temperature.cpp 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "sound.h"
  27. #include "temperature.h"
  28. #include "cardreader.h"
  29. #include "Sd2PinMap.h"
  30. #include <avr/wdt.h>
  31. #include "adc.h"
  32. #include "ConfigurationStore.h"
  33. #include "messages.h"
  34. #include "Timer.h"
  35. #include "Configuration_prusa.h"
  36. #include "config.h"
  37. //===========================================================================
  38. //=============================public variables============================
  39. //===========================================================================
  40. int target_temperature[EXTRUDERS] = { 0 };
  41. int target_temperature_bed = 0;
  42. int current_temperature_raw[EXTRUDERS] = { 0 };
  43. float current_temperature[EXTRUDERS] = { 0.0 };
  44. #ifdef PINDA_THERMISTOR
  45. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  46. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  47. float current_temperature_pinda = 0.0;
  48. #endif //PINDA_THERMISTOR
  49. #ifdef AMBIENT_THERMISTOR
  50. int current_temperature_raw_ambient = 0 ;
  51. float current_temperature_ambient = 0.0;
  52. #endif //AMBIENT_THERMISTOR
  53. #ifdef VOLT_PWR_PIN
  54. int current_voltage_raw_pwr = 0;
  55. #endif
  56. #ifdef VOLT_BED_PIN
  57. int current_voltage_raw_bed = 0;
  58. #endif
  59. #ifdef IR_SENSOR_ANALOG
  60. uint16_t current_voltage_raw_IR = 0;
  61. #endif //IR_SENSOR_ANALOG
  62. int current_temperature_bed_raw = 0;
  63. float current_temperature_bed = 0.0;
  64. #ifdef PIDTEMP
  65. float _Kp, _Ki, _Kd;
  66. int pid_cycle, pid_number_of_cycles;
  67. bool pid_tuning_finished = false;
  68. #ifdef PID_ADD_EXTRUSION_RATE
  69. float Kc=DEFAULT_Kc;
  70. #endif
  71. #endif //PIDTEMP
  72. #ifdef FAN_SOFT_PWM
  73. unsigned char fanSpeedSoftPwm;
  74. #endif
  75. #ifdef FANCHECK
  76. volatile uint8_t fan_check_error = EFCE_OK;
  77. #endif
  78. unsigned char soft_pwm_bed;
  79. #ifdef BABYSTEPPING
  80. volatile int babystepsTodo[3]={0,0,0};
  81. #endif
  82. //===========================================================================
  83. //=============================private variables============================
  84. //===========================================================================
  85. static volatile bool temp_meas_ready = false;
  86. #ifdef PIDTEMP
  87. //static cannot be external:
  88. static float iState_sum[EXTRUDERS] = { 0 };
  89. static float dState_last[EXTRUDERS] = { 0 };
  90. static float pTerm[EXTRUDERS];
  91. static float iTerm[EXTRUDERS];
  92. static float dTerm[EXTRUDERS];
  93. //int output;
  94. static float pid_error[EXTRUDERS];
  95. static float iState_sum_min[EXTRUDERS];
  96. static float iState_sum_max[EXTRUDERS];
  97. // static float pid_input[EXTRUDERS];
  98. // static float pid_output[EXTRUDERS];
  99. static bool pid_reset[EXTRUDERS];
  100. #endif //PIDTEMP
  101. #ifdef PIDTEMPBED
  102. //static cannot be external:
  103. static float temp_iState_bed = { 0 };
  104. static float temp_dState_bed = { 0 };
  105. static float pTerm_bed;
  106. static float iTerm_bed;
  107. static float dTerm_bed;
  108. //int output;
  109. static float pid_error_bed;
  110. static float temp_iState_min_bed;
  111. static float temp_iState_max_bed;
  112. #else //PIDTEMPBED
  113. static unsigned long previous_millis_bed_heater;
  114. #endif //PIDTEMPBED
  115. static unsigned char soft_pwm[EXTRUDERS];
  116. #ifdef FAN_SOFT_PWM
  117. static unsigned char soft_pwm_fan;
  118. #endif
  119. uint8_t fanSpeedBckp = 255;
  120. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. bool fan_measuring = false;
  123. uint8_t fanState = 0;
  124. #ifdef EXTRUDER_ALTFAN_DETECT
  125. struct
  126. {
  127. uint8_t isAltfan : 1;
  128. uint8_t altfanOverride : 1;
  129. } altfanStatus;
  130. #endif //EXTRUDER_ALTFAN_DETECT
  131. #endif
  132. #if EXTRUDERS > 3
  133. # error Unsupported number of extruders
  134. #elif EXTRUDERS > 2
  135. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  136. #elif EXTRUDERS > 1
  137. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  138. #else
  139. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  140. #endif
  141. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  142. // Init min and max temp with extreme values to prevent false errors during startup
  143. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  144. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  145. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  146. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  147. #ifdef BED_MINTEMP
  148. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  149. #endif
  150. #ifdef BED_MAXTEMP
  151. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  152. #endif
  153. #ifdef AMBIENT_MINTEMP
  154. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  155. #endif
  156. #ifdef AMBIENT_MAXTEMP
  157. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  158. #endif
  159. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  160. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  161. static float analog2temp(int raw, uint8_t e);
  162. static float analog2tempBed(int raw);
  163. static float analog2tempAmbient(int raw);
  164. static void updateTemperaturesFromRawValues();
  165. enum TempRunawayStates
  166. {
  167. TempRunaway_INACTIVE = 0,
  168. TempRunaway_PREHEAT = 1,
  169. TempRunaway_ACTIVE = 2,
  170. };
  171. #ifndef SOFT_PWM_SCALE
  172. #define SOFT_PWM_SCALE 0
  173. #endif
  174. //===========================================================================
  175. //============================= functions ============================
  176. //===========================================================================
  177. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  178. static float temp_runaway_status[4];
  179. static float temp_runaway_target[4];
  180. static float temp_runaway_timer[4];
  181. static int temp_runaway_error_counter[4];
  182. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  183. static void temp_runaway_stop(bool isPreheat, bool isBed);
  184. #endif
  185. #ifdef EXTRUDER_ALTFAN_DETECT
  186. ISR(INT6_vect) {
  187. fan_edge_counter[0]++;
  188. }
  189. bool extruder_altfan_detect()
  190. {
  191. setExtruderAutoFanState(3);
  192. SET_INPUT(TACH_0);
  193. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  194. if (overrideVal == EEPROM_EMPTY_VALUE)
  195. {
  196. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  197. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  198. }
  199. altfanStatus.altfanOverride = overrideVal;
  200. CRITICAL_SECTION_START;
  201. EICRB &= ~(1 << ISC61);
  202. EICRB |= (1 << ISC60);
  203. EIMSK |= (1 << INT6);
  204. fan_edge_counter[0] = 0;
  205. CRITICAL_SECTION_END;
  206. extruder_autofan_last_check = _millis();
  207. _delay(1000);
  208. EIMSK &= ~(1 << INT6);
  209. countFanSpeed();
  210. altfanStatus.isAltfan = fan_speed[0] > 100;
  211. setExtruderAutoFanState(1);
  212. return altfanStatus.isAltfan;
  213. }
  214. void altfanOverride_toggle()
  215. {
  216. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  217. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  218. }
  219. bool altfanOverride_get()
  220. {
  221. return altfanStatus.altfanOverride;
  222. }
  223. #endif //EXTRUDER_ALTFAN_DETECT
  224. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  225. bool checkAllHotends(void)
  226. {
  227. bool result=false;
  228. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  229. return(result);
  230. }
  231. void PID_autotune(float temp, int extruder, int ncycles)
  232. {
  233. pid_number_of_cycles = ncycles;
  234. pid_tuning_finished = false;
  235. float input = 0.0;
  236. pid_cycle=0;
  237. bool heating = true;
  238. unsigned long temp_millis = _millis();
  239. unsigned long t1=temp_millis;
  240. unsigned long t2=temp_millis;
  241. long t_high = 0;
  242. long t_low = 0;
  243. long bias, d;
  244. float Ku, Tu;
  245. float max = 0, min = 10000;
  246. uint8_t safety_check_cycles = 0;
  247. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  248. float temp_ambient;
  249. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  250. unsigned long extruder_autofan_last_check = _millis();
  251. #endif
  252. if ((extruder >= EXTRUDERS)
  253. #if (TEMP_BED_PIN <= -1)
  254. ||(extruder < 0)
  255. #endif
  256. ){
  257. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  258. pid_tuning_finished = true;
  259. pid_cycle = 0;
  260. return;
  261. }
  262. SERIAL_ECHOLN("PID Autotune start");
  263. disable_heater(); // switch off all heaters.
