stepper.cpp 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  66. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  67. #endif
  68. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  69. uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  70. const uint8_t digipot_motor_current_loud[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  71. const uint8_t digipot_motor_current_silent[] = DIGIPOT_MOTOR_CURRENT;
  72. #endif
  73. static bool old_x_min_endstop=false;
  74. static bool old_x_max_endstop=false;
  75. static bool old_y_min_endstop=false;
  76. static bool old_y_max_endstop=false;
  77. static bool old_z_min_endstop=false;
  78. static bool old_z_max_endstop=false;
  79. static bool check_endstops = true;
  80. int8_t SilentMode;
  81. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  82. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  83. //===========================================================================
  84. //=============================functions ============================
  85. //===========================================================================
  86. #define CHECK_ENDSTOPS if(check_endstops)
  87. // intRes = intIn1 * intIn2 >> 16
  88. // uses:
  89. // r26 to store 0
  90. // r27 to store the byte 1 of the 24 bit result
  91. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  92. asm volatile ( \
  93. "clr r26 \n\t" \
  94. "mul %A1, %B2 \n\t" \
  95. "movw %A0, r0 \n\t" \
  96. "mul %A1, %A2 \n\t" \
  97. "add %A0, r1 \n\t" \
  98. "adc %B0, r26 \n\t" \
  99. "lsr r0 \n\t" \
  100. "adc %A0, r26 \n\t" \
  101. "adc %B0, r26 \n\t" \
  102. "clr r1 \n\t" \
  103. : \
  104. "=&r" (intRes) \
  105. : \
  106. "d" (charIn1), \
  107. "d" (intIn2) \
  108. : \
  109. "r26" \
  110. )
  111. // intRes = longIn1 * longIn2 >> 24
  112. // uses:
  113. // r26 to store 0
  114. // r27 to store the byte 1 of the 48bit result
  115. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  116. asm volatile ( \
  117. "clr r26 \n\t" \
  118. "mul %A1, %B2 \n\t" \
  119. "mov r27, r1 \n\t" \
  120. "mul %B1, %C2 \n\t" \
  121. "movw %A0, r0 \n\t" \
  122. "mul %C1, %C2 \n\t" \
  123. "add %B0, r0 \n\t" \
  124. "mul %C1, %B2 \n\t" \
  125. "add %A0, r0 \n\t" \
  126. "adc %B0, r1 \n\t" \
  127. "mul %A1, %C2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %B1, %B2 \n\t" \
  132. "add r27, r0 \n\t" \
  133. "adc %A0, r1 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "mul %C1, %A2 \n\t" \
  136. "add r27, r0 \n\t" \
  137. "adc %A0, r1 \n\t" \
  138. "adc %B0, r26 \n\t" \
  139. "mul %B1, %A2 \n\t" \
  140. "add r27, r1 \n\t" \
  141. "adc %A0, r26 \n\t" \
  142. "adc %B0, r26 \n\t" \
  143. "lsr r27 \n\t" \
  144. "adc %A0, r26 \n\t" \
  145. "adc %B0, r26 \n\t" \
  146. "clr r1 \n\t" \
  147. : \
  148. "=&r" (intRes) \
  149. : \
  150. "d" (longIn1), \
  151. "d" (longIn2) \
  152. : \
  153. "r26" , "r27" \
  154. )
  155. // Some useful constants
  156. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  157. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  158. void digipot_current(uint8_t driver, int current);
  159. void checkHitEndstops()
  160. {
  161. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  162. SERIAL_ECHO_START;
  163. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  164. if(endstop_x_hit) {
  165. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  166. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  167. }
  168. if(endstop_y_hit) {
  169. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  170. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  171. }
  172. if(endstop_z_hit) {
  173. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  174. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  175. }
  176. SERIAL_ECHOLN("");
  177. endstop_x_hit=false;
  178. endstop_y_hit=false;
  179. endstop_z_hit=false;
  180. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  181. if (abort_on_endstop_hit)
  182. {
  183. card.sdprinting = false;
  184. card.closefile();
  185. quickStop();
  186. setTargetHotend0(0);
  187. setTargetHotend1(0);
  188. setTargetHotend2(0);
  189. }
  190. #endif
  191. }
  192. }
  193. void endstops_hit_on_purpose()
  194. {
  195. endstop_x_hit=false;
  196. endstop_y_hit=false;
  197. endstop_z_hit=false;
  198. }
  199. void enable_endstops(bool check)
  200. {
  201. check_endstops = check;
  202. }
  203. // __________________________
  204. // /| |\ _________________ ^
  205. // / | | \ /| |\ |
  206. // / | | \ / | | \ s
  207. // / | | | | | \ p
  208. // / | | | | | \ e
  209. // +-----+------------------------+---+--+---------------+----+ e
  210. // | BLOCK 1 | BLOCK 2 | d
  211. //
  212. // time ----->
  213. //
  214. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  215. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  216. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  217. // The slope of acceleration is calculated with the leib ramp alghorithm.
