. */
  296. }
  297. }
  298. if (extruder<0)
  299. {
  300. soft_pwm_bed = (bias + d) >> 1;
  301. timer02_set_pwm0(soft_pwm_bed << 1);
  302. }
  303. else
  304. soft_pwm[extruder] = (bias + d) >> 1;
  305. pid_cycle++;
  306. min=temp;
  307. }
  308. }
  309. }
  310. if(input > (temp + 20)) {
  311. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  312. pid_tuning_finished = true;
  313. pid_cycle = 0;
  314. return;
  315. }
  316. if(_millis() - temp_millis > 2000) {
  317. int p;
  318. if (extruder<0){
  319. p=soft_pwm_bed;
  320. SERIAL_PROTOCOLPGM("B:");
  321. }else{
  322. p=soft_pwm[extruder];
  323. SERIAL_PROTOCOLPGM("T:");
  324. }
  325. SERIAL_PROTOCOL(input);
  326. SERIAL_PROTOCOLPGM(" @:");
  327. SERIAL_PROTOCOLLN(p);
  328. if (safety_check_cycles == 0) { //save ambient temp
  329. temp_ambient = input;
  330. //SERIAL_ECHOPGM("Ambient T: ");
  331. //MYSERIAL.println(temp_ambient);
  332. safety_check_cycles++;
  333. }
  334. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  335. safety_check_cycles++;
  336. }
  337. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  338. safety_check_cycles++;
  339. //SERIAL_ECHOPGM("Time from beginning: ");
  340. //MYSERIAL.print(safety_check_cycles_count * 2);
  341. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  342. //MYSERIAL.println(input - temp_ambient);
  343. if (abs(input - temp_ambient) < 5.0) {
  344. temp_runaway_stop(false, (extruder<0));
  345. pid_tuning_finished = true;
  346. return;
  347. }
  348. }
  349. temp_millis = _millis();
  350. }
  351. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. if(pid_cycle > ncycles) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. lcd_update(0);
  364. }
  365. }
  366. void updatePID()
  367. {
  368. #ifdef PIDTEMP
  369. for(int e = 0; e < EXTRUDERS; e++) {
  370. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  371. }
  372. #endif
  373. #ifdef PIDTEMPBED
  374. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  375. #endif
  376. }
  377. int getHeaterPower(int heater) {
  378. if (heater<0)
  379. return soft_pwm_bed;
  380. return soft_pwm[heater];
  381. }
  382. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  383. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  384. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  385. #if defined(FAN_PIN) && FAN_PIN > -1
  386. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  387. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  388. #endif
  389. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  390. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  391. #endif
  392. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #endif
  396. void setExtruderAutoFanState(int pin, bool state)
  397. {
  398. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  399. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  400. pinMode(pin, OUTPUT);
  401. digitalWrite(pin, newFanSpeed);
  402. //analogWrite(pin, newFanSpeed);
  403. }
  404. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  405. void countFanSpeed()
  406. {
  407. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  408. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  409. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  410. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  411. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  412. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  413. SERIAL_ECHOLNPGM(" ");*/
  414. fan_edge_counter[0] = 0;
  415. fan_edge_counter[1] = 0;
  416. }
  417. extern bool fans_check_enabled;
  418. void checkFanSpeed()
  419. {
  420. uint8_t max_print_fan_errors = 0;
  421. uint8_t max_extruder_fan_errors = 0;
  422. #ifdef FAN_SOFT_PWM
  423. max_print_fan_errors = 3; //15 seconds
  424. max_extruder_fan_errors = 2; //10seconds
  425. #else //FAN_SOFT_PWM
  426. max_print_fan_errors = 15; //15 seconds
  427. max_extruder_fan_errors = 5; //5 seconds
  428. #endif //FAN_SOFT_PWM
  429. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  430. static unsigned char fan_speed_errors[2] = { 0,0 };
  431. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  432. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  433. else fan_speed_errors[0] = 0;
  434. #endif
  435. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  436. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  437. else fan_speed_errors[1] = 0;
  438. #endif
  439. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  440. fan_speed_errors[0] = 0;
  441. fanSpeedError(0); //extruder fan
  442. }
  443. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  444. fan_speed_errors[1] = 0;
  445. fanSpeedError(1); //print fan
  446. }
  447. }
  448. void fanSpeedError(unsigned char _fan) {
  449. if (get_message_level() != 0 && isPrintPaused) return;
  450. //to ensure that target temp. is not set to zero in case taht we are resuming print
  451. if (card.sdprinting) {
  452. if (heating_status != 0) {
  453. lcd_print_stop();
  454. }
  455. else {
  456. lcd_pause_print();
  457. }
  458. }
  459. else {
  460. setTargetHotend0(0);
  461. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  462. }
  463. switch (_fan) {
  464. case 0:
  465. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  466. if (get_message_level() == 0) {
  467. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  468. WRITE(BEEPER, HIGH);
  469. delayMicroseconds(200);
  470. WRITE(BEEPER, LOW);
  471. delayMicroseconds(100);
  472. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  473. }
  474. break;
  475. case 1:
  476. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  477. if (get_message_level() == 0) {
  478. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  479. WRITE(BEEPER, HIGH);
  480. delayMicroseconds(200);
  481. WRITE(BEEPER, LOW);
  482. delayMicroseconds(100);
  483. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  484. }
  485. break;
  486. }
  487. }
  488. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  489. void checkExtruderAutoFans()
  490. {
  491. uint8_t fanState = 0;
  492. // which fan pins need to be turned on?
