temperature.cpp 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. int current_temperature_raw_pinda = 0 ;
  43. float current_temperature_pinda = 0.0;
  44. #endif //PINDA_THERMISTOR
  45. #ifdef AMBIENT_THERMISTOR
  46. int current_temperature_raw_ambient = 0 ;
  47. float current_temperature_ambient = 0.0;
  48. #endif //AMBIENT_THERMISTOR
  49. #ifdef VOLT_PWR_PIN
  50. int current_voltage_raw_pwr = 0;
  51. #endif
  52. #ifdef VOLT_BED_PIN
  53. int current_voltage_raw_bed = 0;
  54. #endif
  55. int current_temperature_bed_raw = 0;
  56. float current_temperature_bed = 0.0;
  57. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  58. int redundant_temperature_raw = 0;
  59. float redundant_temperature = 0.0;
  60. #endif
  61. #ifdef PIDTEMP
  62. float _Kp, _Ki, _Kd;
  63. int pid_cycle, pid_number_of_cycles;
  64. bool pid_tuning_finished = false;
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef FAN_SOFT_PWM
  70. unsigned char fanSpeedSoftPwm;
  71. #endif
  72. unsigned char soft_pwm_bed;
  73. #ifdef BABYSTEPPING
  74. volatile int babystepsTodo[3]={0,0,0};
  75. #endif
  76. //===========================================================================
  77. //=============================private variables============================
  78. //===========================================================================
  79. static volatile bool temp_meas_ready = false;
  80. #ifdef PIDTEMP
  81. //static cannot be external:
  82. static float iState_sum[EXTRUDERS] = { 0 };
  83. static float dState_last[EXTRUDERS] = { 0 };
  84. static float pTerm[EXTRUDERS];
  85. static float iTerm[EXTRUDERS];
  86. static float dTerm[EXTRUDERS];
  87. //int output;
  88. static float pid_error[EXTRUDERS];
  89. static float iState_sum_min[EXTRUDERS];
  90. static float iState_sum_max[EXTRUDERS];
  91. // static float pid_input[EXTRUDERS];
  92. // static float pid_output[EXTRUDERS];
  93. static bool pid_reset[EXTRUDERS];
  94. #endif //PIDTEMP
  95. #ifdef PIDTEMPBED
  96. //static cannot be external:
  97. static float temp_iState_bed = { 0 };
  98. static float temp_dState_bed = { 0 };
  99. static float pTerm_bed;
  100. static float iTerm_bed;
  101. static float dTerm_bed;
  102. //int output;
  103. static float pid_error_bed;
  104. static float temp_iState_min_bed;
  105. static float temp_iState_max_bed;
  106. #else //PIDTEMPBED
  107. static unsigned long previous_millis_bed_heater;
  108. #endif //PIDTEMPBED
  109. static unsigned char soft_pwm[EXTRUDERS];
  110. #ifdef FAN_SOFT_PWM
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  114. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  116. static unsigned long extruder_autofan_last_check;
  117. #endif
  118. #if EXTRUDERS > 3
  119. # error Unsupported number of extruders
  120. #elif EXTRUDERS > 2
  121. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  122. #elif EXTRUDERS > 1
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  124. #else
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  126. #endif
  127. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  128. // Init min and max temp with extreme values to prevent false errors during startup
  129. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  130. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  131. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  132. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  133. #ifdef BED_MINTEMP
  134. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  135. #endif
  136. #ifdef BED_MAXTEMP
  137. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  138. #endif
  139. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  140. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  141. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  142. #else
  143. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  144. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  145. #endif
  146. static float analog2temp(int raw, uint8_t e);
  147. static float analog2tempBed(int raw);
  148. static float analog2tempAmbient(int raw);
  149. static void updateTemperaturesFromRawValues();
  150. enum TempRunawayStates
  151. {
  152. TempRunaway_INACTIVE = 0,
  153. TempRunaway_PREHEAT = 1,
  154. TempRunaway_ACTIVE = 2,
  155. };
  156. #ifdef WATCH_TEMP_PERIOD
  157. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  158. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  159. #endif //WATCH_TEMP_PERIOD
  160. #ifndef SOFT_PWM_SCALE
  161. #define SOFT_PWM_SCALE 0
  162. #endif
  163. //===========================================================================
  164. //============================= functions ============================
  165. //===========================================================================
  166. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  167. static float temp_runaway_status[4];
  168. static float temp_runaway_target[4];
  169. static float temp_runaway_timer[4];
  170. static int temp_runaway_error_counter[4];
  171. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  172. static void temp_runaway_stop(bool isPreheat, bool isBed);
  173. #endif
  174. void PID_autotune(float temp, int extruder, int ncycles)
  175. {
  176. pid_number_of_cycles = ncycles;
  177. pid_tuning_finished = false;
  178. float input = 0.0;
  179. pid_cycle=0;
  180. bool heating = true;
  181. unsigned long temp_millis = millis();
  182. unsigned long t1=temp_millis;
  183. unsigned long t2=temp_millis;
  184. long t_high = 0;
  185. long t_low = 0;
  186. long bias, d;
  187. float Ku, Tu;
  188. float max = 0, min = 10000;
  189. uint8_t safety_check_cycles = 0;
  190. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  191. float temp_ambient;
  192. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  193. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  194. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  195. unsigned long extruder_autofan_last_check = millis();
  196. #endif
  197. if ((extruder >= EXTRUDERS)
  198. #if (TEMP_BED_PIN <= -1)
  199. ||(extruder < 0)
  200. #endif
  201. ){
  202. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  203. pid_tuning_finished = true;
  204. pid_cycle = 0;
  205. return;
  206. }
  207. SERIAL_ECHOLN("PID Autotune start");
  208. disable_heater(); // switch off all heaters.