  218. void st_wake_up() {
  219. // TCNT1 = 0;
  220. ENABLE_STEPPER_DRIVER_INTERRUPT();
  221. }
  222. void step_wait(){
  223. for(int8_t i=0; i < 6; i++){
  224. }
  225. }
  226. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  227. unsigned short timer;
  228. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  229. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  230. step_rate = (step_rate >> 2)&0x3fff;
  231. step_loops = 4;
  232. }
  233. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  234. step_rate = (step_rate >> 1)&0x7fff;
  235. step_loops = 2;
  236. }
  237. else {
  238. step_loops = 1;
  239. }
  240. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  241. step_rate -= (F_CPU/500000); // Correct for minimal speed
  242. if(step_rate >= (8*256)){ // higher step rate
  243. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  244. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  245. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  246. MultiU16X8toH16(timer, tmp_step_rate, gain);
  247. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  248. }
  249. else { // lower step rates
  250. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  251. table_address += ((step_rate)>>1) & 0xfffc;
  252. timer = (unsigned short)pgm_read_word_near(table_address);
  253. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  254. }
  255. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  256. return timer;
  257. }
  258. // Initializes the trapezoid generator from the current block. Called whenever a new
  259. // block begins.
  260. FORCE_INLINE void trapezoid_generator_reset() {
  261. #ifdef ADVANCE
  262. advance = current_block->initial_advance;
  263. final_advance = current_block->final_advance;
  264. // Do E steps + advance steps
  265. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  266. old_advance = advance >>8;
  267. #endif
  268. deceleration_time = 0;
  269. // step_rate to timer interval
  270. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  271. // make a note of the number of step loops required at nominal speed
  272. step_loops_nominal = step_loops;
  273. acc_step_rate = current_block->initial_rate;
  274. acceleration_time = calc_timer(acc_step_rate);
  275. OCR1A = acceleration_time;
  276. // SERIAL_ECHO_START;
  277. // SERIAL_ECHOPGM("advance :");
  278. // SERIAL_ECHO(current_block->advance/256.0);
  279. // SERIAL_ECHOPGM("advance rate :");
  280. // SERIAL_ECHO(current_block->advance_rate/256.0);
  281. // SERIAL_ECHOPGM("initial advance :");
  282. // SERIAL_ECHO(current_block->initial_advance/256.0);
  283. // SERIAL_ECHOPGM("final advance :");
  284. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  285. }
  286. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  287. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  288. ISR(TIMER1_COMPA_vect)
  289. {
  290. // If there is no current block, attempt to pop one from the buffer
  291. if (current_block == NULL) {
  292. // Anything in the buffer?
  293. current_block = plan_get_current_block();
  294. if (current_block != NULL) {
  295. current_block->busy = true;
  296. trapezoid_generator_reset();
  297. counter_x = -(current_block->step_event_count >> 1);
  298. counter_y = counter_x;
  299. counter_z = counter_x;
  300. counter_e = counter_x;
  301. step_events_completed = 0;
  302. #ifdef Z_LATE_ENABLE
  303. if(current_block->steps_z > 0) {
  304. enable_z();
  305. OCR1A = 2000; //1ms wait
  306. return;
  307. }
  308. #endif
  309. // #ifdef ADVANCE
  310. // e_steps[current_block->active_extruder] = 0;