  493. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  494. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  495. fanState |= 1;
  496. #endif
  497. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  498. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. {
  500. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  501. fanState |= 1;
  502. else
  503. fanState |= 2;
  504. }
  505. #endif
  506. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  507. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. {
  509. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  510. fanState |= 1;
  511. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  512. fanState |= 2;
  513. else
  514. fanState |= 4;
  515. }
  516. #endif
  517. // update extruder auto fan states
  518. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  519. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  520. #endif
  521. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  522. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  523. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  524. #endif
  525. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  527. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  529. #endif
  530. }
  531. #endif // any extruder auto fan pins set
  532. // ready for eventually parameters adjusting
  533. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  534. //void resetPID(uint8_t extruder)
  535. {
  536. }
  537. void manage_heater()
  538. {
  539. #ifdef WATCHDOG
  540. wdt_reset();
  541. #endif //WATCHDOG
  542. float pid_input;
  543. float pid_output;
  544. if(temp_meas_ready != true) //better readability
  545. return;
  546. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  547. updateTemperaturesFromRawValues();
  548. check_max_temp();
  549. check_min_temp();
  550. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  551. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  552. #endif
  553. for(int e = 0; e < EXTRUDERS; e++)
  554. {
  555. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  556. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  557. #endif
  558. #ifdef PIDTEMP
  559. pid_input = current_temperature[e];
  560. #ifndef PID_OPENLOOP
  561. if(target_temperature[e] == 0) {
  562. pid_output = 0;
  563. pid_reset[e] = true;
  564. } else {
  565. pid_error[e] = target_temperature[e] - pid_input;
  566. if(pid_reset[e]) {
  567. iState_sum[e] = 0.0;
  568. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  569. pid_reset[e] = false;
  570. }
  571. #ifndef PonM
  572. pTerm[e] = cs.Kp * pid_error[e];
  573. iState_sum[e] += pid_error[e];
  574. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  575. iTerm[e] = cs.Ki * iState_sum[e];
  576. // K1 defined in Configuration.h in the PID settings
  577. #define K2 (1.0-K1)
  578. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  579. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  580. if (pid_output > PID_MAX) {
  581. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  582. pid_output=PID_MAX;
  583. } else if (pid_output < 0) {
  584. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  585. pid_output=0;
  586. }
  587. #else // PonM ("Proportional on Measurement" method)
  588. iState_sum[e] += cs.Ki * pid_error[e];
  589. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  590. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  591. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  592. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. pid_output = constrain(pid_output, 0, PID_MAX);
  594. #endif // PonM
  595. }
  596. dState_last[e] = pid_input;
  597. #else
  598. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  599. #endif //PID_OPENLOOP
  600. #ifdef PID_DEBUG
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHO(" PID_DEBUG ");
  603. SERIAL_ECHO(e);
  604. SERIAL_ECHO(": Input ");
  605. SERIAL_ECHO(pid_input);
  606. SERIAL_ECHO(" Output ");
  607. SERIAL_ECHO(pid_output);
  608. SERIAL_ECHO(" pTerm ");
  609. SERIAL_ECHO(pTerm[e]);
  610. SERIAL_ECHO(" iTerm ");
  611. SERIAL_ECHO(iTerm[e]);
  612. SERIAL_ECHO(" dTerm ");
  613. SERIAL_ECHOLN(-dTerm[e]);
  614. #endif //PID_DEBUG
  615. #else /* PID off */
  616. pid_output = 0;
  617. if(current_temperature[e] < target_temperature[e]) {
  618. pid_output = PID_MAX;
  619. }
  620. #endif
  621. // Check if temperature is within the correct range
  622. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  623. {
  624. soft_pwm[e] = (int)pid_output >> 1;
  625. }
  626. else
  627. {
  628. soft_pwm[e] = 0;
  629. }
  630. #ifdef WATCH_TEMP_PERIOD
  631. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  632. {
  633. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  634. {
  635. setTargetHotend(0, e);
  636. LCD_MESSAGEPGM("Heating failed");
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHOLN("Heating failed");
  639. }else{
  640. watchmillis[e] = 0;
  641. }
  642. }
  643. #endif
  644. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  645. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  646. disable_heater();
  647. if(IsStopped() == false) {
  648. SERIAL_ERROR_START;
  649. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  650. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  651. }
  652. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  653. Stop();
  654. #endif
  655. }
  656. #endif
  657. } // End extruder for loop
  658. #define FAN_CHECK_PERIOD 5000 //5s
  659. #define FAN_CHECK_DURATION 100 //100ms
  660. #ifndef DEBUG_DISABLE_FANCHECK
  661. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  662. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  663. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  664. #ifdef FAN_SOFT_PWM
  665. #ifdef FANCHECK
  666. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  667. extruder_autofan_last_check = _millis();
  668. fanSpeedBckp = fanSpeedSoftPwm;
  669. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  670. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  671. fanSpeedSoftPwm = 255;
  672. }
  673. fan_measuring = true;
  674. }
  675. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  676. countFanSpeed();
  677. checkFanSpeed();
  678. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  679. fanSpeedSoftPwm = fanSpeedBckp;
  680. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  681. extruder_autofan_last_check = _millis();
  682. fan_measuring = false;
  683. }
  684. #endif //FANCHECK
  685. checkExtruderAutoFans();
  686. #else //FAN_SOFT_PWM
  687. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  688. {
  689. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  690. countFanSpeed();
  691. checkFanSpeed();
  692. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  693. checkExtruderAutoFans();
  694. extruder_autofan_last_check = _millis();
  695. }
  696. #endif //FAN_SOFT_PWM
  697. #endif
  698. #endif //DEBUG_DISABLE_FANCHECK
  699. #ifndef PIDTEMPBED
  700. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  701. return;
  702. previous_millis_bed_heater = _millis();
  703. #endif
  704. #if TEMP_SENSOR_BED != 0