  209. if (extruder<0)
  210. {
  211. soft_pwm_bed = (MAX_BED_POWER)/2;
  212. bias = d = (MAX_BED_POWER)/2;
  213. }
  214. else
  215. {
  216. soft_pwm[extruder] = (PID_MAX)/2;
  217. bias = d = (PID_MAX)/2;
  218. }
  219. for(;;) {
  220. #ifdef WATCHDOG
  221. wdt_reset();
  222. #endif //WATCHDOG
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update(0);
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  396. void countFanSpeed()
  397. {
  398. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  399. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  402. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  403. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  404. SERIAL_ECHOLNPGM(" ");*/
  405. fan_edge_counter[0] = 0;
  406. fan_edge_counter[1] = 0;
  407. }
  408. extern bool fans_check_enabled;
  409. void checkFanSpeed()
  410. {
  411. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  412. static unsigned char fan_speed_errors[2] = { 0,0 };
  413. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  414. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  415. else fan_speed_errors[0] = 0;
  416. #endif
  417. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  418. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  419. else fan_speed_errors[1] = 0;
  420. #endif
  421. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  422. fan_speed_errors[0] = 0;
  423. fanSpeedError(0); //extruder fan
  424. }
  425. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  426. fan_speed_errors[1] = 0;
  427. fanSpeedError(1); //print fan
  428. }
  429. }
  430. void fanSpeedError(unsigned char _fan) {
  431. if (get_message_level() != 0 && isPrintPaused) return;
  432. //to ensure that target temp. is not set to zero in case taht we are resuming print
  433. if (card.sdprinting) {
  434. if (heating_status != 0) {
  435. lcd_print_stop();
  436. }
  437. else {
  438. lcd_pause_print();
  439. }
  440. }
  441. else {
  442. setTargetHotend0(0);
  443. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  444. }
  445. switch (_fan) {
  446. case 0:
  447. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  448. if (get_message_level() == 0) {
  449. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  450. WRITE(BEEPER, HIGH);
  451. delayMicroseconds(200);
  452. WRITE(BEEPER, LOW);
  453. delayMicroseconds(100);
  454. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  455. }
  456. break;
  457. case 1:
  458. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  459. if (get_message_level() == 0) {
  460. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  461. WRITE(BEEPER, HIGH);
  462. delayMicroseconds(200);
  463. WRITE(BEEPER, LOW);
  464. delayMicroseconds(100);
  465. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  466. }
  467. break;
  468. }
  469. }
  470. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  471. void checkExtruderAutoFans()
  472. {
  473. uint8_t fanState = 0;
  474. // which fan pins need to be turned on?
  475. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  476. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  477. fanState |= 1;
  478. #endif
  479. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  480. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  481. {
  482. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  483. fanState |= 1;
  484. else
  485. fanState |= 2;
  486. }
  487. #endif
  488. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  489. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  490. {
  491. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  492. fanState |= 1;
  493. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  494. fanState |= 2;
  495. else
  496. fanState |= 4;
  497. }
  498. #endif
  499. // update extruder auto fan states
  500. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  501. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  502. #endif
  503. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  504. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  505. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  506. #endif
  507. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  508. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  509. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  510. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  511. #endif
  512. }
  513. #endif // any extruder auto fan pins set
  514. // ready for eventually parameters adjusting
  515. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  516. //void resetPID(uint8_t extruder)
  517. {
  518. }
  519. void manage_heater()
  520. {
  521. #ifdef WATCHDOG
  522. wdt_reset();
  523. #endif //WATCHDOG
  524. float pid_input;
  525. float pid_output;
  526. if(temp_meas_ready != true) //better readability
  527. return;
  528. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  529. updateTemperaturesFromRawValues();
  530. check_max_temp();
  531. check_min_temp();
  532. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  533. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  534. #endif
  535. for(int e = 0; e < EXTRUDERS; e++)
  536. {
  537. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  538. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  539. #endif
  540. #ifdef PIDTEMP
  541. pid_input = current_temperature[e];
  542. #ifndef PID_OPENLOOP
  543. if(target_temperature[e] == 0) {
  544. pid_output = 0;
  545. pid_reset[e] = true;
  546. } else {
  547. pid_error[e] = target_temperature[e] - pid_input;
  548. if(pid_reset[e]) {
  549. iState_sum[e] = 0.0;
  550. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  551. pid_reset[e] = false;
  552. }
  553. #ifndef PonM
  554. pTerm[e] = cs.Kp * pid_error[e];
  555. iState_sum[e] += pid_error[e];
  556. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  557. iTerm[e] = cs.Ki * iState_sum[e];
  558. // K1 defined in Configuration.h in the PID settings
  559. #define K2 (1.0-K1)
  560. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  561. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  562. if (pid_output > PID_MAX) {
  563. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  564. pid_output=PID_MAX;
  565. } else if (pid_output < 0) {
  566. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  567. pid_output=0;
  568. }
  569. #else // PonM ("Proportional on Measurement" method)
  570. iState_sum[e] += cs.Ki * pid_error[e];
  571. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  572. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  573. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  574. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  575. pid_output = constrain(pid_output, 0, PID_MAX);
  576. #endif // PonM
  577. }
  578. dState_last[e] = pid_input;
  579. #else
  580. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  581. #endif //PID_OPENLOOP
  582. #ifdef PID_DEBUG
  583. SERIAL_ECHO_START;
  584. SERIAL_ECHO(" PID_DEBUG ");
  585. SERIAL_ECHO(e);
  586. SERIAL_ECHO(": Input ");
  587. SERIAL_ECHO(pid_input);
  588. SERIAL_ECHO(" Output ");
  589. SERIAL_ECHO(pid_output);
  590. SERIAL_ECHO(" pTerm ");
  591. SERIAL_ECHO(pTerm[e]);
  592. SERIAL_ECHO(" iTerm ");
  593. SERIAL_ECHO(iTerm[e]);
  594. SERIAL_ECHO(" dTerm ");
  595. SERIAL_ECHOLN(-dTerm[e]);
  596. #endif //PID_DEBUG
  597. #else /* PID off */
  598. pid_output = 0;
  599. if(current_temperature[e] < target_temperature[e]) {
  600. pid_output = PID_MAX;
  601. }
  602. #endif
  603. // Check if temperature is within the correct range
  604. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  605. {
  606. soft_pwm[e] = (int)pid_output >> 1;
  607. }
  608. else
  609. {
  610. soft_pwm[e] = 0;
  611. }
  612. #ifdef WATCH_TEMP_PERIOD
  613. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  614. {
  615. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  616. {
  617. setTargetHotend(0, e);
  618. LCD_MESSAGEPGM("Heating failed");
  619. SERIAL_ECHO_START;
  620. SERIAL_ECHOLN("Heating failed");
  621. }else{
