Marlin_main.cpp 275 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. union Data
  216. {
  217. byte b[2];
  218. int value;
  219. };
  220. float homing_feedrate[] = HOMING_FEEDRATE;
  221. // Currently only the extruder axis may be switched to a relative mode.
  222. // Other axes are always absolute or relative based on the common relative_mode flag.
  223. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  224. int feedmultiply=100; //100->1 200->2
  225. int saved_feedmultiply;
  226. int extrudemultiply=100; //100->1 200->2
  227. int extruder_multiply[EXTRUDERS] = {100
  228. #if EXTRUDERS > 1
  229. , 100
  230. #if EXTRUDERS > 2
  231. , 100
  232. #endif
  233. #endif
  234. };
  235. int bowden_length[4] = {385, 385, 385, 385};
  236. bool is_usb_printing = false;
  237. bool homing_flag = false;
  238. bool temp_cal_active = false;
  239. unsigned long kicktime = millis()+100000;
  240. unsigned int usb_printing_counter;
  241. int lcd_change_fil_state = 0;
  242. int feedmultiplyBckp = 100;
  243. float HotendTempBckp = 0;
  244. int fanSpeedBckp = 0;
  245. float pause_lastpos[4];
  246. unsigned long pause_time = 0;
  247. unsigned long start_pause_print = millis();
  248. unsigned long t_fan_rising_edge = millis();
  249. //unsigned long load_filament_time;
  250. bool mesh_bed_leveling_flag = false;
  251. bool mesh_bed_run_from_menu = false;
  252. unsigned char lang_selected = 0;
  253. int8_t FarmMode = 0;
  254. bool prusa_sd_card_upload = false;
  255. unsigned int status_number = 0;
  256. unsigned long total_filament_used;
  257. unsigned int heating_status;
  258. unsigned int heating_status_counter;
  259. bool custom_message;
  260. bool loading_flag = false;
  261. unsigned int custom_message_type;
  262. unsigned int custom_message_state;
  263. char snmm_filaments_used = 0;
  264. float distance_from_min[2];
  265. bool fan_state[2];
  266. int fan_edge_counter[2];
  267. int fan_speed[2];
  268. char dir_names[3][9];
  269. bool sortAlpha = false;
  270. bool volumetric_enabled = false;
  271. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 1
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #if EXTRUDERS > 2
  275. , DEFAULT_NOMINAL_FILAMENT_DIA
  276. #endif
  277. #endif
  278. };
  279. float extruder_multiplier[EXTRUDERS] = {1.0
  280. #if EXTRUDERS > 1
  281. , 1.0
  282. #if EXTRUDERS > 2
  283. , 1.0
  284. #endif
  285. #endif
  286. };
  287. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  288. float add_homing[3]={0,0,0};
  289. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  290. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  291. bool axis_known_position[3] = {false, false, false};
  292. float zprobe_zoffset;
  293. // Extruder offset
  294. #if EXTRUDERS > 1
  295. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  296. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  297. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  298. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  299. #endif
  300. };
  301. #endif
  302. uint8_t active_extruder = 0;
  303. int fanSpeed=0;
  304. #ifdef FWRETRACT
  305. bool autoretract_enabled=false;
  306. bool retracted[EXTRUDERS]={false
  307. #if EXTRUDERS > 1
  308. , false
  309. #if EXTRUDERS > 2
  310. , false
  311. #endif
  312. #endif
  313. };
  314. bool retracted_swap[EXTRUDERS]={false
  315. #if EXTRUDERS > 1
  316. , false
  317. #if EXTRUDERS > 2
  318. , false
  319. #endif
  320. #endif
  321. };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif
  330. #ifdef ULTIPANEL
  331. #ifdef PS_DEFAULT_OFF
  332. bool powersupply = false;
  333. #else
  334. bool powersupply = true;
  335. #endif
  336. #endif
  337. bool cancel_heatup = false ;
  338. #ifdef HOST_KEEPALIVE_FEATURE
  339. int busy_state = NOT_BUSY;
  340. static long prev_busy_signal_ms = -1;
  341. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  342. #else
  343. #define host_keepalive();
  344. #define KEEPALIVE_STATE(n);
  345. #endif
  346. const char errormagic[] PROGMEM = "Error:";
  347. const char echomagic[] PROGMEM = "echo:";
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. static float delta[3] = {0.0, 0.0, 0.0};
  354. // For tracing an arc
  355. static float offset[3] = {0.0, 0.0, 0.0};
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. // Determines Absolute or Relative Coordinates.
  358. // Also there is bool axis_relative_modes[] per axis flag.
  359. static bool relative_mode = false;
  360. #ifndef _DISABLE_M42_M226
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. #endif //_DISABLE_M42_M226
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool extruder_under_pressure = true;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. // Set home pin
  422. void setup_homepin(void)
  423. {
  424. #if defined(HOME_PIN) && HOME_PIN > -1
  425. SET_INPUT(HOME_PIN);
  426. WRITE(HOME_PIN,HIGH);
  427. #endif
  428. }
  429. void setup_photpin()
  430. {
  431. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  432. SET_OUTPUT(PHOTOGRAPH_PIN);
  433. WRITE(PHOTOGRAPH_PIN, LOW);
  434. #endif
  435. }
  436. void setup_powerhold()
  437. {
  438. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  439. SET_OUTPUT(SUICIDE_PIN);
  440. WRITE(SUICIDE_PIN, HIGH);
  441. #endif
  442. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  443. SET_OUTPUT(PS_ON_PIN);
  444. #if defined(PS_DEFAULT_OFF)
  445. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  454. SET_OUTPUT(SUICIDE_PIN);
  455. WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 5)
  473. #error "TODO: enter initalisation code for more servos"
  474. #endif
  475. }
  476. static void lcd_language_menu();
  477. void stop_and_save_print_to_ram(float z_move, float e_move);
  478. void restore_print_from_ram_and_continue(float e_move);
  479. bool fans_check_enabled = true;
  480. bool filament_autoload_enabled = true;
  481. #ifdef TMC2130
  482. extern int8_t CrashDetectMenu;
  483. void crashdet_enable()
  484. {
  485. // MYSERIAL.println("crashdet_enable");
  486. tmc2130_sg_stop_on_crash = true;
  487. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  488. CrashDetectMenu = 1;
  489. }
  490. void crashdet_disable()
  491. {
  492. // MYSERIAL.println("crashdet_disable");
  493. tmc2130_sg_stop_on_crash = false;
  494. tmc2130_sg_crash = 0;
  495. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  496. CrashDetectMenu = 0;
  497. }
  498. void crashdet_stop_and_save_print()
  499. {
  500. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  501. }
  502. void crashdet_restore_print_and_continue()
  503. {
  504. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  505. // babystep_apply();
  506. }
  507. void crashdet_stop_and_save_print2()
  508. {
  509. cli();
  510. planner_abort_hard(); //abort printing
  511. cmdqueue_reset(); //empty cmdqueue
  512. card.sdprinting = false;
  513. card.closefile();
  514. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  515. st_reset_timer();
  516. sei();
  517. }
  518. void crashdet_detected(uint8_t mask)
  519. {
  520. // printf("CRASH_DETECTED");
  521. /* while (!is_buffer_empty())
  522. {
  523. process_commands();
  524. cmdqueue_pop_front();
  525. }*/
  526. st_synchronize();
  527. lcd_update_enable(true);
  528. lcd_implementation_clear();
  529. lcd_update(2);
  530. if (mask & X_AXIS_MASK)
  531. {
  532. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  533. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  534. }
  535. if (mask & Y_AXIS_MASK)
  536. {
  537. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  538. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  539. }
  540. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  541. bool yesno = true;
  542. #else
  543. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  544. #endif
  545. lcd_update_enable(true);
  546. lcd_update(2);
  547. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  548. if (yesno)
  549. {
  550. enquecommand_P(PSTR("G28 X Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. #endif //TMC2130
  570. void failstats_reset_print()
  571. {
  572. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  576. }
  577. #ifdef MESH_BED_LEVELING
  578. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  579. #endif
  580. // Factory reset function
  581. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  582. // Level input parameter sets depth of reset
  583. // Quiet parameter masks all waitings for user interact.
  584. int er_progress = 0;
  585. void factory_reset(char level, bool quiet)
  586. {
  587. lcd_implementation_clear();
  588. int cursor_pos = 0;
  589. switch (level) {
  590. // Level 0: Language reset
  591. case 0:
  592. WRITE(BEEPER, HIGH);
  593. _delay_ms(100);
  594. WRITE(BEEPER, LOW);
  595. lcd_force_language_selection();
  596. break;
  597. //Level 1: Reset statistics
  598. case 1:
  599. WRITE(BEEPER, HIGH);
  600. _delay_ms(100);
  601. WRITE(BEEPER, LOW);
  602. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  603. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  604. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  605. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  606. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  607. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  608. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  609. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  610. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  611. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  612. lcd_menu_statistics();
  613. break;
  614. // Level 2: Prepare for shipping
  615. case 2:
  616. //lcd_printPGM(PSTR("Factory RESET"));
  617. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  618. // Force language selection at the next boot up.
  619. lcd_force_language_selection();
  620. // Force the "Follow calibration flow" message at the next boot up.
  621. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  622. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  623. farm_no = 0;
  624. farm_mode == false;
  625. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  626. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  627. WRITE(BEEPER, HIGH);
  628. _delay_ms(100);
  629. WRITE(BEEPER, LOW);
  630. //_delay_ms(2000);
  631. break;
  632. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  633. case 3:
  634. lcd_printPGM(PSTR("Factory RESET"));
  635. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  636. WRITE(BEEPER, HIGH);
  637. _delay_ms(100);
  638. WRITE(BEEPER, LOW);
  639. er_progress = 0;
  640. lcd_print_at_PGM(3, 3, PSTR(" "));
  641. lcd_implementation_print_at(3, 3, er_progress);
  642. // Erase EEPROM
  643. for (int i = 0; i < 4096; i++) {
  644. eeprom_write_byte((uint8_t*)i, 0xFF);
  645. if (i % 41 == 0) {
  646. er_progress++;
  647. lcd_print_at_PGM(3, 3, PSTR(" "));
  648. lcd_implementation_print_at(3, 3, er_progress);
  649. lcd_printPGM(PSTR("%"));
  650. }
  651. }
  652. break;
  653. case 4:
  654. bowden_menu();
  655. break;
  656. default:
  657. break;
  658. }
  659. }
  660. #include "LiquidCrystal.h"
  661. extern LiquidCrystal lcd;
  662. FILE _lcdout = {0};
  663. int lcd_putchar(char c, FILE *stream)
  664. {
  665. lcd.write(c);
  666. return 0;
  667. }
  668. FILE _uartout = {0};
  669. int uart_putchar(char c, FILE *stream)
  670. {
  671. MYSERIAL.write(c);
  672. return 0;
  673. }
  674. void lcd_splash()
  675. {
  676. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  677. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  678. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  679. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  680. }
  681. void factory_reset()
  682. {
  683. KEEPALIVE_STATE(PAUSED_FOR_USER);
  684. if (!READ(BTN_ENC))
  685. {
  686. _delay_ms(1000);
  687. if (!READ(BTN_ENC))
  688. {
  689. lcd_implementation_clear();
  690. lcd_printPGM(PSTR("Factory RESET"));
  691. SET_OUTPUT(BEEPER);
  692. WRITE(BEEPER, HIGH);
  693. while (!READ(BTN_ENC));
  694. WRITE(BEEPER, LOW);
  695. _delay_ms(2000);
  696. char level = reset_menu();
  697. factory_reset(level, false);
  698. switch (level) {
  699. case 0: _delay_ms(0); break;
  700. case 1: _delay_ms(0); break;
  701. case 2: _delay_ms(0); break;
  702. case 3: _delay_ms(0); break;
  703. }
  704. // _delay_ms(100);
  705. /*
  706. #ifdef MESH_BED_LEVELING
  707. _delay_ms(2000);
  708. if (!READ(BTN_ENC))
  709. {
  710. WRITE(BEEPER, HIGH);
  711. _delay_ms(100);
  712. WRITE(BEEPER, LOW);
  713. _delay_ms(200);
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. int _z = 0;
  718. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  719. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  720. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  721. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  722. }
  723. else
  724. {
  725. WRITE(BEEPER, HIGH);
  726. _delay_ms(100);
  727. WRITE(BEEPER, LOW);
  728. }
  729. #endif // mesh */
  730. }
  731. }
  732. else
  733. {
  734. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  735. }
  736. KEEPALIVE_STATE(IN_HANDLER);
  737. }
  738. void show_fw_version_warnings() {
  739. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  740. switch (FW_DEV_VERSION) {
  741. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  742. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  743. case(FW_VERSION_DEVEL):
  744. case(FW_VERSION_DEBUG):
  745. lcd_update_enable(false);
  746. lcd_implementation_clear();
  747. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  748. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  749. #else
  750. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  751. #endif
  752. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  753. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  754. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  755. lcd_wait_for_click();
  756. break;
  757. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  758. }
  759. lcd_update_enable(true);
  760. }
  761. uint8_t check_printer_version()
  762. {
  763. uint8_t version_changed = 0;
  764. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  765. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  766. if (printer_type != PRINTER_TYPE) {
  767. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  768. else version_changed |= 0b10;
  769. }
  770. if (motherboard != MOTHERBOARD) {
  771. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  772. else version_changed |= 0b01;
  773. }
  774. return version_changed;
  775. }
  776. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  777. {
  778. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  779. }
  780. // "Setup" function is called by the Arduino framework on startup.
  781. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  782. // are initialized by the main() routine provided by the Arduino framework.
  783. void setup()
  784. {
  785. lcd_init();
  786. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  787. lcd_splash();
  788. setup_killpin();
  789. setup_powerhold();
  790. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  791. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  792. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  793. if (farm_no == 0xFFFF) farm_no = 0;
  794. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  795. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  796. if (farm_mode)
  797. {
  798. prusa_statistics(8);
  799. selectedSerialPort = 1;
  800. }
  801. MYSERIAL.begin(BAUDRATE);
  802. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  803. stdout = uartout;
  804. SERIAL_PROTOCOLLNPGM("start");
  805. SERIAL_ECHO_START;
  806. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  807. #if 0
  808. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  809. for (int i = 0; i < 4096; ++i) {
  810. int b = eeprom_read_byte((unsigned char*)i);
  811. if (b != 255) {
  812. SERIAL_ECHO(i);
  813. SERIAL_ECHO(":");
  814. SERIAL_ECHO(b);
  815. SERIAL_ECHOLN("");
  816. }
  817. }
  818. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  819. #endif
  820. // Check startup - does nothing if bootloader sets MCUSR to 0
  821. byte mcu = MCUSR;
  822. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  823. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  824. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  825. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  826. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  827. if (mcu & 1) puts_P(MSG_POWERUP);
  828. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  829. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  830. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  831. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  832. MCUSR = 0;
  833. //SERIAL_ECHORPGM(MSG_MARLIN);
  834. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  835. #ifdef STRING_VERSION_CONFIG_H
  836. #ifdef STRING_CONFIG_H_AUTHOR
  837. SERIAL_ECHO_START;
  838. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  839. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  840. SERIAL_ECHORPGM(MSG_AUTHOR);
  841. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  842. SERIAL_ECHOPGM("Compiled: ");
  843. SERIAL_ECHOLNPGM(__DATE__);
  844. #endif
  845. #endif
  846. SERIAL_ECHO_START;
  847. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  848. SERIAL_ECHO(freeMemory());
  849. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  850. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  851. //lcd_update_enable(false); // why do we need this?? - andre
  852. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  853. bool previous_settings_retrieved = false;
  854. uint8_t hw_changed = check_printer_version();
  855. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  856. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  857. }
  858. else { //printer version was changed so use default settings
  859. Config_ResetDefault();
  860. }
  861. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  862. tp_init(); // Initialize temperature loop
  863. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  864. plan_init(); // Initialize planner;
  865. factory_reset();
  866. #ifdef TMC2130
  867. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  868. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  869. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  870. if (crashdet)
  871. {
  872. crashdet_enable();
  873. MYSERIAL.println("CrashDetect ENABLED!");
  874. }
  875. else
  876. {
  877. crashdet_disable();
  878. MYSERIAL.println("CrashDetect DISABLED");
  879. }
  880. #endif //TMC2130
  881. st_init(); // Initialize stepper, this enables interrupts!
  882. setup_photpin();
  883. servo_init();
  884. // Reset the machine correction matrix.
  885. // It does not make sense to load the correction matrix until the machine is homed.
  886. world2machine_reset();
  887. #ifdef PAT9125
  888. fsensor_init();
  889. #endif //PAT9125
  890. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  891. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  892. #endif
  893. #ifdef DIGIPOT_I2C
  894. digipot_i2c_init();
  895. #endif
  896. setup_homepin();
  897. #ifdef TMC2130
  898. if (1) {
  899. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  900. // try to run to zero phase before powering the Z motor.
  901. // Move in negative direction
  902. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  903. // Round the current micro-micro steps to micro steps.
  904. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  905. // Until the phase counter is reset to zero.
  906. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  907. delay(2);
  908. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  909. delay(2);
  910. }
  911. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  912. }
  913. #endif //TMC2130
  914. #if defined(Z_AXIS_ALWAYS_ON)
  915. enable_z();
  916. #endif
  917. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  918. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  919. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  920. if (farm_no == 0xFFFF) farm_no = 0;
  921. if (farm_mode)
  922. {
  923. prusa_statistics(8);
  924. }
  925. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  926. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  927. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  928. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  929. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  930. // where all the EEPROM entries are set to 0x0ff.
  931. // Once a firmware boots up, it forces at least a language selection, which changes
  932. // EEPROM_LANG to number lower than 0x0ff.
  933. // 1) Set a high power mode.
  934. #ifdef TMC2130
  935. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  936. tmc2130_mode = TMC2130_MODE_NORMAL;
  937. #endif //TMC2130
  938. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  939. }
  940. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  941. // but this times out if a blocking dialog is shown in setup().
  942. card.initsd();
  943. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  944. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  945. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  946. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  947. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  948. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  949. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  950. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  951. #ifdef SNMM
  952. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  953. int _z = BOWDEN_LENGTH;
  954. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  955. }
  956. #endif
  957. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  958. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  959. // is being written into the EEPROM, so the update procedure will be triggered only once.
  960. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  961. if (lang_selected >= LANG_NUM){
  962. lcd_mylang();
  963. }
  964. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  965. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  966. temp_cal_active = false;
  967. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  968. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  969. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  970. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  971. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  972. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  973. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  974. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  975. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  976. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  977. temp_cal_active = true;
  978. }
  979. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  980. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  981. }
  982. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  983. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  984. }
  985. check_babystep(); //checking if Z babystep is in allowed range
  986. #ifdef UVLO_SUPPORT
  987. setup_uvlo_interrupt();
  988. #endif //UVLO_SUPPORT
  989. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  990. setup_fan_interrupt();
  991. #endif //DEBUG_DISABLE_FANCHECK
  992. #ifdef PAT9125
  993. #ifndef DEBUG_DISABLE_FSENSORCHECK
  994. fsensor_setup_interrupt();
  995. #endif //DEBUG_DISABLE_FSENSORCHECK
  996. #endif //PAT9125
  997. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  998. #ifndef DEBUG_DISABLE_STARTMSGS
  999. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1000. show_fw_version_warnings();
  1001. switch (hw_changed) {
  1002. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1003. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1004. case(0b01):
  1005. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1006. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1007. break;
  1008. case(0b10):
  1009. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1010. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1011. break;
  1012. case(0b11):
  1013. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1014. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1015. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1016. break;
  1017. default: break; //no change, show no message
  1018. }
  1019. if (!previous_settings_retrieved) {
  1020. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1021. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1022. }
  1023. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1024. lcd_wizard(0);
  1025. }
  1026. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1027. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1028. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1029. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1030. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1031. // Show the message.
  1032. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1033. }
  1034. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1035. // Show the message.
  1036. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1037. lcd_update_enable(true);
  1038. }
  1039. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1040. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1041. lcd_update_enable(true);
  1042. }
  1043. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1044. // Show the message.
  1045. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1046. }
  1047. }
  1048. KEEPALIVE_STATE(IN_PROCESS);
  1049. #endif //DEBUG_DISABLE_STARTMSGS
  1050. lcd_update_enable(true);
  1051. lcd_implementation_clear();
  1052. lcd_update(2);
  1053. // Store the currently running firmware into an eeprom,
  1054. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1055. update_current_firmware_version_to_eeprom();
  1056. #ifdef UVLO_SUPPORT
  1057. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1058. /*
  1059. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1060. else {
  1061. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1062. lcd_update_enable(true);
  1063. lcd_update(2);
  1064. lcd_setstatuspgm(WELCOME_MSG);
  1065. }
  1066. */
  1067. manage_heater(); // Update temperatures
  1068. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1069. MYSERIAL.println("Power panic detected!");
  1070. MYSERIAL.print("Current bed temp:");
  1071. MYSERIAL.println(degBed());
  1072. MYSERIAL.print("Saved bed temp:");
  1073. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1074. #endif
  1075. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1076. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1077. MYSERIAL.println("Automatic recovery!");
  1078. #endif
  1079. recover_print(1);
  1080. }
  1081. else{
  1082. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1083. MYSERIAL.println("Normal recovery!");
  1084. #endif
  1085. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1086. else {
  1087. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1088. lcd_update_enable(true);
  1089. lcd_update(2);
  1090. lcd_setstatuspgm(WELCOME_MSG);
  1091. }
  1092. }
  1093. }
  1094. #endif //UVLO_SUPPORT
  1095. KEEPALIVE_STATE(NOT_BUSY);
  1096. #ifdef WATCHDOG
  1097. wdt_enable(WDTO_4S);
  1098. #endif //WATCHDOG
  1099. }
  1100. #ifdef PAT9125
  1101. void fsensor_init() {
  1102. int pat9125 = pat9125_init();
  1103. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1104. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1105. if (!pat9125)
  1106. {
  1107. fsensor = 0; //disable sensor
  1108. fsensor_not_responding = true;
  1109. }
  1110. else {
  1111. fsensor_not_responding = false;
  1112. }
  1113. puts_P(PSTR("FSensor "));
  1114. if (fsensor)
  1115. {
  1116. puts_P(PSTR("ENABLED\n"));
  1117. fsensor_enable();
  1118. }
  1119. else
  1120. {
  1121. puts_P(PSTR("DISABLED\n"));
  1122. fsensor_disable();
  1123. }
  1124. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1125. filament_autoload_enabled = false;
  1126. fsensor_disable();
  1127. #endif //DEBUG_DISABLE_FSENSORCHECK
  1128. }
  1129. #endif //PAT9125
  1130. void trace();
  1131. #define CHUNK_SIZE 64 // bytes
  1132. #define SAFETY_MARGIN 1
  1133. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1134. int chunkHead = 0;
  1135. int serial_read_stream() {
  1136. setTargetHotend(0, 0);
  1137. setTargetBed(0);
  1138. lcd_implementation_clear();
  1139. lcd_printPGM(PSTR(" Upload in progress"));
  1140. // first wait for how many bytes we will receive
  1141. uint32_t bytesToReceive;
  1142. // receive the four bytes
  1143. char bytesToReceiveBuffer[4];
  1144. for (int i=0; i<4; i++) {
  1145. int data;
  1146. while ((data = MYSERIAL.read()) == -1) {};
  1147. bytesToReceiveBuffer[i] = data;
  1148. }
  1149. // make it a uint32
  1150. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1151. // we're ready, notify the sender
  1152. MYSERIAL.write('+');
  1153. // lock in the routine
  1154. uint32_t receivedBytes = 0;
  1155. while (prusa_sd_card_upload) {
  1156. int i;
  1157. for (i=0; i<CHUNK_SIZE; i++) {
  1158. int data;
  1159. // check if we're not done
  1160. if (receivedBytes == bytesToReceive) {
  1161. break;
  1162. }
  1163. // read the next byte
  1164. while ((data = MYSERIAL.read()) == -1) {};
  1165. receivedBytes++;
  1166. // save it to the chunk
  1167. chunk[i] = data;
  1168. }
  1169. // write the chunk to SD
  1170. card.write_command_no_newline(&chunk[0]);
  1171. // notify the sender we're ready for more data
  1172. MYSERIAL.write('+');
  1173. // for safety
  1174. manage_heater();
  1175. // check if we're done
  1176. if(receivedBytes == bytesToReceive) {
  1177. trace(); // beep
  1178. card.closefile();
  1179. prusa_sd_card_upload = false;
  1180. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1181. return 0;
  1182. }
  1183. }
  1184. }
  1185. #ifdef HOST_KEEPALIVE_FEATURE
  1186. /**
  1187. * Output a "busy" message at regular intervals
  1188. * while the machine is not accepting commands.
  1189. */
  1190. void host_keepalive() {
  1191. if (farm_mode) return;
  1192. long ms = millis();
  1193. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1194. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1195. switch (busy_state) {
  1196. case IN_HANDLER:
  1197. case IN_PROCESS:
  1198. SERIAL_ECHO_START;
  1199. SERIAL_ECHOLNPGM("busy: processing");
  1200. break;
  1201. case PAUSED_FOR_USER:
  1202. SERIAL_ECHO_START;
  1203. SERIAL_ECHOLNPGM("busy: paused for user");
  1204. break;
  1205. case PAUSED_FOR_INPUT:
  1206. SERIAL_ECHO_START;
  1207. SERIAL_ECHOLNPGM("busy: paused for input");
  1208. break;
  1209. default:
  1210. break;
  1211. }
  1212. }
  1213. prev_busy_signal_ms = ms;
  1214. }
  1215. #endif
  1216. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1217. // Before loop(), the setup() function is called by the main() routine.
  1218. void loop()
  1219. {
  1220. KEEPALIVE_STATE(NOT_BUSY);
  1221. bool stack_integrity = true;
  1222. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1223. {
  1224. is_usb_printing = true;
  1225. usb_printing_counter--;
  1226. _usb_timer = millis();
  1227. }
  1228. if (usb_printing_counter == 0)
  1229. {
  1230. is_usb_printing = false;
  1231. }
  1232. if (prusa_sd_card_upload)
  1233. {
  1234. //we read byte-by byte
  1235. serial_read_stream();
  1236. } else
  1237. {
  1238. get_command();
  1239. #ifdef SDSUPPORT
  1240. card.checkautostart(false);
  1241. #endif
  1242. if(buflen)
  1243. {
  1244. cmdbuffer_front_already_processed = false;
  1245. #ifdef SDSUPPORT
  1246. if(card.saving)
  1247. {
  1248. // Saving a G-code file onto an SD-card is in progress.
  1249. // Saving starts with M28, saving until M29 is seen.