  705. #ifdef PIDTEMPBED
  706. pid_input = current_temperature_bed;
  707. #ifndef PID_OPENLOOP
  708. pid_error_bed = target_temperature_bed - pid_input;
  709. pTerm_bed = cs.bedKp * pid_error_bed;
  710. temp_iState_bed += pid_error_bed;
  711. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  712. iTerm_bed = cs.bedKi * temp_iState_bed;
  713. //K1 defined in Configuration.h in the PID settings
  714. #define K2 (1.0-K1)
  715. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  716. temp_dState_bed = pid_input;
  717. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  718. if (pid_output > MAX_BED_POWER) {
  719. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  720. pid_output=MAX_BED_POWER;
  721. } else if (pid_output < 0){
  722. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  723. pid_output=0;
  724. }
  725. #else
  726. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  727. #endif //PID_OPENLOOP
  728. if(current_temperature_bed < BED_MAXTEMP)
  729. {
  730. soft_pwm_bed = (int)pid_output >> 1;
  731. timer02_set_pwm0(soft_pwm_bed << 1);
  732. }
  733. else {
  734. soft_pwm_bed = 0;
  735. timer02_set_pwm0(soft_pwm_bed << 1);
  736. }
  737. #elif !defined(BED_LIMIT_SWITCHING)
  738. // Check if temperature is within the correct range
  739. if(current_temperature_bed < BED_MAXTEMP)
  740. {
  741. if(current_temperature_bed >= target_temperature_bed)
  742. {
  743. soft_pwm_bed = 0;
  744. timer02_set_pwm0(soft_pwm_bed << 1);
  745. }
  746. else
  747. {
  748. soft_pwm_bed = MAX_BED_POWER>>1;
  749. timer02_set_pwm0(soft_pwm_bed << 1);
  750. }
  751. }
  752. else
  753. {
  754. soft_pwm_bed = 0;
  755. timer02_set_pwm0(soft_pwm_bed << 1);
  756. WRITE(HEATER_BED_PIN,LOW);
  757. }
  758. #else //#ifdef BED_LIMIT_SWITCHING
  759. // Check if temperature is within the correct band
  760. if(current_temperature_bed < BED_MAXTEMP)
  761. {
  762. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  763. {
  764. soft_pwm_bed = 0;
  765. timer02_set_pwm0(soft_pwm_bed << 1);
  766. }
  767. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  768. {
  769. soft_pwm_bed = MAX_BED_POWER>>1;
  770. timer02_set_pwm0(soft_pwm_bed << 1);
  771. }
  772. }
  773. else
  774. {
  775. soft_pwm_bed = 0;
  776. timer02_set_pwm0(soft_pwm_bed << 1);
  777. WRITE(HEATER_BED_PIN,LOW);
  778. }
  779. #endif
  780. if(target_temperature_bed==0)
  781. {
  782. soft_pwm_bed = 0;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. }
  785. #endif
  786. #ifdef HOST_KEEPALIVE_FEATURE
  787. host_keepalive();
  788. #endif
  789. }
  790. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  791. // Derived from RepRap FiveD extruder::getTemperature()
  792. // For hot end temperature measurement.
  793. static float analog2temp(int raw, uint8_t e) {
  794. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  795. if(e > EXTRUDERS)
  796. #else
  797. if(e >= EXTRUDERS)
  798. #endif
  799. {
  800. SERIAL_ERROR_START;
  801. SERIAL_ERROR((int)e);
  802. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  803. kill(PSTR(""), 6);
  804. return 0.0;
  805. }
  806. #ifdef HEATER_0_USES_MAX6675
  807. if (e == 0)
  808. {
  809. return 0.25 * raw;
  810. }
  811. #endif
  812. if(heater_ttbl_map[e] != NULL)
  813. {
  814. float celsius = 0;
  815. uint8_t i;
  816. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  817. for (i=1; i<heater_ttbllen_map[e]; i++)
  818. {
  819. if (PGM_RD_W((*tt)[i][0]) > raw)
  820. {
  821. celsius = PGM_RD_W((*tt)[i-1][1]) +
  822. (raw - PGM_RD_W((*tt)[i-1][0])) *
  823. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  824. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  825. break;
  826. }
  827. }
  828. // Overflow: Set to last value in the table
  829. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  830. return celsius;
  831. }
  832. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  833. }
  834. // Derived from RepRap FiveD extruder::getTemperature()
  835. // For bed temperature measurement.
  836. static float analog2tempBed(int raw) {
  837. #ifdef BED_USES_THERMISTOR
  838. float celsius = 0;
  839. byte i;
  840. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  841. {
  842. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  843. {
  844. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  845. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  846. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  847. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  848. break;
  849. }
  850. }
  851. // Overflow: Set to last value in the table
  852. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  853. // temperature offset adjustment
  854. #ifdef BED_OFFSET
  855. float _offset = BED_OFFSET;
  856. float _offset_center = BED_OFFSET_CENTER;
  857. float _offset_start = BED_OFFSET_START;
  858. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  859. float _second_koef = (_offset / 2) / (100 - _offset_center);
  860. if (celsius >= _offset_start && celsius <= _offset_center)
  861. {
  862. celsius = celsius + (_first_koef * (celsius - _offset_start));
  863. }
  864. else if (celsius > _offset_center && celsius <= 100)
  865. {
  866. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  867. }
  868. else if (celsius > 100)
  869. {
  870. celsius = celsius + _offset;
  871. }
  872. #endif
  873. return celsius;
  874. #elif defined BED_USES_AD595
  875. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  876. #else
  877. return 0;
  878. #endif
  879. }
  880. #ifdef AMBIENT_THERMISTOR
  881. static float analog2tempAmbient(int raw)
  882. {
  883. float celsius = 0;
  884. byte i;
  885. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  886. {
  887. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  888. {
  889. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  890. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  891. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  892. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  893. break;
  894. }
  895. }
  896. // Overflow: Set to last value in the table
  897. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  898. return celsius;
  899. }
  900. #endif //AMBIENT_THERMISTOR
  901. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  902. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  903. static void updateTemperaturesFromRawValues()
  904. {
  905. for(uint8_t e=0;e<EXTRUDERS;e++)
  906. {
  907. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  908. }
  909. #ifdef PINDA_THERMISTOR
  910. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  911. #endif
  912. #ifdef AMBIENT_THERMISTOR
  913. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  914. #endif
  915. #ifdef DEBUG_HEATER_BED_SIM
  916. current_temperature_bed = target_temperature_bed;
  917. #else //DEBUG_HEATER_BED_SIM
  918. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  919. #endif //DEBUG_HEATER_BED_SIM
  920. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  921. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  922. #endif
  923. //Reset the watchdog after we know we have a temperature measurement.
