Marlin_main.cpp 305 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  121. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  122. //Implemented Codes
  123. //-------------------
  124. // PRUSA CODES
  125. // P F - Returns FW versions
  126. // P R - Returns revision of printer
  127. // G0 -> G1
  128. // G1 - Coordinated Movement X Y Z E
  129. // G2 - CW ARC
  130. // G3 - CCW ARC
  131. // G4 - Dwell S<seconds> or P<milliseconds>
  132. // G10 - retract filament according to settings of M207
  133. // G11 - retract recover filament according to settings of M208
  134. // G28 - Home all Axis
  135. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  136. // G30 - Single Z Probe, probes bed at current XY location.
  137. // G31 - Dock sled (Z_PROBE_SLED only)
  138. // G32 - Undock sled (Z_PROBE_SLED only)
  139. // G80 - Automatic mesh bed leveling
  140. // G81 - Print bed profile
  141. // G90 - Use Absolute Coordinates
  142. // G91 - Use Relative Coordinates
  143. // G92 - Set current position to coordinates given
  144. // M Codes
  145. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  146. // M1 - Same as M0
  147. // M17 - Enable/Power all stepper motors
  148. // M18 - Disable all stepper motors; same as M84
  149. // M20 - List SD card
  150. // M21 - Init SD card
  151. // M22 - Release SD card
  152. // M23 - Select SD file (M23 filename.g)
  153. // M24 - Start/resume SD print
  154. // M25 - Pause SD print
  155. // M26 - Set SD position in bytes (M26 S12345)
  156. // M27 - Report SD print status
  157. // M28 - Start SD write (M28 filename.g)
  158. // M29 - Stop SD write
  159. // M30 - Delete file from SD (M30 filename.g)
  160. // M31 - Output time since last M109 or SD card start to serial
  161. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  162. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  163. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  164. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  165. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  166. // M73 - Show percent done and print time remaining
  167. // M80 - Turn on Power Supply
  168. // M81 - Turn off Power Supply
  169. // M82 - Set E codes absolute (default)
  170. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  171. // M84 - Disable steppers until next move,
  172. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  173. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  174. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  175. // M92 - Set axis_steps_per_unit - same syntax as G92
  176. // M104 - Set extruder target temp
  177. // M105 - Read current temp
  178. // M106 - Fan on
  179. // M107 - Fan off
  180. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  181. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  182. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  183. // M112 - Emergency stop
  184. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  185. // M114 - Output current position to serial port
  186. // M115 - Capabilities string
  187. // M117 - display message
  188. // M119 - Output Endstop status to serial port
  189. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  190. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  191. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  193. // M140 - Set bed target temp
  194. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  195. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  196. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  197. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  198. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  199. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  200. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  201. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  202. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  203. // M206 - set additional homing offset
  204. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  205. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  206. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  207. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  208. // M220 S<factor in percent>- set speed factor override percentage
  209. // M221 S<factor in percent>- set extrude factor override percentage
  210. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  211. // M240 - Trigger a camera to take a photograph
  212. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  213. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  214. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  215. // M301 - Set PID parameters P I and D
  216. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  217. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  218. // M304 - Set bed PID parameters P I and D
  219. // M400 - Finish all moves
  220. // M401 - Lower z-probe if present
  221. // M402 - Raise z-probe if present
  222. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  223. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  224. // M406 - Turn off Filament Sensor extrusion control
  225. // M407 - Displays measured filament diameter
  226. // M500 - stores parameters in EEPROM
  227. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  228. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  229. // M503 - print the current settings (from memory not from EEPROM)
  230. // M509 - force language selection on next restart
  231. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  232. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  233. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  234. // M860 - Wait for PINDA thermistor to reach target temperature.
  235. // M861 - Set / Read PINDA temperature compensation offsets
  236. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  237. // M907 - Set digital trimpot motor current using axis codes.
  238. // M908 - Control digital trimpot directly.
  239. // M350 - Set microstepping mode.
  240. // M351 - Toggle MS1 MS2 pins directly.
  241. // M928 - Start SD logging (M928 filename.g) - ended by M29
  242. // M999 - Restart after being stopped by error
  243. //Stepper Movement Variables
  244. //===========================================================================
  245. //=============================imported variables============================
  246. //===========================================================================
  247. //===========================================================================
  248. //=============================public variables=============================
  249. //===========================================================================
  250. #ifdef SDSUPPORT
  251. CardReader card;
  252. #endif
  253. unsigned long PingTime = millis();
  254. unsigned long NcTime;
  255. //used for PINDA temp calibration and pause print
  256. #define DEFAULT_RETRACTION 1
  257. #define DEFAULT_RETRACTION_MM 4 //MM
  258. float default_retraction = DEFAULT_RETRACTION;
  259. float homing_feedrate[] = HOMING_FEEDRATE;
  260. // Currently only the extruder axis may be switched to a relative mode.
  261. // Other axes are always absolute or relative based on the common relative_mode flag.
  262. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  263. int feedmultiply=100; //100->1 200->2
  264. int saved_feedmultiply;
  265. int extrudemultiply=100; //100->1 200->2
  266. int extruder_multiply[EXTRUDERS] = {100
  267. #if EXTRUDERS > 1
  268. , 100
  269. #if EXTRUDERS > 2
  270. , 100
  271. #endif
  272. #endif
  273. };
  274. int bowden_length[4] = {385, 385, 385, 385};
  275. bool is_usb_printing = false;
  276. bool homing_flag = false;
  277. bool temp_cal_active = false;
  278. unsigned long kicktime = millis()+100000;
  279. unsigned int usb_printing_counter;
  280. int8_t lcd_change_fil_state = 0;
  281. int feedmultiplyBckp = 100;
  282. float HotendTempBckp = 0;
  283. int fanSpeedBckp = 0;
  284. float pause_lastpos[4];
  285. unsigned long pause_time = 0;
  286. unsigned long start_pause_print = millis();
  287. unsigned long t_fan_rising_edge = millis();
  288. LongTimer safetyTimer;
  289. LongTimer crashDetTimer;
  290. //unsigned long load_filament_time;
  291. bool mesh_bed_leveling_flag = false;
  292. bool mesh_bed_run_from_menu = false;
  293. int8_t FarmMode = 0;
  294. bool prusa_sd_card_upload = false;
  295. unsigned int status_number = 0;
  296. unsigned long total_filament_used;
  297. unsigned int heating_status;
  298. unsigned int heating_status_counter;
  299. bool loading_flag = false;
  300. char snmm_filaments_used = 0;
  301. bool fan_state[2];
  302. int fan_edge_counter[2];
  303. int fan_speed[2];
  304. char dir_names[3][9];
  305. bool sortAlpha = false;
  306. bool volumetric_enabled = false;
  307. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 1
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #if EXTRUDERS > 2
  311. , DEFAULT_NOMINAL_FILAMENT_DIA
  312. #endif
  313. #endif
  314. };
  315. float extruder_multiplier[EXTRUDERS] = {1.0
  316. #if EXTRUDERS > 1
  317. , 1.0
  318. #if EXTRUDERS > 2
  319. , 1.0
  320. #endif
  321. #endif
  322. };
  323. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  324. //shortcuts for more readable code
  325. #define _x current_position[X_AXIS]
  326. #define _y current_position[Y_AXIS]
  327. #define _z current_position[Z_AXIS]
  328. #define _e current_position[E_AXIS]
  329. float add_homing[3]={0,0,0};
  330. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  331. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  332. bool axis_known_position[3] = {false, false, false};
  333. float zprobe_zoffset;
  334. // Extruder offset
  335. #if EXTRUDERS > 1
  336. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  337. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  338. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  339. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  340. #endif
  341. };
  342. #endif
  343. uint8_t active_extruder = 0;
  344. int fanSpeed=0;
  345. #ifdef FWRETRACT
  346. bool autoretract_enabled=false;
  347. bool retracted[EXTRUDERS]={false
  348. #if EXTRUDERS > 1
  349. , false
  350. #if EXTRUDERS > 2
  351. , false
  352. #endif
  353. #endif
  354. };
  355. bool retracted_swap[EXTRUDERS]={false
  356. #if EXTRUDERS > 1
  357. , false
  358. #if EXTRUDERS > 2
  359. , false
  360. #endif
  361. #endif
  362. };
  363. float retract_length = RETRACT_LENGTH;
  364. float retract_length_swap = RETRACT_LENGTH_SWAP;
  365. float retract_feedrate = RETRACT_FEEDRATE;
  366. float retract_zlift = RETRACT_ZLIFT;
  367. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  368. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  369. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  370. #endif
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. bool cancel_heatup = false ;
  377. #ifdef HOST_KEEPALIVE_FEATURE
  378. int busy_state = NOT_BUSY;
  379. static long prev_busy_signal_ms = -1;
  380. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  381. #else
  382. #define host_keepalive();
  383. #define KEEPALIVE_STATE(n);
  384. #endif
  385. const char errormagic[] PROGMEM = "Error:";
  386. const char echomagic[] PROGMEM = "echo:";
  387. bool no_response = false;
  388. uint8_t important_status;
  389. uint8_t saved_filament_type;
  390. // save/restore printing
  391. bool saved_printing = false;
  392. // save/restore printing in case that mmu was not responding
  393. bool mmu_print_saved = false;
  394. // storing estimated time to end of print counted by slicer
  395. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  396. uint32_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  397. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  398. uint32_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  399. //===========================================================================
  400. //=============================Private Variables=============================
  401. //===========================================================================
  402. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  403. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  404. // For tracing an arc
  405. static float offset[3] = {0.0, 0.0, 0.0};
  406. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  407. // Determines Absolute or Relative Coordinates.
  408. // Also there is bool axis_relative_modes[] per axis flag.
  409. static bool relative_mode = false;
  410. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. bool extruder_under_pressure = true;
  422. bool Stopped=false;
  423. #if NUM_SERVOS > 0
  424. Servo servos[NUM_SERVOS];
  425. #endif
  426. bool CooldownNoWait = true;
  427. bool target_direction;
  428. //Insert variables if CHDK is defined
  429. #ifdef CHDK
  430. unsigned long chdkHigh = 0;
  431. boolean chdkActive = false;
  432. #endif
  433. // save/restore printing
  434. static uint32_t saved_sdpos = 0;
  435. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  436. static float saved_pos[4] = { 0, 0, 0, 0 };
  437. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  438. static float saved_feedrate2 = 0;
  439. static uint8_t saved_active_extruder = 0;
  440. static float saved_extruder_temperature = 0.0;
  441. static bool saved_extruder_under_pressure = false;
  442. static bool saved_extruder_relative_mode = false;
  443. static int saved_fanSpeed = 0;
  444. //===========================================================================
  445. //=============================Routines======================================
  446. //===========================================================================
  447. static void get_arc_coordinates();
  448. static bool setTargetedHotend(int code, uint8_t &extruder);
  449. static void print_time_remaining_init();
  450. static void wait_for_heater(long codenum, uint8_t extruder);
  451. uint16_t gcode_in_progress = 0;
  452. uint16_t mcode_in_progress = 0;
  453. void serial_echopair_P(const char *s_P, float v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char *s_P, double v)
  456. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. void serial_echopair_P(const char *s_P, unsigned long v)
  458. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  459. #ifdef SDSUPPORT
  460. #include "SdFatUtil.h"
  461. int freeMemory() { return SdFatUtil::FreeRam(); }
  462. #else
  463. extern "C" {
  464. extern unsigned int __bss_end;
  465. extern unsigned int __heap_start;
  466. extern void *__brkval;
  467. int freeMemory() {
  468. int free_memory;
  469. if ((int)__brkval == 0)
  470. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  471. else
  472. free_memory = ((int)&free_memory) - ((int)__brkval);
  473. return free_memory;
  474. }
  475. }
  476. #endif //!SDSUPPORT
  477. void setup_killpin()
  478. {
  479. #if defined(KILL_PIN) && KILL_PIN > -1
  480. SET_INPUT(KILL_PIN);
  481. WRITE(KILL_PIN,HIGH);
  482. #endif
  483. }
  484. // Set home pin
  485. void setup_homepin(void)
  486. {
  487. #if defined(HOME_PIN) && HOME_PIN > -1
  488. SET_INPUT(HOME_PIN);
  489. WRITE(HOME_PIN,HIGH);
  490. #endif
  491. }
  492. void setup_photpin()
  493. {
  494. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  495. SET_OUTPUT(PHOTOGRAPH_PIN);
  496. WRITE(PHOTOGRAPH_PIN, LOW);
  497. #endif
  498. }
  499. void setup_powerhold()
  500. {
  501. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  502. SET_OUTPUT(SUICIDE_PIN);
  503. WRITE(SUICIDE_PIN, HIGH);
  504. #endif
  505. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  506. SET_OUTPUT(PS_ON_PIN);
  507. #if defined(PS_DEFAULT_OFF)
  508. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  509. #else
  510. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  511. #endif
  512. #endif
  513. }
  514. void suicide()
  515. {
  516. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  517. SET_OUTPUT(SUICIDE_PIN);
  518. WRITE(SUICIDE_PIN, LOW);
  519. #endif
  520. }
  521. void servo_init()
  522. {
  523. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  524. servos[0].attach(SERVO0_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  527. servos[1].attach(SERVO1_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  530. servos[2].attach(SERVO2_PIN);
  531. #endif
  532. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  533. servos[3].attach(SERVO3_PIN);
  534. #endif
  535. #if (NUM_SERVOS >= 5)
  536. #error "TODO: enter initalisation code for more servos"
  537. #endif
  538. }
  539. bool fans_check_enabled = true;
  540. #ifdef TMC2130
  541. extern int8_t CrashDetectMenu;
  542. void crashdet_enable()
  543. {
  544. tmc2130_sg_stop_on_crash = true;
  545. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  546. CrashDetectMenu = 1;
  547. }
  548. void crashdet_disable()
  549. {
  550. tmc2130_sg_stop_on_crash = false;
  551. tmc2130_sg_crash = 0;
  552. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  553. CrashDetectMenu = 0;
  554. }
  555. void crashdet_stop_and_save_print()
  556. {
  557. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  558. }
  559. void crashdet_restore_print_and_continue()
  560. {
  561. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  562. // babystep_apply();
  563. }
  564. void crashdet_stop_and_save_print2()
  565. {
  566. cli();
  567. planner_abort_hard(); //abort printing
  568. cmdqueue_reset(); //empty cmdqueue
  569. card.sdprinting = false;
  570. card.closefile();
  571. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  572. st_reset_timer();
  573. sei();
  574. }
  575. void crashdet_detected(uint8_t mask)
  576. {
  577. st_synchronize();
  578. static uint8_t crashDet_counter = 0;
  579. bool automatic_recovery_after_crash = true;
  580. if (crashDet_counter++ == 0) {
  581. crashDetTimer.start();
  582. }
  583. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  584. crashDetTimer.stop();
  585. crashDet_counter = 0;
  586. }
  587. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  588. automatic_recovery_after_crash = false;
  589. crashDetTimer.stop();
  590. crashDet_counter = 0;
  591. }
  592. else {
  593. crashDetTimer.start();
  594. }
  595. lcd_update_enable(true);
  596. lcd_clear();
  597. lcd_update(2);
  598. if (mask & X_AXIS_MASK)
  599. {
  600. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  601. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  602. }
  603. if (mask & Y_AXIS_MASK)
  604. {
  605. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  606. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  607. }
  608. lcd_update_enable(true);
  609. lcd_update(2);
  610. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  611. gcode_G28(true, true, false); //home X and Y
  612. st_synchronize();
  613. if (automatic_recovery_after_crash) {
  614. enquecommand_P(PSTR("CRASH_RECOVER"));
  615. }else{
  616. HotendTempBckp = degTargetHotend(active_extruder);
  617. setTargetHotend(0, active_extruder);
  618. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  619. lcd_update_enable(true);
  620. if (yesno)
  621. {
  622. char cmd1[10];
  623. strcpy(cmd1, "M109 S");
  624. strcat(cmd1, ftostr3(HotendTempBckp));
  625. enquecommand(cmd1);
  626. enquecommand_P(PSTR("CRASH_RECOVER"));
  627. }
  628. else
  629. {
  630. enquecommand_P(PSTR("CRASH_CANCEL"));
  631. }
  632. }
  633. }
  634. void crashdet_recover()
  635. {
  636. crashdet_restore_print_and_continue();
  637. tmc2130_sg_stop_on_crash = true;
  638. }
  639. void crashdet_cancel()
  640. {
  641. tmc2130_sg_stop_on_crash = true;
  642. if (saved_printing_type == PRINTING_TYPE_SD) {
  643. lcd_print_stop();
  644. }else if(saved_printing_type == PRINTING_TYPE_USB){
  645. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  646. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  647. }
  648. }
  649. #endif //TMC2130
  650. void failstats_reset_print()
  651. {
  652. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  654. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  655. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  656. }
  657. #ifdef MESH_BED_LEVELING
  658. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  659. #endif
  660. // Factory reset function
  661. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  662. // Level input parameter sets depth of reset
  663. int er_progress = 0;
  664. static void factory_reset(char level)
  665. {
  666. lcd_clear();
  667. switch (level) {
  668. // Level 0: Language reset
  669. case 0:
  670. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  671. WRITE(BEEPER, HIGH);
  672. _delay_ms(100);
  673. WRITE(BEEPER, LOW);
  674. lang_reset();
  675. break;
  676. //Level 1: Reset statistics
  677. case 1:
  678. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  679. WRITE(BEEPER, HIGH);
  680. _delay_ms(100);
  681. WRITE(BEEPER, LOW);
  682. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  683. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  684. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  685. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  686. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  687. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  688. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  689. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  690. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  691. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  692. lcd_menu_statistics();
  693. break;
  694. // Level 2: Prepare for shipping
  695. case 2:
  696. //lcd_puts_P(PSTR("Factory RESET"));
  697. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  698. // Force language selection at the next boot up.
  699. lang_reset();
  700. // Force the "Follow calibration flow" message at the next boot up.
