Marlin_main.cpp 331 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int8_t busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  513. }
  514. #ifdef MESH_BED_LEVELING
  515. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  516. #endif
  517. // Factory reset function
  518. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  519. // Level input parameter sets depth of reset
  520. int er_progress = 0;
  521. static void factory_reset(char level)
  522. {
  523. lcd_clear();
  524. switch (level) {
  525. // Level 0: Language reset
  526. case 0:
  527. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  528. WRITE(BEEPER, HIGH);
  529. _delay_ms(100);
  530. WRITE(BEEPER, LOW);
  531. lang_reset();
  532. break;
  533. //Level 1: Reset statistics
  534. case 1:
  535. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  536. WRITE(BEEPER, HIGH);
  537. _delay_ms(100);
  538. WRITE(BEEPER, LOW);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. //_delay_ms(2000);
  587. break;
  588. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  589. case 3:
  590. lcd_puts_P(PSTR("Factory RESET"));
  591. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  592. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. er_progress = 0;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. // Erase EEPROM
  601. for (int i = 0; i < 4096; i++) {
  602. eeprom_update_byte((uint8_t*)i, 0xFF);
  603. if (i % 41 == 0) {
  604. er_progress++;
  605. lcd_puts_at_P(3, 3, PSTR(" "));
  606. lcd_set_cursor(3, 3);
  607. lcd_print(er_progress);
  608. lcd_puts_P(PSTR("%"));
  609. }
  610. }
  611. break;
  612. case 4:
  613. bowden_menu();
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. extern "C" {
  620. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  621. }
  622. int uart_putchar(char c, FILE *)
  623. {
  624. MYSERIAL.write(c);
  625. return 0;
  626. }
  627. void lcd_splash()
  628. {
  629. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  630. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  631. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  632. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  633. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  634. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. //! @brief try to check if firmware is on right type of printer
  688. static void check_if_fw_is_on_right_printer(){
  689. #ifdef FILAMENT_SENSOR
  690. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  691. #ifdef IR_SENSOR
  692. swi2c_init();
  693. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  694. if (pat9125_detected){
  695. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  696. #endif //IR_SENSOR
  697. #ifdef PAT9125
  698. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  699. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  700. if (ir_detected){
  701. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  702. #endif //PAT9125
  703. }
  704. #endif //FILAMENT_SENSOR
  705. }
  706. uint8_t check_printer_version()
  707. {
  708. uint8_t version_changed = 0;
  709. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  710. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  711. if (printer_type != PRINTER_TYPE) {
  712. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  713. else version_changed |= 0b10;
  714. }
  715. if (motherboard != MOTHERBOARD) {
  716. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  717. else version_changed |= 0b01;
  718. }
  719. return version_changed;
  720. }
  721. #ifdef BOOTAPP
  722. #include "bootapp.h" //bootloader support
  723. #endif //BOOTAPP
  724. #if (LANG_MODE != 0) //secondary language support
  725. #ifdef W25X20CL
  726. // language update from external flash
  727. #define LANGBOOT_BLOCKSIZE 0x1000u
  728. #define LANGBOOT_RAMBUFFER 0x0800
  729. void update_sec_lang_from_external_flash()
  730. {
  731. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  732. {
  733. uint8_t lang = boot_reserved >> 4;
  734. uint8_t state = boot_reserved & 0xf;
  735. lang_table_header_t header;
  736. uint32_t src_addr;
  737. if (lang_get_header(lang, &header, &src_addr))
  738. {
  739. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  740. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  741. _delay(100);
  742. boot_reserved = (state + 1) | (lang << 4);
  743. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  744. {
  745. cli();
  746. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  747. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  748. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  749. if (state == 0)
  750. {
  751. //TODO - check header integrity
  752. }
  753. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  754. }
  755. else
  756. {
  757. //TODO - check sec lang data integrity
  758. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  759. }
  760. }
  761. }
  762. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  763. }
  764. #ifdef DEBUG_W25X20CL
  765. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  766. {
  767. lang_table_header_t header;
  768. uint8_t count = 0;
  769. uint32_t addr = 0x00000;
  770. while (1)
  771. {
  772. printf_P(_n("LANGTABLE%d:"), count);
  773. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  774. if (header.magic != LANG_MAGIC)
  775. {
  776. printf_P(_n("NG!\n"));
  777. break;
  778. }
  779. printf_P(_n("OK\n"));
  780. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  781. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  782. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  783. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  784. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  785. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  786. addr += header.size;
  787. codes[count] = header.code;
  788. count ++;
  789. }
  790. return count;
  791. }
  792. void list_sec_lang_from_external_flash()
  793. {
  794. uint16_t codes[8];
  795. uint8_t count = lang_xflash_enum_codes(codes);
  796. printf_P(_n("XFlash lang count = %hhd\n"), count);
  797. }
  798. #endif //DEBUG_W25X20CL
  799. #endif //W25X20CL
  800. #endif //(LANG_MODE != 0)
  801. static void w25x20cl_err_msg()
  802. {
  803. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  804. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  805. }
  806. // "Setup" function is called by the Arduino framework on startup.
  807. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  808. // are initialized by the main() routine provided by the Arduino framework.
  809. void setup()
  810. {
  811. mmu_init();
  812. ultralcd_init();
  813. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  814. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  815. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  816. spi_init();
  817. lcd_splash();
  818. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  819. #ifdef W25X20CL
  820. bool w25x20cl_success = w25x20cl_init();
  821. if (w25x20cl_success)
  822. {
  823. optiboot_w25x20cl_enter();
  824. #if (LANG_MODE != 0) //secondary language support
  825. update_sec_lang_from_external_flash();
  826. #endif //(LANG_MODE != 0)
  827. }
  828. else
  829. {
  830. w25x20cl_err_msg();
  831. }
  832. #else
  833. const bool w25x20cl_success = true;
  834. #endif //W25X20CL
  835. setup_killpin();
  836. setup_powerhold();
  837. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  838. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  839. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  840. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  841. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  842. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  843. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  844. if (farm_mode)
  845. {
  846. no_response = true; //we need confirmation by recieving PRUSA thx
  847. important_status = 8;
  848. prusa_statistics(8);
  849. selectedSerialPort = 1;
  850. #ifdef TMC2130
  851. //increased extruder current (PFW363)
  852. tmc2130_current_h[E_AXIS] = 36;
  853. tmc2130_current_r[E_AXIS] = 36;
  854. #endif //TMC2130
  855. #ifdef FILAMENT_SENSOR
  856. //disabled filament autoload (PFW360)
  857. fsensor_autoload_set(false);
  858. #endif //FILAMENT_SENSOR
  859. }
  860. MYSERIAL.begin(BAUDRATE);
  861. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  862. #ifndef W25X20CL
  863. SERIAL_PROTOCOLLNPGM("start");
  864. #endif //W25X20CL
  865. stdout = uartout;
  866. SERIAL_ECHO_START;
  867. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  868. #ifdef DEBUG_SEC_LANG
  869. lang_table_header_t header;
  870. uint32_t src_addr = 0x00000;
  871. if (lang_get_header(1, &header, &src_addr))
  872. {
  873. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  874. #define LT_PRINT_TEST 2
  875. // flash usage
  876. // total p.test
  877. //0 252718 t+c text code
  878. //1 253142 424 170 254
  879. //2 253040 322 164 158
  880. //3 253248 530 135 395
  881. #if (LT_PRINT_TEST==1) //not optimized printf
  882. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  883. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  884. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  885. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  886. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  887. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  888. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  889. #elif (LT_PRINT_TEST==2) //optimized printf
  890. printf_P(
  891. _n(
  892. " _src_addr = 0x%08lx\n"
  893. " _lt_magic = 0x%08lx %S\n"
  894. " _lt_size = 0x%04x (%d)\n"
  895. " _lt_count = 0x%04x (%d)\n"
  896. " _lt_chsum = 0x%04x\n"
  897. " _lt_code = 0x%04x (%c%c)\n"
  898. " _lt_resv1 = 0x%08lx\n"
  899. ),
  900. src_addr,
  901. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  902. header.size, header.size,
  903. header.count, header.count,
  904. header.checksum,
  905. header.code, header.code >> 8, header.code & 0xff,
  906. header.signature
  907. );
  908. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  909. MYSERIAL.print(" _src_addr = 0x");
  910. MYSERIAL.println(src_addr, 16);
  911. MYSERIAL.print(" _lt_magic = 0x");
  912. MYSERIAL.print(header.magic, 16);
  913. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  914. MYSERIAL.print(" _lt_size = 0x");
  915. MYSERIAL.print(header.size, 16);
  916. MYSERIAL.print(" (");
  917. MYSERIAL.print(header.size, 10);
  918. MYSERIAL.println(")");
  919. MYSERIAL.print(" _lt_count = 0x");
  920. MYSERIAL.print(header.count, 16);
  921. MYSERIAL.print(" (");
  922. MYSERIAL.print(header.count, 10);
  923. MYSERIAL.println(")");
  924. MYSERIAL.print(" _lt_chsum = 0x");
  925. MYSERIAL.println(header.checksum, 16);
  926. MYSERIAL.print(" _lt_code = 0x");
  927. MYSERIAL.print(header.code, 16);
  928. MYSERIAL.print(" (");
  929. MYSERIAL.print((char)(header.code >> 8), 0);
  930. MYSERIAL.print((char)(header.code & 0xff), 0);
  931. MYSERIAL.println(")");
  932. MYSERIAL.print(" _lt_resv1 = 0x");
  933. MYSERIAL.println(header.signature, 16);
  934. #endif //(LT_PRINT_TEST==)
  935. #undef LT_PRINT_TEST
  936. #if 0
  937. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  938. for (uint16_t i = 0; i < 1024; i++)
  939. {
  940. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  941. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  942. if ((i % 16) == 15) putchar('\n');
  943. }
  944. #endif
  945. uint16_t sum = 0;
  946. for (uint16_t i = 0; i < header.size; i++)
  947. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  948. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  949. sum -= header.checksum; //subtract checksum
  950. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  951. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  952. if (sum == header.checksum)
  953. printf_P(_n("Checksum OK\n"), sum);
  954. else
  955. printf_P(_n("Checksum NG\n"), sum);
  956. }
  957. else
  958. printf_P(_n("lang_get_header failed!\n"));
  959. #if 0
  960. for (uint16_t i = 0; i < 1024*10; i++)
  961. {
  962. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  963. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  964. if ((i % 16) == 15) putchar('\n');
  965. }
  966. #endif
  967. #if 0
  968. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  969. for (int i = 0; i < 4096; ++i) {
  970. int b = eeprom_read_byte((unsigned char*)i);
  971. if (b != 255) {
  972. SERIAL_ECHO(i);
  973. SERIAL_ECHO(":");
  974. SERIAL_ECHO(b);
  975. SERIAL_ECHOLN("");
  976. }
  977. }
  978. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  979. #endif
  980. #endif //DEBUG_SEC_LANG
  981. // Check startup - does nothing if bootloader sets MCUSR to 0
  982. byte mcu = MCUSR;
  983. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  984. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  985. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  986. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  987. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  988. if (mcu & 1) puts_P(MSG_POWERUP);
  989. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  990. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  991. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  992. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  993. MCUSR = 0;
  994. //SERIAL_ECHORPGM(MSG_MARLIN);
  995. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  996. #ifdef STRING_VERSION_CONFIG_H
  997. #ifdef STRING_CONFIG_H_AUTHOR
  998. SERIAL_ECHO_START;
  999. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1000. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1001. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1002. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1003. SERIAL_ECHOPGM("Compiled: ");
  1004. SERIAL_ECHOLNPGM(__DATE__);
  1005. #endif
  1006. #endif
  1007. SERIAL_ECHO_START;
  1008. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1009. SERIAL_ECHO(freeMemory());
  1010. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1011. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1012. //lcd_update_enable(false); // why do we need this?? - andre
  1013. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1014. bool previous_settings_retrieved = false;
  1015. uint8_t hw_changed = check_printer_version();
  1016. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1017. previous_settings_retrieved = Config_RetrieveSettings();
  1018. }
  1019. else { //printer version was changed so use default settings
  1020. Config_ResetDefault();
  1021. }
  1022. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1023. tp_init(); // Initialize temperature loop
  1024. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1025. else
  1026. {
  1027. w25x20cl_err_msg();
  1028. printf_P(_n("W25X20CL not responding.\n"));
  1029. }
  1030. plan_init(); // Initialize planner;
  1031. factory_reset();
  1032. lcd_encoder_diff=0;
  1033. #ifdef TMC2130
  1034. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1035. if (silentMode == 0xff) silentMode = 0;
  1036. tmc2130_mode = TMC2130_MODE_NORMAL;
  1037. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1038. if (crashdet && !farm_mode)
  1039. {
  1040. crashdet_enable();
  1041. puts_P(_N("CrashDetect ENABLED!"));
  1042. }
  1043. else
  1044. {
  1045. crashdet_disable();
  1046. puts_P(_N("CrashDetect DISABLED"));
  1047. }
  1048. #ifdef TMC2130_LINEARITY_CORRECTION
  1049. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1050. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1051. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1052. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1053. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1054. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1055. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1056. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1057. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1058. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1059. #endif //TMC2130_LINEARITY_CORRECTION
  1060. #ifdef TMC2130_VARIABLE_RESOLUTION
  1061. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1062. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1063. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1064. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1065. #else //TMC2130_VARIABLE_RESOLUTION
  1066. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1067. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1068. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1069. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1070. #endif //TMC2130_VARIABLE_RESOLUTION
  1071. #endif //TMC2130
  1072. st_init(); // Initialize stepper, this enables interrupts!
  1073. #ifdef UVLO_SUPPORT
  1074. setup_uvlo_interrupt();
  1075. #endif //UVLO_SUPPORT
  1076. #ifdef TMC2130
  1077. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1078. update_mode_profile();
  1079. tmc2130_init();
  1080. #endif //TMC2130
  1081. setup_photpin();
  1082. servo_init();
  1083. // Reset the machine correction matrix.
  1084. // It does not make sense to load the correction matrix until the machine is homed.
  1085. world2machine_reset();
  1086. #ifdef FILAMENT_SENSOR
  1087. fsensor_init();
  1088. #endif //FILAMENT_SENSOR
  1089. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1090. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1091. #endif
  1092. setup_homepin();
  1093. #ifdef TMC2130
  1094. if (1) {
  1095. // try to run to zero phase before powering the Z motor.
  1096. // Move in negative direction
  1097. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1098. // Round the current micro-micro steps to micro steps.
  1099. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1100. // Until the phase counter is reset to zero.
  1101. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1102. _delay(2);
  1103. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1104. _delay(2);
  1105. }
  1106. }
  1107. #endif //TMC2130
  1108. #if defined(Z_AXIS_ALWAYS_ON)
  1109. enable_z();
  1110. #endif
  1111. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1112. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1113. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1114. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1115. if (farm_mode)
  1116. {
  1117. prusa_statistics(8);
  1118. }
  1119. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1120. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1121. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1122. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1123. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1124. // where all the EEPROM entries are set to 0x0ff.
  1125. // Once a firmware boots up, it forces at least a language selection, which changes
  1126. // EEPROM_LANG to number lower than 0x0ff.
  1127. // 1) Set a high power mode.
  1128. #ifdef TMC2130
  1129. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1130. tmc2130_mode = TMC2130_MODE_NORMAL;
  1131. #endif //TMC2130
  1132. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1133. }
  1134. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1135. // but this times out if a blocking dialog is shown in setup().
  1136. card.initsd();
  1137. #ifdef DEBUG_SD_SPEED_TEST
  1138. if (card.cardOK)
  1139. {
  1140. uint8_t* buff = (uint8_t*)block_buffer;
  1141. uint32_t block = 0;
  1142. uint32_t sumr = 0;
  1143. uint32_t sumw = 0;
  1144. for (int i = 0; i < 1024; i++)
  1145. {
  1146. uint32_t u = _micros();
  1147. bool res = card.card.readBlock(i, buff);
  1148. u = _micros() - u;
  1149. if (res)
  1150. {
  1151. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1152. sumr += u;
  1153. u = _micros();
  1154. res = card.card.writeBlock(i, buff);
  1155. u = _micros() - u;
  1156. if (res)
  1157. {
  1158. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1159. sumw += u;
  1160. }
  1161. else
  1162. {
  1163. printf_P(PSTR("writeBlock %4d error\n"), i);
  1164. break;
  1165. }
  1166. }
  1167. else
  1168. {
  1169. printf_P(PSTR("readBlock %4d error\n"), i);
  1170. break;
  1171. }
  1172. }
  1173. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1174. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1175. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1176. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1177. }
  1178. else
  1179. printf_P(PSTR("Card NG!\n"));
  1180. #endif //DEBUG_SD_SPEED_TEST
  1181. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1182. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1183. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1184. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1185. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1186. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1187. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1188. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1189. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1190. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1191. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1192. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1193. #ifdef SNMM
  1194. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1195. int _z = BOWDEN_LENGTH;
  1196. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1197. }
  1198. #endif
  1199. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1200. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1201. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1202. #if (LANG_MODE != 0) //secondary language support
  1203. #ifdef DEBUG_W25X20CL
  1204. W25X20CL_SPI_ENTER();
  1205. uint8_t uid[8]; // 64bit unique id
  1206. w25x20cl_rd_uid(uid);
  1207. puts_P(_n("W25X20CL UID="));
  1208. for (uint8_t i = 0; i < 8; i ++)
  1209. printf_P(PSTR("%02hhx"), uid[i]);
  1210. putchar('\n');
  1211. list_sec_lang_from_external_flash();
  1212. #endif //DEBUG_W25X20CL
  1213. // lang_reset();
  1214. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1215. lcd_language();
  1216. #ifdef DEBUG_SEC_LANG
  1217. uint16_t sec_lang_code = lang_get_code(1);
  1218. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1219. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1220. lang_print_sec_lang(uartout);
  1221. #endif //DEBUG_SEC_LANG
  1222. #endif //(LANG_MODE != 0)
  1223. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1224. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1225. temp_cal_active = false;
  1226. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1227. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1228. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1229. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1230. int16_t z_shift = 0;
  1231. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1232. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1233. temp_cal_active = false;
  1234. }
  1235. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1236. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1237. }
  1238. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1239. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1240. }
  1241. //mbl_mode_init();
  1242. mbl_settings_init();
  1243. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1244. if (SilentModeMenu_MMU == 255) {
  1245. SilentModeMenu_MMU = 1;
  1246. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1247. }
  1248. check_babystep(); //checking if Z babystep is in allowed range
  1249. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1250. setup_fan_interrupt();
  1251. #endif //DEBUG_DISABLE_FANCHECK
  1252. #ifdef PAT9125
  1253. fsensor_setup_interrupt();
  1254. #endif //PAT9125
  1255. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1256. #ifndef DEBUG_DISABLE_STARTMSGS
  1257. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1258. check_if_fw_is_on_right_printer();
  1259. show_fw_version_warnings();
  1260. switch (hw_changed) {
  1261. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1262. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1263. case(0b01):
  1264. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1265. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1266. break;
  1267. case(0b10):
  1268. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1269. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1270. break;
  1271. case(0b11):
  1272. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1273. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1274. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1275. break;
  1276. default: break; //no change, show no message
  1277. }
  1278. if (!previous_settings_retrieved) {
  1279. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1280. Config_StoreSettings();
  1281. }
  1282. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1283. lcd_wizard(WizState::Run);
  1284. }
  1285. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1286. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1287. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1288. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1289. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1290. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1291. // Show the message.
  1292. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1293. }
  1294. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1295. // Show the message.
  1296. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1297. lcd_update_enable(true);
  1298. }
  1299. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1300. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1301. lcd_update_enable(true);
  1302. }
  1303. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1304. // Show the message.
  1305. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1306. }
  1307. }
  1308. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1309. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1310. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1311. update_current_firmware_version_to_eeprom();
  1312. lcd_selftest();
  1313. }
  1314. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1315. KEEPALIVE_STATE(IN_PROCESS);
  1316. #endif //DEBUG_DISABLE_STARTMSGS
  1317. lcd_update_enable(true);
  1318. lcd_clear();
  1319. lcd_update(2);
  1320. // Store the currently running firmware into an eeprom,
  1321. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1322. update_current_firmware_version_to_eeprom();
  1323. #ifdef TMC2130
  1324. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1325. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1326. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1327. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1328. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1329. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1330. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1331. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1332. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1333. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1334. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1335. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1336. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1337. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1338. #endif //TMC2130
  1339. #ifdef UVLO_SUPPORT
  1340. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1341. /*
  1342. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1343. else {
  1344. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1345. lcd_update_enable(true);
  1346. lcd_update(2);
  1347. lcd_setstatuspgm(_T(WELCOME_MSG));
  1348. }
  1349. */
  1350. manage_heater(); // Update temperatures
  1351. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1352. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1353. #endif
  1354. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1355. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1356. puts_P(_N("Automatic recovery!"));
  1357. #endif
  1358. recover_print(1);
  1359. }
  1360. else{
  1361. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1362. puts_P(_N("Normal recovery!"));
  1363. #endif
  1364. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1365. else {
  1366. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1367. lcd_update_enable(true);
  1368. lcd_update(2);
  1369. lcd_setstatuspgm(_T(WELCOME_MSG));
  1370. }
  1371. }
  1372. }
  1373. #endif //UVLO_SUPPORT
  1374. KEEPALIVE_STATE(NOT_BUSY);
  1375. #ifdef WATCHDOG
  1376. wdt_enable(WDTO_4S);
  1377. #endif //WATCHDOG
  1378. }
  1379. void trace();
  1380. #define CHUNK_SIZE 64 // bytes
  1381. #define SAFETY_MARGIN 1
  1382. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1383. int chunkHead = 0;
  1384. void serial_read_stream() {
  1385. setAllTargetHotends(0);
  1386. setTargetBed(0);
  1387. lcd_clear();
  1388. lcd_puts_P(PSTR(" Upload in progress"));
  1389. // first wait for how many bytes we will receive
  1390. uint32_t bytesToReceive;
  1391. // receive the four bytes
  1392. char bytesToReceiveBuffer[4];
  1393. for (int i=0; i<4; i++) {
  1394. int data;
  1395. while ((data = MYSERIAL.read()) == -1) {};
  1396. bytesToReceiveBuffer[i] = data;
  1397. }
  1398. // make it a uint32
  1399. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1400. // we're ready, notify the sender
  1401. MYSERIAL.write('+');
  1402. // lock in the routine
  1403. uint32_t receivedBytes = 0;
  1404. while (prusa_sd_card_upload) {
  1405. int i;
  1406. for (i=0; i<CHUNK_SIZE; i++) {
  1407. int data;
  1408. // check if we're not done
  1409. if (receivedBytes == bytesToReceive) {
  1410. break;
  1411. }
  1412. // read the next byte
  1413. while ((data = MYSERIAL.read()) == -1) {};
  1414. receivedBytes++;
  1415. // save it to the chunk
  1416. chunk[i] = data;
  1417. }
  1418. // write the chunk to SD
  1419. card.write_command_no_newline(&chunk[0]);
  1420. // notify the sender we're ready for more data
  1421. MYSERIAL.write('+');
  1422. // for safety
  1423. manage_heater();
  1424. // check if we're done
  1425. if(receivedBytes == bytesToReceive) {
  1426. trace(); // beep
  1427. card.closefile();
  1428. prusa_sd_card_upload = false;
  1429. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1430. }
  1431. }
  1432. }
  1433. /**
  1434. * Output a "busy" message at regular intervals
  1435. * while the machine is not accepting commands.
  1436. */
  1437. void host_keepalive() {
  1438. #ifndef HOST_KEEPALIVE_FEATURE
  1439. return;
  1440. #endif //HOST_KEEPALIVE_FEATURE
  1441. if (farm_mode) return;
  1442. long ms = _millis();
  1443. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1444. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1445. switch (busy_state) {
  1446. case IN_HANDLER:
  1447. case IN_PROCESS:
  1448. SERIAL_ECHO_START;
  1449. SERIAL_ECHOLNPGM("busy: processing");
  1450. break;
  1451. case PAUSED_FOR_USER:
  1452. SERIAL_ECHO_START;
  1453. SERIAL_ECHOLNPGM("busy: paused for user");
  1454. break;
  1455. case PAUSED_FOR_INPUT:
  1456. SERIAL_ECHO_START;
  1457. SERIAL_ECHOLNPGM("busy: paused for input");
  1458. break;
  1459. default:
  1460. break;
  1461. }
  1462. }
  1463. prev_busy_signal_ms = ms;
  1464. }
  1465. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1466. // Before loop(), the setup() function is called by the main() routine.
  1467. void loop()
  1468. {
  1469. KEEPALIVE_STATE(NOT_BUSY);
  1470. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1471. {
  1472. is_usb_printing = true;
  1473. usb_printing_counter--;
  1474. _usb_timer = _millis();
  1475. }
  1476. if (usb_printing_counter == 0)
  1477. {
  1478. is_usb_printing = false;
  1479. }
  1480. if (prusa_sd_card_upload)
  1481. {
  1482. //we read byte-by byte
  1483. serial_read_stream();
  1484. } else
  1485. {
  1486. get_command();
  1487. #ifdef SDSUPPORT
  1488. card.checkautostart(false);
  1489. #endif
  1490. if(buflen)
  1491. {
  1492. cmdbuffer_front_already_processed = false;
  1493. #ifdef SDSUPPORT
  1494. if(card.saving)
  1495. {
  1496. // Saving a G-code file onto an SD-card is in progress.
  1497. // Saving starts with M28, saving until M29 is seen.
  1498. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1499. card.write_command(CMDBUFFER_CURRENT_STRING);
  1500. if(card.logging)
  1501. process_commands();
  1502. else
  1503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1504. } else {
  1505. card.closefile();
  1506. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1507. }
  1508. } else {
  1509. process_commands();
  1510. }
  1511. #else
  1512. process_commands();
  1513. #endif //SDSUPPORT
  1514. if (! cmdbuffer_front_already_processed && buflen)
  1515. {
  1516. // ptr points to the start of the block currently being processed.
  1517. // The first character in the block is the block type.
  1518. char *ptr = cmdbuffer + bufindr;
  1519. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1520. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1521. union {
  1522. struct {
  1523. char lo;
  1524. char hi;
  1525. } lohi;
  1526. uint16_t value;
  1527. } sdlen;
  1528. sdlen.value = 0;
  1529. {
  1530. // This block locks the interrupts globally for 3.25 us,
  1531. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1532. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1533. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1534. cli();
  1535. // Reset the command to something, which will be ignored by the power panic routine,
  1536. // so this buffer length will not be counted twice.
  1537. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1538. // Extract the current buffer length.
  1539. sdlen.lohi.lo = *ptr ++;
  1540. sdlen.lohi.hi = *ptr;
  1541. // and pass it to the planner queue.
  1542. planner_add_sd_length(sdlen.value);
  1543. sei();
  1544. }
  1545. }
  1546. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1547. cli();
  1548. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1549. // and one for each command to previous block in the planner queue.
  1550. planner_add_sd_length(1);
  1551. sei();
  1552. }
  1553. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1554. // this block's SD card length will not be counted twice as its command type has been replaced
  1555. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1556. cmdqueue_pop_front();
  1557. }
  1558. host_keepalive();
  1559. }
  1560. }
  1561. //check heater every n milliseconds
  1562. manage_heater();
  1563. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1564. checkHitEndstops();
  1565. lcd_update(0);
  1566. #ifdef TMC2130
  1567. tmc2130_check_overtemp();
  1568. if (tmc2130_sg_crash)
  1569. {
  1570. uint8_t crash = tmc2130_sg_crash;
  1571. tmc2130_sg_crash = 0;
  1572. // crashdet_stop_and_save_print();
  1573. switch (crash)
  1574. {
  1575. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1576. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1577. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1578. }
  1579. }
  1580. #endif //TMC2130
  1581. mmu_loop();
  1582. }
  1583. #define DEFINE_PGM_READ_ANY(type, reader) \
  1584. static inline type pgm_read_any(const type *p) \
  1585. { return pgm_read_##reader##_near(p); }
  1586. DEFINE_PGM_READ_ANY(float, float);
  1587. DEFINE_PGM_READ_ANY(signed char, byte);
  1588. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1589. static const PROGMEM type array##_P[3] = \
  1590. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1591. static inline type array(int axis) \
  1592. { return pgm_read_any(&array##_P[axis]); } \
  1593. type array##_ext(int axis) \
  1594. { return pgm_read_any(&array##_P[axis]); }
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1597. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1598. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1599. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1600. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1601. static void axis_is_at_home(int axis) {
  1602. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1603. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1604. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1605. }
  1606. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1607. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1608. //! @return original feedmultiply
  1609. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1610. saved_feedrate = feedrate;
  1611. int l_feedmultiply = feedmultiply;
  1612. feedmultiply = 100;
  1613. previous_millis_cmd = _millis();
  1614. enable_endstops(enable_endstops_now);
  1615. return l_feedmultiply;
  1616. }
  1617. //! @param original_feedmultiply feedmultiply to restore
  1618. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1619. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1620. enable_endstops(false);
  1621. #endif
  1622. feedrate = saved_feedrate;
  1623. feedmultiply = original_feedmultiply;
  1624. previous_millis_cmd = _millis();
  1625. }
  1626. #ifdef ENABLE_AUTO_BED_LEVELING
  1627. #ifdef AUTO_BED_LEVELING_GRID
  1628. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1629. {
  1630. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1631. planeNormal.debug("planeNormal");
  1632. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1633. //bedLevel.debug("bedLevel");
  1634. //plan_bed_level_matrix.debug("bed level before");
  1635. //vector_3 uncorrected_position = plan_get_position_mm();
  1636. //uncorrected_position.debug("position before");
  1637. vector_3 corrected_position = plan_get_position();
  1638. // corrected_position.debug("position after");
  1639. current_position[X_AXIS] = corrected_position.x;
  1640. current_position[Y_AXIS] = corrected_position.y;
  1641. current_position[Z_AXIS] = corrected_position.z;
  1642. // put the bed at 0 so we don't go below it.
  1643. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1645. }
  1646. #else // not AUTO_BED_LEVELING_GRID
  1647. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1648. plan_bed_level_matrix.set_to_identity();
  1649. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1650. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1651. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1652. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1653. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1654. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1655. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1656. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1657. vector_3 corrected_position = plan_get_position();
  1658. current_position[X_AXIS] = corrected_position.x;
  1659. current_position[Y_AXIS] = corrected_position.y;
  1660. current_position[Z_AXIS] = corrected_position.z;
  1661. // put the bed at 0 so we don't go below it.