  1250. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1251. card.write_command(CMDBUFFER_CURRENT_STRING);
  1252. if(card.logging)
  1253. process_commands();
  1254. else
  1255. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1256. } else {
  1257. card.closefile();
  1258. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1259. }
  1260. } else {
  1261. process_commands();
  1262. }
  1263. #else
  1264. process_commands();
  1265. #endif //SDSUPPORT
  1266. if (! cmdbuffer_front_already_processed && buflen)
  1267. {
  1268. // ptr points to the start of the block currently being processed.
  1269. // The first character in the block is the block type.
  1270. char *ptr = cmdbuffer + bufindr;
  1271. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1272. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1273. union {
  1274. struct {
  1275. char lo;
  1276. char hi;
  1277. } lohi;
  1278. uint16_t value;
  1279. } sdlen;
  1280. sdlen.value = 0;
  1281. {
  1282. // This block locks the interrupts globally for 3.25 us,
  1283. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1284. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1285. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1286. cli();
  1287. // Reset the command to something, which will be ignored by the power panic routine,
  1288. // so this buffer length will not be counted twice.
  1289. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1290. // Extract the current buffer length.
  1291. sdlen.lohi.lo = *ptr ++;
  1292. sdlen.lohi.hi = *ptr;
  1293. // and pass it to the planner queue.
  1294. planner_add_sd_length(sdlen.value);
  1295. sei();
  1296. }
  1297. }
  1298. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1299. // this block's SD card length will not be counted twice as its command type has been replaced
  1300. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1301. cmdqueue_pop_front();
  1302. }
  1303. host_keepalive();
  1304. }
  1305. }
  1306. //check heater every n milliseconds
  1307. manage_heater();
  1308. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1309. checkHitEndstops();
  1310. lcd_update();
  1311. #ifdef PAT9125
  1312. fsensor_update();
  1313. #endif //PAT9125
  1314. #ifdef TMC2130
  1315. tmc2130_check_overtemp();
  1316. if (tmc2130_sg_crash)
  1317. {
  1318. uint8_t crash = tmc2130_sg_crash;
  1319. tmc2130_sg_crash = 0;
  1320. // crashdet_stop_and_save_print();
  1321. switch (crash)
  1322. {
  1323. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1324. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1325. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1326. }
  1327. }
  1328. #endif //TMC2130
  1329. }
  1330. #define DEFINE_PGM_READ_ANY(type, reader) \
  1331. static inline type pgm_read_any(const type *p) \
  1332. { return pgm_read_##reader##_near(p); }
  1333. DEFINE_PGM_READ_ANY(float, float);
  1334. DEFINE_PGM_READ_ANY(signed char, byte);
  1335. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1336. static const PROGMEM type array##_P[3] = \
  1337. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1338. static inline type array(int axis) \
  1339. { return pgm_read_any(&array##_P[axis]); } \
  1340. type array##_ext(int axis) \
  1341. { return pgm_read_any(&array##_P[axis]); }
  1342. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1343. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1344. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1345. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1346. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1347. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1348. static void axis_is_at_home(int axis) {
  1349. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1350. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1351. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1352. }
  1353. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1354. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1355. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1356. saved_feedrate = feedrate;
  1357. saved_feedmultiply = feedmultiply;
  1358. feedmultiply = 100;
  1359. previous_millis_cmd = millis();
  1360. enable_endstops(enable_endstops_now);
  1361. }
  1362. static void clean_up_after_endstop_move() {
  1363. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1364. enable_endstops(false);
  1365. #endif
  1366. feedrate = saved_feedrate;
  1367. feedmultiply = saved_feedmultiply;
  1368. previous_millis_cmd = millis();
  1369. }
  1370. #ifdef ENABLE_AUTO_BED_LEVELING
  1371. #ifdef AUTO_BED_LEVELING_GRID
  1372. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1373. {
  1374. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1375. planeNormal.debug("planeNormal");
  1376. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1377. //bedLevel.debug("bedLevel");
  1378. //plan_bed_level_matrix.debug("bed level before");
  1379. //vector_3 uncorrected_position = plan_get_position_mm();
  1380. //uncorrected_position.debug("position before");
  1381. vector_3 corrected_position = plan_get_position();
  1382. // corrected_position.debug("position after");
  1383. current_position[X_AXIS] = corrected_position.x;
  1384. current_position[Y_AXIS] = corrected_position.y;
  1385. current_position[Z_AXIS] = corrected_position.z;
  1386. // put the bed at 0 so we don't go below it.
  1387. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1388. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1389. }
  1390. #else // not AUTO_BED_LEVELING_GRID
  1391. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1392. plan_bed_level_matrix.set_to_identity();
  1393. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1394. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1395. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1396. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1397. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1398. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1399. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1400. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1401. vector_3 corrected_position = plan_get_position();
  1402. current_position[X_AXIS] = corrected_position.x;
  1403. current_position[Y_AXIS] = corrected_position.y;
  1404. current_position[Z_AXIS] = corrected_position.z;
  1405. // put the bed at 0 so we don't go below it.
  1406. current_position[Z_AXIS] = zprobe_zoffset;
  1407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1408. }
  1409. #endif // AUTO_BED_LEVELING_GRID
  1410. static void run_z_probe() {
  1411. plan_bed_level_matrix.set_to_identity();
  1412. feedrate = homing_feedrate[Z_AXIS];
  1413. // move down until you find the bed
  1414. float zPosition = -10;
  1415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1416. st_synchronize();
  1417. // we have to let the planner know where we are right now as it is not where we said to go.
  1418. zPosition = st_get_position_mm(Z_AXIS);
  1419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1420. // move up the retract distance
  1421. zPosition += home_retract_mm(Z_AXIS);
  1422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1423. st_synchronize();
  1424. // move back down slowly to find bed
  1425. feedrate = homing_feedrate[Z_AXIS]/4;
  1426. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1428. st_synchronize();
  1429. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1430. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1431. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1432. }
  1433. static void do_blocking_move_to(float x, float y, float z) {
  1434. float oldFeedRate = feedrate;
  1435. feedrate = homing_feedrate[Z_AXIS];
  1436. current_position[Z_AXIS] = z;
  1437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1438. st_synchronize();
  1439. feedrate = XY_TRAVEL_SPEED;
  1440. current_position[X_AXIS] = x;
  1441. current_position[Y_AXIS] = y;
  1442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1443. st_synchronize();
  1444. feedrate = oldFeedRate;
  1445. }
  1446. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1447. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1448. }
  1449. /// Probe bed height at position (x,y), returns the measured z value
  1450. static float probe_pt(float x, float y, float z_before) {
  1451. // move to right place
  1452. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1453. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1454. run_z_probe();
  1455. float measured_z = current_position[Z_AXIS];
  1456. SERIAL_PROTOCOLRPGM(MSG_BED);
  1457. SERIAL_PROTOCOLPGM(" x: ");
  1458. SERIAL_PROTOCOL(x);
  1459. SERIAL_PROTOCOLPGM(" y: ");
  1460. SERIAL_PROTOCOL(y);
  1461. SERIAL_PROTOCOLPGM(" z: ");
  1462. SERIAL_PROTOCOL(measured_z);
  1463. SERIAL_PROTOCOLPGM("\n");
  1464. return measured_z;
  1465. }
  1466. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1467. #ifdef LIN_ADVANCE
  1468. /**
  1469. * M900: Set and/or Get advance K factor and WH/D ratio
  1470. *
  1471. * K<factor> Set advance K factor
  1472. * R<ratio> Set ratio directly (overrides WH/D)
  1473. * W<width> H<height> D<diam> Set ratio from WH/D
  1474. */
  1475. inline void gcode_M900() {
  1476. st_synchronize();
  1477. const float newK = code_seen('K') ? code_value_float() : -1;
  1478. if (newK >= 0) extruder_advance_k = newK;
  1479. float newR = code_seen('R') ? code_value_float() : -1;
  1480. if (newR < 0) {
  1481. const float newD = code_seen('D') ? code_value_float() : -1,
  1482. newW = code_seen('W') ? code_value_float() : -1,
  1483. newH = code_seen('H') ? code_value_float() : -1;
  1484. if (newD >= 0 && newW >= 0 && newH >= 0)
  1485. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1486. }
  1487. if (newR >= 0) advance_ed_ratio = newR;
  1488. SERIAL_ECHO_START;
  1489. SERIAL_ECHOPGM("Advance K=");
  1490. SERIAL_ECHOLN(extruder_advance_k);
  1491. SERIAL_ECHOPGM(" E/D=");
  1492. const float ratio = advance_ed_ratio;
  1493. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1494. }
  1495. #endif // LIN_ADVANCE
  1496. bool check_commands() {
  1497. bool end_command_found = false;
  1498. while (buflen)
  1499. {
  1500. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1501. if (!cmdbuffer_front_already_processed)
  1502. cmdqueue_pop_front();
  1503. cmdbuffer_front_already_processed = false;
  1504. }
  1505. return end_command_found;
  1506. }
  1507. #ifdef TMC2130
  1508. bool calibrate_z_auto()
  1509. {
  1510. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1511. lcd_implementation_clear();
  1512. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1513. bool endstops_enabled = enable_endstops(true);
  1514. int axis_up_dir = -home_dir(Z_AXIS);
  1515. tmc2130_home_enter(Z_AXIS_MASK);
  1516. current_position[Z_AXIS] = 0;
  1517. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1518. set_destination_to_current();
  1519. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1520. feedrate = homing_feedrate[Z_AXIS];
  1521. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1522. st_synchronize();
  1523. // current_position[axis] = 0;
  1524. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1525. tmc2130_home_exit();
  1526. enable_endstops(false);
  1527. current_position[Z_AXIS] = 0;
  1528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1529. set_destination_to_current();
  1530. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1531. feedrate = homing_feedrate[Z_AXIS] / 2;
  1532. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1533. st_synchronize();
  1534. enable_endstops(endstops_enabled);
  1535. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1536. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1537. return true;
  1538. }
  1539. #endif //TMC2130
  1540. void homeaxis(int axis)
  1541. {
  1542. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1543. #define HOMEAXIS_DO(LETTER) \
  1544. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1545. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1546. {
  1547. int axis_home_dir = home_dir(axis);
  1548. feedrate = homing_feedrate[axis];
  1549. #ifdef TMC2130
  1550. tmc2130_home_enter(X_AXIS_MASK << axis);
  1551. #endif
  1552. // Move right a bit, so that the print head does not touch the left end position,
  1553. // and the following left movement has a chance to achieve the required velocity
  1554. // for the stall guard to work.
  1555. current_position[axis] = 0;
  1556. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1557. // destination[axis] = 11.f;
  1558. destination[axis] = 3.f;
  1559. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. // Move left away from the possible collision with the collision detection disabled.
  1562. endstops_hit_on_purpose();
  1563. enable_endstops(false);
  1564. current_position[axis] = 0;
  1565. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1566. destination[axis] = - 1.;
  1567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1568. st_synchronize();
  1569. // Now continue to move up to the left end stop with the collision detection enabled.
  1570. enable_endstops(true);
  1571. destination[axis] = - 1.1 * max_length(axis);
  1572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1573. st_synchronize();
  1574. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1575. endstops_hit_on_purpose();
  1576. enable_endstops(false);
  1577. current_position[axis] = 0;
  1578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1579. destination[axis] = 10.f;
  1580. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1581. st_synchronize();
  1582. endstops_hit_on_purpose();
  1583. // Now move left up to the collision, this time with a repeatable velocity.
  1584. enable_endstops(true);
  1585. destination[axis] = - 15.f;
  1586. feedrate = homing_feedrate[axis]/2;
  1587. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1588. st_synchronize();
  1589. axis_is_at_home(axis);
  1590. axis_known_position[axis] = true;
  1591. #ifdef TMC2130
  1592. tmc2130_home_exit();
  1593. #endif
  1594. // Move the X carriage away from the collision.
  1595. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1596. endstops_hit_on_purpose();
  1597. enable_endstops(false);
  1598. {
  1599. // Two full periods (4 full steps).
  1600. float gap = 0.32f * 2.f;
  1601. current_position[axis] -= gap;
  1602. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1603. current_position[axis] += gap;
  1604. }
  1605. destination[axis] = current_position[axis];
  1606. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1607. st_synchronize();
  1608. feedrate = 0.0;
  1609. }
  1610. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1611. {
  1612. int axis_home_dir = home_dir(axis);
  1613. current_position[axis] = 0;
  1614. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1615. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1616. feedrate = homing_feedrate[axis];
  1617. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1618. st_synchronize();
  1619. current_position[axis] = 0;
  1620. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1621. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1622. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1623. st_synchronize();
  1624. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1625. feedrate = homing_feedrate[axis]/2 ;
  1626. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1627. st_synchronize();
  1628. axis_is_at_home(axis);
  1629. destination[axis] = current_position[axis];
  1630. feedrate = 0.0;
  1631. endstops_hit_on_purpose();
  1632. axis_known_position[axis] = true;
  1633. }
  1634. enable_endstops(endstops_enabled);
  1635. }
  1636. /**/
  1637. void home_xy()
  1638. {
  1639. set_destination_to_current();
  1640. homeaxis(X_AXIS);
  1641. homeaxis(Y_AXIS);
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. endstops_hit_on_purpose();
  1644. }
  1645. void refresh_cmd_timeout(void)
  1646. {
  1647. previous_millis_cmd = millis();
  1648. }
  1649. #ifdef FWRETRACT
  1650. void retract(bool retracting, bool swapretract = false) {
  1651. if(retracting && !retracted[active_extruder]) {
  1652. destination[X_AXIS]=current_position[X_AXIS];
  1653. destination[Y_AXIS]=current_position[Y_AXIS];
  1654. destination[Z_AXIS]=current_position[Z_AXIS];
  1655. destination[E_AXIS]=current_position[E_AXIS];
  1656. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1657. plan_set_e_position(current_position[E_AXIS]);
  1658. float oldFeedrate = feedrate;
  1659. feedrate=retract_feedrate*60;
  1660. retracted[active_extruder]=true;
  1661. prepare_move();
  1662. current_position[Z_AXIS]-=retract_zlift;
  1663. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1664. prepare_move();
  1665. feedrate = oldFeedrate;
  1666. } else if(!retracting && retracted[active_extruder]) {
  1667. destination[X_AXIS]=current_position[X_AXIS];
  1668. destination[Y_AXIS]=current_position[Y_AXIS];
  1669. destination[Z_AXIS]=current_position[Z_AXIS];
  1670. destination[E_AXIS]=current_position[E_AXIS];
  1671. current_position[Z_AXIS]+=retract_zlift;
  1672. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1673. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1674. plan_set_e_position(current_position[E_AXIS]);
  1675. float oldFeedrate = feedrate;
  1676. feedrate=retract_recover_feedrate*60;
  1677. retracted[active_extruder]=false;
  1678. prepare_move();
  1679. feedrate = oldFeedrate;
  1680. }
  1681. } //retract
  1682. #endif //FWRETRACT
  1683. void trace() {
  1684. tone(BEEPER, 440);
  1685. delay(25);
  1686. noTone(BEEPER);
  1687. delay(20);
  1688. }
  1689. /*
  1690. void ramming() {
  1691. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1692. if (current_temperature[0] < 230) {
  1693. //PLA
  1694. max_feedrate[E_AXIS] = 50;
  1695. //current_position[E_AXIS] -= 8;
  1696. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1697. //current_position[E_AXIS] += 8;
  1698. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1699. current_position[E_AXIS] += 5.4;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1701. current_position[E_AXIS] += 3.2;
  1702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1703. current_position[E_AXIS] += 3;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1705. st_synchronize();
  1706. max_feedrate[E_AXIS] = 80;
  1707. current_position[E_AXIS] -= 82;
  1708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1709. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1710. current_position[E_AXIS] -= 20;
  1711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1712. current_position[E_AXIS] += 5;
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1714. current_position[E_AXIS] += 5;
  1715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1716. current_position[E_AXIS] -= 10;
  1717. st_synchronize();
  1718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1719. current_position[E_AXIS] += 10;
  1720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1721. current_position[E_AXIS] -= 10;
  1722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1723. current_position[E_AXIS] += 10;
  1724. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1725. current_position[E_AXIS] -= 10;
  1726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1727. st_synchronize();
  1728. }
  1729. else {
  1730. //ABS
  1731. max_feedrate[E_AXIS] = 50;
  1732. //current_position[E_AXIS] -= 8;
  1733. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1734. //current_position[E_AXIS] += 8;
  1735. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1736. current_position[E_AXIS] += 3.1;
  1737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1738. current_position[E_AXIS] += 3.1;
  1739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1740. current_position[E_AXIS] += 4;
  1741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1742. st_synchronize();
  1743. //current_position[X_AXIS] += 23; //delay
  1744. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1745. //current_position[X_AXIS] -= 23; //delay
  1746. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1747. delay(4700);
  1748. max_feedrate[E_AXIS] = 80;
  1749. current_position[E_AXIS] -= 92;
  1750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1751. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1752. current_position[E_AXIS] -= 5;
  1753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1754. current_position[E_AXIS] += 5;
  1755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1756. current_position[E_AXIS] -= 5;
  1757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1758. st_synchronize();
  1759. current_position[E_AXIS] += 5;
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1761. current_position[E_AXIS] -= 5;
  1762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1763. current_position[E_AXIS] += 5;
  1764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1765. current_position[E_AXIS] -= 5;
  1766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1767. st_synchronize();
  1768. }
  1769. }
  1770. */
  1771. #ifdef TMC2130
  1772. void force_high_power_mode(bool start_high_power_section) {
  1773. uint8_t silent;
  1774. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1775. if (silent == 1) {
  1776. //we are in silent mode, set to normal mode to enable crash detection
  1777. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1778. st_synchronize();
  1779. cli();
  1780. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1781. tmc2130_init();
  1782. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1783. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1784. st_reset_timer();
  1785. sei();
  1786. digipot_init();
  1787. }
  1788. }
  1789. #endif //TMC2130
  1790. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1791. {
  1792. bool final_result = false;
  1793. #ifdef TMC2130
  1794. FORCE_HIGH_POWER_START;
  1795. #endif // TMC2130
  1796. // Only Z calibration?
  1797. if (!onlyZ)
  1798. {
  1799. setTargetBed(0);
  1800. setTargetHotend(0, 0);
  1801. setTargetHotend(0, 1);
  1802. setTargetHotend(0, 2);
  1803. adjust_bed_reset(); //reset bed level correction
  1804. }
  1805. // Disable the default update procedure of the display. We will do a modal dialog.
  1806. lcd_update_enable(false);
  1807. // Let the planner use the uncorrected coordinates.
  1808. mbl.reset();
  1809. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1810. // the planner will not perform any adjustments in the XY plane.
  1811. // Wait for the motors to stop and update the current position with the absolute values.
  1812. world2machine_revert_to_uncorrected();
  1813. // Reset the baby step value applied without moving the axes.
  1814. babystep_reset();
  1815. // Mark all axes as in a need for homing.
  1816. memset(axis_known_position, 0, sizeof(axis_known_position));
  1817. // Home in the XY plane.
  1818. //set_destination_to_current();
  1819. setup_for_endstop_move();
  1820. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1821. home_xy();
  1822. enable_endstops(false);
  1823. current_position[X_AXIS] += 5;
  1824. current_position[Y_AXIS] += 5;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1826. st_synchronize();
  1827. // Let the user move the Z axes up to the end stoppers.
  1828. #ifdef TMC2130
  1829. if (calibrate_z_auto())
  1830. {
  1831. #else //TMC2130
  1832. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1833. {
  1834. #endif //TMC2130
  1835. refresh_cmd_timeout();
  1836. #ifndef STEEL_SHEET
  1837. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1838. {
  1839. lcd_wait_for_cool_down();
  1840. }
  1841. #endif //STEEL_SHEET
  1842. if(!onlyZ)
  1843. {
  1844. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1845. #ifdef STEEL_SHEET
  1846. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1847. #endif //STEEL_SHEET
  1848. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1849. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1850. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1851. KEEPALIVE_STATE(IN_HANDLER);
  1852. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1853. lcd_implementation_print_at(0, 2, 1);
  1854. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1855. }
  1856. // Move the print head close to the bed.
  1857. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1858. bool endstops_enabled = enable_endstops(true);
  1859. #ifdef TMC2130
  1860. tmc2130_home_enter(Z_AXIS_MASK);
  1861. #endif //TMC2130
  1862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1863. st_synchronize();
  1864. #ifdef TMC2130
  1865. tmc2130_home_exit();
  1866. #endif //TMC2130
  1867. enable_endstops(endstops_enabled);
  1868. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1869. {
  1870. int8_t verbosity_level = 0;
  1871. if (code_seen('V'))
  1872. {
  1873. // Just 'V' without a number counts as V1.
  1874. char c = strchr_pointer[1];
  1875. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1876. }
  1877. if (onlyZ)
  1878. {
  1879. clean_up_after_endstop_move();
  1880. // Z only calibration.
  1881. // Load the machine correction matrix
  1882. world2machine_initialize();
  1883. // and correct the current_position to match the transformed coordinate system.
  1884. world2machine_update_current();
  1885. //FIXME
  1886. bool result = sample_mesh_and_store_reference();
  1887. if (result)
  1888. {
  1889. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1890. // Shipped, the nozzle height has been set already. The user can start printing now.
  1891. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1892. final_result = true;
  1893. // babystep_apply();
  1894. }
  1895. }
  1896. else
  1897. {
  1898. // Reset the baby step value and the baby step applied flag.
  1899. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1900. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1901. // Complete XYZ calibration.
  1902. uint8_t point_too_far_mask = 0;
  1903. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1904. clean_up_after_endstop_move();
  1905. // Print head up.
  1906. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1908. st_synchronize();
  1909. if (result >= 0)
  1910. {
  1911. #ifdef HEATBED_V2
  1912. sample_z();
  1913. #else //HEATBED_V2
  1914. point_too_far_mask = 0;
  1915. // Second half: The fine adjustment.
  1916. // Let the planner use the uncorrected coordinates.
  1917. mbl.reset();
  1918. world2machine_reset();
  1919. // Home in the XY plane.
  1920. setup_for_endstop_move();
  1921. home_xy();
  1922. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1923. clean_up_after_endstop_move();
  1924. // Print head up.
  1925. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1927. st_synchronize();
  1928. // if (result >= 0) babystep_apply();
  1929. #endif //HEATBED_V2
  1930. }
  1931. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1932. if (result >= 0)
  1933. {
  1934. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1935. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1936. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1937. final_result = true;
  1938. }
  1939. }
  1940. #ifdef TMC2130
  1941. tmc2130_home_exit();
  1942. #endif
  1943. }
  1944. else
  1945. {
  1946. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1947. final_result = false;
  1948. }
  1949. }
  1950. else
  1951. {
  1952. // Timeouted.