  701. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  702. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  703. farm_no = 0;
  704. farm_mode = false;
  705. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  706. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  707. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  708. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  709. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  710. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  711. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  712. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  713. #ifdef FILAMENT_SENSOR
  714. fsensor_enable();
  715. fsensor_autoload_set(true);
  716. #endif //FILAMENT_SENSOR
  717. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. //_delay_ms(2000);
  722. break;
  723. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  724. case 3:
  725. lcd_puts_P(PSTR("Factory RESET"));
  726. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  727. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  728. WRITE(BEEPER, HIGH);
  729. _delay_ms(100);
  730. WRITE(BEEPER, LOW);
  731. er_progress = 0;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. // Erase EEPROM
  736. for (int i = 0; i < 4096; i++) {
  737. eeprom_write_byte((uint8_t*)i, 0xFF);
  738. if (i % 41 == 0) {
  739. er_progress++;
  740. lcd_puts_at_P(3, 3, PSTR(" "));
  741. lcd_set_cursor(3, 3);
  742. lcd_print(er_progress);
  743. lcd_puts_P(PSTR("%"));
  744. }
  745. }
  746. break;
  747. case 4:
  748. bowden_menu();
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  755. int uart_putchar(char c, FILE *)
  756. {
  757. MYSERIAL.write(c);
  758. return 0;
  759. }
  760. void lcd_splash()
  761. {
  762. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  763. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  764. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  765. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  766. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  767. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  768. }
  769. void factory_reset()
  770. {
  771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  772. if (!READ(BTN_ENC))
  773. {
  774. _delay_ms(1000);
  775. if (!READ(BTN_ENC))
  776. {
  777. lcd_clear();
  778. lcd_puts_P(PSTR("Factory RESET"));
  779. SET_OUTPUT(BEEPER);
  780. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  781. WRITE(BEEPER, HIGH);
  782. while (!READ(BTN_ENC));
  783. WRITE(BEEPER, LOW);
  784. _delay_ms(2000);
  785. char level = reset_menu();
  786. factory_reset(level);
  787. switch (level) {
  788. case 0: _delay_ms(0); break;
  789. case 1: _delay_ms(0); break;
  790. case 2: _delay_ms(0); break;
  791. case 3: _delay_ms(0); break;
  792. }
  793. }
  794. }
  795. KEEPALIVE_STATE(IN_HANDLER);
  796. }
  797. void show_fw_version_warnings() {
  798. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  799. switch (FW_DEV_VERSION) {
  800. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  801. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  802. case(FW_VERSION_DEVEL):
  803. case(FW_VERSION_DEBUG):
  804. lcd_update_enable(false);
  805. lcd_clear();
  806. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  807. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  808. #else
  809. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  810. #endif
  811. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  812. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  813. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  814. lcd_wait_for_click();
  815. break;
  816. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  817. }
  818. lcd_update_enable(true);
  819. }
  820. uint8_t check_printer_version()
  821. {
  822. uint8_t version_changed = 0;
  823. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  824. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  825. if (printer_type != PRINTER_TYPE) {
  826. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  827. else version_changed |= 0b10;
  828. }
  829. if (motherboard != MOTHERBOARD) {
  830. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  831. else version_changed |= 0b01;
  832. }
  833. return version_changed;
  834. }
  835. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  836. {
  837. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  838. }
  839. #ifdef BOOTAPP
  840. #include "bootapp.h" //bootloader support
  841. #endif //BOOTAPP
  842. #if (LANG_MODE != 0) //secondary language support
  843. #ifdef W25X20CL
  844. // language update from external flash
  845. #define LANGBOOT_BLOCKSIZE 0x1000u
  846. #define LANGBOOT_RAMBUFFER 0x0800
  847. void update_sec_lang_from_external_flash()
  848. {
  849. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  850. {
  851. uint8_t lang = boot_reserved >> 4;
  852. uint8_t state = boot_reserved & 0xf;
  853. lang_table_header_t header;
  854. uint32_t src_addr;
  855. if (lang_get_header(lang, &header, &src_addr))
  856. {
  857. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  858. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  859. delay(100);
  860. boot_reserved = (state + 1) | (lang << 4);
  861. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  862. {
  863. cli();
  864. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  865. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  866. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  867. if (state == 0)
  868. {
  869. //TODO - check header integrity
  870. }
  871. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  872. }
  873. else
  874. {
  875. //TODO - check sec lang data integrity
  876. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  877. }
  878. }
  879. }
  880. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  881. }
  882. #ifdef DEBUG_W25X20CL
  883. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  884. {
  885. lang_table_header_t header;
  886. uint8_t count = 0;
  887. uint32_t addr = 0x00000;
  888. while (1)
  889. {
  890. printf_P(_n("LANGTABLE%d:"), count);
  891. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  892. if (header.magic != LANG_MAGIC)
  893. {
  894. printf_P(_n("NG!\n"));
  895. break;
  896. }
  897. printf_P(_n("OK\n"));
  898. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  899. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  900. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  901. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  902. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  903. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  904. addr += header.size;
  905. codes[count] = header.code;
  906. count ++;
  907. }
  908. return count;
  909. }
  910. void list_sec_lang_from_external_flash()
  911. {
  912. uint16_t codes[8];
  913. uint8_t count = lang_xflash_enum_codes(codes);
  914. printf_P(_n("XFlash lang count = %hhd\n"), count);
  915. }
  916. #endif //DEBUG_W25X20CL
  917. #endif //W25X20CL
  918. #endif //(LANG_MODE != 0)
  919. // "Setup" function is called by the Arduino framework on startup.
  920. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  921. // are initialized by the main() routine provided by the Arduino framework.
  922. void setup()
  923. {
  924. mmu_init();
  925. ultralcd_init();
  926. spi_init();
  927. lcd_splash();
  928. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  929. #ifdef W25X20CL
  930. if (!w25x20cl_init())
  931. kill(_i("External SPI flash W25X20CL not responding."));
  932. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  933. optiboot_w25x20cl_enter();
  934. #endif
  935. #if (LANG_MODE != 0) //secondary language support
  936. #ifdef W25X20CL
  937. if (w25x20cl_init())
  938. update_sec_lang_from_external_flash();
  939. #endif //W25X20CL
  940. #endif //(LANG_MODE != 0)
  941. setup_killpin();
  942. setup_powerhold();
  943. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  944. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  945. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  946. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  947. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  948. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  949. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  950. if (farm_mode)
  951. {
  952. no_response = true; //we need confirmation by recieving PRUSA thx
  953. important_status = 8;
  954. prusa_statistics(8);
  955. selectedSerialPort = 1;
  956. #ifdef TMC2130
  957. //increased extruder current (PFW363)
  958. tmc2130_current_h[E_AXIS] = 36;
  959. tmc2130_current_r[E_AXIS] = 36;
  960. #endif //TMC2130
  961. #ifdef FILAMENT_SENSOR
  962. //disabled filament autoload (PFW360)
  963. fsensor_autoload_set(false);
  964. #endif //FILAMENT_SENSOR
  965. }
  966. MYSERIAL.begin(BAUDRATE);
  967. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  968. stdout = uartout;
  969. SERIAL_PROTOCOLLNPGM("start");
  970. SERIAL_ECHO_START;
  971. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  972. #ifdef DEBUG_SEC_LANG
  973. lang_table_header_t header;
  974. uint32_t src_addr = 0x00000;
  975. if (lang_get_header(1, &header, &src_addr))
  976. {
  977. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  978. #define LT_PRINT_TEST 2
  979. // flash usage
  980. // total p.test
  981. //0 252718 t+c text code
  982. //1 253142 424 170 254
  983. //2 253040 322 164 158
  984. //3 253248 530 135 395
  985. #if (LT_PRINT_TEST==1) //not optimized printf
  986. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  987. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  988. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  989. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  990. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  991. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  992. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  993. #elif (LT_PRINT_TEST==2) //optimized printf
  994. printf_P(
  995. _n(
  996. " _src_addr = 0x%08lx\n"
  997. " _lt_magic = 0x%08lx %S\n"
  998. " _lt_size = 0x%04x (%d)\n"
  999. " _lt_count = 0x%04x (%d)\n"
  1000. " _lt_chsum = 0x%04x\n"
  1001. " _lt_code = 0x%04x (%c%c)\n"
  1002. " _lt_resv1 = 0x%08lx\n"
  1003. ),
  1004. src_addr,
  1005. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1006. header.size, header.size,
  1007. header.count, header.count,
  1008. header.checksum,
  1009. header.code, header.code >> 8, header.code & 0xff,
  1010. header.signature
  1011. );
  1012. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1013. MYSERIAL.print(" _src_addr = 0x");
  1014. MYSERIAL.println(src_addr, 16);
  1015. MYSERIAL.print(" _lt_magic = 0x");
  1016. MYSERIAL.print(header.magic, 16);
  1017. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1018. MYSERIAL.print(" _lt_size = 0x");
  1019. MYSERIAL.print(header.size, 16);
  1020. MYSERIAL.print(" (");
  1021. MYSERIAL.print(header.size, 10);
  1022. MYSERIAL.println(")");
  1023. MYSERIAL.print(" _lt_count = 0x");
  1024. MYSERIAL.print(header.count, 16);
  1025. MYSERIAL.print(" (");
  1026. MYSERIAL.print(header.count, 10);
  1027. MYSERIAL.println(")");
  1028. MYSERIAL.print(" _lt_chsum = 0x");
  1029. MYSERIAL.println(header.checksum, 16);
  1030. MYSERIAL.print(" _lt_code = 0x");
  1031. MYSERIAL.print(header.code, 16);
  1032. MYSERIAL.print(" (");
  1033. MYSERIAL.print((char)(header.code >> 8), 0);
  1034. MYSERIAL.print((char)(header.code & 0xff), 0);
  1035. MYSERIAL.println(")");
  1036. MYSERIAL.print(" _lt_resv1 = 0x");
  1037. MYSERIAL.println(header.signature, 16);
  1038. #endif //(LT_PRINT_TEST==)
  1039. #undef LT_PRINT_TEST
  1040. #if 0
  1041. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1042. for (uint16_t i = 0; i < 1024; i++)
  1043. {
  1044. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1045. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1046. if ((i % 16) == 15) putchar('\n');
  1047. }
  1048. #endif
  1049. uint16_t sum = 0;
  1050. for (uint16_t i = 0; i < header.size; i++)
  1051. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1052. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1053. sum -= header.checksum; //subtract checksum
  1054. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1055. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1056. if (sum == header.checksum)
  1057. printf_P(_n("Checksum OK\n"), sum);
  1058. else
  1059. printf_P(_n("Checksum NG\n"), sum);
  1060. }
  1061. else
  1062. printf_P(_n("lang_get_header failed!\n"));
  1063. #if 0
  1064. for (uint16_t i = 0; i < 1024*10; i++)
  1065. {
  1066. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1067. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1068. if ((i % 16) == 15) putchar('\n');
  1069. }
  1070. #endif
  1071. #if 0
  1072. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1073. for (int i = 0; i < 4096; ++i) {
  1074. int b = eeprom_read_byte((unsigned char*)i);
  1075. if (b != 255) {
  1076. SERIAL_ECHO(i);
  1077. SERIAL_ECHO(":");
  1078. SERIAL_ECHO(b);
  1079. SERIAL_ECHOLN("");
  1080. }
  1081. }
  1082. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1083. #endif
  1084. #endif //DEBUG_SEC_LANG
  1085. // Check startup - does nothing if bootloader sets MCUSR to 0
  1086. byte mcu = MCUSR;
  1087. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1088. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1089. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1090. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1091. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1092. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1093. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1094. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1095. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1096. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1097. MCUSR = 0;
  1098. //SERIAL_ECHORPGM(MSG_MARLIN);
  1099. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1100. #ifdef STRING_VERSION_CONFIG_H
  1101. #ifdef STRING_CONFIG_H_AUTHOR
  1102. SERIAL_ECHO_START;
  1103. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1104. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1105. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1106. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1107. SERIAL_ECHOPGM("Compiled: ");
  1108. SERIAL_ECHOLNPGM(__DATE__);
  1109. #endif
  1110. #endif
  1111. SERIAL_ECHO_START;
  1112. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1113. SERIAL_ECHO(freeMemory());
  1114. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1115. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1116. //lcd_update_enable(false); // why do we need this?? - andre
  1117. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1118. bool previous_settings_retrieved = false;
  1119. uint8_t hw_changed = check_printer_version();
  1120. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1121. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1122. }
  1123. else { //printer version was changed so use default settings
  1124. Config_ResetDefault();
  1125. }
  1126. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1127. tp_init(); // Initialize temperature loop
  1128. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1129. plan_init(); // Initialize planner;
  1130. factory_reset();
  1131. lcd_encoder_diff=0;
  1132. #ifdef TMC2130
  1133. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1134. if (silentMode == 0xff) silentMode = 0;
  1135. tmc2130_mode = TMC2130_MODE_NORMAL;
  1136. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1137. if (crashdet && !farm_mode)
  1138. {
  1139. crashdet_enable();
  1140. puts_P(_N("CrashDetect ENABLED!"));
  1141. }
  1142. else
  1143. {
  1144. crashdet_disable();
  1145. puts_P(_N("CrashDetect DISABLED"));
  1146. }
  1147. #ifdef TMC2130_LINEARITY_CORRECTION
  1148. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1149. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1150. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1151. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1152. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1153. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1154. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1155. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1156. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1157. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1158. #endif //TMC2130_LINEARITY_CORRECTION
  1159. #ifdef TMC2130_VARIABLE_RESOLUTION
  1160. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1161. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1162. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1163. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1164. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1165. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1166. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1167. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1168. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1169. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1170. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1171. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1172. #else //TMC2130_VARIABLE_RESOLUTION
  1173. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1174. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1175. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1176. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1177. #endif //TMC2130_VARIABLE_RESOLUTION
  1178. #endif //TMC2130
  1179. st_init(); // Initialize stepper, this enables interrupts!
  1180. #ifdef TMC2130
  1181. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1182. update_mode_profile();
  1183. tmc2130_init();
  1184. #endif //TMC2130
  1185. setup_photpin();
  1186. servo_init();
  1187. // Reset the machine correction matrix.
  1188. // It does not make sense to load the correction matrix until the machine is homed.
  1189. world2machine_reset();
  1190. #ifdef FILAMENT_SENSOR
  1191. fsensor_init();
  1192. #endif //FILAMENT_SENSOR
  1193. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1194. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1195. #endif
  1196. setup_homepin();
  1197. #ifdef TMC2130
  1198. if (1) {
  1199. // try to run to zero phase before powering the Z motor.
  1200. // Move in negative direction
  1201. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1202. // Round the current micro-micro steps to micro steps.
  1203. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1204. // Until the phase counter is reset to zero.
  1205. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1206. delay(2);
  1207. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1208. delay(2);
  1209. }
  1210. }
  1211. #endif //TMC2130
  1212. #if defined(Z_AXIS_ALWAYS_ON)
  1213. enable_z();
  1214. #endif
  1215. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1216. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1217. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1218. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1219. if (farm_mode)
  1220. {
  1221. prusa_statistics(8);
  1222. }
  1223. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1224. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1225. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1226. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1227. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1228. // where all the EEPROM entries are set to 0x0ff.
  1229. // Once a firmware boots up, it forces at least a language selection, which changes
  1230. // EEPROM_LANG to number lower than 0x0ff.
  1231. // 1) Set a high power mode.
  1232. #ifdef TMC2130
  1233. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1234. tmc2130_mode = TMC2130_MODE_NORMAL;
  1235. #endif //TMC2130
  1236. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1237. }
  1238. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1239. // but this times out if a blocking dialog is shown in setup().
  1240. card.initsd();
  1241. #ifdef DEBUG_SD_SPEED_TEST
  1242. if (card.cardOK)
  1243. {
  1244. uint8_t* buff = (uint8_t*)block_buffer;
  1245. uint32_t block = 0;
  1246. uint32_t sumr = 0;
  1247. uint32_t sumw = 0;
  1248. for (int i = 0; i < 1024; i++)
  1249. {
  1250. uint32_t u = micros();
  1251. bool res = card.card.readBlock(i, buff);
  1252. u = micros() - u;
  1253. if (res)
  1254. {
  1255. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1256. sumr += u;
  1257. u = micros();
  1258. res = card.card.writeBlock(i, buff);
  1259. u = micros() - u;
  1260. if (res)
  1261. {
  1262. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1263. sumw += u;
  1264. }
  1265. else
  1266. {
  1267. printf_P(PSTR("writeBlock %4d error\n"), i);
  1268. break;
  1269. }
  1270. }
  1271. else
  1272. {
  1273. printf_P(PSTR("readBlock %4d error\n"), i);
  1274. break;
  1275. }
  1276. }
  1277. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1278. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1279. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1280. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1281. }
  1282. else
  1283. printf_P(PSTR("Card NG!\n"));
  1284. #endif //DEBUG_SD_SPEED_TEST
  1285. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1288. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1289. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1290. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1291. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1292. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1293. #ifdef SNMM
  1294. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1295. int _z = BOWDEN_LENGTH;
  1296. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1297. }
  1298. #endif
  1299. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1300. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1301. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1302. #if (LANG_MODE != 0) //secondary language support
  1303. #ifdef DEBUG_W25X20CL
  1304. W25X20CL_SPI_ENTER();
  1305. uint8_t uid[8]; // 64bit unique id
  1306. w25x20cl_rd_uid(uid);
  1307. puts_P(_n("W25X20CL UID="));
  1308. for (uint8_t i = 0; i < 8; i ++)
  1309. printf_P(PSTR("%02hhx"), uid[i]);
  1310. putchar('\n');
  1311. list_sec_lang_from_external_flash();
  1312. #endif //DEBUG_W25X20CL
  1313. // lang_reset();
  1314. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1315. lcd_language();
  1316. #ifdef DEBUG_SEC_LANG
  1317. uint16_t sec_lang_code = lang_get_code(1);
  1318. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1319. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1320. // lang_print_sec_lang(uartout);
  1321. #endif //DEBUG_SEC_LANG
  1322. #endif //(LANG_MODE != 0)
  1323. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1324. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1325. temp_cal_active = false;
  1326. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1327. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1328. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1329. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1330. int16_t z_shift = 0;
  1331. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1332. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1333. temp_cal_active = false;
  1334. }
  1335. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1336. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1337. }
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1339. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1340. }
  1341. check_babystep(); //checking if Z babystep is in allowed range
  1342. #ifdef UVLO_SUPPORT
  1343. setup_uvlo_interrupt();
  1344. #endif //UVLO_SUPPORT
  1345. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1346. setup_fan_interrupt();
  1347. #endif //DEBUG_DISABLE_FANCHECK
  1348. #ifdef FILAMENT_SENSOR
  1349. fsensor_setup_interrupt();
  1350. #endif //FILAMENT_SENSOR
  1351. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1352. #ifndef DEBUG_DISABLE_STARTMSGS
  1353. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1354. show_fw_version_warnings();
  1355. switch (hw_changed) {
  1356. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1357. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1358. case(0b01):
  1359. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1360. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1361. break;
  1362. case(0b10):
  1363. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1364. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1365. break;
  1366. case(0b11):
  1367. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1368. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1369. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1370. break;
  1371. default: break; //no change, show no message
  1372. }
  1373. if (!previous_settings_retrieved) {
  1374. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1375. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1376. }
  1377. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1378. lcd_wizard(0);
  1379. }
  1380. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1381. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1382. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1383. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1384. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1385. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1386. // Show the message.
  1387. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1388. }
  1389. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1390. // Show the message.
  1391. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1392. lcd_update_enable(true);
  1393. }
  1394. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1395. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1396. lcd_update_enable(true);
  1397. }
  1398. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1399. // Show the message.
  1400. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1401. }
  1402. }
  1403. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1404. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1405. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1406. update_current_firmware_version_to_eeprom();
  1407. lcd_selftest();
  1408. }
  1409. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1410. KEEPALIVE_STATE(IN_PROCESS);
  1411. #endif //DEBUG_DISABLE_STARTMSGS
  1412. lcd_update_enable(true);
  1413. lcd_clear();
  1414. lcd_update(2);
  1415. // Store the currently running firmware into an eeprom,
  1416. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1417. update_current_firmware_version_to_eeprom();
  1418. #ifdef TMC2130
  1419. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1420. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1421. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1422. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1423. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1424. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1425. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1426. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1427. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1428. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1429. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1430. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1431. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1432. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1433. #endif //TMC2130
  1434. #ifdef UVLO_SUPPORT
  1435. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1436. /*
  1437. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1438. else {
  1439. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1440. lcd_update_enable(true);
  1441. lcd_update(2);
  1442. lcd_setstatuspgm(_T(WELCOME_MSG));
  1443. }
  1444. */
  1445. manage_heater(); // Update temperatures
  1446. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1447. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1448. #endif
  1449. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1450. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1451. puts_P(_N("Automatic recovery!"));
  1452. #endif
  1453. recover_print(1);
  1454. }
  1455. else{
  1456. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1457. puts_P(_N("Normal recovery!"));
  1458. #endif
  1459. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1460. else {
  1461. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1462. lcd_update_enable(true);
  1463. lcd_update(2);
  1464. lcd_setstatuspgm(_T(WELCOME_MSG));
  1465. }
  1466. }
  1467. }
  1468. #endif //UVLO_SUPPORT
  1469. KEEPALIVE_STATE(NOT_BUSY);
  1470. #ifdef WATCHDOG
  1471. wdt_enable(WDTO_4S);
  1472. #endif //WATCHDOG
  1473. }
  1474. void trace();
  1475. #define CHUNK_SIZE 64 // bytes
  1476. #define SAFETY_MARGIN 1
  1477. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1478. int chunkHead = 0;
  1479. void serial_read_stream() {
  1480. setAllTargetHotends(0);
  1481. setTargetBed(0);
  1482. lcd_clear();
  1483. lcd_puts_P(PSTR(" Upload in progress"));
  1484. // first wait for how many bytes we will receive
  1485. uint32_t bytesToReceive;
  1486. // receive the four bytes
  1487. char bytesToReceiveBuffer[4];
  1488. for (int i=0; i<4; i++) {
  1489. int data;
  1490. while ((data = MYSERIAL.read()) == -1) {};
  1491. bytesToReceiveBuffer[i] = data;
  1492. }
  1493. // make it a uint32
  1494. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1495. // we're ready, notify the sender
  1496. MYSERIAL.write('+');
  1497. // lock in the routine
  1498. uint32_t receivedBytes = 0;
  1499. while (prusa_sd_card_upload) {
  1500. int i;
  1501. for (i=0; i<CHUNK_SIZE; i++) {
  1502. int data;
  1503. // check if we're not done
  1504. if (receivedBytes == bytesToReceive) {
  1505. break;
  1506. }
  1507. // read the next byte
  1508. while ((data = MYSERIAL.read()) == -1) {};
  1509. receivedBytes++;
  1510. // save it to the chunk
  1511. chunk[i] = data;
  1512. }
  1513. // write the chunk to SD
  1514. card.write_command_no_newline(&chunk[0]);
  1515. // notify the sender we're ready for more data
  1516. MYSERIAL.write('+');
  1517. // for safety
  1518. manage_heater();
  1519. // check if we're done
  1520. if(receivedBytes == bytesToReceive) {
  1521. trace(); // beep
  1522. card.closefile();
  1523. prusa_sd_card_upload = false;
  1524. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1525. }
  1526. }
  1527. }
  1528. #ifdef HOST_KEEPALIVE_FEATURE
  1529. /**
  1530. * Output a "busy" message at regular intervals
  1531. * while the machine is not accepting commands.