  1662. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1663. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1664. }
  1665. #endif // AUTO_BED_LEVELING_GRID
  1666. static void run_z_probe() {
  1667. plan_bed_level_matrix.set_to_identity();
  1668. feedrate = homing_feedrate[Z_AXIS];
  1669. // move down until you find the bed
  1670. float zPosition = -10;
  1671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1672. st_synchronize();
  1673. // we have to let the planner know where we are right now as it is not where we said to go.
  1674. zPosition = st_get_position_mm(Z_AXIS);
  1675. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1676. // move up the retract distance
  1677. zPosition += home_retract_mm(Z_AXIS);
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1679. st_synchronize();
  1680. // move back down slowly to find bed
  1681. feedrate = homing_feedrate[Z_AXIS]/4;
  1682. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1684. st_synchronize();
  1685. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1686. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1688. }
  1689. static void do_blocking_move_to(float x, float y, float z) {
  1690. float oldFeedRate = feedrate;
  1691. feedrate = homing_feedrate[Z_AXIS];
  1692. current_position[Z_AXIS] = z;
  1693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1694. st_synchronize();
  1695. feedrate = XY_TRAVEL_SPEED;
  1696. current_position[X_AXIS] = x;
  1697. current_position[Y_AXIS] = y;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1699. st_synchronize();
  1700. feedrate = oldFeedRate;
  1701. }
  1702. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1703. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1704. }
  1705. /// Probe bed height at position (x,y), returns the measured z value
  1706. static float probe_pt(float x, float y, float z_before) {
  1707. // move to right place
  1708. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1709. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1710. run_z_probe();
  1711. float measured_z = current_position[Z_AXIS];
  1712. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1713. SERIAL_PROTOCOLPGM(" x: ");
  1714. SERIAL_PROTOCOL(x);
  1715. SERIAL_PROTOCOLPGM(" y: ");
  1716. SERIAL_PROTOCOL(y);
  1717. SERIAL_PROTOCOLPGM(" z: ");
  1718. SERIAL_PROTOCOL(measured_z);
  1719. SERIAL_PROTOCOLPGM("\n");
  1720. return measured_z;
  1721. }
  1722. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1723. #ifdef LIN_ADVANCE
  1724. /**
  1725. * M900: Set and/or Get advance K factor and WH/D ratio
  1726. *
  1727. * K<factor> Set advance K factor
  1728. * R<ratio> Set ratio directly (overrides WH/D)
  1729. * W<width> H<height> D<diam> Set ratio from WH/D
  1730. */
  1731. inline void gcode_M900() {
  1732. st_synchronize();
  1733. const float newK = code_seen('K') ? code_value_float() : -1;
  1734. if (newK >= 0) extruder_advance_k = newK;
  1735. float newR = code_seen('R') ? code_value_float() : -1;
  1736. if (newR < 0) {
  1737. const float newD = code_seen('D') ? code_value_float() : -1,
  1738. newW = code_seen('W') ? code_value_float() : -1,
  1739. newH = code_seen('H') ? code_value_float() : -1;
  1740. if (newD >= 0 && newW >= 0 && newH >= 0)
  1741. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1742. }
  1743. if (newR >= 0) advance_ed_ratio = newR;
  1744. SERIAL_ECHO_START;
  1745. SERIAL_ECHOPGM("Advance K=");
  1746. SERIAL_ECHOLN(extruder_advance_k);
  1747. SERIAL_ECHOPGM(" E/D=");
  1748. const float ratio = advance_ed_ratio;
  1749. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1750. }
  1751. #endif // LIN_ADVANCE
  1752. bool check_commands() {
  1753. bool end_command_found = false;
  1754. while (buflen)
  1755. {
  1756. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1757. if (!cmdbuffer_front_already_processed)
  1758. cmdqueue_pop_front();
  1759. cmdbuffer_front_already_processed = false;
  1760. }
  1761. return end_command_found;
  1762. }
  1763. #ifdef TMC2130
  1764. bool calibrate_z_auto()
  1765. {
  1766. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1767. lcd_clear();
  1768. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1769. bool endstops_enabled = enable_endstops(true);
  1770. int axis_up_dir = -home_dir(Z_AXIS);
  1771. tmc2130_home_enter(Z_AXIS_MASK);
  1772. current_position[Z_AXIS] = 0;
  1773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1774. set_destination_to_current();
  1775. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1776. feedrate = homing_feedrate[Z_AXIS];
  1777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1778. st_synchronize();
  1779. // current_position[axis] = 0;
  1780. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. tmc2130_home_exit();
  1782. enable_endstops(false);
  1783. current_position[Z_AXIS] = 0;
  1784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1785. set_destination_to_current();
  1786. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1787. feedrate = homing_feedrate[Z_AXIS] / 2;
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1789. st_synchronize();
  1790. enable_endstops(endstops_enabled);
  1791. if (PRINTER_TYPE == PRINTER_MK3) {
  1792. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1793. }
  1794. else {
  1795. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1796. }
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. return true;
  1799. }
  1800. #endif //TMC2130
  1801. #ifdef TMC2130
  1802. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1803. #else
  1804. void homeaxis(int axis, uint8_t cnt)
  1805. #endif //TMC2130
  1806. {
  1807. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1808. #define HOMEAXIS_DO(LETTER) \
  1809. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1810. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1811. {
  1812. int axis_home_dir = home_dir(axis);
  1813. feedrate = homing_feedrate[axis];
  1814. #ifdef TMC2130
  1815. tmc2130_home_enter(X_AXIS_MASK << axis);
  1816. #endif //TMC2130
  1817. // Move away a bit, so that the print head does not touch the end position,
  1818. // and the following movement to endstop has a chance to achieve the required velocity
  1819. // for the stall guard to work.
  1820. current_position[axis] = 0;
  1821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1822. set_destination_to_current();
  1823. // destination[axis] = 11.f;
  1824. destination[axis] = -3.f * axis_home_dir;
  1825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1826. st_synchronize();
  1827. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1828. endstops_hit_on_purpose();
  1829. enable_endstops(false);
  1830. current_position[axis] = 0;
  1831. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1832. destination[axis] = 1. * axis_home_dir;
  1833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1834. st_synchronize();
  1835. // Now continue to move up to the left end stop with the collision detection enabled.
  1836. enable_endstops(true);
  1837. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1839. st_synchronize();
  1840. for (uint8_t i = 0; i < cnt; i++)
  1841. {
  1842. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1843. endstops_hit_on_purpose();
  1844. enable_endstops(false);
  1845. current_position[axis] = 0;
  1846. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1847. destination[axis] = -10.f * axis_home_dir;
  1848. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1849. st_synchronize();
  1850. endstops_hit_on_purpose();
  1851. // Now move left up to the collision, this time with a repeatable velocity.
  1852. enable_endstops(true);
  1853. destination[axis] = 11.f * axis_home_dir;
  1854. #ifdef TMC2130
  1855. feedrate = homing_feedrate[axis];
  1856. #else //TMC2130
  1857. feedrate = homing_feedrate[axis] / 2;
  1858. #endif //TMC2130
  1859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. #ifdef TMC2130
  1862. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1863. if (pstep) pstep[i] = mscnt >> 4;
  1864. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1865. #endif //TMC2130
  1866. }
  1867. endstops_hit_on_purpose();
  1868. enable_endstops(false);
  1869. #ifdef TMC2130
  1870. uint8_t orig = tmc2130_home_origin[axis];
  1871. uint8_t back = tmc2130_home_bsteps[axis];
  1872. if (tmc2130_home_enabled && (orig <= 63))
  1873. {
  1874. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1875. if (back > 0)
  1876. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1877. }
  1878. else
  1879. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1880. tmc2130_home_exit();
  1881. #endif //TMC2130
  1882. axis_is_at_home(axis);
  1883. axis_known_position[axis] = true;
  1884. // Move from minimum
  1885. #ifdef TMC2130
  1886. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1887. #else //TMC2130
  1888. float dist = - axis_home_dir * 0.01f * 64;
  1889. #endif //TMC2130
  1890. current_position[axis] -= dist;
  1891. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1892. current_position[axis] += dist;
  1893. destination[axis] = current_position[axis];
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1895. st_synchronize();
  1896. feedrate = 0.0;
  1897. }
  1898. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1899. {
  1900. #ifdef TMC2130
  1901. FORCE_HIGH_POWER_START;
  1902. #endif
  1903. int axis_home_dir = home_dir(axis);
  1904. current_position[axis] = 0;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1907. feedrate = homing_feedrate[axis];
  1908. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1909. st_synchronize();
  1910. #ifdef TMC2130
  1911. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1912. FORCE_HIGH_POWER_END;
  1913. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1914. return;
  1915. }
  1916. #endif //TMC2130
  1917. current_position[axis] = 0;
  1918. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1919. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1923. feedrate = homing_feedrate[axis]/2 ;
  1924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1925. st_synchronize();
  1926. #ifdef TMC2130
  1927. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1928. FORCE_HIGH_POWER_END;
  1929. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1930. return;
  1931. }
  1932. #endif //TMC2130
  1933. axis_is_at_home(axis);
  1934. destination[axis] = current_position[axis];
  1935. feedrate = 0.0;
  1936. endstops_hit_on_purpose();
  1937. axis_known_position[axis] = true;
  1938. #ifdef TMC2130
  1939. FORCE_HIGH_POWER_END;
  1940. #endif
  1941. }
  1942. enable_endstops(endstops_enabled);
  1943. }
  1944. /**/
  1945. void home_xy()
  1946. {
  1947. set_destination_to_current();
  1948. homeaxis(X_AXIS);
  1949. homeaxis(Y_AXIS);
  1950. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1951. endstops_hit_on_purpose();
  1952. }
  1953. void refresh_cmd_timeout(void)
  1954. {
  1955. previous_millis_cmd = _millis();
  1956. }
  1957. #ifdef FWRETRACT
  1958. void retract(bool retracting, bool swapretract = false) {
  1959. if(retracting && !retracted[active_extruder]) {
  1960. destination[X_AXIS]=current_position[X_AXIS];
  1961. destination[Y_AXIS]=current_position[Y_AXIS];
  1962. destination[Z_AXIS]=current_position[Z_AXIS];
  1963. destination[E_AXIS]=current_position[E_AXIS];
  1964. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1965. plan_set_e_position(current_position[E_AXIS]);
  1966. float oldFeedrate = feedrate;
  1967. feedrate=cs.retract_feedrate*60;
  1968. retracted[active_extruder]=true;
  1969. prepare_move();
  1970. current_position[Z_AXIS]-=cs.retract_zlift;
  1971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1972. prepare_move();
  1973. feedrate = oldFeedrate;
  1974. } else if(!retracting && retracted[active_extruder]) {
  1975. destination[X_AXIS]=current_position[X_AXIS];
  1976. destination[Y_AXIS]=current_position[Y_AXIS];
  1977. destination[Z_AXIS]=current_position[Z_AXIS];
  1978. destination[E_AXIS]=current_position[E_AXIS];
  1979. current_position[Z_AXIS]+=cs.retract_zlift;
  1980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1981. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1982. plan_set_e_position(current_position[E_AXIS]);
  1983. float oldFeedrate = feedrate;
  1984. feedrate=cs.retract_recover_feedrate*60;
  1985. retracted[active_extruder]=false;
  1986. prepare_move();
  1987. feedrate = oldFeedrate;
  1988. }
  1989. } //retract
  1990. #endif //FWRETRACT
  1991. void trace() {
  1992. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1993. _tone(BEEPER, 440);
  1994. _delay(25);
  1995. _noTone(BEEPER);
  1996. _delay(20);
  1997. }
  1998. /*
  1999. void ramming() {
  2000. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2001. if (current_temperature[0] < 230) {
  2002. //PLA
  2003. max_feedrate[E_AXIS] = 50;
  2004. //current_position[E_AXIS] -= 8;
  2005. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2006. //current_position[E_AXIS] += 8;
  2007. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2008. current_position[E_AXIS] += 5.4;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2010. current_position[E_AXIS] += 3.2;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2012. current_position[E_AXIS] += 3;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2014. st_synchronize();
  2015. max_feedrate[E_AXIS] = 80;
  2016. current_position[E_AXIS] -= 82;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2018. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2019. current_position[E_AXIS] -= 20;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2021. current_position[E_AXIS] += 5;
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2023. current_position[E_AXIS] += 5;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2025. current_position[E_AXIS] -= 10;
  2026. st_synchronize();
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2028. current_position[E_AXIS] += 10;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2030. current_position[E_AXIS] -= 10;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2032. current_position[E_AXIS] += 10;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2034. current_position[E_AXIS] -= 10;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2036. st_synchronize();
  2037. }
  2038. else {
  2039. //ABS
  2040. max_feedrate[E_AXIS] = 50;
  2041. //current_position[E_AXIS] -= 8;
  2042. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2043. //current_position[E_AXIS] += 8;
  2044. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2045. current_position[E_AXIS] += 3.1;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2047. current_position[E_AXIS] += 3.1;
  2048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2049. current_position[E_AXIS] += 4;
  2050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2051. st_synchronize();
  2052. //current_position[X_AXIS] += 23; //delay
  2053. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2054. //current_position[X_AXIS] -= 23; //delay
  2055. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2056. _delay(4700);
  2057. max_feedrate[E_AXIS] = 80;
  2058. current_position[E_AXIS] -= 92;
  2059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2060. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2061. current_position[E_AXIS] -= 5;
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2063. current_position[E_AXIS] += 5;
  2064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2065. current_position[E_AXIS] -= 5;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2067. st_synchronize();
  2068. current_position[E_AXIS] += 5;
  2069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2070. current_position[E_AXIS] -= 5;
  2071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2072. current_position[E_AXIS] += 5;
  2073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2074. current_position[E_AXIS] -= 5;
  2075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2076. st_synchronize();
  2077. }
  2078. }
  2079. */
  2080. #ifdef TMC2130
  2081. void force_high_power_mode(bool start_high_power_section) {
  2082. uint8_t silent;
  2083. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2084. if (silent == 1) {
  2085. //we are in silent mode, set to normal mode to enable crash detection
  2086. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2087. st_synchronize();
  2088. cli();
  2089. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2090. update_mode_profile();
  2091. tmc2130_init();
  2092. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2093. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2094. st_reset_timer();
  2095. sei();
  2096. }
  2097. }
  2098. #endif //TMC2130
  2099. #ifdef TMC2130
  2100. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2101. #else
  2102. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2103. #endif //TMC2130
  2104. {
  2105. st_synchronize();
  2106. #if 0
  2107. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2108. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2109. #endif
  2110. // Flag for the display update routine and to disable the print cancelation during homing.
  2111. homing_flag = true;
  2112. // Which axes should be homed?
  2113. bool home_x = home_x_axis;
  2114. bool home_y = home_y_axis;
  2115. bool home_z = home_z_axis;
  2116. // Either all X,Y,Z codes are present, or none of them.
  2117. bool home_all_axes = home_x == home_y && home_x == home_z;
  2118. if (home_all_axes)
  2119. // No X/Y/Z code provided means to home all axes.
  2120. home_x = home_y = home_z = true;
  2121. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2122. if (home_all_axes) {
  2123. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2124. feedrate = homing_feedrate[Z_AXIS];
  2125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2126. st_synchronize();
  2127. }
  2128. #ifdef ENABLE_AUTO_BED_LEVELING
  2129. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2130. #endif //ENABLE_AUTO_BED_LEVELING
  2131. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2132. // the planner will not perform any adjustments in the XY plane.
  2133. // Wait for the motors to stop and update the current position with the absolute values.
  2134. world2machine_revert_to_uncorrected();
  2135. // For mesh bed leveling deactivate the matrix temporarily.
  2136. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2137. // in a single axis only.
  2138. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2139. #ifdef MESH_BED_LEVELING
  2140. uint8_t mbl_was_active = mbl.active;
  2141. mbl.active = 0;
  2142. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2143. #endif
  2144. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2145. // consumed during the first movements following this statement.
  2146. if (home_z)
  2147. babystep_undo();
  2148. saved_feedrate = feedrate;
  2149. int l_feedmultiply = feedmultiply;
  2150. feedmultiply = 100;
  2151. previous_millis_cmd = _millis();
  2152. enable_endstops(true);
  2153. memcpy(destination, current_position, sizeof(destination));
  2154. feedrate = 0.0;
  2155. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2156. if(home_z)
  2157. homeaxis(Z_AXIS);
  2158. #endif
  2159. #ifdef QUICK_HOME
  2160. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2161. if(home_x && home_y) //first diagonal move
  2162. {
  2163. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2164. int x_axis_home_dir = home_dir(X_AXIS);
  2165. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2166. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2167. feedrate = homing_feedrate[X_AXIS];
  2168. if(homing_feedrate[Y_AXIS]<feedrate)
  2169. feedrate = homing_feedrate[Y_AXIS];
  2170. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2171. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2172. } else {
  2173. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2174. }
  2175. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2176. st_synchronize();
  2177. axis_is_at_home(X_AXIS);
  2178. axis_is_at_home(Y_AXIS);
  2179. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2180. destination[X_AXIS] = current_position[X_AXIS];
  2181. destination[Y_AXIS] = current_position[Y_AXIS];
  2182. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2183. feedrate = 0.0;
  2184. st_synchronize();
  2185. endstops_hit_on_purpose();
  2186. current_position[X_AXIS] = destination[X_AXIS];
  2187. current_position[Y_AXIS] = destination[Y_AXIS];
  2188. current_position[Z_AXIS] = destination[Z_AXIS];
  2189. }
  2190. #endif /* QUICK_HOME */
  2191. #ifdef TMC2130
  2192. if(home_x)
  2193. {
  2194. if (!calib)
  2195. homeaxis(X_AXIS);
  2196. else
  2197. tmc2130_home_calibrate(X_AXIS);
  2198. }
  2199. if(home_y)
  2200. {
  2201. if (!calib)
  2202. homeaxis(Y_AXIS);
  2203. else
  2204. tmc2130_home_calibrate(Y_AXIS);
  2205. }
  2206. #else //TMC2130
  2207. if(home_x) homeaxis(X_AXIS);
  2208. if(home_y) homeaxis(Y_AXIS);
  2209. #endif //TMC2130
  2210. if(home_x_axis && home_x_value != 0)
  2211. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2212. if(home_y_axis && home_y_value != 0)
  2213. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2214. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2215. #ifndef Z_SAFE_HOMING
  2216. if(home_z) {
  2217. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2218. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2219. feedrate = max_feedrate[Z_AXIS];
  2220. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2221. st_synchronize();
  2222. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2223. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2224. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2225. {
  2226. homeaxis(X_AXIS);
  2227. homeaxis(Y_AXIS);
  2228. }
  2229. // 1st mesh bed leveling measurement point, corrected.
  2230. world2machine_initialize();
  2231. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2232. world2machine_reset();
  2233. if (destination[Y_AXIS] < Y_MIN_POS)
  2234. destination[Y_AXIS] = Y_MIN_POS;
  2235. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2236. feedrate = homing_feedrate[Z_AXIS]/10;
  2237. current_position[Z_AXIS] = 0;
  2238. enable_endstops(false);
  2239. #ifdef DEBUG_BUILD
  2240. SERIAL_ECHOLNPGM("plan_set_position()");
  2241. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2242. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2243. #endif
  2244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2245. #ifdef DEBUG_BUILD
  2246. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2247. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2248. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2249. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2250. #endif
  2251. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2252. st_synchronize();
  2253. current_position[X_AXIS] = destination[X_AXIS];
  2254. current_position[Y_AXIS] = destination[Y_AXIS];
  2255. enable_endstops(true);
  2256. endstops_hit_on_purpose();
  2257. homeaxis(Z_AXIS);
  2258. #else // MESH_BED_LEVELING
  2259. homeaxis(Z_AXIS);
  2260. #endif // MESH_BED_LEVELING
  2261. }
  2262. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2263. if(home_all_axes) {
  2264. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2265. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2266. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2267. feedrate = XY_TRAVEL_SPEED/60;
  2268. current_position[Z_AXIS] = 0;
  2269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2270. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2271. st_synchronize();
  2272. current_position[X_AXIS] = destination[X_AXIS];
  2273. current_position[Y_AXIS] = destination[Y_AXIS];
  2274. homeaxis(Z_AXIS);
  2275. }
  2276. // Let's see if X and Y are homed and probe is inside bed area.
  2277. if(home_z) {
  2278. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2279. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2280. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2281. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2282. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2283. current_position[Z_AXIS] = 0;
  2284. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2285. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2286. feedrate = max_feedrate[Z_AXIS];
  2287. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2288. st_synchronize();
  2289. homeaxis(Z_AXIS);
  2290. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2291. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2292. SERIAL_ECHO_START;
  2293. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2294. } else {
  2295. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2296. SERIAL_ECHO_START;
  2297. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2298. }
  2299. }
  2300. #endif // Z_SAFE_HOMING
  2301. #endif // Z_HOME_DIR < 0
  2302. if(home_z_axis && home_z_value != 0)
  2303. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2304. #ifdef ENABLE_AUTO_BED_LEVELING
  2305. if(home_z)
  2306. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2307. #endif
  2308. // Set the planner and stepper routine positions.
  2309. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2310. // contains the machine coordinates.
  2311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2312. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2313. enable_endstops(false);
  2314. #endif
  2315. feedrate = saved_feedrate;
  2316. feedmultiply = l_feedmultiply;
  2317. previous_millis_cmd = _millis();
  2318. endstops_hit_on_purpose();
  2319. #ifndef MESH_BED_LEVELING
  2320. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2321. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2322. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2323. lcd_adjust_z();
  2324. #endif
  2325. // Load the machine correction matrix
  2326. world2machine_initialize();
  2327. // and correct the current_position XY axes to match the transformed coordinate system.
  2328. world2machine_update_current();
  2329. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2330. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2331. {
  2332. if (! home_z && mbl_was_active) {
  2333. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2334. mbl.active = true;
  2335. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2336. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2337. }
  2338. }
  2339. else
  2340. {
  2341. st_synchronize();
  2342. homing_flag = false;
  2343. }
  2344. #endif
  2345. if (farm_mode) { prusa_statistics(20); };
  2346. homing_flag = false;
  2347. #if 0
  2348. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2349. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2350. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2351. #endif
  2352. }
  2353. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2354. {
  2355. #ifdef TMC2130
  2356. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2357. #else
  2358. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2359. #endif //TMC2130
  2360. }
  2361. void adjust_bed_reset()
  2362. {
  2363. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2364. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2365. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2366. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2367. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2368. }
  2369. //! @brief Calibrate XYZ
  2370. //! @param onlyZ if true, calibrate only Z axis
  2371. //! @param verbosity_level
  2372. //! @retval true Succeeded
  2373. //! @retval false Failed
  2374. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2375. {
  2376. bool final_result = false;
  2377. #ifdef TMC2130
  2378. FORCE_HIGH_POWER_START;
  2379. #endif // TMC2130
  2380. // Only Z calibration?
  2381. if (!onlyZ)
  2382. {
  2383. setTargetBed(0);
  2384. setAllTargetHotends(0);
  2385. adjust_bed_reset(); //reset bed level correction
  2386. }
  2387. // Disable the default update procedure of the display. We will do a modal dialog.
  2388. lcd_update_enable(false);
  2389. // Let the planner use the uncorrected coordinates.
  2390. mbl.reset();
  2391. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2392. // the planner will not perform any adjustments in the XY plane.
  2393. // Wait for the motors to stop and update the current position with the absolute values.
  2394. world2machine_revert_to_uncorrected();
  2395. // Reset the baby step value applied without moving the axes.
  2396. babystep_reset();
  2397. // Mark all axes as in a need for homing.
  2398. memset(axis_known_position, 0, sizeof(axis_known_position));
  2399. // Home in the XY plane.
  2400. //set_destination_to_current();
  2401. int l_feedmultiply = setup_for_endstop_move();
  2402. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2403. home_xy();
  2404. enable_endstops(false);
  2405. current_position[X_AXIS] += 5;
  2406. current_position[Y_AXIS] += 5;
  2407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2408. st_synchronize();
  2409. // Let the user move the Z axes up to the end stoppers.
  2410. #ifdef TMC2130
  2411. if (calibrate_z_auto())
  2412. {
  2413. #else //TMC2130
  2414. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2415. {
  2416. #endif //TMC2130
  2417. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2418. if(onlyZ){
  2419. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2420. lcd_set_cursor(0, 3);
  2421. lcd_print(1);
  2422. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2423. }else{
  2424. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2425. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2426. lcd_set_cursor(0, 2);
  2427. lcd_print(1);
  2428. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2429. }
  2430. refresh_cmd_timeout();
  2431. #ifndef STEEL_SHEET
  2432. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2433. {
  2434. lcd_wait_for_cool_down();
  2435. }
  2436. #endif //STEEL_SHEET
  2437. if(!onlyZ)
  2438. {
  2439. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2440. #ifdef STEEL_SHEET
  2441. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2442. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2443. #endif //STEEL_SHEET
  2444. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2445. KEEPALIVE_STATE(IN_HANDLER);
  2446. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2447. lcd_set_cursor(0, 2);
  2448. lcd_print(1);
  2449. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2450. }
  2451. bool endstops_enabled = enable_endstops(false);
  2452. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2454. st_synchronize();
  2455. // Move the print head close to the bed.
  2456. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2457. enable_endstops(true);
  2458. #ifdef TMC2130
  2459. tmc2130_home_enter(Z_AXIS_MASK);
  2460. #endif //TMC2130
  2461. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2462. st_synchronize();
  2463. #ifdef TMC2130
  2464. tmc2130_home_exit();
  2465. #endif //TMC2130
  2466. enable_endstops(endstops_enabled);
  2467. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2468. {
  2469. if (onlyZ)
  2470. {
  2471. clean_up_after_endstop_move(l_feedmultiply);
  2472. // Z only calibration.
  2473. // Load the machine correction matrix
  2474. world2machine_initialize();
  2475. // and correct the current_position to match the transformed coordinate system.
  2476. world2machine_update_current();
  2477. //FIXME
  2478. bool result = sample_mesh_and_store_reference();
  2479. if (result)
  2480. {
  2481. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2482. // Shipped, the nozzle height has been set already. The user can start printing now.
  2483. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2484. final_result = true;
  2485. // babystep_apply();
  2486. }
  2487. }
  2488. else
  2489. {
  2490. // Reset the baby step value and the baby step applied flag.
  2491. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2492. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2493. // Complete XYZ calibration.
  2494. uint8_t point_too_far_mask = 0;
  2495. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2496. clean_up_after_endstop_move(l_feedmultiply);
  2497. // Print head up.
  2498. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2500. st_synchronize();
  2501. //#ifndef NEW_XYZCAL
  2502. if (result >= 0)
  2503. {
  2504. #ifdef HEATBED_V2
  2505. sample_z();
  2506. #else //HEATBED_V2
  2507. point_too_far_mask = 0;
  2508. // Second half: The fine adjustment.
  2509. // Let the planner use the uncorrected coordinates.
  2510. mbl.reset();
  2511. world2machine_reset();
  2512. // Home in the XY plane.
  2513. int l_feedmultiply = setup_for_endstop_move();
  2514. home_xy();
  2515. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2516. clean_up_after_endstop_move(l_feedmultiply);
  2517. // Print head up.
  2518. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2520. st_synchronize();
  2521. // if (result >= 0) babystep_apply();
  2522. #endif //HEATBED_V2
  2523. }
  2524. //#endif //NEW_XYZCAL
  2525. lcd_update_enable(true);
  2526. lcd_update(2);
  2527. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2528. if (result >= 0)
  2529. {
  2530. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2531. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2532. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2533. final_result = true;
  2534. }
  2535. }
  2536. #ifdef TMC2130
  2537. tmc2130_home_exit();
  2538. #endif
  2539. }
  2540. else
  2541. {
  2542. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2543. final_result = false;
  2544. }
  2545. }
  2546. else
  2547. {
  2548. // Timeouted.
  2549. }
  2550. lcd_update_enable(true);
  2551. #ifdef TMC2130
  2552. FORCE_HIGH_POWER_END;
  2553. #endif // TMC2130
  2554. return final_result;
  2555. }
  2556. void gcode_M114()
  2557. {
  2558. SERIAL_PROTOCOLPGM("X:");
  2559. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2560. SERIAL_PROTOCOLPGM(" Y:");
  2561. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2562. SERIAL_PROTOCOLPGM(" Z:");
  2563. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2564. SERIAL_PROTOCOLPGM(" E:");
  2565. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2566. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2567. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2568. SERIAL_PROTOCOLPGM(" Y:");
  2569. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2570. SERIAL_PROTOCOLPGM(" Z:");
  2571. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2572. SERIAL_PROTOCOLPGM(" E:");
  2573. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2574. SERIAL_PROTOCOLLN("");
  2575. }
  2576. //! extracted code to compute z_shift for M600 in case of filament change operation
  2577. //! requested from fsensors.
  2578. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2579. //! unlike the previous implementation, which was adding 25mm even when the head was
  2580. //! printing at e.g. 24mm height.
  2581. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2582. //! the printout.
  2583. //! This function is templated to enable fast change of computation data type.