  622. watchmillis[e] = 0;
  623. }
  624. }
  625. #endif
  626. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  627. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  628. disable_heater();
  629. if(IsStopped() == false) {
  630. SERIAL_ERROR_START;
  631. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  632. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  633. }
  634. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  635. Stop();
  636. #endif
  637. }
  638. #endif
  639. } // End extruder for loop
  640. #ifndef DEBUG_DISABLE_FANCHECK
  641. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  642. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  643. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  644. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  645. {
  646. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  647. countFanSpeed();
  648. checkFanSpeed();
  649. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  650. checkExtruderAutoFans();
  651. extruder_autofan_last_check = millis();
  652. }
  653. #endif
  654. #endif //DEBUG_DISABLE_FANCHECK
  655. #ifndef PIDTEMPBED
  656. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  657. return;
  658. previous_millis_bed_heater = millis();
  659. #endif
  660. #if TEMP_SENSOR_BED != 0
  661. #ifdef PIDTEMPBED
  662. pid_input = current_temperature_bed;
  663. #ifndef PID_OPENLOOP
  664. pid_error_bed = target_temperature_bed - pid_input;
  665. pTerm_bed = cs.bedKp * pid_error_bed;
  666. temp_iState_bed += pid_error_bed;
  667. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  668. iTerm_bed = cs.bedKi * temp_iState_bed;
  669. //K1 defined in Configuration.h in the PID settings
  670. #define K2 (1.0-K1)
  671. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  672. temp_dState_bed = pid_input;
  673. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  674. if (pid_output > MAX_BED_POWER) {
  675. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  676. pid_output=MAX_BED_POWER;
  677. } else if (pid_output < 0){
  678. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  679. pid_output=0;
  680. }
  681. #else
  682. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  683. #endif //PID_OPENLOOP
  684. if(current_temperature_bed < BED_MAXTEMP)
  685. {
  686. soft_pwm_bed = (int)pid_output >> 1;
  687. }
  688. else {
  689. soft_pwm_bed = 0;
  690. }
  691. #elif !defined(BED_LIMIT_SWITCHING)
  692. // Check if temperature is within the correct range
  693. if(current_temperature_bed < BED_MAXTEMP)
  694. {
  695. if(current_temperature_bed >= target_temperature_bed)
  696. {
  697. soft_pwm_bed = 0;
  698. }
  699. else
  700. {
  701. soft_pwm_bed = MAX_BED_POWER>>1;
  702. }
  703. }
  704. else
  705. {
  706. soft_pwm_bed = 0;
  707. WRITE(HEATER_BED_PIN,LOW);
  708. }
  709. #else //#ifdef BED_LIMIT_SWITCHING
  710. // Check if temperature is within the correct band
  711. if(current_temperature_bed < BED_MAXTEMP)
  712. {
  713. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  714. {
  715. soft_pwm_bed = 0;
  716. }
  717. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  718. {
  719. soft_pwm_bed = MAX_BED_POWER>>1;
  720. }
  721. }
  722. else
  723. {
  724. soft_pwm_bed = 0;
  725. WRITE(HEATER_BED_PIN,LOW);
  726. }
  727. #endif
  728. if(target_temperature_bed==0)
  729. soft_pwm_bed = 0;
  730. #endif
  731. #ifdef HOST_KEEPALIVE_FEATURE
  732. host_keepalive();
  733. #endif
  734. }
  735. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  736. // Derived from RepRap FiveD extruder::getTemperature()
  737. // For hot end temperature measurement.
  738. static float analog2temp(int raw, uint8_t e) {
  739. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  740. if(e > EXTRUDERS)
  741. #else
  742. if(e >= EXTRUDERS)
  743. #endif
  744. {
  745. SERIAL_ERROR_START;
  746. SERIAL_ERROR((int)e);
  747. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  748. kill(PSTR(""), 6);
  749. return 0.0;
  750. }
  751. #ifdef HEATER_0_USES_MAX6675
  752. if (e == 0)
  753. {
  754. return 0.25 * raw;
  755. }
  756. #endif
  757. if(heater_ttbl_map[e] != NULL)
  758. {
  759. float celsius = 0;
  760. uint8_t i;
  761. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  762. for (i=1; i<heater_ttbllen_map[e]; i++)
  763. {
  764. if (PGM_RD_W((*tt)[i][0]) > raw)
  765. {
  766. celsius = PGM_RD_W((*tt)[i-1][1]) +
  767. (raw - PGM_RD_W((*tt)[i-1][0])) *
  768. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  769. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  770. break;
  771. }
  772. }
  773. // Overflow: Set to last value in the table
  774. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  775. return celsius;
  776. }
  777. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  778. }
  779. // Derived from RepRap FiveD extruder::getTemperature()
  780. // For bed temperature measurement.
  781. static float analog2tempBed(int raw) {
  782. #ifdef BED_USES_THERMISTOR
  783. float celsius = 0;
  784. byte i;
  785. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  786. {
  787. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  788. {
  789. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  790. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  791. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  792. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  793. break;
  794. }
  795. }
  796. // Overflow: Set to last value in the table
  797. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  798. // temperature offset adjustment
  799. #ifdef BED_OFFSET
  800. float _offset = BED_OFFSET;
  801. float _offset_center = BED_OFFSET_CENTER;
  802. float _offset_start = BED_OFFSET_START;
  803. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  804. float _second_koef = (_offset / 2) / (100 - _offset_center);
  805. if (celsius >= _offset_start && celsius <= _offset_center)
  806. {
  807. celsius = celsius + (_first_koef * (celsius - _offset_start));
  808. }
  809. else if (celsius > _offset_center && celsius <= 100)
  810. {
  811. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  812. }
  813. else if (celsius > 100)
  814. {
  815. celsius = celsius + _offset;
  816. }
  817. #endif
  818. return celsius;
  819. #elif defined BED_USES_AD595
  820. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  821. #else
  822. return 0;
  823. #endif
  824. }
  825. #ifdef AMBIENT_THERMISTOR
  826. static float analog2tempAmbient(int raw)
  827. {
  828. float celsius = 0;
  829. byte i;
  830. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  831. {
  832. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  833. {
  834. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  835. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  836. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  837. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  838. break;
  839. }
  840. }
  841. // Overflow: Set to last value in the table
  842. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  843. return celsius;
  844. }
  845. #endif //AMBIENT_THERMISTOR
  846. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  847. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  848. static void updateTemperaturesFromRawValues()
  849. {
  850. for(uint8_t e=0;e<EXTRUDERS;e++)
  851. {
  852. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  853. }
  854. #ifdef PINDA_THERMISTOR
  855. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  856. #endif
  857. #ifdef AMBIENT_THERMISTOR
  858. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  859. #endif
  860. #ifdef DEBUG_HEATER_BED_SIM
  861. current_temperature_bed = target_temperature_bed;
  862. #else //DEBUG_HEATER_BED_SIM
  863. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  864. #endif //DEBUG_HEATER_BED_SIM
  865. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  866. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  867. #endif
  868. //Reset the watchdog after we know we have a temperature measurement.