  311. // #endif
  312. }
  313. else {
  314. OCR1A=2000; // 1kHz.
  315. }
  316. }
  317. if (current_block != NULL) {
  318. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  319. out_bits = current_block->direction_bits;
  320. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  321. if((out_bits & (1<<X_AXIS))!=0){
  322. #ifdef DUAL_X_CARRIAGE
  323. if (extruder_duplication_enabled){
  324. WRITE(X_DIR_PIN, INVERT_X_DIR);
  325. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  326. }
  327. else{
  328. if (current_block->active_extruder != 0)
  329. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  330. else
  331. WRITE(X_DIR_PIN, INVERT_X_DIR);
  332. }
  333. #else
  334. WRITE(X_DIR_PIN, INVERT_X_DIR);
  335. #endif
  336. count_direction[X_AXIS]=-1;
  337. }
  338. else{
  339. #ifdef DUAL_X_CARRIAGE
  340. if (extruder_duplication_enabled){
  341. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  342. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  343. }
  344. else{
  345. if (current_block->active_extruder != 0)
  346. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  347. else
  348. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  349. }
  350. #else
  351. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  352. #endif
  353. count_direction[X_AXIS]=1;
  354. }
  355. if((out_bits & (1<<Y_AXIS))!=0){
  356. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  357. #ifdef Y_DUAL_STEPPER_DRIVERS
  358. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  359. #endif
  360. count_direction[Y_AXIS]=-1;
  361. }
  362. else{
  363. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  364. #ifdef Y_DUAL_STEPPER_DRIVERS
  365. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  366. #endif
  367. count_direction[Y_AXIS]=1;
  368. }
  369. // Set direction en check limit switches
  370. #ifndef COREXY
  371. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  372. #else
  373. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  374. #endif
  375. CHECK_ENDSTOPS
  376. {
  377. #ifdef DUAL_X_CARRIAGE
  378. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  379. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
  380. || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  381. #endif
  382. {
  383. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  384. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  385. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  386. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  387. endstop_x_hit=true;
  388. step_events_completed = current_block->step_event_count;
  389. }
  390. old_x_min_endstop = x_min_endstop;
  391. #endif
  392. }
  393. }
  394. }
  395. else { // +direction
  396. CHECK_ENDSTOPS
  397. {
  398. #ifdef DUAL_X_CARRIAGE
  399. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  400. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
  401. || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  402. #endif
  403. {
  404. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  405. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  406. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  407. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  408. endstop_x_hit=true;
  409. step_events_completed = current_block->step_event_count;
  410. }
  411. old_x_max_endstop = x_max_endstop;
  412. #endif
  413. }
  414. }
  415. }
  416. #ifndef COREXY
  417. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  418. #else
  419. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  420. #endif
  421. CHECK_ENDSTOPS
  422. {
  423. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  424. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  425. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  426. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  427. endstop_y_hit=true;
  428. step_events_completed = current_block->step_event_count;
  429. }
  430. old_y_min_endstop = y_min_endstop;
  431. #endif
  432. }
  433. }
  434. else { // +direction
  435. CHECK_ENDSTOPS
  436. {
  437. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  438. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  439. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  440. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  441. endstop_y_hit=true;
  442. step_events_completed = current_block->step_event_count;
  443. }
  444. old_y_max_endstop = y_max_endstop;
  445. #endif
  446. }
  447. }
  448. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  449. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  450. #ifdef Z_DUAL_STEPPER_DRIVERS
  451. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  452. #endif
  453. count_direction[Z_AXIS]=-1;
  454. CHECK_ENDSTOPS
  455. {
  456. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  457. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  458. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  459. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  460. endstop_z_hit=true;
  461. step_events_completed = current_block->step_event_count;
  462. }
  463. old_z_min_endstop = z_min_endstop;
  464. #endif
  465. }
  466. }
  467. else { // +direction
  468. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  469. #ifdef Z_DUAL_STEPPER_DRIVERS
  470. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  471. #endif
  472. count_direction[Z_AXIS]=1;
  473. CHECK_ENDSTOPS
  474. {
  475. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  476. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  477. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  478. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  479. endstop_z_hit=true;
  480. step_events_completed = current_block->step_event_count;
  481. }
  482. old_z_max_endstop = z_max_endstop;
  483. #endif
  484. }
  485. }
  486. #ifndef ADVANCE
  487. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  488. REV_E_DIR();
  489. count_direction[E_AXIS]=-1;
  490. }
  491. else { // +direction
  492. NORM_E_DIR();
  493. count_direction[E_AXIS]=1;