  924. #ifdef WATCHDOG
  925. wdt_reset();
  926. #endif //WATCHDOG
  927. CRITICAL_SECTION_START;
  928. temp_meas_ready = false;
  929. CRITICAL_SECTION_END;
  930. }
  931. void tp_init()
  932. {
  933. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  934. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  935. MCUCR=(1<<JTD);
  936. MCUCR=(1<<JTD);
  937. #endif
  938. // Finish init of mult extruder arrays
  939. for(int e = 0; e < EXTRUDERS; e++) {
  940. // populate with the first value
  941. maxttemp[e] = maxttemp[0];
  942. #ifdef PIDTEMP
  943. iState_sum_min[e] = 0.0;
  944. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  945. #endif //PIDTEMP
  946. #ifdef PIDTEMPBED
  947. temp_iState_min_bed = 0.0;
  948. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  949. #endif //PIDTEMPBED
  950. }
  951. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  952. SET_OUTPUT(HEATER_0_PIN);
  953. #endif
  954. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  955. SET_OUTPUT(HEATER_1_PIN);
  956. #endif
  957. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  958. SET_OUTPUT(HEATER_2_PIN);
  959. #endif
  960. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  961. SET_OUTPUT(HEATER_BED_PIN);
  962. #endif
  963. #if defined(FAN_PIN) && (FAN_PIN > -1)
  964. SET_OUTPUT(FAN_PIN);
  965. #ifdef FAST_PWM_FAN
  966. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  967. #endif
  968. #ifdef FAN_SOFT_PWM
  969. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  970. #endif
  971. #endif
  972. #ifdef HEATER_0_USES_MAX6675
  973. #ifndef SDSUPPORT
  974. SET_OUTPUT(SCK_PIN);
  975. WRITE(SCK_PIN,0);
  976. SET_OUTPUT(MOSI_PIN);
  977. WRITE(MOSI_PIN,1);
  978. SET_INPUT(MISO_PIN);
  979. WRITE(MISO_PIN,1);
  980. #endif
  981. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  982. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  983. pinMode(SS_PIN, OUTPUT);
  984. digitalWrite(SS_PIN,0);
  985. pinMode(MAX6675_SS, OUTPUT);
  986. digitalWrite(MAX6675_SS,1);
  987. #endif
  988. adc_init();
  989. #ifdef SYSTEM_TIMER_2
  990. timer02_init();
  991. OCR2B = 128;
  992. TIMSK2 |= (1<<OCIE2B);
  993. #else //SYSTEM_TIMER_2
  994. // Use timer0 for temperature measurement
  995. // Interleave temperature interrupt with millies interrupt
  996. OCR0B = 128;
  997. TIMSK0 |= (1<<OCIE0B);
  998. #endif //SYSTEM_TIMER_2
  999. // Wait for temperature measurement to settle
  1000. _delay(250);
  1001. #ifdef HEATER_0_MINTEMP
  1002. minttemp[0] = HEATER_0_MINTEMP;
  1003. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1004. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1005. minttemp_raw[0] += OVERSAMPLENR;
  1006. #else
  1007. minttemp_raw[0] -= OVERSAMPLENR;
  1008. #endif
  1009. }
  1010. #endif //MINTEMP
  1011. #ifdef HEATER_0_MAXTEMP
  1012. maxttemp[0] = HEATER_0_MAXTEMP;
  1013. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1014. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1015. maxttemp_raw[0] -= OVERSAMPLENR;
  1016. #else
  1017. maxttemp_raw[0] += OVERSAMPLENR;
  1018. #endif
  1019. }
  1020. #endif //MAXTEMP
  1021. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1022. minttemp[1] = HEATER_1_MINTEMP;
  1023. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1024. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1025. minttemp_raw[1] += OVERSAMPLENR;
  1026. #else
  1027. minttemp_raw[1] -= OVERSAMPLENR;
  1028. #endif
  1029. }
  1030. #endif // MINTEMP 1
  1031. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1032. maxttemp[1] = HEATER_1_MAXTEMP;
  1033. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1034. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1035. maxttemp_raw[1] -= OVERSAMPLENR;
  1036. #else
  1037. maxttemp_raw[1] += OVERSAMPLENR;
  1038. #endif
  1039. }
  1040. #endif //MAXTEMP 1
  1041. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1042. minttemp[2] = HEATER_2_MINTEMP;
  1043. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1044. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1045. minttemp_raw[2] += OVERSAMPLENR;
  1046. #else
  1047. minttemp_raw[2] -= OVERSAMPLENR;
  1048. #endif
  1049. }
  1050. #endif //MINTEMP 2
  1051. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1052. maxttemp[2] = HEATER_2_MAXTEMP;
  1053. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1054. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1055. maxttemp_raw[2] -= OVERSAMPLENR;
  1056. #else
  1057. maxttemp_raw[2] += OVERSAMPLENR;
  1058. #endif
  1059. }
  1060. #endif //MAXTEMP 2
  1061. #ifdef BED_MINTEMP
  1062. /* No bed MINTEMP error implemented?!? */
  1063. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1064. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1065. bed_minttemp_raw += OVERSAMPLENR;
  1066. #else
  1067. bed_minttemp_raw -= OVERSAMPLENR;
  1068. #endif
  1069. }
  1070. #endif //BED_MINTEMP
  1071. #ifdef BED_MAXTEMP
  1072. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1073. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1074. bed_maxttemp_raw -= OVERSAMPLENR;
  1075. #else
  1076. bed_maxttemp_raw += OVERSAMPLENR;
  1077. #endif
  1078. }
  1079. #endif //BED_MAXTEMP
  1080. }
  1081. void setWatch()
  1082. {
  1083. #ifdef WATCH_TEMP_PERIOD
  1084. for (int e = 0; e < EXTRUDERS; e++)
  1085. {
  1086. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1087. {
  1088. watch_start_temp[e] = degHotend(e);
  1089. watchmillis[e] = _millis();
  1090. }
  1091. }
  1092. #endif
  1093. }
  1094. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1095. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1096. {
  1097. float __hysteresis = 0;
  1098. int __timeout = 0;
  1099. bool temp_runaway_check_active = false;
  1100. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1101. static int __preheat_counter[2] = { 0,0};
  1102. static int __preheat_errors[2] = { 0,0};
  1103. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1104. {
  1105. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1106. if (_isbed)
  1107. {
  1108. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1109. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1110. }
  1111. #endif