  2584. //! @return new z_shift value
  2585. template<typename T>
  2586. static T gcode_M600_filament_change_z_shift()
  2587. {
  2588. #ifdef FILAMENTCHANGE_ZADD
  2589. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2590. // avoid floating point arithmetics when not necessary - results in shorter code
  2591. T ztmp = T( current_position[Z_AXIS] );
  2592. T z_shift = 0;
  2593. if(ztmp < T(25)){
  2594. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2595. }
  2596. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2597. #else
  2598. return T(0);
  2599. #endif
  2600. }
  2601. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2602. {
  2603. st_synchronize();
  2604. float lastpos[4];
  2605. if (farm_mode)
  2606. {
  2607. prusa_statistics(22);
  2608. }
  2609. //First backup current position and settings
  2610. int feedmultiplyBckp = feedmultiply;
  2611. float HotendTempBckp = degTargetHotend(active_extruder);
  2612. int fanSpeedBckp = fanSpeed;
  2613. lastpos[X_AXIS] = current_position[X_AXIS];
  2614. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2615. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2616. lastpos[E_AXIS] = current_position[E_AXIS];
  2617. //Retract E
  2618. current_position[E_AXIS] += e_shift;
  2619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2620. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2621. st_synchronize();
  2622. //Lift Z
  2623. current_position[Z_AXIS] += z_shift;
  2624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2625. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2626. st_synchronize();
  2627. //Move XY to side
  2628. current_position[X_AXIS] = x_position;
  2629. current_position[Y_AXIS] = y_position;
  2630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2631. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2632. st_synchronize();
  2633. //Beep, manage nozzle heater and wait for user to start unload filament
  2634. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2635. lcd_change_fil_state = 0;
  2636. // Unload filament
  2637. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2638. else unload_filament(); //unload filament for single material (used also in M702)
  2639. //finish moves
  2640. st_synchronize();
  2641. if (!mmu_enabled)
  2642. {
  2643. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2644. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2645. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2646. if (lcd_change_fil_state == 0)
  2647. {
  2648. lcd_clear();
  2649. lcd_set_cursor(0, 2);
  2650. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2651. current_position[X_AXIS] -= 100;
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2653. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2654. st_synchronize();
  2655. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2656. }
  2657. }
  2658. if (mmu_enabled)
  2659. {
  2660. if (!automatic) {
  2661. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2662. mmu_M600_wait_and_beep();
  2663. if (saved_printing) {
  2664. lcd_clear();
  2665. lcd_set_cursor(0, 2);
  2666. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2667. mmu_command(MmuCmd::R0);
  2668. manage_response(false, false);
  2669. }
  2670. }
  2671. mmu_M600_load_filament(automatic, HotendTempBckp);
  2672. }
  2673. else
  2674. M600_load_filament();
  2675. if (!automatic) M600_check_state(HotendTempBckp);
  2676. lcd_update_enable(true);
  2677. //Not let's go back to print
  2678. fanSpeed = fanSpeedBckp;
  2679. //Feed a little of filament to stabilize pressure
  2680. if (!automatic)
  2681. {
  2682. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2684. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2685. }
  2686. //Move XY back
  2687. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2688. FILAMENTCHANGE_XYFEED, active_extruder);
  2689. st_synchronize();
  2690. //Move Z back
  2691. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2692. FILAMENTCHANGE_ZFEED, active_extruder);
  2693. st_synchronize();
  2694. //Set E position to original
  2695. plan_set_e_position(lastpos[E_AXIS]);
  2696. memcpy(current_position, lastpos, sizeof(lastpos));
  2697. memcpy(destination, current_position, sizeof(current_position));
  2698. //Recover feed rate
  2699. feedmultiply = feedmultiplyBckp;
  2700. char cmd[9];
  2701. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2702. enquecommand(cmd);
  2703. #ifdef IR_SENSOR
  2704. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2705. fsensor_check_autoload();
  2706. #endif //IR_SENSOR
  2707. lcd_setstatuspgm(_T(WELCOME_MSG));
  2708. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2709. }
  2710. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2711. //!
  2712. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2713. //! during extruding (loading) filament.
  2714. void marlin_rise_z(void)
  2715. {
  2716. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2717. }
  2718. void gcode_M701()
  2719. {
  2720. printf_P(PSTR("gcode_M701 begin\n"));
  2721. if (mmu_enabled)
  2722. {
  2723. extr_adj(tmp_extruder);//loads current extruder
  2724. mmu_extruder = tmp_extruder;
  2725. }
  2726. else
  2727. {
  2728. enable_z();
  2729. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2730. #ifdef FSENSOR_QUALITY
  2731. fsensor_oq_meassure_start(40);
  2732. #endif //FSENSOR_QUALITY
  2733. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2734. current_position[E_AXIS] += 40;
  2735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2736. st_synchronize();
  2737. marlin_rise_z();
  2738. current_position[E_AXIS] += 30;
  2739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2740. load_filament_final_feed(); //slow sequence
  2741. st_synchronize();
  2742. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2743. delay_keep_alive(50);
  2744. _noTone(BEEPER);
  2745. if (!farm_mode && loading_flag) {
  2746. lcd_load_filament_color_check();
  2747. }
  2748. lcd_update_enable(true);
  2749. lcd_update(2);
  2750. lcd_setstatuspgm(_T(WELCOME_MSG));
  2751. disable_z();
  2752. loading_flag = false;
  2753. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2754. #ifdef FSENSOR_QUALITY
  2755. fsensor_oq_meassure_stop();
  2756. if (!fsensor_oq_result())
  2757. {
  2758. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2759. lcd_update_enable(true);
  2760. lcd_update(2);
  2761. if (disable)
  2762. fsensor_disable();
  2763. }
  2764. #endif //FSENSOR_QUALITY
  2765. }
  2766. }
  2767. /**
  2768. * @brief Get serial number from 32U2 processor
  2769. *
  2770. * Typical format of S/N is:CZPX0917X003XC13518
  2771. *
  2772. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2773. *
  2774. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2775. * reply is transmitted to serial port 1 character by character.
  2776. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2777. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2778. * in any case.
  2779. */
  2780. static void gcode_PRUSA_SN()
  2781. {
  2782. if (farm_mode) {
  2783. selectedSerialPort = 0;
  2784. putchar(';');
  2785. putchar('S');
  2786. int numbersRead = 0;
  2787. ShortTimer timeout;
  2788. timeout.start();
  2789. while (numbersRead < 19) {
  2790. while (MSerial.available() > 0) {
  2791. uint8_t serial_char = MSerial.read();
  2792. selectedSerialPort = 1;
  2793. putchar(serial_char);
  2794. numbersRead++;
  2795. selectedSerialPort = 0;
  2796. }
  2797. if (timeout.expired(100u)) break;
  2798. }
  2799. selectedSerialPort = 1;
  2800. putchar('\n');
  2801. #if 0
  2802. for (int b = 0; b < 3; b++) {
  2803. _tone(BEEPER, 110);
  2804. _delay(50);
  2805. _noTone(BEEPER);
  2806. _delay(50);
  2807. }
  2808. #endif
  2809. } else {
  2810. puts_P(_N("Not in farm mode."));
  2811. }
  2812. }
  2813. #ifdef BACKLASH_X
  2814. extern uint8_t st_backlash_x;
  2815. #endif //BACKLASH_X
  2816. #ifdef BACKLASH_Y
  2817. extern uint8_t st_backlash_y;
  2818. #endif //BACKLASH_Y
  2819. //! @brief Parse and process commands
  2820. //!
  2821. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2822. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2823. //!
  2824. //! Implemented Codes
  2825. //! -------------------
  2826. //!
  2827. //!@n PRUSA CODES
  2828. //!@n P F - Returns FW versions
  2829. //!@n P R - Returns revision of printer
  2830. //!
  2831. //!@n G0 -> G1
  2832. //!@n G1 - Coordinated Movement X Y Z E
  2833. //!@n G2 - CW ARC
  2834. //!@n G3 - CCW ARC
  2835. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2836. //!@n G10 - retract filament according to settings of M207
  2837. //!@n G11 - retract recover filament according to settings of M208
  2838. //!@n G28 - Home all Axis
  2839. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2840. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2841. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2842. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2843. //!@n G80 - Automatic mesh bed leveling
  2844. //!@n G81 - Print bed profile
  2845. //!@n G90 - Use Absolute Coordinates
  2846. //!@n G91 - Use Relative Coordinates
  2847. //!@n G92 - Set current position to coordinates given
  2848. //!
  2849. //!@n M Codes
  2850. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2851. //!@n M1 - Same as M0
  2852. //!@n M17 - Enable/Power all stepper motors
  2853. //!@n M18 - Disable all stepper motors; same as M84
  2854. //!@n M20 - List SD card
  2855. //!@n M21 - Init SD card
  2856. //!@n M22 - Release SD card
  2857. //!@n M23 - Select SD file (M23 filename.g)
  2858. //!@n M24 - Start/resume SD print
  2859. //!@n M25 - Pause SD print
  2860. //!@n M26 - Set SD position in bytes (M26 S12345)
  2861. //!@n M27 - Report SD print status
  2862. //!@n M28 - Start SD write (M28 filename.g)
  2863. //!@n M29 - Stop SD write
  2864. //!@n M30 - Delete file from SD (M30 filename.g)
  2865. //!@n M31 - Output time since last M109 or SD card start to serial
  2866. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2867. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2868. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2869. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2870. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2871. //!@n M73 - Show percent done and print time remaining
  2872. //!@n M80 - Turn on Power Supply
  2873. //!@n M81 - Turn off Power Supply
  2874. //!@n M82 - Set E codes absolute (default)
  2875. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2876. //!@n M84 - Disable steppers until next move,
  2877. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2878. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2879. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2880. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2881. //!@n M104 - Set extruder target temp
  2882. //!@n M105 - Read current temp
  2883. //!@n M106 - Fan on
  2884. //!@n M107 - Fan off
  2885. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2886. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2887. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2888. //!@n M112 - Emergency stop
  2889. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2890. //!@n M114 - Output current position to serial port
  2891. //!@n M115 - Capabilities string
  2892. //!@n M117 - display message
  2893. //!@n M119 - Output Endstop status to serial port
  2894. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2895. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2896. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2897. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2898. //!@n M140 - Set bed target temp
  2899. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2900. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2901. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2902. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2903. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2904. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2905. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2906. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2907. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2908. //!@n M206 - set additional homing offset
  2909. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2910. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2911. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2912. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2913. //!@n M220 S<factor in percent>- set speed factor override percentage
  2914. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2915. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2916. //!@n M240 - Trigger a camera to take a photograph
  2917. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2918. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2919. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2920. //!@n M301 - Set PID parameters P I and D
  2921. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2922. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2923. //!@n M304 - Set bed PID parameters P I and D
  2924. //!@n M400 - Finish all moves
  2925. //!@n M401 - Lower z-probe if present
  2926. //!@n M402 - Raise z-probe if present
  2927. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2928. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2929. //!@n M406 - Turn off Filament Sensor extrusion control
  2930. //!@n M407 - Displays measured filament diameter
  2931. //!@n M500 - stores parameters in EEPROM
  2932. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2933. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2934. //!@n M503 - print the current settings (from memory not from EEPROM)
  2935. //!@n M509 - force language selection on next restart
  2936. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2937. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2938. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2939. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2940. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2941. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2942. //!@n M907 - Set digital trimpot motor current using axis codes.
  2943. //!@n M908 - Control digital trimpot directly.
  2944. //!@n M350 - Set microstepping mode.
  2945. //!@n M351 - Toggle MS1 MS2 pins directly.
  2946. //!
  2947. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2948. //!@n M999 - Restart after being stopped by error
  2949. void process_commands()
  2950. {
  2951. #ifdef FANCHECK
  2952. if (fan_check_error){
  2953. if( fan_check_error == EFCE_DETECTED ){
  2954. fan_check_error = EFCE_REPORTED;
  2955. lcd_pause_print();
  2956. } // otherwise it has already been reported, so just ignore further processing
  2957. return;
  2958. }
  2959. #endif
  2960. if (!buflen) return; //empty command
  2961. #ifdef FILAMENT_RUNOUT_SUPPORT
  2962. SET_INPUT(FR_SENS);
  2963. #endif
  2964. #ifdef CMDBUFFER_DEBUG
  2965. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2966. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2967. SERIAL_ECHOLNPGM("");
  2968. SERIAL_ECHOPGM("In cmdqueue: ");
  2969. SERIAL_ECHO(buflen);
  2970. SERIAL_ECHOLNPGM("");
  2971. #endif /* CMDBUFFER_DEBUG */
  2972. unsigned long codenum; //throw away variable
  2973. char *starpos = NULL;
  2974. #ifdef ENABLE_AUTO_BED_LEVELING
  2975. float x_tmp, y_tmp, z_tmp, real_z;
  2976. #endif
  2977. // PRUSA GCODES
  2978. KEEPALIVE_STATE(IN_HANDLER);
  2979. #ifdef SNMM
  2980. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2981. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2982. int8_t SilentMode;
  2983. #endif
  2984. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2985. starpos = (strchr(strchr_pointer + 5, '*'));
  2986. if (starpos != NULL)
  2987. *(starpos) = '\0';
  2988. lcd_setstatus(strchr_pointer + 5);
  2989. }
  2990. #ifdef TMC2130
  2991. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2992. {
  2993. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2994. {
  2995. uint8_t mask = 0;
  2996. if (code_seen('X')) mask |= X_AXIS_MASK;
  2997. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2998. crashdet_detected(mask);
  2999. }
  3000. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  3001. crashdet_recover();
  3002. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  3003. crashdet_cancel();
  3004. }
  3005. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3006. {
  3007. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  3008. {
  3009. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3010. axis = (axis == 'E')?3:(axis - 'X');
  3011. if (axis < 4)
  3012. {
  3013. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3014. tmc2130_set_wave(axis, 247, fac);
  3015. }
  3016. }
  3017. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  3018. {
  3019. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3020. axis = (axis == 'E')?3:(axis - 'X');
  3021. if (axis < 4)
  3022. {
  3023. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3024. uint16_t res = tmc2130_get_res(axis);
  3025. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3026. }
  3027. }
  3028. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3029. {
  3030. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3031. axis = (axis == 'E')?3:(axis - 'X');
  3032. if (axis < 4)
  3033. {
  3034. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3035. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3036. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3037. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3038. char* str_end = 0;
  3039. if (CMDBUFFER_CURRENT_STRING[14])
  3040. {
  3041. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3042. if (str_end && *str_end)
  3043. {
  3044. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3045. if (str_end && *str_end)
  3046. {
  3047. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3048. if (str_end && *str_end)
  3049. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3050. }
  3051. }
  3052. }
  3053. tmc2130_chopper_config[axis].toff = chop0;
  3054. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3055. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3056. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3057. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3058. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3059. }
  3060. }
  3061. }
  3062. #ifdef BACKLASH_X
  3063. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3064. {
  3065. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3066. st_backlash_x = bl;
  3067. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3068. }
  3069. #endif //BACKLASH_X
  3070. #ifdef BACKLASH_Y
  3071. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3072. {
  3073. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3074. st_backlash_y = bl;
  3075. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3076. }
  3077. #endif //BACKLASH_Y
  3078. #endif //TMC2130
  3079. else if(code_seen("PRUSA")){
  3080. if (code_seen("Ping")) { //! PRUSA Ping
  3081. if (farm_mode) {
  3082. PingTime = _millis();
  3083. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3084. }
  3085. }
  3086. else if (code_seen("PRN")) { //! PRUSA PRN
  3087. printf_P(_N("%d"), status_number);
  3088. }else if (code_seen("FAN")) { //! PRUSA FAN
  3089. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3090. }else if (code_seen("fn")) { //! PRUSA fn
  3091. if (farm_mode) {
  3092. printf_P(_N("%d"), farm_no);
  3093. }
  3094. else {
  3095. puts_P(_N("Not in farm mode."));
  3096. }
  3097. }
  3098. else if (code_seen("thx")) //! PRUSA thx
  3099. {
  3100. no_response = false;
  3101. }
  3102. else if (code_seen("uvlo")) //! PRUSA uvlo
  3103. {
  3104. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3105. enquecommand_P(PSTR("M24"));
  3106. }
  3107. #ifdef FILAMENT_SENSOR
  3108. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3109. {
  3110. fsensor_restore_print_and_continue();
  3111. }
  3112. #endif //FILAMENT_SENSOR
  3113. else if (code_seen("MMURES")) //! PRUSA MMURES
  3114. {
  3115. mmu_reset();
  3116. }
  3117. else if (code_seen("RESET")) { //! PRUSA RESET
  3118. // careful!
  3119. if (farm_mode) {
  3120. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3121. boot_app_magic = BOOT_APP_MAGIC;
  3122. boot_app_flags = BOOT_APP_FLG_RUN;
  3123. wdt_enable(WDTO_15MS);
  3124. cli();
  3125. while(1);
  3126. #else //WATCHDOG
  3127. asm volatile("jmp 0x3E000");
  3128. #endif //WATCHDOG
  3129. }
  3130. else {
  3131. MYSERIAL.println("Not in farm mode.");
  3132. }
  3133. }else if (code_seen("fv")) { //! PRUSA fv
  3134. // get file version
  3135. #ifdef SDSUPPORT
  3136. card.openFile(strchr_pointer + 3,true);
  3137. while (true) {
  3138. uint16_t readByte = card.get();
  3139. MYSERIAL.write(readByte);
  3140. if (readByte=='\n') {
  3141. break;
  3142. }
  3143. }
  3144. card.closefile();
  3145. #endif // SDSUPPORT
  3146. } else if (code_seen("M28")) { //! PRUSA M28
  3147. trace();
  3148. prusa_sd_card_upload = true;
  3149. card.openFile(strchr_pointer+4,false);
  3150. } else if (code_seen("SN")) { //! PRUSA SN
  3151. gcode_PRUSA_SN();
  3152. } else if(code_seen("Fir")){ //! PRUSA Fir
  3153. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3154. } else if(code_seen("Rev")){ //! PRUSA Rev
  3155. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3156. } else if(code_seen("Lang")) { //! PRUSA Lang
  3157. lang_reset();
  3158. } else if(code_seen("Lz")) { //! PRUSA Lz
  3159. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3160. } else if(code_seen("Beat")) { //! PRUSA Beat
  3161. // Kick farm link timer
  3162. kicktime = _millis();
  3163. } else if(code_seen("FR")) { //! PRUSA FR
  3164. // Factory full reset
  3165. factory_reset(0);
  3166. }
  3167. //else if (code_seen('Cal')) {
  3168. // lcd_calibration();
  3169. // }
  3170. }
  3171. else if (code_seen('^')) {
  3172. // nothing, this is a version line
  3173. } else if(code_seen('G'))
  3174. {
  3175. gcode_in_progress = (int)code_value();
  3176. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3177. switch (gcode_in_progress)
  3178. {
  3179. case 0: // G0 -> G1
  3180. case 1: // G1
  3181. if(Stopped == false) {
  3182. #ifdef FILAMENT_RUNOUT_SUPPORT
  3183. if(READ(FR_SENS)){
  3184. int feedmultiplyBckp=feedmultiply;
  3185. float target[4];
  3186. float lastpos[4];
  3187. target[X_AXIS]=current_position[X_AXIS];
  3188. target[Y_AXIS]=current_position[Y_AXIS];
  3189. target[Z_AXIS]=current_position[Z_AXIS];
  3190. target[E_AXIS]=current_position[E_AXIS];
  3191. lastpos[X_AXIS]=current_position[X_AXIS];
  3192. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3193. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3194. lastpos[E_AXIS]=current_position[E_AXIS];
  3195. //retract by E
  3196. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3197. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3198. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3199. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3200. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3201. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3202. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3203. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3204. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3205. //finish moves
  3206. st_synchronize();
  3207. //disable extruder steppers so filament can be removed
  3208. disable_e0();
  3209. disable_e1();
  3210. disable_e2();
  3211. _delay(100);
  3212. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3213. uint8_t cnt=0;
  3214. int counterBeep = 0;
  3215. lcd_wait_interact();
  3216. while(!lcd_clicked()){
  3217. cnt++;
  3218. manage_heater();
  3219. manage_inactivity(true);
  3220. //lcd_update(0);
  3221. if(cnt==0)
  3222. {
  3223. #if BEEPER > 0
  3224. if (counterBeep== 500){
  3225. counterBeep = 0;
  3226. }
  3227. SET_OUTPUT(BEEPER);
  3228. if (counterBeep== 0){
  3229. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3230. WRITE(BEEPER,HIGH);
  3231. }
  3232. if (counterBeep== 20){
  3233. WRITE(BEEPER,LOW);
  3234. }
  3235. counterBeep++;
  3236. #else
  3237. #endif
  3238. }
  3239. }
  3240. WRITE(BEEPER,LOW);
  3241. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3242. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3243. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3244. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3245. lcd_change_fil_state = 0;
  3246. lcd_loading_filament();
  3247. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3248. lcd_change_fil_state = 0;
  3249. lcd_alright();
  3250. switch(lcd_change_fil_state){
  3251. case 2:
  3252. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3253. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3254. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3255. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3256. lcd_loading_filament();
  3257. break;
  3258. case 3:
  3259. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3260. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3261. lcd_loading_color();
  3262. break;
  3263. default:
  3264. lcd_change_success();
  3265. break;
  3266. }
  3267. }
  3268. target[E_AXIS]+= 5;
  3269. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3270. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3271. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3272. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3273. //plan_set_e_position(current_position[E_AXIS]);
  3274. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3275. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3276. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3277. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3278. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3279. plan_set_e_position(lastpos[E_AXIS]);
  3280. feedmultiply=feedmultiplyBckp;
  3281. char cmd[9];
  3282. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3283. enquecommand(cmd);
  3284. }
  3285. #endif
  3286. get_coordinates(); // For X Y Z E F
  3287. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3288. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3289. }
  3290. #ifdef FWRETRACT
  3291. if(cs.autoretract_enabled)
  3292. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3293. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3294. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3295. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3296. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3297. retract(!retracted[active_extruder]);
  3298. return;
  3299. }
  3300. }
  3301. #endif //FWRETRACT
  3302. prepare_move();
  3303. //ClearToSend();
  3304. }
  3305. break;
  3306. case 2: // G2 - CW ARC
  3307. if(Stopped == false) {
  3308. get_arc_coordinates();
  3309. prepare_arc_move(true);
  3310. }
  3311. break;
  3312. case 3: // G3 - CCW ARC
  3313. if(Stopped == false) {
  3314. get_arc_coordinates();
  3315. prepare_arc_move(false);
  3316. }
  3317. break;
  3318. case 4: // G4 dwell
  3319. codenum = 0;
  3320. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3321. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3322. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3323. st_synchronize();
  3324. codenum += _millis(); // keep track of when we started waiting
  3325. previous_millis_cmd = _millis();
  3326. while(_millis() < codenum) {
  3327. manage_heater();
  3328. manage_inactivity();
  3329. lcd_update(0);
  3330. }
  3331. break;
  3332. #ifdef FWRETRACT
  3333. case 10: // G10 retract
  3334. #if EXTRUDERS > 1
  3335. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3336. retract(true,retracted_swap[active_extruder]);
  3337. #else
  3338. retract(true);
  3339. #endif
  3340. break;
  3341. case 11: // G11 retract_recover
  3342. #if EXTRUDERS > 1
  3343. retract(false,retracted_swap[active_extruder]);
  3344. #else
  3345. retract(false);
  3346. #endif
  3347. break;
  3348. #endif //FWRETRACT
  3349. case 28: //G28 Home all Axis one at a time
  3350. {
  3351. long home_x_value = 0;
  3352. long home_y_value = 0;
  3353. long home_z_value = 0;
  3354. // Which axes should be homed?
  3355. bool home_x = code_seen(axis_codes[X_AXIS]);
  3356. home_x_value = code_value_long();
  3357. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3358. home_y_value = code_value_long();
  3359. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3360. home_z_value = code_value_long();
  3361. bool without_mbl = code_seen('W');
  3362. // calibrate?
  3363. #ifdef TMC2130
  3364. bool calib = code_seen('C');
  3365. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3366. #else
  3367. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3368. #endif //TMC2130
  3369. if ((home_x || home_y || without_mbl || home_z) == false) {
  3370. // Push the commands to the front of the message queue in the reverse order!
  3371. // There shall be always enough space reserved for these commands.
  3372. goto case_G80;
  3373. }
  3374. break;
  3375. }
  3376. #ifdef ENABLE_AUTO_BED_LEVELING
  3377. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3378. {
  3379. #if Z_MIN_PIN == -1
  3380. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3381. #endif
  3382. // Prevent user from running a G29 without first homing in X and Y
  3383. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3384. {
  3385. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3386. SERIAL_ECHO_START;
  3387. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3388. break; // abort G29, since we don't know where we are
  3389. }
  3390. st_synchronize();
  3391. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3392. //vector_3 corrected_position = plan_get_position_mm();
  3393. //corrected_position.debug("position before G29");
  3394. plan_bed_level_matrix.set_to_identity();
  3395. vector_3 uncorrected_position = plan_get_position();
  3396. //uncorrected_position.debug("position durring G29");
  3397. current_position[X_AXIS] = uncorrected_position.x;
  3398. current_position[Y_AXIS] = uncorrected_position.y;
  3399. current_position[Z_AXIS] = uncorrected_position.z;
  3400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3401. int l_feedmultiply = setup_for_endstop_move();
  3402. feedrate = homing_feedrate[Z_AXIS];
  3403. #ifdef AUTO_BED_LEVELING_GRID
  3404. // probe at the points of a lattice grid
  3405. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3406. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3407. // solve the plane equation ax + by + d = z
  3408. // A is the matrix with rows [x y 1] for all the probed points
  3409. // B is the vector of the Z positions
  3410. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3411. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3412. // "A" matrix of the linear system of equations
  3413. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3414. // "B" vector of Z points
  3415. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3416. int probePointCounter = 0;
  3417. bool zig = true;
  3418. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3419. {
  3420. int xProbe, xInc;
  3421. if (zig)
  3422. {
  3423. xProbe = LEFT_PROBE_BED_POSITION;
  3424. //xEnd = RIGHT_PROBE_BED_POSITION;
  3425. xInc = xGridSpacing;
  3426. zig = false;
  3427. } else // zag
  3428. {
  3429. xProbe = RIGHT_PROBE_BED_POSITION;
  3430. //xEnd = LEFT_PROBE_BED_POSITION;
  3431. xInc = -xGridSpacing;
  3432. zig = true;
  3433. }
  3434. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3435. {
  3436. float z_before;
  3437. if (probePointCounter == 0)
  3438. {
  3439. // raise before probing
  3440. z_before = Z_RAISE_BEFORE_PROBING;
  3441. } else
  3442. {
  3443. // raise extruder
  3444. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3445. }
  3446. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3447. eqnBVector[probePointCounter] = measured_z;
  3448. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3449. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3450. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3451. probePointCounter++;
  3452. xProbe += xInc;
  3453. }
  3454. }
  3455. clean_up_after_endstop_move(l_feedmultiply);
  3456. // solve lsq problem
  3457. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3458. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3459. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3460. SERIAL_PROTOCOLPGM(" b: ");
  3461. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3462. SERIAL_PROTOCOLPGM(" d: ");
  3463. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3464. set_bed_level_equation_lsq(plane_equation_coefficients);
  3465. free(plane_equation_coefficients);
  3466. #else // AUTO_BED_LEVELING_GRID not defined
  3467. // Probe at 3 arbitrary points
  3468. // probe 1
  3469. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3470. // probe 2
  3471. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3472. // probe 3
  3473. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3474. clean_up_after_endstop_move(l_feedmultiply);
  3475. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3476. #endif // AUTO_BED_LEVELING_GRID
  3477. st_synchronize();
  3478. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3479. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3480. // When the bed is uneven, this height must be corrected.
  3481. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3482. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3483. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3484. z_tmp = current_position[Z_AXIS];
  3485. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3486. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3487. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3488. }
  3489. break;
  3490. #ifndef Z_PROBE_SLED
  3491. case 30: // G30 Single Z Probe
  3492. {
  3493. st_synchronize();
  3494. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3495. int l_feedmultiply = setup_for_endstop_move();
  3496. feedrate = homing_feedrate[Z_AXIS];
  3497. run_z_probe();
  3498. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3499. SERIAL_PROTOCOLPGM(" X: ");
  3500. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3501. SERIAL_PROTOCOLPGM(" Y: ");
  3502. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3503. SERIAL_PROTOCOLPGM(" Z: ");
  3504. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3505. SERIAL_PROTOCOLPGM("\n");
  3506. clean_up_after_endstop_move(l_feedmultiply);
  3507. }
  3508. break;
  3509. #else
  3510. case 31: // dock the sled
  3511. dock_sled(true);
  3512. break;
  3513. case 32: // undock the sled
  3514. dock_sled(false);
  3515. break;
  3516. #endif // Z_PROBE_SLED
  3517. #endif // ENABLE_AUTO_BED_LEVELING
  3518. #ifdef MESH_BED_LEVELING
  3519. case 30: // G30 Single Z Probe
  3520. {
  3521. st_synchronize();
  3522. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3523. int l_feedmultiply = setup_for_endstop_move();
  3524. feedrate = homing_feedrate[Z_AXIS];
  3525. find_bed_induction_sensor_point_z(-10.f, 3);
  3526. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3527. clean_up_after_endstop_move(l_feedmultiply);
  3528. }
  3529. break;
  3530. case 75:
  3531. {
  3532. for (int i = 40; i <= 110; i++)
  3533. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3534. }
  3535. break;
  3536. case 76: //! G76 - PINDA probe temperature calibration
  3537. {
  3538. #ifdef PINDA_THERMISTOR
  3539. if (true)
  3540. {
  3541. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3542. //we need to know accurate position of first calibration point
  3543. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3544. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3545. break;
  3546. }
  3547. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3548. {
  3549. // We don't know where we are! HOME!
  3550. // Push the commands to the front of the message queue in the reverse order!
  3551. // There shall be always enough space reserved for these commands.
  3552. repeatcommand_front(); // repeat G76 with all its parameters
  3553. enquecommand_front_P((PSTR("G28 W0")));
  3554. break;
  3555. }
  3556. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3557. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3558. if (result)
  3559. {
  3560. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3562. current_position[Z_AXIS] = 50;
  3563. current_position[Y_AXIS] = 180;
  3564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3565. st_synchronize();
  3566. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3567. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3568. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3570. st_synchronize();
  3571. gcode_G28(false, false, true);
  3572. }
  3573. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3574. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3575. current_position[Z_AXIS] = 100;
  3576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3577. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3578. lcd_temp_cal_show_result(false);
  3579. break;
  3580. }
  3581. }
  3582. lcd_update_enable(true);
  3583. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3584. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3585. float zero_z;
  3586. int z_shift = 0; //unit: steps
  3587. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3588. if (start_temp < 35) start_temp = 35;
  3589. if (start_temp < current_temperature_pinda) start_temp += 5;
  3590. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3591. // setTargetHotend(200, 0);
  3592. setTargetBed(70 + (start_temp - 30));
  3593. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3594. custom_message_state = 1;
  3595. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3596. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3598. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3599. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3601. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. st_synchronize();
  3604. while (current_temperature_pinda < start_temp)
  3605. {
  3606. delay_keep_alive(1000);
  3607. serialecho_temperatures();
  3608. }
  3609. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3610. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3612. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3613. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3615. st_synchronize();
  3616. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3617. if (find_z_result == false) {
  3618. lcd_temp_cal_show_result(find_z_result);
  3619. break;
  3620. }
  3621. zero_z = current_position[Z_AXIS];
  3622. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3623. int i = -1; for (; i < 5; i++)
  3624. {
  3625. float temp = (40 + i * 5);
  3626. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3627. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3628. if (start_temp <= temp) break;
  3629. }
  3630. for (i++; i < 5; i++)
  3631. {
  3632. float temp = (40 + i * 5);
  3633. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3634. custom_message_state = i + 2;
  3635. setTargetBed(50 + 10 * (temp - 30) / 5);
  3636. // setTargetHotend(255, 0);
  3637. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3639. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3640. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3642. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3644. st_synchronize();
  3645. while (current_temperature_pinda < temp)
  3646. {
  3647. delay_keep_alive(1000);
  3648. serialecho_temperatures();
  3649. }
  3650. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3652. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3653. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3655. st_synchronize();
  3656. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3657. if (find_z_result == false) {
  3658. lcd_temp_cal_show_result(find_z_result);
  3659. break;
  3660. }
  3661. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3662. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3663. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3664. }
  3665. lcd_temp_cal_show_result(true);
  3666. break;
  3667. }
  3668. #endif //PINDA_THERMISTOR
  3669. setTargetBed(PINDA_MIN_T);
  3670. float zero_z;
  3671. int z_shift = 0; //unit: steps
  3672. int t_c; // temperature
  3673. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3674. // We don't know where we are! HOME!