  494. }
  495. #endif //!ADVANCE
  496. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  497. #ifndef AT90USB
  498. MSerial.checkRx(); // Check for serial chars.
  499. #endif
  500. #ifdef ADVANCE
  501. counter_e += current_block->steps_e;
  502. if (counter_e > 0) {
  503. counter_e -= current_block->step_event_count;
  504. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  505. e_steps[current_block->active_extruder]--;
  506. }
  507. else {
  508. e_steps[current_block->active_extruder]++;
  509. }
  510. }
  511. #endif //ADVANCE
  512. counter_x += current_block->steps_x;
  513. #ifdef CONFIG_STEPPERS_TOSHIBA
  514. /* The toshiba stepper controller require much longer pulses
  515. * tjerfore we 'stage' decompose the pulses between high, and
  516. * low instead of doing each in turn. The extra tests add enough
  517. * lag to allow it work with without needing NOPs */
  518. if (counter_x > 0) {
  519. WRITE(X_STEP_PIN, HIGH);
  520. }
  521. counter_y += current_block->steps_y;
  522. if (counter_y > 0) {
  523. WRITE(Y_STEP_PIN, HIGH);
  524. }
  525. counter_z += current_block->steps_z;
  526. if (counter_z > 0) {
  527. WRITE(Z_STEP_PIN, HIGH);
  528. }
  529. #ifndef ADVANCE
  530. counter_e += current_block->steps_e;
  531. if (counter_e > 0) {
  532. WRITE_E_STEP(HIGH);
  533. }
  534. #endif //!ADVANCE
  535. if (counter_x > 0) {
  536. counter_x -= current_block->step_event_count;
  537. count_position[X_AXIS]+=count_direction[X_AXIS];
  538. WRITE(X_STEP_PIN, LOW);
  539. }
  540. if (counter_y > 0) {
  541. counter_y -= current_block->step_event_count;
  542. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  543. WRITE(Y_STEP_PIN, LOW);
  544. }
  545. if (counter_z > 0) {
  546. counter_z -= current_block->step_event_count;
  547. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  548. WRITE(Z_STEP_PIN, LOW);
  549. }
  550. #ifndef ADVANCE
  551. if (counter_e > 0) {
  552. counter_e -= current_block->step_event_count;
  553. count_position[E_AXIS]+=count_direction[E_AXIS];
  554. WRITE_E_STEP(LOW);
  555. }
  556. #endif //!ADVANCE
  557. #else
  558. if (counter_x > 0) {
  559. #ifdef DUAL_X_CARRIAGE
  560. if (extruder_duplication_enabled){
  561. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  562. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  563. }
  564. else {
  565. if (current_block->active_extruder != 0)
  566. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  567. else
  568. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  569. }
  570. #else
  571. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  572. #endif
  573. counter_x -= current_block->step_event_count;
  574. count_position[X_AXIS]+=count_direction[X_AXIS];
  575. #ifdef DUAL_X_CARRIAGE
  576. if (extruder_duplication_enabled){
  577. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  578. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  579. }
  580. else {
  581. if (current_block->active_extruder != 0)
  582. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  583. else
  584. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  585. }
  586. #else
  587. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  588. #endif
  589. }
  590. counter_y += current_block->steps_y;
  591. if (counter_y > 0) {
  592. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  593. #ifdef Y_DUAL_STEPPER_DRIVERS
  594. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  595. #endif
  596. counter_y -= current_block->step_event_count;
  597. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  598. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  599. #ifdef Y_DUAL_STEPPER_DRIVERS
  600. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  601. #endif
  602. }
  603. counter_z += current_block->steps_z;
  604. if (counter_z > 0) {
  605. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  606. #ifdef Z_DUAL_STEPPER_DRIVERS
  607. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  608. #endif
  609. counter_z -= current_block->step_event_count;
  610. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  611. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  612. #ifdef Z_DUAL_STEPPER_DRIVERS
  613. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  614. #endif
  615. }
  616. #ifndef ADVANCE
  617. counter_e += current_block->steps_e;
  618. if (counter_e > 0) {
  619. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  620. counter_e -= current_block->step_event_count;
  621. count_position[E_AXIS]+=count_direction[E_AXIS];
  622. WRITE_E_STEP(INVERT_E_STEP_PIN);
  623. }
  624. #endif //!ADVANCE
  625. #endif
  626. step_events_completed += 1;
  627. if(step_events_completed >= current_block->step_event_count) break;
  628. }
  629. // Calculare new timer value
  630. unsigned short timer;
  631. unsigned short step_rate;
  632. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  633. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  634. acc_step_rate += current_block->initial_rate;