  869. #ifdef WATCHDOG
  870. wdt_reset();
  871. #endif //WATCHDOG
  872. CRITICAL_SECTION_START;
  873. temp_meas_ready = false;
  874. CRITICAL_SECTION_END;
  875. }
  876. void tp_init()
  877. {
  878. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  879. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  880. MCUCR=(1<<JTD);
  881. MCUCR=(1<<JTD);
  882. #endif
  883. // Finish init of mult extruder arrays
  884. for(int e = 0; e < EXTRUDERS; e++) {
  885. // populate with the first value
  886. maxttemp[e] = maxttemp[0];
  887. #ifdef PIDTEMP
  888. iState_sum_min[e] = 0.0;
  889. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  890. #endif //PIDTEMP
  891. #ifdef PIDTEMPBED
  892. temp_iState_min_bed = 0.0;
  893. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  894. #endif //PIDTEMPBED
  895. }
  896. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  897. SET_OUTPUT(HEATER_0_PIN);
  898. #endif
  899. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  900. SET_OUTPUT(HEATER_1_PIN);
  901. #endif
  902. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  903. SET_OUTPUT(HEATER_2_PIN);
  904. #endif
  905. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  906. SET_OUTPUT(HEATER_BED_PIN);
  907. #endif
  908. #if defined(FAN_PIN) && (FAN_PIN > -1)
  909. SET_OUTPUT(FAN_PIN);
  910. #ifdef FAST_PWM_FAN
  911. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  912. #endif
  913. #ifdef FAN_SOFT_PWM
  914. soft_pwm_fan = fanSpeedSoftPwm / 2;
  915. #endif
  916. #endif
  917. #ifdef HEATER_0_USES_MAX6675
  918. #ifndef SDSUPPORT
  919. SET_OUTPUT(SCK_PIN);
  920. WRITE(SCK_PIN,0);
  921. SET_OUTPUT(MOSI_PIN);
  922. WRITE(MOSI_PIN,1);
  923. SET_INPUT(MISO_PIN);
  924. WRITE(MISO_PIN,1);
  925. #endif
  926. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  927. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  928. pinMode(SS_PIN, OUTPUT);
  929. digitalWrite(SS_PIN,0);
  930. pinMode(MAX6675_SS, OUTPUT);
  931. digitalWrite(MAX6675_SS,1);
  932. #endif
  933. adc_init();
  934. // Use timer0 for temperature measurement
  935. // Interleave temperature interrupt with millies interrupt
  936. OCR0B = 128;
  937. TIMSK0 |= (1<<OCIE0B);
  938. // Wait for temperature measurement to settle
  939. delay(250);
  940. #ifdef HEATER_0_MINTEMP
  941. minttemp[0] = HEATER_0_MINTEMP;
  942. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  943. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  944. minttemp_raw[0] += OVERSAMPLENR;
  945. #else
  946. minttemp_raw[0] -= OVERSAMPLENR;
  947. #endif
  948. }
  949. #endif //MINTEMP
  950. #ifdef HEATER_0_MAXTEMP
  951. maxttemp[0] = HEATER_0_MAXTEMP;
  952. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  953. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  954. maxttemp_raw[0] -= OVERSAMPLENR;
  955. #else
  956. maxttemp_raw[0] += OVERSAMPLENR;
  957. #endif
  958. }
  959. #endif //MAXTEMP
  960. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  961. minttemp[1] = HEATER_1_MINTEMP;
  962. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  963. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  964. minttemp_raw[1] += OVERSAMPLENR;
  965. #else
  966. minttemp_raw[1] -= OVERSAMPLENR;
  967. #endif
  968. }
  969. #endif // MINTEMP 1
  970. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  971. maxttemp[1] = HEATER_1_MAXTEMP;
  972. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  973. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  974. maxttemp_raw[1] -= OVERSAMPLENR;
  975. #else
  976. maxttemp_raw[1] += OVERSAMPLENR;
  977. #endif
  978. }
  979. #endif //MAXTEMP 1
  980. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  981. minttemp[2] = HEATER_2_MINTEMP;
  982. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  983. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  984. minttemp_raw[2] += OVERSAMPLENR;
  985. #else
  986. minttemp_raw[2] -= OVERSAMPLENR;
  987. #endif
  988. }
  989. #endif //MINTEMP 2
  990. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  991. maxttemp[2] = HEATER_2_MAXTEMP;
  992. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  993. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  994. maxttemp_raw[2] -= OVERSAMPLENR;
  995. #else
  996. maxttemp_raw[2] += OVERSAMPLENR;
  997. #endif
  998. }
  999. #endif //MAXTEMP 2
  1000. #ifdef BED_MINTEMP
  1001. /* No bed MINTEMP error implemented?!? */
  1002. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1003. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1004. bed_minttemp_raw += OVERSAMPLENR;
  1005. #else
  1006. bed_minttemp_raw -= OVERSAMPLENR;
  1007. #endif
  1008. }
  1009. #endif //BED_MINTEMP
  1010. #ifdef BED_MAXTEMP
  1011. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1012. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1013. bed_maxttemp_raw -= OVERSAMPLENR;
  1014. #else
  1015. bed_maxttemp_raw += OVERSAMPLENR;
  1016. #endif
  1017. }
  1018. #endif //BED_MAXTEMP
  1019. }
  1020. void setWatch()
  1021. {
  1022. #ifdef WATCH_TEMP_PERIOD
  1023. for (int e = 0; e < EXTRUDERS; e++)
  1024. {
  1025. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1026. {
  1027. watch_start_temp[e] = degHotend(e);
  1028. watchmillis[e] = millis();
  1029. }
  1030. }
  1031. #endif
  1032. }
  1033. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1034. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1035. {
  1036. float __hysteresis = 0;
  1037. int __timeout = 0;
  1038. bool temp_runaway_check_active = false;
  1039. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1040. static int __preheat_counter[2] = { 0,0};
  1041. static int __preheat_errors[2] = { 0,0};
  1042. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1043. {
  1044. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1045. if (_isbed)
  1046. {
  1047. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1048. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1049. }
  1050. #endif