  1112. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1113. if (!_isbed)
  1114. {
  1115. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1116. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1117. }
  1118. #endif
  1119. temp_runaway_timer[_heater_id] = _millis();
  1120. if (_output == 0)
  1121. {
  1122. temp_runaway_check_active = false;
  1123. temp_runaway_error_counter[_heater_id] = 0;
  1124. }
  1125. if (temp_runaway_target[_heater_id] != _target_temperature)
  1126. {
  1127. if (_target_temperature > 0)
  1128. {
  1129. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1130. temp_runaway_target[_heater_id] = _target_temperature;
  1131. __preheat_start[_heater_id] = _current_temperature;
  1132. __preheat_counter[_heater_id] = 0;
  1133. }
  1134. else
  1135. {
  1136. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1137. temp_runaway_target[_heater_id] = _target_temperature;
  1138. }
  1139. }
  1140. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1141. {
  1142. __preheat_counter[_heater_id]++;
  1143. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1144. {
  1145. /*SERIAL_ECHOPGM("Heater:");
  1146. MYSERIAL.print(_heater_id);
  1147. SERIAL_ECHOPGM(" T:");
  1148. MYSERIAL.print(_current_temperature);
  1149. SERIAL_ECHOPGM(" Tstart:");
  1150. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1151. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1152. __preheat_errors[_heater_id]++;
  1153. /*SERIAL_ECHOPGM(" Preheat errors:");
  1154. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1155. }
  1156. else {
  1157. //SERIAL_ECHOLNPGM("");
  1158. __preheat_errors[_heater_id] = 0;
  1159. }
  1160. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1161. {
  1162. if (farm_mode) { prusa_statistics(0); }
  1163. temp_runaway_stop(true, _isbed);
  1164. if (farm_mode) { prusa_statistics(91); }
  1165. }
  1166. __preheat_start[_heater_id] = _current_temperature;
  1167. __preheat_counter[_heater_id] = 0;
  1168. }
  1169. }
  1170. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1171. {
  1172. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1173. temp_runaway_check_active = false;
  1174. }
  1175. if (_output > 0)
  1176. {
  1177. temp_runaway_check_active = true;
  1178. }
  1179. if (temp_runaway_check_active)
  1180. {
  1181. // we are in range
  1182. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1183. {
  1184. temp_runaway_check_active = false;
  1185. temp_runaway_error_counter[_heater_id] = 0;
  1186. }
  1187. else
  1188. {
  1189. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1190. {
  1191. temp_runaway_error_counter[_heater_id]++;
  1192. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1193. {
  1194. if (farm_mode) { prusa_statistics(0); }
  1195. temp_runaway_stop(false, _isbed);
  1196. if (farm_mode) { prusa_statistics(90); }
  1197. }
  1198. }
  1199. }
  1200. }
  1201. }
  1202. }
  1203. void temp_runaway_stop(bool isPreheat, bool isBed)
  1204. {
  1205. cancel_heatup = true;
  1206. quickStop();
  1207. if (card.sdprinting)
  1208. {
  1209. card.sdprinting = false;
  1210. card.closefile();
  1211. }
  1212. // Clean the input command queue
  1213. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1214. cmdqueue_reset();
  1215. disable_heater();
  1216. disable_x();
  1217. disable_y();
  1218. disable_e0();
  1219. disable_e1();
  1220. disable_e2();
  1221. manage_heater();
  1222. lcd_update(0);
  1223. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1224. WRITE(BEEPER, HIGH);
  1225. delayMicroseconds(500);
  1226. WRITE(BEEPER, LOW);
  1227. delayMicroseconds(100);
  1228. if (isPreheat)
  1229. {
  1230. Stop();
  1231. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1232. SERIAL_ERROR_START;
  1233. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1234. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1235. SET_OUTPUT(FAN_PIN);
  1236. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1237. #ifdef FAN_SOFT_PWM
  1238. fanSpeedSoftPwm = 255;
  1239. #else //FAN_SOFT_PWM
  1240. analogWrite(FAN_PIN, 255);
  1241. #endif //FAN_SOFT_PWM
  1242. fanSpeed = 255;
  1243. delayMicroseconds(2000);
  1244. }
  1245. else
  1246. {
  1247. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1248. SERIAL_ERROR_START;
  1249. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1250. }
  1251. }
  1252. #endif
  1253. void disable_heater()
  1254. {
  1255. setAllTargetHotends(0);
  1256. setTargetBed(0);
  1257. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1258. target_temperature[0]=0;
  1259. soft_pwm[0]=0;
  1260. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1261. WRITE(HEATER_0_PIN,LOW);
  1262. #endif
  1263. #endif
  1264. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1265. target_temperature[1]=0;
  1266. soft_pwm[1]=0;
  1267. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1268. WRITE(HEATER_1_PIN,LOW);
  1269. #endif
  1270. #endif
  1271. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1272. target_temperature[2]=0;
  1273. soft_pwm[2]=0;
  1274. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1275. WRITE(HEATER_2_PIN,LOW);
  1276. #endif
  1277. #endif
  1278. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1279. target_temperature_bed=0;
  1280. soft_pwm_bed=0;
  1281. timer02_set_pwm0(soft_pwm_bed << 1);
  1282. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1283. WRITE(HEATER_BED_PIN,LOW);
  1284. #endif
  1285. #endif
  1286. }
  1287. void max_temp_error(uint8_t e) {
  1288. disable_heater();
  1289. if(IsStopped() == false) {
  1290. SERIAL_ERROR_START;
  1291. SERIAL_ERRORLN((int)e);
  1292. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1293. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1294. }
  1295. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1296. Stop();
  1297. #endif
  1298. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1299. SET_OUTPUT(FAN_PIN);
  1300. SET_OUTPUT(BEEPER);
  1301. WRITE(FAN_PIN, 1);
  1302. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1303. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1304. WRITE(BEEPER, 1);
  1305. // fanSpeed will consumed by the check_axes_activity() routine.