  1532. */
  1533. void host_keepalive() {
  1534. if (farm_mode) return;
  1535. long ms = millis();
  1536. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1537. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1538. switch (busy_state) {
  1539. case IN_HANDLER:
  1540. case IN_PROCESS:
  1541. SERIAL_ECHO_START;
  1542. SERIAL_ECHOLNPGM("busy: processing");
  1543. break;
  1544. case PAUSED_FOR_USER:
  1545. SERIAL_ECHO_START;
  1546. SERIAL_ECHOLNPGM("busy: paused for user");
  1547. break;
  1548. case PAUSED_FOR_INPUT:
  1549. SERIAL_ECHO_START;
  1550. SERIAL_ECHOLNPGM("busy: paused for input");
  1551. break;
  1552. default:
  1553. break;
  1554. }
  1555. }
  1556. prev_busy_signal_ms = ms;
  1557. }
  1558. #endif
  1559. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1560. // Before loop(), the setup() function is called by the main() routine.
  1561. void loop()
  1562. {
  1563. KEEPALIVE_STATE(NOT_BUSY);
  1564. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1565. {
  1566. is_usb_printing = true;
  1567. usb_printing_counter--;
  1568. _usb_timer = millis();
  1569. }
  1570. if (usb_printing_counter == 0)
  1571. {
  1572. is_usb_printing = false;
  1573. }
  1574. if (prusa_sd_card_upload)
  1575. {
  1576. //we read byte-by byte
  1577. serial_read_stream();
  1578. } else
  1579. {
  1580. get_command();
  1581. #ifdef SDSUPPORT
  1582. card.checkautostart(false);
  1583. #endif
  1584. if(buflen)
  1585. {
  1586. cmdbuffer_front_already_processed = false;
  1587. #ifdef SDSUPPORT
  1588. if(card.saving)
  1589. {
  1590. // Saving a G-code file onto an SD-card is in progress.
  1591. // Saving starts with M28, saving until M29 is seen.
  1592. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1593. card.write_command(CMDBUFFER_CURRENT_STRING);
  1594. if(card.logging)
  1595. process_commands();
  1596. else
  1597. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1598. } else {
  1599. card.closefile();
  1600. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1601. }
  1602. } else {
  1603. process_commands();
  1604. }
  1605. #else
  1606. process_commands();
  1607. #endif //SDSUPPORT
  1608. if (! cmdbuffer_front_already_processed && buflen)
  1609. {
  1610. // ptr points to the start of the block currently being processed.
  1611. // The first character in the block is the block type.
  1612. char *ptr = cmdbuffer + bufindr;
  1613. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1614. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1615. union {
  1616. struct {
  1617. char lo;
  1618. char hi;
  1619. } lohi;
  1620. uint16_t value;
  1621. } sdlen;
  1622. sdlen.value = 0;
  1623. {
  1624. // This block locks the interrupts globally for 3.25 us,
  1625. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1626. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1627. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1628. cli();
  1629. // Reset the command to something, which will be ignored by the power panic routine,
  1630. // so this buffer length will not be counted twice.
  1631. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1632. // Extract the current buffer length.
  1633. sdlen.lohi.lo = *ptr ++;
  1634. sdlen.lohi.hi = *ptr;
  1635. // and pass it to the planner queue.
  1636. planner_add_sd_length(sdlen.value);
  1637. sei();
  1638. }
  1639. }
  1640. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1641. cli();
  1642. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1643. // and one for each command to previous block in the planner queue.
  1644. planner_add_sd_length(1);
  1645. sei();
  1646. }
  1647. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1648. // this block's SD card length will not be counted twice as its command type has been replaced
  1649. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1650. cmdqueue_pop_front();
  1651. }
  1652. host_keepalive();
  1653. }
  1654. }
  1655. //check heater every n milliseconds
  1656. manage_heater();
  1657. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1658. checkHitEndstops();
  1659. lcd_update(0);
  1660. #ifdef FILAMENT_SENSOR
  1661. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1662. fsensor_update();
  1663. #endif //FILAMENT_SENSOR
  1664. #ifdef TMC2130
  1665. tmc2130_check_overtemp();
  1666. if (tmc2130_sg_crash)
  1667. {
  1668. uint8_t crash = tmc2130_sg_crash;
  1669. tmc2130_sg_crash = 0;
  1670. // crashdet_stop_and_save_print();
  1671. switch (crash)
  1672. {
  1673. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1674. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1675. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1676. }
  1677. }
  1678. #endif //TMC2130
  1679. mmu_loop();
  1680. }
  1681. #define DEFINE_PGM_READ_ANY(type, reader) \
  1682. static inline type pgm_read_any(const type *p) \
  1683. { return pgm_read_##reader##_near(p); }
  1684. DEFINE_PGM_READ_ANY(float, float);
  1685. DEFINE_PGM_READ_ANY(signed char, byte);
  1686. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1687. static const PROGMEM type array##_P[3] = \
  1688. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1689. static inline type array(int axis) \
  1690. { return pgm_read_any(&array##_P[axis]); } \
  1691. type array##_ext(int axis) \
  1692. { return pgm_read_any(&array##_P[axis]); }
  1693. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1694. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1695. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1696. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1697. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1698. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1699. static void axis_is_at_home(int axis) {
  1700. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1701. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1702. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1703. }
  1704. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1705. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1706. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1707. saved_feedrate = feedrate;
  1708. saved_feedmultiply = feedmultiply;
  1709. feedmultiply = 100;
  1710. previous_millis_cmd = millis();
  1711. enable_endstops(enable_endstops_now);
  1712. }
  1713. static void clean_up_after_endstop_move() {
  1714. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1715. enable_endstops(false);
  1716. #endif
  1717. feedrate = saved_feedrate;
  1718. feedmultiply = saved_feedmultiply;
  1719. previous_millis_cmd = millis();
  1720. }
  1721. #ifdef ENABLE_AUTO_BED_LEVELING
  1722. #ifdef AUTO_BED_LEVELING_GRID
  1723. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1724. {
  1725. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1726. planeNormal.debug("planeNormal");
  1727. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1728. //bedLevel.debug("bedLevel");
  1729. //plan_bed_level_matrix.debug("bed level before");
  1730. //vector_3 uncorrected_position = plan_get_position_mm();
  1731. //uncorrected_position.debug("position before");
  1732. vector_3 corrected_position = plan_get_position();
  1733. // corrected_position.debug("position after");
  1734. current_position[X_AXIS] = corrected_position.x;
  1735. current_position[Y_AXIS] = corrected_position.y;
  1736. current_position[Z_AXIS] = corrected_position.z;
  1737. // put the bed at 0 so we don't go below it.
  1738. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1739. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1740. }
  1741. #else // not AUTO_BED_LEVELING_GRID
  1742. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1743. plan_bed_level_matrix.set_to_identity();
  1744. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1745. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1746. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1747. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1748. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1749. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1750. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1751. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1752. vector_3 corrected_position = plan_get_position();
  1753. current_position[X_AXIS] = corrected_position.x;
  1754. current_position[Y_AXIS] = corrected_position.y;
  1755. current_position[Z_AXIS] = corrected_position.z;
  1756. // put the bed at 0 so we don't go below it.
  1757. current_position[Z_AXIS] = zprobe_zoffset;
  1758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1759. }
  1760. #endif // AUTO_BED_LEVELING_GRID
  1761. static void run_z_probe() {
  1762. plan_bed_level_matrix.set_to_identity();
  1763. feedrate = homing_feedrate[Z_AXIS];
  1764. // move down until you find the bed
  1765. float zPosition = -10;
  1766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1767. st_synchronize();
  1768. // we have to let the planner know where we are right now as it is not where we said to go.
  1769. zPosition = st_get_position_mm(Z_AXIS);
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1771. // move up the retract distance
  1772. zPosition += home_retract_mm(Z_AXIS);
  1773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1774. st_synchronize();
  1775. // move back down slowly to find bed
  1776. feedrate = homing_feedrate[Z_AXIS]/4;
  1777. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1779. st_synchronize();
  1780. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1781. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. }
  1784. static void do_blocking_move_to(float x, float y, float z) {
  1785. float oldFeedRate = feedrate;
  1786. feedrate = homing_feedrate[Z_AXIS];
  1787. current_position[Z_AXIS] = z;
  1788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. feedrate = XY_TRAVEL_SPEED;
  1791. current_position[X_AXIS] = x;
  1792. current_position[Y_AXIS] = y;
  1793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1794. st_synchronize();
  1795. feedrate = oldFeedRate;
  1796. }
  1797. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1798. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1799. }
  1800. /// Probe bed height at position (x,y), returns the measured z value
  1801. static float probe_pt(float x, float y, float z_before) {
  1802. // move to right place
  1803. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1804. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1805. run_z_probe();
  1806. float measured_z = current_position[Z_AXIS];
  1807. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1808. SERIAL_PROTOCOLPGM(" x: ");
  1809. SERIAL_PROTOCOL(x);
  1810. SERIAL_PROTOCOLPGM(" y: ");
  1811. SERIAL_PROTOCOL(y);
  1812. SERIAL_PROTOCOLPGM(" z: ");
  1813. SERIAL_PROTOCOL(measured_z);
  1814. SERIAL_PROTOCOLPGM("\n");
  1815. return measured_z;
  1816. }
  1817. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1818. #ifdef LIN_ADVANCE
  1819. /**
  1820. * M900: Set and/or Get advance K factor and WH/D ratio
  1821. *
  1822. * K<factor> Set advance K factor
  1823. * R<ratio> Set ratio directly (overrides WH/D)
  1824. * W<width> H<height> D<diam> Set ratio from WH/D
  1825. */
  1826. inline void gcode_M900() {
  1827. st_synchronize();
  1828. const float newK = code_seen('K') ? code_value_float() : -1;
  1829. if (newK >= 0) extruder_advance_k = newK;
  1830. float newR = code_seen('R') ? code_value_float() : -1;
  1831. if (newR < 0) {
  1832. const float newD = code_seen('D') ? code_value_float() : -1,
  1833. newW = code_seen('W') ? code_value_float() : -1,
  1834. newH = code_seen('H') ? code_value_float() : -1;
  1835. if (newD >= 0 && newW >= 0 && newH >= 0)
  1836. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1837. }
  1838. if (newR >= 0) advance_ed_ratio = newR;
  1839. SERIAL_ECHO_START;
  1840. SERIAL_ECHOPGM("Advance K=");
  1841. SERIAL_ECHOLN(extruder_advance_k);
  1842. SERIAL_ECHOPGM(" E/D=");
  1843. const float ratio = advance_ed_ratio;
  1844. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1845. }
  1846. #endif // LIN_ADVANCE
  1847. bool check_commands() {
  1848. bool end_command_found = false;
  1849. while (buflen)
  1850. {
  1851. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1852. if (!cmdbuffer_front_already_processed)
  1853. cmdqueue_pop_front();
  1854. cmdbuffer_front_already_processed = false;
  1855. }
  1856. return end_command_found;
  1857. }
  1858. #ifdef TMC2130
  1859. bool calibrate_z_auto()
  1860. {
  1861. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1862. lcd_clear();
  1863. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1864. bool endstops_enabled = enable_endstops(true);
  1865. int axis_up_dir = -home_dir(Z_AXIS);
  1866. tmc2130_home_enter(Z_AXIS_MASK);
  1867. current_position[Z_AXIS] = 0;
  1868. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1869. set_destination_to_current();
  1870. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1871. feedrate = homing_feedrate[Z_AXIS];
  1872. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1873. st_synchronize();
  1874. // current_position[axis] = 0;
  1875. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1876. tmc2130_home_exit();
  1877. enable_endstops(false);
  1878. current_position[Z_AXIS] = 0;
  1879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1880. set_destination_to_current();
  1881. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1882. feedrate = homing_feedrate[Z_AXIS] / 2;
  1883. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1884. st_synchronize();
  1885. enable_endstops(endstops_enabled);
  1886. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. return true;
  1889. }
  1890. #endif //TMC2130
  1891. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1892. {
  1893. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1894. #define HOMEAXIS_DO(LETTER) \
  1895. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1896. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1897. {
  1898. int axis_home_dir = home_dir(axis);
  1899. feedrate = homing_feedrate[axis];
  1900. #ifdef TMC2130
  1901. tmc2130_home_enter(X_AXIS_MASK << axis);
  1902. #endif //TMC2130
  1903. // Move away a bit, so that the print head does not touch the end position,
  1904. // and the following movement to endstop has a chance to achieve the required velocity
  1905. // for the stall guard to work.
  1906. current_position[axis] = 0;
  1907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1908. set_destination_to_current();
  1909. // destination[axis] = 11.f;
  1910. destination[axis] = -3.f * axis_home_dir;
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1914. endstops_hit_on_purpose();
  1915. enable_endstops(false);
  1916. current_position[axis] = 0;
  1917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1918. destination[axis] = 1. * axis_home_dir;
  1919. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1920. st_synchronize();
  1921. // Now continue to move up to the left end stop with the collision detection enabled.
  1922. enable_endstops(true);
  1923. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1925. st_synchronize();
  1926. for (uint8_t i = 0; i < cnt; i++)
  1927. {
  1928. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1929. endstops_hit_on_purpose();
  1930. enable_endstops(false);
  1931. current_position[axis] = 0;
  1932. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. destination[axis] = -10.f * axis_home_dir;
  1934. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1935. st_synchronize();
  1936. endstops_hit_on_purpose();
  1937. // Now move left up to the collision, this time with a repeatable velocity.
  1938. enable_endstops(true);
  1939. destination[axis] = 11.f * axis_home_dir;
  1940. #ifdef TMC2130
  1941. feedrate = homing_feedrate[axis];
  1942. #else //TMC2130
  1943. feedrate = homing_feedrate[axis] / 2;
  1944. #endif //TMC2130
  1945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1946. st_synchronize();
  1947. #ifdef TMC2130
  1948. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1949. if (pstep) pstep[i] = mscnt >> 4;
  1950. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1951. #endif //TMC2130
  1952. }
  1953. endstops_hit_on_purpose();
  1954. enable_endstops(false);
  1955. #ifdef TMC2130
  1956. uint8_t orig = tmc2130_home_origin[axis];
  1957. uint8_t back = tmc2130_home_bsteps[axis];
  1958. if (tmc2130_home_enabled && (orig <= 63))
  1959. {
  1960. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1961. if (back > 0)
  1962. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1963. }
  1964. else
  1965. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1966. tmc2130_home_exit();
  1967. #endif //TMC2130
  1968. axis_is_at_home(axis);
  1969. axis_known_position[axis] = true;
  1970. // Move from minimum
  1971. #ifdef TMC2130
  1972. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1973. #else //TMC2130
  1974. float dist = - axis_home_dir * 0.01f * 64;
  1975. #endif //TMC2130
  1976. current_position[axis] -= dist;
  1977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1978. current_position[axis] += dist;
  1979. destination[axis] = current_position[axis];
  1980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1981. st_synchronize();
  1982. feedrate = 0.0;
  1983. }
  1984. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1985. {
  1986. #ifdef TMC2130
  1987. FORCE_HIGH_POWER_START;
  1988. #endif
  1989. int axis_home_dir = home_dir(axis);
  1990. current_position[axis] = 0;
  1991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1992. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1993. feedrate = homing_feedrate[axis];
  1994. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1995. st_synchronize();
  1996. #ifdef TMC2130
  1997. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1998. FORCE_HIGH_POWER_END;
  1999. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2000. return;
  2001. }
  2002. #endif //TMC2130
  2003. current_position[axis] = 0;
  2004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2005. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2007. st_synchronize();
  2008. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2009. feedrate = homing_feedrate[axis]/2 ;
  2010. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2011. st_synchronize();
  2012. #ifdef TMC2130
  2013. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2014. FORCE_HIGH_POWER_END;
  2015. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2016. return;
  2017. }
  2018. #endif //TMC2130
  2019. axis_is_at_home(axis);
  2020. destination[axis] = current_position[axis];
  2021. feedrate = 0.0;
  2022. endstops_hit_on_purpose();
  2023. axis_known_position[axis] = true;
  2024. #ifdef TMC2130
  2025. FORCE_HIGH_POWER_END;
  2026. #endif
  2027. }
  2028. enable_endstops(endstops_enabled);
  2029. }
  2030. /**/
  2031. void home_xy()
  2032. {
  2033. set_destination_to_current();
  2034. homeaxis(X_AXIS);
  2035. homeaxis(Y_AXIS);
  2036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2037. endstops_hit_on_purpose();
  2038. }
  2039. void refresh_cmd_timeout(void)
  2040. {
  2041. previous_millis_cmd = millis();
  2042. }
  2043. #ifdef FWRETRACT
  2044. void retract(bool retracting, bool swapretract = false) {
  2045. if(retracting && !retracted[active_extruder]) {
  2046. destination[X_AXIS]=current_position[X_AXIS];
  2047. destination[Y_AXIS]=current_position[Y_AXIS];
  2048. destination[Z_AXIS]=current_position[Z_AXIS];
  2049. destination[E_AXIS]=current_position[E_AXIS];
  2050. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2051. plan_set_e_position(current_position[E_AXIS]);
  2052. float oldFeedrate = feedrate;
  2053. feedrate=retract_feedrate*60;
  2054. retracted[active_extruder]=true;
  2055. prepare_move();
  2056. current_position[Z_AXIS]-=retract_zlift;
  2057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2058. prepare_move();
  2059. feedrate = oldFeedrate;
  2060. } else if(!retracting && retracted[active_extruder]) {
  2061. destination[X_AXIS]=current_position[X_AXIS];
  2062. destination[Y_AXIS]=current_position[Y_AXIS];
  2063. destination[Z_AXIS]=current_position[Z_AXIS];
  2064. destination[E_AXIS]=current_position[E_AXIS];
  2065. current_position[Z_AXIS]+=retract_zlift;
  2066. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2067. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2068. plan_set_e_position(current_position[E_AXIS]);
  2069. float oldFeedrate = feedrate;
  2070. feedrate=retract_recover_feedrate*60;
  2071. retracted[active_extruder]=false;
  2072. prepare_move();
  2073. feedrate = oldFeedrate;
  2074. }
  2075. } //retract
  2076. #endif //FWRETRACT
  2077. void trace() {
  2078. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2079. tone(BEEPER, 440);
  2080. delay(25);
  2081. noTone(BEEPER);
  2082. delay(20);
  2083. }
  2084. /*
  2085. void ramming() {
  2086. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2087. if (current_temperature[0] < 230) {
  2088. //PLA
  2089. max_feedrate[E_AXIS] = 50;
  2090. //current_position[E_AXIS] -= 8;
  2091. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2092. //current_position[E_AXIS] += 8;
  2093. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2094. current_position[E_AXIS] += 5.4;
  2095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2096. current_position[E_AXIS] += 3.2;
  2097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2098. current_position[E_AXIS] += 3;
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2100. st_synchronize();
  2101. max_feedrate[E_AXIS] = 80;
  2102. current_position[E_AXIS] -= 82;
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2104. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2105. current_position[E_AXIS] -= 20;
  2106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2107. current_position[E_AXIS] += 5;
  2108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2109. current_position[E_AXIS] += 5;
  2110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2111. current_position[E_AXIS] -= 10;
  2112. st_synchronize();
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2114. current_position[E_AXIS] += 10;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2116. current_position[E_AXIS] -= 10;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2118. current_position[E_AXIS] += 10;
  2119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2120. current_position[E_AXIS] -= 10;
  2121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2122. st_synchronize();
  2123. }
  2124. else {
  2125. //ABS
  2126. max_feedrate[E_AXIS] = 50;
  2127. //current_position[E_AXIS] -= 8;
  2128. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2129. //current_position[E_AXIS] += 8;
  2130. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2131. current_position[E_AXIS] += 3.1;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2133. current_position[E_AXIS] += 3.1;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2135. current_position[E_AXIS] += 4;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2137. st_synchronize();
  2138. //current_position[X_AXIS] += 23; //delay
  2139. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2140. //current_position[X_AXIS] -= 23; //delay
  2141. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2142. delay(4700);
  2143. max_feedrate[E_AXIS] = 80;
  2144. current_position[E_AXIS] -= 92;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2146. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2147. current_position[E_AXIS] -= 5;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2149. current_position[E_AXIS] += 5;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2151. current_position[E_AXIS] -= 5;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2153. st_synchronize();
  2154. current_position[E_AXIS] += 5;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2156. current_position[E_AXIS] -= 5;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2158. current_position[E_AXIS] += 5;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2160. current_position[E_AXIS] -= 5;
  2161. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2162. st_synchronize();
  2163. }
  2164. }
  2165. */
  2166. #ifdef TMC2130
  2167. void force_high_power_mode(bool start_high_power_section) {
  2168. uint8_t silent;
  2169. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2170. if (silent == 1) {
  2171. //we are in silent mode, set to normal mode to enable crash detection
  2172. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2173. st_synchronize();
  2174. cli();
  2175. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2176. update_mode_profile();
  2177. tmc2130_init();
  2178. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2179. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2180. st_reset_timer();
  2181. sei();
  2182. }
  2183. }
  2184. #endif //TMC2130
  2185. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2186. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2187. }
  2188. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2189. st_synchronize();
  2190. #if 0
  2191. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2192. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2193. #endif
  2194. // Flag for the display update routine and to disable the print cancelation during homing.