  3675. // Push the commands to the front of the message queue in the reverse order!
  3676. // There shall be always enough space reserved for these commands.
  3677. repeatcommand_front(); // repeat G76 with all its parameters
  3678. enquecommand_front_P((PSTR("G28 W0")));
  3679. break;
  3680. }
  3681. puts_P(_N("PINDA probe calibration start"));
  3682. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3683. custom_message_state = 1;
  3684. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3685. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3686. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3687. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3689. st_synchronize();
  3690. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3691. delay_keep_alive(1000);
  3692. serialecho_temperatures();
  3693. }
  3694. //enquecommand_P(PSTR("M190 S50"));
  3695. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3696. delay_keep_alive(1000);
  3697. serialecho_temperatures();
  3698. }
  3699. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3700. current_position[Z_AXIS] = 5;
  3701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3702. current_position[X_AXIS] = BED_X0;
  3703. current_position[Y_AXIS] = BED_Y0;
  3704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3705. st_synchronize();
  3706. find_bed_induction_sensor_point_z(-1.f);
  3707. zero_z = current_position[Z_AXIS];
  3708. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3709. for (int i = 0; i<5; i++) {
  3710. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3711. custom_message_state = i + 2;
  3712. t_c = 60 + i * 10;
  3713. setTargetBed(t_c);
  3714. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3715. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3716. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3718. st_synchronize();
  3719. while (degBed() < t_c) {
  3720. delay_keep_alive(1000);
  3721. serialecho_temperatures();
  3722. }
  3723. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3724. delay_keep_alive(1000);
  3725. serialecho_temperatures();
  3726. }
  3727. current_position[Z_AXIS] = 5;
  3728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3729. current_position[X_AXIS] = BED_X0;
  3730. current_position[Y_AXIS] = BED_Y0;
  3731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3732. st_synchronize();
  3733. find_bed_induction_sensor_point_z(-1.f);
  3734. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3735. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3736. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3737. }
  3738. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3739. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3740. puts_P(_N("Temperature calibration done."));
  3741. disable_x();
  3742. disable_y();
  3743. disable_z();
  3744. disable_e0();
  3745. disable_e1();
  3746. disable_e2();
  3747. setTargetBed(0); //set bed target temperature back to 0
  3748. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3749. temp_cal_active = true;
  3750. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3751. lcd_update_enable(true);
  3752. lcd_update(2);
  3753. }
  3754. break;
  3755. /**
  3756. * G80: Mesh-based Z probe, probes a grid and produces a
  3757. * mesh to compensate for variable bed height
  3758. *
  3759. * The S0 report the points as below
  3760. * @code{.unparsed}
  3761. * +----> X-axis
  3762. * |
  3763. * |
  3764. * v Y-axis
  3765. * @endcode
  3766. */
  3767. case 80:
  3768. #ifdef MK1BP
  3769. break;
  3770. #endif //MK1BP
  3771. case_G80:
  3772. {
  3773. mesh_bed_leveling_flag = true;
  3774. static bool run = false;
  3775. #ifdef SUPPORT_VERBOSITY
  3776. int8_t verbosity_level = 0;
  3777. if (code_seen('V')) {
  3778. // Just 'V' without a number counts as V1.
  3779. char c = strchr_pointer[1];
  3780. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3781. }
  3782. #endif //SUPPORT_VERBOSITY
  3783. // Firstly check if we know where we are
  3784. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3785. // We don't know where we are! HOME!
  3786. // Push the commands to the front of the message queue in the reverse order!
  3787. // There shall be always enough space reserved for these commands.
  3788. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3789. repeatcommand_front(); // repeat G80 with all its parameters
  3790. enquecommand_front_P((PSTR("G28 W0")));
  3791. }
  3792. else {
  3793. mesh_bed_leveling_flag = false;
  3794. }
  3795. break;
  3796. }
  3797. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3798. if (code_seen('N')) {
  3799. nMeasPoints = code_value_uint8();
  3800. if (nMeasPoints != 7) {
  3801. nMeasPoints = 3;
  3802. }
  3803. }
  3804. else {
  3805. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3806. }
  3807. uint8_t nProbeRetry = 3;
  3808. if (code_seen('R')) {
  3809. nProbeRetry = code_value_uint8();
  3810. if (nProbeRetry > 10) {
  3811. nProbeRetry = 10;
  3812. }
  3813. }
  3814. else {
  3815. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3816. }
  3817. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3818. bool temp_comp_start = true;
  3819. #ifdef PINDA_THERMISTOR
  3820. temp_comp_start = false;
  3821. #endif //PINDA_THERMISTOR
  3822. if (temp_comp_start)
  3823. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3824. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3825. temp_compensation_start();
  3826. run = true;
  3827. repeatcommand_front(); // repeat G80 with all its parameters
  3828. enquecommand_front_P((PSTR("G28 W0")));
  3829. }
  3830. else {
  3831. mesh_bed_leveling_flag = false;
  3832. }
  3833. break;
  3834. }
  3835. run = false;
  3836. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3837. mesh_bed_leveling_flag = false;
  3838. break;
  3839. }
  3840. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3841. unsigned int custom_message_type_old = custom_message_type;
  3842. unsigned int custom_message_state_old = custom_message_state;
  3843. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3844. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3845. lcd_update(1);
  3846. mbl.reset(); //reset mesh bed leveling
  3847. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3848. // consumed during the first movements following this statement.
  3849. babystep_undo();
  3850. // Cycle through all points and probe them
  3851. // First move up. During this first movement, the babystepping will be reverted.
  3852. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3854. // The move to the first calibration point.
  3855. current_position[X_AXIS] = BED_X0;
  3856. current_position[Y_AXIS] = BED_Y0;
  3857. #ifdef SUPPORT_VERBOSITY
  3858. if (verbosity_level >= 1)
  3859. {
  3860. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3861. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3862. }
  3863. #else //SUPPORT_VERBOSITY
  3864. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3865. #endif //SUPPORT_VERBOSITY
  3866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3867. // Wait until the move is finished.
  3868. st_synchronize();
  3869. uint8_t mesh_point = 0; //index number of calibration point
  3870. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3871. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3872. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3873. #ifdef SUPPORT_VERBOSITY
  3874. if (verbosity_level >= 1) {
  3875. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3876. }
  3877. #endif // SUPPORT_VERBOSITY
  3878. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3879. const char *kill_message = NULL;
  3880. while (mesh_point != nMeasPoints * nMeasPoints) {
  3881. // Get coords of a measuring point.
  3882. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3883. uint8_t iy = mesh_point / nMeasPoints;
  3884. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3885. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3886. custom_message_state--;
  3887. mesh_point++;
  3888. continue; //skip
  3889. }*/
  3890. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3891. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3892. {
  3893. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3894. }
  3895. float z0 = 0.f;
  3896. if (has_z && (mesh_point > 0)) {
  3897. uint16_t z_offset_u = 0;
  3898. if (nMeasPoints == 7) {
  3899. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3900. }
  3901. else {
  3902. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3903. }
  3904. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3905. #ifdef SUPPORT_VERBOSITY
  3906. if (verbosity_level >= 1) {
  3907. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3908. }
  3909. #endif // SUPPORT_VERBOSITY
  3910. }
  3911. // Move Z up to MESH_HOME_Z_SEARCH.
  3912. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3913. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3914. float init_z_bckp = current_position[Z_AXIS];
  3915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3916. st_synchronize();
  3917. // Move to XY position of the sensor point.
  3918. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3919. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3920. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3921. #ifdef SUPPORT_VERBOSITY
  3922. if (verbosity_level >= 1) {
  3923. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3924. SERIAL_PROTOCOL(mesh_point);
  3925. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3926. }
  3927. #else //SUPPORT_VERBOSITY
  3928. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3929. #endif // SUPPORT_VERBOSITY
  3930. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3932. st_synchronize();
  3933. // Go down until endstop is hit
  3934. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3935. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3936. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3937. break;
  3938. }
  3939. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3940. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3941. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3942. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3943. st_synchronize();
  3944. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3945. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3946. break;
  3947. }
  3948. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3949. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3950. break;
  3951. }
  3952. }
  3953. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3954. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3955. break;
  3956. }
  3957. #ifdef SUPPORT_VERBOSITY
  3958. if (verbosity_level >= 10) {
  3959. SERIAL_ECHOPGM("X: ");
  3960. MYSERIAL.print(current_position[X_AXIS], 5);
  3961. SERIAL_ECHOLNPGM("");
  3962. SERIAL_ECHOPGM("Y: ");
  3963. MYSERIAL.print(current_position[Y_AXIS], 5);
  3964. SERIAL_PROTOCOLPGM("\n");
  3965. }
  3966. #endif // SUPPORT_VERBOSITY
  3967. float offset_z = 0;
  3968. #ifdef PINDA_THERMISTOR
  3969. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3970. #endif //PINDA_THERMISTOR
  3971. // #ifdef SUPPORT_VERBOSITY
  3972. /* if (verbosity_level >= 1)
  3973. {
  3974. SERIAL_ECHOPGM("mesh bed leveling: ");
  3975. MYSERIAL.print(current_position[Z_AXIS], 5);
  3976. SERIAL_ECHOPGM(" offset: ");
  3977. MYSERIAL.print(offset_z, 5);
  3978. SERIAL_ECHOLNPGM("");
  3979. }*/
  3980. // #endif // SUPPORT_VERBOSITY
  3981. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3982. custom_message_state--;
  3983. mesh_point++;
  3984. lcd_update(1);
  3985. }
  3986. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3987. #ifdef SUPPORT_VERBOSITY
  3988. if (verbosity_level >= 20) {
  3989. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3990. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3991. MYSERIAL.print(current_position[Z_AXIS], 5);
  3992. }
  3993. #endif // SUPPORT_VERBOSITY
  3994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3995. st_synchronize();
  3996. if (mesh_point != nMeasPoints * nMeasPoints) {
  3997. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3998. bool bState;
  3999. do { // repeat until Z-leveling o.k.
  4000. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4001. #ifdef TMC2130
  4002. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4003. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4004. #else // TMC2130
  4005. lcd_wait_for_click_delay(0); // ~ no timeout
  4006. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4007. #endif // TMC2130
  4008. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4009. bState=enable_z_endstop(false);
  4010. current_position[Z_AXIS] -= 1;
  4011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4012. st_synchronize();
  4013. enable_z_endstop(true);
  4014. #ifdef TMC2130
  4015. tmc2130_home_enter(Z_AXIS_MASK);
  4016. #endif // TMC2130
  4017. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4019. st_synchronize();
  4020. #ifdef TMC2130
  4021. tmc2130_home_exit();
  4022. #endif // TMC2130
  4023. enable_z_endstop(bState);
  4024. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4025. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4026. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  4027. lcd_update_enable(true); // display / status-line recovery
  4028. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4029. repeatcommand_front(); // re-run (i.e. of "G80")
  4030. break;
  4031. }
  4032. clean_up_after_endstop_move(l_feedmultiply);
  4033. // SERIAL_ECHOLNPGM("clean up finished ");
  4034. bool apply_temp_comp = true;
  4035. #ifdef PINDA_THERMISTOR
  4036. apply_temp_comp = false;
  4037. #endif
  4038. if (apply_temp_comp)
  4039. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4040. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4041. // SERIAL_ECHOLNPGM("babystep applied");
  4042. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4043. #ifdef SUPPORT_VERBOSITY
  4044. if (verbosity_level >= 1) {
  4045. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4046. }
  4047. #endif // SUPPORT_VERBOSITY
  4048. for (uint8_t i = 0; i < 4; ++i) {
  4049. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4050. long correction = 0;
  4051. if (code_seen(codes[i]))
  4052. correction = code_value_long();
  4053. else if (eeprom_bed_correction_valid) {
  4054. unsigned char *addr = (i < 2) ?
  4055. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4056. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4057. correction = eeprom_read_int8(addr);
  4058. }
  4059. if (correction == 0)
  4060. continue;
  4061. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4062. SERIAL_ERROR_START;
  4063. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4064. SERIAL_ECHO(correction);
  4065. SERIAL_ECHOLNPGM(" microns");
  4066. }
  4067. else {
  4068. float offset = float(correction) * 0.001f;
  4069. switch (i) {
  4070. case 0:
  4071. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4072. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4073. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4074. }
  4075. }
  4076. break;
  4077. case 1:
  4078. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4079. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4080. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4081. }
  4082. }
  4083. break;
  4084. case 2:
  4085. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4086. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4087. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4088. }
  4089. }
  4090. break;
  4091. case 3:
  4092. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4093. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4094. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4095. }
  4096. }
  4097. break;
  4098. }
  4099. }
  4100. }
  4101. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4102. if (nMeasPoints == 3) {
  4103. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4104. }
  4105. /*
  4106. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4107. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4108. SERIAL_PROTOCOLPGM(",");
  4109. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4110. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4111. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4112. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4113. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4114. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4115. SERIAL_PROTOCOLPGM(" ");
  4116. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4117. }
  4118. SERIAL_PROTOCOLPGM("\n");
  4119. }
  4120. */
  4121. if (nMeasPoints == 7 && magnet_elimination) {
  4122. mbl_interpolation(nMeasPoints);
  4123. }
  4124. /*
  4125. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4126. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4127. SERIAL_PROTOCOLPGM(",");
  4128. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4129. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4130. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4131. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4132. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4133. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4134. SERIAL_PROTOCOLPGM(" ");
  4135. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4136. }
  4137. SERIAL_PROTOCOLPGM("\n");
  4138. }
  4139. */
  4140. // SERIAL_ECHOLNPGM("Upsample finished");
  4141. mbl.active = 1; //activate mesh bed leveling
  4142. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4143. go_home_with_z_lift();
  4144. // SERIAL_ECHOLNPGM("Go home finished");
  4145. //unretract (after PINDA preheat retraction)
  4146. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4147. current_position[E_AXIS] += default_retraction;
  4148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4149. }
  4150. KEEPALIVE_STATE(NOT_BUSY);
  4151. // Restore custom message state
  4152. lcd_setstatuspgm(_T(WELCOME_MSG));
  4153. custom_message_type = custom_message_type_old;
  4154. custom_message_state = custom_message_state_old;
  4155. mesh_bed_leveling_flag = false;
  4156. mesh_bed_run_from_menu = false;
  4157. lcd_update(2);
  4158. }
  4159. break;
  4160. /**
  4161. * G81: Print mesh bed leveling status and bed profile if activated
  4162. */
  4163. case 81:
  4164. if (mbl.active) {
  4165. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4166. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4167. SERIAL_PROTOCOLPGM(",");
  4168. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4169. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4170. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4171. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4172. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4173. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4174. SERIAL_PROTOCOLPGM(" ");
  4175. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4176. }
  4177. SERIAL_PROTOCOLPGM("\n");
  4178. }
  4179. }
  4180. else
  4181. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4182. break;
  4183. #if 0
  4184. /**
  4185. * G82: Single Z probe at current location
  4186. *
  4187. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4188. *
  4189. */
  4190. case 82:
  4191. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4192. int l_feedmultiply = setup_for_endstop_move();
  4193. find_bed_induction_sensor_point_z();
  4194. clean_up_after_endstop_move(l_feedmultiply);
  4195. SERIAL_PROTOCOLPGM("Bed found at: ");
  4196. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4197. SERIAL_PROTOCOLPGM("\n");
  4198. break;
  4199. /**
  4200. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4201. */
  4202. case 83:
  4203. {
  4204. int babystepz = code_seen('S') ? code_value() : 0;
  4205. int BabyPosition = code_seen('P') ? code_value() : 0;
  4206. if (babystepz != 0) {
  4207. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4208. // Is the axis indexed starting with zero or one?
  4209. if (BabyPosition > 4) {
  4210. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4211. }else{
  4212. // Save it to the eeprom
  4213. babystepLoadZ = babystepz;
  4214. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4215. // adjust the Z
  4216. babystepsTodoZadd(babystepLoadZ);
  4217. }
  4218. }
  4219. }
  4220. break;
  4221. /**
  4222. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4223. */
  4224. case 84:
  4225. babystepsTodoZsubtract(babystepLoadZ);
  4226. // babystepLoadZ = 0;
  4227. break;
  4228. /**
  4229. * G85: Prusa3D specific: Pick best babystep
  4230. */
  4231. case 85:
  4232. lcd_pick_babystep();
  4233. break;
  4234. #endif
  4235. /**
  4236. * G86: Prusa3D specific: Disable babystep correction after home.
  4237. * This G-code will be performed at the start of a calibration script.
  4238. */
  4239. case 86:
  4240. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4241. break;
  4242. /**
  4243. * G87: Prusa3D specific: Enable babystep correction after home
  4244. * This G-code will be performed at the end of a calibration script.
  4245. */
  4246. case 87:
  4247. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4248. break;
  4249. /**
  4250. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4251. */
  4252. case 88:
  4253. break;
  4254. #endif // ENABLE_MESH_BED_LEVELING
  4255. case 90: // G90
  4256. relative_mode = false;
  4257. break;
  4258. case 91: // G91
  4259. relative_mode = true;
  4260. break;
  4261. case 92: // G92
  4262. if(!code_seen(axis_codes[E_AXIS]))
  4263. st_synchronize();
  4264. for(int8_t i=0; i < NUM_AXIS; i++) {
  4265. if(code_seen(axis_codes[i])) {
  4266. if(i == E_AXIS) {
  4267. current_position[i] = code_value();
  4268. plan_set_e_position(current_position[E_AXIS]);
  4269. }
  4270. else {
  4271. current_position[i] = code_value()+cs.add_homing[i];
  4272. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4273. }
  4274. }
  4275. }
  4276. break;
  4277. case 98: //! G98 (activate farm mode)
  4278. farm_mode = 1;
  4279. PingTime = _millis();
  4280. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4281. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4282. SilentModeMenu = SILENT_MODE_OFF;
  4283. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4284. break;
  4285. case 99: //! G99 (deactivate farm mode)
  4286. farm_mode = 0;
  4287. lcd_printer_connected();
  4288. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4289. lcd_update(2);
  4290. break;
  4291. default:
  4292. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4293. }
  4294. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4295. gcode_in_progress = 0;
  4296. } // end if(code_seen('G'))
  4297. else if(code_seen('M'))
  4298. {
  4299. int index;
  4300. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4301. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4302. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4303. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4304. } else
  4305. {
  4306. mcode_in_progress = (int)code_value();
  4307. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4308. switch(mcode_in_progress)
  4309. {
  4310. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4311. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4312. {
  4313. char *src = strchr_pointer + 2;
  4314. codenum = 0;
  4315. bool hasP = false, hasS = false;
  4316. if (code_seen('P')) {
  4317. codenum = code_value(); // milliseconds to wait
  4318. hasP = codenum > 0;
  4319. }
  4320. if (code_seen('S')) {
  4321. codenum = code_value() * 1000; // seconds to wait
  4322. hasS = codenum > 0;
  4323. }
  4324. starpos = strchr(src, '*');
  4325. if (starpos != NULL) *(starpos) = '\0';
  4326. while (*src == ' ') ++src;
  4327. if (!hasP && !hasS && *src != '\0') {
  4328. lcd_setstatus(src);
  4329. } else {
  4330. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4331. }
  4332. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4333. st_synchronize();
  4334. previous_millis_cmd = _millis();
  4335. if (codenum > 0){
  4336. codenum += _millis(); // keep track of when we started waiting
  4337. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4338. while(_millis() < codenum && !lcd_clicked()){
  4339. manage_heater();
  4340. manage_inactivity(true);
  4341. lcd_update(0);
  4342. }
  4343. KEEPALIVE_STATE(IN_HANDLER);
  4344. lcd_ignore_click(false);
  4345. }else{
  4346. marlin_wait_for_click();
  4347. }
  4348. if (IS_SD_PRINTING)
  4349. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4350. else
  4351. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4352. }
  4353. break;
  4354. case 17:
  4355. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4356. enable_x();
  4357. enable_y();
  4358. enable_z();
  4359. enable_e0();
  4360. enable_e1();
  4361. enable_e2();
  4362. break;
  4363. #ifdef SDSUPPORT
  4364. case 20: // M20 - list SD card
  4365. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4366. card.ls();
  4367. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4368. break;
  4369. case 21: // M21 - init SD card
  4370. card.initsd();
  4371. break;
  4372. case 22: //M22 - release SD card
  4373. card.release();
  4374. break;
  4375. case 23: //M23 - Select file
  4376. starpos = (strchr(strchr_pointer + 4,'*'));
  4377. if(starpos!=NULL)
  4378. *(starpos)='\0';
  4379. card.openFile(strchr_pointer + 4,true);
  4380. break;
  4381. case 24: //M24 - Start SD print
  4382. if (!card.paused)
  4383. failstats_reset_print();
  4384. card.startFileprint();
  4385. starttime=_millis();
  4386. break;
  4387. case 25: //M25 - Pause SD print
  4388. card.pauseSDPrint();
  4389. break;
  4390. case 26: //M26 - Set SD index
  4391. if(card.cardOK && code_seen('S')) {
  4392. card.setIndex(code_value_long());
  4393. }
  4394. break;
  4395. case 27: //M27 - Get SD status
  4396. card.getStatus();
  4397. break;
  4398. case 28: //M28 - Start SD write
  4399. starpos = (strchr(strchr_pointer + 4,'*'));
  4400. if(starpos != NULL){
  4401. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4402. strchr_pointer = strchr(npos,' ') + 1;
  4403. *(starpos) = '\0';
  4404. }
  4405. card.openFile(strchr_pointer+4,false);
  4406. break;
  4407. case 29: //M29 - Stop SD write
  4408. //processed in write to file routine above
  4409. //card,saving = false;
  4410. break;
  4411. case 30: //M30 <filename> Delete File
  4412. if (card.cardOK){
  4413. card.closefile();
  4414. starpos = (strchr(strchr_pointer + 4,'*'));
  4415. if(starpos != NULL){
  4416. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4417. strchr_pointer = strchr(npos,' ') + 1;
  4418. *(starpos) = '\0';
  4419. }
  4420. card.removeFile(strchr_pointer + 4);
  4421. }
  4422. break;
  4423. case 32: //M32 - Select file and start SD print
  4424. {
  4425. if(card.sdprinting) {
  4426. st_synchronize();
  4427. }
  4428. starpos = (strchr(strchr_pointer + 4,'*'));
  4429. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4430. if(namestartpos==NULL)
  4431. {
  4432. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4433. }
  4434. else
  4435. namestartpos++; //to skip the '!'
  4436. if(starpos!=NULL)
  4437. *(starpos)='\0';
  4438. bool call_procedure=(code_seen('P'));
  4439. if(strchr_pointer>namestartpos)
  4440. call_procedure=false; //false alert, 'P' found within filename
  4441. if( card.cardOK )
  4442. {
  4443. card.openFile(namestartpos,true,!call_procedure);
  4444. if(code_seen('S'))
  4445. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4446. card.setIndex(code_value_long());
  4447. card.startFileprint();
  4448. if(!call_procedure)
  4449. starttime=_millis(); //procedure calls count as normal print time.
  4450. }
  4451. } break;
  4452. case 928: //M928 - Start SD write
  4453. starpos = (strchr(strchr_pointer + 5,'*'));
  4454. if(starpos != NULL){
  4455. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4456. strchr_pointer = strchr(npos,' ') + 1;
  4457. *(starpos) = '\0';
  4458. }
  4459. card.openLogFile(strchr_pointer+5);
  4460. break;
  4461. #endif //SDSUPPORT
  4462. case 31: //M31 take time since the start of the SD print or an M109 command
  4463. {
  4464. stoptime=_millis();
  4465. char time[30];
  4466. unsigned long t=(stoptime-starttime)/1000;
  4467. int sec,min;
  4468. min=t/60;
  4469. sec=t%60;
  4470. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4471. SERIAL_ECHO_START;
  4472. SERIAL_ECHOLN(time);
  4473. lcd_setstatus(time);
  4474. autotempShutdown();
  4475. }
  4476. break;
  4477. case 42: //M42 -Change pin status via gcode
  4478. if (code_seen('S'))
  4479. {
  4480. int pin_status = code_value();
  4481. int pin_number = LED_PIN;
  4482. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4483. pin_number = code_value();
  4484. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4485. {
  4486. if (sensitive_pins[i] == pin_number)
  4487. {
  4488. pin_number = -1;
  4489. break;
  4490. }
  4491. }
  4492. #if defined(FAN_PIN) && FAN_PIN > -1
  4493. if (pin_number == FAN_PIN)
  4494. fanSpeed = pin_status;
  4495. #endif
  4496. if (pin_number > -1)
  4497. {
  4498. pinMode(pin_number, OUTPUT);
  4499. digitalWrite(pin_number, pin_status);
  4500. analogWrite(pin_number, pin_status);
  4501. }
  4502. }
  4503. break;
  4504. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4505. // Reset the baby step value and the baby step applied flag.
  4506. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4507. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4508. // Reset the skew and offset in both RAM and EEPROM.
  4509. reset_bed_offset_and_skew();
  4510. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4511. // the planner will not perform any adjustments in the XY plane.
  4512. // Wait for the motors to stop and update the current position with the absolute values.
  4513. world2machine_revert_to_uncorrected();
  4514. break;
  4515. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4516. {
  4517. int8_t verbosity_level = 0;
  4518. bool only_Z = code_seen('Z');
  4519. #ifdef SUPPORT_VERBOSITY
  4520. if (code_seen('V'))
  4521. {
  4522. // Just 'V' without a number counts as V1.
  4523. char c = strchr_pointer[1];
  4524. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4525. }
  4526. #endif //SUPPORT_VERBOSITY
  4527. gcode_M45(only_Z, verbosity_level);
  4528. }
  4529. break;
  4530. /*
  4531. case 46:
  4532. {
  4533. // M46: Prusa3D: Show the assigned IP address.
  4534. uint8_t ip[4];
  4535. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4536. if (hasIP) {
  4537. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4538. SERIAL_ECHO(int(ip[0]));
  4539. SERIAL_ECHOPGM(".");
  4540. SERIAL_ECHO(int(ip[1]));
  4541. SERIAL_ECHOPGM(".");
  4542. SERIAL_ECHO(int(ip[2]));
  4543. SERIAL_ECHOPGM(".");
  4544. SERIAL_ECHO(int(ip[3]));
  4545. SERIAL_ECHOLNPGM("");
  4546. } else {
  4547. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4548. }
  4549. break;
  4550. }
  4551. */
  4552. case 47:
  4553. //! M47: Prusa3D: Show end stops dialog on the display.
  4554. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4555. lcd_diag_show_end_stops();
  4556. KEEPALIVE_STATE(IN_HANDLER);
  4557. break;
  4558. #if 0
  4559. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4560. {
  4561. // Disable the default update procedure of the display. We will do a modal dialog.
  4562. lcd_update_enable(false);
  4563. // Let the planner use the uncorrected coordinates.
  4564. mbl.reset();
  4565. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4566. // the planner will not perform any adjustments in the XY plane.
  4567. // Wait for the motors to stop and update the current position with the absolute values.
  4568. world2machine_revert_to_uncorrected();
  4569. // Move the print head close to the bed.
  4570. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4572. st_synchronize();
  4573. // Home in the XY plane.
  4574. set_destination_to_current();
  4575. int l_feedmultiply = setup_for_endstop_move();
  4576. home_xy();
  4577. int8_t verbosity_level = 0;
  4578. if (code_seen('V')) {
  4579. // Just 'V' without a number counts as V1.
  4580. char c = strchr_pointer[1];
  4581. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4582. }
  4583. bool success = scan_bed_induction_points(verbosity_level);
  4584. clean_up_after_endstop_move(l_feedmultiply);
  4585. // Print head up.
  4586. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4588. st_synchronize();
  4589. lcd_update_enable(true);
  4590. break;
  4591. }
  4592. #endif
  4593. #ifdef ENABLE_AUTO_BED_LEVELING
  4594. #ifdef Z_PROBE_REPEATABILITY_TEST
  4595. //! M48 Z-Probe repeatability measurement function.
  4596. //!
  4597. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4598. //!
  4599. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4600. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4601. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4602. //! regenerated.
  4603. //!
  4604. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4605. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4606. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4607. //!
  4608. case 48: // M48 Z-Probe repeatability
  4609. {
  4610. #if Z_MIN_PIN == -1
  4611. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4612. #endif
  4613. double sum=0.0;
  4614. double mean=0.0;
  4615. double sigma=0.0;
  4616. double sample_set[50];
  4617. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4618. double X_current, Y_current, Z_current;
  4619. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4620. if (code_seen('V') || code_seen('v')) {
  4621. verbose_level = code_value();
  4622. if (verbose_level<0 || verbose_level>4 ) {
  4623. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4624. goto Sigma_Exit;
  4625. }
  4626. }
  4627. if (verbose_level > 0) {
  4628. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4629. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4630. }
  4631. if (code_seen('n')) {
  4632. n_samples = code_value();
  4633. if (n_samples<4 || n_samples>50 ) {
  4634. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4635. goto Sigma_Exit;
  4636. }
  4637. }
  4638. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4639. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4640. Z_current = st_get_position_mm(Z_AXIS);
  4641. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4642. ext_position = st_get_position_mm(E_AXIS);
  4643. if (code_seen('X') || code_seen('x') ) {
  4644. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4645. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4646. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4647. goto Sigma_Exit;
  4648. }
  4649. }
  4650. if (code_seen('Y') || code_seen('y') ) {
  4651. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4652. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4653. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4654. goto Sigma_Exit;
  4655. }
  4656. }
  4657. if (code_seen('L') || code_seen('l') ) {
  4658. n_legs = code_value();
  4659. if ( n_legs==1 )
  4660. n_legs = 2;
  4661. if ( n_legs<0 || n_legs>15 ) {
  4662. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4663. goto Sigma_Exit;
  4664. }
  4665. }
  4666. //
  4667. // Do all the preliminary setup work. First raise the probe.