  1953. }
  1954. lcd_update_enable(true);
  1955. #ifdef TMC2130
  1956. FORCE_HIGH_POWER_END;
  1957. #endif // TMC2130
  1958. return final_result;
  1959. }
  1960. void gcode_M114()
  1961. {
  1962. SERIAL_PROTOCOLPGM("X:");
  1963. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1964. SERIAL_PROTOCOLPGM(" Y:");
  1965. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1966. SERIAL_PROTOCOLPGM(" Z:");
  1967. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1968. SERIAL_PROTOCOLPGM(" E:");
  1969. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1970. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  1971. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  1972. SERIAL_PROTOCOLPGM(" Y:");
  1973. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  1974. SERIAL_PROTOCOLPGM(" Z:");
  1975. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  1976. SERIAL_PROTOCOLPGM(" E:");
  1977. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  1978. SERIAL_PROTOCOLLN("");
  1979. }
  1980. void gcode_M701()
  1981. {
  1982. #ifdef SNMM
  1983. extr_adj(snmm_extruder);//loads current extruder
  1984. #else
  1985. enable_z();
  1986. custom_message = true;
  1987. custom_message_type = 2;
  1988. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1989. current_position[E_AXIS] += 70;
  1990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1991. current_position[E_AXIS] += 25;
  1992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1993. st_synchronize();
  1994. tone(BEEPER, 500);
  1995. delay_keep_alive(50);
  1996. noTone(BEEPER);
  1997. if (!farm_mode && loading_flag) {
  1998. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1999. while (!clean) {
  2000. lcd_update_enable(true);
  2001. lcd_update(2);
  2002. current_position[E_AXIS] += 25;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2004. st_synchronize();
  2005. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2006. }
  2007. }
  2008. lcd_update_enable(true);
  2009. lcd_update(2);
  2010. lcd_setstatuspgm(WELCOME_MSG);
  2011. disable_z();
  2012. loading_flag = false;
  2013. custom_message = false;
  2014. custom_message_type = 0;
  2015. #endif
  2016. }
  2017. void process_commands()
  2018. {
  2019. #ifdef FILAMENT_RUNOUT_SUPPORT
  2020. SET_INPUT(FR_SENS);
  2021. #endif
  2022. #ifdef CMDBUFFER_DEBUG
  2023. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2024. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2025. SERIAL_ECHOLNPGM("");
  2026. SERIAL_ECHOPGM("In cmdqueue: ");
  2027. SERIAL_ECHO(buflen);
  2028. SERIAL_ECHOLNPGM("");
  2029. #endif /* CMDBUFFER_DEBUG */
  2030. unsigned long codenum; //throw away variable
  2031. char *starpos = NULL;
  2032. #ifdef ENABLE_AUTO_BED_LEVELING
  2033. float x_tmp, y_tmp, z_tmp, real_z;
  2034. #endif
  2035. // PRUSA GCODES
  2036. KEEPALIVE_STATE(IN_HANDLER);
  2037. #ifdef SNMM
  2038. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2039. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2040. int8_t SilentMode;
  2041. #endif
  2042. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2043. starpos = (strchr(strchr_pointer + 5, '*'));
  2044. if (starpos != NULL)
  2045. *(starpos) = '\0';
  2046. lcd_setstatus(strchr_pointer + 5);
  2047. }
  2048. #ifdef TMC2130
  2049. else if(code_seen("CRASH_DETECTED"))
  2050. {
  2051. uint8_t mask = 0;
  2052. if (code_seen("X")) mask |= X_AXIS_MASK;
  2053. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2054. crashdet_detected(mask);
  2055. }
  2056. else if(code_seen("CRASH_RECOVER"))
  2057. crashdet_recover();
  2058. else if(code_seen("CRASH_CANCEL"))
  2059. crashdet_cancel();
  2060. #endif //TMC2130
  2061. else if(code_seen("PRUSA")){
  2062. if (code_seen("Ping")) { //PRUSA Ping
  2063. if (farm_mode) {
  2064. PingTime = millis();
  2065. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2066. }
  2067. }
  2068. else if (code_seen("PRN")) {
  2069. MYSERIAL.println(status_number);
  2070. }else if (code_seen("FAN")) {
  2071. MYSERIAL.print("E0:");
  2072. MYSERIAL.print(60*fan_speed[0]);
  2073. MYSERIAL.println(" RPM");
  2074. MYSERIAL.print("PRN0:");
  2075. MYSERIAL.print(60*fan_speed[1]);
  2076. MYSERIAL.println(" RPM");
  2077. }else if (code_seen("fn")) {
  2078. if (farm_mode) {
  2079. MYSERIAL.println(farm_no);
  2080. }
  2081. else {
  2082. MYSERIAL.println("Not in farm mode.");
  2083. }
  2084. }else if (code_seen("fv")) {
  2085. // get file version
  2086. #ifdef SDSUPPORT
  2087. card.openFile(strchr_pointer + 3,true);
  2088. while (true) {
  2089. uint16_t readByte = card.get();
  2090. MYSERIAL.write(readByte);
  2091. if (readByte=='\n') {
  2092. break;
  2093. }
  2094. }
  2095. card.closefile();
  2096. #endif // SDSUPPORT
  2097. } else if (code_seen("M28")) {
  2098. trace();
  2099. prusa_sd_card_upload = true;
  2100. card.openFile(strchr_pointer+4,false);
  2101. } else if (code_seen("SN")) {
  2102. if (farm_mode) {
  2103. selectedSerialPort = 0;
  2104. MSerial.write(";S");
  2105. // S/N is:CZPX0917X003XC13518
  2106. int numbersRead = 0;
  2107. while (numbersRead < 19) {
  2108. while (MSerial.available() > 0) {
  2109. uint8_t serial_char = MSerial.read();
  2110. selectedSerialPort = 1;
  2111. MSerial.write(serial_char);
  2112. numbersRead++;
  2113. selectedSerialPort = 0;
  2114. }
  2115. }
  2116. selectedSerialPort = 1;
  2117. MSerial.write('\n');
  2118. /*for (int b = 0; b < 3; b++) {
  2119. tone(BEEPER, 110);
  2120. delay(50);
  2121. noTone(BEEPER);
  2122. delay(50);
  2123. }*/
  2124. } else {
  2125. MYSERIAL.println("Not in farm mode.");
  2126. }
  2127. } else if(code_seen("Fir")){
  2128. SERIAL_PROTOCOLLN(FW_VERSION);
  2129. } else if(code_seen("Rev")){
  2130. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2131. } else if(code_seen("Lang")) {
  2132. lcd_force_language_selection();
  2133. } else if(code_seen("Lz")) {
  2134. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2135. } else if (code_seen("SERIAL LOW")) {
  2136. MYSERIAL.println("SERIAL LOW");
  2137. MYSERIAL.begin(BAUDRATE);
  2138. return;
  2139. } else if (code_seen("SERIAL HIGH")) {
  2140. MYSERIAL.println("SERIAL HIGH");
  2141. MYSERIAL.begin(1152000);
  2142. return;
  2143. } else if(code_seen("Beat")) {
  2144. // Kick farm link timer
  2145. kicktime = millis();
  2146. } else if(code_seen("FR")) {
  2147. // Factory full reset
  2148. factory_reset(0,true);
  2149. }
  2150. //else if (code_seen('Cal')) {
  2151. // lcd_calibration();
  2152. // }
  2153. }
  2154. else if (code_seen('^')) {
  2155. // nothing, this is a version line
  2156. } else if(code_seen('G'))
  2157. {
  2158. switch((int)code_value())
  2159. {
  2160. case 0: // G0 -> G1
  2161. case 1: // G1
  2162. if(Stopped == false) {
  2163. #ifdef FILAMENT_RUNOUT_SUPPORT
  2164. if(READ(FR_SENS)){
  2165. feedmultiplyBckp=feedmultiply;
  2166. float target[4];
  2167. float lastpos[4];
  2168. target[X_AXIS]=current_position[X_AXIS];
  2169. target[Y_AXIS]=current_position[Y_AXIS];
  2170. target[Z_AXIS]=current_position[Z_AXIS];
  2171. target[E_AXIS]=current_position[E_AXIS];
  2172. lastpos[X_AXIS]=current_position[X_AXIS];
  2173. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2174. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2175. lastpos[E_AXIS]=current_position[E_AXIS];
  2176. //retract by E
  2177. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2178. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2179. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2180. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2181. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2182. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2183. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2184. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2185. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2186. //finish moves
  2187. st_synchronize();
  2188. //disable extruder steppers so filament can be removed
  2189. disable_e0();
  2190. disable_e1();
  2191. disable_e2();
  2192. delay(100);
  2193. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2194. uint8_t cnt=0;
  2195. int counterBeep = 0;
  2196. lcd_wait_interact();
  2197. while(!lcd_clicked()){
  2198. cnt++;
  2199. manage_heater();
  2200. manage_inactivity(true);
  2201. //lcd_update();
  2202. if(cnt==0)
  2203. {
  2204. #if BEEPER > 0
  2205. if (counterBeep== 500){
  2206. counterBeep = 0;
  2207. }
  2208. SET_OUTPUT(BEEPER);
  2209. if (counterBeep== 0){
  2210. WRITE(BEEPER,HIGH);
  2211. }
  2212. if (counterBeep== 20){
  2213. WRITE(BEEPER,LOW);
  2214. }
  2215. counterBeep++;
  2216. #else
  2217. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2218. lcd_buzz(1000/6,100);
  2219. #else
  2220. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2221. #endif
  2222. #endif
  2223. }
  2224. }
  2225. WRITE(BEEPER,LOW);
  2226. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2227. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2228. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2229. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2230. lcd_change_fil_state = 0;
  2231. lcd_loading_filament();
  2232. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2233. lcd_change_fil_state = 0;
  2234. lcd_alright();
  2235. switch(lcd_change_fil_state){
  2236. case 2:
  2237. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2238. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2239. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2240. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2241. lcd_loading_filament();
  2242. break;
  2243. case 3:
  2244. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2245. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2246. lcd_loading_color();
  2247. break;
  2248. default:
  2249. lcd_change_success();
  2250. break;
  2251. }
  2252. }
  2253. target[E_AXIS]+= 5;
  2254. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2255. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2256. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2257. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2258. //plan_set_e_position(current_position[E_AXIS]);
  2259. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2260. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2261. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2262. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2263. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2264. plan_set_e_position(lastpos[E_AXIS]);
  2265. feedmultiply=feedmultiplyBckp;
  2266. char cmd[9];
  2267. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2268. enquecommand(cmd);
  2269. }
  2270. #endif
  2271. get_coordinates(); // For X Y Z E F
  2272. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2273. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2274. }
  2275. #ifdef FWRETRACT
  2276. if(autoretract_enabled)
  2277. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2278. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2279. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2280. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2281. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2282. retract(!retracted);
  2283. return;
  2284. }
  2285. }
  2286. #endif //FWRETRACT
  2287. prepare_move();
  2288. //ClearToSend();
  2289. }
  2290. break;
  2291. case 2: // G2 - CW ARC
  2292. if(Stopped == false) {
  2293. get_arc_coordinates();
  2294. prepare_arc_move(true);
  2295. }
  2296. break;
  2297. case 3: // G3 - CCW ARC
  2298. if(Stopped == false) {
  2299. get_arc_coordinates();
  2300. prepare_arc_move(false);
  2301. }
  2302. break;
  2303. case 4: // G4 dwell
  2304. codenum = 0;
  2305. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2306. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2307. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2308. st_synchronize();
  2309. codenum += millis(); // keep track of when we started waiting
  2310. previous_millis_cmd = millis();
  2311. while(millis() < codenum) {
  2312. manage_heater();
  2313. manage_inactivity();
  2314. lcd_update();
  2315. }
  2316. break;
  2317. #ifdef FWRETRACT
  2318. case 10: // G10 retract
  2319. #if EXTRUDERS > 1
  2320. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2321. retract(true,retracted_swap[active_extruder]);
  2322. #else
  2323. retract(true);
  2324. #endif
  2325. break;
  2326. case 11: // G11 retract_recover
  2327. #if EXTRUDERS > 1
  2328. retract(false,retracted_swap[active_extruder]);
  2329. #else
  2330. retract(false);
  2331. #endif
  2332. break;
  2333. #endif //FWRETRACT
  2334. case 28: //G28 Home all Axis one at a time
  2335. {
  2336. st_synchronize();
  2337. #if 0
  2338. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2339. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2340. #endif
  2341. // Flag for the display update routine and to disable the print cancelation during homing.
  2342. homing_flag = true;
  2343. // Which axes should be homed?
  2344. bool home_x = code_seen(axis_codes[X_AXIS]);
  2345. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2346. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2347. // Either all X,Y,Z codes are present, or none of them.
  2348. bool home_all_axes = home_x == home_y && home_x == home_z;
  2349. if (home_all_axes)
  2350. // No X/Y/Z code provided means to home all axes.
  2351. home_x = home_y = home_z = true;
  2352. #ifdef ENABLE_AUTO_BED_LEVELING
  2353. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2354. #endif //ENABLE_AUTO_BED_LEVELING
  2355. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2356. // the planner will not perform any adjustments in the XY plane.
  2357. // Wait for the motors to stop and update the current position with the absolute values.
  2358. world2machine_revert_to_uncorrected();
  2359. // For mesh bed leveling deactivate the matrix temporarily.
  2360. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2361. // in a single axis only.
  2362. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2363. #ifdef MESH_BED_LEVELING
  2364. uint8_t mbl_was_active = mbl.active;
  2365. mbl.active = 0;
  2366. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2367. #endif
  2368. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2369. // consumed during the first movements following this statement.
  2370. if (home_z)
  2371. babystep_undo();
  2372. saved_feedrate = feedrate;
  2373. saved_feedmultiply = feedmultiply;
  2374. feedmultiply = 100;
  2375. previous_millis_cmd = millis();
  2376. enable_endstops(true);
  2377. memcpy(destination, current_position, sizeof(destination));
  2378. feedrate = 0.0;
  2379. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2380. if(home_z)
  2381. homeaxis(Z_AXIS);
  2382. #endif
  2383. #ifdef QUICK_HOME
  2384. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2385. if(home_x && home_y) //first diagonal move
  2386. {
  2387. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2388. int x_axis_home_dir = home_dir(X_AXIS);
  2389. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2390. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2391. feedrate = homing_feedrate[X_AXIS];
  2392. if(homing_feedrate[Y_AXIS]<feedrate)
  2393. feedrate = homing_feedrate[Y_AXIS];
  2394. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2395. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2396. } else {
  2397. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2398. }
  2399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2400. st_synchronize();
  2401. axis_is_at_home(X_AXIS);
  2402. axis_is_at_home(Y_AXIS);
  2403. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2404. destination[X_AXIS] = current_position[X_AXIS];
  2405. destination[Y_AXIS] = current_position[Y_AXIS];
  2406. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2407. feedrate = 0.0;
  2408. st_synchronize();
  2409. endstops_hit_on_purpose();
  2410. current_position[X_AXIS] = destination[X_AXIS];
  2411. current_position[Y_AXIS] = destination[Y_AXIS];
  2412. current_position[Z_AXIS] = destination[Z_AXIS];
  2413. }
  2414. #endif /* QUICK_HOME */
  2415. if(home_x)
  2416. homeaxis(X_AXIS);
  2417. if(home_y)
  2418. homeaxis(Y_AXIS);
  2419. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2420. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2421. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2422. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2423. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2424. #ifndef Z_SAFE_HOMING
  2425. if(home_z) {
  2426. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2427. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2428. feedrate = max_feedrate[Z_AXIS];
  2429. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2430. st_synchronize();
  2431. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2432. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2433. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2434. {
  2435. homeaxis(X_AXIS);
  2436. homeaxis(Y_AXIS);
  2437. }
  2438. // 1st mesh bed leveling measurement point, corrected.
  2439. world2machine_initialize();
  2440. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2441. world2machine_reset();
  2442. if (destination[Y_AXIS] < Y_MIN_POS)
  2443. destination[Y_AXIS] = Y_MIN_POS;
  2444. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2445. feedrate = homing_feedrate[Z_AXIS]/10;
  2446. current_position[Z_AXIS] = 0;
  2447. enable_endstops(false);
  2448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2449. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2450. st_synchronize();
  2451. current_position[X_AXIS] = destination[X_AXIS];
  2452. current_position[Y_AXIS] = destination[Y_AXIS];
  2453. enable_endstops(true);
  2454. endstops_hit_on_purpose();
  2455. homeaxis(Z_AXIS);
  2456. #else // MESH_BED_LEVELING
  2457. homeaxis(Z_AXIS);
  2458. #endif // MESH_BED_LEVELING
  2459. }
  2460. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2461. if(home_all_axes) {
  2462. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2463. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2464. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2465. feedrate = XY_TRAVEL_SPEED/60;
  2466. current_position[Z_AXIS] = 0;
  2467. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2468. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2469. st_synchronize();
  2470. current_position[X_AXIS] = destination[X_AXIS];
  2471. current_position[Y_AXIS] = destination[Y_AXIS];
  2472. homeaxis(Z_AXIS);
  2473. }
  2474. // Let's see if X and Y are homed and probe is inside bed area.
  2475. if(home_z) {
  2476. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2477. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2478. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2479. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2480. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2481. current_position[Z_AXIS] = 0;
  2482. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2483. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2484. feedrate = max_feedrate[Z_AXIS];
  2485. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2486. st_synchronize();
  2487. homeaxis(Z_AXIS);
  2488. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2489. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2490. SERIAL_ECHO_START;
  2491. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2492. } else {
  2493. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2494. SERIAL_ECHO_START;
  2495. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2496. }
  2497. }
  2498. #endif // Z_SAFE_HOMING
  2499. #endif // Z_HOME_DIR < 0
  2500. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2501. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2502. #ifdef ENABLE_AUTO_BED_LEVELING
  2503. if(home_z)
  2504. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2505. #endif
  2506. // Set the planner and stepper routine positions.
  2507. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2508. // contains the machine coordinates.
  2509. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2510. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2511. enable_endstops(false);
  2512. #endif
  2513. feedrate = saved_feedrate;
  2514. feedmultiply = saved_feedmultiply;
  2515. previous_millis_cmd = millis();
  2516. endstops_hit_on_purpose();
  2517. #ifndef MESH_BED_LEVELING
  2518. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2519. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2520. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2521. lcd_adjust_z();
  2522. #endif
  2523. // Load the machine correction matrix
  2524. world2machine_initialize();
  2525. // and correct the current_position XY axes to match the transformed coordinate system.
  2526. world2machine_update_current();
  2527. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2528. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2529. {
  2530. if (! home_z && mbl_was_active) {
  2531. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2532. mbl.active = true;
  2533. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2534. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2535. }
  2536. }
  2537. else
  2538. {
  2539. st_synchronize();
  2540. homing_flag = false;
  2541. // Push the commands to the front of the message queue in the reverse order!
  2542. // There shall be always enough space reserved for these commands.
  2543. // enquecommand_front_P((PSTR("G80")));
  2544. goto case_G80;
  2545. }
  2546. #endif
  2547. if (farm_mode) { prusa_statistics(20); };
  2548. homing_flag = false;
  2549. #if 0
  2550. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2551. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2552. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2553. #endif
  2554. break;
  2555. }
  2556. #ifdef ENABLE_AUTO_BED_LEVELING
  2557. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2558. {
  2559. #if Z_MIN_PIN == -1
  2560. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2561. #endif
  2562. // Prevent user from running a G29 without first homing in X and Y
  2563. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2564. {
  2565. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2566. SERIAL_ECHO_START;
  2567. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2568. break; // abort G29, since we don't know where we are
  2569. }
  2570. st_synchronize();
  2571. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2572. //vector_3 corrected_position = plan_get_position_mm();
  2573. //corrected_position.debug("position before G29");
  2574. plan_bed_level_matrix.set_to_identity();
  2575. vector_3 uncorrected_position = plan_get_position();
  2576. //uncorrected_position.debug("position durring G29");
  2577. current_position[X_AXIS] = uncorrected_position.x;
  2578. current_position[Y_AXIS] = uncorrected_position.y;
  2579. current_position[Z_AXIS] = uncorrected_position.z;
  2580. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2581. setup_for_endstop_move();
  2582. feedrate = homing_feedrate[Z_AXIS];
  2583. #ifdef AUTO_BED_LEVELING_GRID
  2584. // probe at the points of a lattice grid
  2585. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2586. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2587. // solve the plane equation ax + by + d = z
  2588. // A is the matrix with rows [x y 1] for all the probed points
  2589. // B is the vector of the Z positions
  2590. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2591. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2592. // "A" matrix of the linear system of equations
  2593. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2594. // "B" vector of Z points
  2595. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2596. int probePointCounter = 0;
  2597. bool zig = true;
  2598. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2599. {
  2600. int xProbe, xInc;
  2601. if (zig)
  2602. {
  2603. xProbe = LEFT_PROBE_BED_POSITION;
  2604. //xEnd = RIGHT_PROBE_BED_POSITION;
  2605. xInc = xGridSpacing;
  2606. zig = false;
  2607. } else // zag
  2608. {
  2609. xProbe = RIGHT_PROBE_BED_POSITION;
  2610. //xEnd = LEFT_PROBE_BED_POSITION;
  2611. xInc = -xGridSpacing;
  2612. zig = true;
  2613. }
  2614. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2615. {
  2616. float z_before;
  2617. if (probePointCounter == 0)
  2618. {
  2619. // raise before probing
  2620. z_before = Z_RAISE_BEFORE_PROBING;
  2621. } else
  2622. {
  2623. // raise extruder
  2624. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2625. }
  2626. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2627. eqnBVector[probePointCounter] = measured_z;
  2628. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2629. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2630. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2631. probePointCounter++;
  2632. xProbe += xInc;
  2633. }
  2634. }
  2635. clean_up_after_endstop_move();
  2636. // solve lsq problem
  2637. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2638. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2639. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2640. SERIAL_PROTOCOLPGM(" b: ");
  2641. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2642. SERIAL_PROTOCOLPGM(" d: ");
  2643. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2644. set_bed_level_equation_lsq(plane_equation_coefficients);
  2645. free(plane_equation_coefficients);
  2646. #else // AUTO_BED_LEVELING_GRID not defined
  2647. // Probe at 3 arbitrary points
  2648. // probe 1
  2649. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2650. // probe 2
  2651. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2652. // probe 3
  2653. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2654. clean_up_after_endstop_move();
  2655. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2656. #endif // AUTO_BED_LEVELING_GRID
  2657. st_synchronize();
  2658. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2659. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2660. // When the bed is uneven, this height must be corrected.
  2661. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2662. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2663. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2664. z_tmp = current_position[Z_AXIS];
  2665. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2666. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2667. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2668. }
  2669. break;
  2670. #ifndef Z_PROBE_SLED
  2671. case 30: // G30 Single Z Probe
  2672. {
  2673. st_synchronize();
  2674. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2675. setup_for_endstop_move();
  2676. feedrate = homing_feedrate[Z_AXIS];
  2677. run_z_probe();
  2678. SERIAL_PROTOCOLPGM(MSG_BED);
  2679. SERIAL_PROTOCOLPGM(" X: ");
  2680. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2681. SERIAL_PROTOCOLPGM(" Y: ");
  2682. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2683. SERIAL_PROTOCOLPGM(" Z: ");
  2684. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2685. SERIAL_PROTOCOLPGM("\n");
  2686. clean_up_after_endstop_move();
  2687. }
  2688. break;
  2689. #else
  2690. case 31: // dock the sled
  2691. dock_sled(true);
  2692. break;
  2693. case 32: // undock the sled
  2694. dock_sled(false);
  2695. break;
  2696. #endif // Z_PROBE_SLED
  2697. #endif // ENABLE_AUTO_BED_LEVELING
  2698. #ifdef MESH_BED_LEVELING
  2699. case 30: // G30 Single Z Probe
  2700. {
  2701. st_synchronize();
  2702. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2703. setup_for_endstop_move();
  2704. feedrate = homing_feedrate[Z_AXIS];
  2705. find_bed_induction_sensor_point_z(-10.f, 3);
  2706. SERIAL_PROTOCOLRPGM(MSG_BED);
  2707. SERIAL_PROTOCOLPGM(" X: ");
  2708. MYSERIAL.print(current_position[X_AXIS], 5);
  2709. SERIAL_PROTOCOLPGM(" Y: ");
  2710. MYSERIAL.print(current_position[Y_AXIS], 5);
  2711. SERIAL_PROTOCOLPGM(" Z: ");
  2712. MYSERIAL.print(current_position[Z_AXIS], 5);
  2713. SERIAL_PROTOCOLPGM("\n");
  2714. clean_up_after_endstop_move();
  2715. }
  2716. break;
  2717. case 75:
  2718. {
  2719. for (int i = 40; i <= 110; i++) {
  2720. MYSERIAL.print(i);
  2721. MYSERIAL.print(" ");
  2722. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2723. }
  2724. }
  2725. break;
  2726. case 76: //PINDA probe temperature calibration
  2727. {
  2728. #ifdef PINDA_THERMISTOR
  2729. if (true)
  2730. {
  2731. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2732. {
  2733. // We don't know where we are! HOME!
  2734. // Push the commands to the front of the message queue in the reverse order!
  2735. // There shall be always enough space reserved for these commands.
  2736. repeatcommand_front(); // repeat G76 with all its parameters
  2737. enquecommand_front_P((PSTR("G28 W0")));
  2738. break;
  2739. }
  2740. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2741. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2742. if (result)
  2743. {
  2744. current_position[Z_AXIS] = 50;
  2745. current_position[Y_AXIS] = 190;
  2746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2747. st_synchronize();
  2748. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2749. }
  2750. lcd_update_enable(true);
  2751. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2752. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2753. float zero_z;
  2754. int z_shift = 0; //unit: steps
  2755. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2756. if (start_temp < 35) start_temp = 35;
  2757. if (start_temp < current_temperature_pinda) start_temp += 5;
  2758. SERIAL_ECHOPGM("start temperature: ");
  2759. MYSERIAL.println(start_temp);
  2760. // setTargetHotend(200, 0);
  2761. setTargetBed(70 + (start_temp - 30));
  2762. custom_message = true;
  2763. custom_message_type = 4;
  2764. custom_message_state = 1;
  2765. custom_message = MSG_TEMP_CALIBRATION;
  2766. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2767. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2768. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2770. st_synchronize();
  2771. while (current_temperature_pinda < start_temp)
  2772. {
  2773. delay_keep_alive(1000);
  2774. serialecho_temperatures();
  2775. }
  2776. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2777. current_position[Z_AXIS] = 5;
  2778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2779. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2780. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2782. st_synchronize();
  2783. find_bed_induction_sensor_point_z(-1.f);
  2784. zero_z = current_position[Z_AXIS];
  2785. //current_position[Z_AXIS]
  2786. SERIAL_ECHOLNPGM("");
  2787. SERIAL_ECHOPGM("ZERO: ");
  2788. MYSERIAL.print(current_position[Z_AXIS]);
  2789. SERIAL_ECHOLNPGM("");
  2790. int i = -1; for (; i < 5; i++)
  2791. {
  2792. float temp = (40 + i * 5);
  2793. SERIAL_ECHOPGM("Step: ");
  2794. MYSERIAL.print(i + 2);
  2795. SERIAL_ECHOLNPGM("/6 (skipped)");
  2796. SERIAL_ECHOPGM("PINDA temperature: ");
  2797. MYSERIAL.print((40 + i*5));
  2798. SERIAL_ECHOPGM(" Z shift (mm):");
  2799. MYSERIAL.print(0);
  2800. SERIAL_ECHOLNPGM("");
  2801. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2802. if (start_temp <= temp) break;
  2803. }
  2804. for (i++; i < 5; i++)
  2805. {
  2806. float temp = (40 + i * 5);
  2807. SERIAL_ECHOPGM("Step: ");
  2808. MYSERIAL.print(i + 2);
  2809. SERIAL_ECHOLNPGM("/6");
  2810. custom_message_state = i + 2;
  2811. setTargetBed(50 + 10 * (temp - 30) / 5);
  2812. // setTargetHotend(255, 0);
  2813. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2814. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2815. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2817. st_synchronize();
  2818. while (current_temperature_pinda < temp)
  2819. {
  2820. delay_keep_alive(1000);
  2821. serialecho_temperatures();
  2822. }
  2823. current_position[Z_AXIS] = 5;
  2824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2825. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2826. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2828. st_synchronize();
  2829. find_bed_induction_sensor_point_z(-1.f);
  2830. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2831. SERIAL_ECHOLNPGM("");
  2832. SERIAL_ECHOPGM("PINDA temperature: ");
  2833. MYSERIAL.print(current_temperature_pinda);
  2834. SERIAL_ECHOPGM(" Z shift (mm):");
  2835. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2836. SERIAL_ECHOLNPGM("");
  2837. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2838. }
  2839. custom_message_type = 0;
  2840. custom_message = false;
  2841. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2842. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2843. disable_x();
  2844. disable_y();
  2845. disable_z();
  2846. disable_e0();
  2847. disable_e1();
  2848. disable_e2();
  2849. setTargetBed(0); //set bed target temperature back to 0
  2850. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2851. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2852. lcd_update_enable(true);
  2853. lcd_update(2);
  2854. break;
  2855. }
  2856. #endif //PINDA_THERMISTOR
  2857. setTargetBed(PINDA_MIN_T);
  2858. float zero_z;
  2859. int z_shift = 0; //unit: steps
  2860. int t_c; // temperature
  2861. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2862. // We don't know where we are! HOME!
  2863. // Push the commands to the front of the message queue in the reverse order!
  2864. // There shall be always enough space reserved for these commands.