  2195. homing_flag = true;
  2196. // Which axes should be homed?
  2197. bool home_x = home_x_axis;
  2198. bool home_y = home_y_axis;
  2199. bool home_z = home_z_axis;
  2200. // Either all X,Y,Z codes are present, or none of them.
  2201. bool home_all_axes = home_x == home_y && home_x == home_z;
  2202. if (home_all_axes)
  2203. // No X/Y/Z code provided means to home all axes.
  2204. home_x = home_y = home_z = true;
  2205. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2206. if (home_all_axes) {
  2207. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2208. feedrate = homing_feedrate[Z_AXIS];
  2209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2210. st_synchronize();
  2211. }
  2212. #ifdef ENABLE_AUTO_BED_LEVELING
  2213. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2214. #endif //ENABLE_AUTO_BED_LEVELING
  2215. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2216. // the planner will not perform any adjustments in the XY plane.
  2217. // Wait for the motors to stop and update the current position with the absolute values.
  2218. world2machine_revert_to_uncorrected();
  2219. // For mesh bed leveling deactivate the matrix temporarily.
  2220. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2221. // in a single axis only.
  2222. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2223. #ifdef MESH_BED_LEVELING
  2224. uint8_t mbl_was_active = mbl.active;
  2225. mbl.active = 0;
  2226. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2227. #endif
  2228. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2229. // consumed during the first movements following this statement.
  2230. if (home_z)
  2231. babystep_undo();
  2232. saved_feedrate = feedrate;
  2233. saved_feedmultiply = feedmultiply;
  2234. feedmultiply = 100;
  2235. previous_millis_cmd = millis();
  2236. enable_endstops(true);
  2237. memcpy(destination, current_position, sizeof(destination));
  2238. feedrate = 0.0;
  2239. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2240. if(home_z)
  2241. homeaxis(Z_AXIS);
  2242. #endif
  2243. #ifdef QUICK_HOME
  2244. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2245. if(home_x && home_y) //first diagonal move
  2246. {
  2247. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2248. int x_axis_home_dir = home_dir(X_AXIS);
  2249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2250. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2251. feedrate = homing_feedrate[X_AXIS];
  2252. if(homing_feedrate[Y_AXIS]<feedrate)
  2253. feedrate = homing_feedrate[Y_AXIS];
  2254. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2255. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2256. } else {
  2257. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2258. }
  2259. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2260. st_synchronize();
  2261. axis_is_at_home(X_AXIS);
  2262. axis_is_at_home(Y_AXIS);
  2263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2264. destination[X_AXIS] = current_position[X_AXIS];
  2265. destination[Y_AXIS] = current_position[Y_AXIS];
  2266. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2267. feedrate = 0.0;
  2268. st_synchronize();
  2269. endstops_hit_on_purpose();
  2270. current_position[X_AXIS] = destination[X_AXIS];
  2271. current_position[Y_AXIS] = destination[Y_AXIS];
  2272. current_position[Z_AXIS] = destination[Z_AXIS];
  2273. }
  2274. #endif /* QUICK_HOME */
  2275. #ifdef TMC2130
  2276. if(home_x)
  2277. {
  2278. if (!calib)
  2279. homeaxis(X_AXIS);
  2280. else
  2281. tmc2130_home_calibrate(X_AXIS);
  2282. }
  2283. if(home_y)
  2284. {
  2285. if (!calib)
  2286. homeaxis(Y_AXIS);
  2287. else
  2288. tmc2130_home_calibrate(Y_AXIS);
  2289. }
  2290. #endif //TMC2130
  2291. if(home_x_axis && home_x_value != 0)
  2292. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2293. if(home_y_axis && home_y_value != 0)
  2294. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2295. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2296. #ifndef Z_SAFE_HOMING
  2297. if(home_z) {
  2298. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2299. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2300. feedrate = max_feedrate[Z_AXIS];
  2301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2302. st_synchronize();
  2303. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2304. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2305. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2306. {
  2307. homeaxis(X_AXIS);
  2308. homeaxis(Y_AXIS);
  2309. }
  2310. // 1st mesh bed leveling measurement point, corrected.
  2311. world2machine_initialize();
  2312. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2313. world2machine_reset();
  2314. if (destination[Y_AXIS] < Y_MIN_POS)
  2315. destination[Y_AXIS] = Y_MIN_POS;
  2316. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2317. feedrate = homing_feedrate[Z_AXIS]/10;
  2318. current_position[Z_AXIS] = 0;
  2319. enable_endstops(false);
  2320. #ifdef DEBUG_BUILD
  2321. SERIAL_ECHOLNPGM("plan_set_position()");
  2322. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2323. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2324. #endif
  2325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2326. #ifdef DEBUG_BUILD
  2327. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2328. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2329. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2330. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2331. #endif
  2332. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2333. st_synchronize();
  2334. current_position[X_AXIS] = destination[X_AXIS];
  2335. current_position[Y_AXIS] = destination[Y_AXIS];
  2336. enable_endstops(true);
  2337. endstops_hit_on_purpose();
  2338. homeaxis(Z_AXIS);
  2339. #else // MESH_BED_LEVELING
  2340. homeaxis(Z_AXIS);
  2341. #endif // MESH_BED_LEVELING
  2342. }
  2343. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2344. if(home_all_axes) {
  2345. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2346. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2347. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2348. feedrate = XY_TRAVEL_SPEED/60;
  2349. current_position[Z_AXIS] = 0;
  2350. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2351. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2352. st_synchronize();
  2353. current_position[X_AXIS] = destination[X_AXIS];
  2354. current_position[Y_AXIS] = destination[Y_AXIS];
  2355. homeaxis(Z_AXIS);
  2356. }
  2357. // Let's see if X and Y are homed and probe is inside bed area.
  2358. if(home_z) {
  2359. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2360. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2361. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2362. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2363. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2364. current_position[Z_AXIS] = 0;
  2365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2366. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2367. feedrate = max_feedrate[Z_AXIS];
  2368. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2369. st_synchronize();
  2370. homeaxis(Z_AXIS);
  2371. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2372. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2373. SERIAL_ECHO_START;
  2374. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2375. } else {
  2376. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2377. SERIAL_ECHO_START;
  2378. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2379. }
  2380. }
  2381. #endif // Z_SAFE_HOMING
  2382. #endif // Z_HOME_DIR < 0
  2383. if(home_z_axis && home_z_value != 0)
  2384. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2385. #ifdef ENABLE_AUTO_BED_LEVELING
  2386. if(home_z)
  2387. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2388. #endif
  2389. // Set the planner and stepper routine positions.
  2390. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2391. // contains the machine coordinates.
  2392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2393. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2394. enable_endstops(false);
  2395. #endif
  2396. feedrate = saved_feedrate;
  2397. feedmultiply = saved_feedmultiply;
  2398. previous_millis_cmd = millis();
  2399. endstops_hit_on_purpose();
  2400. #ifndef MESH_BED_LEVELING
  2401. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2402. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2403. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2404. lcd_adjust_z();
  2405. #endif
  2406. // Load the machine correction matrix
  2407. world2machine_initialize();
  2408. // and correct the current_position XY axes to match the transformed coordinate system.
  2409. world2machine_update_current();
  2410. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2411. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2412. {
  2413. if (! home_z && mbl_was_active) {
  2414. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2415. mbl.active = true;
  2416. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2417. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2418. }
  2419. }
  2420. else
  2421. {
  2422. st_synchronize();
  2423. homing_flag = false;
  2424. }
  2425. #endif
  2426. if (farm_mode) { prusa_statistics(20); };
  2427. homing_flag = false;
  2428. #if 0
  2429. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2430. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2431. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2432. #endif
  2433. }
  2434. void adjust_bed_reset()
  2435. {
  2436. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2437. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2438. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2439. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2440. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2441. }
  2442. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2443. {
  2444. bool final_result = false;
  2445. #ifdef TMC2130
  2446. FORCE_HIGH_POWER_START;
  2447. #endif // TMC2130
  2448. // Only Z calibration?
  2449. if (!onlyZ)
  2450. {
  2451. setTargetBed(0);
  2452. setAllTargetHotends(0);
  2453. adjust_bed_reset(); //reset bed level correction
  2454. }
  2455. // Disable the default update procedure of the display. We will do a modal dialog.
  2456. lcd_update_enable(false);
  2457. // Let the planner use the uncorrected coordinates.
  2458. mbl.reset();
  2459. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2460. // the planner will not perform any adjustments in the XY plane.
  2461. // Wait for the motors to stop and update the current position with the absolute values.
  2462. world2machine_revert_to_uncorrected();
  2463. // Reset the baby step value applied without moving the axes.
  2464. babystep_reset();
  2465. // Mark all axes as in a need for homing.
  2466. memset(axis_known_position, 0, sizeof(axis_known_position));
  2467. // Home in the XY plane.
  2468. //set_destination_to_current();
  2469. setup_for_endstop_move();
  2470. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2471. home_xy();
  2472. enable_endstops(false);
  2473. current_position[X_AXIS] += 5;
  2474. current_position[Y_AXIS] += 5;
  2475. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2476. st_synchronize();
  2477. // Let the user move the Z axes up to the end stoppers.
  2478. #ifdef TMC2130
  2479. if (calibrate_z_auto())
  2480. {
  2481. #else //TMC2130
  2482. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2483. {
  2484. #endif //TMC2130
  2485. refresh_cmd_timeout();
  2486. #ifndef STEEL_SHEET
  2487. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2488. {
  2489. lcd_wait_for_cool_down();
  2490. }
  2491. #endif //STEEL_SHEET
  2492. if(!onlyZ)
  2493. {
  2494. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2495. #ifdef STEEL_SHEET
  2496. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2497. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2498. #endif //STEEL_SHEET
  2499. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2500. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2501. KEEPALIVE_STATE(IN_HANDLER);
  2502. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2503. lcd_set_cursor(0, 2);
  2504. lcd_print(1);
  2505. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2506. }
  2507. // Move the print head close to the bed.
  2508. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2509. bool endstops_enabled = enable_endstops(true);
  2510. #ifdef TMC2130
  2511. tmc2130_home_enter(Z_AXIS_MASK);
  2512. #endif //TMC2130
  2513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2514. st_synchronize();
  2515. #ifdef TMC2130
  2516. tmc2130_home_exit();
  2517. #endif //TMC2130
  2518. enable_endstops(endstops_enabled);
  2519. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2520. {
  2521. if (onlyZ)
  2522. {
  2523. clean_up_after_endstop_move();
  2524. // Z only calibration.
  2525. // Load the machine correction matrix
  2526. world2machine_initialize();
  2527. // and correct the current_position to match the transformed coordinate system.
  2528. world2machine_update_current();
  2529. //FIXME
  2530. bool result = sample_mesh_and_store_reference();
  2531. if (result)
  2532. {
  2533. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2534. // Shipped, the nozzle height has been set already. The user can start printing now.
  2535. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2536. final_result = true;
  2537. // babystep_apply();
  2538. }
  2539. }
  2540. else
  2541. {
  2542. // Reset the baby step value and the baby step applied flag.
  2543. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2544. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2545. // Complete XYZ calibration.
  2546. uint8_t point_too_far_mask = 0;
  2547. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2548. clean_up_after_endstop_move();
  2549. // Print head up.
  2550. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2552. st_synchronize();
  2553. //#ifndef NEW_XYZCAL
  2554. if (result >= 0)
  2555. {
  2556. #ifdef HEATBED_V2
  2557. sample_z();
  2558. #else //HEATBED_V2
  2559. point_too_far_mask = 0;
  2560. // Second half: The fine adjustment.
  2561. // Let the planner use the uncorrected coordinates.
  2562. mbl.reset();
  2563. world2machine_reset();
  2564. // Home in the XY plane.
  2565. setup_for_endstop_move();
  2566. home_xy();
  2567. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2568. clean_up_after_endstop_move();
  2569. // Print head up.
  2570. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2572. st_synchronize();
  2573. // if (result >= 0) babystep_apply();
  2574. #endif //HEATBED_V2
  2575. }
  2576. //#endif //NEW_XYZCAL
  2577. lcd_update_enable(true);
  2578. lcd_update(2);
  2579. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2580. if (result >= 0)
  2581. {
  2582. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2583. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2584. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2585. final_result = true;
  2586. }
  2587. }
  2588. #ifdef TMC2130
  2589. tmc2130_home_exit();
  2590. #endif
  2591. }
  2592. else
  2593. {
  2594. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2595. final_result = false;
  2596. }
  2597. }
  2598. else
  2599. {
  2600. // Timeouted.
  2601. }
  2602. lcd_update_enable(true);
  2603. #ifdef TMC2130
  2604. FORCE_HIGH_POWER_END;
  2605. #endif // TMC2130
  2606. return final_result;
  2607. }
  2608. void gcode_M114()
  2609. {
  2610. SERIAL_PROTOCOLPGM("X:");
  2611. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2612. SERIAL_PROTOCOLPGM(" Y:");
  2613. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2614. SERIAL_PROTOCOLPGM(" Z:");
  2615. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2616. SERIAL_PROTOCOLPGM(" E:");
  2617. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2618. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2619. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2620. SERIAL_PROTOCOLPGM(" Y:");
  2621. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2622. SERIAL_PROTOCOLPGM(" Z:");
  2623. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2624. SERIAL_PROTOCOLPGM(" E:");
  2625. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2626. SERIAL_PROTOCOLLN("");
  2627. }
  2628. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2629. {
  2630. st_synchronize();
  2631. float lastpos[4];
  2632. if (farm_mode)
  2633. {
  2634. prusa_statistics(22);
  2635. }
  2636. //First backup current position and settings
  2637. feedmultiplyBckp = feedmultiply;
  2638. HotendTempBckp = degTargetHotend(active_extruder);
  2639. fanSpeedBckp = fanSpeed;
  2640. lastpos[X_AXIS] = current_position[X_AXIS];
  2641. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2642. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2643. lastpos[E_AXIS] = current_position[E_AXIS];
  2644. //Retract E
  2645. current_position[E_AXIS] += e_shift;
  2646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2647. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2648. st_synchronize();
  2649. //Lift Z
  2650. current_position[Z_AXIS] += z_shift;
  2651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2652. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2653. st_synchronize();
  2654. //Move XY to side
  2655. current_position[X_AXIS] = x_position;
  2656. current_position[Y_AXIS] = y_position;
  2657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2658. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2659. st_synchronize();
  2660. //Beep, manage nozzle heater and wait for user to start unload filament
  2661. if(!mmu_enabled) M600_wait_for_user();
  2662. lcd_change_fil_state = 0;
  2663. // Unload filament
  2664. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2665. else unload_filament(); //unload filament for single material (used also in M702)
  2666. //finish moves
  2667. st_synchronize();
  2668. if (!mmu_enabled)
  2669. {
  2670. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2671. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2672. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2673. if (lcd_change_fil_state == 0)
  2674. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2675. lcd_update_enable(true);
  2676. }
  2677. if (mmu_enabled)
  2678. {
  2679. if (!automatic) {
  2680. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2681. mmu_M600_wait_and_beep();
  2682. if (saved_printing) {
  2683. lcd_clear();
  2684. lcd_set_cursor(0, 2);
  2685. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2686. mmu_command(MMU_CMD_R0);
  2687. manage_response(false, false);
  2688. }
  2689. }
  2690. mmu_M600_load_filament(automatic);
  2691. }
  2692. else
  2693. M600_load_filament();
  2694. if (!automatic) M600_check_state();
  2695. lcd_update_enable(true);
  2696. //Not let's go back to print
  2697. fanSpeed = fanSpeedBckp;
  2698. //Feed a little of filament to stabilize pressure
  2699. if (!automatic)
  2700. {
  2701. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2703. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2704. }
  2705. //Move XY back
  2706. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2707. FILAMENTCHANGE_XYFEED, active_extruder);
  2708. st_synchronize();
  2709. //Move Z back
  2710. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2711. FILAMENTCHANGE_ZFEED, active_extruder);
  2712. st_synchronize();
  2713. //Set E position to original
  2714. plan_set_e_position(lastpos[E_AXIS]);
  2715. memcpy(current_position, lastpos, sizeof(lastpos));
  2716. memcpy(destination, current_position, sizeof(current_position));
  2717. //Recover feed rate
  2718. feedmultiply = feedmultiplyBckp;
  2719. char cmd[9];
  2720. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2721. enquecommand(cmd);
  2722. lcd_setstatuspgm(_T(WELCOME_MSG));
  2723. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2724. }
  2725. void gcode_M701()
  2726. {
  2727. printf_P(PSTR("gcode_M701 begin\n"));
  2728. if (mmu_enabled)
  2729. {
  2730. extr_adj(tmp_extruder);//loads current extruder
  2731. mmu_extruder = tmp_extruder;
  2732. }
  2733. else
  2734. {
  2735. enable_z();
  2736. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2737. #ifdef FILAMENT_SENSOR
  2738. fsensor_oq_meassure_start(40);
  2739. #endif //FILAMENT_SENSOR
  2740. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2741. current_position[E_AXIS] += 40;
  2742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2743. st_synchronize();
  2744. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2745. current_position[E_AXIS] += 30;
  2746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2747. st_synchronize();
  2748. current_position[E_AXIS] += 25;
  2749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2750. st_synchronize();
  2751. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2752. delay_keep_alive(50);
  2753. noTone(BEEPER);
  2754. if (!farm_mode && loading_flag) {
  2755. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2756. while (!clean) {
  2757. lcd_update_enable(true);
  2758. lcd_update(2);
  2759. current_position[E_AXIS] += 25;
  2760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2761. st_synchronize();
  2762. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2763. }
  2764. }
  2765. lcd_update_enable(true);
  2766. lcd_update(2);
  2767. lcd_setstatuspgm(_T(WELCOME_MSG));
  2768. disable_z();
  2769. loading_flag = false;
  2770. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2771. #ifdef FILAMENT_SENSOR
  2772. if (mmu_enabled == false)
  2773. {
  2774. fsensor_oq_meassure_stop();
  2775. if (!fsensor_oq_result())
  2776. {
  2777. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2778. lcd_update_enable(true);
  2779. lcd_update(2);
  2780. if (disable)
  2781. fsensor_disable();
  2782. }
  2783. }
  2784. #endif //FILAMENT_SENSOR
  2785. }
  2786. }
  2787. /**
  2788. * @brief Get serial number from 32U2 processor
  2789. *
  2790. * Typical format of S/N is:CZPX0917X003XC13518
  2791. *
  2792. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2793. *
  2794. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2795. * reply is transmitted to serial port 1 character by character.