  264. if (extruder<0)
  265. {
  266. soft_pwm_bed = (MAX_BED_POWER)/2;
  267. timer02_set_pwm0(soft_pwm_bed << 1);
  268. bias = d = (MAX_BED_POWER)/2;
  269. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  270. }
  271. else
  272. {
  273. soft_pwm[extruder] = (PID_MAX)/2;
  274. bias = d = (PID_MAX)/2;
  275. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  276. }
  277. for(;;) {
  278. #ifdef WATCHDOG
  279. wdt_reset();
  280. #endif //WATCHDOG
  281. if(temp_meas_ready == true) { // temp sample ready
  282. updateTemperaturesFromRawValues();
  283. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  284. max=max(max,input);
  285. min=min(min,input);
  286. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  287. if(_millis() - extruder_autofan_last_check > 2500) {
  288. checkExtruderAutoFans();
  289. extruder_autofan_last_check = _millis();
  290. }
  291. #endif
  292. if(heating == true && input > temp) {
  293. if(_millis() - t2 > 5000) {
  294. heating=false;
  295. if (extruder<0)
  296. {
  297. soft_pwm_bed = (bias - d) >> 1;
  298. timer02_set_pwm0(soft_pwm_bed << 1);
  299. }
  300. else
  301. soft_pwm[extruder] = (bias - d) >> 1;
  302. t1=_millis();
  303. t_high=t1 - t2;
  304. max=temp;
  305. }
  306. }
  307. if(heating == false && input < temp) {
  308. if(_millis() - t1 > 5000) {
  309. heating=true;
  310. t2=_millis();
  311. t_low=t2 - t1;
  312. if(pid_cycle > 0) {
  313. bias += (d*(t_high - t_low))/(t_low + t_high);
  314. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  315. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  316. else d = bias;
  317. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  318. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  319. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  320. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  321. if(pid_cycle > 2) {
  322. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  323. Tu = ((float)(t_low + t_high)/1000.0);
  324. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  325. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  326. _Kp = 0.6*Ku;
  327. _Ki = 2*_Kp/Tu;
  328. _Kd = _Kp*Tu/8;
  329. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  330. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  331. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  332. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  333. /*
  334. _Kp = 0.33*Ku;
  335. _Ki = _Kp/Tu;
  336. _Kd = _Kp*Tu/3;
  337. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  338. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  339. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  340. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  341. _Kp = 0.2*Ku;
  342. _Ki = 2*_Kp/Tu;
  343. _Kd = _Kp*Tu/3;
  344. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  345. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  346. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  347. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  348. */
  349. }
  350. }
  351. if (extruder<0)
  352. {
  353. soft_pwm_bed = (bias + d) >> 1;
  354. timer02_set_pwm0(soft_pwm_bed << 1);
  355. }
  356. else
  357. soft_pwm[extruder] = (bias + d) >> 1;
  358. pid_cycle++;
  359. min=temp;
  360. }
  361. }
  362. }
  363. if(input > (temp + 20)) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. if(_millis() - temp_millis > 2000) {
  370. int p;
  371. if (extruder<0){
  372. p=soft_pwm_bed;
  373. SERIAL_PROTOCOLPGM("B:");
  374. }else{
  375. p=soft_pwm[extruder];
  376. SERIAL_PROTOCOLPGM("T:");
  377. }
  378. SERIAL_PROTOCOL(input);
  379. SERIAL_PROTOCOLPGM(" @:");
  380. SERIAL_PROTOCOLLN(p);
  381. if (safety_check_cycles == 0) { //save ambient temp
  382. temp_ambient = input;
  383. //SERIAL_ECHOPGM("Ambient T: ");
  384. //MYSERIAL.println(temp_ambient);
  385. safety_check_cycles++;
  386. }
  387. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  388. safety_check_cycles++;
  389. }
  390. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  391. safety_check_cycles++;
  392. //SERIAL_ECHOPGM("Time from beginning: ");
  393. //MYSERIAL.print(safety_check_cycles_count * 2);
  394. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  395. //MYSERIAL.println(input - temp_ambient);
  396. if (abs(input - temp_ambient) < 5.0) {
  397. temp_runaway_stop(false, (extruder<0));
  398. pid_tuning_finished = true;
  399. return;
  400. }
  401. }
  402. temp_millis = _millis();
  403. }
  404. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  405. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  406. pid_tuning_finished = true;
  407. pid_cycle = 0;
  408. return;
  409. }
  410. if(pid_cycle > ncycles) {
  411. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  412. pid_tuning_finished = true;
  413. pid_cycle = 0;
  414. return;
  415. }
  416. lcd_update(0);
  417. }
  418. }
  419. void updatePID()
  420. {
  421. #ifdef PIDTEMP
  422. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  423. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  424. }
  425. #endif
  426. #ifdef PIDTEMPBED
  427. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  428. #endif
  429. }
  430. int getHeaterPower(int heater) {
  431. if (heater<0)
  432. return soft_pwm_bed;
  433. return soft_pwm[heater];
  434. }
  435. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  436. #if defined(FAN_PIN) && FAN_PIN > -1
  437. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  438. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  439. #endif
  440. #endif
  441. void setExtruderAutoFanState(uint8_t state)
  442. {
  443. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  444. //the fan to either On or Off during certain tests/errors.
  445. fanState = state;
  446. newFanSpeed = 0;
  447. if (fanState & 0x01)
  448. {
  449. #ifdef EXTRUDER_ALTFAN_DETECT
  450. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  451. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  452. #else //EXTRUDER_ALTFAN_DETECT
  453. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  454. #endif //EXTRUDER_ALTFAN_DETECT
  455. }
  456. timer4_set_fan0(newFanSpeed);
  457. }
  458. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  459. void countFanSpeed()
  460. {
  461. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  462. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  463. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  464. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  465. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  466. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  467. SERIAL_ECHOLNPGM(" ");*/
  468. fan_edge_counter[0] = 0;
  469. fan_edge_counter[1] = 0;
  470. }
  471. void checkFanSpeed()
  472. {
  473. uint8_t max_print_fan_errors = 0;
  474. uint8_t max_extruder_fan_errors = 0;
  475. #ifdef FAN_SOFT_PWM
  476. max_print_fan_errors = 3; //15 seconds
  477. max_extruder_fan_errors = 4; //20seconds
  478. #else //FAN_SOFT_PWM
  479. max_print_fan_errors = 15; //15 seconds
  480. max_extruder_fan_errors = 10; //10 seconds
  481. #endif //FAN_SOFT_PWM
  482. if(fans_check_enabled != false)
  483. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  484. static unsigned char fan_speed_errors[2] = { 0,0 };
  485. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  486. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  487. else{
  488. fan_speed_errors[0] = 0;
  489. host_keepalive();
  490. }
  491. #endif
  492. /*
  493. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  494. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  495. else fan_speed_errors[1] = 0;
  496. #endif
  497. */
  498. // drop the fan_check_error flag when both fans are ok
  499. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  500. // we may even send some info to the LCD from here
  501. fan_check_error = EFCE_FIXED;
  502. }
  503. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  504. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  505. lcd_reset_alert_level(); //for another fan speed error
  506. }
  507. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  508. fan_speed_errors[0] = 0;
  509. fanSpeedError(0); //extruder fan
  510. }
  511. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  512. fan_speed_errors[1] = 0;
  513. fanSpeedError(1); //print fan
  514. }
  515. }
  516. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  517. //! Extracted from fanSpeedError to save some space.