  2865. repeatcommand_front(); // repeat G76 with all its parameters
  2866. enquecommand_front_P((PSTR("G28 W0")));
  2867. break;
  2868. }
  2869. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2870. custom_message = true;
  2871. custom_message_type = 4;
  2872. custom_message_state = 1;
  2873. custom_message = MSG_TEMP_CALIBRATION;
  2874. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2875. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2876. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2878. st_synchronize();
  2879. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2880. delay_keep_alive(1000);
  2881. serialecho_temperatures();
  2882. }
  2883. //enquecommand_P(PSTR("M190 S50"));
  2884. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2885. delay_keep_alive(1000);
  2886. serialecho_temperatures();
  2887. }
  2888. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2889. current_position[Z_AXIS] = 5;
  2890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2891. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2892. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2894. st_synchronize();
  2895. find_bed_induction_sensor_point_z(-1.f);
  2896. zero_z = current_position[Z_AXIS];
  2897. //current_position[Z_AXIS]
  2898. SERIAL_ECHOLNPGM("");
  2899. SERIAL_ECHOPGM("ZERO: ");
  2900. MYSERIAL.print(current_position[Z_AXIS]);
  2901. SERIAL_ECHOLNPGM("");
  2902. for (int i = 0; i<5; i++) {
  2903. SERIAL_ECHOPGM("Step: ");
  2904. MYSERIAL.print(i+2);
  2905. SERIAL_ECHOLNPGM("/6");
  2906. custom_message_state = i + 2;
  2907. t_c = 60 + i * 10;
  2908. setTargetBed(t_c);
  2909. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2910. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2911. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2913. st_synchronize();
  2914. while (degBed() < t_c) {
  2915. delay_keep_alive(1000);
  2916. serialecho_temperatures();
  2917. }
  2918. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2919. delay_keep_alive(1000);
  2920. serialecho_temperatures();
  2921. }
  2922. current_position[Z_AXIS] = 5;
  2923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2924. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2925. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2927. st_synchronize();
  2928. find_bed_induction_sensor_point_z(-1.f);
  2929. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2930. SERIAL_ECHOLNPGM("");
  2931. SERIAL_ECHOPGM("Temperature: ");
  2932. MYSERIAL.print(t_c);
  2933. SERIAL_ECHOPGM(" Z shift (mm):");
  2934. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2935. SERIAL_ECHOLNPGM("");
  2936. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2937. }
  2938. custom_message_type = 0;
  2939. custom_message = false;
  2940. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2941. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2942. disable_x();
  2943. disable_y();
  2944. disable_z();
  2945. disable_e0();
  2946. disable_e1();
  2947. disable_e2();
  2948. setTargetBed(0); //set bed target temperature back to 0
  2949. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2950. lcd_update_enable(true);
  2951. lcd_update(2);
  2952. }
  2953. break;
  2954. #ifdef DIS
  2955. case 77:
  2956. {
  2957. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2958. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2959. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2960. float dimension_x = 40;
  2961. float dimension_y = 40;
  2962. int points_x = 40;
  2963. int points_y = 40;
  2964. float offset_x = 74;
  2965. float offset_y = 33;
  2966. if (code_seen('X')) dimension_x = code_value();
  2967. if (code_seen('Y')) dimension_y = code_value();
  2968. if (code_seen('XP')) points_x = code_value();
  2969. if (code_seen('YP')) points_y = code_value();
  2970. if (code_seen('XO')) offset_x = code_value();
  2971. if (code_seen('YO')) offset_y = code_value();
  2972. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2973. } break;
  2974. #endif
  2975. case 79: {
  2976. for (int i = 255; i > 0; i = i - 5) {
  2977. fanSpeed = i;
  2978. //delay_keep_alive(2000);
  2979. for (int j = 0; j < 100; j++) {
  2980. delay_keep_alive(100);
  2981. }
  2982. fan_speed[1];
  2983. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2984. }
  2985. }break;
  2986. /**
  2987. * G80: Mesh-based Z probe, probes a grid and produces a
  2988. * mesh to compensate for variable bed height
  2989. *
  2990. * The S0 report the points as below
  2991. *
  2992. * +----> X-axis
  2993. * |
  2994. * |
  2995. * v Y-axis
  2996. *
  2997. */
  2998. case 80:
  2999. #ifdef MK1BP
  3000. break;
  3001. #endif //MK1BP
  3002. case_G80:
  3003. {
  3004. mesh_bed_leveling_flag = true;
  3005. int8_t verbosity_level = 0;
  3006. static bool run = false;
  3007. if (code_seen('V')) {
  3008. // Just 'V' without a number counts as V1.
  3009. char c = strchr_pointer[1];
  3010. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3011. }
  3012. // Firstly check if we know where we are
  3013. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3014. // We don't know where we are! HOME!
  3015. // Push the commands to the front of the message queue in the reverse order!
  3016. // There shall be always enough space reserved for these commands.
  3017. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3018. repeatcommand_front(); // repeat G80 with all its parameters
  3019. enquecommand_front_P((PSTR("G28 W0")));
  3020. }
  3021. else {
  3022. mesh_bed_leveling_flag = false;
  3023. }
  3024. break;
  3025. }
  3026. bool temp_comp_start = true;
  3027. #ifdef PINDA_THERMISTOR
  3028. temp_comp_start = false;
  3029. #endif //PINDA_THERMISTOR
  3030. if (temp_comp_start)
  3031. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3032. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3033. temp_compensation_start();
  3034. run = true;
  3035. repeatcommand_front(); // repeat G80 with all its parameters
  3036. enquecommand_front_P((PSTR("G28 W0")));
  3037. }
  3038. else {
  3039. mesh_bed_leveling_flag = false;
  3040. }
  3041. break;
  3042. }
  3043. run = false;
  3044. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3045. mesh_bed_leveling_flag = false;
  3046. break;
  3047. }
  3048. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3049. bool custom_message_old = custom_message;
  3050. unsigned int custom_message_type_old = custom_message_type;
  3051. unsigned int custom_message_state_old = custom_message_state;
  3052. custom_message = true;
  3053. custom_message_type = 1;
  3054. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3055. lcd_update(1);
  3056. mbl.reset(); //reset mesh bed leveling
  3057. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3058. // consumed during the first movements following this statement.
  3059. babystep_undo();
  3060. // Cycle through all points and probe them
  3061. // First move up. During this first movement, the babystepping will be reverted.
  3062. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3064. // The move to the first calibration point.
  3065. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3066. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3067. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3068. #ifdef SUPPORT_VERBOSITY
  3069. if (verbosity_level >= 1) {
  3070. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3071. }
  3072. #endif //SUPPORT_VERBOSITY
  3073. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3074. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3075. // Wait until the move is finished.
  3076. st_synchronize();
  3077. int mesh_point = 0; //index number of calibration point
  3078. int ix = 0;
  3079. int iy = 0;
  3080. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3081. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3082. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3083. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3084. #ifdef SUPPORT_VERBOSITY
  3085. if (verbosity_level >= 1) {
  3086. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3087. }
  3088. #endif // SUPPORT_VERBOSITY
  3089. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3090. const char *kill_message = NULL;
  3091. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3092. // Get coords of a measuring point.
  3093. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3094. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3095. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3096. float z0 = 0.f;
  3097. if (has_z && mesh_point > 0) {
  3098. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3099. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3100. //#if 0
  3101. #ifdef SUPPORT_VERBOSITY
  3102. if (verbosity_level >= 1) {
  3103. SERIAL_ECHOLNPGM("");
  3104. SERIAL_ECHOPGM("Bed leveling, point: ");
  3105. MYSERIAL.print(mesh_point);
  3106. SERIAL_ECHOPGM(", calibration z: ");
  3107. MYSERIAL.print(z0, 5);
  3108. SERIAL_ECHOLNPGM("");
  3109. }
  3110. #endif // SUPPORT_VERBOSITY
  3111. //#endif
  3112. }
  3113. // Move Z up to MESH_HOME_Z_SEARCH.
  3114. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3116. st_synchronize();
  3117. // Move to XY position of the sensor point.
  3118. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3119. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3120. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3121. #ifdef SUPPORT_VERBOSITY
  3122. if (verbosity_level >= 1) {
  3123. SERIAL_PROTOCOL(mesh_point);
  3124. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3125. }
  3126. #endif // SUPPORT_VERBOSITY
  3127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3128. st_synchronize();
  3129. // Go down until endstop is hit
  3130. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3131. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3132. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3133. break;
  3134. }
  3135. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3136. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3137. break;
  3138. }
  3139. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3140. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3141. break;
  3142. }
  3143. #ifdef SUPPORT_VERBOSITY
  3144. if (verbosity_level >= 10) {
  3145. SERIAL_ECHOPGM("X: ");
  3146. MYSERIAL.print(current_position[X_AXIS], 5);
  3147. SERIAL_ECHOLNPGM("");
  3148. SERIAL_ECHOPGM("Y: ");
  3149. MYSERIAL.print(current_position[Y_AXIS], 5);
  3150. SERIAL_PROTOCOLPGM("\n");
  3151. }
  3152. #endif // SUPPORT_VERBOSITY
  3153. float offset_z = 0;
  3154. #ifdef PINDA_THERMISTOR
  3155. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3156. #endif //PINDA_THERMISTOR
  3157. // #ifdef SUPPORT_VERBOSITY
  3158. /* if (verbosity_level >= 1)
  3159. {
  3160. SERIAL_ECHOPGM("mesh bed leveling: ");
  3161. MYSERIAL.print(current_position[Z_AXIS], 5);
  3162. SERIAL_ECHOPGM(" offset: ");
  3163. MYSERIAL.print(offset_z, 5);
  3164. SERIAL_ECHOLNPGM("");
  3165. }*/
  3166. // #endif // SUPPORT_VERBOSITY
  3167. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3168. custom_message_state--;
  3169. mesh_point++;
  3170. lcd_update(1);
  3171. }
  3172. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3173. #ifdef SUPPORT_VERBOSITY
  3174. if (verbosity_level >= 20) {
  3175. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3176. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3177. MYSERIAL.print(current_position[Z_AXIS], 5);
  3178. }
  3179. #endif // SUPPORT_VERBOSITY
  3180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3181. st_synchronize();
  3182. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3183. kill(kill_message);
  3184. SERIAL_ECHOLNPGM("killed");
  3185. }
  3186. clean_up_after_endstop_move();
  3187. // SERIAL_ECHOLNPGM("clean up finished ");
  3188. bool apply_temp_comp = true;
  3189. #ifdef PINDA_THERMISTOR
  3190. apply_temp_comp = false;
  3191. #endif
  3192. if (apply_temp_comp)
  3193. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3194. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3195. // SERIAL_ECHOLNPGM("babystep applied");
  3196. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3197. #ifdef SUPPORT_VERBOSITY
  3198. if (verbosity_level >= 1) {
  3199. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3200. }
  3201. #endif // SUPPORT_VERBOSITY
  3202. for (uint8_t i = 0; i < 4; ++i) {
  3203. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3204. long correction = 0;
  3205. if (code_seen(codes[i]))
  3206. correction = code_value_long();
  3207. else if (eeprom_bed_correction_valid) {
  3208. unsigned char *addr = (i < 2) ?
  3209. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3210. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3211. correction = eeprom_read_int8(addr);
  3212. }
  3213. if (correction == 0)
  3214. continue;
  3215. float offset = float(correction) * 0.001f;
  3216. if (fabs(offset) > 0.101f) {
  3217. SERIAL_ERROR_START;
  3218. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3219. SERIAL_ECHO(offset);
  3220. SERIAL_ECHOLNPGM(" microns");
  3221. }
  3222. else {
  3223. switch (i) {
  3224. case 0:
  3225. for (uint8_t row = 0; row < 3; ++row) {
  3226. mbl.z_values[row][1] += 0.5f * offset;
  3227. mbl.z_values[row][0] += offset;
  3228. }
  3229. break;
  3230. case 1:
  3231. for (uint8_t row = 0; row < 3; ++row) {
  3232. mbl.z_values[row][1] += 0.5f * offset;
  3233. mbl.z_values[row][2] += offset;
  3234. }
  3235. break;
  3236. case 2:
  3237. for (uint8_t col = 0; col < 3; ++col) {
  3238. mbl.z_values[1][col] += 0.5f * offset;
  3239. mbl.z_values[0][col] += offset;
  3240. }
  3241. break;
  3242. case 3:
  3243. for (uint8_t col = 0; col < 3; ++col) {
  3244. mbl.z_values[1][col] += 0.5f * offset;
  3245. mbl.z_values[2][col] += offset;
  3246. }
  3247. break;
  3248. }
  3249. }
  3250. }
  3251. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3252. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3253. // SERIAL_ECHOLNPGM("Upsample finished");
  3254. mbl.active = 1; //activate mesh bed leveling
  3255. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3256. go_home_with_z_lift();
  3257. // SERIAL_ECHOLNPGM("Go home finished");
  3258. //unretract (after PINDA preheat retraction)
  3259. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3260. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3262. }
  3263. KEEPALIVE_STATE(NOT_BUSY);
  3264. // Restore custom message state
  3265. custom_message = custom_message_old;
  3266. custom_message_type = custom_message_type_old;
  3267. custom_message_state = custom_message_state_old;
  3268. mesh_bed_leveling_flag = false;
  3269. mesh_bed_run_from_menu = false;
  3270. lcd_update(2);
  3271. }
  3272. break;
  3273. /**
  3274. * G81: Print mesh bed leveling status and bed profile if activated
  3275. */
  3276. case 81:
  3277. if (mbl.active) {
  3278. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3279. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3280. SERIAL_PROTOCOLPGM(",");
  3281. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3282. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3283. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3284. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3285. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3286. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3287. SERIAL_PROTOCOLPGM(" ");
  3288. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3289. }
  3290. SERIAL_PROTOCOLPGM("\n");
  3291. }
  3292. }
  3293. else
  3294. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3295. break;
  3296. #if 0
  3297. /**
  3298. * G82: Single Z probe at current location
  3299. *
  3300. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3301. *
  3302. */
  3303. case 82:
  3304. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3305. setup_for_endstop_move();
  3306. find_bed_induction_sensor_point_z();
  3307. clean_up_after_endstop_move();
  3308. SERIAL_PROTOCOLPGM("Bed found at: ");
  3309. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3310. SERIAL_PROTOCOLPGM("\n");
  3311. break;
  3312. /**
  3313. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3314. */
  3315. case 83:
  3316. {
  3317. int babystepz = code_seen('S') ? code_value() : 0;
  3318. int BabyPosition = code_seen('P') ? code_value() : 0;
  3319. if (babystepz != 0) {
  3320. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3321. // Is the axis indexed starting with zero or one?
  3322. if (BabyPosition > 4) {
  3323. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3324. }else{
  3325. // Save it to the eeprom
  3326. babystepLoadZ = babystepz;
  3327. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3328. // adjust the Z
  3329. babystepsTodoZadd(babystepLoadZ);
  3330. }
  3331. }
  3332. }
  3333. break;
  3334. /**
  3335. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3336. */
  3337. case 84:
  3338. babystepsTodoZsubtract(babystepLoadZ);
  3339. // babystepLoadZ = 0;
  3340. break;
  3341. /**
  3342. * G85: Prusa3D specific: Pick best babystep
  3343. */
  3344. case 85:
  3345. lcd_pick_babystep();
  3346. break;
  3347. #endif
  3348. /**
  3349. * G86: Prusa3D specific: Disable babystep correction after home.
  3350. * This G-code will be performed at the start of a calibration script.
  3351. */
  3352. case 86:
  3353. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3354. break;
  3355. /**
  3356. * G87: Prusa3D specific: Enable babystep correction after home
  3357. * This G-code will be performed at the end of a calibration script.
  3358. */
  3359. case 87:
  3360. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3361. break;
  3362. /**
  3363. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3364. */
  3365. case 88:
  3366. break;
  3367. #endif // ENABLE_MESH_BED_LEVELING
  3368. case 90: // G90
  3369. relative_mode = false;
  3370. break;
  3371. case 91: // G91
  3372. relative_mode = true;
  3373. break;
  3374. case 92: // G92
  3375. if(!code_seen(axis_codes[E_AXIS]))
  3376. st_synchronize();
  3377. for(int8_t i=0; i < NUM_AXIS; i++) {
  3378. if(code_seen(axis_codes[i])) {
  3379. if(i == E_AXIS) {
  3380. current_position[i] = code_value();
  3381. plan_set_e_position(current_position[E_AXIS]);
  3382. }
  3383. else {
  3384. current_position[i] = code_value()+add_homing[i];
  3385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3386. }
  3387. }
  3388. }
  3389. break;
  3390. case 98: //activate farm mode
  3391. farm_mode = 1;
  3392. PingTime = millis();
  3393. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3394. break;
  3395. case 99: //deactivate farm mode
  3396. farm_mode = 0;
  3397. lcd_printer_connected();
  3398. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3399. lcd_update(2);
  3400. break;
  3401. default:
  3402. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3403. }
  3404. } // end if(code_seen('G'))
  3405. else if(code_seen('M'))
  3406. {
  3407. int index;
  3408. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3409. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3410. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3411. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3412. } else
  3413. switch((int)code_value())
  3414. {
  3415. #ifdef ULTIPANEL
  3416. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3417. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3418. {
  3419. char *src = strchr_pointer + 2;
  3420. codenum = 0;
  3421. bool hasP = false, hasS = false;
  3422. if (code_seen('P')) {
  3423. codenum = code_value(); // milliseconds to wait
  3424. hasP = codenum > 0;
  3425. }
  3426. if (code_seen('S')) {
  3427. codenum = code_value() * 1000; // seconds to wait
  3428. hasS = codenum > 0;
  3429. }
  3430. starpos = strchr(src, '*');
  3431. if (starpos != NULL) *(starpos) = '\0';
  3432. while (*src == ' ') ++src;
  3433. if (!hasP && !hasS && *src != '\0') {
  3434. lcd_setstatus(src);
  3435. } else {
  3436. LCD_MESSAGERPGM(MSG_USERWAIT);
  3437. }
  3438. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3439. st_synchronize();
  3440. previous_millis_cmd = millis();
  3441. if (codenum > 0){
  3442. codenum += millis(); // keep track of when we started waiting
  3443. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3444. while(millis() < codenum && !lcd_clicked()){
  3445. manage_heater();
  3446. manage_inactivity(true);
  3447. lcd_update();
  3448. }
  3449. KEEPALIVE_STATE(IN_HANDLER);
  3450. lcd_ignore_click(false);
  3451. }else{
  3452. if (!lcd_detected())
  3453. break;
  3454. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3455. while(!lcd_clicked()){
  3456. manage_heater();
  3457. manage_inactivity(true);
  3458. lcd_update();
  3459. }
  3460. KEEPALIVE_STATE(IN_HANDLER);
  3461. }
  3462. if (IS_SD_PRINTING)
  3463. LCD_MESSAGERPGM(MSG_RESUMING);
  3464. else
  3465. LCD_MESSAGERPGM(WELCOME_MSG);
  3466. }
  3467. break;
  3468. #endif
  3469. case 17:
  3470. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3471. enable_x();
  3472. enable_y();
  3473. enable_z();
  3474. enable_e0();
  3475. enable_e1();
  3476. enable_e2();
  3477. break;
  3478. #ifdef SDSUPPORT
  3479. case 20: // M20 - list SD card
  3480. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3481. card.ls();
  3482. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3483. break;
  3484. case 21: // M21 - init SD card
  3485. card.initsd();
  3486. break;
  3487. case 22: //M22 - release SD card
  3488. card.release();
  3489. break;
  3490. case 23: //M23 - Select file
  3491. starpos = (strchr(strchr_pointer + 4,'*'));
  3492. if(starpos!=NULL)
  3493. *(starpos)='\0';
  3494. card.openFile(strchr_pointer + 4,true);
  3495. break;
  3496. case 24: //M24 - Start SD print
  3497. if (!card.paused)
  3498. failstats_reset_print();
  3499. card.startFileprint();
  3500. starttime=millis();
  3501. break;
  3502. case 25: //M25 - Pause SD print
  3503. card.pauseSDPrint();
  3504. break;
  3505. case 26: //M26 - Set SD index
  3506. if(card.cardOK && code_seen('S')) {
  3507. card.setIndex(code_value_long());
  3508. }
  3509. break;
  3510. case 27: //M27 - Get SD status
  3511. card.getStatus();
  3512. break;
  3513. case 28: //M28 - Start SD write
  3514. starpos = (strchr(strchr_pointer + 4,'*'));
  3515. if(starpos != NULL){
  3516. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3517. strchr_pointer = strchr(npos,' ') + 1;
  3518. *(starpos) = '\0';
  3519. }
  3520. card.openFile(strchr_pointer+4,false);
  3521. break;
  3522. case 29: //M29 - Stop SD write
  3523. //processed in write to file routine above
  3524. //card,saving = false;
  3525. break;
  3526. case 30: //M30 <filename> Delete File
  3527. if (card.cardOK){
  3528. card.closefile();
  3529. starpos = (strchr(strchr_pointer + 4,'*'));
  3530. if(starpos != NULL){
  3531. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3532. strchr_pointer = strchr(npos,' ') + 1;
  3533. *(starpos) = '\0';
  3534. }
  3535. card.removeFile(strchr_pointer + 4);
  3536. }
  3537. break;
  3538. case 32: //M32 - Select file and start SD print
  3539. {
  3540. if(card.sdprinting) {
  3541. st_synchronize();
  3542. }
  3543. starpos = (strchr(strchr_pointer + 4,'*'));
  3544. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3545. if(namestartpos==NULL)
  3546. {
  3547. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3548. }
  3549. else
  3550. namestartpos++; //to skip the '!'
  3551. if(starpos!=NULL)
  3552. *(starpos)='\0';
  3553. bool call_procedure=(code_seen('P'));
  3554. if(strchr_pointer>namestartpos)
  3555. call_procedure=false; //false alert, 'P' found within filename
  3556. if( card.cardOK )
  3557. {
  3558. card.openFile(namestartpos,true,!call_procedure);
  3559. if(code_seen('S'))
  3560. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3561. card.setIndex(code_value_long());
  3562. card.startFileprint();
  3563. if(!call_procedure)
  3564. starttime=millis(); //procedure calls count as normal print time.
  3565. }
  3566. } break;
  3567. case 928: //M928 - Start SD write
  3568. starpos = (strchr(strchr_pointer + 5,'*'));
  3569. if(starpos != NULL){
  3570. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3571. strchr_pointer = strchr(npos,' ') + 1;
  3572. *(starpos) = '\0';
  3573. }
  3574. card.openLogFile(strchr_pointer+5);
  3575. break;
  3576. #endif //SDSUPPORT
  3577. case 31: //M31 take time since the start of the SD print or an M109 command
  3578. {
  3579. stoptime=millis();
  3580. char time[30];
  3581. unsigned long t=(stoptime-starttime)/1000;
  3582. int sec,min;
  3583. min=t/60;
  3584. sec=t%60;
  3585. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3586. SERIAL_ECHO_START;
  3587. SERIAL_ECHOLN(time);
  3588. lcd_setstatus(time);
  3589. autotempShutdown();
  3590. }
  3591. break;
  3592. #ifndef _DISABLE_M42_M226
  3593. case 42: //M42 -Change pin status via gcode
  3594. if (code_seen('S'))
  3595. {
  3596. int pin_status = code_value();
  3597. int pin_number = LED_PIN;
  3598. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3599. pin_number = code_value();
  3600. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3601. {
  3602. if (sensitive_pins[i] == pin_number)
  3603. {
  3604. pin_number = -1;
  3605. break;
  3606. }
  3607. }
  3608. #if defined(FAN_PIN) && FAN_PIN > -1
  3609. if (pin_number == FAN_PIN)
  3610. fanSpeed = pin_status;
  3611. #endif
  3612. if (pin_number > -1)
  3613. {
  3614. pinMode(pin_number, OUTPUT);
  3615. digitalWrite(pin_number, pin_status);
  3616. analogWrite(pin_number, pin_status);
  3617. }
  3618. }
  3619. break;
  3620. #endif //_DISABLE_M42_M226
  3621. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3622. // Reset the baby step value and the baby step applied flag.
  3623. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3624. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3625. // Reset the skew and offset in both RAM and EEPROM.
  3626. reset_bed_offset_and_skew();
  3627. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3628. // the planner will not perform any adjustments in the XY plane.
  3629. // Wait for the motors to stop and update the current position with the absolute values.
  3630. world2machine_revert_to_uncorrected();
  3631. break;
  3632. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3633. {
  3634. int8_t verbosity_level = 0;
  3635. bool only_Z = code_seen('Z');
  3636. #ifdef SUPPORT_VERBOSITY
  3637. if (code_seen('V'))
  3638. {
  3639. // Just 'V' without a number counts as V1.
  3640. char c = strchr_pointer[1];
  3641. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3642. }
  3643. #endif //SUPPORT_VERBOSITY
  3644. gcode_M45(only_Z, verbosity_level);
  3645. }
  3646. break;
  3647. /*
  3648. case 46:
  3649. {
  3650. // M46: Prusa3D: Show the assigned IP address.
  3651. uint8_t ip[4];
  3652. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3653. if (hasIP) {
  3654. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3655. SERIAL_ECHO(int(ip[0]));
  3656. SERIAL_ECHOPGM(".");
  3657. SERIAL_ECHO(int(ip[1]));
  3658. SERIAL_ECHOPGM(".");
  3659. SERIAL_ECHO(int(ip[2]));
  3660. SERIAL_ECHOPGM(".");
  3661. SERIAL_ECHO(int(ip[3]));
  3662. SERIAL_ECHOLNPGM("");
  3663. } else {
  3664. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3665. }
  3666. break;
  3667. }
  3668. */
  3669. case 47:
  3670. // M47: Prusa3D: Show end stops dialog on the display.
  3671. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3672. lcd_diag_show_end_stops();
  3673. KEEPALIVE_STATE(IN_HANDLER);
  3674. break;
  3675. #if 0
  3676. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3677. {
  3678. // Disable the default update procedure of the display. We will do a modal dialog.
  3679. lcd_update_enable(false);
  3680. // Let the planner use the uncorrected coordinates.
  3681. mbl.reset();
  3682. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3683. // the planner will not perform any adjustments in the XY plane.
  3684. // Wait for the motors to stop and update the current position with the absolute values.
  3685. world2machine_revert_to_uncorrected();
  3686. // Move the print head close to the bed.
  3687. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3689. st_synchronize();
  3690. // Home in the XY plane.
  3691. set_destination_to_current();
  3692. setup_for_endstop_move();
  3693. home_xy();
  3694. int8_t verbosity_level = 0;
  3695. if (code_seen('V')) {
  3696. // Just 'V' without a number counts as V1.
  3697. char c = strchr_pointer[1];
  3698. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3699. }
  3700. bool success = scan_bed_induction_points(verbosity_level);
  3701. clean_up_after_endstop_move();
  3702. // Print head up.
  3703. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3705. st_synchronize();
  3706. lcd_update_enable(true);
  3707. break;
  3708. }
  3709. #endif
  3710. // M48 Z-Probe repeatability measurement function.
  3711. //
  3712. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3713. //
  3714. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3715. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3716. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3717. // regenerated.
  3718. //
  3719. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3720. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3721. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3722. //
  3723. #ifdef ENABLE_AUTO_BED_LEVELING
  3724. #ifdef Z_PROBE_REPEATABILITY_TEST
  3725. case 48: // M48 Z-Probe repeatability
  3726. {
  3727. #if Z_MIN_PIN == -1
  3728. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3729. #endif
  3730. double sum=0.0;
  3731. double mean=0.0;
  3732. double sigma=0.0;
  3733. double sample_set[50];
  3734. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3735. double X_current, Y_current, Z_current;
  3736. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3737. if (code_seen('V') || code_seen('v')) {
  3738. verbose_level = code_value();
  3739. if (verbose_level<0 || verbose_level>4 ) {
  3740. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3741. goto Sigma_Exit;
  3742. }
  3743. }
  3744. if (verbose_level > 0) {
  3745. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3746. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3747. }
  3748. if (code_seen('n')) {
  3749. n_samples = code_value();
  3750. if (n_samples<4 || n_samples>50 ) {
  3751. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3752. goto Sigma_Exit;
  3753. }
  3754. }
  3755. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3756. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3757. Z_current = st_get_position_mm(Z_AXIS);
  3758. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3759. ext_position = st_get_position_mm(E_AXIS);
  3760. if (code_seen('X') || code_seen('x') ) {
  3761. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3762. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3763. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3764. goto Sigma_Exit;
  3765. }
  3766. }
  3767. if (code_seen('Y') || code_seen('y') ) {
  3768. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3769. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3770. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3771. goto Sigma_Exit;
  3772. }
  3773. }
  3774. if (code_seen('L') || code_seen('l') ) {
  3775. n_legs = code_value();
  3776. if ( n_legs==1 )
  3777. n_legs = 2;
  3778. if ( n_legs<0 || n_legs>15 ) {
  3779. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3780. goto Sigma_Exit;
  3781. }
  3782. }
  3783. //
  3784. // Do all the preliminary setup work. First raise the probe.