  2796. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2797. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2798. * in any case.
  2799. */
  2800. static void gcode_PRUSA_SN()
  2801. {
  2802. if (farm_mode) {
  2803. selectedSerialPort = 0;
  2804. putchar(';');
  2805. putchar('S');
  2806. int numbersRead = 0;
  2807. ShortTimer timeout;
  2808. timeout.start();
  2809. while (numbersRead < 19) {
  2810. while (MSerial.available() > 0) {
  2811. uint8_t serial_char = MSerial.read();
  2812. selectedSerialPort = 1;
  2813. putchar(serial_char);
  2814. numbersRead++;
  2815. selectedSerialPort = 0;
  2816. }
  2817. if (timeout.expired(100u)) break;
  2818. }
  2819. selectedSerialPort = 1;
  2820. putchar('\n');
  2821. #if 0
  2822. for (int b = 0; b < 3; b++) {
  2823. tone(BEEPER, 110);
  2824. delay(50);
  2825. noTone(BEEPER);
  2826. delay(50);
  2827. }
  2828. #endif
  2829. } else {
  2830. puts_P(_N("Not in farm mode."));
  2831. }
  2832. }
  2833. #ifdef BACKLASH_X
  2834. extern uint8_t st_backlash_x;
  2835. #endif //BACKLASH_X
  2836. #ifdef BACKLASH_Y
  2837. extern uint8_t st_backlash_y;
  2838. #endif //BACKLASH_Y
  2839. void process_commands()
  2840. {
  2841. if (!buflen) return; //empty command
  2842. #ifdef FILAMENT_RUNOUT_SUPPORT
  2843. SET_INPUT(FR_SENS);
  2844. #endif
  2845. #ifdef CMDBUFFER_DEBUG
  2846. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2847. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2848. SERIAL_ECHOLNPGM("");
  2849. SERIAL_ECHOPGM("In cmdqueue: ");
  2850. SERIAL_ECHO(buflen);
  2851. SERIAL_ECHOLNPGM("");
  2852. #endif /* CMDBUFFER_DEBUG */
  2853. unsigned long codenum; //throw away variable
  2854. char *starpos = NULL;
  2855. #ifdef ENABLE_AUTO_BED_LEVELING
  2856. float x_tmp, y_tmp, z_tmp, real_z;
  2857. #endif
  2858. // PRUSA GCODES
  2859. KEEPALIVE_STATE(IN_HANDLER);
  2860. #ifdef SNMM
  2861. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2862. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2863. int8_t SilentMode;
  2864. #endif
  2865. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2866. starpos = (strchr(strchr_pointer + 5, '*'));
  2867. if (starpos != NULL)
  2868. *(starpos) = '\0';
  2869. lcd_setstatus(strchr_pointer + 5);
  2870. }
  2871. #ifdef TMC2130
  2872. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2873. {
  2874. if(code_seen("CRASH_DETECTED"))
  2875. {
  2876. uint8_t mask = 0;
  2877. if (code_seen('X')) mask |= X_AXIS_MASK;
  2878. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2879. crashdet_detected(mask);
  2880. }
  2881. else if(code_seen("CRASH_RECOVER"))
  2882. crashdet_recover();
  2883. else if(code_seen("CRASH_CANCEL"))
  2884. crashdet_cancel();
  2885. }
  2886. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2887. {
  2888. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2889. {
  2890. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2891. axis = (axis == 'E')?3:(axis - 'X');
  2892. if (axis < 4)
  2893. {
  2894. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2895. tmc2130_set_wave(axis, 247, fac);
  2896. }
  2897. }
  2898. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2899. {
  2900. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2901. axis = (axis == 'E')?3:(axis - 'X');
  2902. if (axis < 4)
  2903. {
  2904. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2905. uint16_t res = tmc2130_get_res(axis);
  2906. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2907. }
  2908. }
  2909. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2910. {
  2911. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2912. axis = (axis == 'E')?3:(axis - 'X');
  2913. if (axis < 4)
  2914. {
  2915. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2916. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2917. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2918. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2919. char* str_end = 0;
  2920. if (CMDBUFFER_CURRENT_STRING[14])
  2921. {
  2922. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2923. if (str_end && *str_end)
  2924. {
  2925. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2926. if (str_end && *str_end)
  2927. {
  2928. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2929. if (str_end && *str_end)
  2930. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2931. }
  2932. }
  2933. }
  2934. tmc2130_chopper_config[axis].toff = chop0;
  2935. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2936. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2937. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2938. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2939. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2940. }
  2941. }
  2942. }
  2943. #ifdef BACKLASH_X
  2944. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2945. {
  2946. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2947. st_backlash_x = bl;
  2948. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2949. }
  2950. #endif //BACKLASH_X
  2951. #ifdef BACKLASH_Y
  2952. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2953. {
  2954. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2955. st_backlash_y = bl;
  2956. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2957. }
  2958. #endif //BACKLASH_Y
  2959. #endif //TMC2130
  2960. else if (code_seen("FSENSOR_RECOVER")) {
  2961. fsensor_restore_print_and_continue();
  2962. }
  2963. else if(code_seen("PRUSA")){
  2964. if (code_seen("Ping")) { //PRUSA Ping
  2965. if (farm_mode) {
  2966. PingTime = millis();
  2967. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2968. }
  2969. }
  2970. else if (code_seen("PRN")) {
  2971. printf_P(_N("%d"), status_number);
  2972. }else if (code_seen("FAN")) {
  2973. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2974. }else if (code_seen("fn")) {
  2975. if (farm_mode) {
  2976. printf_P(_N("%d"), farm_no);
  2977. }
  2978. else {
  2979. puts_P(_N("Not in farm mode."));
  2980. }
  2981. }
  2982. else if (code_seen("thx"))
  2983. {
  2984. no_response = false;
  2985. }
  2986. else if (code_seen("uvlo"))
  2987. {
  2988. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2989. enquecommand_P(PSTR("M24"));
  2990. }
  2991. else if (code_seen("MMURES"))
  2992. {
  2993. mmu_reset();
  2994. }
  2995. else if (code_seen("RESET")) {
  2996. // careful!
  2997. if (farm_mode) {
  2998. #ifdef WATCHDOG
  2999. boot_app_magic = BOOT_APP_MAGIC;
  3000. boot_app_flags = BOOT_APP_FLG_RUN;
  3001. wdt_enable(WDTO_15MS);
  3002. cli();
  3003. while(1);
  3004. #else //WATCHDOG
  3005. asm volatile("jmp 0x3E000");
  3006. #endif //WATCHDOG
  3007. }
  3008. else {
  3009. MYSERIAL.println("Not in farm mode.");
  3010. }
  3011. }else if (code_seen("fv")) {
  3012. // get file version
  3013. #ifdef SDSUPPORT
  3014. card.openFile(strchr_pointer + 3,true);
  3015. while (true) {
  3016. uint16_t readByte = card.get();
  3017. MYSERIAL.write(readByte);
  3018. if (readByte=='\n') {
  3019. break;
  3020. }
  3021. }
  3022. card.closefile();
  3023. #endif // SDSUPPORT
  3024. } else if (code_seen("M28")) {
  3025. trace();
  3026. prusa_sd_card_upload = true;
  3027. card.openFile(strchr_pointer+4,false);
  3028. } else if (code_seen("SN")) {
  3029. gcode_PRUSA_SN();
  3030. } else if(code_seen("Fir")){
  3031. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3032. } else if(code_seen("Rev")){
  3033. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3034. } else if(code_seen("Lang")) {
  3035. lang_reset();
  3036. } else if(code_seen("Lz")) {
  3037. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3038. } else if(code_seen("Beat")) {
  3039. // Kick farm link timer
  3040. kicktime = millis();
  3041. } else if(code_seen("FR")) {
  3042. // Factory full reset
  3043. factory_reset(0);
  3044. }
  3045. //else if (code_seen('Cal')) {
  3046. // lcd_calibration();
  3047. // }
  3048. }
  3049. else if (code_seen('^')) {
  3050. // nothing, this is a version line
  3051. } else if(code_seen('G'))
  3052. {
  3053. gcode_in_progress = (int)code_value();
  3054. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3055. switch (gcode_in_progress)
  3056. {
  3057. case 0: // G0 -> G1
  3058. case 1: // G1
  3059. if(Stopped == false) {
  3060. #ifdef FILAMENT_RUNOUT_SUPPORT
  3061. if(READ(FR_SENS)){
  3062. feedmultiplyBckp=feedmultiply;
  3063. float target[4];
  3064. float lastpos[4];
  3065. target[X_AXIS]=current_position[X_AXIS];
  3066. target[Y_AXIS]=current_position[Y_AXIS];
  3067. target[Z_AXIS]=current_position[Z_AXIS];
  3068. target[E_AXIS]=current_position[E_AXIS];
  3069. lastpos[X_AXIS]=current_position[X_AXIS];
  3070. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3071. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3072. lastpos[E_AXIS]=current_position[E_AXIS];
  3073. //retract by E
  3074. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3076. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3078. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3079. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3081. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3083. //finish moves
  3084. st_synchronize();
  3085. //disable extruder steppers so filament can be removed
  3086. disable_e0();
  3087. disable_e1();
  3088. disable_e2();
  3089. delay(100);
  3090. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3091. uint8_t cnt=0;
  3092. int counterBeep = 0;
  3093. lcd_wait_interact();
  3094. while(!lcd_clicked()){
  3095. cnt++;
  3096. manage_heater();
  3097. manage_inactivity(true);
  3098. //lcd_update(0);
  3099. if(cnt==0)
  3100. {
  3101. #if BEEPER > 0
  3102. if (counterBeep== 500){
  3103. counterBeep = 0;
  3104. }
  3105. SET_OUTPUT(BEEPER);
  3106. if (counterBeep== 0){
  3107. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3108. WRITE(BEEPER,HIGH);
  3109. }
  3110. if (counterBeep== 20){
  3111. WRITE(BEEPER,LOW);
  3112. }
  3113. counterBeep++;
  3114. #else
  3115. #endif
  3116. }
  3117. }
  3118. WRITE(BEEPER,LOW);
  3119. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3120. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3121. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3122. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3123. lcd_change_fil_state = 0;
  3124. lcd_loading_filament();
  3125. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3126. lcd_change_fil_state = 0;
  3127. lcd_alright();
  3128. switch(lcd_change_fil_state){
  3129. case 2:
  3130. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3132. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3133. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3134. lcd_loading_filament();
  3135. break;
  3136. case 3:
  3137. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3138. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3139. lcd_loading_color();
  3140. break;
  3141. default:
  3142. lcd_change_success();
  3143. break;
  3144. }
  3145. }
  3146. target[E_AXIS]+= 5;
  3147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3148. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3149. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3150. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3151. //plan_set_e_position(current_position[E_AXIS]);
  3152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3153. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3154. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3155. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3156. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3157. plan_set_e_position(lastpos[E_AXIS]);
  3158. feedmultiply=feedmultiplyBckp;
  3159. char cmd[9];
  3160. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3161. enquecommand(cmd);
  3162. }
  3163. #endif
  3164. get_coordinates(); // For X Y Z E F
  3165. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3166. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3167. }
  3168. #ifdef FWRETRACT
  3169. if(autoretract_enabled)
  3170. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3171. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3172. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3173. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3174. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3175. retract(!retracted[active_extruder]);
  3176. return;
  3177. }
  3178. }
  3179. #endif //FWRETRACT
  3180. prepare_move();
  3181. //ClearToSend();
  3182. }
  3183. break;
  3184. case 2: // G2 - CW ARC
  3185. if(Stopped == false) {
  3186. get_arc_coordinates();
  3187. prepare_arc_move(true);
  3188. }
  3189. break;
  3190. case 3: // G3 - CCW ARC
  3191. if(Stopped == false) {
  3192. get_arc_coordinates();
  3193. prepare_arc_move(false);
  3194. }
  3195. break;
  3196. case 4: // G4 dwell
  3197. codenum = 0;
  3198. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3199. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3200. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3201. st_synchronize();
  3202. codenum += millis(); // keep track of when we started waiting
  3203. previous_millis_cmd = millis();
  3204. while(millis() < codenum) {
  3205. manage_heater();
  3206. manage_inactivity();
  3207. lcd_update(0);
  3208. }
  3209. break;
  3210. #ifdef FWRETRACT
  3211. case 10: // G10 retract
  3212. #if EXTRUDERS > 1
  3213. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3214. retract(true,retracted_swap[active_extruder]);
  3215. #else
  3216. retract(true);
  3217. #endif
  3218. break;
  3219. case 11: // G11 retract_recover
  3220. #if EXTRUDERS > 1
  3221. retract(false,retracted_swap[active_extruder]);
  3222. #else
  3223. retract(false);
  3224. #endif
  3225. break;
  3226. #endif //FWRETRACT
  3227. case 28: //G28 Home all Axis one at a time
  3228. {
  3229. long home_x_value = 0;
  3230. long home_y_value = 0;
  3231. long home_z_value = 0;
  3232. // Which axes should be homed?
  3233. bool home_x = code_seen(axis_codes[X_AXIS]);
  3234. home_x_value = code_value_long();
  3235. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3236. home_y_value = code_value_long();
  3237. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3238. home_z_value = code_value_long();
  3239. bool without_mbl = code_seen('W');
  3240. // calibrate?
  3241. bool calib = code_seen('C');
  3242. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3243. if ((home_x || home_y || without_mbl || home_z) == false) {
  3244. // Push the commands to the front of the message queue in the reverse order!
  3245. // There shall be always enough space reserved for these commands.
  3246. goto case_G80;
  3247. }
  3248. break;
  3249. }
  3250. #ifdef ENABLE_AUTO_BED_LEVELING
  3251. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3252. {
  3253. #if Z_MIN_PIN == -1
  3254. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3255. #endif
  3256. // Prevent user from running a G29 without first homing in X and Y
  3257. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3258. {
  3259. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3260. SERIAL_ECHO_START;
  3261. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3262. break; // abort G29, since we don't know where we are
  3263. }
  3264. st_synchronize();
  3265. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3266. //vector_3 corrected_position = plan_get_position_mm();
  3267. //corrected_position.debug("position before G29");
  3268. plan_bed_level_matrix.set_to_identity();
  3269. vector_3 uncorrected_position = plan_get_position();
  3270. //uncorrected_position.debug("position durring G29");
  3271. current_position[X_AXIS] = uncorrected_position.x;
  3272. current_position[Y_AXIS] = uncorrected_position.y;
  3273. current_position[Z_AXIS] = uncorrected_position.z;
  3274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3275. setup_for_endstop_move();
  3276. feedrate = homing_feedrate[Z_AXIS];
  3277. #ifdef AUTO_BED_LEVELING_GRID
  3278. // probe at the points of a lattice grid
  3279. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3280. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3281. // solve the plane equation ax + by + d = z
  3282. // A is the matrix with rows [x y 1] for all the probed points
  3283. // B is the vector of the Z positions
  3284. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3285. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3286. // "A" matrix of the linear system of equations
  3287. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3288. // "B" vector of Z points
  3289. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3290. int probePointCounter = 0;
  3291. bool zig = true;
  3292. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3293. {
  3294. int xProbe, xInc;
  3295. if (zig)
  3296. {
  3297. xProbe = LEFT_PROBE_BED_POSITION;
  3298. //xEnd = RIGHT_PROBE_BED_POSITION;
  3299. xInc = xGridSpacing;
  3300. zig = false;
  3301. } else // zag
  3302. {
  3303. xProbe = RIGHT_PROBE_BED_POSITION;
  3304. //xEnd = LEFT_PROBE_BED_POSITION;
  3305. xInc = -xGridSpacing;
  3306. zig = true;
  3307. }
  3308. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3309. {
  3310. float z_before;
  3311. if (probePointCounter == 0)
  3312. {
  3313. // raise before probing
  3314. z_before = Z_RAISE_BEFORE_PROBING;
  3315. } else
  3316. {
  3317. // raise extruder
  3318. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3319. }
  3320. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3321. eqnBVector[probePointCounter] = measured_z;
  3322. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3323. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3324. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3325. probePointCounter++;
  3326. xProbe += xInc;
  3327. }
  3328. }
  3329. clean_up_after_endstop_move();
  3330. // solve lsq problem
  3331. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3332. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3333. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3334. SERIAL_PROTOCOLPGM(" b: ");
  3335. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3336. SERIAL_PROTOCOLPGM(" d: ");
  3337. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3338. set_bed_level_equation_lsq(plane_equation_coefficients);
  3339. free(plane_equation_coefficients);
  3340. #else // AUTO_BED_LEVELING_GRID not defined
  3341. // Probe at 3 arbitrary points
  3342. // probe 1
  3343. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3344. // probe 2
  3345. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3346. // probe 3
  3347. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3348. clean_up_after_endstop_move();
  3349. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3350. #endif // AUTO_BED_LEVELING_GRID
  3351. st_synchronize();
  3352. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3353. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3354. // When the bed is uneven, this height must be corrected.
  3355. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3356. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3357. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3358. z_tmp = current_position[Z_AXIS];
  3359. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3360. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3361. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3362. }
  3363. break;
  3364. #ifndef Z_PROBE_SLED
  3365. case 30: // G30 Single Z Probe
  3366. {
  3367. st_synchronize();
  3368. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3369. setup_for_endstop_move();
  3370. feedrate = homing_feedrate[Z_AXIS];
  3371. run_z_probe();
  3372. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3373. SERIAL_PROTOCOLPGM(" X: ");
  3374. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3375. SERIAL_PROTOCOLPGM(" Y: ");
  3376. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3377. SERIAL_PROTOCOLPGM(" Z: ");
  3378. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3379. SERIAL_PROTOCOLPGM("\n");
  3380. clean_up_after_endstop_move();
  3381. }
  3382. break;
  3383. #else
  3384. case 31: // dock the sled
  3385. dock_sled(true);
  3386. break;
  3387. case 32: // undock the sled
  3388. dock_sled(false);
  3389. break;
  3390. #endif // Z_PROBE_SLED
  3391. #endif // ENABLE_AUTO_BED_LEVELING
  3392. #ifdef MESH_BED_LEVELING
  3393. case 30: // G30 Single Z Probe
  3394. {
  3395. st_synchronize();
  3396. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3397. setup_for_endstop_move();
  3398. feedrate = homing_feedrate[Z_AXIS];
  3399. find_bed_induction_sensor_point_z(-10.f, 3);
  3400. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3401. clean_up_after_endstop_move();
  3402. }
  3403. break;
  3404. case 75:
  3405. {
  3406. for (int i = 40; i <= 110; i++)
  3407. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3408. }
  3409. break;
  3410. case 76: //PINDA probe temperature calibration
  3411. {
  3412. #ifdef PINDA_THERMISTOR
  3413. if (true)
  3414. {
  3415. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3416. //we need to know accurate position of first calibration point
  3417. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3418. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3419. break;
  3420. }
  3421. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3422. {
  3423. // We don't know where we are! HOME!
  3424. // Push the commands to the front of the message queue in the reverse order!
  3425. // There shall be always enough space reserved for these commands.