  4668. //
  4669. st_synchronize();
  4670. plan_bed_level_matrix.set_to_identity();
  4671. plan_buffer_line( X_current, Y_current, Z_start_location,
  4672. ext_position,
  4673. homing_feedrate[Z_AXIS]/60,
  4674. active_extruder);
  4675. st_synchronize();
  4676. //
  4677. // Now get everything to the specified probe point So we can safely do a probe to
  4678. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4679. // use that as a starting point for each probe.
  4680. //
  4681. if (verbose_level > 2)
  4682. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4683. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4684. ext_position,
  4685. homing_feedrate[X_AXIS]/60,
  4686. active_extruder);
  4687. st_synchronize();
  4688. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4689. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4690. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4691. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4692. //
  4693. // OK, do the inital probe to get us close to the bed.
  4694. // Then retrace the right amount and use that in subsequent probes
  4695. //
  4696. int l_feedmultiply = setup_for_endstop_move();
  4697. run_z_probe();
  4698. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4699. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4700. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4701. ext_position,
  4702. homing_feedrate[X_AXIS]/60,
  4703. active_extruder);
  4704. st_synchronize();
  4705. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4706. for( n=0; n<n_samples; n++) {
  4707. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4708. if ( n_legs) {
  4709. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4710. int rotational_direction, l;
  4711. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4712. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4713. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4714. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4715. //SERIAL_ECHOPAIR(" theta: ",theta);
  4716. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4717. //SERIAL_PROTOCOLLNPGM("");
  4718. for( l=0; l<n_legs-1; l++) {
  4719. if (rotational_direction==1)
  4720. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4721. else
  4722. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4723. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4724. if ( radius<0.0 )
  4725. radius = -radius;
  4726. X_current = X_probe_location + cos(theta) * radius;
  4727. Y_current = Y_probe_location + sin(theta) * radius;
  4728. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4729. X_current = X_MIN_POS;
  4730. if ( X_current>X_MAX_POS)
  4731. X_current = X_MAX_POS;
  4732. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4733. Y_current = Y_MIN_POS;
  4734. if ( Y_current>Y_MAX_POS)
  4735. Y_current = Y_MAX_POS;
  4736. if (verbose_level>3 ) {
  4737. SERIAL_ECHOPAIR("x: ", X_current);
  4738. SERIAL_ECHOPAIR("y: ", Y_current);
  4739. SERIAL_PROTOCOLLNPGM("");
  4740. }
  4741. do_blocking_move_to( X_current, Y_current, Z_current );
  4742. }
  4743. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4744. }
  4745. int l_feedmultiply = setup_for_endstop_move();
  4746. run_z_probe();
  4747. sample_set[n] = current_position[Z_AXIS];
  4748. //
  4749. // Get the current mean for the data points we have so far
  4750. //
  4751. sum=0.0;
  4752. for( j=0; j<=n; j++) {
  4753. sum = sum + sample_set[j];
  4754. }
  4755. mean = sum / (double (n+1));
  4756. //
  4757. // Now, use that mean to calculate the standard deviation for the
  4758. // data points we have so far
  4759. //
  4760. sum=0.0;
  4761. for( j=0; j<=n; j++) {
  4762. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4763. }
  4764. sigma = sqrt( sum / (double (n+1)) );
  4765. if (verbose_level > 1) {
  4766. SERIAL_PROTOCOL(n+1);
  4767. SERIAL_PROTOCOL(" of ");
  4768. SERIAL_PROTOCOL(n_samples);
  4769. SERIAL_PROTOCOLPGM(" z: ");
  4770. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4771. }
  4772. if (verbose_level > 2) {
  4773. SERIAL_PROTOCOL(" mean: ");
  4774. SERIAL_PROTOCOL_F(mean,6);
  4775. SERIAL_PROTOCOL(" sigma: ");
  4776. SERIAL_PROTOCOL_F(sigma,6);
  4777. }
  4778. if (verbose_level > 0)
  4779. SERIAL_PROTOCOLPGM("\n");
  4780. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4781. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4782. st_synchronize();
  4783. }
  4784. _delay(1000);
  4785. clean_up_after_endstop_move(l_feedmultiply);
  4786. // enable_endstops(true);
  4787. if (verbose_level > 0) {
  4788. SERIAL_PROTOCOLPGM("Mean: ");
  4789. SERIAL_PROTOCOL_F(mean, 6);
  4790. SERIAL_PROTOCOLPGM("\n");
  4791. }
  4792. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4793. SERIAL_PROTOCOL_F(sigma, 6);
  4794. SERIAL_PROTOCOLPGM("\n\n");
  4795. Sigma_Exit:
  4796. break;
  4797. }
  4798. #endif // Z_PROBE_REPEATABILITY_TEST
  4799. #endif // ENABLE_AUTO_BED_LEVELING
  4800. case 73: //M73 show percent done and time remaining
  4801. if(code_seen('P')) print_percent_done_normal = code_value();
  4802. if(code_seen('R')) print_time_remaining_normal = code_value();
  4803. if(code_seen('Q')) print_percent_done_silent = code_value();
  4804. if(code_seen('S')) print_time_remaining_silent = code_value();
  4805. {
  4806. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4807. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4808. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4809. }
  4810. break;
  4811. case 104: // M104
  4812. {
  4813. uint8_t extruder;
  4814. if(setTargetedHotend(104,extruder)){
  4815. break;
  4816. }
  4817. if (code_seen('S'))
  4818. {
  4819. setTargetHotendSafe(code_value(), extruder);
  4820. }
  4821. setWatch();
  4822. break;
  4823. }
  4824. case 112: // M112 -Emergency Stop
  4825. kill(_n(""), 3);
  4826. break;
  4827. case 140: // M140 set bed temp
  4828. if (code_seen('S')) setTargetBed(code_value());
  4829. break;
  4830. case 105 : // M105
  4831. {
  4832. uint8_t extruder;
  4833. if(setTargetedHotend(105, extruder)){
  4834. break;
  4835. }
  4836. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4837. SERIAL_PROTOCOLPGM("ok T:");
  4838. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4839. SERIAL_PROTOCOLPGM(" /");
  4840. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4841. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4842. SERIAL_PROTOCOLPGM(" B:");
  4843. SERIAL_PROTOCOL_F(degBed(),1);
  4844. SERIAL_PROTOCOLPGM(" /");
  4845. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4846. #endif //TEMP_BED_PIN
  4847. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4848. SERIAL_PROTOCOLPGM(" T");
  4849. SERIAL_PROTOCOL(cur_extruder);
  4850. SERIAL_PROTOCOLPGM(":");
  4851. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4852. SERIAL_PROTOCOLPGM(" /");
  4853. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4854. }
  4855. #else
  4856. SERIAL_ERROR_START;
  4857. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4858. #endif
  4859. SERIAL_PROTOCOLPGM(" @:");
  4860. #ifdef EXTRUDER_WATTS
  4861. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4862. SERIAL_PROTOCOLPGM("W");
  4863. #else
  4864. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4865. #endif
  4866. SERIAL_PROTOCOLPGM(" B@:");
  4867. #ifdef BED_WATTS
  4868. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4869. SERIAL_PROTOCOLPGM("W");
  4870. #else
  4871. SERIAL_PROTOCOL(getHeaterPower(-1));
  4872. #endif
  4873. #ifdef PINDA_THERMISTOR
  4874. SERIAL_PROTOCOLPGM(" P:");
  4875. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4876. #endif //PINDA_THERMISTOR
  4877. #ifdef AMBIENT_THERMISTOR
  4878. SERIAL_PROTOCOLPGM(" A:");
  4879. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4880. #endif //AMBIENT_THERMISTOR
  4881. #ifdef SHOW_TEMP_ADC_VALUES
  4882. {float raw = 0.0;
  4883. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4884. SERIAL_PROTOCOLPGM(" ADC B:");
  4885. SERIAL_PROTOCOL_F(degBed(),1);
  4886. SERIAL_PROTOCOLPGM("C->");
  4887. raw = rawBedTemp();
  4888. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4889. SERIAL_PROTOCOLPGM(" Rb->");
  4890. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4891. SERIAL_PROTOCOLPGM(" Rxb->");
  4892. SERIAL_PROTOCOL_F(raw, 5);
  4893. #endif
  4894. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4895. SERIAL_PROTOCOLPGM(" T");
  4896. SERIAL_PROTOCOL(cur_extruder);
  4897. SERIAL_PROTOCOLPGM(":");
  4898. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4899. SERIAL_PROTOCOLPGM("C->");
  4900. raw = rawHotendTemp(cur_extruder);
  4901. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4902. SERIAL_PROTOCOLPGM(" Rt");
  4903. SERIAL_PROTOCOL(cur_extruder);
  4904. SERIAL_PROTOCOLPGM("->");
  4905. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4906. SERIAL_PROTOCOLPGM(" Rx");
  4907. SERIAL_PROTOCOL(cur_extruder);
  4908. SERIAL_PROTOCOLPGM("->");
  4909. SERIAL_PROTOCOL_F(raw, 5);
  4910. }}
  4911. #endif
  4912. SERIAL_PROTOCOLLN("");
  4913. KEEPALIVE_STATE(NOT_BUSY);
  4914. return;
  4915. break;
  4916. }
  4917. case 109:
  4918. {// M109 - Wait for extruder heater to reach target.
  4919. uint8_t extruder;
  4920. if(setTargetedHotend(109, extruder)){
  4921. break;
  4922. }
  4923. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4924. heating_status = 1;
  4925. if (farm_mode) { prusa_statistics(1); };
  4926. #ifdef AUTOTEMP
  4927. autotemp_enabled=false;
  4928. #endif
  4929. if (code_seen('S')) {
  4930. setTargetHotendSafe(code_value(), extruder);
  4931. CooldownNoWait = true;
  4932. } else if (code_seen('R')) {
  4933. setTargetHotendSafe(code_value(), extruder);
  4934. CooldownNoWait = false;
  4935. }
  4936. #ifdef AUTOTEMP
  4937. if (code_seen('S')) autotemp_min=code_value();
  4938. if (code_seen('B')) autotemp_max=code_value();
  4939. if (code_seen('F'))
  4940. {
  4941. autotemp_factor=code_value();
  4942. autotemp_enabled=true;
  4943. }
  4944. #endif
  4945. setWatch();
  4946. codenum = _millis();
  4947. /* See if we are heating up or cooling down */
  4948. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4949. KEEPALIVE_STATE(NOT_BUSY);
  4950. cancel_heatup = false;
  4951. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4952. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4953. KEEPALIVE_STATE(IN_HANDLER);
  4954. heating_status = 2;
  4955. if (farm_mode) { prusa_statistics(2); };
  4956. //starttime=_millis();
  4957. previous_millis_cmd = _millis();
  4958. }
  4959. break;
  4960. case 190: // M190 - Wait for bed heater to reach target.
  4961. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4962. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4963. heating_status = 3;
  4964. if (farm_mode) { prusa_statistics(1); };
  4965. if (code_seen('S'))
  4966. {
  4967. setTargetBed(code_value());
  4968. CooldownNoWait = true;
  4969. }
  4970. else if (code_seen('R'))
  4971. {
  4972. setTargetBed(code_value());
  4973. CooldownNoWait = false;
  4974. }
  4975. codenum = _millis();
  4976. cancel_heatup = false;
  4977. target_direction = isHeatingBed(); // true if heating, false if cooling
  4978. KEEPALIVE_STATE(NOT_BUSY);
  4979. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4980. {
  4981. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4982. {
  4983. if (!farm_mode) {
  4984. float tt = degHotend(active_extruder);
  4985. SERIAL_PROTOCOLPGM("T:");
  4986. SERIAL_PROTOCOL(tt);
  4987. SERIAL_PROTOCOLPGM(" E:");
  4988. SERIAL_PROTOCOL((int)active_extruder);
  4989. SERIAL_PROTOCOLPGM(" B:");
  4990. SERIAL_PROTOCOL_F(degBed(), 1);
  4991. SERIAL_PROTOCOLLN("");
  4992. }
  4993. codenum = _millis();
  4994. }
  4995. manage_heater();
  4996. manage_inactivity();
  4997. lcd_update(0);
  4998. }
  4999. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5000. KEEPALIVE_STATE(IN_HANDLER);
  5001. heating_status = 4;
  5002. previous_millis_cmd = _millis();
  5003. #endif
  5004. break;
  5005. #if defined(FAN_PIN) && FAN_PIN > -1
  5006. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5007. if (code_seen('S')){
  5008. fanSpeed=constrain(code_value(),0,255);
  5009. }
  5010. else {
  5011. fanSpeed=255;
  5012. }
  5013. break;
  5014. case 107: //M107 Fan Off
  5015. fanSpeed = 0;
  5016. break;
  5017. #endif //FAN_PIN
  5018. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5019. case 80: // M80 - Turn on Power Supply
  5020. SET_OUTPUT(PS_ON_PIN); //GND
  5021. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5022. // If you have a switch on suicide pin, this is useful
  5023. // if you want to start another print with suicide feature after
  5024. // a print without suicide...
  5025. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5026. SET_OUTPUT(SUICIDE_PIN);
  5027. WRITE(SUICIDE_PIN, HIGH);
  5028. #endif
  5029. powersupply = true;
  5030. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5031. lcd_update(0);
  5032. break;
  5033. #endif
  5034. case 81: // M81 - Turn off Power Supply
  5035. disable_heater();
  5036. st_synchronize();
  5037. disable_e0();
  5038. disable_e1();
  5039. disable_e2();
  5040. finishAndDisableSteppers();
  5041. fanSpeed = 0;
  5042. _delay(1000); // Wait a little before to switch off
  5043. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5044. st_synchronize();
  5045. suicide();
  5046. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5047. SET_OUTPUT(PS_ON_PIN);
  5048. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5049. #endif
  5050. powersupply = false;
  5051. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5052. lcd_update(0);
  5053. break;
  5054. case 82:
  5055. axis_relative_modes[3] = false;
  5056. break;
  5057. case 83:
  5058. axis_relative_modes[3] = true;
  5059. break;
  5060. case 18: //compatibility
  5061. case 84: // M84
  5062. if(code_seen('S')){
  5063. stepper_inactive_time = code_value() * 1000;
  5064. }
  5065. else
  5066. {
  5067. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5068. if(all_axis)
  5069. {
  5070. st_synchronize();
  5071. disable_e0();
  5072. disable_e1();
  5073. disable_e2();
  5074. finishAndDisableSteppers();
  5075. }
  5076. else
  5077. {
  5078. st_synchronize();
  5079. if (code_seen('X')) disable_x();
  5080. if (code_seen('Y')) disable_y();
  5081. if (code_seen('Z')) disable_z();
  5082. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5083. if (code_seen('E')) {
  5084. disable_e0();
  5085. disable_e1();
  5086. disable_e2();
  5087. }
  5088. #endif
  5089. }
  5090. }
  5091. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5092. print_time_remaining_init();
  5093. snmm_filaments_used = 0;
  5094. break;
  5095. case 85: // M85
  5096. if(code_seen('S')) {
  5097. max_inactive_time = code_value() * 1000;
  5098. }
  5099. break;
  5100. #ifdef SAFETYTIMER
  5101. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5102. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5103. if (code_seen('S')) {
  5104. safetytimer_inactive_time = code_value() * 1000;
  5105. safetyTimer.start();
  5106. }
  5107. break;
  5108. #endif
  5109. case 92: // M92
  5110. for(int8_t i=0; i < NUM_AXIS; i++)
  5111. {
  5112. if(code_seen(axis_codes[i]))
  5113. {
  5114. if(i == 3) { // E
  5115. float value = code_value();
  5116. if(value < 20.0) {
  5117. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5118. cs.max_jerk[E_AXIS] *= factor;
  5119. max_feedrate[i] *= factor;
  5120. axis_steps_per_sqr_second[i] *= factor;
  5121. }
  5122. cs.axis_steps_per_unit[i] = value;
  5123. }
  5124. else {
  5125. cs.axis_steps_per_unit[i] = code_value();
  5126. }
  5127. }
  5128. }
  5129. break;
  5130. case 110: //! M110 N<line number> - reset line pos
  5131. if (code_seen('N'))
  5132. gcode_LastN = code_value_long();
  5133. break;
  5134. case 113: // M113 - Get or set Host Keepalive interval
  5135. if (code_seen('S')) {
  5136. host_keepalive_interval = (uint8_t)code_value_short();
  5137. // NOMORE(host_keepalive_interval, 60);
  5138. }
  5139. else {
  5140. SERIAL_ECHO_START;
  5141. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5142. SERIAL_PROTOCOLLN("");
  5143. }
  5144. break;
  5145. case 115: // M115
  5146. if (code_seen('V')) {
  5147. // Report the Prusa version number.
  5148. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5149. } else if (code_seen('U')) {
  5150. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5151. // pause the print and ask the user to upgrade the firmware.
  5152. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5153. } else {
  5154. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5155. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5156. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5157. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5158. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5159. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5160. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5161. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5162. SERIAL_ECHOPGM(" UUID:");
  5163. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5164. }
  5165. break;
  5166. /* case 117: // M117 display message
  5167. starpos = (strchr(strchr_pointer + 5,'*'));
  5168. if(starpos!=NULL)
  5169. *(starpos)='\0';
  5170. lcd_setstatus(strchr_pointer + 5);
  5171. break;*/
  5172. case 114: // M114
  5173. gcode_M114();
  5174. break;
  5175. case 120: //! M120 - Disable endstops
  5176. enable_endstops(false) ;
  5177. break;
  5178. case 121: //! M121 - Enable endstops
  5179. enable_endstops(true) ;
  5180. break;
  5181. case 119: // M119
  5182. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5183. SERIAL_PROTOCOLLN("");
  5184. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5185. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5186. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5187. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5188. }else{
  5189. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5190. }
  5191. SERIAL_PROTOCOLLN("");
  5192. #endif
  5193. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5194. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5195. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5196. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5197. }else{
  5198. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5199. }
  5200. SERIAL_PROTOCOLLN("");
  5201. #endif
  5202. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5203. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5204. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5205. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5206. }else{
  5207. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5208. }
  5209. SERIAL_PROTOCOLLN("");
  5210. #endif
  5211. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5212. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5213. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5214. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5215. }else{
  5216. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5217. }
  5218. SERIAL_PROTOCOLLN("");
  5219. #endif
  5220. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5221. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5222. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5223. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5224. }else{
  5225. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5226. }
  5227. SERIAL_PROTOCOLLN("");
  5228. #endif
  5229. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5230. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5231. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5232. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5233. }else{
  5234. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5235. }
  5236. SERIAL_PROTOCOLLN("");
  5237. #endif
  5238. break;
  5239. //TODO: update for all axis, use for loop
  5240. #ifdef BLINKM
  5241. case 150: // M150
  5242. {
  5243. byte red;
  5244. byte grn;
  5245. byte blu;
  5246. if(code_seen('R')) red = code_value();
  5247. if(code_seen('U')) grn = code_value();
  5248. if(code_seen('B')) blu = code_value();
  5249. SendColors(red,grn,blu);
  5250. }
  5251. break;
  5252. #endif //BLINKM
  5253. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5254. {
  5255. uint8_t extruder = active_extruder;
  5256. if(code_seen('T')) {
  5257. extruder = code_value();
  5258. if(extruder >= EXTRUDERS) {
  5259. SERIAL_ECHO_START;
  5260. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5261. break;
  5262. }
  5263. }
  5264. if(code_seen('D')) {
  5265. float diameter = (float)code_value();
  5266. if (diameter == 0.0) {
  5267. // setting any extruder filament size disables volumetric on the assumption that
  5268. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5269. // for all extruders
  5270. cs.volumetric_enabled = false;
  5271. } else {
  5272. cs.filament_size[extruder] = (float)code_value();
  5273. // make sure all extruders have some sane value for the filament size
  5274. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5275. #if EXTRUDERS > 1
  5276. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5277. #if EXTRUDERS > 2
  5278. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5279. #endif
  5280. #endif
  5281. cs.volumetric_enabled = true;
  5282. }
  5283. } else {
  5284. //reserved for setting filament diameter via UFID or filament measuring device
  5285. break;
  5286. }
  5287. calculate_extruder_multipliers();
  5288. }
  5289. break;
  5290. case 201: // M201
  5291. for (int8_t i = 0; i < NUM_AXIS; i++)
  5292. {
  5293. if (code_seen(axis_codes[i]))
  5294. {
  5295. unsigned long val = code_value();
  5296. #ifdef TMC2130
  5297. unsigned long val_silent = val;
  5298. if ((i == X_AXIS) || (i == Y_AXIS))
  5299. {
  5300. if (val > NORMAL_MAX_ACCEL_XY)
  5301. val = NORMAL_MAX_ACCEL_XY;
  5302. if (val_silent > SILENT_MAX_ACCEL_XY)
  5303. val_silent = SILENT_MAX_ACCEL_XY;
  5304. }
  5305. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5306. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5307. #else //TMC2130
  5308. max_acceleration_units_per_sq_second[i] = val;
  5309. #endif //TMC2130
  5310. }
  5311. }
  5312. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5313. reset_acceleration_rates();
  5314. break;
  5315. #if 0 // Not used for Sprinter/grbl gen6
  5316. case 202: // M202
  5317. for(int8_t i=0; i < NUM_AXIS; i++) {
  5318. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5319. }
  5320. break;
  5321. #endif
  5322. case 203: // M203 max feedrate mm/sec
  5323. for (int8_t i = 0; i < NUM_AXIS; i++)
  5324. {
  5325. if (code_seen(axis_codes[i]))
  5326. {
  5327. float val = code_value();
  5328. #ifdef TMC2130
  5329. float val_silent = val;
  5330. if ((i == X_AXIS) || (i == Y_AXIS))
  5331. {
  5332. if (val > NORMAL_MAX_FEEDRATE_XY)
  5333. val = NORMAL_MAX_FEEDRATE_XY;
  5334. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5335. val_silent = SILENT_MAX_FEEDRATE_XY;
  5336. }
  5337. cs.max_feedrate_normal[i] = val;
  5338. cs.max_feedrate_silent[i] = val_silent;
  5339. #else //TMC2130
  5340. max_feedrate[i] = val;
  5341. #endif //TMC2130
  5342. }
  5343. }
  5344. break;
  5345. case 204:
  5346. //! M204 acclereration settings.
  5347. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5348. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5349. {
  5350. if(code_seen('S')) {
  5351. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5352. // and it is also generated by Slic3r to control acceleration per extrusion type
  5353. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5354. cs.acceleration = code_value();
  5355. // Interpret the T value as retract acceleration in the old Marlin format.
  5356. if(code_seen('T'))
  5357. cs.retract_acceleration = code_value();
  5358. } else {
  5359. // New acceleration format, compatible with the upstream Marlin.
  5360. if(code_seen('P'))
  5361. cs.acceleration = code_value();
  5362. if(code_seen('R'))
  5363. cs.retract_acceleration = code_value();
  5364. if(code_seen('T')) {
  5365. // Interpret the T value as the travel acceleration in the new Marlin format.
  5366. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5367. // travel_acceleration = code_value();
  5368. }
  5369. }
  5370. }
  5371. break;
  5372. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5373. {
  5374. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5375. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5376. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5377. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5378. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5379. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5380. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5381. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5382. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5383. }
  5384. break;
  5385. case 206: // M206 additional homing offset
  5386. for(int8_t i=0; i < 3; i++)
  5387. {
  5388. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5389. }
  5390. break;
  5391. #ifdef FWRETRACT
  5392. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5393. {
  5394. if(code_seen('S'))
  5395. {
  5396. cs.retract_length = code_value() ;
  5397. }
  5398. if(code_seen('F'))
  5399. {
  5400. cs.retract_feedrate = code_value()/60 ;
  5401. }
  5402. if(code_seen('Z'))
  5403. {
  5404. cs.retract_zlift = code_value() ;
  5405. }
  5406. }break;
  5407. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5408. {
  5409. if(code_seen('S'))
  5410. {
  5411. cs.retract_recover_length = code_value() ;
  5412. }
  5413. if(code_seen('F'))
  5414. {
  5415. cs.retract_recover_feedrate = code_value()/60 ;
  5416. }
  5417. }break;
  5418. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5419. {
  5420. if(code_seen('S'))
  5421. {
  5422. int t= code_value() ;
  5423. switch(t)
  5424. {
  5425. case 0:
  5426. {
  5427. cs.autoretract_enabled=false;
  5428. retracted[0]=false;
  5429. #if EXTRUDERS > 1
  5430. retracted[1]=false;
  5431. #endif
  5432. #if EXTRUDERS > 2
  5433. retracted[2]=false;
  5434. #endif
  5435. }break;
  5436. case 1:
  5437. {
  5438. cs.autoretract_enabled=true;
  5439. retracted[0]=false;
  5440. #if EXTRUDERS > 1
  5441. retracted[1]=false;
  5442. #endif
  5443. #if EXTRUDERS > 2
  5444. retracted[2]=false;
  5445. #endif
  5446. }break;
  5447. default:
  5448. SERIAL_ECHO_START;
  5449. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5450. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5451. SERIAL_ECHOLNPGM("\"(1)");
  5452. }
  5453. }
  5454. }break;
  5455. #endif // FWRETRACT
  5456. #if EXTRUDERS > 1
  5457. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5458. {
  5459. uint8_t extruder;
  5460. if(setTargetedHotend(218, extruder)){
  5461. break;
  5462. }
  5463. if(code_seen('X'))
  5464. {
  5465. extruder_offset[X_AXIS][extruder] = code_value();
  5466. }
  5467. if(code_seen('Y'))
  5468. {
  5469. extruder_offset[Y_AXIS][extruder] = code_value();
  5470. }
  5471. SERIAL_ECHO_START;
  5472. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5473. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5474. {
  5475. SERIAL_ECHO(" ");
  5476. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5477. SERIAL_ECHO(",");
  5478. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5479. }
  5480. SERIAL_ECHOLN("");
  5481. }break;
  5482. #endif
  5483. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5484. {
  5485. if (code_seen('B')) //backup current speed factor
  5486. {
  5487. saved_feedmultiply_mm = feedmultiply;
  5488. }
  5489. if(code_seen('S'))
  5490. {
  5491. feedmultiply = code_value() ;
  5492. }
  5493. if (code_seen('R')) { //restore previous feedmultiply
  5494. feedmultiply = saved_feedmultiply_mm;
  5495. }
  5496. }
  5497. break;
  5498. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5499. {
  5500. if(code_seen('S'))
  5501. {
  5502. int tmp_code = code_value();
  5503. if (code_seen('T'))
  5504. {
  5505. uint8_t extruder;
  5506. if(setTargetedHotend(221, extruder)){
  5507. break;
  5508. }
  5509. extruder_multiply[extruder] = tmp_code;
  5510. }
  5511. else
  5512. {
  5513. extrudemultiply = tmp_code ;
  5514. }
  5515. }
  5516. calculate_extruder_multipliers();
  5517. }
  5518. break;
  5519. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5520. {
  5521. if(code_seen('P')){
  5522. int pin_number = code_value(); // pin number
  5523. int pin_state = -1; // required pin state - default is inverted
  5524. if(code_seen('S')) pin_state = code_value(); // required pin state
  5525. if(pin_state >= -1 && pin_state <= 1){
  5526. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5527. {
  5528. if (sensitive_pins[i] == pin_number)
  5529. {
  5530. pin_number = -1;
  5531. break;
  5532. }
  5533. }
  5534. if (pin_number > -1)
  5535. {
  5536. int target = LOW;
  5537. st_synchronize();
  5538. pinMode(pin_number, INPUT);
  5539. switch(pin_state){
  5540. case 1:
  5541. target = HIGH;
  5542. break;
  5543. case 0:
  5544. target = LOW;
  5545. break;
  5546. case -1:
  5547. target = !digitalRead(pin_number);
  5548. break;
  5549. }
  5550. while(digitalRead(pin_number) != target){
  5551. manage_heater();
  5552. manage_inactivity();
  5553. lcd_update(0);
  5554. }
  5555. }
  5556. }
  5557. }
  5558. }
  5559. break;
  5560. #if NUM_SERVOS > 0
  5561. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5562. {
  5563. int servo_index = -1;
  5564. int servo_position = 0;
  5565. if (code_seen('P'))
  5566. servo_index = code_value();
  5567. if (code_seen('S')) {
  5568. servo_position = code_value();
  5569. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5570. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5571. servos[servo_index].attach(0);
  5572. #endif
  5573. servos[servo_index].write(servo_position);
  5574. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5575. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5576. servos[servo_index].detach();
  5577. #endif
  5578. }
  5579. else {
  5580. SERIAL_ECHO_START;
  5581. SERIAL_ECHO("Servo ");
  5582. SERIAL_ECHO(servo_index);
  5583. SERIAL_ECHOLN(" out of range");
  5584. }
  5585. }
  5586. else if (servo_index >= 0) {
  5587. SERIAL_PROTOCOL(MSG_OK);
  5588. SERIAL_PROTOCOL(" Servo ");
  5589. SERIAL_PROTOCOL(servo_index);
  5590. SERIAL_PROTOCOL(": ");
  5591. SERIAL_PROTOCOL(servos[servo_index].read());
  5592. SERIAL_PROTOCOLLN("");
  5593. }
  5594. }
  5595. break;
  5596. #endif // NUM_SERVOS > 0
  5597. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5598. case 300: // M300
  5599. {
  5600. int beepS = code_seen('S') ? code_value() : 110;
  5601. int beepP = code_seen('P') ? code_value() : 1000;
  5602. if (beepS > 0)
  5603. {
  5604. #if BEEPER > 0
  5605. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5606. _tone(BEEPER, beepS);
  5607. _delay(beepP);
  5608. _noTone(BEEPER);
  5609. #endif
  5610. }
  5611. else
  5612. {
  5613. _delay(beepP);
  5614. }
  5615. }
  5616. break;
  5617. #endif // M300
  5618. #ifdef PIDTEMP
  5619. case 301: // M301
  5620. {
  5621. if(code_seen('P')) cs.Kp = code_value();
  5622. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5623. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5624. #ifdef PID_ADD_EXTRUSION_RATE
  5625. if(code_seen('C')) Kc = code_value();
  5626. #endif
  5627. updatePID();
  5628. SERIAL_PROTOCOLRPGM(MSG_OK);
  5629. SERIAL_PROTOCOL(" p:");
  5630. SERIAL_PROTOCOL(cs.Kp);
  5631. SERIAL_PROTOCOL(" i:");
  5632. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5633. SERIAL_PROTOCOL(" d:");
  5634. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5635. #ifdef PID_ADD_EXTRUSION_RATE
  5636. SERIAL_PROTOCOL(" c:");
  5637. //Kc does not have scaling applied above, or in resetting defaults
  5638. SERIAL_PROTOCOL(Kc);
  5639. #endif
  5640. SERIAL_PROTOCOLLN("");
  5641. }
  5642. break;
  5643. #endif //PIDTEMP
  5644. #ifdef PIDTEMPBED
  5645. case 304: // M304
  5646. {
  5647. if(code_seen('P')) cs.bedKp = code_value();
  5648. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5649. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5650. updatePID();
  5651. SERIAL_PROTOCOLRPGM(MSG_OK);
  5652. SERIAL_PROTOCOL(" p:");
  5653. SERIAL_PROTOCOL(cs.bedKp);
  5654. SERIAL_PROTOCOL(" i:");
  5655. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5656. SERIAL_PROTOCOL(" d:");
  5657. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5658. SERIAL_PROTOCOLLN("");
  5659. }
  5660. break;
  5661. #endif //PIDTEMP
  5662. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5663. {
  5664. #ifdef CHDK
  5665. SET_OUTPUT(CHDK);
  5666. WRITE(CHDK, HIGH);
  5667. chdkHigh = _millis();
  5668. chdkActive = true;
  5669. #else
  5670. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5671. const uint8_t NUM_PULSES=16;
  5672. const float PULSE_LENGTH=0.01524;
  5673. for(int i=0; i < NUM_PULSES; i++) {
  5674. WRITE(PHOTOGRAPH_PIN, HIGH);
  5675. _delay_ms(PULSE_LENGTH);
  5676. WRITE(PHOTOGRAPH_PIN, LOW);
  5677. _delay_ms(PULSE_LENGTH);
  5678. }
  5679. _delay(7.33);
  5680. for(int i=0; i < NUM_PULSES; i++) {
  5681. WRITE(PHOTOGRAPH_PIN, HIGH);
  5682. _delay_ms(PULSE_LENGTH);
  5683. WRITE(PHOTOGRAPH_PIN, LOW);
  5684. _delay_ms(PULSE_LENGTH);
  5685. }
  5686. #endif
  5687. #endif //chdk end if
  5688. }
  5689. break;
  5690. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5691. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5692. {
  5693. float temp = .0;
  5694. if (code_seen('S')) temp=code_value();
  5695. set_extrude_min_temp(temp);
  5696. }
  5697. break;
  5698. #endif
  5699. case 303: // M303 PID autotune
  5700. {
  5701. float temp = 150.0;
  5702. int e=0;
  5703. int c=5;
  5704. if (code_seen('E')) e=code_value();
  5705. if (e<0)
  5706. temp=70;
  5707. if (code_seen('S')) temp=code_value();
  5708. if (code_seen('C')) c=code_value();
  5709. PID_autotune(temp, e, c);
  5710. }
  5711. break;
  5712. case 400: // M400 finish all moves
  5713. {
  5714. st_synchronize();
  5715. }
  5716. break;
  5717. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5718. {
  5719. //! currently three different materials are needed (default, flex and PVA)
  5720. //! add storing this information for different load/unload profiles etc. in the future
  5721. //!firmware does not wait for "ok" from mmu
  5722. if (mmu_enabled)
  5723. {
  5724. uint8_t extruder = 255;
  5725. uint8_t filament = FILAMENT_UNDEFINED;
  5726. if(code_seen('E')) extruder = code_value();
  5727. if(code_seen('F')) filament = code_value();
  5728. mmu_set_filament_type(extruder, filament);
  5729. }
  5730. }
  5731. break;
  5732. case 500: // M500 Store settings in EEPROM
  5733. {
  5734. Config_StoreSettings();
  5735. }
  5736. break;
  5737. case 501: // M501 Read settings from EEPROM
  5738. {
  5739. Config_RetrieveSettings();
  5740. }
  5741. break;
  5742. case 502: // M502 Revert to default settings
  5743. {
  5744. Config_ResetDefault();
  5745. }
  5746. break;
  5747. case 503: // M503 print settings currently in memory
  5748. {
  5749. Config_PrintSettings();
  5750. }
  5751. break;
  5752. case 509: //M509 Force language selection
  5753. {
  5754. lang_reset();
  5755. SERIAL_ECHO_START;
  5756. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5757. }
  5758. break;
  5759. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5760. case 540:
  5761. {
  5762. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5763. }
  5764. break;
  5765. #endif
  5766. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5767. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5768. {
  5769. float value;
  5770. if (code_seen('Z'))
  5771. {
  5772. value = code_value();
  5773. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5774. {
  5775. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5776. SERIAL_ECHO_START;
  5777. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5778. SERIAL_PROTOCOLLN("");
  5779. }
  5780. else
  5781. {
  5782. SERIAL_ECHO_START;
  5783. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5784. SERIAL_ECHORPGM(MSG_Z_MIN);
  5785. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5786. SERIAL_ECHORPGM(MSG_Z_MAX);
  5787. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5788. SERIAL_PROTOCOLLN("");
  5789. }
  5790. }
  5791. else
  5792. {
  5793. SERIAL_ECHO_START;
  5794. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5795. SERIAL_ECHO(-cs.zprobe_zoffset);
  5796. SERIAL_PROTOCOLLN("");
  5797. }
  5798. break;
  5799. }
  5800. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5801. #ifdef FILAMENTCHANGEENABLE
  5802. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5803. {
  5804. st_synchronize();
  5805. float x_position = current_position[X_AXIS];
  5806. float y_position = current_position[Y_AXIS];
  5807. float z_shift = 0; // is it necessary to be a float?