  1051. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1052. if (!_isbed)
  1053. {
  1054. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1055. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1056. }
  1057. #endif
  1058. temp_runaway_timer[_heater_id] = millis();
  1059. if (_output == 0)
  1060. {
  1061. temp_runaway_check_active = false;
  1062. temp_runaway_error_counter[_heater_id] = 0;
  1063. }
  1064. if (temp_runaway_target[_heater_id] != _target_temperature)
  1065. {
  1066. if (_target_temperature > 0)
  1067. {
  1068. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1069. temp_runaway_target[_heater_id] = _target_temperature;
  1070. __preheat_start[_heater_id] = _current_temperature;
  1071. __preheat_counter[_heater_id] = 0;
  1072. }
  1073. else
  1074. {
  1075. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1076. temp_runaway_target[_heater_id] = _target_temperature;
  1077. }
  1078. }
  1079. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1080. {
  1081. __preheat_counter[_heater_id]++;
  1082. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1083. {
  1084. /*SERIAL_ECHOPGM("Heater:");
  1085. MYSERIAL.print(_heater_id);
  1086. SERIAL_ECHOPGM(" T:");
  1087. MYSERIAL.print(_current_temperature);
  1088. SERIAL_ECHOPGM(" Tstart:");
  1089. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1090. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1091. __preheat_errors[_heater_id]++;
  1092. /*SERIAL_ECHOPGM(" Preheat errors:");
  1093. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1094. }
  1095. else {
  1096. //SERIAL_ECHOLNPGM("");
  1097. __preheat_errors[_heater_id] = 0;
  1098. }
  1099. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1100. {
  1101. if (farm_mode) { prusa_statistics(0); }
  1102. temp_runaway_stop(true, _isbed);
  1103. if (farm_mode) { prusa_statistics(91); }
  1104. }
  1105. __preheat_start[_heater_id] = _current_temperature;
  1106. __preheat_counter[_heater_id] = 0;
  1107. }
  1108. }
  1109. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1110. {
  1111. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1112. temp_runaway_check_active = false;
  1113. }
  1114. if (_output > 0)
  1115. {
  1116. temp_runaway_check_active = true;
  1117. }
  1118. if (temp_runaway_check_active)
  1119. {
  1120. // we are in range
  1121. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1122. {
  1123. temp_runaway_check_active = false;
  1124. temp_runaway_error_counter[_heater_id] = 0;
  1125. }
  1126. else
  1127. {
  1128. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1129. {
  1130. temp_runaway_error_counter[_heater_id]++;
  1131. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1132. {
  1133. if (farm_mode) { prusa_statistics(0); }
  1134. temp_runaway_stop(false, _isbed);
  1135. if (farm_mode) { prusa_statistics(90); }
  1136. }
  1137. }
  1138. }
  1139. }
  1140. }
  1141. }
  1142. void temp_runaway_stop(bool isPreheat, bool isBed)
  1143. {
  1144. cancel_heatup = true;
  1145. quickStop();
  1146. if (card.sdprinting)
  1147. {
  1148. card.sdprinting = false;
  1149. card.closefile();
  1150. }
  1151. // Clean the input command queue
  1152. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1153. cmdqueue_reset();
  1154. disable_heater();
  1155. disable_x();
  1156. disable_y();
  1157. disable_e0();
  1158. disable_e1();
  1159. disable_e2();
  1160. manage_heater();
  1161. lcd_update(0);
  1162. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1163. WRITE(BEEPER, HIGH);
  1164. delayMicroseconds(500);
  1165. WRITE(BEEPER, LOW);
  1166. delayMicroseconds(100);
  1167. if (isPreheat)
  1168. {
  1169. Stop();
  1170. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1171. SERIAL_ERROR_START;
  1172. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1173. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1174. SET_OUTPUT(FAN_PIN);
  1175. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1176. analogWrite(FAN_PIN, 255);
  1177. fanSpeed = 255;
  1178. delayMicroseconds(2000);
  1179. }
  1180. else
  1181. {
  1182. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1183. SERIAL_ERROR_START;
  1184. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1185. }
  1186. }
  1187. #endif
  1188. void disable_heater()
  1189. {
  1190. setAllTargetHotends(0);
  1191. setTargetBed(0);
  1192. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1193. target_temperature[0]=0;
  1194. soft_pwm[0]=0;
  1195. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1196. WRITE(HEATER_0_PIN,LOW);
  1197. #endif
  1198. #endif
  1199. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1200. target_temperature[1]=0;
  1201. soft_pwm[1]=0;
  1202. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1203. WRITE(HEATER_1_PIN,LOW);
  1204. #endif
  1205. #endif
  1206. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1207. target_temperature[2]=0;
  1208. soft_pwm[2]=0;
  1209. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1210. WRITE(HEATER_2_PIN,LOW);
  1211. #endif
  1212. #endif
  1213. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1214. target_temperature_bed=0;
  1215. soft_pwm_bed=0;
  1216. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1217. WRITE(HEATER_BED_PIN,LOW);
  1218. #endif
  1219. #endif
  1220. }
  1221. void max_temp_error(uint8_t e) {
  1222. disable_heater();
  1223. if(IsStopped() == false) {
  1224. SERIAL_ERROR_START;
  1225. SERIAL_ERRORLN((int)e);
  1226. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1227. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1228. }
  1229. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1230. Stop();
  1231. #endif
  1232. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1233. SET_OUTPUT(FAN_PIN);
  1234. SET_OUTPUT(BEEPER);
  1235. WRITE(FAN_PIN, 1);
  1236. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1237. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1238. WRITE(BEEPER, 1);
  1239. // fanSpeed will consumed by the check_axes_activity() routine.