  3426. repeatcommand_front(); // repeat G76 with all its parameters
  3427. enquecommand_front_P((PSTR("G28 W0")));
  3428. break;
  3429. }
  3430. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3431. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3432. if (result)
  3433. {
  3434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. current_position[Z_AXIS] = 50;
  3437. current_position[Y_AXIS] = 180;
  3438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3439. st_synchronize();
  3440. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3441. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3442. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3444. st_synchronize();
  3445. gcode_G28(false, false, true);
  3446. }
  3447. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3448. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3449. current_position[Z_AXIS] = 100;
  3450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3451. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3452. lcd_temp_cal_show_result(false);
  3453. break;
  3454. }
  3455. }
  3456. lcd_update_enable(true);
  3457. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3458. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3459. float zero_z;
  3460. int z_shift = 0; //unit: steps
  3461. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3462. if (start_temp < 35) start_temp = 35;
  3463. if (start_temp < current_temperature_pinda) start_temp += 5;
  3464. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3465. // setTargetHotend(200, 0);
  3466. setTargetBed(70 + (start_temp - 30));
  3467. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3468. custom_message_state = 1;
  3469. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3470. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3473. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3475. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3477. st_synchronize();
  3478. while (current_temperature_pinda < start_temp)
  3479. {
  3480. delay_keep_alive(1000);
  3481. serialecho_temperatures();
  3482. }
  3483. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3484. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3486. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3487. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3489. st_synchronize();
  3490. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3491. if (find_z_result == false) {
  3492. lcd_temp_cal_show_result(find_z_result);
  3493. break;
  3494. }
  3495. zero_z = current_position[Z_AXIS];
  3496. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3497. int i = -1; for (; i < 5; i++)
  3498. {
  3499. float temp = (40 + i * 5);
  3500. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3501. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3502. if (start_temp <= temp) break;
  3503. }
  3504. for (i++; i < 5; i++)
  3505. {
  3506. float temp = (40 + i * 5);
  3507. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3508. custom_message_state = i + 2;
  3509. setTargetBed(50 + 10 * (temp - 30) / 5);
  3510. // setTargetHotend(255, 0);
  3511. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3513. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3514. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3516. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. st_synchronize();
  3519. while (current_temperature_pinda < temp)
  3520. {
  3521. delay_keep_alive(1000);
  3522. serialecho_temperatures();
  3523. }
  3524. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3526. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3527. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3529. st_synchronize();
  3530. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3531. if (find_z_result == false) {
  3532. lcd_temp_cal_show_result(find_z_result);
  3533. break;
  3534. }
  3535. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3536. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3537. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3538. }
  3539. lcd_temp_cal_show_result(true);
  3540. break;
  3541. }
  3542. #endif //PINDA_THERMISTOR
  3543. setTargetBed(PINDA_MIN_T);
  3544. float zero_z;
  3545. int z_shift = 0; //unit: steps
  3546. int t_c; // temperature
  3547. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3548. // We don't know where we are! HOME!
  3549. // Push the commands to the front of the message queue in the reverse order!
  3550. // There shall be always enough space reserved for these commands.
  3551. repeatcommand_front(); // repeat G76 with all its parameters
  3552. enquecommand_front_P((PSTR("G28 W0")));
  3553. break;
  3554. }
  3555. puts_P(_N("PINDA probe calibration start"));
  3556. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3557. custom_message_state = 1;
  3558. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3559. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3560. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3561. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3563. st_synchronize();
  3564. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3565. delay_keep_alive(1000);
  3566. serialecho_temperatures();
  3567. }
  3568. //enquecommand_P(PSTR("M190 S50"));
  3569. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3570. delay_keep_alive(1000);
  3571. serialecho_temperatures();
  3572. }
  3573. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3574. current_position[Z_AXIS] = 5;
  3575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3576. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3577. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3579. st_synchronize();
  3580. find_bed_induction_sensor_point_z(-1.f);
  3581. zero_z = current_position[Z_AXIS];
  3582. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3583. for (int i = 0; i<5; i++) {
  3584. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3585. custom_message_state = i + 2;
  3586. t_c = 60 + i * 10;
  3587. setTargetBed(t_c);
  3588. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3589. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3590. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3592. st_synchronize();
  3593. while (degBed() < t_c) {
  3594. delay_keep_alive(1000);
  3595. serialecho_temperatures();
  3596. }
  3597. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3598. delay_keep_alive(1000);
  3599. serialecho_temperatures();
  3600. }
  3601. current_position[Z_AXIS] = 5;
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3604. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3606. st_synchronize();
  3607. find_bed_induction_sensor_point_z(-1.f);
  3608. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3609. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3610. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3611. }
  3612. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3613. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3614. puts_P(_N("Temperature calibration done."));
  3615. disable_x();
  3616. disable_y();
  3617. disable_z();
  3618. disable_e0();
  3619. disable_e1();
  3620. disable_e2();
  3621. setTargetBed(0); //set bed target temperature back to 0
  3622. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3623. temp_cal_active = true;
  3624. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3625. lcd_update_enable(true);
  3626. lcd_update(2);
  3627. }
  3628. break;
  3629. #ifdef DIS
  3630. case 77:
  3631. {
  3632. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3633. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3634. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3635. float dimension_x = 40;
  3636. float dimension_y = 40;
  3637. int points_x = 40;
  3638. int points_y = 40;
  3639. float offset_x = 74;
  3640. float offset_y = 33;
  3641. if (code_seen('X')) dimension_x = code_value();
  3642. if (code_seen('Y')) dimension_y = code_value();
  3643. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3644. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3645. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3646. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3647. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3648. } break;
  3649. #endif
  3650. case 79: {
  3651. for (int i = 255; i > 0; i = i - 5) {
  3652. fanSpeed = i;
  3653. //delay_keep_alive(2000);
  3654. for (int j = 0; j < 100; j++) {
  3655. delay_keep_alive(100);
  3656. }
  3657. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3658. }
  3659. }break;
  3660. /**
  3661. * G80: Mesh-based Z probe, probes a grid and produces a
  3662. * mesh to compensate for variable bed height
  3663. *
  3664. * The S0 report the points as below
  3665. *
  3666. * +----> X-axis
  3667. * |
  3668. * |
  3669. * v Y-axis
  3670. *
  3671. */
  3672. case 80:
  3673. #ifdef MK1BP
  3674. break;
  3675. #endif //MK1BP
  3676. case_G80:
  3677. {
  3678. mesh_bed_leveling_flag = true;
  3679. static bool run = false;
  3680. #ifdef SUPPORT_VERBOSITY
  3681. int8_t verbosity_level = 0;
  3682. if (code_seen('V')) {
  3683. // Just 'V' without a number counts as V1.
  3684. char c = strchr_pointer[1];
  3685. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3686. }
  3687. #endif //SUPPORT_VERBOSITY
  3688. // Firstly check if we know where we are
  3689. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3690. // We don't know where we are! HOME!
  3691. // Push the commands to the front of the message queue in the reverse order!
  3692. // There shall be always enough space reserved for these commands.
  3693. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3694. repeatcommand_front(); // repeat G80 with all its parameters
  3695. enquecommand_front_P((PSTR("G28 W0")));
  3696. }
  3697. else {
  3698. mesh_bed_leveling_flag = false;
  3699. }
  3700. break;
  3701. }
  3702. bool temp_comp_start = true;
  3703. #ifdef PINDA_THERMISTOR
  3704. temp_comp_start = false;
  3705. #endif //PINDA_THERMISTOR
  3706. if (temp_comp_start)
  3707. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3708. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3709. temp_compensation_start();
  3710. run = true;
  3711. repeatcommand_front(); // repeat G80 with all its parameters
  3712. enquecommand_front_P((PSTR("G28 W0")));
  3713. }
  3714. else {
  3715. mesh_bed_leveling_flag = false;
  3716. }
  3717. break;
  3718. }
  3719. run = false;
  3720. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3721. mesh_bed_leveling_flag = false;
  3722. break;
  3723. }
  3724. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3725. unsigned int custom_message_type_old = custom_message_type;
  3726. unsigned int custom_message_state_old = custom_message_state;
  3727. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3728. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3729. lcd_update(1);
  3730. mbl.reset(); //reset mesh bed leveling
  3731. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3732. // consumed during the first movements following this statement.
  3733. babystep_undo();
  3734. // Cycle through all points and probe them
  3735. // First move up. During this first movement, the babystepping will be reverted.
  3736. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3738. // The move to the first calibration point.
  3739. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3740. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3741. #ifdef SUPPORT_VERBOSITY
  3742. if (verbosity_level >= 1)
  3743. {
  3744. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3745. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3746. }
  3747. #endif //SUPPORT_VERBOSITY
  3748. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3750. // Wait until the move is finished.
  3751. st_synchronize();
  3752. int mesh_point = 0; //index number of calibration point
  3753. int ix = 0;
  3754. int iy = 0;
  3755. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3756. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3757. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3758. #ifdef SUPPORT_VERBOSITY
  3759. if (verbosity_level >= 1) {
  3760. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3761. }
  3762. #endif // SUPPORT_VERBOSITY
  3763. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3764. const char *kill_message = NULL;
  3765. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3766. // Get coords of a measuring point.
  3767. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3768. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3769. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3770. float z0 = 0.f;
  3771. if (has_z && mesh_point > 0) {
  3772. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3773. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3774. //#if 0
  3775. #ifdef SUPPORT_VERBOSITY
  3776. if (verbosity_level >= 1) {
  3777. SERIAL_ECHOLNPGM("");
  3778. SERIAL_ECHOPGM("Bed leveling, point: ");
  3779. MYSERIAL.print(mesh_point);
  3780. SERIAL_ECHOPGM(", calibration z: ");
  3781. MYSERIAL.print(z0, 5);
  3782. SERIAL_ECHOLNPGM("");
  3783. }
  3784. #endif // SUPPORT_VERBOSITY
  3785. //#endif
  3786. }
  3787. // Move Z up to MESH_HOME_Z_SEARCH.
  3788. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3790. st_synchronize();
  3791. // Move to XY position of the sensor point.
  3792. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3793. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3794. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3795. #ifdef SUPPORT_VERBOSITY
  3796. if (verbosity_level >= 1) {
  3797. SERIAL_PROTOCOL(mesh_point);
  3798. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3799. }
  3800. #endif // SUPPORT_VERBOSITY
  3801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3802. st_synchronize();
  3803. // Go down until endstop is hit
  3804. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3805. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3806. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3807. break;
  3808. }
  3809. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3810. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3811. break;
  3812. }
  3813. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3814. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3815. break;
  3816. }
  3817. #ifdef SUPPORT_VERBOSITY
  3818. if (verbosity_level >= 10) {
  3819. SERIAL_ECHOPGM("X: ");
  3820. MYSERIAL.print(current_position[X_AXIS], 5);
  3821. SERIAL_ECHOLNPGM("");
  3822. SERIAL_ECHOPGM("Y: ");
  3823. MYSERIAL.print(current_position[Y_AXIS], 5);
  3824. SERIAL_PROTOCOLPGM("\n");
  3825. }
  3826. #endif // SUPPORT_VERBOSITY
  3827. float offset_z = 0;
  3828. #ifdef PINDA_THERMISTOR
  3829. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3830. #endif //PINDA_THERMISTOR
  3831. // #ifdef SUPPORT_VERBOSITY
  3832. /* if (verbosity_level >= 1)
  3833. {
  3834. SERIAL_ECHOPGM("mesh bed leveling: ");
  3835. MYSERIAL.print(current_position[Z_AXIS], 5);
  3836. SERIAL_ECHOPGM(" offset: ");
  3837. MYSERIAL.print(offset_z, 5);
  3838. SERIAL_ECHOLNPGM("");
  3839. }*/
  3840. // #endif // SUPPORT_VERBOSITY
  3841. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3842. custom_message_state--;
  3843. mesh_point++;
  3844. lcd_update(1);
  3845. }
  3846. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3847. #ifdef SUPPORT_VERBOSITY
  3848. if (verbosity_level >= 20) {
  3849. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3850. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3851. MYSERIAL.print(current_position[Z_AXIS], 5);
  3852. }
  3853. #endif // SUPPORT_VERBOSITY
  3854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3855. st_synchronize();
  3856. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3857. kill(kill_message);
  3858. SERIAL_ECHOLNPGM("killed");
  3859. }
  3860. clean_up_after_endstop_move();
  3861. // SERIAL_ECHOLNPGM("clean up finished ");
  3862. bool apply_temp_comp = true;
  3863. #ifdef PINDA_THERMISTOR
  3864. apply_temp_comp = false;
  3865. #endif
  3866. if (apply_temp_comp)
  3867. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3868. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3869. // SERIAL_ECHOLNPGM("babystep applied");
  3870. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3871. #ifdef SUPPORT_VERBOSITY
  3872. if (verbosity_level >= 1) {
  3873. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3874. }
  3875. #endif // SUPPORT_VERBOSITY
  3876. for (uint8_t i = 0; i < 4; ++i) {
  3877. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3878. long correction = 0;
  3879. if (code_seen(codes[i]))
  3880. correction = code_value_long();
  3881. else if (eeprom_bed_correction_valid) {
  3882. unsigned char *addr = (i < 2) ?
  3883. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3884. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3885. correction = eeprom_read_int8(addr);
  3886. }
  3887. if (correction == 0)
  3888. continue;
  3889. float offset = float(correction) * 0.001f;
  3890. if (fabs(offset) > 0.101f) {
  3891. SERIAL_ERROR_START;
  3892. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3893. SERIAL_ECHO(offset);
  3894. SERIAL_ECHOLNPGM(" microns");
  3895. }
  3896. else {
  3897. switch (i) {
  3898. case 0:
  3899. for (uint8_t row = 0; row < 3; ++row) {
  3900. mbl.z_values[row][1] += 0.5f * offset;
  3901. mbl.z_values[row][0] += offset;
  3902. }
  3903. break;
  3904. case 1:
  3905. for (uint8_t row = 0; row < 3; ++row) {
  3906. mbl.z_values[row][1] += 0.5f * offset;
  3907. mbl.z_values[row][2] += offset;
  3908. }
  3909. break;
  3910. case 2:
  3911. for (uint8_t col = 0; col < 3; ++col) {
  3912. mbl.z_values[1][col] += 0.5f * offset;
  3913. mbl.z_values[0][col] += offset;
  3914. }
  3915. break;
  3916. case 3:
  3917. for (uint8_t col = 0; col < 3; ++col) {
  3918. mbl.z_values[1][col] += 0.5f * offset;
  3919. mbl.z_values[2][col] += offset;
  3920. }
  3921. break;
  3922. }
  3923. }
  3924. }
  3925. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3926. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3927. // SERIAL_ECHOLNPGM("Upsample finished");
  3928. mbl.active = 1; //activate mesh bed leveling
  3929. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3930. go_home_with_z_lift();
  3931. // SERIAL_ECHOLNPGM("Go home finished");
  3932. //unretract (after PINDA preheat retraction)
  3933. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3934. current_position[E_AXIS] += default_retraction;
  3935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3936. }
  3937. KEEPALIVE_STATE(NOT_BUSY);
  3938. // Restore custom message state
  3939. lcd_setstatuspgm(_T(WELCOME_MSG));
  3940. custom_message_type = custom_message_type_old;
  3941. custom_message_state = custom_message_state_old;
  3942. mesh_bed_leveling_flag = false;
  3943. mesh_bed_run_from_menu = false;
  3944. lcd_update(2);
  3945. }
  3946. break;
  3947. /**
  3948. * G81: Print mesh bed leveling status and bed profile if activated
  3949. */
  3950. case 81:
  3951. if (mbl.active) {
  3952. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3953. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3954. SERIAL_PROTOCOLPGM(",");
  3955. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3956. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3957. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3958. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3959. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3960. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3961. SERIAL_PROTOCOLPGM(" ");
  3962. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3963. }
  3964. SERIAL_PROTOCOLPGM("\n");
  3965. }
  3966. }
  3967. else
  3968. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3969. break;
  3970. #if 0
  3971. /**
  3972. * G82: Single Z probe at current location
  3973. *
  3974. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3975. *
  3976. */
  3977. case 82:
  3978. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3979. setup_for_endstop_move();
  3980. find_bed_induction_sensor_point_z();
  3981. clean_up_after_endstop_move();
  3982. SERIAL_PROTOCOLPGM("Bed found at: ");
  3983. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3984. SERIAL_PROTOCOLPGM("\n");
  3985. break;
  3986. /**
  3987. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3988. */
  3989. case 83:
  3990. {
  3991. int babystepz = code_seen('S') ? code_value() : 0;
  3992. int BabyPosition = code_seen('P') ? code_value() : 0;
  3993. if (babystepz != 0) {
  3994. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3995. // Is the axis indexed starting with zero or one?
  3996. if (BabyPosition > 4) {
  3997. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3998. }else{
  3999. // Save it to the eeprom
  4000. babystepLoadZ = babystepz;
  4001. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4002. // adjust the Z
  4003. babystepsTodoZadd(babystepLoadZ);
  4004. }
  4005. }
  4006. }
  4007. break;
  4008. /**
  4009. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4010. */
  4011. case 84:
  4012. babystepsTodoZsubtract(babystepLoadZ);
  4013. // babystepLoadZ = 0;
  4014. break;
  4015. /**
  4016. * G85: Prusa3D specific: Pick best babystep
  4017. */
  4018. case 85:
  4019. lcd_pick_babystep();
  4020. break;
  4021. #endif
  4022. /**
  4023. * G86: Prusa3D specific: Disable babystep correction after home.
  4024. * This G-code will be performed at the start of a calibration script.
  4025. */
  4026. case 86:
  4027. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4028. break;
  4029. /**
  4030. * G87: Prusa3D specific: Enable babystep correction after home
  4031. * This G-code will be performed at the end of a calibration script.