  3785. //
  3786. st_synchronize();
  3787. plan_bed_level_matrix.set_to_identity();
  3788. plan_buffer_line( X_current, Y_current, Z_start_location,
  3789. ext_position,
  3790. homing_feedrate[Z_AXIS]/60,
  3791. active_extruder);
  3792. st_synchronize();
  3793. //
  3794. // Now get everything to the specified probe point So we can safely do a probe to
  3795. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3796. // use that as a starting point for each probe.
  3797. //
  3798. if (verbose_level > 2)
  3799. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3800. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3801. ext_position,
  3802. homing_feedrate[X_AXIS]/60,
  3803. active_extruder);
  3804. st_synchronize();
  3805. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3806. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3807. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3808. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3809. //
  3810. // OK, do the inital probe to get us close to the bed.
  3811. // Then retrace the right amount and use that in subsequent probes
  3812. //
  3813. setup_for_endstop_move();
  3814. run_z_probe();
  3815. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3816. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3817. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3818. ext_position,
  3819. homing_feedrate[X_AXIS]/60,
  3820. active_extruder);
  3821. st_synchronize();
  3822. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3823. for( n=0; n<n_samples; n++) {
  3824. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3825. if ( n_legs) {
  3826. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3827. int rotational_direction, l;
  3828. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3829. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3830. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3831. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3832. //SERIAL_ECHOPAIR(" theta: ",theta);
  3833. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3834. //SERIAL_PROTOCOLLNPGM("");
  3835. for( l=0; l<n_legs-1; l++) {
  3836. if (rotational_direction==1)
  3837. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3838. else
  3839. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3840. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3841. if ( radius<0.0 )
  3842. radius = -radius;
  3843. X_current = X_probe_location + cos(theta) * radius;
  3844. Y_current = Y_probe_location + sin(theta) * radius;
  3845. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3846. X_current = X_MIN_POS;
  3847. if ( X_current>X_MAX_POS)
  3848. X_current = X_MAX_POS;
  3849. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3850. Y_current = Y_MIN_POS;
  3851. if ( Y_current>Y_MAX_POS)
  3852. Y_current = Y_MAX_POS;
  3853. if (verbose_level>3 ) {
  3854. SERIAL_ECHOPAIR("x: ", X_current);
  3855. SERIAL_ECHOPAIR("y: ", Y_current);
  3856. SERIAL_PROTOCOLLNPGM("");
  3857. }
  3858. do_blocking_move_to( X_current, Y_current, Z_current );
  3859. }
  3860. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3861. }
  3862. setup_for_endstop_move();
  3863. run_z_probe();
  3864. sample_set[n] = current_position[Z_AXIS];
  3865. //
  3866. // Get the current mean for the data points we have so far
  3867. //
  3868. sum=0.0;
  3869. for( j=0; j<=n; j++) {
  3870. sum = sum + sample_set[j];
  3871. }
  3872. mean = sum / (double (n+1));
  3873. //
  3874. // Now, use that mean to calculate the standard deviation for the
  3875. // data points we have so far
  3876. //
  3877. sum=0.0;
  3878. for( j=0; j<=n; j++) {
  3879. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3880. }
  3881. sigma = sqrt( sum / (double (n+1)) );
  3882. if (verbose_level > 1) {
  3883. SERIAL_PROTOCOL(n+1);
  3884. SERIAL_PROTOCOL(" of ");
  3885. SERIAL_PROTOCOL(n_samples);
  3886. SERIAL_PROTOCOLPGM(" z: ");
  3887. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3888. }
  3889. if (verbose_level > 2) {
  3890. SERIAL_PROTOCOL(" mean: ");
  3891. SERIAL_PROTOCOL_F(mean,6);
  3892. SERIAL_PROTOCOL(" sigma: ");
  3893. SERIAL_PROTOCOL_F(sigma,6);
  3894. }
  3895. if (verbose_level > 0)
  3896. SERIAL_PROTOCOLPGM("\n");
  3897. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3898. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3899. st_synchronize();
  3900. }
  3901. delay(1000);
  3902. clean_up_after_endstop_move();
  3903. // enable_endstops(true);
  3904. if (verbose_level > 0) {
  3905. SERIAL_PROTOCOLPGM("Mean: ");
  3906. SERIAL_PROTOCOL_F(mean, 6);
  3907. SERIAL_PROTOCOLPGM("\n");
  3908. }
  3909. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3910. SERIAL_PROTOCOL_F(sigma, 6);
  3911. SERIAL_PROTOCOLPGM("\n\n");
  3912. Sigma_Exit:
  3913. break;
  3914. }
  3915. #endif // Z_PROBE_REPEATABILITY_TEST
  3916. #endif // ENABLE_AUTO_BED_LEVELING
  3917. case 104: // M104
  3918. if(setTargetedHotend(104)){
  3919. break;
  3920. }
  3921. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3922. setWatch();
  3923. break;
  3924. case 112: // M112 -Emergency Stop
  3925. kill("", 3);
  3926. break;
  3927. case 140: // M140 set bed temp
  3928. if (code_seen('S')) setTargetBed(code_value());
  3929. break;
  3930. case 105 : // M105
  3931. if(setTargetedHotend(105)){
  3932. break;
  3933. }
  3934. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3935. SERIAL_PROTOCOLPGM("ok T:");
  3936. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3937. SERIAL_PROTOCOLPGM(" /");
  3938. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3939. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3940. SERIAL_PROTOCOLPGM(" B:");
  3941. SERIAL_PROTOCOL_F(degBed(),1);
  3942. SERIAL_PROTOCOLPGM(" /");
  3943. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3944. #endif //TEMP_BED_PIN
  3945. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3946. SERIAL_PROTOCOLPGM(" T");
  3947. SERIAL_PROTOCOL(cur_extruder);
  3948. SERIAL_PROTOCOLPGM(":");
  3949. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3950. SERIAL_PROTOCOLPGM(" /");
  3951. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3952. }
  3953. #else
  3954. SERIAL_ERROR_START;
  3955. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3956. #endif
  3957. SERIAL_PROTOCOLPGM(" @:");
  3958. #ifdef EXTRUDER_WATTS
  3959. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3960. SERIAL_PROTOCOLPGM("W");
  3961. #else
  3962. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3963. #endif
  3964. SERIAL_PROTOCOLPGM(" B@:");
  3965. #ifdef BED_WATTS
  3966. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3967. SERIAL_PROTOCOLPGM("W");
  3968. #else
  3969. SERIAL_PROTOCOL(getHeaterPower(-1));
  3970. #endif
  3971. #ifdef PINDA_THERMISTOR
  3972. SERIAL_PROTOCOLPGM(" P:");
  3973. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3974. #endif //PINDA_THERMISTOR
  3975. #ifdef AMBIENT_THERMISTOR
  3976. SERIAL_PROTOCOLPGM(" A:");
  3977. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3978. #endif //AMBIENT_THERMISTOR
  3979. #ifdef SHOW_TEMP_ADC_VALUES
  3980. {float raw = 0.0;
  3981. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3982. SERIAL_PROTOCOLPGM(" ADC B:");
  3983. SERIAL_PROTOCOL_F(degBed(),1);
  3984. SERIAL_PROTOCOLPGM("C->");
  3985. raw = rawBedTemp();
  3986. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3987. SERIAL_PROTOCOLPGM(" Rb->");
  3988. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3989. SERIAL_PROTOCOLPGM(" Rxb->");
  3990. SERIAL_PROTOCOL_F(raw, 5);
  3991. #endif
  3992. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3993. SERIAL_PROTOCOLPGM(" T");
  3994. SERIAL_PROTOCOL(cur_extruder);
  3995. SERIAL_PROTOCOLPGM(":");
  3996. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3997. SERIAL_PROTOCOLPGM("C->");
  3998. raw = rawHotendTemp(cur_extruder);
  3999. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4000. SERIAL_PROTOCOLPGM(" Rt");
  4001. SERIAL_PROTOCOL(cur_extruder);
  4002. SERIAL_PROTOCOLPGM("->");
  4003. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4004. SERIAL_PROTOCOLPGM(" Rx");
  4005. SERIAL_PROTOCOL(cur_extruder);
  4006. SERIAL_PROTOCOLPGM("->");
  4007. SERIAL_PROTOCOL_F(raw, 5);
  4008. }}
  4009. #endif
  4010. SERIAL_PROTOCOLLN("");
  4011. KEEPALIVE_STATE(NOT_BUSY);
  4012. return;
  4013. break;
  4014. case 109:
  4015. {// M109 - Wait for extruder heater to reach target.
  4016. if(setTargetedHotend(109)){
  4017. break;
  4018. }
  4019. LCD_MESSAGERPGM(MSG_HEATING);
  4020. heating_status = 1;
  4021. if (farm_mode) { prusa_statistics(1); };
  4022. #ifdef AUTOTEMP
  4023. autotemp_enabled=false;
  4024. #endif
  4025. if (code_seen('S')) {
  4026. setTargetHotend(code_value(), tmp_extruder);
  4027. CooldownNoWait = true;
  4028. } else if (code_seen('R')) {
  4029. setTargetHotend(code_value(), tmp_extruder);
  4030. CooldownNoWait = false;
  4031. }
  4032. #ifdef AUTOTEMP
  4033. if (code_seen('S')) autotemp_min=code_value();
  4034. if (code_seen('B')) autotemp_max=code_value();
  4035. if (code_seen('F'))
  4036. {
  4037. autotemp_factor=code_value();
  4038. autotemp_enabled=true;
  4039. }
  4040. #endif
  4041. setWatch();
  4042. codenum = millis();
  4043. /* See if we are heating up or cooling down */
  4044. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4045. KEEPALIVE_STATE(NOT_BUSY);
  4046. cancel_heatup = false;
  4047. wait_for_heater(codenum); //loops until target temperature is reached
  4048. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4049. KEEPALIVE_STATE(IN_HANDLER);
  4050. heating_status = 2;
  4051. if (farm_mode) { prusa_statistics(2); };
  4052. //starttime=millis();
  4053. previous_millis_cmd = millis();
  4054. }
  4055. break;
  4056. case 190: // M190 - Wait for bed heater to reach target.
  4057. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4058. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4059. heating_status = 3;
  4060. if (farm_mode) { prusa_statistics(1); };
  4061. if (code_seen('S'))
  4062. {
  4063. setTargetBed(code_value());
  4064. CooldownNoWait = true;
  4065. }
  4066. else if (code_seen('R'))
  4067. {
  4068. setTargetBed(code_value());
  4069. CooldownNoWait = false;
  4070. }
  4071. codenum = millis();
  4072. cancel_heatup = false;
  4073. target_direction = isHeatingBed(); // true if heating, false if cooling
  4074. KEEPALIVE_STATE(NOT_BUSY);
  4075. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4076. {
  4077. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4078. {
  4079. if (!farm_mode) {
  4080. float tt = degHotend(active_extruder);
  4081. SERIAL_PROTOCOLPGM("T:");
  4082. SERIAL_PROTOCOL(tt);
  4083. SERIAL_PROTOCOLPGM(" E:");
  4084. SERIAL_PROTOCOL((int)active_extruder);
  4085. SERIAL_PROTOCOLPGM(" B:");
  4086. SERIAL_PROTOCOL_F(degBed(), 1);
  4087. SERIAL_PROTOCOLLN("");
  4088. }
  4089. codenum = millis();
  4090. }
  4091. manage_heater();
  4092. manage_inactivity();
  4093. lcd_update();
  4094. }
  4095. LCD_MESSAGERPGM(MSG_BED_DONE);
  4096. KEEPALIVE_STATE(IN_HANDLER);
  4097. heating_status = 4;
  4098. previous_millis_cmd = millis();
  4099. #endif
  4100. break;
  4101. #if defined(FAN_PIN) && FAN_PIN > -1
  4102. case 106: //M106 Fan On
  4103. if (code_seen('S')){
  4104. fanSpeed=constrain(code_value(),0,255);
  4105. }
  4106. else {
  4107. fanSpeed=255;
  4108. }
  4109. break;
  4110. case 107: //M107 Fan Off
  4111. fanSpeed = 0;
  4112. break;
  4113. #endif //FAN_PIN
  4114. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4115. case 80: // M80 - Turn on Power Supply
  4116. SET_OUTPUT(PS_ON_PIN); //GND
  4117. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4118. // If you have a switch on suicide pin, this is useful
  4119. // if you want to start another print with suicide feature after
  4120. // a print without suicide...
  4121. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4122. SET_OUTPUT(SUICIDE_PIN);
  4123. WRITE(SUICIDE_PIN, HIGH);
  4124. #endif
  4125. #ifdef ULTIPANEL
  4126. powersupply = true;
  4127. LCD_MESSAGERPGM(WELCOME_MSG);
  4128. lcd_update();
  4129. #endif
  4130. break;
  4131. #endif
  4132. case 81: // M81 - Turn off Power Supply
  4133. disable_heater();
  4134. st_synchronize();
  4135. disable_e0();
  4136. disable_e1();
  4137. disable_e2();
  4138. finishAndDisableSteppers();
  4139. fanSpeed = 0;
  4140. delay(1000); // Wait a little before to switch off
  4141. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4142. st_synchronize();
  4143. suicide();
  4144. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4145. SET_OUTPUT(PS_ON_PIN);
  4146. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4147. #endif
  4148. #ifdef ULTIPANEL
  4149. powersupply = false;
  4150. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4151. /*
  4152. MACHNAME = "Prusa i3"
  4153. MSGOFF = "Vypnuto"
  4154. "Prusai3"" ""vypnuto""."
  4155. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4156. */
  4157. lcd_update();
  4158. #endif
  4159. break;
  4160. case 82:
  4161. axis_relative_modes[3] = false;
  4162. break;
  4163. case 83:
  4164. axis_relative_modes[3] = true;
  4165. break;
  4166. case 18: //compatibility
  4167. case 84: // M84
  4168. if(code_seen('S')){
  4169. stepper_inactive_time = code_value() * 1000;
  4170. }
  4171. else
  4172. {
  4173. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4174. if(all_axis)
  4175. {
  4176. st_synchronize();
  4177. disable_e0();
  4178. disable_e1();
  4179. disable_e2();
  4180. finishAndDisableSteppers();
  4181. }
  4182. else
  4183. {
  4184. st_synchronize();
  4185. if (code_seen('X')) disable_x();
  4186. if (code_seen('Y')) disable_y();
  4187. if (code_seen('Z')) disable_z();
  4188. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4189. if (code_seen('E')) {
  4190. disable_e0();
  4191. disable_e1();
  4192. disable_e2();
  4193. }
  4194. #endif
  4195. }
  4196. }
  4197. snmm_filaments_used = 0;
  4198. break;
  4199. case 85: // M85
  4200. if(code_seen('S')) {
  4201. max_inactive_time = code_value() * 1000;
  4202. }
  4203. break;
  4204. case 92: // M92
  4205. for(int8_t i=0; i < NUM_AXIS; i++)
  4206. {
  4207. if(code_seen(axis_codes[i]))
  4208. {
  4209. if(i == 3) { // E
  4210. float value = code_value();
  4211. if(value < 20.0) {
  4212. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4213. max_jerk[E_AXIS] *= factor;
  4214. max_feedrate[i] *= factor;
  4215. axis_steps_per_sqr_second[i] *= factor;
  4216. }
  4217. axis_steps_per_unit[i] = value;
  4218. }
  4219. else {
  4220. axis_steps_per_unit[i] = code_value();
  4221. }
  4222. }
  4223. }
  4224. break;
  4225. case 110: // M110 - reset line pos
  4226. if (code_seen('N'))
  4227. gcode_LastN = code_value_long();
  4228. break;
  4229. #ifdef HOST_KEEPALIVE_FEATURE
  4230. case 113: // M113 - Get or set Host Keepalive interval
  4231. if (code_seen('S')) {
  4232. host_keepalive_interval = (uint8_t)code_value_short();
  4233. // NOMORE(host_keepalive_interval, 60);
  4234. }
  4235. else {
  4236. SERIAL_ECHO_START;
  4237. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4238. SERIAL_PROTOCOLLN("");
  4239. }
  4240. break;
  4241. #endif
  4242. case 115: // M115
  4243. if (code_seen('V')) {
  4244. // Report the Prusa version number.
  4245. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4246. } else if (code_seen('U')) {
  4247. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4248. // pause the print and ask the user to upgrade the firmware.
  4249. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4250. } else {
  4251. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4252. }
  4253. break;
  4254. /* case 117: // M117 display message
  4255. starpos = (strchr(strchr_pointer + 5,'*'));
  4256. if(starpos!=NULL)
  4257. *(starpos)='\0';
  4258. lcd_setstatus(strchr_pointer + 5);
  4259. break;*/
  4260. case 114: // M114
  4261. gcode_M114();
  4262. break;
  4263. case 120: // M120
  4264. enable_endstops(false) ;
  4265. break;
  4266. case 121: // M121
  4267. enable_endstops(true) ;
  4268. break;
  4269. case 119: // M119
  4270. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4271. SERIAL_PROTOCOLLN("");
  4272. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4273. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4274. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4275. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4276. }else{
  4277. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4278. }
  4279. SERIAL_PROTOCOLLN("");
  4280. #endif
  4281. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4282. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4283. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4284. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4285. }else{
  4286. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4287. }
  4288. SERIAL_PROTOCOLLN("");
  4289. #endif
  4290. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4291. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4292. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4293. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4294. }else{
  4295. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4296. }
  4297. SERIAL_PROTOCOLLN("");
  4298. #endif
  4299. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4300. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4301. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4302. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4303. }else{
  4304. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4305. }
  4306. SERIAL_PROTOCOLLN("");
  4307. #endif
  4308. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4309. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4310. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4311. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4312. }else{
  4313. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4314. }
  4315. SERIAL_PROTOCOLLN("");
  4316. #endif
  4317. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4318. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4319. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4320. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4321. }else{
  4322. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4323. }
  4324. SERIAL_PROTOCOLLN("");
  4325. #endif
  4326. break;
  4327. //TODO: update for all axis, use for loop
  4328. #ifdef BLINKM
  4329. case 150: // M150
  4330. {
  4331. byte red;
  4332. byte grn;
  4333. byte blu;
  4334. if(code_seen('R')) red = code_value();
  4335. if(code_seen('U')) grn = code_value();
  4336. if(code_seen('B')) blu = code_value();
  4337. SendColors(red,grn,blu);
  4338. }
  4339. break;
  4340. #endif //BLINKM
  4341. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4342. {
  4343. tmp_extruder = active_extruder;
  4344. if(code_seen('T')) {
  4345. tmp_extruder = code_value();
  4346. if(tmp_extruder >= EXTRUDERS) {
  4347. SERIAL_ECHO_START;
  4348. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4349. break;
  4350. }
  4351. }
  4352. float area = .0;
  4353. if(code_seen('D')) {
  4354. float diameter = (float)code_value();
  4355. if (diameter == 0.0) {
  4356. // setting any extruder filament size disables volumetric on the assumption that
  4357. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4358. // for all extruders
  4359. volumetric_enabled = false;
  4360. } else {
  4361. filament_size[tmp_extruder] = (float)code_value();
  4362. // make sure all extruders have some sane value for the filament size
  4363. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4364. #if EXTRUDERS > 1
  4365. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4366. #if EXTRUDERS > 2
  4367. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4368. #endif
  4369. #endif
  4370. volumetric_enabled = true;
  4371. }
  4372. } else {
  4373. //reserved for setting filament diameter via UFID or filament measuring device
  4374. break;
  4375. }
  4376. calculate_extruder_multipliers();
  4377. }
  4378. break;
  4379. case 201: // M201
  4380. for(int8_t i=0; i < NUM_AXIS; i++)
  4381. {
  4382. if(code_seen(axis_codes[i]))
  4383. {
  4384. max_acceleration_units_per_sq_second[i] = code_value();
  4385. }
  4386. }
  4387. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4388. reset_acceleration_rates();
  4389. break;
  4390. #if 0 // Not used for Sprinter/grbl gen6
  4391. case 202: // M202
  4392. for(int8_t i=0; i < NUM_AXIS; i++) {
  4393. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4394. }
  4395. break;
  4396. #endif
  4397. case 203: // M203 max feedrate mm/sec
  4398. for(int8_t i=0; i < NUM_AXIS; i++) {
  4399. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4400. }
  4401. break;
  4402. case 204: // M204 acclereration S normal moves T filmanent only moves
  4403. {
  4404. if(code_seen('S')) acceleration = code_value() ;
  4405. if(code_seen('T')) retract_acceleration = code_value() ;
  4406. }
  4407. break;
  4408. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4409. {
  4410. if(code_seen('S')) minimumfeedrate = code_value();
  4411. if(code_seen('T')) mintravelfeedrate = code_value();
  4412. if(code_seen('B')) minsegmenttime = code_value() ;
  4413. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4414. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4415. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4416. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4417. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4418. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4419. }
  4420. break;
  4421. case 206: // M206 additional homing offset
  4422. for(int8_t i=0; i < 3; i++)
  4423. {
  4424. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4425. }
  4426. break;
  4427. #ifdef FWRETRACT
  4428. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4429. {
  4430. if(code_seen('S'))
  4431. {
  4432. retract_length = code_value() ;
  4433. }
  4434. if(code_seen('F'))
  4435. {
  4436. retract_feedrate = code_value()/60 ;
  4437. }
  4438. if(code_seen('Z'))
  4439. {
  4440. retract_zlift = code_value() ;
  4441. }
  4442. }break;
  4443. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4444. {
  4445. if(code_seen('S'))
  4446. {
  4447. retract_recover_length = code_value() ;
  4448. }
  4449. if(code_seen('F'))
  4450. {
  4451. retract_recover_feedrate = code_value()/60 ;
  4452. }
  4453. }break;
  4454. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4455. {
  4456. if(code_seen('S'))
  4457. {
  4458. int t= code_value() ;
  4459. switch(t)
  4460. {
  4461. case 0:
  4462. {
  4463. autoretract_enabled=false;
  4464. retracted[0]=false;
  4465. #if EXTRUDERS > 1
  4466. retracted[1]=false;
  4467. #endif
  4468. #if EXTRUDERS > 2
  4469. retracted[2]=false;
  4470. #endif
  4471. }break;
  4472. case 1:
  4473. {
  4474. autoretract_enabled=true;
  4475. retracted[0]=false;
  4476. #if EXTRUDERS > 1
  4477. retracted[1]=false;
  4478. #endif
  4479. #if EXTRUDERS > 2
  4480. retracted[2]=false;
  4481. #endif
  4482. }break;
  4483. default:
  4484. SERIAL_ECHO_START;
  4485. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4486. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4487. SERIAL_ECHOLNPGM("\"(1)");
  4488. }
  4489. }
  4490. }break;
  4491. #endif // FWRETRACT
  4492. #if EXTRUDERS > 1
  4493. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4494. {
  4495. if(setTargetedHotend(218)){
  4496. break;
  4497. }
  4498. if(code_seen('X'))
  4499. {
  4500. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4501. }
  4502. if(code_seen('Y'))
  4503. {
  4504. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4505. }
  4506. SERIAL_ECHO_START;
  4507. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4508. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4509. {
  4510. SERIAL_ECHO(" ");
  4511. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4512. SERIAL_ECHO(",");
  4513. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4514. }
  4515. SERIAL_ECHOLN("");
  4516. }break;
  4517. #endif
  4518. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4519. {
  4520. if(code_seen('S'))
  4521. {
  4522. feedmultiply = code_value() ;
  4523. }
  4524. }
  4525. break;
  4526. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4527. {
  4528. if(code_seen('S'))
  4529. {
  4530. int tmp_code = code_value();
  4531. if (code_seen('T'))
  4532. {
  4533. if(setTargetedHotend(221)){
  4534. break;
  4535. }
  4536. extruder_multiply[tmp_extruder] = tmp_code;
  4537. }
  4538. else
  4539. {
  4540. extrudemultiply = tmp_code ;
  4541. }
  4542. }
  4543. calculate_extruder_multipliers();
  4544. }
  4545. break;
  4546. #ifndef _DISABLE_M42_M226
  4547. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4548. {
  4549. if(code_seen('P')){
  4550. int pin_number = code_value(); // pin number
  4551. int pin_state = -1; // required pin state - default is inverted
  4552. if(code_seen('S')) pin_state = code_value(); // required pin state
  4553. if(pin_state >= -1 && pin_state <= 1){
  4554. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4555. {
  4556. if (sensitive_pins[i] == pin_number)
  4557. {
  4558. pin_number = -1;
  4559. break;
  4560. }
  4561. }
  4562. if (pin_number > -1)
  4563. {
  4564. int target = LOW;
  4565. st_synchronize();
  4566. pinMode(pin_number, INPUT);
  4567. switch(pin_state){
  4568. case 1:
  4569. target = HIGH;
  4570. break;
  4571. case 0:
  4572. target = LOW;
  4573. break;
  4574. case -1:
  4575. target = !digitalRead(pin_number);
  4576. break;
  4577. }
  4578. while(digitalRead(pin_number) != target){
  4579. manage_heater();
  4580. manage_inactivity();
  4581. lcd_update();
  4582. }
  4583. }
  4584. }
  4585. }
  4586. }
  4587. break;
  4588. #endif //_DISABLE_M42_M226
  4589. #if NUM_SERVOS > 0
  4590. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4591. {
  4592. int servo_index = -1;
  4593. int servo_position = 0;
  4594. if (code_seen('P'))
  4595. servo_index = code_value();
  4596. if (code_seen('S')) {
  4597. servo_position = code_value();
  4598. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4599. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4600. servos[servo_index].attach(0);
  4601. #endif
  4602. servos[servo_index].write(servo_position);
  4603. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4604. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4605. servos[servo_index].detach();
  4606. #endif
  4607. }
  4608. else {
  4609. SERIAL_ECHO_START;
  4610. SERIAL_ECHO("Servo ");
  4611. SERIAL_ECHO(servo_index);
  4612. SERIAL_ECHOLN(" out of range");
  4613. }
  4614. }
  4615. else if (servo_index >= 0) {
  4616. SERIAL_PROTOCOL(MSG_OK);
  4617. SERIAL_PROTOCOL(" Servo ");
  4618. SERIAL_PROTOCOL(servo_index);
  4619. SERIAL_PROTOCOL(": ");
  4620. SERIAL_PROTOCOL(servos[servo_index].read());
  4621. SERIAL_PROTOCOLLN("");
  4622. }
  4623. }
  4624. break;
  4625. #endif // NUM_SERVOS > 0
  4626. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4627. case 300: // M300
  4628. {
  4629. int beepS = code_seen('S') ? code_value() : 110;
  4630. int beepP = code_seen('P') ? code_value() : 1000;
  4631. if (beepS > 0)
  4632. {
  4633. #if BEEPER > 0
  4634. tone(BEEPER, beepS);
  4635. delay(beepP);
  4636. noTone(BEEPER);
  4637. #elif defined(ULTRALCD)
  4638. lcd_buzz(beepS, beepP);
  4639. #elif defined(LCD_USE_I2C_BUZZER)
  4640. lcd_buzz(beepP, beepS);
  4641. #endif
  4642. }
  4643. else
  4644. {
  4645. delay(beepP);
  4646. }
  4647. }
  4648. break;
  4649. #endif // M300
  4650. #ifdef PIDTEMP
  4651. case 301: // M301
  4652. {
  4653. if(code_seen('P')) Kp = code_value();
  4654. if(code_seen('I')) Ki = scalePID_i(code_value());
  4655. if(code_seen('D')) Kd = scalePID_d(code_value());
  4656. #ifdef PID_ADD_EXTRUSION_RATE
  4657. if(code_seen('C')) Kc = code_value();
  4658. #endif
  4659. updatePID();
  4660. SERIAL_PROTOCOLRPGM(MSG_OK);
  4661. SERIAL_PROTOCOL(" p:");
  4662. SERIAL_PROTOCOL(Kp);
  4663. SERIAL_PROTOCOL(" i:");
  4664. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4665. SERIAL_PROTOCOL(" d:");
  4666. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4667. #ifdef PID_ADD_EXTRUSION_RATE
  4668. SERIAL_PROTOCOL(" c:");
  4669. //Kc does not have scaling applied above, or in resetting defaults
  4670. SERIAL_PROTOCOL(Kc);
  4671. #endif
  4672. SERIAL_PROTOCOLLN("");
  4673. }
  4674. break;
  4675. #endif //PIDTEMP
  4676. #ifdef PIDTEMPBED
  4677. case 304: // M304
  4678. {
  4679. if(code_seen('P')) bedKp = code_value();
  4680. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4681. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4682. updatePID();
  4683. SERIAL_PROTOCOLRPGM(MSG_OK);
  4684. SERIAL_PROTOCOL(" p:");
  4685. SERIAL_PROTOCOL(bedKp);
  4686. SERIAL_PROTOCOL(" i:");
  4687. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4688. SERIAL_PROTOCOL(" d:");
  4689. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4690. SERIAL_PROTOCOLLN("");
  4691. }
  4692. break;
  4693. #endif //PIDTEMP
  4694. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4695. {
  4696. #ifdef CHDK
  4697. SET_OUTPUT(CHDK);
  4698. WRITE(CHDK, HIGH);
  4699. chdkHigh = millis();