  518. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  519. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  520. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  521. SERIAL_ECHOLNRPGM(serialMsg);
  522. if (get_message_level() == 0) {
  523. Sound_MakeCustom(200,0,true);
  524. LCD_ALERTMESSAGERPGM(lcdMsg);
  525. }
  526. }
  527. void fanSpeedError(unsigned char _fan) {
  528. if (get_message_level() != 0 && isPrintPaused) return;
  529. //to ensure that target temp. is not set to zero in case that we are resuming print
  530. if (card.sdprinting || is_usb_printing) {
  531. if (heating_status != 0) {
  532. lcd_print_stop();
  533. }
  534. else {
  535. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  536. }
  537. }
  538. else {
  539. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  540. setTargetHotend0(0);
  541. heating_status = 0;
  542. fan_check_error = EFCE_REPORTED;
  543. }
  544. switch (_fan) {
  545. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  546. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  547. break;
  548. case 1:
  549. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  550. break;
  551. }
  552. }
  553. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  554. void checkExtruderAutoFans()
  555. {
  556. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  557. if (!(fanState & 0x02))
  558. {
  559. fanState &= ~1;
  560. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  561. }
  562. setExtruderAutoFanState(fanState);
  563. #endif
  564. }
  565. #endif // any extruder auto fan pins set
  566. // ready for eventually parameters adjusting
  567. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  568. //void resetPID(uint8_t extruder)
  569. {
  570. }
  571. void manage_heater()
  572. {
  573. #ifdef WATCHDOG
  574. wdt_reset();
  575. #endif //WATCHDOG
  576. float pid_input;
  577. float pid_output;
  578. if(temp_meas_ready != true) //better readability
  579. return;
  580. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  581. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  582. updateTemperaturesFromRawValues();
  583. check_max_temp();
  584. check_min_temp();
  585. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  586. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  587. #endif
  588. for(int e = 0; e < EXTRUDERS; e++)
  589. {
  590. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  591. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  592. #endif
  593. #ifdef PIDTEMP
  594. pid_input = current_temperature[e];
  595. #ifndef PID_OPENLOOP
  596. if(target_temperature[e] == 0) {
  597. pid_output = 0;
  598. pid_reset[e] = true;
  599. } else {
  600. pid_error[e] = target_temperature[e] - pid_input;
  601. if(pid_reset[e]) {
  602. iState_sum[e] = 0.0;
  603. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  604. pid_reset[e] = false;
  605. }
  606. #ifndef PonM
  607. pTerm[e] = cs.Kp * pid_error[e];
  608. iState_sum[e] += pid_error[e];
  609. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  610. iTerm[e] = cs.Ki * iState_sum[e];
  611. // PID_K1 defined in Configuration.h in the PID settings
  612. #define K2 (1.0-PID_K1)
  613. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  614. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  615. if (pid_output > PID_MAX) {
  616. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  617. pid_output=PID_MAX;
  618. } else if (pid_output < 0) {
  619. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  620. pid_output=0;
  621. }
  622. #else // PonM ("Proportional on Measurement" method)
  623. iState_sum[e] += cs.Ki * pid_error[e];
  624. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  625. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  626. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  627. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  628. pid_output = constrain(pid_output, 0, PID_MAX);
  629. #endif // PonM
  630. }
  631. dState_last[e] = pid_input;
  632. #else
  633. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  634. #endif //PID_OPENLOOP
  635. #ifdef PID_DEBUG
  636. SERIAL_ECHO_START;
  637. SERIAL_ECHO(" PID_DEBUG ");
  638. SERIAL_ECHO(e);
  639. SERIAL_ECHO(": Input ");
  640. SERIAL_ECHO(pid_input);
  641. SERIAL_ECHO(" Output ");
  642. SERIAL_ECHO(pid_output);
  643. SERIAL_ECHO(" pTerm ");
  644. SERIAL_ECHO(pTerm[e]);
  645. SERIAL_ECHO(" iTerm ");
  646. SERIAL_ECHO(iTerm[e]);
  647. SERIAL_ECHO(" dTerm ");
  648. SERIAL_ECHOLN(-dTerm[e]);
  649. #endif //PID_DEBUG
  650. #else /* PID off */
  651. pid_output = 0;
  652. if(current_temperature[e] < target_temperature[e]) {
  653. pid_output = PID_MAX;
  654. }
  655. #endif
  656. // Check if temperature is within the correct range
  657. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  658. {
  659. soft_pwm[e] = (int)pid_output >> 1;
  660. }
  661. else
  662. {
  663. soft_pwm[e] = 0;
  664. }
  665. } // End extruder for loop
  666. #define FAN_CHECK_PERIOD 5000 //5s
  667. #define FAN_CHECK_DURATION 100 //100ms
  668. #ifndef DEBUG_DISABLE_FANCHECK
  669. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  670. #ifdef FAN_SOFT_PWM
  671. #ifdef FANCHECK
  672. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  673. extruder_autofan_last_check = _millis();
  674. fanSpeedBckp = fanSpeedSoftPwm;
  675. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  676. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  677. fanSpeedSoftPwm = 255;
  678. }
  679. fan_measuring = true;
  680. }
  681. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  682. countFanSpeed();
  683. checkFanSpeed();
  684. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  685. fanSpeedSoftPwm = fanSpeedBckp;
  686. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  687. extruder_autofan_last_check = _millis();
  688. fan_measuring = false;
  689. }
  690. #endif //FANCHECK
  691. checkExtruderAutoFans();
  692. #else //FAN_SOFT_PWM
  693. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  694. {
  695. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  696. countFanSpeed();
  697. checkFanSpeed();
  698. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  699. checkExtruderAutoFans();
  700. extruder_autofan_last_check = _millis();
  701. }
  702. #endif //FAN_SOFT_PWM
  703. #endif
  704. #endif //DEBUG_DISABLE_FANCHECK
  705. #ifndef PIDTEMPBED
  706. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  707. return;
  708. previous_millis_bed_heater = _millis();
  709. #endif
  710. #if TEMP_SENSOR_BED != 0
  711. #ifdef PIDTEMPBED
  712. pid_input = current_temperature_bed;
  713. #ifndef PID_OPENLOOP
  714. pid_error_bed = target_temperature_bed - pid_input;
  715. pTerm_bed = cs.bedKp * pid_error_bed;
  716. temp_iState_bed += pid_error_bed;
  717. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  718. iTerm_bed = cs.bedKi * temp_iState_bed;
  719. //PID_K1 defined in Configuration.h in the PID settings
  720. #define K2 (1.0-PID_K1)
  721. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  722. temp_dState_bed = pid_input;
  723. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  724. if (pid_output > MAX_BED_POWER) {
  725. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  726. pid_output=MAX_BED_POWER;
  727. } else if (pid_output < 0){
  728. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  729. pid_output=0;
  730. }
  731. #else
  732. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  733. #endif //PID_OPENLOOP
  734. if(current_temperature_bed < BED_MAXTEMP)
  735. {
  736. soft_pwm_bed = (int)pid_output >> 1;
  737. timer02_set_pwm0(soft_pwm_bed << 1);
  738. }
  739. else {
  740. soft_pwm_bed = 0;
  741. timer02_set_pwm0(soft_pwm_bed << 1);
  742. }
  743. #elif !defined(BED_LIMIT_SWITCHING)
  744. // Check if temperature is within the correct range
  745. if(current_temperature_bed < BED_MAXTEMP)
  746. {
  747. if(current_temperature_bed >= target_temperature_bed)
  748. {
  749. soft_pwm_bed = 0;
  750. timer02_set_pwm0(soft_pwm_bed << 1);
  751. }
  752. else
  753. {
  754. soft_pwm_bed = MAX_BED_POWER>>1;
  755. timer02_set_pwm0(soft_pwm_bed << 1);
  756. }
  757. }
  758. else
  759. {
  760. soft_pwm_bed = 0;
  761. timer02_set_pwm0(soft_pwm_bed << 1);
  762. WRITE(HEATER_BED_PIN,LOW);
  763. }
  764. #else //#ifdef BED_LIMIT_SWITCHING
  765. // Check if temperature is within the correct band
  766. if(current_temperature_bed < BED_MAXTEMP)
  767. {
  768. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  769. {
  770. soft_pwm_bed = 0;
  771. timer02_set_pwm0(soft_pwm_bed << 1);
  772. }
  773. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  774. {
  775. soft_pwm_bed = MAX_BED_POWER>>1;
  776. timer02_set_pwm0(soft_pwm_bed << 1);
  777. }
  778. }
  779. else
  780. {
  781. soft_pwm_bed = 0;
  782. timer02_set_pwm0(soft_pwm_bed << 1);
  783. WRITE(HEATER_BED_PIN,LOW);
  784. }
  785. #endif
  786. if(target_temperature_bed==0)
  787. {
  788. soft_pwm_bed = 0;
  789. timer02_set_pwm0(soft_pwm_bed << 1);
  790. }
  791. #endif
  792. host_keepalive();
  793. }
  794. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  795. // Derived from RepRap FiveD extruder::getTemperature()
  796. // For hot end temperature measurement.