  5808. float e_shift_init = 0;
  5809. float e_shift_late = 0;
  5810. bool automatic = false;
  5811. //Retract extruder
  5812. if(code_seen('E'))
  5813. {
  5814. e_shift_init = code_value();
  5815. }
  5816. else
  5817. {
  5818. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5819. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5820. #endif
  5821. }
  5822. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5823. if (code_seen('L'))
  5824. {
  5825. e_shift_late = code_value();
  5826. }
  5827. else
  5828. {
  5829. #ifdef FILAMENTCHANGE_FINALRETRACT
  5830. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5831. #endif
  5832. }
  5833. //Lift Z
  5834. if(code_seen('Z'))
  5835. {
  5836. z_shift = code_value();
  5837. }
  5838. else
  5839. {
  5840. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5841. }
  5842. //Move XY to side
  5843. if(code_seen('X'))
  5844. {
  5845. x_position = code_value();
  5846. }
  5847. else
  5848. {
  5849. #ifdef FILAMENTCHANGE_XPOS
  5850. x_position = FILAMENTCHANGE_XPOS;
  5851. #endif
  5852. }
  5853. if(code_seen('Y'))
  5854. {
  5855. y_position = code_value();
  5856. }
  5857. else
  5858. {
  5859. #ifdef FILAMENTCHANGE_YPOS
  5860. y_position = FILAMENTCHANGE_YPOS ;
  5861. #endif
  5862. }
  5863. if (mmu_enabled && code_seen("AUTO"))
  5864. automatic = true;
  5865. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5866. }
  5867. break;
  5868. #endif //FILAMENTCHANGEENABLE
  5869. case 601: //! M601 - Pause print
  5870. {
  5871. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5872. lcd_pause_print();
  5873. }
  5874. break;
  5875. case 602: { //! M602 - Resume print
  5876. lcd_resume_print();
  5877. }
  5878. break;
  5879. #ifdef PINDA_THERMISTOR
  5880. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5881. {
  5882. int set_target_pinda = 0;
  5883. if (code_seen('S')) {
  5884. set_target_pinda = code_value();
  5885. }
  5886. else {
  5887. break;
  5888. }
  5889. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5890. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5891. SERIAL_PROTOCOL(set_target_pinda);
  5892. SERIAL_PROTOCOLLN("");
  5893. codenum = _millis();
  5894. cancel_heatup = false;
  5895. bool is_pinda_cooling = false;
  5896. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5897. is_pinda_cooling = true;
  5898. }
  5899. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5900. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5901. {
  5902. SERIAL_PROTOCOLPGM("P:");
  5903. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5904. SERIAL_PROTOCOLPGM("/");
  5905. SERIAL_PROTOCOL(set_target_pinda);
  5906. SERIAL_PROTOCOLLN("");
  5907. codenum = _millis();
  5908. }
  5909. manage_heater();
  5910. manage_inactivity();
  5911. lcd_update(0);
  5912. }
  5913. LCD_MESSAGERPGM(MSG_OK);
  5914. break;
  5915. }
  5916. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5917. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5918. uint8_t cal_status = calibration_status_pinda();
  5919. int16_t usteps = 0;
  5920. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5921. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5922. for (uint8_t i = 0; i < 6; i++)
  5923. {
  5924. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5925. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5926. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5927. SERIAL_PROTOCOLPGM(", ");
  5928. SERIAL_PROTOCOL(35 + (i * 5));
  5929. SERIAL_PROTOCOLPGM(", ");
  5930. SERIAL_PROTOCOL(usteps);
  5931. SERIAL_PROTOCOLPGM(", ");
  5932. SERIAL_PROTOCOL(mm * 1000);
  5933. SERIAL_PROTOCOLLN("");
  5934. }
  5935. }
  5936. else if (code_seen('!')) { // ! - Set factory default values
  5937. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5938. int16_t z_shift = 8; //40C - 20um - 8usteps
  5939. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5940. z_shift = 24; //45C - 60um - 24usteps
  5941. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5942. z_shift = 48; //50C - 120um - 48usteps
  5943. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5944. z_shift = 80; //55C - 200um - 80usteps
  5945. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5946. z_shift = 120; //60C - 300um - 120usteps
  5947. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5948. SERIAL_PROTOCOLLN("factory restored");
  5949. }
  5950. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5951. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5952. int16_t z_shift = 0;
  5953. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5954. SERIAL_PROTOCOLLN("zerorized");
  5955. }
  5956. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5957. int16_t usteps = code_value();
  5958. if (code_seen('I')) {
  5959. uint8_t index = code_value();
  5960. if (index < 5) {
  5961. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5962. SERIAL_PROTOCOLLN("OK");
  5963. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5964. for (uint8_t i = 0; i < 6; i++)
  5965. {
  5966. usteps = 0;
  5967. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5968. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5969. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5970. SERIAL_PROTOCOLPGM(", ");
  5971. SERIAL_PROTOCOL(35 + (i * 5));
  5972. SERIAL_PROTOCOLPGM(", ");
  5973. SERIAL_PROTOCOL(usteps);
  5974. SERIAL_PROTOCOLPGM(", ");
  5975. SERIAL_PROTOCOL(mm * 1000);
  5976. SERIAL_PROTOCOLLN("");
  5977. }
  5978. }
  5979. }
  5980. }
  5981. else {
  5982. SERIAL_PROTOCOLPGM("no valid command");
  5983. }
  5984. break;
  5985. #endif //PINDA_THERMISTOR
  5986. #ifdef LIN_ADVANCE
  5987. case 900: // M900: Set LIN_ADVANCE options.
  5988. gcode_M900();
  5989. break;
  5990. #endif
  5991. case 907: // M907 Set digital trimpot motor current using axis codes.
  5992. {
  5993. #ifdef TMC2130
  5994. for (int i = 0; i < NUM_AXIS; i++)
  5995. if(code_seen(axis_codes[i]))
  5996. {
  5997. long cur_mA = code_value_long();
  5998. uint8_t val = tmc2130_cur2val(cur_mA);
  5999. tmc2130_set_current_h(i, val);
  6000. tmc2130_set_current_r(i, val);
  6001. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6002. }
  6003. #else //TMC2130
  6004. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6005. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6006. if(code_seen('B')) st_current_set(4,code_value());
  6007. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6008. #endif
  6009. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6010. if(code_seen('X')) st_current_set(0, code_value());
  6011. #endif
  6012. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6013. if(code_seen('Z')) st_current_set(1, code_value());
  6014. #endif
  6015. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6016. if(code_seen('E')) st_current_set(2, code_value());
  6017. #endif
  6018. #endif //TMC2130
  6019. }
  6020. break;
  6021. case 908: // M908 Control digital trimpot directly.
  6022. {
  6023. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6024. uint8_t channel,current;
  6025. if(code_seen('P')) channel=code_value();
  6026. if(code_seen('S')) current=code_value();
  6027. digitalPotWrite(channel, current);
  6028. #endif
  6029. }
  6030. break;
  6031. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6032. case 910: //! M910 - TMC2130 init
  6033. {
  6034. tmc2130_init();
  6035. }
  6036. break;
  6037. case 911: //! M911 - Set TMC2130 holding currents
  6038. {
  6039. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6040. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6041. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6042. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6043. }
  6044. break;
  6045. case 912: //! M912 - Set TMC2130 running currents
  6046. {
  6047. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6048. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6049. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6050. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6051. }
  6052. break;
  6053. case 913: //! M913 - Print TMC2130 currents
  6054. {
  6055. tmc2130_print_currents();
  6056. }
  6057. break;
  6058. case 914: //! M914 - Set normal mode
  6059. {
  6060. tmc2130_mode = TMC2130_MODE_NORMAL;
  6061. update_mode_profile();
  6062. tmc2130_init();
  6063. }
  6064. break;
  6065. case 915: //! M915 - Set silent mode
  6066. {
  6067. tmc2130_mode = TMC2130_MODE_SILENT;
  6068. update_mode_profile();
  6069. tmc2130_init();
  6070. }
  6071. break;
  6072. case 916: //! M916 - Set sg_thrs
  6073. {
  6074. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6075. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6076. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6077. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6078. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6079. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6080. }
  6081. break;
  6082. case 917: //! M917 - Set TMC2130 pwm_ampl
  6083. {
  6084. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6085. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6086. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6087. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6088. }
  6089. break;
  6090. case 918: //! M918 - Set TMC2130 pwm_grad
  6091. {
  6092. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6093. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6094. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6095. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6096. }
  6097. break;
  6098. #endif //TMC2130_SERVICE_CODES_M910_M918
  6099. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6100. {
  6101. #ifdef TMC2130
  6102. if(code_seen('E'))
  6103. {
  6104. uint16_t res_new = code_value();
  6105. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6106. {
  6107. st_synchronize();
  6108. uint8_t axis = E_AXIS;
  6109. uint16_t res = tmc2130_get_res(axis);
  6110. tmc2130_set_res(axis, res_new);
  6111. cs.axis_ustep_resolution[axis] = res_new;
  6112. if (res_new > res)
  6113. {
  6114. uint16_t fac = (res_new / res);
  6115. cs.axis_steps_per_unit[axis] *= fac;
  6116. position[E_AXIS] *= fac;
  6117. }
  6118. else
  6119. {
  6120. uint16_t fac = (res / res_new);
  6121. cs.axis_steps_per_unit[axis] /= fac;
  6122. position[E_AXIS] /= fac;
  6123. }
  6124. }
  6125. }
  6126. #else //TMC2130
  6127. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6128. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6129. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6130. if(code_seen('B')) microstep_mode(4,code_value());
  6131. microstep_readings();
  6132. #endif
  6133. #endif //TMC2130
  6134. }
  6135. break;
  6136. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6137. {
  6138. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6139. if(code_seen('S')) switch((int)code_value())
  6140. {
  6141. case 1:
  6142. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6143. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6144. break;
  6145. case 2:
  6146. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6147. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6148. break;
  6149. }
  6150. microstep_readings();
  6151. #endif
  6152. }
  6153. break;
  6154. case 701: //! M701 - load filament
  6155. {
  6156. if (mmu_enabled && code_seen('E'))
  6157. tmp_extruder = code_value();
  6158. gcode_M701();
  6159. }
  6160. break;
  6161. case 702: //! M702 [U C] -
  6162. {
  6163. #ifdef SNMM
  6164. if (code_seen('U'))
  6165. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6166. else if (code_seen('C'))
  6167. extr_unload(); //! if "C" unload just current filament
  6168. else
  6169. extr_unload_all(); //! otherwise unload all filaments
  6170. #else
  6171. if (code_seen('C')) {
  6172. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6173. }
  6174. else {
  6175. if(mmu_enabled) extr_unload(); //! unload current filament
  6176. else unload_filament();
  6177. }
  6178. #endif //SNMM
  6179. }
  6180. break;
  6181. case 999: // M999: Restart after being stopped
  6182. Stopped = false;
  6183. lcd_reset_alert_level();
  6184. gcode_LastN = Stopped_gcode_LastN;
  6185. FlushSerialRequestResend();
  6186. break;
  6187. default:
  6188. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6189. }
  6190. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6191. mcode_in_progress = 0;
  6192. }
  6193. }
  6194. // end if(code_seen('M')) (end of M codes)
  6195. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6196. //! select filament in case of MMU_V2
  6197. //! if extruder is "?", open menu to let the user select extruder/filament
  6198. //!
  6199. //! For MMU_V2:
  6200. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6201. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6202. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6203. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6204. else if(code_seen('T'))
  6205. {
  6206. int index;
  6207. bool load_to_nozzle = false;
  6208. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6209. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6210. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6211. SERIAL_ECHOLNPGM("Invalid T code.");
  6212. }
  6213. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6214. if (mmu_enabled)
  6215. {
  6216. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6217. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6218. {
  6219. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6220. }
  6221. else
  6222. {
  6223. st_synchronize();
  6224. mmu_command(MmuCmd::T0 + tmp_extruder);
  6225. manage_response(true, true, MMU_TCODE_MOVE);
  6226. }
  6227. }
  6228. }
  6229. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6230. if (mmu_enabled)
  6231. {
  6232. st_synchronize();
  6233. mmu_continue_loading(is_usb_printing);
  6234. mmu_extruder = tmp_extruder; //filament change is finished
  6235. mmu_load_to_nozzle();
  6236. }
  6237. }
  6238. else {
  6239. if (*(strchr_pointer + index) == '?')
  6240. {
  6241. if(mmu_enabled)
  6242. {
  6243. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6244. load_to_nozzle = true;
  6245. } else
  6246. {
  6247. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6248. }
  6249. }
  6250. else {
  6251. tmp_extruder = code_value();
  6252. if (mmu_enabled && lcd_autoDepleteEnabled())
  6253. {
  6254. tmp_extruder = ad_getAlternative(tmp_extruder);
  6255. }
  6256. }
  6257. st_synchronize();
  6258. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6259. if (mmu_enabled)
  6260. {
  6261. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6262. {
  6263. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6264. }
  6265. else
  6266. {
  6267. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6268. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6269. {
  6270. mmu_command(MmuCmd::K0 + tmp_extruder);
  6271. manage_response(true, true, MMU_UNLOAD_MOVE);
  6272. }
  6273. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6274. mmu_command(MmuCmd::T0 + tmp_extruder);
  6275. manage_response(true, true, MMU_TCODE_MOVE);
  6276. mmu_continue_loading(is_usb_printing);
  6277. mmu_extruder = tmp_extruder; //filament change is finished
  6278. if (load_to_nozzle)// for single material usage with mmu
  6279. {
  6280. mmu_load_to_nozzle();
  6281. }
  6282. }
  6283. }
  6284. else
  6285. {
  6286. #ifdef SNMM
  6287. #ifdef LIN_ADVANCE
  6288. if (mmu_extruder != tmp_extruder)
  6289. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6290. #endif
  6291. mmu_extruder = tmp_extruder;
  6292. _delay(100);
  6293. disable_e0();
  6294. disable_e1();
  6295. disable_e2();
  6296. pinMode(E_MUX0_PIN, OUTPUT);
  6297. pinMode(E_MUX1_PIN, OUTPUT);
  6298. _delay(100);
  6299. SERIAL_ECHO_START;
  6300. SERIAL_ECHO("T:");
  6301. SERIAL_ECHOLN((int)tmp_extruder);
  6302. switch (tmp_extruder) {
  6303. case 1:
  6304. WRITE(E_MUX0_PIN, HIGH);
  6305. WRITE(E_MUX1_PIN, LOW);
  6306. break;
  6307. case 2:
  6308. WRITE(E_MUX0_PIN, LOW);
  6309. WRITE(E_MUX1_PIN, HIGH);
  6310. break;
  6311. case 3:
  6312. WRITE(E_MUX0_PIN, HIGH);
  6313. WRITE(E_MUX1_PIN, HIGH);
  6314. break;
  6315. default:
  6316. WRITE(E_MUX0_PIN, LOW);
  6317. WRITE(E_MUX1_PIN, LOW);
  6318. break;
  6319. }
  6320. _delay(100);
  6321. #else //SNMM
  6322. if (tmp_extruder >= EXTRUDERS) {
  6323. SERIAL_ECHO_START;
  6324. SERIAL_ECHOPGM("T");
  6325. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6326. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6327. }
  6328. else {
  6329. #if EXTRUDERS > 1
  6330. boolean make_move = false;
  6331. #endif
  6332. if (code_seen('F')) {
  6333. #if EXTRUDERS > 1
  6334. make_move = true;
  6335. #endif
  6336. next_feedrate = code_value();
  6337. if (next_feedrate > 0.0) {
  6338. feedrate = next_feedrate;
  6339. }
  6340. }
  6341. #if EXTRUDERS > 1
  6342. if (tmp_extruder != active_extruder) {
  6343. // Save current position to return to after applying extruder offset
  6344. memcpy(destination, current_position, sizeof(destination));
  6345. // Offset extruder (only by XY)
  6346. int i;
  6347. for (i = 0; i < 2; i++) {
  6348. current_position[i] = current_position[i] -
  6349. extruder_offset[i][active_extruder] +
  6350. extruder_offset[i][tmp_extruder];
  6351. }
  6352. // Set the new active extruder and position
  6353. active_extruder = tmp_extruder;
  6354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6355. // Move to the old position if 'F' was in the parameters
  6356. if (make_move && Stopped == false) {
  6357. prepare_move();
  6358. }
  6359. }
  6360. #endif
  6361. SERIAL_ECHO_START;
  6362. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6363. SERIAL_PROTOCOLLN((int)active_extruder);
  6364. }
  6365. #endif //SNMM
  6366. }
  6367. }
  6368. } // end if(code_seen('T')) (end of T codes)
  6369. else if (code_seen('D')) // D codes (debug)
  6370. {
  6371. switch((int)code_value())
  6372. {
  6373. case -1: //! D-1 - Endless loop
  6374. dcode__1(); break;
  6375. #ifdef DEBUG_DCODES
  6376. case 0: //! D0 - Reset
  6377. dcode_0(); break;
  6378. case 1: //! D1 - Clear EEPROM
  6379. dcode_1(); break;
  6380. case 2: //! D2 - Read/Write RAM
  6381. dcode_2(); break;
  6382. #endif //DEBUG_DCODES
  6383. #ifdef DEBUG_DCODE3
  6384. case 3: //! D3 - Read/Write EEPROM
  6385. dcode_3(); break;
  6386. #endif //DEBUG_DCODE3
  6387. #ifdef DEBUG_DCODES
  6388. case 4: //! D4 - Read/Write PIN
  6389. dcode_4(); break;
  6390. #endif //DEBUG_DCODES
  6391. #ifdef DEBUG_DCODE5
  6392. case 5: // D5 - Read/Write FLASH
  6393. dcode_5(); break;
  6394. break;
  6395. #endif //DEBUG_DCODE5
  6396. #ifdef DEBUG_DCODES
  6397. case 6: // D6 - Read/Write external FLASH
  6398. dcode_6(); break;
  6399. case 7: //! D7 - Read/Write Bootloader
  6400. dcode_7(); break;
  6401. case 8: //! D8 - Read/Write PINDA
  6402. dcode_8(); break;
  6403. case 9: //! D9 - Read/Write ADC
  6404. dcode_9(); break;
  6405. case 10: //! D10 - XYZ calibration = OK
  6406. dcode_10(); break;
  6407. #endif //DEBUG_DCODES
  6408. #ifdef HEATBED_ANALYSIS
  6409. case 80:
  6410. {
  6411. float dimension_x = 40;
  6412. float dimension_y = 40;
  6413. int points_x = 40;
  6414. int points_y = 40;
  6415. float offset_x = 74;
  6416. float offset_y = 33;
  6417. if (code_seen('E')) dimension_x = code_value();
  6418. if (code_seen('F')) dimension_y = code_value();
  6419. if (code_seen('G')) {points_x = code_value(); }
  6420. if (code_seen('H')) {points_y = code_value(); }
  6421. if (code_seen('I')) {offset_x = code_value(); }
  6422. if (code_seen('J')) {offset_y = code_value(); }
  6423. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6424. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6425. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6426. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6427. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6428. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6429. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6430. }break;
  6431. case 81:
  6432. {
  6433. float dimension_x = 40;
  6434. float dimension_y = 40;
  6435. int points_x = 40;
  6436. int points_y = 40;
  6437. float offset_x = 74;
  6438. float offset_y = 33;
  6439. if (code_seen('E')) dimension_x = code_value();
  6440. if (code_seen('F')) dimension_y = code_value();
  6441. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6442. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6443. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6444. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6445. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6446. } break;
  6447. #endif //HEATBED_ANALYSIS
  6448. #ifdef DEBUG_DCODES
  6449. case 106: //D106 print measured fan speed for different pwm values
  6450. {
  6451. for (int i = 255; i > 0; i = i - 5) {
  6452. fanSpeed = i;
  6453. //delay_keep_alive(2000);
  6454. for (int j = 0; j < 100; j++) {
  6455. delay_keep_alive(100);
  6456. }
  6457. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6458. }
  6459. }break;
  6460. #ifdef TMC2130
  6461. case 2130: //! D2130 - TMC2130
  6462. dcode_2130(); break;
  6463. #endif //TMC2130
  6464. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6465. case 9125: //! D9125 - FILAMENT_SENSOR
  6466. dcode_9125(); break;
  6467. #endif //FILAMENT_SENSOR
  6468. #endif //DEBUG_DCODES
  6469. }
  6470. }
  6471. else
  6472. {
  6473. SERIAL_ECHO_START;
  6474. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6475. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6476. SERIAL_ECHOLNPGM("\"(2)");
  6477. }
  6478. KEEPALIVE_STATE(NOT_BUSY);
  6479. ClearToSend();
  6480. }
  6481. void FlushSerialRequestResend()
  6482. {
  6483. //char cmdbuffer[bufindr][100]="Resend:";
  6484. MYSERIAL.flush();
  6485. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6486. }
  6487. // Confirm the execution of a command, if sent from a serial line.
  6488. // Execution of a command from a SD card will not be confirmed.
  6489. void ClearToSend()
  6490. {
  6491. previous_millis_cmd = _millis();
  6492. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6493. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6494. }
  6495. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6496. void update_currents() {
  6497. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6498. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6499. float tmp_motor[3];
  6500. //SERIAL_ECHOLNPGM("Currents updated: ");
  6501. if (destination[Z_AXIS] < Z_SILENT) {
  6502. //SERIAL_ECHOLNPGM("LOW");
  6503. for (uint8_t i = 0; i < 3; i++) {
  6504. st_current_set(i, current_low[i]);
  6505. /*MYSERIAL.print(int(i));
  6506. SERIAL_ECHOPGM(": ");
  6507. MYSERIAL.println(current_low[i]);*/
  6508. }
  6509. }
  6510. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6511. //SERIAL_ECHOLNPGM("HIGH");
  6512. for (uint8_t i = 0; i < 3; i++) {
  6513. st_current_set(i, current_high[i]);
  6514. /*MYSERIAL.print(int(i));
  6515. SERIAL_ECHOPGM(": ");
  6516. MYSERIAL.println(current_high[i]);*/
  6517. }
  6518. }
  6519. else {
  6520. for (uint8_t i = 0; i < 3; i++) {
  6521. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6522. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6523. st_current_set(i, tmp_motor[i]);
  6524. /*MYSERIAL.print(int(i));
  6525. SERIAL_ECHOPGM(": ");
  6526. MYSERIAL.println(tmp_motor[i]);*/
  6527. }
  6528. }
  6529. }
  6530. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6531. void get_coordinates()
  6532. {
  6533. bool seen[4]={false,false,false,false};
  6534. for(int8_t i=0; i < NUM_AXIS; i++) {
  6535. if(code_seen(axis_codes[i]))
  6536. {
  6537. bool relative = axis_relative_modes[i] || relative_mode;
  6538. destination[i] = (float)code_value();
  6539. if (i == E_AXIS) {
  6540. float emult = extruder_multiplier[active_extruder];
  6541. if (emult != 1.) {
  6542. if (! relative) {
  6543. destination[i] -= current_position[i];
  6544. relative = true;
  6545. }
  6546. destination[i] *= emult;
  6547. }
  6548. }
  6549. if (relative)
  6550. destination[i] += current_position[i];
  6551. seen[i]=true;
  6552. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6553. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6554. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6555. }
  6556. else destination[i] = current_position[i]; //Are these else lines really needed?
  6557. }
  6558. if(code_seen('F')) {
  6559. next_feedrate = code_value();
  6560. #ifdef MAX_SILENT_FEEDRATE
  6561. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6562. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6563. #endif //MAX_SILENT_FEEDRATE
  6564. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6565. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6566. {
  6567. // float e_max_speed =
  6568. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6569. }
  6570. }
  6571. }
  6572. void get_arc_coordinates()
  6573. {
  6574. #ifdef SF_ARC_FIX
  6575. bool relative_mode_backup = relative_mode;
  6576. relative_mode = true;
  6577. #endif
  6578. get_coordinates();
  6579. #ifdef SF_ARC_FIX
  6580. relative_mode=relative_mode_backup;
  6581. #endif
  6582. if(code_seen('I')) {
  6583. offset[0] = code_value();
  6584. }
  6585. else {
  6586. offset[0] = 0.0;
  6587. }
  6588. if(code_seen('J')) {
  6589. offset[1] = code_value();
  6590. }
  6591. else {
  6592. offset[1] = 0.0;
  6593. }
  6594. }
  6595. void clamp_to_software_endstops(float target[3])
  6596. {
  6597. #ifdef DEBUG_DISABLE_SWLIMITS
  6598. return;
  6599. #endif //DEBUG_DISABLE_SWLIMITS
  6600. world2machine_clamp(target[0], target[1]);
  6601. // Clamp the Z coordinate.