  4032. */
  4033. case 87:
  4034. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4035. break;
  4036. /**
  4037. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4038. */
  4039. case 88:
  4040. break;
  4041. #endif // ENABLE_MESH_BED_LEVELING
  4042. case 90: // G90
  4043. relative_mode = false;
  4044. break;
  4045. case 91: // G91
  4046. relative_mode = true;
  4047. break;
  4048. case 92: // G92
  4049. if(!code_seen(axis_codes[E_AXIS]))
  4050. st_synchronize();
  4051. for(int8_t i=0; i < NUM_AXIS; i++) {
  4052. if(code_seen(axis_codes[i])) {
  4053. if(i == E_AXIS) {
  4054. current_position[i] = code_value();
  4055. plan_set_e_position(current_position[E_AXIS]);
  4056. }
  4057. else {
  4058. current_position[i] = code_value()+add_homing[i];
  4059. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4060. }
  4061. }
  4062. }
  4063. break;
  4064. case 98: // G98 (activate farm mode)
  4065. farm_mode = 1;
  4066. PingTime = millis();
  4067. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4068. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4069. SilentModeMenu = SILENT_MODE_OFF;
  4070. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4071. break;
  4072. case 99: // G99 (deactivate farm mode)
  4073. farm_mode = 0;
  4074. lcd_printer_connected();
  4075. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4076. lcd_update(2);
  4077. break;
  4078. default:
  4079. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4080. }
  4081. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4082. gcode_in_progress = 0;
  4083. } // end if(code_seen('G'))
  4084. else if(code_seen('M'))
  4085. {
  4086. int index;
  4087. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4088. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4089. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4090. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4091. } else
  4092. {
  4093. mcode_in_progress = (int)code_value();
  4094. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4095. switch(mcode_in_progress)
  4096. {
  4097. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4098. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4099. {
  4100. char *src = strchr_pointer + 2;
  4101. codenum = 0;
  4102. bool hasP = false, hasS = false;
  4103. if (code_seen('P')) {
  4104. codenum = code_value(); // milliseconds to wait
  4105. hasP = codenum > 0;
  4106. }
  4107. if (code_seen('S')) {
  4108. codenum = code_value() * 1000; // seconds to wait
  4109. hasS = codenum > 0;
  4110. }
  4111. starpos = strchr(src, '*');
  4112. if (starpos != NULL) *(starpos) = '\0';
  4113. while (*src == ' ') ++src;
  4114. if (!hasP && !hasS && *src != '\0') {
  4115. lcd_setstatus(src);
  4116. } else {
  4117. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4118. }
  4119. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4120. st_synchronize();
  4121. previous_millis_cmd = millis();
  4122. if (codenum > 0){
  4123. codenum += millis(); // keep track of when we started waiting
  4124. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4125. while(millis() < codenum && !lcd_clicked()){
  4126. manage_heater();
  4127. manage_inactivity(true);
  4128. lcd_update(0);
  4129. }
  4130. KEEPALIVE_STATE(IN_HANDLER);
  4131. lcd_ignore_click(false);
  4132. }else{
  4133. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4134. while(!lcd_clicked()){
  4135. manage_heater();
  4136. manage_inactivity(true);
  4137. lcd_update(0);
  4138. }
  4139. KEEPALIVE_STATE(IN_HANDLER);
  4140. }
  4141. if (IS_SD_PRINTING)
  4142. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4143. else
  4144. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4145. }
  4146. break;
  4147. case 17:
  4148. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4149. enable_x();
  4150. enable_y();
  4151. enable_z();
  4152. enable_e0();
  4153. enable_e1();
  4154. enable_e2();
  4155. break;
  4156. #ifdef SDSUPPORT
  4157. case 20: // M20 - list SD card
  4158. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4159. card.ls();
  4160. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4161. break;
  4162. case 21: // M21 - init SD card
  4163. card.initsd();
  4164. break;
  4165. case 22: //M22 - release SD card
  4166. card.release();
  4167. break;
  4168. case 23: //M23 - Select file
  4169. starpos = (strchr(strchr_pointer + 4,'*'));
  4170. if(starpos!=NULL)
  4171. *(starpos)='\0';
  4172. card.openFile(strchr_pointer + 4,true);
  4173. break;
  4174. case 24: //M24 - Start SD print
  4175. if (!card.paused)
  4176. failstats_reset_print();
  4177. card.startFileprint();
  4178. starttime=millis();
  4179. break;
  4180. case 25: //M25 - Pause SD print
  4181. card.pauseSDPrint();
  4182. break;
  4183. case 26: //M26 - Set SD index
  4184. if(card.cardOK && code_seen('S')) {
  4185. card.setIndex(code_value_long());
  4186. }
  4187. break;
  4188. case 27: //M27 - Get SD status
  4189. card.getStatus();
  4190. break;
  4191. case 28: //M28 - Start SD write
  4192. starpos = (strchr(strchr_pointer + 4,'*'));
  4193. if(starpos != NULL){
  4194. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4195. strchr_pointer = strchr(npos,' ') + 1;
  4196. *(starpos) = '\0';
  4197. }
  4198. card.openFile(strchr_pointer+4,false);
  4199. break;
  4200. case 29: //M29 - Stop SD write
  4201. //processed in write to file routine above
  4202. //card,saving = false;
  4203. break;
  4204. case 30: //M30 <filename> Delete File
  4205. if (card.cardOK){
  4206. card.closefile();
  4207. starpos = (strchr(strchr_pointer + 4,'*'));
  4208. if(starpos != NULL){
  4209. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4210. strchr_pointer = strchr(npos,' ') + 1;
  4211. *(starpos) = '\0';
  4212. }
  4213. card.removeFile(strchr_pointer + 4);
  4214. }
  4215. break;
  4216. case 32: //M32 - Select file and start SD print
  4217. {
  4218. if(card.sdprinting) {
  4219. st_synchronize();
  4220. }
  4221. starpos = (strchr(strchr_pointer + 4,'*'));
  4222. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4223. if(namestartpos==NULL)
  4224. {
  4225. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4226. }
  4227. else
  4228. namestartpos++; //to skip the '!'
  4229. if(starpos!=NULL)
  4230. *(starpos)='\0';
  4231. bool call_procedure=(code_seen('P'));
  4232. if(strchr_pointer>namestartpos)
  4233. call_procedure=false; //false alert, 'P' found within filename
  4234. if( card.cardOK )
  4235. {
  4236. card.openFile(namestartpos,true,!call_procedure);
  4237. if(code_seen('S'))
  4238. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4239. card.setIndex(code_value_long());
  4240. card.startFileprint();
  4241. if(!call_procedure)
  4242. starttime=millis(); //procedure calls count as normal print time.
  4243. }
  4244. } break;
  4245. case 928: //M928 - Start SD write
  4246. starpos = (strchr(strchr_pointer + 5,'*'));
  4247. if(starpos != NULL){
  4248. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4249. strchr_pointer = strchr(npos,' ') + 1;
  4250. *(starpos) = '\0';
  4251. }
  4252. card.openLogFile(strchr_pointer+5);
  4253. break;
  4254. #endif //SDSUPPORT
  4255. case 31: //M31 take time since the start of the SD print or an M109 command
  4256. {
  4257. stoptime=millis();
  4258. char time[30];
  4259. unsigned long t=(stoptime-starttime)/1000;
  4260. int sec,min;
  4261. min=t/60;
  4262. sec=t%60;
  4263. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4264. SERIAL_ECHO_START;
  4265. SERIAL_ECHOLN(time);
  4266. lcd_setstatus(time);
  4267. autotempShutdown();
  4268. }
  4269. break;
  4270. case 42: //M42 -Change pin status via gcode
  4271. if (code_seen('S'))
  4272. {
  4273. int pin_status = code_value();
  4274. int pin_number = LED_PIN;
  4275. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4276. pin_number = code_value();
  4277. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4278. {
  4279. if (sensitive_pins[i] == pin_number)
  4280. {
  4281. pin_number = -1;
  4282. break;
  4283. }
  4284. }
  4285. #if defined(FAN_PIN) && FAN_PIN > -1
  4286. if (pin_number == FAN_PIN)
  4287. fanSpeed = pin_status;
  4288. #endif
  4289. if (pin_number > -1)
  4290. {
  4291. pinMode(pin_number, OUTPUT);
  4292. digitalWrite(pin_number, pin_status);
  4293. analogWrite(pin_number, pin_status);
  4294. }
  4295. }
  4296. break;
  4297. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4298. // Reset the baby step value and the baby step applied flag.
  4299. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4300. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4301. // Reset the skew and offset in both RAM and EEPROM.
  4302. reset_bed_offset_and_skew();
  4303. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4304. // the planner will not perform any adjustments in the XY plane.
  4305. // Wait for the motors to stop and update the current position with the absolute values.
  4306. world2machine_revert_to_uncorrected();
  4307. break;
  4308. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4309. {
  4310. int8_t verbosity_level = 0;
  4311. bool only_Z = code_seen('Z');
  4312. #ifdef SUPPORT_VERBOSITY
  4313. if (code_seen('V'))
  4314. {
  4315. // Just 'V' without a number counts as V1.
  4316. char c = strchr_pointer[1];
  4317. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4318. }
  4319. #endif //SUPPORT_VERBOSITY
  4320. gcode_M45(only_Z, verbosity_level);
  4321. }
  4322. break;
  4323. /*
  4324. case 46:
  4325. {
  4326. // M46: Prusa3D: Show the assigned IP address.
  4327. uint8_t ip[4];
  4328. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4329. if (hasIP) {
  4330. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4331. SERIAL_ECHO(int(ip[0]));
  4332. SERIAL_ECHOPGM(".");
  4333. SERIAL_ECHO(int(ip[1]));
  4334. SERIAL_ECHOPGM(".");
  4335. SERIAL_ECHO(int(ip[2]));
  4336. SERIAL_ECHOPGM(".");
  4337. SERIAL_ECHO(int(ip[3]));
  4338. SERIAL_ECHOLNPGM("");
  4339. } else {
  4340. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4341. }
  4342. break;
  4343. }
  4344. */
  4345. case 47:
  4346. // M47: Prusa3D: Show end stops dialog on the display.
  4347. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4348. lcd_diag_show_end_stops();
  4349. KEEPALIVE_STATE(IN_HANDLER);
  4350. break;
  4351. #if 0
  4352. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4353. {
  4354. // Disable the default update procedure of the display. We will do a modal dialog.
  4355. lcd_update_enable(false);
  4356. // Let the planner use the uncorrected coordinates.
  4357. mbl.reset();
  4358. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4359. // the planner will not perform any adjustments in the XY plane.
  4360. // Wait for the motors to stop and update the current position with the absolute values.
  4361. world2machine_revert_to_uncorrected();
  4362. // Move the print head close to the bed.
  4363. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4365. st_synchronize();
  4366. // Home in the XY plane.
  4367. set_destination_to_current();
  4368. setup_for_endstop_move();
  4369. home_xy();
  4370. int8_t verbosity_level = 0;
  4371. if (code_seen('V')) {
  4372. // Just 'V' without a number counts as V1.
  4373. char c = strchr_pointer[1];
  4374. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4375. }
  4376. bool success = scan_bed_induction_points(verbosity_level);
  4377. clean_up_after_endstop_move();
  4378. // Print head up.
  4379. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4381. st_synchronize();
  4382. lcd_update_enable(true);
  4383. break;
  4384. }
  4385. #endif
  4386. // M48 Z-Probe repeatability measurement function.
  4387. //
  4388. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4389. //
  4390. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4391. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4392. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4393. // regenerated.
  4394. //
  4395. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4396. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4397. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4398. //
  4399. #ifdef ENABLE_AUTO_BED_LEVELING
  4400. #ifdef Z_PROBE_REPEATABILITY_TEST
  4401. case 48: // M48 Z-Probe repeatability
  4402. {
  4403. #if Z_MIN_PIN == -1
  4404. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4405. #endif
  4406. double sum=0.0;
  4407. double mean=0.0;
  4408. double sigma=0.0;
  4409. double sample_set[50];
  4410. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4411. double X_current, Y_current, Z_current;
  4412. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4413. if (code_seen('V') || code_seen('v')) {
  4414. verbose_level = code_value();
  4415. if (verbose_level<0 || verbose_level>4 ) {
  4416. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4417. goto Sigma_Exit;
  4418. }
  4419. }
  4420. if (verbose_level > 0) {
  4421. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4422. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4423. }
  4424. if (code_seen('n')) {
  4425. n_samples = code_value();
  4426. if (n_samples<4 || n_samples>50 ) {
  4427. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4428. goto Sigma_Exit;
  4429. }
  4430. }
  4431. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4432. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4433. Z_current = st_get_position_mm(Z_AXIS);
  4434. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4435. ext_position = st_get_position_mm(E_AXIS);
  4436. if (code_seen('X') || code_seen('x') ) {
  4437. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4438. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4439. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4440. goto Sigma_Exit;
  4441. }
  4442. }
  4443. if (code_seen('Y') || code_seen('y') ) {
  4444. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4445. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4446. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4447. goto Sigma_Exit;
  4448. }
  4449. }
  4450. if (code_seen('L') || code_seen('l') ) {
  4451. n_legs = code_value();
  4452. if ( n_legs==1 )
  4453. n_legs = 2;
  4454. if ( n_legs<0 || n_legs>15 ) {
  4455. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4456. goto Sigma_Exit;
  4457. }
  4458. }
  4459. //
  4460. // Do all the preliminary setup work. First raise the probe.
  4461. //
  4462. st_synchronize();
  4463. plan_bed_level_matrix.set_to_identity();
  4464. plan_buffer_line( X_current, Y_current, Z_start_location,
  4465. ext_position,
  4466. homing_feedrate[Z_AXIS]/60,
  4467. active_extruder);
  4468. st_synchronize();
  4469. //
  4470. // Now get everything to the specified probe point So we can safely do a probe to
  4471. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4472. // use that as a starting point for each probe.
  4473. //
  4474. if (verbose_level > 2)
  4475. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4476. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4477. ext_position,
  4478. homing_feedrate[X_AXIS]/60,
  4479. active_extruder);
  4480. st_synchronize();
  4481. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4482. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4483. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4484. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4485. //
  4486. // OK, do the inital probe to get us close to the bed.
  4487. // Then retrace the right amount and use that in subsequent probes
  4488. //
  4489. setup_for_endstop_move();
  4490. run_z_probe();
  4491. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4492. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4493. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4494. ext_position,
  4495. homing_feedrate[X_AXIS]/60,
  4496. active_extruder);
  4497. st_synchronize();
  4498. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4499. for( n=0; n<n_samples; n++) {
  4500. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4501. if ( n_legs) {
  4502. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4503. int rotational_direction, l;
  4504. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4505. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4506. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4507. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4508. //SERIAL_ECHOPAIR(" theta: ",theta);
  4509. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4510. //SERIAL_PROTOCOLLNPGM("");
  4511. for( l=0; l<n_legs-1; l++) {
  4512. if (rotational_direction==1)
  4513. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4514. else
  4515. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4516. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4517. if ( radius<0.0 )
  4518. radius = -radius;
  4519. X_current = X_probe_location + cos(theta) * radius;
  4520. Y_current = Y_probe_location + sin(theta) * radius;
  4521. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4522. X_current = X_MIN_POS;
  4523. if ( X_current>X_MAX_POS)
  4524. X_current = X_MAX_POS;
  4525. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4526. Y_current = Y_MIN_POS;
  4527. if ( Y_current>Y_MAX_POS)
  4528. Y_current = Y_MAX_POS;
  4529. if (verbose_level>3 ) {
  4530. SERIAL_ECHOPAIR("x: ", X_current);
  4531. SERIAL_ECHOPAIR("y: ", Y_current);
  4532. SERIAL_PROTOCOLLNPGM("");
  4533. }
  4534. do_blocking_move_to( X_current, Y_current, Z_current );
  4535. }
  4536. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4537. }
  4538. setup_for_endstop_move();
  4539. run_z_probe();
  4540. sample_set[n] = current_position[Z_AXIS];
  4541. //
  4542. // Get the current mean for the data points we have so far
  4543. //
  4544. sum=0.0;
  4545. for( j=0; j<=n; j++) {
  4546. sum = sum + sample_set[j];
  4547. }
  4548. mean = sum / (double (n+1));
  4549. //
  4550. // Now, use that mean to calculate the standard deviation for the
  4551. // data points we have so far
  4552. //
  4553. sum=0.0;
  4554. for( j=0; j<=n; j++) {
  4555. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4556. }
  4557. sigma = sqrt( sum / (double (n+1)) );
  4558. if (verbose_level > 1) {
  4559. SERIAL_PROTOCOL(n+1);
  4560. SERIAL_PROTOCOL(" of ");
  4561. SERIAL_PROTOCOL(n_samples);
  4562. SERIAL_PROTOCOLPGM(" z: ");
  4563. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4564. }
  4565. if (verbose_level > 2) {
  4566. SERIAL_PROTOCOL(" mean: ");
  4567. SERIAL_PROTOCOL_F(mean,6);
  4568. SERIAL_PROTOCOL(" sigma: ");
  4569. SERIAL_PROTOCOL_F(sigma,6);
  4570. }
  4571. if (verbose_level > 0)
  4572. SERIAL_PROTOCOLPGM("\n");
  4573. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4574. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4575. st_synchronize();
  4576. }
  4577. delay(1000);
  4578. clean_up_after_endstop_move();
  4579. // enable_endstops(true);
  4580. if (verbose_level > 0) {
  4581. SERIAL_PROTOCOLPGM("Mean: ");
  4582. SERIAL_PROTOCOL_F(mean, 6);
  4583. SERIAL_PROTOCOLPGM("\n");
  4584. }
  4585. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4586. SERIAL_PROTOCOL_F(sigma, 6);
  4587. SERIAL_PROTOCOLPGM("\n\n");
  4588. Sigma_Exit:
  4589. break;
  4590. }
  4591. #endif // Z_PROBE_REPEATABILITY_TEST
  4592. #endif // ENABLE_AUTO_BED_LEVELING
  4593. case 73: //M73 show percent done and time remaining
  4594. if(code_seen('P')) print_percent_done_normal = code_value();
  4595. if(code_seen('R')) print_time_remaining_normal = code_value();
  4596. if(code_seen('Q')) print_percent_done_silent = code_value();
  4597. if(code_seen('S')) print_time_remaining_silent = code_value();
  4598. {
  4599. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4600. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4601. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4602. }
  4603. break;
  4604. case 104: // M104
  4605. {
  4606. uint8_t extruder;
  4607. if(setTargetedHotend(104,extruder)){
  4608. break;
  4609. }
  4610. if (code_seen('S'))
  4611. {
  4612. setTargetHotendSafe(code_value(), extruder);
  4613. }
  4614. setWatch();
  4615. break;
  4616. }
  4617. case 112: // M112 -Emergency Stop
  4618. kill(_n(""), 3);
  4619. break;
  4620. case 140: // M140 set bed temp
  4621. if (code_seen('S')) setTargetBed(code_value());
  4622. break;
  4623. case 105 : // M105
  4624. {
  4625. uint8_t extruder;
  4626. if(setTargetedHotend(105, extruder)){
  4627. break;
  4628. }
  4629. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4630. SERIAL_PROTOCOLPGM("ok T:");
  4631. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4632. SERIAL_PROTOCOLPGM(" /");
  4633. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4634. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4635. SERIAL_PROTOCOLPGM(" B:");
  4636. SERIAL_PROTOCOL_F(degBed(),1);
  4637. SERIAL_PROTOCOLPGM(" /");
  4638. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4639. #endif //TEMP_BED_PIN
  4640. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4641. SERIAL_PROTOCOLPGM(" T");
  4642. SERIAL_PROTOCOL(cur_extruder);
  4643. SERIAL_PROTOCOLPGM(":");
  4644. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4645. SERIAL_PROTOCOLPGM(" /");
  4646. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4647. }
  4648. #else
  4649. SERIAL_ERROR_START;
  4650. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4651. #endif
  4652. SERIAL_PROTOCOLPGM(" @:");
  4653. #ifdef EXTRUDER_WATTS
  4654. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4655. SERIAL_PROTOCOLPGM("W");
  4656. #else
  4657. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4658. #endif
  4659. SERIAL_PROTOCOLPGM(" B@:");
  4660. #ifdef BED_WATTS
  4661. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4662. SERIAL_PROTOCOLPGM("W");
  4663. #else
  4664. SERIAL_PROTOCOL(getHeaterPower(-1));
  4665. #endif
  4666. #ifdef PINDA_THERMISTOR
  4667. SERIAL_PROTOCOLPGM(" P:");
  4668. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4669. #endif //PINDA_THERMISTOR
  4670. #ifdef AMBIENT_THERMISTOR
  4671. SERIAL_PROTOCOLPGM(" A:");
  4672. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4673. #endif //AMBIENT_THERMISTOR
  4674. #ifdef SHOW_TEMP_ADC_VALUES
  4675. {float raw = 0.0;
  4676. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4677. SERIAL_PROTOCOLPGM(" ADC B:");
  4678. SERIAL_PROTOCOL_F(degBed(),1);
  4679. SERIAL_PROTOCOLPGM("C->");
  4680. raw = rawBedTemp();
  4681. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4682. SERIAL_PROTOCOLPGM(" Rb->");
  4683. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4684. SERIAL_PROTOCOLPGM(" Rxb->");
  4685. SERIAL_PROTOCOL_F(raw, 5);
  4686. #endif
  4687. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4688. SERIAL_PROTOCOLPGM(" T");
  4689. SERIAL_PROTOCOL(cur_extruder);
  4690. SERIAL_PROTOCOLPGM(":");
  4691. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4692. SERIAL_PROTOCOLPGM("C->");
  4693. raw = rawHotendTemp(cur_extruder);
  4694. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4695. SERIAL_PROTOCOLPGM(" Rt");
  4696. SERIAL_PROTOCOL(cur_extruder);
  4697. SERIAL_PROTOCOLPGM("->");
  4698. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4699. SERIAL_PROTOCOLPGM(" Rx");
  4700. SERIAL_PROTOCOL(cur_extruder);
  4701. SERIAL_PROTOCOLPGM("->");
  4702. SERIAL_PROTOCOL_F(raw, 5);
  4703. }}
  4704. #endif
  4705. SERIAL_PROTOCOLLN("");
  4706. KEEPALIVE_STATE(NOT_BUSY);
  4707. return;
  4708. break;
  4709. }
  4710. case 109:
  4711. {// M109 - Wait for extruder heater to reach target.