  1306. fanSpeed=255;
  1307. if (farm_mode) { prusa_statistics(93); }
  1308. }
  1309. void min_temp_error(uint8_t e) {
  1310. #ifdef DEBUG_DISABLE_MINTEMP
  1311. return;
  1312. #endif
  1313. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1314. disable_heater();
  1315. if(IsStopped() == false) {
  1316. SERIAL_ERROR_START;
  1317. SERIAL_ERRORLN((int)e);
  1318. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1319. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1320. }
  1321. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1322. Stop();
  1323. #endif
  1324. if (farm_mode) { prusa_statistics(92); }
  1325. }
  1326. void bed_max_temp_error(void) {
  1327. #if HEATER_BED_PIN > -1
  1328. WRITE(HEATER_BED_PIN, 0);
  1329. #endif
  1330. if(IsStopped() == false) {
  1331. SERIAL_ERROR_START;
  1332. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1333. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1334. }
  1335. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1336. Stop();
  1337. #endif
  1338. }
  1339. void bed_min_temp_error(void) {
  1340. #ifdef DEBUG_DISABLE_MINTEMP
  1341. return;
  1342. #endif
  1343. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1344. #if HEATER_BED_PIN > -1
  1345. WRITE(HEATER_BED_PIN, 0);
  1346. #endif
  1347. if(IsStopped() == false) {
  1348. SERIAL_ERROR_START;
  1349. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1350. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1351. }
  1352. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1353. Stop();
  1354. #endif
  1355. }
  1356. #ifdef HEATER_0_USES_MAX6675
  1357. #define MAX6675_HEAT_INTERVAL 250
  1358. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1359. int max6675_temp = 2000;
  1360. int read_max6675()
  1361. {
  1362. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1363. return max6675_temp;
  1364. max6675_previous_millis = _millis();
  1365. max6675_temp = 0;
  1366. #ifdef PRR
  1367. PRR &= ~(1<<PRSPI);
  1368. #elif defined PRR0
  1369. PRR0 &= ~(1<<PRSPI);
  1370. #endif
  1371. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1372. // enable TT_MAX6675
  1373. WRITE(MAX6675_SS, 0);
  1374. // ensure 100ns delay - a bit extra is fine
  1375. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1376. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1377. // read MSB
  1378. SPDR = 0;
  1379. for (;(SPSR & (1<<SPIF)) == 0;);
  1380. max6675_temp = SPDR;
  1381. max6675_temp <<= 8;
  1382. // read LSB
  1383. SPDR = 0;
  1384. for (;(SPSR & (1<<SPIF)) == 0;);
  1385. max6675_temp |= SPDR;
  1386. // disable TT_MAX6675
  1387. WRITE(MAX6675_SS, 1);
  1388. if (max6675_temp & 4)
  1389. {
  1390. // thermocouple open
  1391. max6675_temp = 2000;
  1392. }
  1393. else
  1394. {
  1395. max6675_temp = max6675_temp >> 3;
  1396. }
  1397. return max6675_temp;
  1398. }
  1399. #endif
  1400. extern "C" {
  1401. void adc_ready(void) //callback from adc when sampling finished
  1402. {
  1403. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1404. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1405. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1406. #ifdef VOLT_PWR_PIN
  1407. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1408. #endif
  1409. #ifdef AMBIENT_THERMISTOR
  1410. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1411. #endif //AMBIENT_THERMISTOR
  1412. #ifdef VOLT_BED_PIN
  1413. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1414. #endif
  1415. temp_meas_ready = true;
  1416. }
  1417. } // extern "C"
  1418. // Timer2 (originaly timer0) is shared with millies
  1419. #ifdef SYSTEM_TIMER_2
  1420. ISR(TIMER2_COMPB_vect)
  1421. #else //SYSTEM_TIMER_2
  1422. ISR(TIMER0_COMPB_vect)
  1423. #endif //SYSTEM_TIMER_2
  1424. {
  1425. static bool _lock = false;
  1426. if (_lock) return;
  1427. _lock = true;
  1428. asm("sei");
  1429. if (!temp_meas_ready) adc_cycle();
  1430. lcd_buttons_update();
  1431. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1432. static unsigned char soft_pwm_0;
  1433. #ifdef SLOW_PWM_HEATERS
  1434. static unsigned char slow_pwm_count = 0;
  1435. static unsigned char state_heater_0 = 0;
  1436. static unsigned char state_timer_heater_0 = 0;
  1437. #endif
  1438. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1439. static unsigned char soft_pwm_1;
  1440. #ifdef SLOW_PWM_HEATERS
  1441. static unsigned char state_heater_1 = 0;
  1442. static unsigned char state_timer_heater_1 = 0;
  1443. #endif
  1444. #endif
  1445. #if EXTRUDERS > 2
  1446. static unsigned char soft_pwm_2;
  1447. #ifdef SLOW_PWM_HEATERS
  1448. static unsigned char state_heater_2 = 0;
  1449. static unsigned char state_timer_heater_2 = 0;
  1450. #endif
  1451. #endif
  1452. #if HEATER_BED_PIN > -1
  1453. static unsigned char soft_pwm_b;
  1454. #ifdef SLOW_PWM_HEATERS
  1455. static unsigned char state_heater_b = 0;
  1456. static unsigned char state_timer_heater_b = 0;
  1457. #endif
  1458. #endif
  1459. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1460. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1461. #endif
  1462. #ifndef SLOW_PWM_HEATERS
  1463. /*
  1464. * standard PWM modulation
  1465. */
  1466. if (pwm_count == 0)
  1467. {
  1468. soft_pwm_0 = soft_pwm[0];
  1469. if(soft_pwm_0 > 0)
  1470. {
  1471. WRITE(HEATER_0_PIN,1);
  1472. #ifdef HEATERS_PARALLEL
  1473. WRITE(HEATER_1_PIN,1);
  1474. #endif
  1475. } else WRITE(HEATER_0_PIN,0);
  1476. #if EXTRUDERS > 1
  1477. soft_pwm_1 = soft_pwm[1];
  1478. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1479. #endif
  1480. #if EXTRUDERS > 2
  1481. soft_pwm_2 = soft_pwm[2];
  1482. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1483. #endif
  1484. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1485. soft_pwm_b = soft_pwm_bed;