  635. // upper limit
  636. if(acc_step_rate > current_block->nominal_rate)
  637. acc_step_rate = current_block->nominal_rate;
  638. // step_rate to timer interval
  639. timer = calc_timer(acc_step_rate);
  640. OCR1A = timer;
  641. acceleration_time += timer;
  642. #ifdef ADVANCE
  643. for(int8_t i=0; i < step_loops; i++) {
  644. advance += advance_rate;
  645. }
  646. //if(advance > current_block->advance) advance = current_block->advance;
  647. // Do E steps + advance steps
  648. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  649. old_advance = advance >>8;
  650. #endif
  651. }
  652. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  653. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  654. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  655. step_rate = current_block->final_rate;
  656. }
  657. else {
  658. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  659. }
  660. // lower limit
  661. if(step_rate < current_block->final_rate)
  662. step_rate = current_block->final_rate;
  663. // step_rate to timer interval
  664. timer = calc_timer(step_rate);
  665. OCR1A = timer;
  666. deceleration_time += timer;
  667. #ifdef ADVANCE
  668. for(int8_t i=0; i < step_loops; i++) {
  669. advance -= advance_rate;
  670. }
  671. if(advance < final_advance) advance = final_advance;
  672. // Do E steps + advance steps
  673. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  674. old_advance = advance >>8;
  675. #endif //ADVANCE
  676. }
  677. else {
  678. OCR1A = OCR1A_nominal;
  679. // ensure we're running at the correct step rate, even if we just came off an acceleration
  680. step_loops = step_loops_nominal;
  681. }
  682. // If current block is finished, reset pointer
  683. if (step_events_completed >= current_block->step_event_count) {
  684. current_block = NULL;
  685. plan_discard_current_block();
  686. }
  687. }
  688. }
  689. #ifdef ADVANCE
  690. unsigned char old_OCR0A;
  691. // Timer interrupt for E. e_steps is set in the main routine;
  692. // Timer 0 is shared with millies
  693. ISR(TIMER0_COMPA_vect)
  694. {
  695. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  696. OCR0A = old_OCR0A;
  697. // Set E direction (Depends on E direction + advance)
  698. for(unsigned char i=0; i<4;i++) {
  699. if (e_steps[0] != 0) {
  700. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  701. if (e_steps[0] < 0) {
  702. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  703. e_steps[0]++;
  704. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  705. }
  706. else if (e_steps[0] > 0) {
  707. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  708. e_steps[0]--;
  709. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  710. }
  711. }
  712. #if EXTRUDERS > 1
  713. if (e_steps[1] != 0) {
  714. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  715. if (e_steps[1] < 0) {
  716. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  717. e_steps[1]++;
  718. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  719. }
  720. else if (e_steps[1] > 0) {
  721. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  722. e_steps[1]--;
  723. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  724. }
  725. }
  726. #endif
  727. #if EXTRUDERS > 2
  728. if (e_steps[2] != 0) {
  729. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  730. if (e_steps[2] < 0) {
  731. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  732. e_steps[2]++;
  733. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  734. }
  735. else if (e_steps[2] > 0) {
  736. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  737. e_steps[2]--;
  738. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  739. }
  740. }
  741. #endif
  742. }
  743. }
  744. #endif // ADVANCE
  745. void st_init()
  746. {
  747. digipot_init(); //Initialize Digipot Motor Current
  748. microstep_init(); //Initialize Microstepping Pins
  749. //Initialize Dir Pins
  750. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  751. SET_OUTPUT(X_DIR_PIN);
  752. #endif
  753. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  754. SET_OUTPUT(X2_DIR_PIN);
  755. #endif
  756. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  757. SET_OUTPUT(Y_DIR_PIN);
  758. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  759. SET_OUTPUT(Y2_DIR_PIN);
  760. #endif
  761. #endif
  762. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  763. SET_OUTPUT(Z_DIR_PIN);
  764. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  765. SET_OUTPUT(Z2_DIR_PIN);
  766. #endif
  767. #endif
  768. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  769. SET_OUTPUT(E0_DIR_PIN);
  770. #endif
  771. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  772. SET_OUTPUT(E1_DIR_PIN);
  773. #endif
  774. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  775. SET_OUTPUT(E2_DIR_PIN);
  776. #endif
  777. //Initialize Enable Pins - steppers default to disabled.