  6602. if (min_software_endstops) {
  6603. float negative_z_offset = 0;
  6604. #ifdef ENABLE_AUTO_BED_LEVELING
  6605. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6606. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6607. #endif
  6608. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6609. }
  6610. if (max_software_endstops) {
  6611. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6612. }
  6613. }
  6614. #ifdef MESH_BED_LEVELING
  6615. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6616. float dx = x - current_position[X_AXIS];
  6617. float dy = y - current_position[Y_AXIS];
  6618. float dz = z - current_position[Z_AXIS];
  6619. int n_segments = 0;
  6620. if (mbl.active) {
  6621. float len = abs(dx) + abs(dy);
  6622. if (len > 0)
  6623. // Split to 3cm segments or shorter.
  6624. n_segments = int(ceil(len / 30.f));
  6625. }
  6626. if (n_segments > 1) {
  6627. float de = e - current_position[E_AXIS];
  6628. for (int i = 1; i < n_segments; ++ i) {
  6629. float t = float(i) / float(n_segments);
  6630. if (saved_printing || (mbl.active == false)) return;
  6631. plan_buffer_line(
  6632. current_position[X_AXIS] + t * dx,
  6633. current_position[Y_AXIS] + t * dy,
  6634. current_position[Z_AXIS] + t * dz,
  6635. current_position[E_AXIS] + t * de,
  6636. feed_rate, extruder);
  6637. }
  6638. }
  6639. // The rest of the path.
  6640. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6641. current_position[X_AXIS] = x;
  6642. current_position[Y_AXIS] = y;
  6643. current_position[Z_AXIS] = z;
  6644. current_position[E_AXIS] = e;
  6645. }
  6646. #endif // MESH_BED_LEVELING
  6647. void prepare_move()
  6648. {
  6649. clamp_to_software_endstops(destination);
  6650. previous_millis_cmd = _millis();
  6651. // Do not use feedmultiply for E or Z only moves
  6652. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6653. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6654. }
  6655. else {
  6656. #ifdef MESH_BED_LEVELING
  6657. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6658. #else
  6659. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6660. #endif
  6661. }
  6662. for(int8_t i=0; i < NUM_AXIS; i++) {
  6663. current_position[i] = destination[i];
  6664. }
  6665. }
  6666. void prepare_arc_move(char isclockwise) {
  6667. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6668. // Trace the arc
  6669. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6670. // As far as the parser is concerned, the position is now == target. In reality the
  6671. // motion control system might still be processing the action and the real tool position
  6672. // in any intermediate location.
  6673. for(int8_t i=0; i < NUM_AXIS; i++) {
  6674. current_position[i] = destination[i];
  6675. }
  6676. previous_millis_cmd = _millis();
  6677. }
  6678. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6679. #if defined(FAN_PIN)
  6680. #if CONTROLLERFAN_PIN == FAN_PIN
  6681. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6682. #endif
  6683. #endif
  6684. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6685. unsigned long lastMotorCheck = 0;
  6686. void controllerFan()
  6687. {
  6688. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6689. {
  6690. lastMotorCheck = _millis();
  6691. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6692. #if EXTRUDERS > 2
  6693. || !READ(E2_ENABLE_PIN)
  6694. #endif
  6695. #if EXTRUDER > 1
  6696. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6697. || !READ(X2_ENABLE_PIN)
  6698. #endif
  6699. || !READ(E1_ENABLE_PIN)
  6700. #endif
  6701. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6702. {
  6703. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6704. }
  6705. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6706. {
  6707. digitalWrite(CONTROLLERFAN_PIN, 0);
  6708. analogWrite(CONTROLLERFAN_PIN, 0);
  6709. }
  6710. else
  6711. {
  6712. // allows digital or PWM fan output to be used (see M42 handling)
  6713. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6714. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6715. }
  6716. }
  6717. }
  6718. #endif
  6719. #ifdef TEMP_STAT_LEDS
  6720. static bool blue_led = false;
  6721. static bool red_led = false;
  6722. static uint32_t stat_update = 0;
  6723. void handle_status_leds(void) {
  6724. float max_temp = 0.0;
  6725. if(_millis() > stat_update) {
  6726. stat_update += 500; // Update every 0.5s
  6727. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6728. max_temp = max(max_temp, degHotend(cur_extruder));
  6729. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6730. }
  6731. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6732. max_temp = max(max_temp, degTargetBed());
  6733. max_temp = max(max_temp, degBed());
  6734. #endif
  6735. if((max_temp > 55.0) && (red_led == false)) {
  6736. digitalWrite(STAT_LED_RED, 1);
  6737. digitalWrite(STAT_LED_BLUE, 0);
  6738. red_led = true;
  6739. blue_led = false;
  6740. }
  6741. if((max_temp < 54.0) && (blue_led == false)) {
  6742. digitalWrite(STAT_LED_RED, 0);
  6743. digitalWrite(STAT_LED_BLUE, 1);
  6744. red_led = false;
  6745. blue_led = true;
  6746. }
  6747. }
  6748. }
  6749. #endif
  6750. #ifdef SAFETYTIMER
  6751. /**
  6752. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6753. *
  6754. * Full screen blocking notification message is shown after heater turning off.
  6755. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6756. * damage print.
  6757. *
  6758. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6759. */
  6760. static void handleSafetyTimer()
  6761. {
  6762. #if (EXTRUDERS > 1)
  6763. #error Implemented only for one extruder.
  6764. #endif //(EXTRUDERS > 1)
  6765. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6766. {
  6767. safetyTimer.stop();
  6768. }
  6769. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6770. {
  6771. safetyTimer.start();
  6772. }
  6773. else if (safetyTimer.expired(safetytimer_inactive_time))
  6774. {
  6775. setTargetBed(0);
  6776. setAllTargetHotends(0);
  6777. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6778. }
  6779. }
  6780. #endif //SAFETYTIMER
  6781. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6782. {
  6783. bool bInhibitFlag;
  6784. #ifdef FILAMENT_SENSOR
  6785. if (mmu_enabled == false)
  6786. {
  6787. //-// if (mcode_in_progress != 600) //M600 not in progress
  6788. #ifdef PAT9125
  6789. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6790. #endif // PAT9125
  6791. #ifdef IR_SENSOR
  6792. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6793. #endif // IR_SENSOR
  6794. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6795. {
  6796. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6797. {
  6798. if (fsensor_check_autoload())
  6799. {
  6800. #ifdef PAT9125
  6801. fsensor_autoload_check_stop();
  6802. #endif //PAT9125
  6803. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6804. if(0)
  6805. {
  6806. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6807. _tone(BEEPER, 1000);
  6808. delay_keep_alive(50);
  6809. _noTone(BEEPER);
  6810. loading_flag = true;
  6811. enquecommand_front_P((PSTR("M701")));
  6812. }
  6813. else
  6814. {
  6815. /*
  6816. lcd_update_enable(false);
  6817. show_preheat_nozzle_warning();
  6818. lcd_update_enable(true);
  6819. */
  6820. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6821. bFilamentFirstRun=false;
  6822. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6823. {
  6824. bFilamentPreheatState=true;
  6825. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6826. menu_submenu(mFilamentItemForce);
  6827. }
  6828. else
  6829. {
  6830. menu_submenu(mFilamentMenu);
  6831. lcd_timeoutToStatus.start();
  6832. }
  6833. }
  6834. }
  6835. }
  6836. else
  6837. {
  6838. #ifdef PAT9125
  6839. fsensor_autoload_check_stop();
  6840. #endif //PAT9125
  6841. fsensor_update();
  6842. }
  6843. }
  6844. }
  6845. #endif //FILAMENT_SENSOR
  6846. #ifdef SAFETYTIMER
  6847. handleSafetyTimer();
  6848. #endif //SAFETYTIMER
  6849. #if defined(KILL_PIN) && KILL_PIN > -1
  6850. static int killCount = 0; // make the inactivity button a bit less responsive
  6851. const int KILL_DELAY = 10000;
  6852. #endif
  6853. if(buflen < (BUFSIZE-1)){
  6854. get_command();
  6855. }
  6856. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6857. if(max_inactive_time)
  6858. kill(_n(""), 4);
  6859. if(stepper_inactive_time) {
  6860. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6861. {
  6862. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6863. disable_x();
  6864. disable_y();
  6865. disable_z();
  6866. disable_e0();
  6867. disable_e1();
  6868. disable_e2();
  6869. }
  6870. }
  6871. }
  6872. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6873. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6874. {
  6875. chdkActive = false;
  6876. WRITE(CHDK, LOW);
  6877. }
  6878. #endif
  6879. #if defined(KILL_PIN) && KILL_PIN > -1
  6880. // Check if the kill button was pressed and wait just in case it was an accidental
  6881. // key kill key press
  6882. // -------------------------------------------------------------------------------
  6883. if( 0 == READ(KILL_PIN) )
  6884. {
  6885. killCount++;
  6886. }
  6887. else if (killCount > 0)
  6888. {
  6889. killCount--;
  6890. }
  6891. // Exceeded threshold and we can confirm that it was not accidental
  6892. // KILL the machine
  6893. // ----------------------------------------------------------------
  6894. if ( killCount >= KILL_DELAY)
  6895. {
  6896. kill("", 5);
  6897. }
  6898. #endif
  6899. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6900. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6901. #endif
  6902. #ifdef EXTRUDER_RUNOUT_PREVENT
  6903. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6904. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6905. {
  6906. bool oldstatus=READ(E0_ENABLE_PIN);
  6907. enable_e0();
  6908. float oldepos=current_position[E_AXIS];
  6909. float oldedes=destination[E_AXIS];
  6910. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6911. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6912. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6913. current_position[E_AXIS]=oldepos;
  6914. destination[E_AXIS]=oldedes;
  6915. plan_set_e_position(oldepos);
  6916. previous_millis_cmd=_millis();
  6917. st_synchronize();
  6918. WRITE(E0_ENABLE_PIN,oldstatus);
  6919. }
  6920. #endif
  6921. #ifdef TEMP_STAT_LEDS
  6922. handle_status_leds();
  6923. #endif
  6924. check_axes_activity();
  6925. mmu_loop();
  6926. }
  6927. void kill(const char *full_screen_message, unsigned char id)
  6928. {
  6929. printf_P(_N("KILL: %d\n"), id);
  6930. //return;
  6931. cli(); // Stop interrupts
  6932. disable_heater();
  6933. disable_x();
  6934. // SERIAL_ECHOLNPGM("kill - disable Y");
  6935. disable_y();
  6936. disable_z();
  6937. disable_e0();
  6938. disable_e1();
  6939. disable_e2();
  6940. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6941. pinMode(PS_ON_PIN,INPUT);
  6942. #endif
  6943. SERIAL_ERROR_START;
  6944. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  6945. if (full_screen_message != NULL) {
  6946. SERIAL_ERRORLNRPGM(full_screen_message);
  6947. lcd_display_message_fullscreen_P(full_screen_message);
  6948. } else {
  6949. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  6950. }
  6951. // FMC small patch to update the LCD before ending
  6952. sei(); // enable interrupts
  6953. for ( int i=5; i--; lcd_update(0))
  6954. {
  6955. _delay(200);
  6956. }
  6957. cli(); // disable interrupts
  6958. suicide();
  6959. while(1)
  6960. {
  6961. #ifdef WATCHDOG
  6962. wdt_reset();
  6963. #endif //WATCHDOG
  6964. /* Intentionally left empty */
  6965. } // Wait for reset
  6966. }
  6967. void Stop()
  6968. {
  6969. disable_heater();
  6970. if(Stopped == false) {
  6971. Stopped = true;
  6972. lcd_print_stop();
  6973. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6974. SERIAL_ERROR_START;
  6975. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6976. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6977. }
  6978. }
  6979. bool IsStopped() { return Stopped; };
  6980. #ifdef FAST_PWM_FAN
  6981. void setPwmFrequency(uint8_t pin, int val)
  6982. {
  6983. val &= 0x07;
  6984. switch(digitalPinToTimer(pin))
  6985. {
  6986. #if defined(TCCR0A)
  6987. case TIMER0A:
  6988. case TIMER0B:
  6989. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6990. // TCCR0B |= val;
  6991. break;
  6992. #endif
  6993. #if defined(TCCR1A)
  6994. case TIMER1A:
  6995. case TIMER1B:
  6996. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6997. // TCCR1B |= val;
  6998. break;
  6999. #endif
  7000. #if defined(TCCR2)
  7001. case TIMER2:
  7002. case TIMER2:
  7003. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7004. TCCR2 |= val;
  7005. break;
  7006. #endif
  7007. #if defined(TCCR2A)
  7008. case TIMER2A:
  7009. case TIMER2B:
  7010. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7011. TCCR2B |= val;
  7012. break;
  7013. #endif
  7014. #if defined(TCCR3A)
  7015. case TIMER3A:
  7016. case TIMER3B:
  7017. case TIMER3C:
  7018. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7019. TCCR3B |= val;
  7020. break;
  7021. #endif
  7022. #if defined(TCCR4A)
  7023. case TIMER4A:
  7024. case TIMER4B:
  7025. case TIMER4C:
  7026. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7027. TCCR4B |= val;
  7028. break;
  7029. #endif
  7030. #if defined(TCCR5A)
  7031. case TIMER5A:
  7032. case TIMER5B:
  7033. case TIMER5C:
  7034. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7035. TCCR5B |= val;
  7036. break;
  7037. #endif
  7038. }
  7039. }
  7040. #endif //FAST_PWM_FAN
  7041. //! @brief Get and validate extruder number
  7042. //!
  7043. //! If it is not specified, active_extruder is returned in parameter extruder.
  7044. //! @param [in] code M code number
  7045. //! @param [out] extruder
  7046. //! @return error
  7047. //! @retval true Invalid extruder specified in T code
  7048. //! @retval false Valid extruder specified in T code, or not specifiead
  7049. bool setTargetedHotend(int code, uint8_t &extruder)
  7050. {
  7051. extruder = active_extruder;
  7052. if(code_seen('T')) {
  7053. extruder = code_value();
  7054. if(extruder >= EXTRUDERS) {
  7055. SERIAL_ECHO_START;
  7056. switch(code){
  7057. case 104:
  7058. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7059. break;
  7060. case 105:
  7061. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7062. break;
  7063. case 109:
  7064. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7065. break;
  7066. case 218:
  7067. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7068. break;
  7069. case 221:
  7070. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7071. break;
  7072. }
  7073. SERIAL_PROTOCOLLN((int)extruder);
  7074. return true;
  7075. }
  7076. }
  7077. return false;
  7078. }
  7079. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7080. {
  7081. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7082. {
  7083. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7084. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7085. }
  7086. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7087. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7088. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7089. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7090. total_filament_used = 0;
  7091. }
  7092. float calculate_extruder_multiplier(float diameter) {
  7093. float out = 1.f;
  7094. if (cs.volumetric_enabled && diameter > 0.f) {
  7095. float area = M_PI * diameter * diameter * 0.25;
  7096. out = 1.f / area;
  7097. }
  7098. if (extrudemultiply != 100)
  7099. out *= float(extrudemultiply) * 0.01f;
  7100. return out;
  7101. }
  7102. void calculate_extruder_multipliers() {
  7103. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7104. #if EXTRUDERS > 1
  7105. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7106. #if EXTRUDERS > 2
  7107. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7108. #endif
  7109. #endif
  7110. }
  7111. void delay_keep_alive(unsigned int ms)
  7112. {
  7113. for (;;) {
  7114. manage_heater();
  7115. // Manage inactivity, but don't disable steppers on timeout.
  7116. manage_inactivity(true);
  7117. lcd_update(0);
  7118. if (ms == 0)
  7119. break;
  7120. else if (ms >= 50) {
  7121. _delay(50);
  7122. ms -= 50;
  7123. } else {
  7124. _delay(ms);
  7125. ms = 0;
  7126. }
  7127. }
  7128. }
  7129. static void wait_for_heater(long codenum, uint8_t extruder) {
  7130. #ifdef TEMP_RESIDENCY_TIME
  7131. long residencyStart;
  7132. residencyStart = -1;
  7133. /* continue to loop until we have reached the target temp
  7134. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7135. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7136. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7137. #else
  7138. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7139. #endif //TEMP_RESIDENCY_TIME
  7140. if ((_millis() - codenum) > 1000UL)
  7141. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7142. if (!farm_mode) {
  7143. SERIAL_PROTOCOLPGM("T:");
  7144. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7145. SERIAL_PROTOCOLPGM(" E:");
  7146. SERIAL_PROTOCOL((int)extruder);
  7147. #ifdef TEMP_RESIDENCY_TIME
  7148. SERIAL_PROTOCOLPGM(" W:");
  7149. if (residencyStart > -1)
  7150. {
  7151. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7152. SERIAL_PROTOCOLLN(codenum);
  7153. }
  7154. else
  7155. {
  7156. SERIAL_PROTOCOLLN("?");
  7157. }
  7158. }
  7159. #else
  7160. SERIAL_PROTOCOLLN("");
  7161. #endif
  7162. codenum = _millis();
  7163. }
  7164. manage_heater();
  7165. manage_inactivity(true); //do not disable steppers
  7166. lcd_update(0);
  7167. #ifdef TEMP_RESIDENCY_TIME
  7168. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7169. or when current temp falls outside the hysteresis after target temp was reached */
  7170. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7171. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7172. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7173. {
  7174. residencyStart = _millis();
  7175. }
  7176. #endif //TEMP_RESIDENCY_TIME
  7177. }
  7178. }
  7179. void check_babystep()
  7180. {
  7181. int babystep_z;
  7182. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7183. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7184. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7185. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7186. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7187. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7188. lcd_update_enable(true);
  7189. }
  7190. }
  7191. #ifdef HEATBED_ANALYSIS
  7192. void d_setup()
  7193. {
  7194. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7195. pinMode(D_DATA, INPUT_PULLUP);
  7196. pinMode(D_REQUIRE, OUTPUT);
  7197. digitalWrite(D_REQUIRE, HIGH);
  7198. }
  7199. float d_ReadData()
  7200. {
  7201. int digit[13];
  7202. String mergeOutput;
  7203. float output;
  7204. digitalWrite(D_REQUIRE, HIGH);
  7205. for (int i = 0; i<13; i++)
  7206. {
  7207. for (int j = 0; j < 4; j++)
  7208. {
  7209. while (digitalRead(D_DATACLOCK) == LOW) {}
  7210. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7211. bitWrite(digit[i], j, digitalRead(D_DATA));
  7212. }
  7213. }
  7214. digitalWrite(D_REQUIRE, LOW);
  7215. mergeOutput = "";
  7216. output = 0;
  7217. for (int r = 5; r <= 10; r++) //Merge digits
  7218. {
  7219. mergeOutput += digit[r];
  7220. }
  7221. output = mergeOutput.toFloat();
  7222. if (digit[4] == 8) //Handle sign
  7223. {
  7224. output *= -1;
  7225. }
  7226. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7227. {
  7228. output /= 10;
  7229. }
  7230. return output;
  7231. }
  7232. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7233. int t1 = 0;
  7234. int t_delay = 0;
  7235. int digit[13];
  7236. int m;
  7237. char str[3];
  7238. //String mergeOutput;
  7239. char mergeOutput[15];
  7240. float output;
  7241. int mesh_point = 0; //index number of calibration point
  7242. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7243. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7244. float mesh_home_z_search = 4;
  7245. float measure_z_heigth = 0.2f;
  7246. float row[x_points_num];
  7247. int ix = 0;
  7248. int iy = 0;
  7249. const char* filename_wldsd = "mesh.txt";
  7250. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7251. char numb_wldsd[8]; // (" -A.BCD" + null)
  7252. #ifdef MICROMETER_LOGGING
  7253. d_setup();
  7254. #endif //MICROMETER_LOGGING
  7255. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7256. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7257. unsigned int custom_message_type_old = custom_message_type;
  7258. unsigned int custom_message_state_old = custom_message_state;
  7259. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7260. custom_message_state = (x_points_num * y_points_num) + 10;
  7261. lcd_update(1);
  7262. //mbl.reset();
  7263. babystep_undo();
  7264. card.openFile(filename_wldsd, false);
  7265. /*destination[Z_AXIS] = mesh_home_z_search;
  7266. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7267. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7268. for(int8_t i=0; i < NUM_AXIS; i++) {
  7269. current_position[i] = destination[i];
  7270. }
  7271. st_synchronize();
  7272. */
  7273. destination[Z_AXIS] = measure_z_heigth;
  7274. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7275. for(int8_t i=0; i < NUM_AXIS; i++) {
  7276. current_position[i] = destination[i];
  7277. }
  7278. st_synchronize();
  7279. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7280. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7281. SERIAL_PROTOCOL(x_points_num);
  7282. SERIAL_PROTOCOLPGM(",");
  7283. SERIAL_PROTOCOL(y_points_num);
  7284. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7285. SERIAL_PROTOCOL(mesh_home_z_search);
  7286. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7287. SERIAL_PROTOCOL(x_dimension);
  7288. SERIAL_PROTOCOLPGM(",");
  7289. SERIAL_PROTOCOL(y_dimension);
  7290. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7291. while (mesh_point != x_points_num * y_points_num) {
  7292. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7293. iy = mesh_point / x_points_num;
  7294. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7295. float z0 = 0.f;
  7296. /*destination[Z_AXIS] = mesh_home_z_search;
  7297. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7298. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7299. for(int8_t i=0; i < NUM_AXIS; i++) {
  7300. current_position[i] = destination[i];
  7301. }
  7302. st_synchronize();*/
  7303. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7304. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7305. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7306. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7307. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7308. for(int8_t i=0; i < NUM_AXIS; i++) {
  7309. current_position[i] = destination[i];
  7310. }
  7311. st_synchronize();
  7312. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7313. delay_keep_alive(1000);
  7314. #ifdef MICROMETER_LOGGING
  7315. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7316. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7317. //strcat(data_wldsd, numb_wldsd);
  7318. //MYSERIAL.println(data_wldsd);
  7319. //delay(1000);
  7320. //delay(3000);
  7321. //t1 = millis();
  7322. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7323. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7324. memset(digit, 0, sizeof(digit));
  7325. //cli();
  7326. digitalWrite(D_REQUIRE, LOW);
  7327. for (int i = 0; i<13; i++)
  7328. {
  7329. //t1 = millis();
  7330. for (int j = 0; j < 4; j++)
  7331. {
  7332. while (digitalRead(D_DATACLOCK) == LOW) {}
  7333. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7334. //printf_P(PSTR("Done %d\n"), j);
  7335. bitWrite(digit[i], j, digitalRead(D_DATA));
  7336. }
  7337. //t_delay = (millis() - t1);
  7338. //SERIAL_PROTOCOLPGM(" ");
  7339. //SERIAL_PROTOCOL_F(t_delay, 5);
  7340. //SERIAL_PROTOCOLPGM(" ");
  7341. }
  7342. //sei();
  7343. digitalWrite(D_REQUIRE, HIGH);
  7344. mergeOutput[0] = '\0';
  7345. output = 0;
  7346. for (int r = 5; r <= 10; r++) //Merge digits
  7347. {
  7348. sprintf(str, "%d", digit[r]);
  7349. strcat(mergeOutput, str);
  7350. }
  7351. output = atof(mergeOutput);
  7352. if (digit[4] == 8) //Handle sign
  7353. {
  7354. output *= -1;
  7355. }
  7356. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7357. {
  7358. output *= 0.1;
  7359. }
  7360. //output = d_ReadData();
  7361. //row[ix] = current_position[Z_AXIS];
  7362. //row[ix] = d_ReadData();
  7363. row[ix] = output;
  7364. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7365. memset(data_wldsd, 0, sizeof(data_wldsd));
  7366. for (int i = 0; i < x_points_num; i++) {
  7367. SERIAL_PROTOCOLPGM(" ");
  7368. SERIAL_PROTOCOL_F(row[i], 5);
  7369. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7370. dtostrf(row[i], 7, 3, numb_wldsd);
  7371. strcat(data_wldsd, numb_wldsd);
  7372. }
  7373. card.write_command(data_wldsd);
  7374. SERIAL_PROTOCOLPGM("\n");
  7375. }
  7376. custom_message_state--;
  7377. mesh_point++;
  7378. lcd_update(1);
  7379. }
  7380. #endif //MICROMETER_LOGGING
  7381. card.closefile();
  7382. //clean_up_after_endstop_move(l_feedmultiply);
  7383. }
  7384. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7385. int t1 = 0;
  7386. int t_delay = 0;
  7387. int digit[13];
  7388. int m;
  7389. char str[3];
  7390. //String mergeOutput;
  7391. char mergeOutput[15];
  7392. float output;
  7393. int mesh_point = 0; //index number of calibration point
  7394. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7395. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7396. float mesh_home_z_search = 4;
  7397. float row[x_points_num];
  7398. int ix = 0;
  7399. int iy = 0;
  7400. const char* filename_wldsd = "wldsd.txt";
  7401. char data_wldsd[70];
  7402. char numb_wldsd[10];
  7403. d_setup();
  7404. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7405. // We don't know where we are! HOME!
  7406. // Push the commands to the front of the message queue in the reverse order!
  7407. // There shall be always enough space reserved for these commands.
  7408. repeatcommand_front(); // repeat G80 with all its parameters
  7409. enquecommand_front_P((PSTR("G28 W0")));
  7410. enquecommand_front_P((PSTR("G1 Z5")));
  7411. return;
  7412. }
  7413. unsigned int custom_message_type_old = custom_message_type;
  7414. unsigned int custom_message_state_old = custom_message_state;
  7415. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7416. custom_message_state = (x_points_num * y_points_num) + 10;
  7417. lcd_update(1);
  7418. mbl.reset();
  7419. babystep_undo();
  7420. card.openFile(filename_wldsd, false);
  7421. current_position[Z_AXIS] = mesh_home_z_search;
  7422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7423. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7424. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7425. int l_feedmultiply = setup_for_endstop_move(false);
  7426. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7427. SERIAL_PROTOCOL(x_points_num);
  7428. SERIAL_PROTOCOLPGM(",");
  7429. SERIAL_PROTOCOL(y_points_num);
  7430. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7431. SERIAL_PROTOCOL(mesh_home_z_search);
  7432. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7433. SERIAL_PROTOCOL(x_dimension);
  7434. SERIAL_PROTOCOLPGM(",");
  7435. SERIAL_PROTOCOL(y_dimension);
  7436. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7437. while (mesh_point != x_points_num * y_points_num) {
  7438. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7439. iy = mesh_point / x_points_num;
  7440. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7441. float z0 = 0.f;
  7442. current_position[Z_AXIS] = mesh_home_z_search;
  7443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7444. st_synchronize();
  7445. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7446. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7448. st_synchronize();
  7449. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7450. break;
  7451. card.closefile();
  7452. }
  7453. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7454. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7455. //strcat(data_wldsd, numb_wldsd);
  7456. //MYSERIAL.println(data_wldsd);
  7457. //_delay(1000);
  7458. //_delay(3000);
  7459. //t1 = _millis();
  7460. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7461. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7462. memset(digit, 0, sizeof(digit));
  7463. //cli();
  7464. digitalWrite(D_REQUIRE, LOW);
  7465. for (int i = 0; i<13; i++)
  7466. {
  7467. //t1 = _millis();
  7468. for (int j = 0; j < 4; j++)
  7469. {
  7470. while (digitalRead(D_DATACLOCK) == LOW) {}
  7471. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7472. bitWrite(digit[i], j, digitalRead(D_DATA));
  7473. }
  7474. //t_delay = (_millis() - t1);
  7475. //SERIAL_PROTOCOLPGM(" ");
  7476. //SERIAL_PROTOCOL_F(t_delay, 5);
  7477. //SERIAL_PROTOCOLPGM(" ");
  7478. }
  7479. //sei();
  7480. digitalWrite(D_REQUIRE, HIGH);
  7481. mergeOutput[0] = '\0';
  7482. output = 0;
  7483. for (int r = 5; r <= 10; r++) //Merge digits
  7484. {
  7485. sprintf(str, "%d", digit[r]);
  7486. strcat(mergeOutput, str);
  7487. }
  7488. output = atof(mergeOutput);
  7489. if (digit[4] == 8) //Handle sign
  7490. {
  7491. output *= -1;
  7492. }
  7493. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7494. {
  7495. output *= 0.1;
  7496. }
  7497. //output = d_ReadData();
  7498. //row[ix] = current_position[Z_AXIS];
  7499. memset(data_wldsd, 0, sizeof(data_wldsd));
  7500. for (int i = 0; i <3; i++) {
  7501. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7502. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7503. strcat(data_wldsd, numb_wldsd);
  7504. strcat(data_wldsd, ";");
  7505. }
  7506. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7507. dtostrf(output, 8, 5, numb_wldsd);
  7508. strcat(data_wldsd, numb_wldsd);
  7509. //strcat(data_wldsd, ";");
  7510. card.write_command(data_wldsd);
  7511. //row[ix] = d_ReadData();
  7512. row[ix] = output; // current_position[Z_AXIS];
  7513. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7514. for (int i = 0; i < x_points_num; i++) {
  7515. SERIAL_PROTOCOLPGM(" ");
  7516. SERIAL_PROTOCOL_F(row[i], 5);
  7517. }
  7518. SERIAL_PROTOCOLPGM("\n");
  7519. }
  7520. custom_message_state--;
  7521. mesh_point++;
  7522. lcd_update(1);
  7523. }
  7524. card.closefile();
  7525. clean_up_after_endstop_move(l_feedmultiply);
  7526. }
  7527. #endif //HEATBED_ANALYSIS
  7528. void temp_compensation_start() {
  7529. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7530. custom_message_state = PINDA_HEAT_T + 1;
  7531. lcd_update(2);
  7532. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7533. current_position[E_AXIS] -= default_retraction;
  7534. }
  7535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7536. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7537. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7538. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7540. st_synchronize();
  7541. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7542. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7543. delay_keep_alive(1000);
  7544. custom_message_state = PINDA_HEAT_T - i;
  7545. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7546. else lcd_update(1);
  7547. }
  7548. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7549. custom_message_state = 0;
  7550. }
  7551. void temp_compensation_apply() {
  7552. int i_add;
  7553. int z_shift = 0;
  7554. float z_shift_mm;
  7555. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7556. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7557. i_add = (target_temperature_bed - 60) / 10;
  7558. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7559. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7560. }else {
  7561. //interpolation
  7562. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7563. }
  7564. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7565. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7566. st_synchronize();
  7567. plan_set_z_position(current_position[Z_AXIS]);
  7568. }
  7569. else {
  7570. //we have no temp compensation data
  7571. }
  7572. }
  7573. float temp_comp_interpolation(float inp_temperature) {
  7574. //cubic spline interpolation
  7575. int n, i, j;
  7576. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7577. int shift[10];
  7578. int temp_C[10];
  7579. n = 6; //number of measured points
  7580. shift[0] = 0;
  7581. for (i = 0; i < n; i++) {
  7582. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7583. temp_C[i] = 50 + i * 10; //temperature in C
  7584. #ifdef PINDA_THERMISTOR
  7585. temp_C[i] = 35 + i * 5; //temperature in C
  7586. #else
  7587. temp_C[i] = 50 + i * 10; //temperature in C
  7588. #endif
  7589. x[i] = (float)temp_C[i];
  7590. f[i] = (float)shift[i];
  7591. }
  7592. if (inp_temperature < x[0]) return 0;
  7593. for (i = n - 1; i>0; i--) {
  7594. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7595. h[i - 1] = x[i] - x[i - 1];
  7596. }
  7597. //*********** formation of h, s , f matrix **************
  7598. for (i = 1; i<n - 1; i++) {
  7599. m[i][i] = 2 * (h[i - 1] + h[i]);
  7600. if (i != 1) {
  7601. m[i][i - 1] = h[i - 1];
  7602. m[i - 1][i] = h[i - 1];
  7603. }
  7604. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7605. }
  7606. //*********** forward elimination **************
  7607. for (i = 1; i<n - 2; i++) {
  7608. temp = (m[i + 1][i] / m[i][i]);
  7609. for (j = 1; j <= n - 1; j++)
  7610. m[i + 1][j] -= temp*m[i][j];
  7611. }
  7612. //*********** backward substitution *********
  7613. for (i = n - 2; i>0; i--) {
  7614. sum = 0;
  7615. for (j = i; j <= n - 2; j++)
  7616. sum += m[i][j] * s[j];
  7617. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7618. }
  7619. for (i = 0; i<n - 1; i++)
  7620. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7621. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7622. b = s[i] / 2;
  7623. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7624. d = f[i];
  7625. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7626. }
  7627. return sum;
  7628. }
  7629. #ifdef PINDA_THERMISTOR
  7630. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7631. {
  7632. if (!temp_cal_active) return 0;
  7633. if (!calibration_status_pinda()) return 0;
  7634. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7635. }
  7636. #endif //PINDA_THERMISTOR
  7637. void long_pause() //long pause print
  7638. {
  7639. st_synchronize();
  7640. start_pause_print = _millis();
  7641. //retract
  7642. current_position[E_AXIS] -= default_retraction;
  7643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7644. //lift z
  7645. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7646. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7648. //Move XY to side
  7649. current_position[X_AXIS] = X_PAUSE_POS;
  7650. current_position[Y_AXIS] = Y_PAUSE_POS;
  7651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7652. // Turn off the print fan
  7653. fanSpeed = 0;
  7654. st_synchronize();
  7655. }
  7656. void serialecho_temperatures() {
  7657. float tt = degHotend(active_extruder);
  7658. SERIAL_PROTOCOLPGM("T:");
  7659. SERIAL_PROTOCOL(tt);
  7660. SERIAL_PROTOCOLPGM(" E:");
  7661. SERIAL_PROTOCOL((int)active_extruder);
  7662. SERIAL_PROTOCOLPGM(" B:");
  7663. SERIAL_PROTOCOL_F(degBed(), 1);
  7664. SERIAL_PROTOCOLLN("");
  7665. }
  7666. extern uint32_t sdpos_atomic;
  7667. #ifdef UVLO_SUPPORT
  7668. void uvlo_()
  7669. {
  7670. unsigned long time_start = _millis();
  7671. bool sd_print = card.sdprinting;
  7672. // Conserve power as soon as possible.