  1486. #ifndef SYSTEM_TIMER_2
  1487. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1488. #endif //SYSTEM_TIMER_2
  1489. #endif
  1490. }
  1491. #ifdef FAN_SOFT_PWM
  1492. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1493. {
  1494. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1495. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1496. }
  1497. #endif
  1498. if(soft_pwm_0 < pwm_count)
  1499. {
  1500. WRITE(HEATER_0_PIN,0);
  1501. #ifdef HEATERS_PARALLEL
  1502. WRITE(HEATER_1_PIN,0);
  1503. #endif
  1504. }
  1505. #if EXTRUDERS > 1
  1506. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1507. #endif
  1508. #if EXTRUDERS > 2
  1509. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1510. #endif
  1511. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1512. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1513. #endif
  1514. #ifdef FAN_SOFT_PWM
  1515. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1516. #endif
  1517. pwm_count += (1 << SOFT_PWM_SCALE);
  1518. pwm_count &= 0x7f;
  1519. #else //ifndef SLOW_PWM_HEATERS
  1520. /*
  1521. * SLOW PWM HEATERS
  1522. *
  1523. * for heaters drived by relay
  1524. */
  1525. #ifndef MIN_STATE_TIME
  1526. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1527. #endif
  1528. if (slow_pwm_count == 0) {
  1529. // EXTRUDER 0
  1530. soft_pwm_0 = soft_pwm[0];
  1531. if (soft_pwm_0 > 0) {
  1532. // turn ON heather only if the minimum time is up
  1533. if (state_timer_heater_0 == 0) {
  1534. // if change state set timer
  1535. if (state_heater_0 == 0) {
  1536. state_timer_heater_0 = MIN_STATE_TIME;
  1537. }
  1538. state_heater_0 = 1;
  1539. WRITE(HEATER_0_PIN, 1);
  1540. #ifdef HEATERS_PARALLEL
  1541. WRITE(HEATER_1_PIN, 1);
  1542. #endif
  1543. }
  1544. } else {
  1545. // turn OFF heather only if the minimum time is up
  1546. if (state_timer_heater_0 == 0) {
  1547. // if change state set timer
  1548. if (state_heater_0 == 1) {
  1549. state_timer_heater_0 = MIN_STATE_TIME;
  1550. }
  1551. state_heater_0 = 0;
  1552. WRITE(HEATER_0_PIN, 0);
  1553. #ifdef HEATERS_PARALLEL
  1554. WRITE(HEATER_1_PIN, 0);
  1555. #endif
  1556. }
  1557. }
  1558. #if EXTRUDERS > 1
  1559. // EXTRUDER 1
  1560. soft_pwm_1 = soft_pwm[1];
  1561. if (soft_pwm_1 > 0) {
  1562. // turn ON heather only if the minimum time is up
  1563. if (state_timer_heater_1 == 0) {
  1564. // if change state set timer
  1565. if (state_heater_1 == 0) {
  1566. state_timer_heater_1 = MIN_STATE_TIME;
  1567. }
  1568. state_heater_1 = 1;
  1569. WRITE(HEATER_1_PIN, 1);
  1570. }
  1571. } else {
  1572. // turn OFF heather only if the minimum time is up
  1573. if (state_timer_heater_1 == 0) {
  1574. // if change state set timer
  1575. if (state_heater_1 == 1) {
  1576. state_timer_heater_1 = MIN_STATE_TIME;
  1577. }
  1578. state_heater_1 = 0;
  1579. WRITE(HEATER_1_PIN, 0);
  1580. }
  1581. }
  1582. #endif
  1583. #if EXTRUDERS > 2
  1584. // EXTRUDER 2
  1585. soft_pwm_2 = soft_pwm[2];
  1586. if (soft_pwm_2 > 0) {
  1587. // turn ON heather only if the minimum time is up
  1588. if (state_timer_heater_2 == 0) {
  1589. // if change state set timer
  1590. if (state_heater_2 == 0) {
  1591. state_timer_heater_2 = MIN_STATE_TIME;
  1592. }
  1593. state_heater_2 = 1;
  1594. WRITE(HEATER_2_PIN, 1);
  1595. }
  1596. } else {
  1597. // turn OFF heather only if the minimum time is up
  1598. if (state_timer_heater_2 == 0) {
  1599. // if change state set timer
  1600. if (state_heater_2 == 1) {
  1601. state_timer_heater_2 = MIN_STATE_TIME;
  1602. }
  1603. state_heater_2 = 0;
  1604. WRITE(HEATER_2_PIN, 0);
  1605. }
  1606. }
  1607. #endif
  1608. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1609. // BED
  1610. soft_pwm_b = soft_pwm_bed;
  1611. if (soft_pwm_b > 0) {
  1612. // turn ON heather only if the minimum time is up
  1613. if (state_timer_heater_b == 0) {
  1614. // if change state set timer
  1615. if (state_heater_b == 0) {
  1616. state_timer_heater_b = MIN_STATE_TIME;
  1617. }
  1618. state_heater_b = 1;
  1619. //WRITE(HEATER_BED_PIN, 1);
  1620. }
  1621. } else {
  1622. // turn OFF heather only if the minimum time is up
  1623. if (state_timer_heater_b == 0) {
  1624. // if change state set timer
  1625. if (state_heater_b == 1) {
  1626. state_timer_heater_b = MIN_STATE_TIME;
  1627. }
  1628. state_heater_b = 0;
  1629. WRITE(HEATER_BED_PIN, 0);
  1630. }
  1631. }
  1632. #endif
  1633. } // if (slow_pwm_count == 0)
  1634. // EXTRUDER 0
  1635. if (soft_pwm_0 < slow_pwm_count) {
  1636. // turn OFF heather only if the minimum time is up
  1637. if (state_timer_heater_0 == 0) {
  1638. // if change state set timer
  1639. if (state_heater_0 == 1) {
  1640. state_timer_heater_0 = MIN_STATE_TIME;
  1641. }
  1642. state_heater_0 = 0;
  1643. WRITE(HEATER_0_PIN, 0);
  1644. #ifdef HEATERS_PARALLEL
  1645. WRITE(HEATER_1_PIN, 0);
  1646. #endif
  1647. }
  1648. }
  1649. #if EXTRUDERS > 1
  1650. // EXTRUDER 1
  1651. if (soft_pwm_1 < slow_pwm_count) {
  1652. // turn OFF heather only if the minimum time is up
  1653. if (state_timer_heater_1 == 0) {
  1654. // if change state set timer
  1655. if (state_heater_1 == 1) {
  1656. state_timer_heater_1 = MIN_STATE_TIME;
  1657. }
  1658. state_heater_1 = 0;
  1659. WRITE(HEATER_1_PIN, 0);
  1660. }
  1661. }
  1662. #endif
  1663. #if EXTRUDERS > 2
  1664. // EXTRUDER 2
  1665. if (soft_pwm_2 < slow_pwm_count) {
  1666. // turn OFF heather only if the minimum time is up
  1667. if (state_timer_heater_2 == 0) {
  1668. // if change state set timer
  1669. if (state_heater_2 == 1) {
  1670. state_timer_heater_2 = MIN_STATE_TIME;
  1671. }
  1672. state_heater_2 = 0;
  1673. WRITE(HEATER_2_PIN, 0);
  1674. }
  1675. }
  1676. #endif
  1677. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1678. // BED