  778. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  779. SET_OUTPUT(X_ENABLE_PIN);
  780. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  781. #endif
  782. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  783. SET_OUTPUT(X2_ENABLE_PIN);
  784. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  785. #endif
  786. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  787. SET_OUTPUT(Y_ENABLE_PIN);
  788. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  789. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  790. SET_OUTPUT(Y2_ENABLE_PIN);
  791. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  792. #endif
  793. #endif
  794. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  795. SET_OUTPUT(Z_ENABLE_PIN);
  796. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  797. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  798. SET_OUTPUT(Z2_ENABLE_PIN);
  799. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  800. #endif
  801. #endif
  802. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  803. SET_OUTPUT(E0_ENABLE_PIN);
  804. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  805. #endif
  806. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  807. SET_OUTPUT(E1_ENABLE_PIN);
  808. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  809. #endif
  810. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  811. SET_OUTPUT(E2_ENABLE_PIN);
  812. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  813. #endif
  814. //endstops and pullups
  815. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  816. SET_INPUT(X_MIN_PIN);
  817. #ifdef ENDSTOPPULLUP_XMIN
  818. WRITE(X_MIN_PIN,HIGH);
  819. #endif
  820. #endif
  821. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  822. SET_INPUT(Y_MIN_PIN);
  823. #ifdef ENDSTOPPULLUP_YMIN
  824. WRITE(Y_MIN_PIN,HIGH);
  825. #endif
  826. #endif
  827. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  828. SET_INPUT(Z_MIN_PIN);
  829. #ifdef ENDSTOPPULLUP_ZMIN
  830. WRITE(Z_MIN_PIN,HIGH);
  831. #endif
  832. #endif
  833. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  834. SET_INPUT(X_MAX_PIN);
  835. #ifdef ENDSTOPPULLUP_XMAX
  836. WRITE(X_MAX_PIN,HIGH);
  837. #endif
  838. #endif
  839. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  840. SET_INPUT(Y_MAX_PIN);
  841. #ifdef ENDSTOPPULLUP_YMAX
  842. WRITE(Y_MAX_PIN,HIGH);
  843. #endif
  844. #endif
  845. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  846. SET_INPUT(Z_MAX_PIN);
  847. #ifdef ENDSTOPPULLUP_ZMAX
  848. WRITE(Z_MAX_PIN,HIGH);
  849. #endif
  850. #endif
  851. //Initialize Step Pins
  852. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  853. SET_OUTPUT(X_STEP_PIN);
  854. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  855. disable_x();
  856. #endif
  857. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  858. SET_OUTPUT(X2_STEP_PIN);
  859. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  860. disable_x();
  861. #endif
  862. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  863. SET_OUTPUT(Y_STEP_PIN);
  864. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  865. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  866. SET_OUTPUT(Y2_STEP_PIN);
  867. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  868. #endif
  869. disable_y();
  870. #endif
  871. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  872. SET_OUTPUT(Z_STEP_PIN);
  873. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  874. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  875. SET_OUTPUT(Z2_STEP_PIN);
  876. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  877. #endif
  878. disable_z();
  879. #endif
  880. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  881. SET_OUTPUT(E0_STEP_PIN);
  882. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  883. disable_e0();
  884. #endif
  885. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  886. SET_OUTPUT(E1_STEP_PIN);
  887. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  888. disable_e1();
  889. #endif
  890. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  891. SET_OUTPUT(E2_STEP_PIN);
  892. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  893. disable_e2();
  894. #endif
  895. // waveform generation = 0100 = CTC
  896. TCCR1B &= ~(1<<WGM13);
  897. TCCR1B |= (1<<WGM12);
  898. TCCR1A &= ~(1<<WGM11);
  899. TCCR1A &= ~(1<<WGM10);
  900. // output mode = 00 (disconnected)
  901. TCCR1A &= ~(3<<COM1A0);
  902. TCCR1A &= ~(3<<COM1B0);
  903. // Set the timer pre-scaler
  904. // Generally we use a divider of 8, resulting in a 2MHz timer
  905. // frequency on a 16MHz MCU. If you are going to change this, be
  906. // sure to regenerate speed_lookuptable.h with
  907. // create_speed_lookuptable.py
  908. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  909. OCR1A = 0x4000;
  910. TCNT1 = 0;
  911. ENABLE_STEPPER_DRIVER_INTERRUPT();
  912. #ifdef ADVANCE
  913. #if defined(TCCR0A) && defined(WGM01)
  914. TCCR0A &= ~(1<<WGM01);
  915. TCCR0A &= ~(1<<WGM00);
  916. #endif
  917. e_steps[0] = 0;
  918. e_steps[1] = 0;
  919. e_steps[2] = 0;
  920. TIMSK0 |= (1<<OCIE0A);
  921. #endif //ADVANCE
  922. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  923. sei();
  924. }
  925. // Block until all buffered steps are executed
  926. void st_synchronize()
  927. {
  928. while( blocks_queued()) {
  929. manage_heater();
  930. manage_inactivity();
  931. lcd_update();