  1240. fanSpeed=255;
  1241. if (farm_mode) { prusa_statistics(93); }
  1242. }
  1243. void min_temp_error(uint8_t e) {
  1244. #ifdef DEBUG_DISABLE_MINTEMP
  1245. return;
  1246. #endif
  1247. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1248. disable_heater();
  1249. if(IsStopped() == false) {
  1250. SERIAL_ERROR_START;
  1251. SERIAL_ERRORLN((int)e);
  1252. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1253. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1254. }
  1255. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1256. Stop();
  1257. #endif
  1258. if (farm_mode) { prusa_statistics(92); }
  1259. }
  1260. void bed_max_temp_error(void) {
  1261. #if HEATER_BED_PIN > -1
  1262. WRITE(HEATER_BED_PIN, 0);
  1263. #endif
  1264. if(IsStopped() == false) {
  1265. SERIAL_ERROR_START;
  1266. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1267. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1268. }
  1269. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1270. Stop();
  1271. #endif
  1272. }
  1273. void bed_min_temp_error(void) {
  1274. #ifdef DEBUG_DISABLE_MINTEMP
  1275. return;
  1276. #endif
  1277. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1278. #if HEATER_BED_PIN > -1
  1279. WRITE(HEATER_BED_PIN, 0);
  1280. #endif
  1281. if(IsStopped() == false) {
  1282. SERIAL_ERROR_START;
  1283. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1284. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1285. }
  1286. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1287. Stop();
  1288. #endif
  1289. }
  1290. #ifdef HEATER_0_USES_MAX6675
  1291. #define MAX6675_HEAT_INTERVAL 250
  1292. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1293. int max6675_temp = 2000;
  1294. int read_max6675()
  1295. {
  1296. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1297. return max6675_temp;
  1298. max6675_previous_millis = millis();
  1299. max6675_temp = 0;
  1300. #ifdef PRR
  1301. PRR &= ~(1<<PRSPI);
  1302. #elif defined PRR0
  1303. PRR0 &= ~(1<<PRSPI);
  1304. #endif
  1305. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1306. // enable TT_MAX6675
  1307. WRITE(MAX6675_SS, 0);
  1308. // ensure 100ns delay - a bit extra is fine
  1309. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1310. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1311. // read MSB
  1312. SPDR = 0;
  1313. for (;(SPSR & (1<<SPIF)) == 0;);
  1314. max6675_temp = SPDR;
  1315. max6675_temp <<= 8;
  1316. // read LSB
  1317. SPDR = 0;
  1318. for (;(SPSR & (1<<SPIF)) == 0;);
  1319. max6675_temp |= SPDR;
  1320. // disable TT_MAX6675
  1321. WRITE(MAX6675_SS, 1);
  1322. if (max6675_temp & 4)
  1323. {
  1324. // thermocouple open
  1325. max6675_temp = 2000;
  1326. }
  1327. else
  1328. {
  1329. max6675_temp = max6675_temp >> 3;
  1330. }
  1331. return max6675_temp;
  1332. }
  1333. #endif
  1334. extern "C" {
  1335. void adc_ready(void) //callback from adc when sampling finished
  1336. {
  1337. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1338. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1339. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1340. #ifdef VOLT_PWR_PIN
  1341. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1342. #endif
  1343. #ifdef AMBIENT_THERMISTOR
  1344. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1345. #endif //AMBIENT_THERMISTOR
  1346. #ifdef VOLT_BED_PIN
  1347. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1348. #endif
  1349. temp_meas_ready = true;
  1350. }
  1351. } // extern "C"
  1352. // Timer 0 is shared with millies
  1353. ISR(TIMER0_COMPB_vect) // @ 1kHz ~ 1ms
  1354. {
  1355. static bool _lock = false;
  1356. if (_lock) return;
  1357. _lock = true;
  1358. asm("sei");
  1359. if (!temp_meas_ready) adc_cycle();
  1360. lcd_buttons_update();
  1361. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1362. static unsigned char soft_pwm_0;
  1363. #ifdef SLOW_PWM_HEATERS
  1364. static unsigned char slow_pwm_count = 0;
  1365. static unsigned char state_heater_0 = 0;
  1366. static unsigned char state_timer_heater_0 = 0;
  1367. #endif
  1368. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1369. static unsigned char soft_pwm_1;
  1370. #ifdef SLOW_PWM_HEATERS
  1371. static unsigned char state_heater_1 = 0;
  1372. static unsigned char state_timer_heater_1 = 0;
  1373. #endif
  1374. #endif
  1375. #if EXTRUDERS > 2
  1376. static unsigned char soft_pwm_2;
  1377. #ifdef SLOW_PWM_HEATERS
  1378. static unsigned char state_heater_2 = 0;
  1379. static unsigned char state_timer_heater_2 = 0;
  1380. #endif
  1381. #endif
  1382. #if HEATER_BED_PIN > -1
  1383. static unsigned char soft_pwm_b;
  1384. #ifdef SLOW_PWM_HEATERS
  1385. static unsigned char state_heater_b = 0;
  1386. static unsigned char state_timer_heater_b = 0;
  1387. #endif
  1388. #endif
  1389. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1390. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1391. #endif
  1392. #ifndef SLOW_PWM_HEATERS
  1393. /*
  1394. * standard PWM modulation
  1395. */
  1396. if (pwm_count == 0)
  1397. {
  1398. soft_pwm_0 = soft_pwm[0];
  1399. if(soft_pwm_0 > 0)
  1400. {
  1401. WRITE(HEATER_0_PIN,1);
  1402. #ifdef HEATERS_PARALLEL
  1403. WRITE(HEATER_1_PIN,1);
  1404. #endif
  1405. } else WRITE(HEATER_0_PIN,0);
  1406. #if EXTRUDERS > 1
  1407. soft_pwm_1 = soft_pwm[1];
  1408. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1409. #endif
  1410. #if EXTRUDERS > 2
  1411. soft_pwm_2 = soft_pwm[2];
  1412. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1413. #endif
  1414. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1415. soft_pwm_b = soft_pwm_bed;
  1416. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1417. #endif