  797. static float analog2temp(int raw, uint8_t e) {
  798. if(e >= EXTRUDERS)
  799. {
  800. SERIAL_ERROR_START;
  801. SERIAL_ERROR((int)e);
  802. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  803. kill(NULL, 6);
  804. return 0.0;
  805. }
  806. #ifdef HEATER_0_USES_MAX6675
  807. if (e == 0)
  808. {
  809. return 0.25 * raw;
  810. }
  811. #endif
  812. if(heater_ttbl_map[e] != NULL)
  813. {
  814. float celsius = 0;
  815. uint8_t i;
  816. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  817. for (i=1; i<heater_ttbllen_map[e]; i++)
  818. {
  819. if (PGM_RD_W((*tt)[i][0]) > raw)
  820. {
  821. celsius = PGM_RD_W((*tt)[i-1][1]) +
  822. (raw - PGM_RD_W((*tt)[i-1][0])) *
  823. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  824. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  825. break;
  826. }
  827. }
  828. // Overflow: Set to last value in the table
  829. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  830. return celsius;
  831. }
  832. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  833. }
  834. // Derived from RepRap FiveD extruder::getTemperature()
  835. // For bed temperature measurement.
  836. static float analog2tempBed(int raw) {
  837. #ifdef BED_USES_THERMISTOR
  838. float celsius = 0;
  839. byte i;
  840. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  841. {
  842. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  843. {
  844. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  845. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  846. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  847. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  848. break;
  849. }
  850. }
  851. // Overflow: Set to last value in the table
  852. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  853. // temperature offset adjustment
  854. #ifdef BED_OFFSET
  855. float _offset = BED_OFFSET;
  856. float _offset_center = BED_OFFSET_CENTER;
  857. float _offset_start = BED_OFFSET_START;
  858. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  859. float _second_koef = (_offset / 2) / (100 - _offset_center);
  860. if (celsius >= _offset_start && celsius <= _offset_center)
  861. {
  862. celsius = celsius + (_first_koef * (celsius - _offset_start));
  863. }
  864. else if (celsius > _offset_center && celsius <= 100)
  865. {
  866. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  867. }
  868. else if (celsius > 100)
  869. {
  870. celsius = celsius + _offset;
  871. }
  872. #endif
  873. return celsius;
  874. #elif defined BED_USES_AD595
  875. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  876. #else
  877. return 0;
  878. #endif
  879. }
  880. #ifdef AMBIENT_THERMISTOR
  881. static float analog2tempAmbient(int raw)
  882. {
  883. float celsius = 0;
  884. byte i;
  885. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  886. {
  887. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  888. {
  889. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  890. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  891. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  892. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  893. break;
  894. }
  895. }
  896. // Overflow: Set to last value in the table
  897. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  898. return celsius;
  899. }
  900. #endif //AMBIENT_THERMISTOR
  901. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  902. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  903. static void updateTemperaturesFromRawValues()
  904. {
  905. for(uint8_t e=0;e<EXTRUDERS;e++)
  906. {
  907. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  908. }
  909. #ifdef PINDA_THERMISTOR
  910. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  911. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  912. #endif
  913. #ifdef AMBIENT_THERMISTOR
  914. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  915. #endif
  916. #ifdef DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = target_temperature_bed;
  918. #else //DEBUG_HEATER_BED_SIM
  919. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  920. #endif //DEBUG_HEATER_BED_SIM
  921. CRITICAL_SECTION_START;
  922. temp_meas_ready = false;
  923. CRITICAL_SECTION_END;
  924. }
  925. void tp_init()
  926. {
  927. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  928. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  929. MCUCR=(1<<JTD);
  930. MCUCR=(1<<JTD);
  931. #endif
  932. // Finish init of mult extruder arrays
  933. for(int e = 0; e < EXTRUDERS; e++) {
  934. // populate with the first value
  935. maxttemp[e] = maxttemp[0];
  936. #ifdef PIDTEMP
  937. iState_sum_min[e] = 0.0;
  938. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  939. #endif //PIDTEMP
  940. #ifdef PIDTEMPBED
  941. temp_iState_min_bed = 0.0;
  942. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  943. #endif //PIDTEMPBED
  944. }
  945. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  946. SET_OUTPUT(HEATER_0_PIN);
  947. #endif
  948. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  949. SET_OUTPUT(HEATER_1_PIN);
  950. #endif
  951. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  952. SET_OUTPUT(HEATER_2_PIN);
  953. #endif
  954. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  955. SET_OUTPUT(HEATER_BED_PIN);
  956. #endif
  957. #if defined(FAN_PIN) && (FAN_PIN > -1)
  958. SET_OUTPUT(FAN_PIN);
  959. #ifdef FAST_PWM_FAN
  960. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  961. #endif
  962. #ifdef FAN_SOFT_PWM
  963. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  964. #endif
  965. #endif
  966. #ifdef HEATER_0_USES_MAX6675
  967. #ifndef SDSUPPORT
  968. SET_OUTPUT(SCK_PIN);
  969. WRITE(SCK_PIN,0);
  970. SET_OUTPUT(MOSI_PIN);
  971. WRITE(MOSI_PIN,1);
  972. SET_INPUT(MISO_PIN);
  973. WRITE(MISO_PIN,1);
  974. #endif
  975. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  976. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  977. pinMode(SS_PIN, OUTPUT);
  978. digitalWrite(SS_PIN,0);
  979. pinMode(MAX6675_SS, OUTPUT);
  980. digitalWrite(MAX6675_SS,1);
  981. #endif
  982. adc_init();
  983. timer0_init(); //enables the heatbed timer.
  984. // timer2 already enabled earlier in the code
  985. // now enable the COMPB temperature interrupt
  986. OCR2B = 128;
  987. TIMSK2 |= (1<<OCIE2B);
  988. timer4_init(); //for tone and Extruder fan PWM
  989. // Wait for temperature measurement to settle
  990. _delay(250);
  991. #ifdef HEATER_0_MINTEMP
  992. minttemp[0] = HEATER_0_MINTEMP;
  993. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  994. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  995. minttemp_raw[0] += OVERSAMPLENR;
  996. #else
  997. minttemp_raw[0] -= OVERSAMPLENR;
  998. #endif
  999. }
  1000. #endif //MINTEMP
  1001. #ifdef HEATER_0_MAXTEMP
  1002. maxttemp[0] = HEATER_0_MAXTEMP;
  1003. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1004. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1005. maxttemp_raw[0] -= OVERSAMPLENR;
  1006. #else
  1007. maxttemp_raw[0] += OVERSAMPLENR;
  1008. #endif
  1009. }
  1010. #endif //MAXTEMP
  1011. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1012. minttemp[1] = HEATER_1_MINTEMP;
  1013. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1014. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1015. minttemp_raw[1] += OVERSAMPLENR;
  1016. #else
  1017. minttemp_raw[1] -= OVERSAMPLENR;
  1018. #endif
  1019. }
  1020. #endif // MINTEMP 1
  1021. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1022. maxttemp[1] = HEATER_1_MAXTEMP;
  1023. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1024. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1025. maxttemp_raw[1] -= OVERSAMPLENR;
  1026. #else
  1027. maxttemp_raw[1] += OVERSAMPLENR;
  1028. #endif
  1029. }
  1030. #endif //MAXTEMP 1
  1031. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1032. minttemp[2] = HEATER_2_MINTEMP;
  1033. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1034. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1035. minttemp_raw[2] += OVERSAMPLENR;
  1036. #else
  1037. minttemp_raw[2] -= OVERSAMPLENR;
  1038. #endif
  1039. }
  1040. #endif //MINTEMP 2
  1041. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1042. maxttemp[2] = HEATER_2_MAXTEMP;
  1043. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1044. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1045. maxttemp_raw[2] -= OVERSAMPLENR;
  1046. #else
  1047. maxttemp_raw[2] += OVERSAMPLENR;
  1048. #endif
  1049. }
  1050. #endif //MAXTEMP 2
  1051. #ifdef BED_MINTEMP
  1052. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1053. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1054. bed_minttemp_raw += OVERSAMPLENR;
  1055. #else
  1056. bed_minttemp_raw -= OVERSAMPLENR;
  1057. #endif
  1058. }
  1059. #endif //BED_MINTEMP
  1060. #ifdef BED_MAXTEMP
  1061. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1062. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1063. bed_maxttemp_raw -= OVERSAMPLENR;
  1064. #else
  1065. bed_maxttemp_raw += OVERSAMPLENR;
  1066. #endif
  1067. }
  1068. #endif //BED_MAXTEMP
  1069. #ifdef AMBIENT_MINTEMP
  1070. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1071. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1072. ambient_minttemp_raw += OVERSAMPLENR;