  4700. chdkActive = true;
  4701. #else
  4702. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4703. const uint8_t NUM_PULSES=16;
  4704. const float PULSE_LENGTH=0.01524;
  4705. for(int i=0; i < NUM_PULSES; i++) {
  4706. WRITE(PHOTOGRAPH_PIN, HIGH);
  4707. _delay_ms(PULSE_LENGTH);
  4708. WRITE(PHOTOGRAPH_PIN, LOW);
  4709. _delay_ms(PULSE_LENGTH);
  4710. }
  4711. delay(7.33);
  4712. for(int i=0; i < NUM_PULSES; i++) {
  4713. WRITE(PHOTOGRAPH_PIN, HIGH);
  4714. _delay_ms(PULSE_LENGTH);
  4715. WRITE(PHOTOGRAPH_PIN, LOW);
  4716. _delay_ms(PULSE_LENGTH);
  4717. }
  4718. #endif
  4719. #endif //chdk end if
  4720. }
  4721. break;
  4722. #ifdef DOGLCD
  4723. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4724. {
  4725. if (code_seen('C')) {
  4726. lcd_setcontrast( ((int)code_value())&63 );
  4727. }
  4728. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4729. SERIAL_PROTOCOL(lcd_contrast);
  4730. SERIAL_PROTOCOLLN("");
  4731. }
  4732. break;
  4733. #endif
  4734. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4735. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4736. {
  4737. float temp = .0;
  4738. if (code_seen('S')) temp=code_value();
  4739. set_extrude_min_temp(temp);
  4740. }
  4741. break;
  4742. #endif
  4743. case 303: // M303 PID autotune
  4744. {
  4745. float temp = 150.0;
  4746. int e=0;
  4747. int c=5;
  4748. if (code_seen('E')) e=code_value();
  4749. if (e<0)
  4750. temp=70;
  4751. if (code_seen('S')) temp=code_value();
  4752. if (code_seen('C')) c=code_value();
  4753. PID_autotune(temp, e, c);
  4754. }
  4755. break;
  4756. case 400: // M400 finish all moves
  4757. {
  4758. st_synchronize();
  4759. }
  4760. break;
  4761. case 500: // M500 Store settings in EEPROM
  4762. {
  4763. Config_StoreSettings(EEPROM_OFFSET);
  4764. }
  4765. break;
  4766. case 501: // M501 Read settings from EEPROM
  4767. {
  4768. Config_RetrieveSettings(EEPROM_OFFSET);
  4769. }
  4770. break;
  4771. case 502: // M502 Revert to default settings
  4772. {
  4773. Config_ResetDefault();
  4774. }
  4775. break;
  4776. case 503: // M503 print settings currently in memory
  4777. {
  4778. Config_PrintSettings();
  4779. }
  4780. break;
  4781. case 509: //M509 Force language selection
  4782. {
  4783. lcd_force_language_selection();
  4784. SERIAL_ECHO_START;
  4785. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4786. }
  4787. break;
  4788. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4789. case 540:
  4790. {
  4791. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4792. }
  4793. break;
  4794. #endif
  4795. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4796. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4797. {
  4798. float value;
  4799. if (code_seen('Z'))
  4800. {
  4801. value = code_value();
  4802. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4803. {
  4804. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4805. SERIAL_ECHO_START;
  4806. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4807. SERIAL_PROTOCOLLN("");
  4808. }
  4809. else
  4810. {
  4811. SERIAL_ECHO_START;
  4812. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4813. SERIAL_ECHORPGM(MSG_Z_MIN);
  4814. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4815. SERIAL_ECHORPGM(MSG_Z_MAX);
  4816. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4817. SERIAL_PROTOCOLLN("");
  4818. }
  4819. }
  4820. else
  4821. {
  4822. SERIAL_ECHO_START;
  4823. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4824. SERIAL_ECHO(-zprobe_zoffset);
  4825. SERIAL_PROTOCOLLN("");
  4826. }
  4827. break;
  4828. }
  4829. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4830. #ifdef FILAMENTCHANGEENABLE
  4831. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4832. {
  4833. #ifdef PAT9125
  4834. bool old_fsensor_enabled = fsensor_enabled;
  4835. fsensor_enabled = false; //temporary solution for unexpected restarting
  4836. #endif //PAT9125
  4837. st_synchronize();
  4838. float target[4];
  4839. float lastpos[4];
  4840. if (farm_mode)
  4841. {
  4842. prusa_statistics(22);
  4843. }
  4844. feedmultiplyBckp=feedmultiply;
  4845. int8_t TooLowZ = 0;
  4846. float HotendTempBckp = degTargetHotend(active_extruder);
  4847. int fanSpeedBckp = fanSpeed;
  4848. target[X_AXIS]=current_position[X_AXIS];
  4849. target[Y_AXIS]=current_position[Y_AXIS];
  4850. target[Z_AXIS]=current_position[Z_AXIS];
  4851. target[E_AXIS]=current_position[E_AXIS];
  4852. lastpos[X_AXIS]=current_position[X_AXIS];
  4853. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4854. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4855. lastpos[E_AXIS]=current_position[E_AXIS];
  4856. //Restract extruder
  4857. if(code_seen('E'))
  4858. {
  4859. target[E_AXIS]+= code_value();
  4860. }
  4861. else
  4862. {
  4863. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4864. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4865. #endif
  4866. }
  4867. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4868. //Lift Z
  4869. if(code_seen('Z'))
  4870. {
  4871. target[Z_AXIS]+= code_value();
  4872. }
  4873. else
  4874. {
  4875. #ifdef FILAMENTCHANGE_ZADD
  4876. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4877. if(target[Z_AXIS] < 10){
  4878. target[Z_AXIS]+= 10 ;
  4879. TooLowZ = 1;
  4880. }else{
  4881. TooLowZ = 0;
  4882. }
  4883. #endif
  4884. }
  4885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4886. //Move XY to side
  4887. if(code_seen('X'))
  4888. {
  4889. target[X_AXIS]+= code_value();
  4890. }
  4891. else
  4892. {
  4893. #ifdef FILAMENTCHANGE_XPOS
  4894. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4895. #endif
  4896. }
  4897. if(code_seen('Y'))
  4898. {
  4899. target[Y_AXIS]= code_value();
  4900. }
  4901. else
  4902. {
  4903. #ifdef FILAMENTCHANGE_YPOS
  4904. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4905. #endif
  4906. }
  4907. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4908. st_synchronize();
  4909. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4910. uint8_t cnt = 0;
  4911. int counterBeep = 0;
  4912. fanSpeed = 0;
  4913. unsigned long waiting_start_time = millis();
  4914. uint8_t wait_for_user_state = 0;
  4915. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4916. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4917. //cnt++;
  4918. manage_heater();
  4919. manage_inactivity(true);
  4920. /*#ifdef SNMM
  4921. target[E_AXIS] += 0.002;
  4922. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4923. #endif // SNMM*/
  4924. //if (cnt == 0)
  4925. {
  4926. #if BEEPER > 0
  4927. if (counterBeep == 500) {
  4928. counterBeep = 0;
  4929. }
  4930. SET_OUTPUT(BEEPER);
  4931. if (counterBeep == 0) {
  4932. WRITE(BEEPER, HIGH);
  4933. }
  4934. if (counterBeep == 20) {
  4935. WRITE(BEEPER, LOW);
  4936. }
  4937. counterBeep++;
  4938. #else
  4939. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4940. lcd_buzz(1000 / 6, 100);
  4941. #else
  4942. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4943. #endif
  4944. #endif
  4945. }
  4946. switch (wait_for_user_state) {
  4947. case 0:
  4948. delay_keep_alive(4);
  4949. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4950. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4951. wait_for_user_state = 1;
  4952. setTargetHotend(0, 0);
  4953. setTargetHotend(0, 1);
  4954. setTargetHotend(0, 2);
  4955. st_synchronize();
  4956. disable_e0();
  4957. disable_e1();
  4958. disable_e2();
  4959. }
  4960. break;
  4961. case 1:
  4962. delay_keep_alive(4);
  4963. if (lcd_clicked()) {
  4964. setTargetHotend(HotendTempBckp, active_extruder);
  4965. lcd_wait_for_heater();
  4966. wait_for_user_state = 2;
  4967. }
  4968. break;
  4969. case 2:
  4970. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4971. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4972. waiting_start_time = millis();
  4973. wait_for_user_state = 0;
  4974. }
  4975. else {
  4976. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4977. lcd.setCursor(1, 4);
  4978. lcd.print(ftostr3(degHotend(active_extruder)));
  4979. }
  4980. break;
  4981. }
  4982. }
  4983. WRITE(BEEPER, LOW);
  4984. lcd_change_fil_state = 0;
  4985. // Unload filament
  4986. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4987. KEEPALIVE_STATE(IN_HANDLER);
  4988. custom_message = true;
  4989. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4990. if (code_seen('L'))
  4991. {
  4992. target[E_AXIS] += code_value();
  4993. }
  4994. else
  4995. {
  4996. #ifdef SNMM
  4997. #else
  4998. #ifdef FILAMENTCHANGE_FINALRETRACT
  4999. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5000. #endif
  5001. #endif // SNMM
  5002. }
  5003. #ifdef SNMM
  5004. target[E_AXIS] += 12;
  5005. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5006. target[E_AXIS] += 6;
  5007. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5008. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5009. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5010. st_synchronize();
  5011. target[E_AXIS] += (FIL_COOLING);
  5012. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5013. target[E_AXIS] += (FIL_COOLING*-1);
  5014. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5015. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5016. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5017. st_synchronize();
  5018. #else
  5019. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5020. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5021. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5022. st_synchronize();
  5023. #ifdef TMC2130
  5024. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5025. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5026. #else
  5027. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5028. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5029. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5030. #endif //TMC2130
  5031. target[E_AXIS] -= 45;
  5032. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5033. st_synchronize();
  5034. target[E_AXIS] -= 15;
  5035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5036. st_synchronize();
  5037. target[E_AXIS] -= 20;
  5038. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5039. st_synchronize();
  5040. #ifdef TMC2130
  5041. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5042. #else
  5043. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5044. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5045. else digipot_current(2, tmp_motor_loud[2]);
  5046. #endif //TMC2130
  5047. #endif // SNMM
  5048. //finish moves
  5049. st_synchronize();
  5050. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5051. //disable extruder steppers so filament can be removed
  5052. disable_e0();
  5053. disable_e1();
  5054. disable_e2();
  5055. delay(100);
  5056. WRITE(BEEPER, HIGH);
  5057. counterBeep = 0;
  5058. while(!lcd_clicked() && (counterBeep < 50)) {
  5059. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5060. delay_keep_alive(100);
  5061. counterBeep++;
  5062. }
  5063. WRITE(BEEPER, LOW);
  5064. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5065. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5066. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5067. //lcd_return_to_status();
  5068. lcd_update_enable(true);
  5069. //Wait for user to insert filament
  5070. lcd_wait_interact();
  5071. //load_filament_time = millis();
  5072. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5073. #ifdef PAT9125
  5074. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5075. #endif //PAT9125
  5076. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5077. while(!lcd_clicked())
  5078. {
  5079. manage_heater();
  5080. manage_inactivity(true);
  5081. #ifdef PAT9125
  5082. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5083. {
  5084. tone(BEEPER, 1000);
  5085. delay_keep_alive(50);
  5086. noTone(BEEPER);
  5087. break;
  5088. }
  5089. #endif //PAT9125
  5090. /*#ifdef SNMM
  5091. target[E_AXIS] += 0.002;
  5092. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5093. #endif // SNMM*/
  5094. }
  5095. #ifdef PAT9125
  5096. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5097. #endif //PAT9125
  5098. //WRITE(BEEPER, LOW);
  5099. KEEPALIVE_STATE(IN_HANDLER);
  5100. #ifdef SNMM
  5101. display_loading();
  5102. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5103. do {
  5104. target[E_AXIS] += 0.002;
  5105. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5106. delay_keep_alive(2);
  5107. } while (!lcd_clicked());
  5108. KEEPALIVE_STATE(IN_HANDLER);
  5109. /*if (millis() - load_filament_time > 2) {
  5110. load_filament_time = millis();
  5111. target[E_AXIS] += 0.001;
  5112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5113. }*/
  5114. //Filament inserted
  5115. //Feed the filament to the end of nozzle quickly
  5116. st_synchronize();
  5117. target[E_AXIS] += bowden_length[snmm_extruder];
  5118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5119. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5120. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5121. target[E_AXIS] += 40;
  5122. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5123. target[E_AXIS] += 10;
  5124. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5125. #else
  5126. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5128. #endif // SNMM
  5129. //Extrude some filament
  5130. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5132. //Wait for user to check the state
  5133. lcd_change_fil_state = 0;
  5134. lcd_loading_filament();
  5135. tone(BEEPER, 500);
  5136. delay_keep_alive(50);
  5137. noTone(BEEPER);
  5138. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5139. lcd_change_fil_state = 0;
  5140. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5141. lcd_alright();
  5142. KEEPALIVE_STATE(IN_HANDLER);
  5143. switch(lcd_change_fil_state){
  5144. // Filament failed to load so load it again
  5145. case 2:
  5146. #ifdef SNMM
  5147. display_loading();
  5148. do {
  5149. target[E_AXIS] += 0.002;
  5150. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5151. delay_keep_alive(2);
  5152. } while (!lcd_clicked());
  5153. st_synchronize();
  5154. target[E_AXIS] += bowden_length[snmm_extruder];
  5155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5156. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5158. target[E_AXIS] += 40;
  5159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5160. target[E_AXIS] += 10;
  5161. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5162. #else
  5163. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5165. #endif
  5166. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5167. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5168. lcd_loading_filament();
  5169. break;
  5170. // Filament loaded properly but color is not clear
  5171. case 3:
  5172. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5173. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5174. lcd_loading_color();
  5175. break;
  5176. // Everything good
  5177. default:
  5178. lcd_change_success();
  5179. lcd_update_enable(true);
  5180. break;
  5181. }
  5182. }
  5183. //Not let's go back to print
  5184. fanSpeed = fanSpeedBckp;
  5185. //Feed a little of filament to stabilize pressure
  5186. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5187. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5188. //Retract
  5189. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5190. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5191. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5192. //Move XY back
  5193. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5194. //Move Z back
  5195. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5196. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5197. //Unretract
  5198. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5199. //Set E position to original
  5200. plan_set_e_position(lastpos[E_AXIS]);
  5201. //Recover feed rate
  5202. feedmultiply=feedmultiplyBckp;
  5203. char cmd[9];
  5204. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5205. enquecommand(cmd);
  5206. lcd_setstatuspgm(WELCOME_MSG);
  5207. custom_message = false;
  5208. custom_message_type = 0;
  5209. #ifdef PAT9125
  5210. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5211. if (fsensor_M600)
  5212. {
  5213. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5214. st_synchronize();
  5215. while (!is_buffer_empty())
  5216. {
  5217. process_commands();
  5218. cmdqueue_pop_front();
  5219. }
  5220. fsensor_enable();
  5221. fsensor_restore_print_and_continue();
  5222. }
  5223. #endif //PAT9125
  5224. }
  5225. break;
  5226. #endif //FILAMENTCHANGEENABLE
  5227. case 601: {
  5228. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5229. }
  5230. break;
  5231. case 602: {
  5232. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5233. }
  5234. break;
  5235. #ifdef LIN_ADVANCE
  5236. case 900: // M900: Set LIN_ADVANCE options.
  5237. gcode_M900();
  5238. break;
  5239. #endif
  5240. case 907: // M907 Set digital trimpot motor current using axis codes.
  5241. {
  5242. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5243. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5244. if(code_seen('B')) digipot_current(4,code_value());
  5245. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5246. #endif
  5247. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5248. if(code_seen('X')) digipot_current(0, code_value());
  5249. #endif
  5250. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5251. if(code_seen('Z')) digipot_current(1, code_value());
  5252. #endif
  5253. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5254. if(code_seen('E')) digipot_current(2, code_value());
  5255. #endif
  5256. #ifdef DIGIPOT_I2C
  5257. // this one uses actual amps in floating point
  5258. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5259. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5260. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5261. #endif
  5262. }
  5263. break;
  5264. case 908: // M908 Control digital trimpot directly.
  5265. {
  5266. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5267. uint8_t channel,current;
  5268. if(code_seen('P')) channel=code_value();
  5269. if(code_seen('S')) current=code_value();
  5270. digitalPotWrite(channel, current);
  5271. #endif
  5272. }
  5273. break;
  5274. #ifdef TMC2130
  5275. case 910: // M910 TMC2130 init
  5276. {
  5277. tmc2130_init();
  5278. }
  5279. break;
  5280. case 911: // M911 Set TMC2130 holding currents
  5281. {
  5282. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5283. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5284. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5285. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5286. }
  5287. break;
  5288. case 912: // M912 Set TMC2130 running currents
  5289. {
  5290. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5291. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5292. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5293. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5294. }
  5295. break;
  5296. case 913: // M913 Print TMC2130 currents
  5297. {
  5298. tmc2130_print_currents();
  5299. }
  5300. break;
  5301. case 914: // M914 Set normal mode
  5302. {
  5303. tmc2130_mode = TMC2130_MODE_NORMAL;
  5304. tmc2130_init();
  5305. }
  5306. break;
  5307. case 915: // M915 Set silent mode
  5308. {
  5309. tmc2130_mode = TMC2130_MODE_SILENT;
  5310. tmc2130_init();
  5311. }
  5312. break;
  5313. case 916: // M916 Set sg_thrs
  5314. {
  5315. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5316. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5317. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5318. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5319. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5320. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5321. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5322. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5323. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5324. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5325. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5326. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5327. }
  5328. break;
  5329. case 917: // M917 Set TMC2130 pwm_ampl
  5330. {
  5331. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5332. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5333. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5334. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5335. }
  5336. break;
  5337. case 918: // M918 Set TMC2130 pwm_grad
  5338. {
  5339. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5340. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5341. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5342. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5343. }
  5344. break;
  5345. #endif //TMC2130
  5346. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5347. {
  5348. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5349. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5350. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5351. if(code_seen('B')) microstep_mode(4,code_value());
  5352. microstep_readings();
  5353. #endif
  5354. }
  5355. break;
  5356. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5357. {
  5358. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5359. if(code_seen('S')) switch((int)code_value())
  5360. {
  5361. case 1:
  5362. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5363. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5364. break;
  5365. case 2:
  5366. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5367. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5368. break;
  5369. }
  5370. microstep_readings();
  5371. #endif
  5372. }
  5373. break;
  5374. case 701: //M701: load filament
  5375. {
  5376. gcode_M701();
  5377. }
  5378. break;
  5379. case 702:
  5380. {
  5381. #ifdef SNMM
  5382. if (code_seen('U')) {
  5383. extr_unload_used(); //unload all filaments which were used in current print
  5384. }
  5385. else if (code_seen('C')) {
  5386. extr_unload(); //unload just current filament
  5387. }
  5388. else {
  5389. extr_unload_all(); //unload all filaments
  5390. }
  5391. #else
  5392. #ifdef PAT9125
  5393. bool old_fsensor_enabled = fsensor_enabled;
  5394. fsensor_enabled = false;
  5395. #endif //PAT9125
  5396. custom_message = true;
  5397. custom_message_type = 2;
  5398. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5399. // extr_unload2();
  5400. current_position[E_AXIS] -= 45;
  5401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5402. st_synchronize();
  5403. current_position[E_AXIS] -= 15;
  5404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5405. st_synchronize();
  5406. current_position[E_AXIS] -= 20;
  5407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5408. st_synchronize();
  5409. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5410. //disable extruder steppers so filament can be removed
  5411. disable_e0();
  5412. disable_e1();
  5413. disable_e2();
  5414. delay(100);
  5415. WRITE(BEEPER, HIGH);
  5416. uint8_t counterBeep = 0;
  5417. while (!lcd_clicked() && (counterBeep < 50)) {
  5418. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5419. delay_keep_alive(100);
  5420. counterBeep++;
  5421. }
  5422. WRITE(BEEPER, LOW);
  5423. st_synchronize();
  5424. while (lcd_clicked()) delay_keep_alive(100);
  5425. lcd_update_enable(true);
  5426. lcd_setstatuspgm(WELCOME_MSG);
  5427. custom_message = false;
  5428. custom_message_type = 0;
  5429. #ifdef PAT9125
  5430. fsensor_enabled = old_fsensor_enabled;
  5431. #endif //PAT9125
  5432. #endif
  5433. }
  5434. break;
  5435. case 999: // M999: Restart after being stopped
  5436. Stopped = false;
  5437. lcd_reset_alert_level();
  5438. gcode_LastN = Stopped_gcode_LastN;
  5439. FlushSerialRequestResend();
  5440. break;
  5441. default:
  5442. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5443. }
  5444. } // end if(code_seen('M')) (end of M codes)
  5445. else if(code_seen('T'))
  5446. {
  5447. int index;
  5448. st_synchronize();
  5449. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5450. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5451. SERIAL_ECHOLNPGM("Invalid T code.");
  5452. }
  5453. else {
  5454. if (*(strchr_pointer + index) == '?') {
  5455. tmp_extruder = choose_extruder_menu();
  5456. }
  5457. else {
  5458. tmp_extruder = code_value();
  5459. }
  5460. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5461. #ifdef SNMM
  5462. #ifdef LIN_ADVANCE
  5463. if (snmm_extruder != tmp_extruder)
  5464. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5465. #endif
  5466. snmm_extruder = tmp_extruder;
  5467. delay(100);
  5468. disable_e0();
  5469. disable_e1();
  5470. disable_e2();
  5471. pinMode(E_MUX0_PIN, OUTPUT);
  5472. pinMode(E_MUX1_PIN, OUTPUT);
  5473. pinMode(E_MUX2_PIN, OUTPUT);
  5474. delay(100);
  5475. SERIAL_ECHO_START;
  5476. SERIAL_ECHO("T:");
  5477. SERIAL_ECHOLN((int)tmp_extruder);
  5478. switch (tmp_extruder) {
  5479. case 1:
  5480. WRITE(E_MUX0_PIN, HIGH);
  5481. WRITE(E_MUX1_PIN, LOW);
  5482. WRITE(E_MUX2_PIN, LOW);
  5483. break;
  5484. case 2:
  5485. WRITE(E_MUX0_PIN, LOW);
  5486. WRITE(E_MUX1_PIN, HIGH);
  5487. WRITE(E_MUX2_PIN, LOW);
  5488. break;
  5489. case 3:
  5490. WRITE(E_MUX0_PIN, HIGH);
  5491. WRITE(E_MUX1_PIN, HIGH);
  5492. WRITE(E_MUX2_PIN, LOW);
  5493. break;
  5494. default:
  5495. WRITE(E_MUX0_PIN, LOW);
  5496. WRITE(E_MUX1_PIN, LOW);
  5497. WRITE(E_MUX2_PIN, LOW);
  5498. break;
  5499. }
  5500. delay(100);
  5501. #else
  5502. if (tmp_extruder >= EXTRUDERS) {
  5503. SERIAL_ECHO_START;
  5504. SERIAL_ECHOPGM("T");
  5505. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5506. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5507. }
  5508. else {
  5509. boolean make_move = false;
  5510. if (code_seen('F')) {
  5511. make_move = true;
  5512. next_feedrate = code_value();
  5513. if (next_feedrate > 0.0) {
  5514. feedrate = next_feedrate;
  5515. }
  5516. }
  5517. #if EXTRUDERS > 1
  5518. if (tmp_extruder != active_extruder) {
  5519. // Save current position to return to after applying extruder offset
  5520. memcpy(destination, current_position, sizeof(destination));
  5521. // Offset extruder (only by XY)
  5522. int i;
  5523. for (i = 0; i < 2; i++) {
  5524. current_position[i] = current_position[i] -
  5525. extruder_offset[i][active_extruder] +
  5526. extruder_offset[i][tmp_extruder];
  5527. }
  5528. // Set the new active extruder and position
  5529. active_extruder = tmp_extruder;
  5530. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5531. // Move to the old position if 'F' was in the parameters
  5532. if (make_move && Stopped == false) {
  5533. prepare_move();
  5534. }
  5535. }
  5536. #endif
  5537. SERIAL_ECHO_START;
  5538. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5539. SERIAL_PROTOCOLLN((int)active_extruder);
  5540. }
  5541. #endif
  5542. }
  5543. } // end if(code_seen('T')) (end of T codes)
  5544. #ifdef DEBUG_DCODES
  5545. else if (code_seen('D')) // D codes (debug)
  5546. {
  5547. switch((int)code_value())
  5548. {
  5549. case -1: // D-1 - Endless loop
  5550. dcode__1(); break;
  5551. case 0: // D0 - Reset
  5552. dcode_0(); break;
  5553. case 1: // D1 - Clear EEPROM
  5554. dcode_1(); break;
  5555. case 2: // D2 - Read/Write RAM
  5556. dcode_2(); break;
  5557. case 3: // D3 - Read/Write EEPROM
  5558. dcode_3(); break;
  5559. case 4: // D4 - Read/Write PIN
  5560. dcode_4(); break;
  5561. case 5: // D5 - Read/Write FLASH
  5562. // dcode_5(); break;
  5563. break;
  5564. case 6: // D6 - Read/Write external FLASH
  5565. dcode_6(); break;
  5566. case 7: // D7 - Read/Write Bootloader
  5567. dcode_7(); break;
  5568. case 8: // D8 - Read/Write PINDA
  5569. dcode_8(); break;
  5570. case 9: // D9 - Read/Write ADC
  5571. dcode_9(); break;
  5572. case 10: // D10 - XYZ calibration = OK
  5573. dcode_10(); break;
  5574. case 12: //D12 - Reset failstat counters
  5575. dcode_12(); break;
  5576. #ifdef TMC2130
  5577. case 2130: // D9125 - TMC2130
  5578. dcode_2130(); break;
  5579. #endif //TMC2130
  5580. #ifdef PAT9125
  5581. case 9125: // D9125 - PAT9125
  5582. dcode_9125(); break;
  5583. #endif //PAT9125
  5584. }
  5585. }
  5586. #endif //DEBUG_DCODES
  5587. else
  5588. {
  5589. SERIAL_ECHO_START;
  5590. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5591. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5592. SERIAL_ECHOLNPGM("\"(2)");
  5593. }
  5594. KEEPALIVE_STATE(NOT_BUSY);
  5595. ClearToSend();
  5596. }
  5597. void FlushSerialRequestResend()
  5598. {
  5599. //char cmdbuffer[bufindr][100]="Resend:";
  5600. MYSERIAL.flush();
  5601. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5602. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5603. previous_millis_cmd = millis();
  5604. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5605. }
  5606. // Confirm the execution of a command, if sent from a serial line.