  1679. if (soft_pwm_b < slow_pwm_count) {
  1680. // turn OFF heather only if the minimum time is up
  1681. if (state_timer_heater_b == 0) {
  1682. // if change state set timer
  1683. if (state_heater_b == 1) {
  1684. state_timer_heater_b = MIN_STATE_TIME;
  1685. }
  1686. state_heater_b = 0;
  1687. WRITE(HEATER_BED_PIN, 0);
  1688. }
  1689. }
  1690. #endif
  1691. #ifdef FAN_SOFT_PWM
  1692. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1693. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1694. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1695. }
  1696. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1697. #endif
  1698. pwm_count += (1 << SOFT_PWM_SCALE);
  1699. pwm_count &= 0x7f;
  1700. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1701. if ((pwm_count % 64) == 0) {
  1702. slow_pwm_count++;
  1703. slow_pwm_count &= 0x7f;
  1704. // Extruder 0
  1705. if (state_timer_heater_0 > 0) {
  1706. state_timer_heater_0--;
  1707. }
  1708. #if EXTRUDERS > 1
  1709. // Extruder 1
  1710. if (state_timer_heater_1 > 0)
  1711. state_timer_heater_1--;
  1712. #endif
  1713. #if EXTRUDERS > 2
  1714. // Extruder 2
  1715. if (state_timer_heater_2 > 0)
  1716. state_timer_heater_2--;
  1717. #endif
  1718. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1719. // Bed
  1720. if (state_timer_heater_b > 0)
  1721. state_timer_heater_b--;
  1722. #endif
  1723. } //if ((pwm_count % 64) == 0) {
  1724. #endif //ifndef SLOW_PWM_HEATERS
  1725. #ifdef BABYSTEPPING
  1726. for(uint8_t axis=0;axis<3;axis++)
  1727. {
  1728. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1729. if(curTodo>0)
  1730. {
  1731. asm("cli");
  1732. babystep(axis,/*fwd*/true);
  1733. babystepsTodo[axis]--; //less to do next time
  1734. asm("sei");
  1735. }
  1736. else
  1737. if(curTodo<0)
  1738. {
  1739. asm("cli");
  1740. babystep(axis,/*fwd*/false);
  1741. babystepsTodo[axis]++; //less to do next time
  1742. asm("sei");
  1743. }
  1744. }
  1745. #endif //BABYSTEPPING
  1746. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1747. check_fans();
  1748. #endif //(defined(TACH_0))
  1749. _lock = false;
  1750. }
  1751. void check_max_temp()
  1752. {
  1753. //heater
  1754. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1755. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1756. #else
  1757. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1758. #endif
  1759. max_temp_error(0);
  1760. }
  1761. //bed
  1762. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1763. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1764. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1765. #else
  1766. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1767. #endif
  1768. target_temperature_bed = 0;
  1769. bed_max_temp_error();
  1770. }
  1771. #endif
  1772. }
  1773. void check_min_temp_heater0()
  1774. {
  1775. //heater
  1776. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1777. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1778. #else
  1779. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1780. #endif
  1781. min_temp_error(0);
  1782. }
  1783. }
  1784. void check_min_temp_bed()
  1785. {
  1786. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1787. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1788. #else
  1789. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1790. #endif
  1791. bed_min_temp_error();
  1792. }
  1793. }
  1794. void check_min_temp()
  1795. {
  1796. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1797. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1798. #ifdef AMBIENT_THERMISTOR
  1799. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1800. { // ambient temperature is low
  1801. #endif //AMBIENT_THERMISTOR
  1802. // *** 'common' part of code for MK2.5 & MK3
  1803. // * nozzle checking
  1804. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1805. { // ~ nozzle heating is on
  1806. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1807. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1808. {
  1809. bCheckingOnHeater=true; // not necessary
  1810. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1811. }
  1812. }
  1813. else { // ~ nozzle heating is off
  1814. oTimer4minTempHeater.start();
  1815. bCheckingOnHeater=false;
  1816. }
  1817. // * bed checking
  1818. if(target_temperature_bed>BED_MINTEMP)
  1819. { // ~ bed heating is on
  1820. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1821. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1822. {
  1823. bCheckingOnBed=true; // not necessary
  1824. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1825. }
  1826. }
  1827. else { // ~ bed heating is off
  1828. oTimer4minTempBed.start();
  1829. bCheckingOnBed=false;
  1830. }
  1831. // *** end of 'common' part
  1832. #ifdef AMBIENT_THERMISTOR
  1833. }
  1834. else { // ambient temperature is standard
  1835. check_min_temp_heater0();
  1836. check_min_temp_bed();
  1837. }
  1838. #endif //AMBIENT_THERMISTOR
  1839. }
  1840. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1841. void check_fans() {
  1842. if (READ(TACH_0) != fan_state[0]) {
  1843. fan_edge_counter[0] ++;
  1844. fan_state[0] = !fan_state[0];
  1845. }
  1846. //if (READ(TACH_1) != fan_state[1]) {
  1847. // fan_edge_counter[1] ++;
  1848. // fan_state[1] = !fan_state[1];
  1849. //}
  1850. }
  1851. #endif //TACH_0
  1852. #ifdef PIDTEMP
  1853. // Apply the scale factors to the PID values
  1854. float scalePID_i(float i)
  1855. {
  1856. return i*PID_dT;
  1857. }
  1858. float unscalePID_i(float i)
  1859. {
  1860. return i/PID_dT;
  1861. }
  1862. float scalePID_d(float d)
  1863. {
  1864. return d/PID_dT;
  1865. }
  1866. float unscalePID_d(float d)
  1867. {
  1868. return d*PID_dT;
  1869. }
  1870. #endif //PIDTEMP