  932. }
  933. }
  934. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  935. {
  936. CRITICAL_SECTION_START;
  937. count_position[X_AXIS] = x;
  938. count_position[Y_AXIS] = y;
  939. count_position[Z_AXIS] = z;
  940. count_position[E_AXIS] = e;
  941. CRITICAL_SECTION_END;
  942. }
  943. void st_set_e_position(const long &e)
  944. {
  945. CRITICAL_SECTION_START;
  946. count_position[E_AXIS] = e;
  947. CRITICAL_SECTION_END;
  948. }
  949. long st_get_position(uint8_t axis)
  950. {
  951. long count_pos;
  952. CRITICAL_SECTION_START;
  953. count_pos = count_position[axis];
  954. CRITICAL_SECTION_END;
  955. return count_pos;
  956. }
  957. #ifdef ENABLE_AUTO_BED_LEVELING
  958. float st_get_position_mm(uint8_t axis)
  959. {
  960. float steper_position_in_steps = st_get_position(axis);
  961. return steper_position_in_steps / axis_steps_per_unit[axis];
  962. }
  963. #endif // ENABLE_AUTO_BED_LEVELING
  964. void finishAndDisableSteppers()
  965. {
  966. st_synchronize();
  967. disable_x();
  968. disable_y();
  969. disable_z();
  970. disable_e0();
  971. disable_e1();
  972. disable_e2();
  973. }
  974. void quickStop()
  975. {
  976. DISABLE_STEPPER_DRIVER_INTERRUPT();
  977. while(blocks_queued())
  978. plan_discard_current_block();
  979. current_block = NULL;
  980. ENABLE_STEPPER_DRIVER_INTERRUPT();
  981. }
  982. #ifdef BABYSTEPPING
  983. void babystep(const uint8_t axis,const bool direction)
  984. {
  985. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  986. //store initial pin states
  987. switch(axis)
  988. {
  989. case X_AXIS:
  990. {
  991. enable_x();
  992. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  993. //setup new step
  994. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  995. #ifdef DUAL_X_CARRIAGE
  996. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  997. #endif
  998. //perform step
  999. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1000. #ifdef DUAL_X_CARRIAGE
  1001. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  1002. #endif
  1003. {
  1004. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1005. }
  1006. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1007. #ifdef DUAL_X_CARRIAGE
  1008. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  1009. #endif
  1010. //get old pin state back.
  1011. WRITE(X_DIR_PIN,old_x_dir_pin);
  1012. #ifdef DUAL_X_CARRIAGE
  1013. WRITE(X2_DIR_PIN,old_x_dir_pin);
  1014. #endif
  1015. }
  1016. break;
  1017. case Y_AXIS:
  1018. {
  1019. enable_y();
  1020. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1021. //setup new step
  1022. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1023. #ifdef DUAL_Y_CARRIAGE
  1024. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  1025. #endif
  1026. //perform step
  1027. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1028. #ifdef DUAL_Y_CARRIAGE
  1029. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  1030. #endif
  1031. {
  1032. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1033. }
  1034. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1035. #ifdef DUAL_Y_CARRIAGE
  1036. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  1037. #endif
  1038. //get old pin state back.
  1039. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1040. #ifdef DUAL_Y_CARRIAGE
  1041. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  1042. #endif
  1043. }
  1044. break;
  1045. #ifndef DELTA
  1046. case Z_AXIS:
  1047. {
  1048. enable_z();
  1049. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1050. //setup new step
  1051. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1052. #ifdef Z_DUAL_STEPPER_DRIVERS
  1053. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1054. #endif
  1055. //perform step
  1056. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1057. #ifdef Z_DUAL_STEPPER_DRIVERS
  1058. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1059. #endif
  1060. //wait a tiny bit
  1061. {
  1062. float x=1./float(axis+1); //absolutely useless
  1063. }
  1064. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1065. #ifdef Z_DUAL_STEPPER_DRIVERS
  1066. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1067. #endif
  1068. //get old pin state back.
  1069. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1070. #ifdef Z_DUAL_STEPPER_DRIVERS
  1071. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1072. #endif
  1073. }
  1074. break;
  1075. #else //DELTA
  1076. case Z_AXIS:
  1077. {
  1078. enable_x();
  1079. enable_y();
  1080. enable_z();
  1081. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1082. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1083. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1084. //setup new step
  1085. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1086. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1087. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1088. //perform step
  1089. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1090. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1091. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1092. //wait a tiny bit
  1093. {
  1094. float x=1./float(axis+1); //absolutely useless
  1095. }
  1096. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1097. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1098. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1099. //get old pin state back.