  5607. // Execution of a command from a SD card will not be confirmed.
  5608. void ClearToSend()
  5609. {
  5610. previous_millis_cmd = millis();
  5611. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5612. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5613. }
  5614. void update_currents() {
  5615. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5616. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5617. float tmp_motor[3];
  5618. //SERIAL_ECHOLNPGM("Currents updated: ");
  5619. if (destination[Z_AXIS] < Z_SILENT) {
  5620. //SERIAL_ECHOLNPGM("LOW");
  5621. for (uint8_t i = 0; i < 3; i++) {
  5622. digipot_current(i, current_low[i]);
  5623. /*MYSERIAL.print(int(i));
  5624. SERIAL_ECHOPGM(": ");
  5625. MYSERIAL.println(current_low[i]);*/
  5626. }
  5627. }
  5628. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5629. //SERIAL_ECHOLNPGM("HIGH");
  5630. for (uint8_t i = 0; i < 3; i++) {
  5631. digipot_current(i, current_high[i]);
  5632. /*MYSERIAL.print(int(i));
  5633. SERIAL_ECHOPGM(": ");
  5634. MYSERIAL.println(current_high[i]);*/
  5635. }
  5636. }
  5637. else {
  5638. for (uint8_t i = 0; i < 3; i++) {
  5639. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5640. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5641. digipot_current(i, tmp_motor[i]);
  5642. /*MYSERIAL.print(int(i));
  5643. SERIAL_ECHOPGM(": ");
  5644. MYSERIAL.println(tmp_motor[i]);*/
  5645. }
  5646. }
  5647. }
  5648. void get_coordinates()
  5649. {
  5650. bool seen[4]={false,false,false,false};
  5651. for(int8_t i=0; i < NUM_AXIS; i++) {
  5652. if(code_seen(axis_codes[i]))
  5653. {
  5654. bool relative = axis_relative_modes[i] || relative_mode;
  5655. destination[i] = (float)code_value();
  5656. if (i == E_AXIS) {
  5657. float emult = extruder_multiplier[active_extruder];
  5658. if (emult != 1.) {
  5659. if (! relative) {
  5660. destination[i] -= current_position[i];
  5661. relative = true;
  5662. }
  5663. destination[i] *= emult;
  5664. }
  5665. }
  5666. if (relative)
  5667. destination[i] += current_position[i];
  5668. seen[i]=true;
  5669. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5670. }
  5671. else destination[i] = current_position[i]; //Are these else lines really needed?
  5672. }
  5673. if(code_seen('F')) {
  5674. next_feedrate = code_value();
  5675. #ifdef MAX_SILENT_FEEDRATE
  5676. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5677. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5678. #endif //MAX_SILENT_FEEDRATE
  5679. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5680. }
  5681. }
  5682. void get_arc_coordinates()
  5683. {
  5684. #ifdef SF_ARC_FIX
  5685. bool relative_mode_backup = relative_mode;
  5686. relative_mode = true;
  5687. #endif
  5688. get_coordinates();
  5689. #ifdef SF_ARC_FIX
  5690. relative_mode=relative_mode_backup;
  5691. #endif
  5692. if(code_seen('I')) {
  5693. offset[0] = code_value();
  5694. }
  5695. else {
  5696. offset[0] = 0.0;
  5697. }
  5698. if(code_seen('J')) {
  5699. offset[1] = code_value();
  5700. }
  5701. else {
  5702. offset[1] = 0.0;
  5703. }
  5704. }
  5705. void clamp_to_software_endstops(float target[3])
  5706. {
  5707. #ifdef DEBUG_DISABLE_SWLIMITS
  5708. return;
  5709. #endif //DEBUG_DISABLE_SWLIMITS
  5710. world2machine_clamp(target[0], target[1]);
  5711. // Clamp the Z coordinate.
  5712. if (min_software_endstops) {
  5713. float negative_z_offset = 0;
  5714. #ifdef ENABLE_AUTO_BED_LEVELING
  5715. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5716. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5717. #endif
  5718. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5719. }
  5720. if (max_software_endstops) {
  5721. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5722. }
  5723. }
  5724. #ifdef MESH_BED_LEVELING
  5725. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5726. float dx = x - current_position[X_AXIS];
  5727. float dy = y - current_position[Y_AXIS];
  5728. float dz = z - current_position[Z_AXIS];
  5729. int n_segments = 0;
  5730. if (mbl.active) {
  5731. float len = abs(dx) + abs(dy);
  5732. if (len > 0)
  5733. // Split to 3cm segments or shorter.
  5734. n_segments = int(ceil(len / 30.f));
  5735. }
  5736. if (n_segments > 1) {
  5737. float de = e - current_position[E_AXIS];
  5738. for (int i = 1; i < n_segments; ++ i) {
  5739. float t = float(i) / float(n_segments);
  5740. plan_buffer_line(
  5741. current_position[X_AXIS] + t * dx,
  5742. current_position[Y_AXIS] + t * dy,
  5743. current_position[Z_AXIS] + t * dz,
  5744. current_position[E_AXIS] + t * de,
  5745. feed_rate, extruder);
  5746. }
  5747. }
  5748. // The rest of the path.
  5749. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5750. current_position[X_AXIS] = x;
  5751. current_position[Y_AXIS] = y;
  5752. current_position[Z_AXIS] = z;
  5753. current_position[E_AXIS] = e;
  5754. }
  5755. #endif // MESH_BED_LEVELING
  5756. void prepare_move()
  5757. {
  5758. clamp_to_software_endstops(destination);
  5759. previous_millis_cmd = millis();
  5760. // Do not use feedmultiply for E or Z only moves
  5761. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5762. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5763. }
  5764. else {
  5765. #ifdef MESH_BED_LEVELING
  5766. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5767. #else
  5768. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5769. #endif
  5770. }
  5771. for(int8_t i=0; i < NUM_AXIS; i++) {
  5772. current_position[i] = destination[i];
  5773. }
  5774. }
  5775. void prepare_arc_move(char isclockwise) {
  5776. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5777. // Trace the arc
  5778. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5779. // As far as the parser is concerned, the position is now == target. In reality the
  5780. // motion control system might still be processing the action and the real tool position
  5781. // in any intermediate location.
  5782. for(int8_t i=0; i < NUM_AXIS; i++) {
  5783. current_position[i] = destination[i];
  5784. }
  5785. previous_millis_cmd = millis();
  5786. }
  5787. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5788. #if defined(FAN_PIN)
  5789. #if CONTROLLERFAN_PIN == FAN_PIN
  5790. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5791. #endif
  5792. #endif
  5793. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5794. unsigned long lastMotorCheck = 0;
  5795. void controllerFan()
  5796. {
  5797. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5798. {
  5799. lastMotorCheck = millis();
  5800. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5801. #if EXTRUDERS > 2
  5802. || !READ(E2_ENABLE_PIN)
  5803. #endif
  5804. #if EXTRUDER > 1
  5805. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5806. || !READ(X2_ENABLE_PIN)
  5807. #endif
  5808. || !READ(E1_ENABLE_PIN)
  5809. #endif
  5810. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5811. {
  5812. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5813. }
  5814. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5815. {
  5816. digitalWrite(CONTROLLERFAN_PIN, 0);
  5817. analogWrite(CONTROLLERFAN_PIN, 0);
  5818. }
  5819. else
  5820. {
  5821. // allows digital or PWM fan output to be used (see M42 handling)
  5822. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5823. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5824. }
  5825. }
  5826. }
  5827. #endif
  5828. #ifdef TEMP_STAT_LEDS
  5829. static bool blue_led = false;
  5830. static bool red_led = false;
  5831. static uint32_t stat_update = 0;
  5832. void handle_status_leds(void) {
  5833. float max_temp = 0.0;
  5834. if(millis() > stat_update) {
  5835. stat_update += 500; // Update every 0.5s
  5836. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5837. max_temp = max(max_temp, degHotend(cur_extruder));
  5838. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5839. }
  5840. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5841. max_temp = max(max_temp, degTargetBed());
  5842. max_temp = max(max_temp, degBed());
  5843. #endif
  5844. if((max_temp > 55.0) && (red_led == false)) {
  5845. digitalWrite(STAT_LED_RED, 1);
  5846. digitalWrite(STAT_LED_BLUE, 0);
  5847. red_led = true;
  5848. blue_led = false;
  5849. }
  5850. if((max_temp < 54.0) && (blue_led == false)) {
  5851. digitalWrite(STAT_LED_RED, 0);
  5852. digitalWrite(STAT_LED_BLUE, 1);
  5853. red_led = false;
  5854. blue_led = true;
  5855. }
  5856. }
  5857. }
  5858. #endif
  5859. #ifdef SAFETYTIMER
  5860. /**
  5861. * @brief Turn off heating after 15 minutes of inactivity
  5862. */
  5863. static void handleSafetyTimer()
  5864. {
  5865. static_assert(EXTRUDERS == 1,"Implemented only for one extruder.");
  5866. static Timer safetyTimer;
  5867. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  5868. (!degTargetBed() && !degTargetHotend(0)))
  5869. {
  5870. safetyTimer.stop();
  5871. }
  5872. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  5873. {
  5874. safetyTimer.start();
  5875. }
  5876. else if (safetyTimer.expired(15*60*1000))
  5877. {
  5878. setTargetBed(0);
  5879. setTargetHotend(0, 0);
  5880. }
  5881. }
  5882. #endif //SAFETYTIMER
  5883. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5884. {
  5885. #ifdef PAT9125
  5886. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5887. {
  5888. if (fsensor_autoload_enabled)
  5889. {
  5890. if (fsensor_check_autoload())
  5891. {
  5892. if (degHotend0() > EXTRUDE_MINTEMP)
  5893. {
  5894. fsensor_autoload_check_stop();
  5895. tone(BEEPER, 1000);
  5896. delay_keep_alive(50);
  5897. noTone(BEEPER);
  5898. loading_flag = true;
  5899. enquecommand_front_P((PSTR("M701")));
  5900. }
  5901. else
  5902. {
  5903. lcd_update_enable(false);
  5904. lcd_implementation_clear();
  5905. lcd.setCursor(0, 0);
  5906. lcd_printPGM(MSG_ERROR);
  5907. lcd.setCursor(0, 2);
  5908. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5909. delay(2000);
  5910. lcd_implementation_clear();
  5911. lcd_update_enable(true);
  5912. }
  5913. }
  5914. }
  5915. else
  5916. fsensor_autoload_check_start();
  5917. }
  5918. else
  5919. if (fsensor_autoload_enabled)
  5920. fsensor_autoload_check_stop();
  5921. #endif //PAT9125
  5922. #ifdef SAFETYTIMER
  5923. handleSafetyTimer();
  5924. #endif //SAFETYTIMER
  5925. #if defined(KILL_PIN) && KILL_PIN > -1
  5926. static int killCount = 0; // make the inactivity button a bit less responsive
  5927. const int KILL_DELAY = 10000;
  5928. #endif
  5929. if(buflen < (BUFSIZE-1)){
  5930. get_command();
  5931. }
  5932. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5933. if(max_inactive_time)
  5934. kill("", 4);
  5935. if(stepper_inactive_time) {
  5936. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5937. {
  5938. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5939. disable_x();
  5940. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5941. disable_y();
  5942. disable_z();
  5943. disable_e0();
  5944. disable_e1();
  5945. disable_e2();
  5946. }
  5947. }
  5948. }
  5949. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5950. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5951. {
  5952. chdkActive = false;
  5953. WRITE(CHDK, LOW);
  5954. }
  5955. #endif
  5956. #if defined(KILL_PIN) && KILL_PIN > -1
  5957. // Check if the kill button was pressed and wait just in case it was an accidental
  5958. // key kill key press
  5959. // -------------------------------------------------------------------------------
  5960. if( 0 == READ(KILL_PIN) )
  5961. {
  5962. killCount++;
  5963. }
  5964. else if (killCount > 0)
  5965. {
  5966. killCount--;
  5967. }
  5968. // Exceeded threshold and we can confirm that it was not accidental
  5969. // KILL the machine
  5970. // ----------------------------------------------------------------
  5971. if ( killCount >= KILL_DELAY)
  5972. {
  5973. kill("", 5);
  5974. }
  5975. #endif
  5976. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5977. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5978. #endif
  5979. #ifdef EXTRUDER_RUNOUT_PREVENT
  5980. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5981. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5982. {
  5983. bool oldstatus=READ(E0_ENABLE_PIN);
  5984. enable_e0();
  5985. float oldepos=current_position[E_AXIS];
  5986. float oldedes=destination[E_AXIS];
  5987. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5988. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5989. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5990. current_position[E_AXIS]=oldepos;
  5991. destination[E_AXIS]=oldedes;
  5992. plan_set_e_position(oldepos);
  5993. previous_millis_cmd=millis();
  5994. st_synchronize();
  5995. WRITE(E0_ENABLE_PIN,oldstatus);
  5996. }
  5997. #endif
  5998. #ifdef TEMP_STAT_LEDS
  5999. handle_status_leds();
  6000. #endif
  6001. check_axes_activity();
  6002. }
  6003. void kill(const char *full_screen_message, unsigned char id)
  6004. {
  6005. SERIAL_ECHOPGM("KILL: ");
  6006. MYSERIAL.println(int(id));
  6007. //return;
  6008. cli(); // Stop interrupts
  6009. disable_heater();
  6010. disable_x();
  6011. // SERIAL_ECHOLNPGM("kill - disable Y");
  6012. disable_y();
  6013. disable_z();
  6014. disable_e0();
  6015. disable_e1();
  6016. disable_e2();
  6017. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6018. pinMode(PS_ON_PIN,INPUT);
  6019. #endif
  6020. SERIAL_ERROR_START;
  6021. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6022. if (full_screen_message != NULL) {
  6023. SERIAL_ERRORLNRPGM(full_screen_message);
  6024. lcd_display_message_fullscreen_P(full_screen_message);
  6025. } else {
  6026. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6027. }
  6028. // FMC small patch to update the LCD before ending
  6029. sei(); // enable interrupts
  6030. for ( int i=5; i--; lcd_update())
  6031. {
  6032. delay(200);
  6033. }
  6034. cli(); // disable interrupts
  6035. suicide();
  6036. while(1)
  6037. {
  6038. #ifdef WATCHDOG
  6039. wdt_reset();
  6040. #endif //WATCHDOG
  6041. /* Intentionally left empty */
  6042. } // Wait for reset
  6043. }
  6044. void Stop()
  6045. {
  6046. disable_heater();
  6047. if(Stopped == false) {
  6048. Stopped = true;
  6049. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6050. SERIAL_ERROR_START;
  6051. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6052. LCD_MESSAGERPGM(MSG_STOPPED);
  6053. }
  6054. }
  6055. bool IsStopped() { return Stopped; };
  6056. #ifdef FAST_PWM_FAN
  6057. void setPwmFrequency(uint8_t pin, int val)
  6058. {
  6059. val &= 0x07;
  6060. switch(digitalPinToTimer(pin))
  6061. {
  6062. #if defined(TCCR0A)
  6063. case TIMER0A:
  6064. case TIMER0B:
  6065. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6066. // TCCR0B |= val;
  6067. break;
  6068. #endif
  6069. #if defined(TCCR1A)
  6070. case TIMER1A:
  6071. case TIMER1B:
  6072. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6073. // TCCR1B |= val;
  6074. break;
  6075. #endif
  6076. #if defined(TCCR2)
  6077. case TIMER2:
  6078. case TIMER2:
  6079. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6080. TCCR2 |= val;
  6081. break;
  6082. #endif
  6083. #if defined(TCCR2A)
  6084. case TIMER2A:
  6085. case TIMER2B:
  6086. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6087. TCCR2B |= val;
  6088. break;
  6089. #endif
  6090. #if defined(TCCR3A)
  6091. case TIMER3A:
  6092. case TIMER3B:
  6093. case TIMER3C:
  6094. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6095. TCCR3B |= val;
  6096. break;
  6097. #endif
  6098. #if defined(TCCR4A)
  6099. case TIMER4A:
  6100. case TIMER4B:
  6101. case TIMER4C:
  6102. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6103. TCCR4B |= val;
  6104. break;
  6105. #endif
  6106. #if defined(TCCR5A)
  6107. case TIMER5A:
  6108. case TIMER5B:
  6109. case TIMER5C:
  6110. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6111. TCCR5B |= val;
  6112. break;
  6113. #endif
  6114. }
  6115. }
  6116. #endif //FAST_PWM_FAN
  6117. bool setTargetedHotend(int code){
  6118. tmp_extruder = active_extruder;
  6119. if(code_seen('T')) {
  6120. tmp_extruder = code_value();
  6121. if(tmp_extruder >= EXTRUDERS) {
  6122. SERIAL_ECHO_START;
  6123. switch(code){
  6124. case 104:
  6125. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6126. break;
  6127. case 105:
  6128. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6129. break;
  6130. case 109:
  6131. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6132. break;
  6133. case 218:
  6134. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6135. break;
  6136. case 221:
  6137. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6138. break;
  6139. }
  6140. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6141. return true;
  6142. }
  6143. }
  6144. return false;
  6145. }
  6146. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6147. {
  6148. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6149. {
  6150. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6151. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6152. }
  6153. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6154. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6155. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6156. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6157. total_filament_used = 0;
  6158. }
  6159. float calculate_extruder_multiplier(float diameter) {
  6160. float out = 1.f;
  6161. if (volumetric_enabled && diameter > 0.f) {
  6162. float area = M_PI * diameter * diameter * 0.25;
  6163. out = 1.f / area;
  6164. }
  6165. if (extrudemultiply != 100)
  6166. out *= float(extrudemultiply) * 0.01f;
  6167. return out;
  6168. }
  6169. void calculate_extruder_multipliers() {
  6170. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6171. #if EXTRUDERS > 1
  6172. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6173. #if EXTRUDERS > 2
  6174. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6175. #endif
  6176. #endif
  6177. }
  6178. void delay_keep_alive(unsigned int ms)
  6179. {
  6180. for (;;) {
  6181. manage_heater();
  6182. // Manage inactivity, but don't disable steppers on timeout.
  6183. manage_inactivity(true);
  6184. lcd_update();
  6185. if (ms == 0)
  6186. break;
  6187. else if (ms >= 50) {
  6188. delay(50);
  6189. ms -= 50;
  6190. } else {
  6191. delay(ms);
  6192. ms = 0;
  6193. }
  6194. }
  6195. }
  6196. void wait_for_heater(long codenum) {
  6197. #ifdef TEMP_RESIDENCY_TIME
  6198. long residencyStart;
  6199. residencyStart = -1;
  6200. /* continue to loop until we have reached the target temp
  6201. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6202. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6203. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6204. #else
  6205. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6206. #endif //TEMP_RESIDENCY_TIME
  6207. if ((millis() - codenum) > 1000UL)
  6208. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6209. if (!farm_mode) {
  6210. SERIAL_PROTOCOLPGM("T:");
  6211. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6212. SERIAL_PROTOCOLPGM(" E:");
  6213. SERIAL_PROTOCOL((int)tmp_extruder);
  6214. #ifdef TEMP_RESIDENCY_TIME
  6215. SERIAL_PROTOCOLPGM(" W:");
  6216. if (residencyStart > -1)
  6217. {
  6218. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6219. SERIAL_PROTOCOLLN(codenum);
  6220. }
  6221. else
  6222. {
  6223. SERIAL_PROTOCOLLN("?");
  6224. }
  6225. }
  6226. #else
  6227. SERIAL_PROTOCOLLN("");
  6228. #endif
  6229. codenum = millis();
  6230. }
  6231. manage_heater();
  6232. manage_inactivity();
  6233. lcd_update();
  6234. #ifdef TEMP_RESIDENCY_TIME
  6235. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6236. or when current temp falls outside the hysteresis after target temp was reached */
  6237. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6238. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6239. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6240. {
  6241. residencyStart = millis();
  6242. }
  6243. #endif //TEMP_RESIDENCY_TIME
  6244. }
  6245. }
  6246. void check_babystep() {
  6247. int babystep_z;
  6248. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6249. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6250. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6251. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6252. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6253. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6254. lcd_update_enable(true);
  6255. }
  6256. }
  6257. #ifdef DIS
  6258. void d_setup()
  6259. {
  6260. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6261. pinMode(D_DATA, INPUT_PULLUP);
  6262. pinMode(D_REQUIRE, OUTPUT);
  6263. digitalWrite(D_REQUIRE, HIGH);
  6264. }
  6265. float d_ReadData()
  6266. {
  6267. int digit[13];
  6268. String mergeOutput;
  6269. float output;
  6270. digitalWrite(D_REQUIRE, HIGH);
  6271. for (int i = 0; i<13; i++)
  6272. {
  6273. for (int j = 0; j < 4; j++)
  6274. {
  6275. while (digitalRead(D_DATACLOCK) == LOW) {}
  6276. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6277. bitWrite(digit[i], j, digitalRead(D_DATA));
  6278. }
  6279. }
  6280. digitalWrite(D_REQUIRE, LOW);
  6281. mergeOutput = "";
  6282. output = 0;
  6283. for (int r = 5; r <= 10; r++) //Merge digits
  6284. {
  6285. mergeOutput += digit[r];
  6286. }
  6287. output = mergeOutput.toFloat();
  6288. if (digit[4] == 8) //Handle sign
  6289. {
  6290. output *= -1;
  6291. }
  6292. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6293. {
  6294. output /= 10;
  6295. }
  6296. return output;
  6297. }
  6298. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6299. int t1 = 0;
  6300. int t_delay = 0;
  6301. int digit[13];
  6302. int m;
  6303. char str[3];
  6304. //String mergeOutput;
  6305. char mergeOutput[15];
  6306. float output;
  6307. int mesh_point = 0; //index number of calibration point
  6308. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6309. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6310. float mesh_home_z_search = 4;
  6311. float row[x_points_num];
  6312. int ix = 0;
  6313. int iy = 0;
  6314. char* filename_wldsd = "wldsd.txt";
  6315. char data_wldsd[70];
  6316. char numb_wldsd[10];
  6317. d_setup();
  6318. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6319. // We don't know where we are! HOME!
  6320. // Push the commands to the front of the message queue in the reverse order!
  6321. // There shall be always enough space reserved for these commands.