  7673. disable_x();
  7674. disable_y();
  7675. #ifdef TMC2130
  7676. tmc2130_set_current_h(Z_AXIS, 20);
  7677. tmc2130_set_current_r(Z_AXIS, 20);
  7678. tmc2130_set_current_h(E_AXIS, 20);
  7679. tmc2130_set_current_r(E_AXIS, 20);
  7680. #endif //TMC2130
  7681. // Indicate that the interrupt has been triggered.
  7682. // SERIAL_ECHOLNPGM("UVLO");
  7683. // Read out the current Z motor microstep counter. This will be later used
  7684. // for reaching the zero full step before powering off.
  7685. uint16_t z_microsteps = 0;
  7686. #ifdef TMC2130
  7687. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7688. #endif //TMC2130
  7689. // Calculate the file position, from which to resume this print.
  7690. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7691. {
  7692. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7693. sd_position -= sdlen_planner;
  7694. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7695. sd_position -= sdlen_cmdqueue;
  7696. if (sd_position < 0) sd_position = 0;
  7697. }
  7698. // Backup the feedrate in mm/min.
  7699. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7700. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7701. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7702. // are in action.
  7703. planner_abort_hard();
  7704. // Store the current extruder position.
  7705. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7706. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7707. // Clean the input command queue.
  7708. cmdqueue_reset();
  7709. card.sdprinting = false;
  7710. // card.closefile();
  7711. // Enable stepper driver interrupt to move Z axis.
  7712. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7713. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7714. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7715. sei();
  7716. plan_buffer_line(
  7717. current_position[X_AXIS],
  7718. current_position[Y_AXIS],
  7719. current_position[Z_AXIS],
  7720. current_position[E_AXIS] - default_retraction,
  7721. 95, active_extruder);
  7722. st_synchronize();
  7723. disable_e0();
  7724. plan_buffer_line(
  7725. current_position[X_AXIS],
  7726. current_position[Y_AXIS],
  7727. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7728. current_position[E_AXIS] - default_retraction,
  7729. 40, active_extruder);
  7730. st_synchronize();
  7731. disable_e0();
  7732. plan_buffer_line(
  7733. current_position[X_AXIS],
  7734. current_position[Y_AXIS],
  7735. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7736. current_position[E_AXIS] - default_retraction,
  7737. 40, active_extruder);
  7738. st_synchronize();
  7739. disable_e0();
  7740. disable_z();
  7741. // Move Z up to the next 0th full step.
  7742. // Write the file position.
  7743. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7744. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7745. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7746. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7747. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7748. // Scale the z value to 1u resolution.
  7749. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7750. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7751. }
  7752. // Read out the current Z motor microstep counter. This will be later used
  7753. // for reaching the zero full step before powering off.
  7754. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7755. // Store the current position.
  7756. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7757. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7758. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7759. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7760. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7761. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7762. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7763. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7764. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7765. #if EXTRUDERS > 1
  7766. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7767. #if EXTRUDERS > 2
  7768. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7769. #endif
  7770. #endif
  7771. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7772. // Finaly store the "power outage" flag.
  7773. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7774. st_synchronize();
  7775. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7776. disable_z();
  7777. // Increment power failure counter
  7778. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7779. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7780. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7781. #if 0
  7782. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7783. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7785. st_synchronize();
  7786. #endif
  7787. wdt_enable(WDTO_500MS);
  7788. WRITE(BEEPER,HIGH);
  7789. while(1)
  7790. ;
  7791. }
  7792. void uvlo_tiny()
  7793. {
  7794. uint16_t z_microsteps=0;
  7795. // Conserve power as soon as possible.
  7796. disable_x();
  7797. disable_y();
  7798. disable_e0();
  7799. #ifdef TMC2130
  7800. tmc2130_set_current_h(Z_AXIS, 20);
  7801. tmc2130_set_current_r(Z_AXIS, 20);
  7802. #endif //TMC2130
  7803. // Read out the current Z motor microstep counter
  7804. #ifdef TMC2130
  7805. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7806. #endif //TMC2130
  7807. planner_abort_hard();
  7808. disable_z();
  7809. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7810. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7811. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7812. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7813. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7814. }
  7815. //after multiple power panics current Z axis is unknow
  7816. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7817. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7818. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7819. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7820. }
  7821. // Finaly store the "power outage" flag.
  7822. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7823. // Increment power failure counter
  7824. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7825. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7826. wdt_enable(WDTO_500MS);
  7827. WRITE(BEEPER,HIGH);
  7828. while(1)
  7829. ;
  7830. }
  7831. #endif //UVLO_SUPPORT
  7832. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7833. void setup_fan_interrupt() {
  7834. //INT7
  7835. DDRE &= ~(1 << 7); //input pin
  7836. PORTE &= ~(1 << 7); //no internal pull-up
  7837. //start with sensing rising edge
  7838. EICRB &= ~(1 << 6);
  7839. EICRB |= (1 << 7);
  7840. //enable INT7 interrupt
  7841. EIMSK |= (1 << 7);
  7842. }
  7843. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7844. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7845. ISR(INT7_vect) {
  7846. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7847. #ifdef FAN_SOFT_PWM
  7848. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7849. #else //FAN_SOFT_PWM
  7850. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7851. #endif //FAN_SOFT_PWM
  7852. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7853. t_fan_rising_edge = millis_nc();
  7854. }
  7855. else { //interrupt was triggered by falling edge
  7856. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7857. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7858. }
  7859. }
  7860. EICRB ^= (1 << 6); //change edge
  7861. }
  7862. #endif
  7863. #ifdef UVLO_SUPPORT
  7864. void setup_uvlo_interrupt() {
  7865. DDRE &= ~(1 << 4); //input pin
  7866. PORTE &= ~(1 << 4); //no internal pull-up
  7867. //sensing falling edge
  7868. EICRB |= (1 << 0);
  7869. EICRB &= ~(1 << 1);
  7870. //enable INT4 interrupt
  7871. EIMSK |= (1 << 4);
  7872. }
  7873. ISR(INT4_vect) {
  7874. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7875. SERIAL_ECHOLNPGM("INT4");
  7876. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  7877. //Don't change || to && because in some case the printer can be moving although IS_SD_PRINTING is zero
  7878. if((IS_SD_PRINTING ) || (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  7879. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7880. }
  7881. void recover_print(uint8_t automatic) {
  7882. char cmd[30];
  7883. lcd_update_enable(true);
  7884. lcd_update(2);
  7885. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7886. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7887. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7888. // Lift the print head, so one may remove the excess priming material.
  7889. if(!bTiny&&(current_position[Z_AXIS]<25))
  7890. enquecommand_P(PSTR("G1 Z25 F800"));
  7891. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7892. enquecommand_P(PSTR("G28 X Y"));
  7893. // Set the target bed and nozzle temperatures and wait.
  7894. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7895. enquecommand(cmd);
  7896. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7897. enquecommand(cmd);
  7898. enquecommand_P(PSTR("M83")); //E axis relative mode
  7899. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7900. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7901. if(automatic == 0){
  7902. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7903. }
  7904. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7905. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7906. // Restart the print.
  7907. restore_print_from_eeprom();
  7908. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7909. }
  7910. void recover_machine_state_after_power_panic(bool bTiny)
  7911. {
  7912. char cmd[30];
  7913. // 1) Recover the logical cordinates at the time of the power panic.
  7914. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7915. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7916. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7917. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7918. mbl.active = false;
  7919. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7920. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7921. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7922. // Scale the z value to 10u resolution.
  7923. int16_t v;
  7924. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7925. if (v != 0)
  7926. mbl.active = true;
  7927. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7928. }
  7929. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7930. // The current position after power panic is moved to the next closest 0th full step.
  7931. if(bTiny){
  7932. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  7933. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  7934. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7935. //after multiple power panics the print is slightly in the air so get it little bit down.
  7936. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  7937. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  7938. }
  7939. else{
  7940. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7941. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  7942. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7943. }
  7944. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7945. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7946. sprintf_P(cmd, PSTR("G92 E"));
  7947. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7948. enquecommand(cmd);
  7949. }
  7950. memcpy(destination, current_position, sizeof(destination));
  7951. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7952. print_world_coordinates();
  7953. // 3) Initialize the logical to physical coordinate system transformation.
  7954. world2machine_initialize();
  7955. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7956. // print_mesh_bed_leveling_table();
  7957. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7958. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7959. babystep_load();
  7960. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7962. // 6) Power up the motors, mark their positions as known.
  7963. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7964. axis_known_position[X_AXIS] = true; enable_x();
  7965. axis_known_position[Y_AXIS] = true; enable_y();
  7966. axis_known_position[Z_AXIS] = true; enable_z();
  7967. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7968. print_physical_coordinates();
  7969. // 7) Recover the target temperatures.
  7970. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7971. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7972. // 8) Recover extruder multipilers
  7973. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7974. #if EXTRUDERS > 1
  7975. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7976. #if EXTRUDERS > 2
  7977. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7978. #endif
  7979. #endif
  7980. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7981. }
  7982. void restore_print_from_eeprom() {
  7983. int feedrate_rec;
  7984. uint8_t fan_speed_rec;
  7985. char cmd[30];
  7986. char filename[13];
  7987. uint8_t depth = 0;
  7988. char dir_name[9];
  7989. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7990. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7991. SERIAL_ECHOPGM("Feedrate:");
  7992. MYSERIAL.println(feedrate_rec);
  7993. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7994. MYSERIAL.println(int(depth));
  7995. for (int i = 0; i < depth; i++) {
  7996. for (int j = 0; j < 8; j++) {
  7997. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7998. }
  7999. dir_name[8] = '\0';
  8000. MYSERIAL.println(dir_name);
  8001. strcpy(dir_names[i], dir_name);
  8002. card.chdir(dir_name);
  8003. }
  8004. for (int i = 0; i < 8; i++) {
  8005. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8006. }
  8007. filename[8] = '\0';
  8008. MYSERIAL.print(filename);
  8009. strcat_P(filename, PSTR(".gco"));
  8010. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8011. enquecommand(cmd);
  8012. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8013. SERIAL_ECHOPGM("Position read from eeprom:");
  8014. MYSERIAL.println(position);
  8015. // E axis relative mode.
  8016. enquecommand_P(PSTR("M83"));
  8017. // Move to the XY print position in logical coordinates, where the print has been killed.
  8018. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8019. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8020. strcat_P(cmd, PSTR(" F2000"));
  8021. enquecommand(cmd);
  8022. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8023. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8024. // Move the Z axis down to the print, in logical coordinates.
  8025. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8026. enquecommand(cmd);
  8027. // Unretract.
  8028. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8029. // Set the feedrate saved at the power panic.
  8030. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8031. enquecommand(cmd);
  8032. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8033. {
  8034. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8035. }
  8036. // Set the fan speed saved at the power panic.
  8037. strcpy_P(cmd, PSTR("M106 S"));
  8038. strcat(cmd, itostr3(int(fan_speed_rec)));
  8039. enquecommand(cmd);
  8040. // Set a position in the file.
  8041. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8042. enquecommand(cmd);
  8043. enquecommand_P(PSTR("G4 S0"));
  8044. enquecommand_P(PSTR("PRUSA uvlo"));
  8045. }
  8046. #endif //UVLO_SUPPORT
  8047. //! @brief Immediately stop print moves
  8048. //!
  8049. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8050. //! If printing from sd card, position in file is saved.
  8051. //! If printing from USB, line number is saved.
  8052. //!
  8053. //! @param z_move
  8054. //! @param e_move
  8055. void stop_and_save_print_to_ram(float z_move, float e_move)
  8056. {
  8057. if (saved_printing) return;
  8058. #if 0
  8059. unsigned char nplanner_blocks;
  8060. #endif
  8061. unsigned char nlines;
  8062. uint16_t sdlen_planner;
  8063. uint16_t sdlen_cmdqueue;
  8064. cli();
  8065. if (card.sdprinting) {
  8066. #if 0
  8067. nplanner_blocks = number_of_blocks();
  8068. #endif
  8069. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8070. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8071. saved_sdpos -= sdlen_planner;
  8072. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8073. saved_sdpos -= sdlen_cmdqueue;
  8074. saved_printing_type = PRINTING_TYPE_SD;
  8075. }
  8076. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8077. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8078. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8079. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8080. saved_sdpos -= nlines;
  8081. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8082. saved_printing_type = PRINTING_TYPE_USB;
  8083. }
  8084. else {
  8085. saved_printing_type = PRINTING_TYPE_NONE;
  8086. //not sd printing nor usb printing
  8087. }
  8088. #if 0
  8089. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8090. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8091. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8092. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8093. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8094. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8095. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8096. {
  8097. card.setIndex(saved_sdpos);
  8098. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8099. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8100. MYSERIAL.print(char(card.get()));
  8101. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8102. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8103. MYSERIAL.print(char(card.get()));
  8104. SERIAL_ECHOLNPGM("End of command buffer");
  8105. }
  8106. {
  8107. // Print the content of the planner buffer, line by line:
  8108. card.setIndex(saved_sdpos);
  8109. int8_t iline = 0;
  8110. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8111. SERIAL_ECHOPGM("Planner line (from file): ");
  8112. MYSERIAL.print(int(iline), DEC);
  8113. SERIAL_ECHOPGM(", length: ");
  8114. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8115. SERIAL_ECHOPGM(", steps: (");
  8116. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8117. SERIAL_ECHOPGM(",");
  8118. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8119. SERIAL_ECHOPGM(",");
  8120. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8121. SERIAL_ECHOPGM(",");
  8122. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8123. SERIAL_ECHOPGM("), events: ");
  8124. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8125. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8126. MYSERIAL.print(char(card.get()));
  8127. }
  8128. }
  8129. {
  8130. // Print the content of the command buffer, line by line:
  8131. int8_t iline = 0;
  8132. union {
  8133. struct {
  8134. char lo;
  8135. char hi;
  8136. } lohi;
  8137. uint16_t value;
  8138. } sdlen_single;
  8139. int _bufindr = bufindr;
  8140. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8141. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8142. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8143. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8144. }
  8145. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8146. MYSERIAL.print(int(iline), DEC);
  8147. SERIAL_ECHOPGM(", type: ");
  8148. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8149. SERIAL_ECHOPGM(", len: ");
  8150. MYSERIAL.println(sdlen_single.value, DEC);
  8151. // Print the content of the buffer line.
  8152. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8153. SERIAL_ECHOPGM("Buffer line (from file): ");
  8154. MYSERIAL.println(int(iline), DEC);
  8155. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8156. MYSERIAL.print(char(card.get()));
  8157. if (-- _buflen == 0)
  8158. break;
  8159. // First skip the current command ID and iterate up to the end of the string.
  8160. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8161. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8162. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8163. // If the end of the buffer was empty,
  8164. if (_bufindr == sizeof(cmdbuffer)) {
  8165. // skip to the start and find the nonzero command.
  8166. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8167. }
  8168. }
  8169. }
  8170. #endif
  8171. #if 0
  8172. saved_feedrate2 = feedrate; //save feedrate
  8173. #else
  8174. // Try to deduce the feedrate from the first block of the planner.
  8175. // Speed is in mm/min.
  8176. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8177. #endif
  8178. planner_abort_hard(); //abort printing
  8179. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8180. saved_active_extruder = active_extruder; //save active_extruder
  8181. saved_extruder_temperature = degTargetHotend(active_extruder);
  8182. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8183. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8184. saved_fanSpeed = fanSpeed;
  8185. cmdqueue_reset(); //empty cmdqueue
  8186. card.sdprinting = false;
  8187. // card.closefile();
  8188. saved_printing = true;
  8189. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8190. st_reset_timer();
  8191. sei();
  8192. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8193. #if 1
  8194. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8195. char buf[48];
  8196. // First unretract (relative extrusion)
  8197. if(!saved_extruder_relative_mode){
  8198. enquecommand(PSTR("M83"), true);
  8199. }
  8200. //retract 45mm/s
  8201. // A single sprintf may not be faster, but is definitely 20B shorter
  8202. // than a sequence of commands building the string piece by piece
  8203. // A snprintf would have been a safer call, but since it is not used
  8204. // in the whole program, its implementation would bring more bytes to the total size
  8205. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8206. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8207. enquecommand(buf, false);
  8208. // Then lift Z axis
  8209. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8210. // At this point the command queue is empty.
  8211. enquecommand(buf, false);
  8212. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8213. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8214. repeatcommand_front();
  8215. #else
  8216. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8217. st_synchronize(); //wait moving
  8218. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8219. memcpy(destination, current_position, sizeof(destination));
  8220. #endif
  8221. }
  8222. }
  8223. //! @brief Restore print from ram
  8224. //!
  8225. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8226. //! waits for extruder temperature restore, then restores position and continues
  8227. //! print moves.
  8228. //! Internaly lcd_update() is called by wait_for_heater().
  8229. //!
  8230. //! @param e_move
  8231. void restore_print_from_ram_and_continue(float e_move)
  8232. {
  8233. if (!saved_printing) return;
  8234. #ifdef FANCHECK
  8235. // Do not allow resume printing if fans are still not ok
  8236. if( fan_check_error != EFCE_OK )return;
  8237. #endif
  8238. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8239. // current_position[axis] = st_get_position_mm(axis);
  8240. active_extruder = saved_active_extruder; //restore active_extruder
  8241. if (saved_extruder_temperature) {
  8242. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8243. heating_status = 1;
  8244. wait_for_heater(_millis(), saved_active_extruder);
  8245. heating_status = 2;
  8246. }
  8247. feedrate = saved_feedrate2; //restore feedrate
  8248. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8249. fanSpeed = saved_fanSpeed;
  8250. float e = saved_pos[E_AXIS] - e_move;
  8251. plan_set_e_position(e);
  8252. #ifdef FANCHECK
  8253. fans_check_enabled = false;
  8254. #endif
  8255. //first move print head in XY to the saved position:
  8256. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8257. st_synchronize();
  8258. //then move Z
  8259. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8260. st_synchronize();
  8261. //and finaly unretract (35mm/s)
  8262. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8263. st_synchronize();
  8264. #ifdef FANCHECK
  8265. fans_check_enabled = true;
  8266. #endif
  8267. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8268. memcpy(destination, current_position, sizeof(destination));
  8269. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8270. card.setIndex(saved_sdpos);
  8271. sdpos_atomic = saved_sdpos;
  8272. card.sdprinting = true;
  8273. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8274. }
  8275. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8276. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8277. serial_count = 0;
  8278. FlushSerialRequestResend();
  8279. }
  8280. else {
  8281. //not sd printing nor usb printing
  8282. }
  8283. lcd_setstatuspgm(_T(WELCOME_MSG));
  8284. saved_printing = false;
  8285. }
  8286. void print_world_coordinates()
  8287. {
  8288. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8289. }
  8290. void print_physical_coordinates()
  8291. {
  8292. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8293. }
  8294. void print_mesh_bed_leveling_table()
  8295. {
  8296. SERIAL_ECHOPGM("mesh bed leveling: ");
  8297. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8298. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8299. MYSERIAL.print(mbl.z_values[y][x], 3);
  8300. SERIAL_ECHOPGM(" ");
  8301. }
  8302. SERIAL_ECHOLNPGM("");
  8303. }
  8304. uint16_t print_time_remaining() {
  8305. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8306. #ifdef TMC2130
  8307. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8308. else print_t = print_time_remaining_silent;
  8309. #else
  8310. print_t = print_time_remaining_normal;
  8311. #endif //TMC2130
  8312. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8313. return print_t;
  8314. }
  8315. uint8_t calc_percent_done()
  8316. {
  8317. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8318. uint8_t percent_done = 0;
  8319. #ifdef TMC2130
  8320. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8321. percent_done = print_percent_done_normal;
  8322. }
  8323. else if (print_percent_done_silent <= 100) {
  8324. percent_done = print_percent_done_silent;
  8325. }
  8326. #else
  8327. if (print_percent_done_normal <= 100) {
  8328. percent_done = print_percent_done_normal;
  8329. }
  8330. #endif //TMC2130
  8331. else {
  8332. percent_done = card.percentDone();
  8333. }
  8334. return percent_done;
  8335. }
  8336. static void print_time_remaining_init()
  8337. {
  8338. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8339. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8340. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8341. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8342. }
  8343. void load_filament_final_feed()
  8344. {
  8345. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8347. }
  8348. //! @brief Wait for user to check the state
  8349. //! @par nozzle_temp nozzle temperature to load filament
  8350. void M600_check_state(float nozzle_temp)
  8351. {
  8352. lcd_change_fil_state = 0;
  8353. while (lcd_change_fil_state != 1)
  8354. {
  8355. lcd_change_fil_state = 0;
  8356. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8357. lcd_alright();
  8358. KEEPALIVE_STATE(IN_HANDLER);
  8359. switch(lcd_change_fil_state)
  8360. {
  8361. // Filament failed to load so load it again
  8362. case 2:
  8363. if (mmu_enabled)
  8364. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8365. else
  8366. M600_load_filament_movements();
  8367. break;
  8368. // Filament loaded properly but color is not clear
  8369. case 3:
  8370. st_synchronize();
  8371. load_filament_final_feed();
  8372. lcd_loading_color();
  8373. st_synchronize();
  8374. break;
  8375. // Everything good
  8376. default:
  8377. lcd_change_success();
  8378. break;
  8379. }
  8380. }
  8381. }
  8382. //! @brief Wait for user action
  8383. //!
  8384. //! Beep, manage nozzle heater and wait for user to start unload filament
  8385. //! If times out, active extruder temperature is set to 0.
  8386. //!
  8387. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8388. void M600_wait_for_user(float HotendTempBckp) {
  8389. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8390. int counterBeep = 0;
  8391. unsigned long waiting_start_time = _millis();
  8392. uint8_t wait_for_user_state = 0;
  8393. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8394. bool bFirst=true;
  8395. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8396. manage_heater();
  8397. manage_inactivity(true);
  8398. #if BEEPER > 0
  8399. if (counterBeep == 500) {
  8400. counterBeep = 0;
  8401. }
  8402. SET_OUTPUT(BEEPER);
  8403. if (counterBeep == 0) {
  8404. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8405. {
  8406. bFirst=false;
  8407. WRITE(BEEPER, HIGH);
  8408. }
  8409. }
  8410. if (counterBeep == 20) {
  8411. WRITE(BEEPER, LOW);
  8412. }
  8413. counterBeep++;
  8414. #endif //BEEPER > 0
  8415. switch (wait_for_user_state) {
  8416. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8417. delay_keep_alive(4);
  8418. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8419. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8420. wait_for_user_state = 1;
  8421. setAllTargetHotends(0);
  8422. st_synchronize();
  8423. disable_e0();
  8424. disable_e1();
  8425. disable_e2();
  8426. }
  8427. break;
  8428. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8429. delay_keep_alive(4);
  8430. if (lcd_clicked()) {
  8431. setTargetHotend(HotendTempBckp, active_extruder);
  8432. lcd_wait_for_heater();
  8433. wait_for_user_state = 2;
  8434. }
  8435. break;
  8436. case 2: //waiting for nozzle to reach target temperature
  8437. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8438. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8439. waiting_start_time = _millis();
  8440. wait_for_user_state = 0;
  8441. }
  8442. else {
  8443. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8444. lcd_set_cursor(1, 4);
  8445. lcd_print(ftostr3(degHotend(active_extruder)));
  8446. }
  8447. break;
  8448. }
  8449. }
  8450. WRITE(BEEPER, LOW);
  8451. }
  8452. void M600_load_filament_movements()
  8453. {
  8454. #ifdef SNMM
  8455. display_loading();
  8456. do
  8457. {
  8458. current_position[E_AXIS] += 0.002;
  8459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8460. delay_keep_alive(2);
  8461. }
  8462. while (!lcd_clicked());
  8463. st_synchronize();
  8464. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8466. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8468. current_position[E_AXIS] += 40;
  8469. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8470. current_position[E_AXIS] += 10;
  8471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8472. #else
  8473. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8475. #endif
  8476. load_filament_final_feed();
  8477. lcd_loading_filament();
  8478. st_synchronize();
  8479. }
  8480. void M600_load_filament() {
  8481. //load filament for single material and SNMM
  8482. lcd_wait_interact();
  8483. //load_filament_time = _millis();
  8484. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8485. #ifdef PAT9125
  8486. fsensor_autoload_check_start();
  8487. #endif //PAT9125
  8488. while(!lcd_clicked())
  8489. {
  8490. manage_heater();
  8491. manage_inactivity(true);
  8492. #ifdef FILAMENT_SENSOR
  8493. if (fsensor_check_autoload())
  8494. {
  8495. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8496. _tone(BEEPER, 1000);
  8497. delay_keep_alive(50);
  8498. _noTone(BEEPER);
  8499. break;
  8500. }
  8501. #endif //FILAMENT_SENSOR
  8502. }
  8503. #ifdef PAT9125
  8504. fsensor_autoload_check_stop();
  8505. #endif //PAT9125
  8506. KEEPALIVE_STATE(IN_HANDLER);
  8507. #ifdef FSENSOR_QUALITY
  8508. fsensor_oq_meassure_start(70);
  8509. #endif //FSENSOR_QUALITY
  8510. M600_load_filament_movements();
  8511. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8512. _tone(BEEPER, 500);
  8513. delay_keep_alive(50);
  8514. _noTone(BEEPER);
  8515. #ifdef FSENSOR_QUALITY
  8516. fsensor_oq_meassure_stop();
  8517. if (!fsensor_oq_result())
  8518. {
  8519. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8520. lcd_update_enable(true);
  8521. lcd_update(2);
  8522. if (disable)
  8523. fsensor_disable();
  8524. }
  8525. #endif //FSENSOR_QUALITY
  8526. lcd_update_enable(false);
  8527. }
  8528. //! @brief Wait for click
  8529. //!
  8530. //! Set
  8531. void marlin_wait_for_click()
  8532. {
  8533. int8_t busy_state_backup = busy_state;
  8534. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8535. lcd_consume_click();
  8536. while(!lcd_clicked())
  8537. {
  8538. manage_heater();
  8539. manage_inactivity(true);
  8540. lcd_update(0);
  8541. }
  8542. KEEPALIVE_STATE(busy_state_backup);
  8543. }
  8544. #define FIL_LOAD_LENGTH 60