  1073. #else
  1074. ambient_minttemp_raw -= OVERSAMPLENR;
  1075. #endif
  1076. }
  1077. #endif //AMBIENT_MINTEMP
  1078. #ifdef AMBIENT_MAXTEMP
  1079. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1080. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1081. ambient_maxttemp_raw -= OVERSAMPLENR;
  1082. #else
  1083. ambient_maxttemp_raw += OVERSAMPLENR;
  1084. #endif
  1085. }
  1086. #endif //AMBIENT_MAXTEMP
  1087. }
  1088. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1089. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1090. {
  1091. float __delta;
  1092. float __hysteresis = 0;
  1093. int __timeout = 0;
  1094. bool temp_runaway_check_active = false;
  1095. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1096. static int __preheat_counter[2] = { 0,0};
  1097. static int __preheat_errors[2] = { 0,0};
  1098. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1099. {
  1100. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1101. if (_isbed)
  1102. {
  1103. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1104. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1105. }
  1106. #endif
  1107. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1108. if (!_isbed)
  1109. {
  1110. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1111. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1112. }
  1113. #endif
  1114. temp_runaway_timer[_heater_id] = _millis();
  1115. if (_output == 0)
  1116. {
  1117. temp_runaway_check_active = false;
  1118. temp_runaway_error_counter[_heater_id] = 0;
  1119. }
  1120. if (temp_runaway_target[_heater_id] != _target_temperature)
  1121. {
  1122. if (_target_temperature > 0)
  1123. {
  1124. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1125. temp_runaway_target[_heater_id] = _target_temperature;
  1126. __preheat_start[_heater_id] = _current_temperature;
  1127. __preheat_counter[_heater_id] = 0;
  1128. }
  1129. else
  1130. {
  1131. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1132. temp_runaway_target[_heater_id] = _target_temperature;
  1133. }
  1134. }
  1135. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1136. {
  1137. __preheat_counter[_heater_id]++;
  1138. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1139. {
  1140. /*SERIAL_ECHOPGM("Heater:");
  1141. MYSERIAL.print(_heater_id);
  1142. SERIAL_ECHOPGM(" T:");
  1143. MYSERIAL.print(_current_temperature);
  1144. SERIAL_ECHOPGM(" Tstart:");
  1145. MYSERIAL.print(__preheat_start[_heater_id]);
  1146. SERIAL_ECHOPGM(" delta:");
  1147. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1148. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1149. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1150. __delta=2.0;
  1151. if(_isbed)
  1152. {
  1153. __delta=3.0;
  1154. if(_current_temperature>90.0) __delta=2.0;
  1155. if(_current_temperature>105.0) __delta=0.6;
  1156. }
  1157. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1158. __preheat_errors[_heater_id]++;
  1159. /*SERIAL_ECHOPGM(" Preheat errors:");
  1160. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1161. }
  1162. else {
  1163. //SERIAL_ECHOLNPGM("");
  1164. __preheat_errors[_heater_id] = 0;
  1165. }
  1166. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1167. {
  1168. if (farm_mode) { prusa_statistics(0); }
  1169. temp_runaway_stop(true, _isbed);
  1170. if (farm_mode) { prusa_statistics(91); }
  1171. }
  1172. __preheat_start[_heater_id] = _current_temperature;
  1173. __preheat_counter[_heater_id] = 0;
  1174. }
  1175. }
  1176. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1177. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1178. {
  1179. /*SERIAL_ECHOPGM("Heater:");
  1180. MYSERIAL.print(_heater_id);
  1181. MYSERIAL.println(" ->tempRunaway");*/
  1182. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1183. temp_runaway_check_active = false;
  1184. temp_runaway_error_counter[_heater_id] = 0;
  1185. }
  1186. if (_output > 0)
  1187. {
  1188. temp_runaway_check_active = true;
  1189. }
  1190. if (temp_runaway_check_active)
  1191. {
  1192. // we are in range
  1193. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1194. {
  1195. temp_runaway_check_active = false;
  1196. temp_runaway_error_counter[_heater_id] = 0;
  1197. }
  1198. else
  1199. {
  1200. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1201. {
  1202. temp_runaway_error_counter[_heater_id]++;
  1203. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1204. {
  1205. if (farm_mode) { prusa_statistics(0); }
  1206. temp_runaway_stop(false, _isbed);
  1207. if (farm_mode) { prusa_statistics(90); }
  1208. }
  1209. }
  1210. }
  1211. }
  1212. }
  1213. }
  1214. void temp_runaway_stop(bool isPreheat, bool isBed)
  1215. {
  1216. cancel_heatup = true;
  1217. quickStop();
  1218. if (card.sdprinting)
  1219. {
  1220. card.sdprinting = false;
  1221. card.closefile();
  1222. }
  1223. // Clean the input command queue
  1224. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1225. cmdqueue_reset();
  1226. disable_heater();
  1227. disable_x();
  1228. disable_y();
  1229. disable_e0();
  1230. disable_e1();
  1231. disable_e2();
  1232. manage_heater();
  1233. lcd_update(0);
  1234. Sound_MakeCustom(200,0,true);
  1235. if (isPreheat)
  1236. {
  1237. Stop();
  1238. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1239. SERIAL_ERROR_START;
  1240. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1241. #ifdef EXTRUDER_ALTFAN_DETECT
  1242. altfanStatus.altfanOverride = 1; //full speed
  1243. #endif //EXTRUDER_ALTFAN_DETECT
  1244. setExtruderAutoFanState(3);
  1245. SET_OUTPUT(FAN_PIN);
  1246. #ifdef FAN_SOFT_PWM
  1247. fanSpeedSoftPwm = 255;
  1248. #else //FAN_SOFT_PWM
  1249. analogWrite(FAN_PIN, 255);
  1250. #endif //FAN_SOFT_PWM
  1251. fanSpeed = 255;
  1252. delayMicroseconds(2000);
  1253. }
  1254. else
  1255. {
  1256. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1257. SERIAL_ERROR_START;
  1258. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1259. }
  1260. }
  1261. #endif
  1262. void disable_heater()
  1263. {
  1264. setAllTargetHotends(0);
  1265. setTargetBed(0);
  1266. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1267. target_temperature[0]=0;
  1268. soft_pwm[0]=0;
  1269. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1270. WRITE(HEATER_0_PIN,LOW);
  1271. #endif
  1272. #endif
  1273. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1274. target_temperature[1]=0;
  1275. soft_pwm[1]=0;
  1276. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1277. WRITE(HEATER_1_PIN,LOW);
  1278. #endif
  1279. #endif
  1280. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1281. target_temperature[2]=0;
  1282. soft_pwm[2]=0;
  1283. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1284. WRITE(HEATER_2_PIN,LOW);
  1285. #endif
  1286. #endif
  1287. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1288. target_temperature_bed=0;
  1289. soft_pwm_bed=0;
  1290. timer02_set_pwm0(soft_pwm_bed << 1);
  1291. bedPWMDisabled = 0;
  1292. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1293. //WRITE(HEATER_BED_PIN,LOW);
  1294. #endif
  1295. #endif
  1296. }
  1297. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1298. //! than raw const char * of the messages themselves.
  1299. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1300. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1301. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1302. //! remember the last alert message sent to the LCD
  1303. //! to prevent flicker and improve speed
  1304. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1305. //! update the current temperature error message
  1306. //! @param type short error abbreviation (PROGMEM)
  1307. //! @param func optional lcd update function (lcd_setalertstatus when first setting the error)
  1308. void temp_update_messagepgm(const char* PROGMEM type, void (*func)(const char*) = lcd_updatestatus)
  1309. {
  1310. char msg[LCD_WIDTH];
  1311. strcpy_P(msg, PSTR("Err: "));
  1312. strcat_P(msg, type);
  1313. (*func)(msg);
  1314. }
  1315. //! signal a temperature error on both the lcd and serial
  1316. //! @param type short error abbreviation (PROGMEM)
  1317. //! @param e optional extruder index for hotend errors
  1318. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1319. {
  1320. temp_update_messagepgm(type, lcd_setalertstatus);
  1321. SERIAL_ERROR_START;
  1322. if(e != EXTRUDERS) {
  1323. SERIAL_ERROR((int)e);
  1324. SERIAL_ERRORPGM(": ");
  1325. }
  1326. SERIAL_ERRORPGM("Heaters switched off. ");
  1327. SERIAL_ERRORRPGM(type);
  1328. SERIAL_ERRORLNPGM(" triggered!");
  1329. }
  1330. void max_temp_error(uint8_t e) {
  1331. disable_heater();
  1332. if(IsStopped() == false) {
  1333. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1334. }
  1335. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1336. Stop();
  1337. #endif
  1338. SET_OUTPUT(FAN_PIN);
  1339. SET_OUTPUT(BEEPER);
  1340. WRITE(FAN_PIN, 1);
  1341. WRITE(BEEPER, 1);
  1342. #ifdef EXTRUDER_ALTFAN_DETECT
  1343. altfanStatus.altfanOverride = 1; //full speed
  1344. #endif //EXTRUDER_ALTFAN_DETECT
  1345. setExtruderAutoFanState(3);
  1346. // fanSpeed will consumed by the check_axes_activity() routine.