  6322. repeatcommand_front(); // repeat G80 with all its parameters
  6323. enquecommand_front_P((PSTR("G28 W0")));
  6324. enquecommand_front_P((PSTR("G1 Z5")));
  6325. return;
  6326. }
  6327. bool custom_message_old = custom_message;
  6328. unsigned int custom_message_type_old = custom_message_type;
  6329. unsigned int custom_message_state_old = custom_message_state;
  6330. custom_message = true;
  6331. custom_message_type = 1;
  6332. custom_message_state = (x_points_num * y_points_num) + 10;
  6333. lcd_update(1);
  6334. mbl.reset();
  6335. babystep_undo();
  6336. card.openFile(filename_wldsd, false);
  6337. current_position[Z_AXIS] = mesh_home_z_search;
  6338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6339. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6340. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6341. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6342. setup_for_endstop_move(false);
  6343. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6344. SERIAL_PROTOCOL(x_points_num);
  6345. SERIAL_PROTOCOLPGM(",");
  6346. SERIAL_PROTOCOL(y_points_num);
  6347. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6348. SERIAL_PROTOCOL(mesh_home_z_search);
  6349. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6350. SERIAL_PROTOCOL(x_dimension);
  6351. SERIAL_PROTOCOLPGM(",");
  6352. SERIAL_PROTOCOL(y_dimension);
  6353. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6354. while (mesh_point != x_points_num * y_points_num) {
  6355. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6356. iy = mesh_point / x_points_num;
  6357. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6358. float z0 = 0.f;
  6359. current_position[Z_AXIS] = mesh_home_z_search;
  6360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6361. st_synchronize();
  6362. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6363. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6365. st_synchronize();
  6366. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6367. break;
  6368. card.closefile();
  6369. }
  6370. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6371. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6372. //strcat(data_wldsd, numb_wldsd);
  6373. //MYSERIAL.println(data_wldsd);
  6374. //delay(1000);
  6375. //delay(3000);
  6376. //t1 = millis();
  6377. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6378. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6379. memset(digit, 0, sizeof(digit));
  6380. //cli();
  6381. digitalWrite(D_REQUIRE, LOW);
  6382. for (int i = 0; i<13; i++)
  6383. {
  6384. //t1 = millis();
  6385. for (int j = 0; j < 4; j++)
  6386. {
  6387. while (digitalRead(D_DATACLOCK) == LOW) {}
  6388. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6389. bitWrite(digit[i], j, digitalRead(D_DATA));
  6390. }
  6391. //t_delay = (millis() - t1);
  6392. //SERIAL_PROTOCOLPGM(" ");
  6393. //SERIAL_PROTOCOL_F(t_delay, 5);
  6394. //SERIAL_PROTOCOLPGM(" ");
  6395. }
  6396. //sei();
  6397. digitalWrite(D_REQUIRE, HIGH);
  6398. mergeOutput[0] = '\0';
  6399. output = 0;
  6400. for (int r = 5; r <= 10; r++) //Merge digits
  6401. {
  6402. sprintf(str, "%d", digit[r]);
  6403. strcat(mergeOutput, str);
  6404. }
  6405. output = atof(mergeOutput);
  6406. if (digit[4] == 8) //Handle sign
  6407. {
  6408. output *= -1;
  6409. }
  6410. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6411. {
  6412. output *= 0.1;
  6413. }
  6414. //output = d_ReadData();
  6415. //row[ix] = current_position[Z_AXIS];
  6416. memset(data_wldsd, 0, sizeof(data_wldsd));
  6417. for (int i = 0; i <3; i++) {
  6418. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6419. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6420. strcat(data_wldsd, numb_wldsd);
  6421. strcat(data_wldsd, ";");
  6422. }
  6423. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6424. dtostrf(output, 8, 5, numb_wldsd);
  6425. strcat(data_wldsd, numb_wldsd);
  6426. //strcat(data_wldsd, ";");
  6427. card.write_command(data_wldsd);
  6428. //row[ix] = d_ReadData();
  6429. row[ix] = output; // current_position[Z_AXIS];
  6430. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6431. for (int i = 0; i < x_points_num; i++) {
  6432. SERIAL_PROTOCOLPGM(" ");
  6433. SERIAL_PROTOCOL_F(row[i], 5);
  6434. }
  6435. SERIAL_PROTOCOLPGM("\n");
  6436. }
  6437. custom_message_state--;
  6438. mesh_point++;
  6439. lcd_update(1);
  6440. }
  6441. card.closefile();
  6442. }
  6443. #endif
  6444. void temp_compensation_start() {
  6445. custom_message = true;
  6446. custom_message_type = 5;
  6447. custom_message_state = PINDA_HEAT_T + 1;
  6448. lcd_update(2);
  6449. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6450. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6451. }
  6452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6453. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6454. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6455. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6457. st_synchronize();
  6458. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6459. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6460. delay_keep_alive(1000);
  6461. custom_message_state = PINDA_HEAT_T - i;
  6462. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6463. else lcd_update(1);
  6464. }
  6465. custom_message_type = 0;
  6466. custom_message_state = 0;
  6467. custom_message = false;
  6468. }
  6469. void temp_compensation_apply() {
  6470. int i_add;
  6471. int compensation_value;
  6472. int z_shift = 0;
  6473. float z_shift_mm;
  6474. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6475. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6476. i_add = (target_temperature_bed - 60) / 10;
  6477. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6478. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6479. }else {
  6480. //interpolation
  6481. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6482. }
  6483. SERIAL_PROTOCOLPGM("\n");
  6484. SERIAL_PROTOCOLPGM("Z shift applied:");
  6485. MYSERIAL.print(z_shift_mm);
  6486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6487. st_synchronize();
  6488. plan_set_z_position(current_position[Z_AXIS]);
  6489. }
  6490. else {
  6491. //we have no temp compensation data
  6492. }
  6493. }
  6494. float temp_comp_interpolation(float inp_temperature) {
  6495. //cubic spline interpolation
  6496. int n, i, j, k;
  6497. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6498. int shift[10];
  6499. int temp_C[10];
  6500. n = 6; //number of measured points
  6501. shift[0] = 0;
  6502. for (i = 0; i < n; i++) {
  6503. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6504. temp_C[i] = 50 + i * 10; //temperature in C
  6505. #ifdef PINDA_THERMISTOR
  6506. temp_C[i] = 35 + i * 5; //temperature in C
  6507. #else
  6508. temp_C[i] = 50 + i * 10; //temperature in C
  6509. #endif
  6510. x[i] = (float)temp_C[i];
  6511. f[i] = (float)shift[i];
  6512. }
  6513. if (inp_temperature < x[0]) return 0;
  6514. for (i = n - 1; i>0; i--) {
  6515. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6516. h[i - 1] = x[i] - x[i - 1];
  6517. }
  6518. //*********** formation of h, s , f matrix **************
  6519. for (i = 1; i<n - 1; i++) {
  6520. m[i][i] = 2 * (h[i - 1] + h[i]);
  6521. if (i != 1) {
  6522. m[i][i - 1] = h[i - 1];
  6523. m[i - 1][i] = h[i - 1];
  6524. }
  6525. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6526. }
  6527. //*********** forward elimination **************
  6528. for (i = 1; i<n - 2; i++) {
  6529. temp = (m[i + 1][i] / m[i][i]);
  6530. for (j = 1; j <= n - 1; j++)
  6531. m[i + 1][j] -= temp*m[i][j];
  6532. }
  6533. //*********** backward substitution *********
  6534. for (i = n - 2; i>0; i--) {
  6535. sum = 0;
  6536. for (j = i; j <= n - 2; j++)
  6537. sum += m[i][j] * s[j];
  6538. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6539. }
  6540. for (i = 0; i<n - 1; i++)
  6541. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6542. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6543. b = s[i] / 2;
  6544. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6545. d = f[i];
  6546. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6547. }
  6548. return sum;
  6549. }
  6550. #ifdef PINDA_THERMISTOR
  6551. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6552. {
  6553. if (!temp_cal_active) return 0;
  6554. if (!calibration_status_pinda()) return 0;
  6555. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6556. }
  6557. #endif //PINDA_THERMISTOR
  6558. void long_pause() //long pause print
  6559. {
  6560. st_synchronize();
  6561. //save currently set parameters to global variables
  6562. saved_feedmultiply = feedmultiply;
  6563. HotendTempBckp = degTargetHotend(active_extruder);
  6564. fanSpeedBckp = fanSpeed;
  6565. start_pause_print = millis();
  6566. //save position
  6567. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6568. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6569. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6570. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6571. //retract
  6572. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6574. //lift z
  6575. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6576. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6578. //set nozzle target temperature to 0
  6579. setTargetHotend(0, 0);
  6580. setTargetHotend(0, 1);
  6581. setTargetHotend(0, 2);
  6582. //Move XY to side
  6583. current_position[X_AXIS] = X_PAUSE_POS;
  6584. current_position[Y_AXIS] = Y_PAUSE_POS;
  6585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6586. // Turn off the print fan
  6587. fanSpeed = 0;
  6588. st_synchronize();
  6589. }
  6590. void serialecho_temperatures() {
  6591. float tt = degHotend(active_extruder);
  6592. SERIAL_PROTOCOLPGM("T:");
  6593. SERIAL_PROTOCOL(tt);
  6594. SERIAL_PROTOCOLPGM(" E:");
  6595. SERIAL_PROTOCOL((int)active_extruder);
  6596. SERIAL_PROTOCOLPGM(" B:");
  6597. SERIAL_PROTOCOL_F(degBed(), 1);
  6598. SERIAL_PROTOCOLLN("");
  6599. }
  6600. extern uint32_t sdpos_atomic;
  6601. #ifdef UVLO_SUPPORT
  6602. void uvlo_()
  6603. {
  6604. unsigned long time_start = millis();
  6605. bool sd_print = card.sdprinting;
  6606. // Conserve power as soon as possible.
  6607. disable_x();
  6608. disable_y();
  6609. disable_e0();
  6610. #ifdef TMC2130
  6611. tmc2130_set_current_h(Z_AXIS, 20);
  6612. tmc2130_set_current_r(Z_AXIS, 20);
  6613. tmc2130_set_current_h(E_AXIS, 20);
  6614. tmc2130_set_current_r(E_AXIS, 20);
  6615. #endif //TMC2130
  6616. // Indicate that the interrupt has been triggered.
  6617. // SERIAL_ECHOLNPGM("UVLO");
  6618. // Read out the current Z motor microstep counter. This will be later used
  6619. // for reaching the zero full step before powering off.
  6620. uint16_t z_microsteps = 0;
  6621. #ifdef TMC2130
  6622. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6623. #endif //TMC2130
  6624. // Calculate the file position, from which to resume this print.
  6625. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6626. {
  6627. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6628. sd_position -= sdlen_planner;
  6629. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6630. sd_position -= sdlen_cmdqueue;
  6631. if (sd_position < 0) sd_position = 0;
  6632. }
  6633. // Backup the feedrate in mm/min.
  6634. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6635. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6636. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6637. // are in action.
  6638. planner_abort_hard();
  6639. // Store the current extruder position.
  6640. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6641. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6642. // Clean the input command queue.
  6643. cmdqueue_reset();
  6644. card.sdprinting = false;
  6645. // card.closefile();
  6646. // Enable stepper driver interrupt to move Z axis.
  6647. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6648. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6649. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6650. sei();
  6651. plan_buffer_line(
  6652. current_position[X_AXIS],
  6653. current_position[Y_AXIS],
  6654. current_position[Z_AXIS],
  6655. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6656. 95, active_extruder);
  6657. st_synchronize();
  6658. disable_e0();
  6659. plan_buffer_line(
  6660. current_position[X_AXIS],
  6661. current_position[Y_AXIS],
  6662. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6663. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6664. 40, active_extruder);
  6665. st_synchronize();
  6666. disable_e0();
  6667. plan_buffer_line(
  6668. current_position[X_AXIS],
  6669. current_position[Y_AXIS],
  6670. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6671. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6672. 40, active_extruder);
  6673. st_synchronize();
  6674. disable_e0();
  6675. disable_z();
  6676. // Move Z up to the next 0th full step.
  6677. // Write the file position.
  6678. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6679. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6680. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6681. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6682. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6683. // Scale the z value to 1u resolution.
  6684. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6685. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6686. }
  6687. // Read out the current Z motor microstep counter. This will be later used
  6688. // for reaching the zero full step before powering off.
  6689. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6690. // Store the current position.
  6691. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6692. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6693. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6694. // Store the current feed rate, temperatures and fan speed.
  6695. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6696. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6697. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6698. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6699. // Finaly store the "power outage" flag.
  6700. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6701. st_synchronize();
  6702. SERIAL_ECHOPGM("stps");
  6703. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6704. disable_z();
  6705. // Increment power failure counter
  6706. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6707. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6708. SERIAL_ECHOLNPGM("UVLO - end");
  6709. MYSERIAL.println(millis() - time_start);
  6710. #if 0
  6711. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6712. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6714. st_synchronize();
  6715. #endif
  6716. cli();
  6717. volatile unsigned int ppcount = 0;
  6718. SET_OUTPUT(BEEPER);
  6719. WRITE(BEEPER, HIGH);
  6720. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6721. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6722. }
  6723. WRITE(BEEPER, LOW);
  6724. while(1){
  6725. #if 1
  6726. WRITE(BEEPER, LOW);
  6727. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6728. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6729. }
  6730. #endif
  6731. };
  6732. }
  6733. #endif //UVLO_SUPPORT
  6734. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6735. void setup_fan_interrupt() {
  6736. //INT7
  6737. DDRE &= ~(1 << 7); //input pin
  6738. PORTE &= ~(1 << 7); //no internal pull-up
  6739. //start with sensing rising edge
  6740. EICRB &= ~(1 << 6);
  6741. EICRB |= (1 << 7);
  6742. //enable INT7 interrupt
  6743. EIMSK |= (1 << 7);
  6744. }
  6745. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6746. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6747. ISR(INT7_vect) {
  6748. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6749. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6750. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6751. t_fan_rising_edge = millis_nc();
  6752. }
  6753. else { //interrupt was triggered by falling edge
  6754. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6755. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6756. }
  6757. }
  6758. EICRB ^= (1 << 6); //change edge
  6759. }
  6760. #endif
  6761. #ifdef UVLO_SUPPORT
  6762. void setup_uvlo_interrupt() {
  6763. DDRE &= ~(1 << 4); //input pin
  6764. PORTE &= ~(1 << 4); //no internal pull-up
  6765. //sensing falling edge
  6766. EICRB |= (1 << 0);
  6767. EICRB &= ~(1 << 1);
  6768. //enable INT4 interrupt
  6769. EIMSK |= (1 << 4);
  6770. }
  6771. ISR(INT4_vect) {
  6772. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6773. SERIAL_ECHOLNPGM("INT4");
  6774. if (IS_SD_PRINTING) uvlo_();
  6775. }
  6776. void recover_print(uint8_t automatic) {
  6777. char cmd[30];
  6778. lcd_update_enable(true);
  6779. lcd_update(2);
  6780. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6781. recover_machine_state_after_power_panic();
  6782. // Set the target bed and nozzle temperatures.
  6783. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6784. enquecommand(cmd);
  6785. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6786. enquecommand(cmd);
  6787. // Lift the print head, so one may remove the excess priming material.
  6788. if (current_position[Z_AXIS] < 25)
  6789. enquecommand_P(PSTR("G1 Z25 F800"));
  6790. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6791. enquecommand_P(PSTR("G28 X Y"));
  6792. // Set the target bed and nozzle temperatures and wait.
  6793. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6794. enquecommand(cmd);
  6795. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6796. enquecommand(cmd);
  6797. enquecommand_P(PSTR("M83")); //E axis relative mode
  6798. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6799. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6800. if(automatic == 0){
  6801. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6802. }
  6803. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6804. // Mark the power panic status as inactive.
  6805. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6806. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6807. delay_keep_alive(1000);
  6808. }*/
  6809. SERIAL_ECHOPGM("After waiting for temp:");
  6810. SERIAL_ECHOPGM("Current position X_AXIS:");
  6811. MYSERIAL.println(current_position[X_AXIS]);
  6812. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6813. MYSERIAL.println(current_position[Y_AXIS]);
  6814. // Restart the print.
  6815. restore_print_from_eeprom();
  6816. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6817. MYSERIAL.print(current_position[Z_AXIS]);
  6818. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6819. MYSERIAL.print(current_position[E_AXIS]);
  6820. }
  6821. void recover_machine_state_after_power_panic()
  6822. {
  6823. char cmd[30];
  6824. // 1) Recover the logical cordinates at the time of the power panic.
  6825. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6826. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6827. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6828. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6829. // The current position after power panic is moved to the next closest 0th full step.
  6830. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6831. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6832. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6833. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6834. sprintf_P(cmd, PSTR("G92 E"));
  6835. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6836. enquecommand(cmd);
  6837. }
  6838. memcpy(destination, current_position, sizeof(destination));
  6839. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6840. print_world_coordinates();
  6841. // 2) Initialize the logical to physical coordinate system transformation.
  6842. world2machine_initialize();
  6843. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6844. mbl.active = false;
  6845. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6846. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6847. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6848. // Scale the z value to 10u resolution.
  6849. int16_t v;
  6850. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6851. if (v != 0)
  6852. mbl.active = true;
  6853. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6854. }
  6855. if (mbl.active)
  6856. mbl.upsample_3x3();
  6857. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6858. // print_mesh_bed_leveling_table();
  6859. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6860. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6861. babystep_load();
  6862. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6864. // 6) Power up the motors, mark their positions as known.
  6865. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6866. axis_known_position[X_AXIS] = true; enable_x();
  6867. axis_known_position[Y_AXIS] = true; enable_y();
  6868. axis_known_position[Z_AXIS] = true; enable_z();
  6869. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6870. print_physical_coordinates();
  6871. // 7) Recover the target temperatures.
  6872. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6873. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6874. }
  6875. void restore_print_from_eeprom() {
  6876. float x_rec, y_rec, z_pos;
  6877. int feedrate_rec;
  6878. uint8_t fan_speed_rec;
  6879. char cmd[30];
  6880. char* c;
  6881. char filename[13];
  6882. uint8_t depth = 0;
  6883. char dir_name[9];
  6884. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6885. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6886. SERIAL_ECHOPGM("Feedrate:");
  6887. MYSERIAL.println(feedrate_rec);
  6888. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6889. MYSERIAL.println(int(depth));
  6890. for (int i = 0; i < depth; i++) {
  6891. for (int j = 0; j < 8; j++) {
  6892. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6893. }
  6894. dir_name[8] = '\0';
  6895. MYSERIAL.println(dir_name);
  6896. card.chdir(dir_name);
  6897. }
  6898. for (int i = 0; i < 8; i++) {
  6899. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6900. }
  6901. filename[8] = '\0';
  6902. MYSERIAL.print(filename);
  6903. strcat_P(filename, PSTR(".gco"));
  6904. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6905. for (c = &cmd[4]; *c; c++)
  6906. *c = tolower(*c);
  6907. enquecommand(cmd);
  6908. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6909. SERIAL_ECHOPGM("Position read from eeprom:");
  6910. MYSERIAL.println(position);
  6911. // E axis relative mode.
  6912. enquecommand_P(PSTR("M83"));
  6913. // Move to the XY print position in logical coordinates, where the print has been killed.
  6914. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6915. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6916. strcat_P(cmd, PSTR(" F2000"));
  6917. enquecommand(cmd);
  6918. // Move the Z axis down to the print, in logical coordinates.
  6919. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6920. enquecommand(cmd);
  6921. // Unretract.
  6922. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6923. // Set the feedrate saved at the power panic.
  6924. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6925. enquecommand(cmd);
  6926. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6927. {
  6928. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6929. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6930. }
  6931. // Set the fan speed saved at the power panic.
  6932. strcpy_P(cmd, PSTR("M106 S"));
  6933. strcat(cmd, itostr3(int(fan_speed_rec)));
  6934. enquecommand(cmd);
  6935. // Set a position in the file.
  6936. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6937. enquecommand(cmd);
  6938. // Start SD print.
  6939. enquecommand_P(PSTR("M24"));
  6940. }
  6941. #endif //UVLO_SUPPORT
  6942. ////////////////////////////////////////////////////////////////////////////////
  6943. // new save/restore printing
  6944. //extern uint32_t sdpos_atomic;
  6945. bool saved_printing = false;
  6946. uint32_t saved_sdpos = 0;
  6947. float saved_pos[4] = {0, 0, 0, 0};
  6948. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6949. float saved_feedrate2 = 0;
  6950. uint8_t saved_active_extruder = 0;
  6951. bool saved_extruder_under_pressure = false;
  6952. void stop_and_save_print_to_ram(float z_move, float e_move)
  6953. {
  6954. if (saved_printing) return;
  6955. cli();
  6956. unsigned char nplanner_blocks = number_of_blocks();
  6957. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6958. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6959. saved_sdpos -= sdlen_planner;
  6960. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6961. saved_sdpos -= sdlen_cmdqueue;
  6962. #if 0
  6963. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6964. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6965. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6966. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6967. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6968. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6969. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6970. {
  6971. card.setIndex(saved_sdpos);
  6972. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6973. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6974. MYSERIAL.print(char(card.get()));
  6975. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6976. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6977. MYSERIAL.print(char(card.get()));
  6978. SERIAL_ECHOLNPGM("End of command buffer");
  6979. }
  6980. {
  6981. // Print the content of the planner buffer, line by line:
  6982. card.setIndex(saved_sdpos);
  6983. int8_t iline = 0;
  6984. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6985. SERIAL_ECHOPGM("Planner line (from file): ");
  6986. MYSERIAL.print(int(iline), DEC);
  6987. SERIAL_ECHOPGM(", length: ");
  6988. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6989. SERIAL_ECHOPGM(", steps: (");
  6990. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6991. SERIAL_ECHOPGM(",");
  6992. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6993. SERIAL_ECHOPGM(",");
  6994. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6995. SERIAL_ECHOPGM(",");
  6996. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6997. SERIAL_ECHOPGM("), events: ");
  6998. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6999. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7000. MYSERIAL.print(char(card.get()));
  7001. }
  7002. }
  7003. {
  7004. // Print the content of the command buffer, line by line:
  7005. int8_t iline = 0;
  7006. union {
  7007. struct {
  7008. char lo;
  7009. char hi;
  7010. } lohi;
  7011. uint16_t value;
  7012. } sdlen_single;
  7013. int _bufindr = bufindr;
  7014. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7015. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7016. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7017. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7018. }
  7019. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7020. MYSERIAL.print(int(iline), DEC);
  7021. SERIAL_ECHOPGM(", type: ");
  7022. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7023. SERIAL_ECHOPGM(", len: ");
  7024. MYSERIAL.println(sdlen_single.value, DEC);
  7025. // Print the content of the buffer line.
  7026. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7027. SERIAL_ECHOPGM("Buffer line (from file): ");
  7028. MYSERIAL.print(int(iline), DEC);
  7029. MYSERIAL.println(int(iline), DEC);
  7030. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7031. MYSERIAL.print(char(card.get()));
  7032. if (-- _buflen == 0)
  7033. break;
  7034. // First skip the current command ID and iterate up to the end of the string.
  7035. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7036. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7037. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7038. // If the end of the buffer was empty,
  7039. if (_bufindr == sizeof(cmdbuffer)) {
  7040. // skip to the start and find the nonzero command.
  7041. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7042. }
  7043. }
  7044. }
  7045. #endif
  7046. #if 0
  7047. saved_feedrate2 = feedrate; //save feedrate
  7048. #else
  7049. // Try to deduce the feedrate from the first block of the planner.
  7050. // Speed is in mm/min.
  7051. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7052. #endif
  7053. planner_abort_hard(); //abort printing
  7054. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7055. saved_active_extruder = active_extruder; //save active_extruder
  7056. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7057. cmdqueue_reset(); //empty cmdqueue
  7058. card.sdprinting = false;
  7059. // card.closefile();
  7060. saved_printing = true;
  7061. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7062. st_reset_timer();
  7063. sei();
  7064. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7065. #if 1
  7066. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7067. char buf[48];
  7068. strcpy_P(buf, PSTR("G1 Z"));
  7069. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7070. strcat_P(buf, PSTR(" E"));
  7071. // Relative extrusion
  7072. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7073. strcat_P(buf, PSTR(" F"));
  7074. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7075. // At this point the command queue is empty.
  7076. enquecommand(buf, false);
  7077. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7078. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7079. repeatcommand_front();
  7080. #else
  7081. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7082. st_synchronize(); //wait moving
  7083. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7084. memcpy(destination, current_position, sizeof(destination));
  7085. #endif
  7086. }
  7087. }
  7088. void restore_print_from_ram_and_continue(float e_move)
  7089. {
  7090. if (!saved_printing) return;
  7091. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7092. // current_position[axis] = st_get_position_mm(axis);
  7093. active_extruder = saved_active_extruder; //restore active_extruder
  7094. feedrate = saved_feedrate2; //restore feedrate
  7095. float e = saved_pos[E_AXIS] - e_move;
  7096. plan_set_e_position(e);
  7097. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7098. st_synchronize();
  7099. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7100. memcpy(destination, current_position, sizeof(destination));
  7101. card.setIndex(saved_sdpos);
  7102. sdpos_atomic = saved_sdpos;
  7103. card.sdprinting = true;
  7104. saved_printing = false;
  7105. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7106. }
  7107. void print_world_coordinates()
  7108. {
  7109. SERIAL_ECHOPGM("world coordinates: (");
  7110. MYSERIAL.print(current_position[X_AXIS], 3);
  7111. SERIAL_ECHOPGM(", ");
  7112. MYSERIAL.print(current_position[Y_AXIS], 3);
  7113. SERIAL_ECHOPGM(", ");
  7114. MYSERIAL.print(current_position[Z_AXIS], 3);
  7115. SERIAL_ECHOLNPGM(")");
  7116. }
  7117. void print_physical_coordinates()
  7118. {
  7119. SERIAL_ECHOPGM("physical coordinates: (");
  7120. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7121. SERIAL_ECHOPGM(", ");
  7122. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7123. SERIAL_ECHOPGM(", ");
  7124. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7125. SERIAL_ECHOLNPGM(")");
  7126. }
  7127. void print_mesh_bed_leveling_table()
  7128. {
  7129. SERIAL_ECHOPGM("mesh bed leveling: ");
  7130. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7131. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7132. MYSERIAL.print(mbl.z_values[y][x], 3);
  7133. SERIAL_ECHOPGM(" ");
  7134. }
  7135. SERIAL_ECHOLNPGM("");
  7136. }
  7137. #define FIL_LOAD_LENGTH 60
  7138. void extr_unload2() { //unloads filament
  7139. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7140. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7141. // int8_t SilentMode;
  7142. uint8_t snmm_extruder = 0;
  7143. if (degHotend0() > EXTRUDE_MINTEMP) {
  7144. lcd_implementation_clear();
  7145. lcd_display_message_fullscreen_P(PSTR(""));
  7146. max_feedrate[E_AXIS] = 50;
  7147. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7148. // lcd.print(" ");
  7149. // lcd.print(snmm_extruder + 1);
  7150. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7151. if (current_position[Z_AXIS] < 15) {
  7152. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7154. }
  7155. current_position[E_AXIS] += 10; //extrusion
  7156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7157. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7158. if (current_temperature[0] < 230) { //PLA & all other filaments
  7159. current_position[E_AXIS] += 5.4;
  7160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7161. current_position[E_AXIS] += 3.2;
  7162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7163. current_position[E_AXIS] += 3;
  7164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7165. }
  7166. else { //ABS
  7167. current_position[E_AXIS] += 3.1;
  7168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7169. current_position[E_AXIS] += 3.1;
  7170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7171. current_position[E_AXIS] += 4;
  7172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7173. /*current_position[X_AXIS] += 23; //delay
  7174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7175. current_position[X_AXIS] -= 23; //delay
  7176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7177. delay_keep_alive(4700);
  7178. }
  7179. max_feedrate[E_AXIS] = 80;
  7180. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7182. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7184. st_synchronize();
  7185. //digipot_init();
  7186. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7187. // else digipot_current(2, tmp_motor_loud[2]);
  7188. lcd_update_enable(true);
  7189. // lcd_return_to_status();
  7190. max_feedrate[E_AXIS] = 50;
  7191. }
  7192. else {
  7193. lcd_implementation_clear();
  7194. lcd.setCursor(0, 0);
  7195. lcd_printPGM(MSG_ERROR);
  7196. lcd.setCursor(0, 2);
  7197. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7198. delay(2000);
  7199. lcd_implementation_clear();
  7200. }
  7201. // lcd_return_to_status();
  7202. }