  1418. #ifdef FAN_SOFT_PWM
  1419. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1420. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1421. #endif
  1422. }
  1423. if(soft_pwm_0 < pwm_count)
  1424. {
  1425. WRITE(HEATER_0_PIN,0);
  1426. #ifdef HEATERS_PARALLEL
  1427. WRITE(HEATER_1_PIN,0);
  1428. #endif
  1429. }
  1430. #if EXTRUDERS > 1
  1431. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1432. #endif
  1433. #if EXTRUDERS > 2
  1434. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1435. #endif
  1436. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1437. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1438. #endif
  1439. #ifdef FAN_SOFT_PWM
  1440. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1441. #endif
  1442. pwm_count += (1 << SOFT_PWM_SCALE);
  1443. pwm_count &= 0x7f;
  1444. #else //ifndef SLOW_PWM_HEATERS
  1445. /*
  1446. * SLOW PWM HEATERS
  1447. *
  1448. * for heaters drived by relay
  1449. */
  1450. #ifndef MIN_STATE_TIME
  1451. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1452. #endif
  1453. if (slow_pwm_count == 0) {
  1454. // EXTRUDER 0
  1455. soft_pwm_0 = soft_pwm[0];
  1456. if (soft_pwm_0 > 0) {
  1457. // turn ON heather only if the minimum time is up
  1458. if (state_timer_heater_0 == 0) {
  1459. // if change state set timer
  1460. if (state_heater_0 == 0) {
  1461. state_timer_heater_0 = MIN_STATE_TIME;
  1462. }
  1463. state_heater_0 = 1;
  1464. WRITE(HEATER_0_PIN, 1);
  1465. #ifdef HEATERS_PARALLEL
  1466. WRITE(HEATER_1_PIN, 1);
  1467. #endif
  1468. }
  1469. } else {
  1470. // turn OFF heather only if the minimum time is up
  1471. if (state_timer_heater_0 == 0) {
  1472. // if change state set timer
  1473. if (state_heater_0 == 1) {
  1474. state_timer_heater_0 = MIN_STATE_TIME;
  1475. }
  1476. state_heater_0 = 0;
  1477. WRITE(HEATER_0_PIN, 0);
  1478. #ifdef HEATERS_PARALLEL
  1479. WRITE(HEATER_1_PIN, 0);
  1480. #endif
  1481. }
  1482. }
  1483. #if EXTRUDERS > 1
  1484. // EXTRUDER 1
  1485. soft_pwm_1 = soft_pwm[1];
  1486. if (soft_pwm_1 > 0) {
  1487. // turn ON heather only if the minimum time is up
  1488. if (state_timer_heater_1 == 0) {
  1489. // if change state set timer
  1490. if (state_heater_1 == 0) {
  1491. state_timer_heater_1 = MIN_STATE_TIME;
  1492. }
  1493. state_heater_1 = 1;
  1494. WRITE(HEATER_1_PIN, 1);
  1495. }
  1496. } else {
  1497. // turn OFF heather only if the minimum time is up
  1498. if (state_timer_heater_1 == 0) {
  1499. // if change state set timer
  1500. if (state_heater_1 == 1) {
  1501. state_timer_heater_1 = MIN_STATE_TIME;
  1502. }
  1503. state_heater_1 = 0;
  1504. WRITE(HEATER_1_PIN, 0);
  1505. }
  1506. }
  1507. #endif
  1508. #if EXTRUDERS > 2
  1509. // EXTRUDER 2
  1510. soft_pwm_2 = soft_pwm[2];
  1511. if (soft_pwm_2 > 0) {
  1512. // turn ON heather only if the minimum time is up
  1513. if (state_timer_heater_2 == 0) {
  1514. // if change state set timer
  1515. if (state_heater_2 == 0) {
  1516. state_timer_heater_2 = MIN_STATE_TIME;
  1517. }
  1518. state_heater_2 = 1;
  1519. WRITE(HEATER_2_PIN, 1);
  1520. }
  1521. } else {
  1522. // turn OFF heather only if the minimum time is up
  1523. if (state_timer_heater_2 == 0) {
  1524. // if change state set timer
  1525. if (state_heater_2 == 1) {
  1526. state_timer_heater_2 = MIN_STATE_TIME;
  1527. }
  1528. state_heater_2 = 0;
  1529. WRITE(HEATER_2_PIN, 0);
  1530. }
  1531. }
  1532. #endif
  1533. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1534. // BED
  1535. soft_pwm_b = soft_pwm_bed;
  1536. if (soft_pwm_b > 0) {
  1537. // turn ON heather only if the minimum time is up
  1538. if (state_timer_heater_b == 0) {
  1539. // if change state set timer
  1540. if (state_heater_b == 0) {
  1541. state_timer_heater_b = MIN_STATE_TIME;
  1542. }
  1543. state_heater_b = 1;
  1544. WRITE(HEATER_BED_PIN, 1);
  1545. }
  1546. } else {
  1547. // turn OFF heather only if the minimum time is up
  1548. if (state_timer_heater_b == 0) {
  1549. // if change state set timer
  1550. if (state_heater_b == 1) {
  1551. state_timer_heater_b = MIN_STATE_TIME;
  1552. }
  1553. state_heater_b = 0;
  1554. WRITE(HEATER_BED_PIN, 0);
  1555. }
  1556. }
  1557. #endif
  1558. } // if (slow_pwm_count == 0)
  1559. // EXTRUDER 0
  1560. if (soft_pwm_0 < slow_pwm_count) {
  1561. // turn OFF heather only if the minimum time is up
  1562. if (state_timer_heater_0 == 0) {
  1563. // if change state set timer
  1564. if (state_heater_0 == 1) {
  1565. state_timer_heater_0 = MIN_STATE_TIME;
  1566. }
  1567. state_heater_0 = 0;
  1568. WRITE(HEATER_0_PIN, 0);
  1569. #ifdef HEATERS_PARALLEL
  1570. WRITE(HEATER_1_PIN, 0);
  1571. #endif
  1572. }
  1573. }
  1574. #if EXTRUDERS > 1
  1575. // EXTRUDER 1
  1576. if (soft_pwm_1 < slow_pwm_count) {
  1577. // turn OFF heather only if the minimum time is up
  1578. if (state_timer_heater_1 == 0) {
  1579. // if change state set timer
  1580. if (state_heater_1 == 1) {
  1581. state_timer_heater_1 = MIN_STATE_TIME;
  1582. }
  1583. state_heater_1 = 0;
  1584. WRITE(HEATER_1_PIN, 0);
  1585. }
  1586. }
  1587. #endif
  1588. #if EXTRUDERS > 2
  1589. // EXTRUDER 2
  1590. if (soft_pwm_2 < slow_pwm_count) {
  1591. // turn OFF heather only if the minimum time is up
  1592. if (state_timer_heater_2 == 0) {
  1593. // if change state set timer
  1594. if (state_heater_2 == 1) {
  1595. state_timer_heater_2 = MIN_STATE_TIME;
  1596. }
  1597. state_heater_2 = 0;
  1598. WRITE(HEATER_2_PIN, 0);
  1599. }
  1600. }
  1601. #endif
  1602. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1603. // BED
  1604. if (soft_pwm_b < slow_pwm_count) {
  1605. // turn OFF heather only if the minimum time is up
  1606. if (state_timer_heater_b == 0) {