  1347. fanSpeed=255;
  1348. if (farm_mode) { prusa_statistics(93); }
  1349. }
  1350. void min_temp_error(uint8_t e) {
  1351. #ifdef DEBUG_DISABLE_MINTEMP
  1352. return;
  1353. #endif
  1354. disable_heater();
  1355. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1356. static const char err[] PROGMEM = "MINTEMP";
  1357. if(IsStopped() == false) {
  1358. temp_error_messagepgm(err, e);
  1359. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1360. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1361. // we are already stopped due to some error, only update the status message without flickering
  1362. temp_update_messagepgm(err);
  1363. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1364. }
  1365. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1366. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1367. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1368. // lcd_print_stop();
  1369. // }
  1370. Stop();
  1371. #endif
  1372. if (farm_mode) { prusa_statistics(92); }
  1373. }
  1374. void bed_max_temp_error(void) {
  1375. disable_heater();
  1376. if(IsStopped() == false) {
  1377. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1378. }
  1379. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1380. Stop();
  1381. #endif
  1382. }
  1383. void bed_min_temp_error(void) {
  1384. #ifdef DEBUG_DISABLE_MINTEMP
  1385. return;
  1386. #endif
  1387. disable_heater();
  1388. static const char err[] PROGMEM = "MINTEMP BED";
  1389. if(IsStopped() == false) {
  1390. temp_error_messagepgm(err);
  1391. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1392. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1393. // we are already stopped due to some error, only update the status message without flickering
  1394. temp_update_messagepgm(err);
  1395. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1396. }
  1397. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1398. Stop();
  1399. #endif
  1400. }
  1401. #ifdef AMBIENT_THERMISTOR
  1402. void ambient_max_temp_error(void) {
  1403. disable_heater();
  1404. if(IsStopped() == false) {
  1405. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1406. }
  1407. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1408. Stop();
  1409. #endif
  1410. }
  1411. void ambient_min_temp_error(void) {
  1412. #ifdef DEBUG_DISABLE_MINTEMP
  1413. return;
  1414. #endif
  1415. disable_heater();
  1416. if(IsStopped() == false) {
  1417. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1418. }
  1419. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1420. Stop();
  1421. #endif
  1422. }
  1423. #endif
  1424. #ifdef HEATER_0_USES_MAX6675
  1425. #define MAX6675_HEAT_INTERVAL 250
  1426. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1427. int max6675_temp = 2000;
  1428. int read_max6675()
  1429. {
  1430. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1431. return max6675_temp;
  1432. max6675_previous_millis = _millis();
  1433. max6675_temp = 0;
  1434. #ifdef PRR
  1435. PRR &= ~(1<<PRSPI);
  1436. #elif defined PRR0
  1437. PRR0 &= ~(1<<PRSPI);
  1438. #endif
  1439. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1440. // enable TT_MAX6675
  1441. WRITE(MAX6675_SS, 0);
  1442. // ensure 100ns delay - a bit extra is fine
  1443. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1444. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1445. // read MSB
  1446. SPDR = 0;
  1447. for (;(SPSR & (1<<SPIF)) == 0;);
  1448. max6675_temp = SPDR;
  1449. max6675_temp <<= 8;
  1450. // read LSB
  1451. SPDR = 0;
  1452. for (;(SPSR & (1<<SPIF)) == 0;);
  1453. max6675_temp |= SPDR;
  1454. // disable TT_MAX6675
  1455. WRITE(MAX6675_SS, 1);
  1456. if (max6675_temp & 4)
  1457. {
  1458. // thermocouple open
  1459. max6675_temp = 2000;
  1460. }
  1461. else
  1462. {
  1463. max6675_temp = max6675_temp >> 3;
  1464. }
  1465. return max6675_temp;
  1466. }
  1467. #endif
  1468. extern "C" {
  1469. void adc_ready(void) //callback from adc when sampling finished
  1470. {
  1471. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1472. #ifdef PINDA_THERMISTOR
  1473. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1474. #endif //PINDA_THERMISTOR
  1475. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1476. #ifdef VOLT_PWR_PIN
  1477. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1478. #endif
  1479. #ifdef AMBIENT_THERMISTOR
  1480. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1481. #endif //AMBIENT_THERMISTOR
  1482. #ifdef VOLT_BED_PIN
  1483. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1484. #endif
  1485. #ifdef IR_SENSOR_ANALOG
  1486. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1487. #endif //IR_SENSOR_ANALOG
  1488. temp_meas_ready = true;
  1489. }
  1490. } // extern "C"
  1491. FORCE_INLINE static void temperature_isr()
  1492. {
  1493. if (!temp_meas_ready) adc_cycle();
  1494. lcd_buttons_update();
  1495. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1496. static uint8_t soft_pwm_0;
  1497. #ifdef SLOW_PWM_HEATERS
  1498. static unsigned char slow_pwm_count = 0;
  1499. static unsigned char state_heater_0 = 0;
  1500. static unsigned char state_timer_heater_0 = 0;
  1501. #endif
  1502. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1503. static unsigned char soft_pwm_1;
  1504. #ifdef SLOW_PWM_HEATERS
  1505. static unsigned char state_heater_1 = 0;
  1506. static unsigned char state_timer_heater_1 = 0;
  1507. #endif
  1508. #endif
  1509. #if EXTRUDERS > 2
  1510. static unsigned char soft_pwm_2;
  1511. #ifdef SLOW_PWM_HEATERS
  1512. static unsigned char state_heater_2 = 0;
  1513. static unsigned char state_timer_heater_2 = 0;
  1514. #endif
  1515. #endif
  1516. #if HEATER_BED_PIN > -1
  1517. // @@DR static unsigned char soft_pwm_b;
  1518. #ifdef SLOW_PWM_HEATERS
  1519. static unsigned char state_heater_b = 0;
  1520. static unsigned char state_timer_heater_b = 0;
  1521. #endif
  1522. #endif
  1523. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1524. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1525. #endif
  1526. #ifndef SLOW_PWM_HEATERS
  1527. /*
  1528. * standard PWM modulation
  1529. */
  1530. if (pwm_count == 0)
  1531. {
  1532. soft_pwm_0 = soft_pwm[0];
  1533. if(soft_pwm_0 > 0)
  1534. {
  1535. WRITE(HEATER_0_PIN,1);
  1536. #ifdef HEATERS_PARALLEL
  1537. WRITE(HEATER_1_PIN,1);
  1538. #endif
  1539. } else WRITE(HEATER_0_PIN,0);
  1540. #if EXTRUDERS > 1
  1541. soft_pwm_1 = soft_pwm[1];
  1542. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1543. #endif
  1544. #if EXTRUDERS > 2
  1545. soft_pwm_2 = soft_pwm[2];
  1546. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1547. #endif
  1548. }
  1549. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1550. #if 0 // @@DR vypnuto pro hw pwm bedu
  1551. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1552. // teoreticky by se tato cast uz vubec nemusela poustet
  1553. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1554. {
  1555. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1556. # ifndef SYSTEM_TIMER_2
  1557. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1558. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1559. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1560. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1561. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1562. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1563. # endif //SYSTEM_TIMER_2
  1564. }
  1565. #endif
  1566. #endif
  1567. #ifdef FAN_SOFT_PWM
  1568. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1569. {
  1570. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1571. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1572. }
  1573. #endif
  1574. if(soft_pwm_0 < pwm_count)
  1575. {
  1576. WRITE(HEATER_0_PIN,0);
  1577. #ifdef HEATERS_PARALLEL
  1578. WRITE(HEATER_1_PIN,0);
  1579. #endif
  1580. }
  1581. #if EXTRUDERS > 1
  1582. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1583. #endif
  1584. #if EXTRUDERS > 2
  1585. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1586. #endif
  1587. #if 0 // @@DR
  1588. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1589. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1590. //WRITE(HEATER_BED_PIN,0);