  1100. WRITE(X_DIR_PIN,old_x_dir_pin);
  1101. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1102. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1103. }
  1104. break;
  1105. #endif
  1106. default: break;
  1107. }
  1108. }
  1109. #endif //BABYSTEPPING
  1110. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1111. {
  1112. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1113. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1114. SPI.transfer(address); // send in the address and value via SPI:
  1115. SPI.transfer(value);
  1116. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1117. //delay(10);
  1118. #endif
  1119. }
  1120. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1121. {
  1122. do
  1123. {
  1124. *value = eeprom_read_byte((unsigned char*)pos);
  1125. pos++;
  1126. value++;
  1127. }while(--size);
  1128. }
  1129. void digipot_init() //Initialize Digipot Motor Current
  1130. {
  1131. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1132. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1133. if(SilentMode == 0){
  1134. for(int i=0;i<=4;i++){
  1135. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1136. digipot_motor_current[i] = digipot_motor_current_loud[i];
  1137. }
  1138. }else{
  1139. for(int i=0;i<=4;i++){
  1140. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1141. digipot_motor_current[i] = digipot_motor_current_silent[i];
  1142. }
  1143. }
  1144. SPI.begin();
  1145. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1146. for(int i=0;i<=4;i++){
  1147. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1148. digipot_current(i,digipot_motor_current[i]);
  1149. }
  1150. #endif
  1151. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1152. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1153. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1154. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1155. if(SilentMode == 0){
  1156. motor_current_setting[0] = motor_current_setting_loud[0];
  1157. motor_current_setting[1] = motor_current_setting_loud[1];
  1158. motor_current_setting[2] = motor_current_setting_loud[2];
  1159. }else{
  1160. motor_current_setting[0] = motor_current_setting_silent[0];
  1161. motor_current_setting[1] = motor_current_setting_silent[1];
  1162. motor_current_setting[2] = motor_current_setting_silent[2];
  1163. }
  1164. digipot_current(0, motor_current_setting[0]);
  1165. digipot_current(1, motor_current_setting[1]);
  1166. digipot_current(2, motor_current_setting[2]);
  1167. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1168. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1169. #endif
  1170. }
  1171. void digipot_current(uint8_t driver, int current)
  1172. {
  1173. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1174. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1175. digitalPotWrite(digipot_ch[driver], current);
  1176. #endif
  1177. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1178. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1179. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1180. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1181. #endif
  1182. }
  1183. void microstep_init()
  1184. {
  1185. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1186. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1187. pinMode(E1_MS1_PIN,OUTPUT);
  1188. pinMode(E1_MS2_PIN,OUTPUT);
  1189. #endif
  1190. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1191. pinMode(X_MS1_PIN,OUTPUT);
  1192. pinMode(X_MS2_PIN,OUTPUT);
  1193. pinMode(Y_MS1_PIN,OUTPUT);
  1194. pinMode(Y_MS2_PIN,OUTPUT);
  1195. pinMode(Z_MS1_PIN,OUTPUT);
  1196. pinMode(Z_MS2_PIN,OUTPUT);
  1197. pinMode(E0_MS1_PIN,OUTPUT);
  1198. pinMode(E0_MS2_PIN,OUTPUT);
  1199. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1200. #endif
  1201. }
  1202. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1203. {
  1204. if(ms1 > -1) switch(driver)
  1205. {
  1206. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1207. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1208. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1209. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1210. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1211. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1212. #endif
  1213. }
  1214. if(ms2 > -1) switch(driver)
  1215. {
  1216. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1217. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1218. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1219. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1220. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1221. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1222. #endif
  1223. }
  1224. }
  1225. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1226. {
  1227. switch(stepping_mode)
  1228. {
  1229. case 1: microstep_ms(driver,MICROSTEP1); break;
  1230. case 2: microstep_ms(driver,MICROSTEP2); break;
  1231. case 4: microstep_ms(driver,MICROSTEP4); break;
  1232. case 8: microstep_ms(driver,MICROSTEP8); break;
  1233. case 16: microstep_ms(driver,MICROSTEP16); break;
  1234. }
  1235. }
  1236. void microstep_readings()
  1237. {
  1238. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1239. SERIAL_PROTOCOLPGM("X: ");
  1240. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1241. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1242. SERIAL_PROTOCOLPGM("Y: ");
  1243. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1244. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1245. SERIAL_PROTOCOLPGM("Z: ");
  1246. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1247. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1248. SERIAL_PROTOCOLPGM("E0: ");
  1249. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1250. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1251. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1252. SERIAL_PROTOCOLPGM("E1: ");
  1253. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1254. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1255. #endif
  1256. }