  1607. // if change state set timer
  1608. if (state_heater_b == 1) {
  1609. state_timer_heater_b = MIN_STATE_TIME;
  1610. }
  1611. state_heater_b = 0;
  1612. WRITE(HEATER_BED_PIN, 0);
  1613. }
  1614. }
  1615. #endif
  1616. #ifdef FAN_SOFT_PWM
  1617. if (pwm_count == 0){
  1618. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1619. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1620. }
  1621. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1622. #endif
  1623. pwm_count += (1 << SOFT_PWM_SCALE);
  1624. pwm_count &= 0x7f;
  1625. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1626. if ((pwm_count % 64) == 0) {
  1627. slow_pwm_count++;
  1628. slow_pwm_count &= 0x7f;
  1629. // Extruder 0
  1630. if (state_timer_heater_0 > 0) {
  1631. state_timer_heater_0--;
  1632. }
  1633. #if EXTRUDERS > 1
  1634. // Extruder 1
  1635. if (state_timer_heater_1 > 0)
  1636. state_timer_heater_1--;
  1637. #endif
  1638. #if EXTRUDERS > 2
  1639. // Extruder 2
  1640. if (state_timer_heater_2 > 0)
  1641. state_timer_heater_2--;
  1642. #endif
  1643. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1644. // Bed
  1645. if (state_timer_heater_b > 0)
  1646. state_timer_heater_b--;
  1647. #endif
  1648. } //if ((pwm_count % 64) == 0) {
  1649. #endif //ifndef SLOW_PWM_HEATERS
  1650. #ifdef BABYSTEPPING
  1651. for(uint8_t axis=0;axis<3;axis++)
  1652. {
  1653. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1654. if(curTodo>0)
  1655. {
  1656. asm("cli");
  1657. babystep(axis,/*fwd*/true);
  1658. babystepsTodo[axis]--; //less to do next time
  1659. asm("sei");
  1660. }
  1661. else
  1662. if(curTodo<0)
  1663. {
  1664. asm("cli");
  1665. babystep(axis,/*fwd*/false);
  1666. babystepsTodo[axis]++; //less to do next time
  1667. asm("sei");
  1668. }
  1669. }
  1670. #endif //BABYSTEPPING
  1671. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1672. check_fans();
  1673. #endif //(defined(TACH_0))
  1674. _lock = false;
  1675. }
  1676. void check_max_temp()
  1677. {
  1678. //heater
  1679. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1680. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1681. #else
  1682. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1683. #endif
  1684. max_temp_error(0);
  1685. }
  1686. //bed
  1687. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1688. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1689. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1690. #else
  1691. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1692. #endif
  1693. target_temperature_bed = 0;
  1694. bed_max_temp_error();
  1695. }
  1696. #endif
  1697. }
  1698. void check_min_temp_heater0()
  1699. {
  1700. //heater
  1701. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1702. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1703. #else
  1704. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1705. #endif
  1706. min_temp_error(0);
  1707. }
  1708. }
  1709. void check_min_temp_bed()
  1710. {
  1711. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1712. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1713. #else
  1714. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1715. #endif
  1716. bed_min_temp_error();
  1717. }
  1718. }
  1719. void check_min_temp()
  1720. {
  1721. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1722. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1723. #ifdef AMBIENT_THERMISTOR
  1724. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1725. { // ambient temperature is low
  1726. #endif //AMBIENT_THERMISTOR
  1727. // *** 'common' part of code for MK2.5 & MK3
  1728. // * nozzle checking
  1729. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1730. { // ~ nozzle heating is on
  1731. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>=minttemp[active_extruder]); // for eventually delay cutting
  1732. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1733. {
  1734. bCheckingOnHeater=true; // not necessary
  1735. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1736. }
  1737. }
  1738. else { // ~ nozzle heating is off
  1739. oTimer4minTempHeater.start();
  1740. bCheckingOnHeater=false;
  1741. }
  1742. // * bed checking
  1743. if(target_temperature_bed>BED_MINTEMP)
  1744. { // ~ bed heating is on
  1745. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>=BED_MINTEMP); // for eventually delay cutting
  1746. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1747. {
  1748. bCheckingOnBed=true; // not necessary
  1749. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1750. }
  1751. }
  1752. else { // ~ bed heating is off
  1753. oTimer4minTempBed.start();
  1754. bCheckingOnBed=false;
  1755. }
  1756. // *** end of 'common' part
  1757. #ifdef AMBIENT_THERMISTOR
  1758. }
  1759. else { // ambient temperature is standard
  1760. check_min_temp_heater0();
  1761. check_min_temp_bed();
  1762. }
  1763. #endif //AMBIENT_THERMISTOR
  1764. }
  1765. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1766. void check_fans() {
  1767. if (READ(TACH_0) != fan_state[0]) {
  1768. fan_edge_counter[0] ++;
  1769. fan_state[0] = !fan_state[0];
  1770. }
  1771. //if (READ(TACH_1) != fan_state[1]) {
  1772. // fan_edge_counter[1] ++;
  1773. // fan_state[1] = !fan_state[1];
  1774. //}
  1775. }
  1776. #endif //TACH_0
  1777. #ifdef PIDTEMP
  1778. // Apply the scale factors to the PID values
  1779. float scalePID_i(float i)
  1780. {
  1781. return i*PID_dT;
  1782. }
  1783. float unscalePID_i(float i)
  1784. {
  1785. return i/PID_dT;
  1786. }
  1787. float scalePID_d(float d)
  1788. {
  1789. return d/PID_dT;
  1790. }
  1791. float unscalePID_d(float d)
  1792. {
  1793. return d*PID_dT;
  1794. }
  1795. #endif //PIDTEMP