  1591. }
  1592. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1593. #endif
  1594. #endif
  1595. #ifdef FAN_SOFT_PWM
  1596. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1597. #endif
  1598. pwm_count += (1 << SOFT_PWM_SCALE);
  1599. pwm_count &= 0x7f;
  1600. #else //ifndef SLOW_PWM_HEATERS
  1601. /*
  1602. * SLOW PWM HEATERS
  1603. *
  1604. * for heaters drived by relay
  1605. */
  1606. #ifndef MIN_STATE_TIME
  1607. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1608. #endif
  1609. if (slow_pwm_count == 0) {
  1610. // EXTRUDER 0
  1611. soft_pwm_0 = soft_pwm[0];
  1612. if (soft_pwm_0 > 0) {
  1613. // turn ON heather only if the minimum time is up
  1614. if (state_timer_heater_0 == 0) {
  1615. // if change state set timer
  1616. if (state_heater_0 == 0) {
  1617. state_timer_heater_0 = MIN_STATE_TIME;
  1618. }
  1619. state_heater_0 = 1;
  1620. WRITE(HEATER_0_PIN, 1);
  1621. #ifdef HEATERS_PARALLEL
  1622. WRITE(HEATER_1_PIN, 1);
  1623. #endif
  1624. }
  1625. } else {
  1626. // turn OFF heather only if the minimum time is up
  1627. if (state_timer_heater_0 == 0) {
  1628. // if change state set timer
  1629. if (state_heater_0 == 1) {
  1630. state_timer_heater_0 = MIN_STATE_TIME;
  1631. }
  1632. state_heater_0 = 0;
  1633. WRITE(HEATER_0_PIN, 0);
  1634. #ifdef HEATERS_PARALLEL
  1635. WRITE(HEATER_1_PIN, 0);
  1636. #endif
  1637. }
  1638. }
  1639. #if EXTRUDERS > 1
  1640. // EXTRUDER 1
  1641. soft_pwm_1 = soft_pwm[1];
  1642. if (soft_pwm_1 > 0) {
  1643. // turn ON heather only if the minimum time is up
  1644. if (state_timer_heater_1 == 0) {
  1645. // if change state set timer
  1646. if (state_heater_1 == 0) {
  1647. state_timer_heater_1 = MIN_STATE_TIME;
  1648. }
  1649. state_heater_1 = 1;
  1650. WRITE(HEATER_1_PIN, 1);
  1651. }
  1652. } else {
  1653. // turn OFF heather only if the minimum time is up
  1654. if (state_timer_heater_1 == 0) {
  1655. // if change state set timer
  1656. if (state_heater_1 == 1) {
  1657. state_timer_heater_1 = MIN_STATE_TIME;
  1658. }
  1659. state_heater_1 = 0;
  1660. WRITE(HEATER_1_PIN, 0);
  1661. }
  1662. }
  1663. #endif
  1664. #if EXTRUDERS > 2
  1665. // EXTRUDER 2
  1666. soft_pwm_2 = soft_pwm[2];
  1667. if (soft_pwm_2 > 0) {
  1668. // turn ON heather only if the minimum time is up
  1669. if (state_timer_heater_2 == 0) {
  1670. // if change state set timer
  1671. if (state_heater_2 == 0) {
  1672. state_timer_heater_2 = MIN_STATE_TIME;
  1673. }
  1674. state_heater_2 = 1;
  1675. WRITE(HEATER_2_PIN, 1);
  1676. }
  1677. } else {
  1678. // turn OFF heather only if the minimum time is up
  1679. if (state_timer_heater_2 == 0) {
  1680. // if change state set timer
  1681. if (state_heater_2 == 1) {
  1682. state_timer_heater_2 = MIN_STATE_TIME;
  1683. }
  1684. state_heater_2 = 0;
  1685. WRITE(HEATER_2_PIN, 0);
  1686. }
  1687. }
  1688. #endif
  1689. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1690. // BED
  1691. soft_pwm_b = soft_pwm_bed;
  1692. if (soft_pwm_b > 0) {
  1693. // turn ON heather only if the minimum time is up
  1694. if (state_timer_heater_b == 0) {
  1695. // if change state set timer
  1696. if (state_heater_b == 0) {
  1697. state_timer_heater_b = MIN_STATE_TIME;
  1698. }
  1699. state_heater_b = 1;
  1700. //WRITE(HEATER_BED_PIN, 1);
  1701. }
  1702. } else {
  1703. // turn OFF heather only if the minimum time is up
  1704. if (state_timer_heater_b == 0) {
  1705. // if change state set timer
  1706. if (state_heater_b == 1) {
  1707. state_timer_heater_b = MIN_STATE_TIME;
  1708. }
  1709. state_heater_b = 0;
  1710. WRITE(HEATER_BED_PIN, 0);
  1711. }
  1712. }
  1713. #endif
  1714. } // if (slow_pwm_count == 0)
  1715. // EXTRUDER 0
  1716. if (soft_pwm_0 < slow_pwm_count) {
  1717. // turn OFF heather only if the minimum time is up
  1718. if (state_timer_heater_0 == 0) {
  1719. // if change state set timer
  1720. if (state_heater_0 == 1) {
  1721. state_timer_heater_0 = MIN_STATE_TIME;
  1722. }
  1723. state_heater_0 = 0;
  1724. WRITE(HEATER_0_PIN, 0);
  1725. #ifdef HEATERS_PARALLEL
  1726. WRITE(HEATER_1_PIN, 0);
  1727. #endif
  1728. }
  1729. }
  1730. #if EXTRUDERS > 1
  1731. // EXTRUDER 1
  1732. if (soft_pwm_1 < slow_pwm_count) {
  1733. // turn OFF heather only if the minimum time is up
  1734. if (state_timer_heater_1 == 0) {
  1735. // if change state set timer
  1736. if (state_heater_1 == 1) {
  1737. state_timer_heater_1 = MIN_STATE_TIME;
  1738. }
  1739. state_heater_1 = 0;
  1740. WRITE(HEATER_1_PIN, 0);
  1741. }
  1742. }
  1743. #endif
  1744. #if EXTRUDERS > 2
  1745. // EXTRUDER 2
  1746. if (soft_pwm_2 < slow_pwm_count) {
  1747. // turn OFF heather only if the minimum time is up
  1748. if (state_timer_heater_2 == 0) {
  1749. // if change state set timer
  1750. if (state_heater_2 == 1) {
  1751. state_timer_heater_2 = MIN_STATE_TIME;
  1752. }
  1753. state_heater_2 = 0;
  1754. WRITE(HEATER_2_PIN, 0);
  1755. }
  1756. }
  1757. #endif
  1758. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1759. // BED
  1760. if (soft_pwm_b < slow_pwm_count) {
  1761. // turn OFF heather only if the minimum time is up
  1762. if (state_timer_heater_b == 0) {
  1763. // if change state set timer
  1764. if (state_heater_b == 1) {
  1765. state_timer_heater_b = MIN_STATE_TIME;
  1766. }
  1767. state_heater_b = 0;
  1768. WRITE(HEATER_BED_PIN, 0);
  1769. }
  1770. }
  1771. #endif
  1772. #ifdef FAN_SOFT_PWM
  1773. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1774. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1775. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1776. }
  1777. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1778. #endif
  1779. pwm_count += (1 << SOFT_PWM_SCALE);
  1780. pwm_count &= 0x7f;
  1781. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1782. if ((pwm_count % 64) == 0) {
  1783. slow_pwm_count++;
  1784. slow_pwm_count &= 0x7f;
  1785. // Extruder 0
  1786. if (state_timer_heater_0 > 0) {
  1787. state_timer_heater_0--;
  1788. }
  1789. #if EXTRUDERS > 1
  1790. // Extruder 1
  1791. if (state_timer_heater_1 > 0)
  1792. state_timer_heater_1--;
  1793. #endif
  1794. #if EXTRUDERS > 2
  1795. // Extruder 2
  1796. if (state_timer_heater_2 > 0)
  1797. state_timer_heater_2--;
  1798. #endif
  1799. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1800. // Bed
  1801. if (state_timer_heater_b > 0)
  1802. state_timer_heater_b--;
  1803. #endif
  1804. } //if ((pwm_count % 64) == 0) {
  1805. #endif //ifndef SLOW_PWM_HEATERS
  1806. #ifdef BABYSTEPPING
  1807. for(uint8_t axis=0;axis<3;axis++)
  1808. {
  1809. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1810. if(curTodo>0)
  1811. {
  1812. CRITICAL_SECTION_START;
  1813. babystep(axis,/*fwd*/true);
  1814. babystepsTodo[axis]--; //less to do next time
  1815. CRITICAL_SECTION_END;
  1816. }
  1817. else
  1818. if(curTodo<0)
  1819. {
  1820. CRITICAL_SECTION_START;
  1821. babystep(axis,/*fwd*/false);
  1822. babystepsTodo[axis]++; //less to do next time
  1823. CRITICAL_SECTION_END;
  1824. }
  1825. }
  1826. #endif //BABYSTEPPING
  1827. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  1828. check_fans();
  1829. #endif //(defined(TACH_0))
  1830. }
  1831. // Timer2 (originaly timer0) is shared with millies
  1832. #ifdef SYSTEM_TIMER_2
  1833. ISR(TIMER2_COMPB_vect)
  1834. #else //SYSTEM_TIMER_2
  1835. ISR(TIMER0_COMPB_vect)
  1836. #endif //SYSTEM_TIMER_2
  1837. {
  1838. static bool _lock = false;
  1839. if (!_lock)
  1840. {
  1841. _lock = true;
  1842. sei();
  1843. temperature_isr();
  1844. cli();
  1845. _lock = false;
  1846. }
  1847. }
  1848. void check_max_temp()
  1849. {
  1850. //heater
  1851. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1852. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1853. #else
  1854. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1855. #endif
  1856. max_temp_error(0);
  1857. }
  1858. //bed
  1859. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1860. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1861. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1862. #else
  1863. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1864. #endif
  1865. bed_max_temp_error();
  1866. }
  1867. #endif
  1868. //ambient
  1869. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1870. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1871. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1872. #else
  1873. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1874. #endif
  1875. ambient_max_temp_error();
  1876. }
  1877. #endif
  1878. }
  1879. //! number of repeating the same state with consecutive step() calls
  1880. //! used to slow down text switching
  1881. struct alert_automaton_mintemp {
  1882. const char *m2;
  1883. alert_automaton_mintemp(const char *m2):m2(m2){}
  1884. private:
  1885. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1886. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1887. States state = States::Init;
  1888. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1889. void substep(States next_state){
  1890. if( repeat == 0 ){
  1891. state = next_state; // advance to the next state
  1892. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1893. } else {
  1894. --repeat;
  1895. }
  1896. }
  1897. public:
  1898. //! brief state automaton step routine
  1899. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1900. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1901. void step(float current_temp, float mintemp){
  1902. static const char m1[] PROGMEM = "Please restart";
  1903. switch(state){
  1904. case States::Init: // initial state - check hysteresis
  1905. if( current_temp > mintemp ){
  1906. state = States::TempAboveMintemp;
  1907. }
  1908. // otherwise keep the Err MINTEMP alert message on the display,
  1909. // i.e. do not transfer to state 1
  1910. break;
  1911. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1912. lcd_setalertstatuspgm(m2);
  1913. substep(States::ShowMintemp);
  1914. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1915. break;
  1916. case States::ShowPleaseRestart: // displaying "Please restart"
  1917. lcd_updatestatuspgm(m1);
  1918. substep(States::ShowMintemp);
  1919. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1920. break;
  1921. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1922. lcd_updatestatuspgm(m2);
  1923. substep(States::ShowPleaseRestart);
  1924. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1925. break;
  1926. }
  1927. }
  1928. };
  1929. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1930. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1931. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1932. void check_min_temp_heater0()
  1933. {
  1934. //heater
  1935. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1936. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1937. #else
  1938. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1939. #endif
  1940. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1941. min_temp_error(0);
  1942. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1943. // no recovery, just force the user to restart the printer
  1944. // which is a safer variant than just continuing printing
  1945. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1946. // we shall signalize, that MINTEMP has been fixed
  1947. // Code notice: normally the alert_automaton instance would have been placed here
  1948. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1949. // due to stupid compiler that takes 16 more bytes.
  1950. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1951. }
  1952. }
  1953. void check_min_temp_bed()
  1954. {
  1955. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1956. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1957. #else
  1958. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1959. #endif
  1960. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1961. bed_min_temp_error();
  1962. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1963. // no recovery, just force the user to restart the printer
  1964. // which is a safer variant than just continuing printing
  1965. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1966. }
  1967. }
  1968. #ifdef AMBIENT_MINTEMP
  1969. void check_min_temp_ambient()
  1970. {
  1971. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1972. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1973. #else
  1974. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1975. #endif
  1976. ambient_min_temp_error();
  1977. }
  1978. }
  1979. #endif
  1980. void check_min_temp()
  1981. {
  1982. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1983. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1984. #ifdef AMBIENT_THERMISTOR
  1985. #ifdef AMBIENT_MINTEMP
  1986. check_min_temp_ambient();
  1987. #endif
  1988. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1989. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1990. #else
  1991. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1992. #endif
  1993. { // ambient temperature is low
  1994. #endif //AMBIENT_THERMISTOR
  1995. // *** 'common' part of code for MK2.5 & MK3
  1996. // * nozzle checking
  1997. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1998. { // ~ nozzle heating is on
  1999. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  2000. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  2001. {
  2002. bCheckingOnHeater=true; // not necessary
  2003. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2004. }
  2005. }
  2006. else { // ~ nozzle heating is off
  2007. oTimer4minTempHeater.start();
  2008. bCheckingOnHeater=false;
  2009. }
  2010. // * bed checking
  2011. if(target_temperature_bed>BED_MINTEMP)
  2012. { // ~ bed heating is on
  2013. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  2014. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  2015. {
  2016. bCheckingOnBed=true; // not necessary
  2017. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2018. }
  2019. }
  2020. else { // ~ bed heating is off
  2021. oTimer4minTempBed.start();
  2022. bCheckingOnBed=false;
  2023. }
  2024. // *** end of 'common' part
  2025. #ifdef AMBIENT_THERMISTOR
  2026. }
  2027. else { // ambient temperature is standard
  2028. check_min_temp_heater0();
  2029. check_min_temp_bed();
  2030. }
  2031. #endif //AMBIENT_THERMISTOR
  2032. }
  2033. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  2034. void check_fans() {
  2035. #ifdef FAN_SOFT_PWM
  2036. if (READ(TACH_0) != fan_state[0]) {
  2037. if(fan_measuring) fan_edge_counter[0] ++;
  2038. fan_state[0] = !fan_state[0];
  2039. }
  2040. if (READ(TACH_1) != fan_state[1]) {
  2041. if(fan_measuring) fan_edge_counter[1] ++;
  2042. fan_state[1] = !fan_state[1];
  2043. }
  2044. #else //FAN_SOFT_PWM
  2045. if (READ(TACH_0) != fan_state[0]) {
  2046. fan_edge_counter[0] ++;
  2047. fan_state[0] = !fan_state[0];
  2048. }
  2049. if (READ(TACH_1) != fan_state[1]) {
  2050. fan_edge_counter[1] ++;
  2051. fan_state[1] = !fan_state[1];
  2052. }
  2053. #endif
  2054. }
  2055. #endif //TACH_0
  2056. #ifdef PIDTEMP
  2057. // Apply the scale factors to the PID values
  2058. float scalePID_i(float i)
  2059. {
  2060. return i*PID_dT;
  2061. }
  2062. float unscalePID_i(float i)
  2063. {
  2064. return i/PID_dT;
  2065. }
  2066. float scalePID_d(float d)
  2067. {
  2068. return d/PID_dT;
  2069. }
  2070. float unscalePID_d(float d)
  2071. {
  2072. return d*PID_dT;
  2073. }
  2074. #endif //PIDTEMP
  2075. #ifdef PINDA_THERMISTOR
  2076. //! @brief PINDA thermistor detected
  2077. //!
  2078. //! @retval true firmware should do temperature compensation and allow calibration
  2079. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2080. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2081. //!
  2082. bool has_temperature_compensation()
  2083. {
  2084. #ifdef SUPERPINDA_SUPPORT
  2085. #ifdef PINDA_TEMP_COMP
  2086. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2087. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2088. {
  2089. #endif //PINDA_TEMP_COMP
  2090. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2091. #ifdef PINDA_TEMP_COMP
  2092. }
  2093. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2094. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2095. #endif //PINDA_TEMP_COMP
  2096. #else
  2097. return true;
  2098. #endif
  2099. }
  2100. #endif //PINDA_THERMISTOR