  4712. uint8_t extruder;
  4713. if(setTargetedHotend(109, extruder)){
  4714. break;
  4715. }
  4716. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4717. heating_status = 1;
  4718. if (farm_mode) { prusa_statistics(1); };
  4719. #ifdef AUTOTEMP
  4720. autotemp_enabled=false;
  4721. #endif
  4722. if (code_seen('S')) {
  4723. setTargetHotendSafe(code_value(), extruder);
  4724. CooldownNoWait = true;
  4725. } else if (code_seen('R')) {
  4726. setTargetHotendSafe(code_value(), extruder);
  4727. CooldownNoWait = false;
  4728. }
  4729. #ifdef AUTOTEMP
  4730. if (code_seen('S')) autotemp_min=code_value();
  4731. if (code_seen('B')) autotemp_max=code_value();
  4732. if (code_seen('F'))
  4733. {
  4734. autotemp_factor=code_value();
  4735. autotemp_enabled=true;
  4736. }
  4737. #endif
  4738. setWatch();
  4739. codenum = millis();
  4740. /* See if we are heating up or cooling down */
  4741. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4742. KEEPALIVE_STATE(NOT_BUSY);
  4743. cancel_heatup = false;
  4744. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4745. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4746. KEEPALIVE_STATE(IN_HANDLER);
  4747. heating_status = 2;
  4748. if (farm_mode) { prusa_statistics(2); };
  4749. //starttime=millis();
  4750. previous_millis_cmd = millis();
  4751. }
  4752. break;
  4753. case 190: // M190 - Wait for bed heater to reach target.
  4754. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4755. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4756. heating_status = 3;
  4757. if (farm_mode) { prusa_statistics(1); };
  4758. if (code_seen('S'))
  4759. {
  4760. setTargetBed(code_value());
  4761. CooldownNoWait = true;
  4762. }
  4763. else if (code_seen('R'))
  4764. {
  4765. setTargetBed(code_value());
  4766. CooldownNoWait = false;
  4767. }
  4768. codenum = millis();
  4769. cancel_heatup = false;
  4770. target_direction = isHeatingBed(); // true if heating, false if cooling
  4771. KEEPALIVE_STATE(NOT_BUSY);
  4772. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4773. {
  4774. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4775. {
  4776. if (!farm_mode) {
  4777. float tt = degHotend(active_extruder);
  4778. SERIAL_PROTOCOLPGM("T:");
  4779. SERIAL_PROTOCOL(tt);
  4780. SERIAL_PROTOCOLPGM(" E:");
  4781. SERIAL_PROTOCOL((int)active_extruder);
  4782. SERIAL_PROTOCOLPGM(" B:");
  4783. SERIAL_PROTOCOL_F(degBed(), 1);
  4784. SERIAL_PROTOCOLLN("");
  4785. }
  4786. codenum = millis();
  4787. }
  4788. manage_heater();
  4789. manage_inactivity();
  4790. lcd_update(0);
  4791. }
  4792. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4793. KEEPALIVE_STATE(IN_HANDLER);
  4794. heating_status = 4;
  4795. previous_millis_cmd = millis();
  4796. #endif
  4797. break;
  4798. #if defined(FAN_PIN) && FAN_PIN > -1
  4799. case 106: //M106 Fan On
  4800. if (code_seen('S')){
  4801. fanSpeed=constrain(code_value(),0,255);
  4802. }
  4803. else {
  4804. fanSpeed=255;
  4805. }
  4806. break;
  4807. case 107: //M107 Fan Off
  4808. fanSpeed = 0;
  4809. break;
  4810. #endif //FAN_PIN
  4811. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4812. case 80: // M80 - Turn on Power Supply
  4813. SET_OUTPUT(PS_ON_PIN); //GND
  4814. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4815. // If you have a switch on suicide pin, this is useful
  4816. // if you want to start another print with suicide feature after
  4817. // a print without suicide...
  4818. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4819. SET_OUTPUT(SUICIDE_PIN);
  4820. WRITE(SUICIDE_PIN, HIGH);
  4821. #endif
  4822. powersupply = true;
  4823. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4824. lcd_update(0);
  4825. break;
  4826. #endif
  4827. case 81: // M81 - Turn off Power Supply
  4828. disable_heater();
  4829. st_synchronize();
  4830. disable_e0();
  4831. disable_e1();
  4832. disable_e2();
  4833. finishAndDisableSteppers();
  4834. fanSpeed = 0;
  4835. delay(1000); // Wait a little before to switch off
  4836. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4837. st_synchronize();
  4838. suicide();
  4839. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4840. SET_OUTPUT(PS_ON_PIN);
  4841. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4842. #endif
  4843. powersupply = false;
  4844. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4845. lcd_update(0);
  4846. break;
  4847. case 82:
  4848. axis_relative_modes[3] = false;
  4849. break;
  4850. case 83:
  4851. axis_relative_modes[3] = true;
  4852. break;
  4853. case 18: //compatibility
  4854. case 84: // M84
  4855. if(code_seen('S')){
  4856. stepper_inactive_time = code_value() * 1000;
  4857. }
  4858. else
  4859. {
  4860. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4861. if(all_axis)
  4862. {
  4863. st_synchronize();
  4864. disable_e0();
  4865. disable_e1();
  4866. disable_e2();
  4867. finishAndDisableSteppers();
  4868. }
  4869. else
  4870. {
  4871. st_synchronize();
  4872. if (code_seen('X')) disable_x();
  4873. if (code_seen('Y')) disable_y();
  4874. if (code_seen('Z')) disable_z();
  4875. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4876. if (code_seen('E')) {
  4877. disable_e0();
  4878. disable_e1();
  4879. disable_e2();
  4880. }
  4881. #endif
  4882. }
  4883. }
  4884. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4885. print_time_remaining_init();
  4886. snmm_filaments_used = 0;
  4887. break;
  4888. case 85: // M85
  4889. if(code_seen('S')) {
  4890. max_inactive_time = code_value() * 1000;
  4891. }
  4892. break;
  4893. #ifdef SAFETYTIMER
  4894. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4895. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4896. if (code_seen('S')) {
  4897. safetytimer_inactive_time = code_value() * 1000;
  4898. safetyTimer.start();
  4899. }
  4900. break;
  4901. #endif
  4902. case 92: // M92
  4903. for(int8_t i=0; i < NUM_AXIS; i++)
  4904. {
  4905. if(code_seen(axis_codes[i]))
  4906. {
  4907. if(i == 3) { // E
  4908. float value = code_value();
  4909. if(value < 20.0) {
  4910. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4911. max_jerk[E_AXIS] *= factor;
  4912. max_feedrate[i] *= factor;
  4913. axis_steps_per_sqr_second[i] *= factor;
  4914. }
  4915. axis_steps_per_unit[i] = value;
  4916. }
  4917. else {
  4918. axis_steps_per_unit[i] = code_value();
  4919. }
  4920. }
  4921. }
  4922. break;
  4923. case 110: // M110 - reset line pos
  4924. if (code_seen('N'))
  4925. gcode_LastN = code_value_long();
  4926. break;
  4927. #ifdef HOST_KEEPALIVE_FEATURE
  4928. case 113: // M113 - Get or set Host Keepalive interval
  4929. if (code_seen('S')) {
  4930. host_keepalive_interval = (uint8_t)code_value_short();
  4931. // NOMORE(host_keepalive_interval, 60);
  4932. }
  4933. else {
  4934. SERIAL_ECHO_START;
  4935. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4936. SERIAL_PROTOCOLLN("");
  4937. }
  4938. break;
  4939. #endif
  4940. case 115: // M115
  4941. if (code_seen('V')) {
  4942. // Report the Prusa version number.
  4943. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4944. } else if (code_seen('U')) {
  4945. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4946. // pause the print and ask the user to upgrade the firmware.
  4947. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4948. } else {
  4949. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4950. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4951. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4952. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4953. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4954. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4955. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4956. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4957. SERIAL_ECHOPGM(" UUID:");
  4958. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4959. }
  4960. break;
  4961. /* case 117: // M117 display message
  4962. starpos = (strchr(strchr_pointer + 5,'*'));
  4963. if(starpos!=NULL)
  4964. *(starpos)='\0';
  4965. lcd_setstatus(strchr_pointer + 5);
  4966. break;*/
  4967. case 114: // M114
  4968. gcode_M114();
  4969. break;
  4970. case 120: // M120
  4971. enable_endstops(false) ;
  4972. break;
  4973. case 121: // M121
  4974. enable_endstops(true) ;
  4975. break;
  4976. case 119: // M119
  4977. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4978. SERIAL_PROTOCOLLN("");
  4979. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4980. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4981. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4982. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4983. }else{
  4984. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4985. }
  4986. SERIAL_PROTOCOLLN("");
  4987. #endif
  4988. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4989. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4990. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4991. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4992. }else{
  4993. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4994. }
  4995. SERIAL_PROTOCOLLN("");
  4996. #endif
  4997. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4998. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4999. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5000. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5001. }else{
  5002. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5003. }
  5004. SERIAL_PROTOCOLLN("");
  5005. #endif
  5006. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5007. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5008. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5009. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5010. }else{
  5011. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5012. }
  5013. SERIAL_PROTOCOLLN("");
  5014. #endif
  5015. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5016. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5017. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5018. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5019. }else{
  5020. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5021. }
  5022. SERIAL_PROTOCOLLN("");
  5023. #endif
  5024. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5025. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5026. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5027. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5028. }else{
  5029. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5030. }
  5031. SERIAL_PROTOCOLLN("");
  5032. #endif
  5033. break;
  5034. //TODO: update for all axis, use for loop
  5035. #ifdef BLINKM
  5036. case 150: // M150
  5037. {
  5038. byte red;
  5039. byte grn;
  5040. byte blu;
  5041. if(code_seen('R')) red = code_value();
  5042. if(code_seen('U')) grn = code_value();
  5043. if(code_seen('B')) blu = code_value();
  5044. SendColors(red,grn,blu);
  5045. }
  5046. break;
  5047. #endif //BLINKM
  5048. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5049. {
  5050. uint8_t extruder = active_extruder;
  5051. if(code_seen('T')) {
  5052. extruder = code_value();
  5053. if(extruder >= EXTRUDERS) {
  5054. SERIAL_ECHO_START;
  5055. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5056. break;
  5057. }
  5058. }
  5059. if(code_seen('D')) {
  5060. float diameter = (float)code_value();
  5061. if (diameter == 0.0) {
  5062. // setting any extruder filament size disables volumetric on the assumption that
  5063. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5064. // for all extruders
  5065. volumetric_enabled = false;
  5066. } else {
  5067. filament_size[extruder] = (float)code_value();
  5068. // make sure all extruders have some sane value for the filament size
  5069. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5070. #if EXTRUDERS > 1
  5071. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5072. #if EXTRUDERS > 2
  5073. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5074. #endif
  5075. #endif
  5076. volumetric_enabled = true;
  5077. }
  5078. } else {
  5079. //reserved for setting filament diameter via UFID or filament measuring device
  5080. break;
  5081. }
  5082. calculate_extruder_multipliers();
  5083. }
  5084. break;
  5085. case 201: // M201
  5086. for (int8_t i = 0; i < NUM_AXIS; i++)
  5087. {
  5088. if (code_seen(axis_codes[i]))
  5089. {
  5090. unsigned long val = code_value();
  5091. #ifdef TMC2130
  5092. unsigned long val_silent = val;
  5093. if ((i == X_AXIS) || (i == Y_AXIS))
  5094. {
  5095. if (val > NORMAL_MAX_ACCEL_XY)
  5096. val = NORMAL_MAX_ACCEL_XY;
  5097. if (val_silent > SILENT_MAX_ACCEL_XY)
  5098. val_silent = SILENT_MAX_ACCEL_XY;
  5099. }
  5100. max_acceleration_units_per_sq_second_normal[i] = val;
  5101. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5102. #else //TMC2130
  5103. max_acceleration_units_per_sq_second[i] = val;
  5104. #endif //TMC2130
  5105. }
  5106. }
  5107. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5108. reset_acceleration_rates();
  5109. break;
  5110. #if 0 // Not used for Sprinter/grbl gen6
  5111. case 202: // M202
  5112. for(int8_t i=0; i < NUM_AXIS; i++) {
  5113. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5114. }
  5115. break;
  5116. #endif
  5117. case 203: // M203 max feedrate mm/sec
  5118. for (int8_t i = 0; i < NUM_AXIS; i++)
  5119. {
  5120. if (code_seen(axis_codes[i]))
  5121. {
  5122. float val = code_value();
  5123. #ifdef TMC2130
  5124. float val_silent = val;
  5125. if ((i == X_AXIS) || (i == Y_AXIS))
  5126. {
  5127. if (val > NORMAL_MAX_FEEDRATE_XY)
  5128. val = NORMAL_MAX_FEEDRATE_XY;
  5129. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5130. val_silent = SILENT_MAX_FEEDRATE_XY;
  5131. }
  5132. max_feedrate_normal[i] = val;
  5133. max_feedrate_silent[i] = val_silent;
  5134. #else //TMC2130
  5135. max_feedrate[i] = val;
  5136. #endif //TMC2130
  5137. }
  5138. }
  5139. break;
  5140. case 204:
  5141. // M204 acclereration settings.
  5142. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5143. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5144. {
  5145. if(code_seen('S')) {
  5146. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5147. // and it is also generated by Slic3r to control acceleration per extrusion type
  5148. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5149. acceleration = code_value();
  5150. // Interpret the T value as retract acceleration in the old Marlin format.
  5151. if(code_seen('T'))
  5152. retract_acceleration = code_value();
  5153. } else {
  5154. // New acceleration format, compatible with the upstream Marlin.
  5155. if(code_seen('P'))
  5156. acceleration = code_value();
  5157. if(code_seen('R'))
  5158. retract_acceleration = code_value();
  5159. if(code_seen('T')) {
  5160. // Interpret the T value as the travel acceleration in the new Marlin format.
  5161. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5162. // travel_acceleration = code_value();
  5163. }
  5164. }
  5165. }
  5166. break;
  5167. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5168. {
  5169. if(code_seen('S')) minimumfeedrate = code_value();
  5170. if(code_seen('T')) mintravelfeedrate = code_value();
  5171. if(code_seen('B')) minsegmenttime = code_value() ;
  5172. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5173. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5174. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5175. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5176. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5177. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5178. }
  5179. break;
  5180. case 206: // M206 additional homing offset
  5181. for(int8_t i=0; i < 3; i++)
  5182. {
  5183. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5184. }
  5185. break;
  5186. #ifdef FWRETRACT
  5187. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5188. {
  5189. if(code_seen('S'))
  5190. {
  5191. retract_length = code_value() ;
  5192. }
  5193. if(code_seen('F'))
  5194. {
  5195. retract_feedrate = code_value()/60 ;
  5196. }
  5197. if(code_seen('Z'))
  5198. {
  5199. retract_zlift = code_value() ;
  5200. }
  5201. }break;
  5202. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5203. {
  5204. if(code_seen('S'))
  5205. {
  5206. retract_recover_length = code_value() ;
  5207. }
  5208. if(code_seen('F'))
  5209. {
  5210. retract_recover_feedrate = code_value()/60 ;
  5211. }
  5212. }break;
  5213. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5214. {
  5215. if(code_seen('S'))
  5216. {
  5217. int t= code_value() ;
  5218. switch(t)
  5219. {
  5220. case 0:
  5221. {
  5222. autoretract_enabled=false;
  5223. retracted[0]=false;
  5224. #if EXTRUDERS > 1
  5225. retracted[1]=false;
  5226. #endif
  5227. #if EXTRUDERS > 2
  5228. retracted[2]=false;
  5229. #endif
  5230. }break;
  5231. case 1:
  5232. {
  5233. autoretract_enabled=true;
  5234. retracted[0]=false;
  5235. #if EXTRUDERS > 1
  5236. retracted[1]=false;
  5237. #endif
  5238. #if EXTRUDERS > 2
  5239. retracted[2]=false;
  5240. #endif
  5241. }break;
  5242. default:
  5243. SERIAL_ECHO_START;
  5244. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5245. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5246. SERIAL_ECHOLNPGM("\"(1)");
  5247. }
  5248. }
  5249. }break;
  5250. #endif // FWRETRACT
  5251. #if EXTRUDERS > 1
  5252. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5253. {
  5254. uint8_t extruder;
  5255. if(setTargetedHotend(218, extruder)){
  5256. break;
  5257. }
  5258. if(code_seen('X'))
  5259. {
  5260. extruder_offset[X_AXIS][extruder] = code_value();
  5261. }
  5262. if(code_seen('Y'))
  5263. {
  5264. extruder_offset[Y_AXIS][extruder] = code_value();
  5265. }
  5266. SERIAL_ECHO_START;
  5267. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5268. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5269. {
  5270. SERIAL_ECHO(" ");
  5271. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5272. SERIAL_ECHO(",");
  5273. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5274. }
  5275. SERIAL_ECHOLN("");
  5276. }break;
  5277. #endif
  5278. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5279. {
  5280. if(code_seen('S'))
  5281. {
  5282. feedmultiply = code_value() ;
  5283. }
  5284. }
  5285. break;
  5286. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5287. {
  5288. if(code_seen('S'))
  5289. {
  5290. int tmp_code = code_value();
  5291. if (code_seen('T'))
  5292. {
  5293. uint8_t extruder;
  5294. if(setTargetedHotend(221, extruder)){
  5295. break;
  5296. }
  5297. extruder_multiply[extruder] = tmp_code;
  5298. }
  5299. else
  5300. {
  5301. extrudemultiply = tmp_code ;
  5302. }
  5303. }
  5304. calculate_extruder_multipliers();
  5305. }
  5306. break;
  5307. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5308. {
  5309. if(code_seen('P')){
  5310. int pin_number = code_value(); // pin number
  5311. int pin_state = -1; // required pin state - default is inverted
  5312. if(code_seen('S')) pin_state = code_value(); // required pin state
  5313. if(pin_state >= -1 && pin_state <= 1){
  5314. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5315. {
  5316. if (sensitive_pins[i] == pin_number)
  5317. {
  5318. pin_number = -1;
  5319. break;
  5320. }
  5321. }
  5322. if (pin_number > -1)
  5323. {
  5324. int target = LOW;
  5325. st_synchronize();
  5326. pinMode(pin_number, INPUT);
  5327. switch(pin_state){
  5328. case 1:
  5329. target = HIGH;
  5330. break;
  5331. case 0:
  5332. target = LOW;
  5333. break;
  5334. case -1:
  5335. target = !digitalRead(pin_number);
  5336. break;
  5337. }
  5338. while(digitalRead(pin_number) != target){
  5339. manage_heater();
  5340. manage_inactivity();
  5341. lcd_update(0);
  5342. }
  5343. }
  5344. }
  5345. }
  5346. }
  5347. break;
  5348. #if NUM_SERVOS > 0
  5349. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5350. {
  5351. int servo_index = -1;
  5352. int servo_position = 0;
  5353. if (code_seen('P'))
  5354. servo_index = code_value();
  5355. if (code_seen('S')) {
  5356. servo_position = code_value();
  5357. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5358. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5359. servos[servo_index].attach(0);
  5360. #endif
  5361. servos[servo_index].write(servo_position);
  5362. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5363. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5364. servos[servo_index].detach();
  5365. #endif
  5366. }
  5367. else {
  5368. SERIAL_ECHO_START;
  5369. SERIAL_ECHO("Servo ");
  5370. SERIAL_ECHO(servo_index);
  5371. SERIAL_ECHOLN(" out of range");
  5372. }
  5373. }
  5374. else if (servo_index >= 0) {
  5375. SERIAL_PROTOCOL(_T(MSG_OK));
  5376. SERIAL_PROTOCOL(" Servo ");
  5377. SERIAL_PROTOCOL(servo_index);
  5378. SERIAL_PROTOCOL(": ");
  5379. SERIAL_PROTOCOL(servos[servo_index].read());
  5380. SERIAL_PROTOCOLLN("");
  5381. }
  5382. }
  5383. break;
  5384. #endif // NUM_SERVOS > 0
  5385. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5386. case 300: // M300
  5387. {
  5388. int beepS = code_seen('S') ? code_value() : 110;
  5389. int beepP = code_seen('P') ? code_value() : 1000;
  5390. if (beepS > 0)
  5391. {
  5392. #if BEEPER > 0
  5393. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5394. tone(BEEPER, beepS);
  5395. delay(beepP);
  5396. noTone(BEEPER);
  5397. #endif
  5398. }
  5399. else
  5400. {
  5401. delay(beepP);
  5402. }
  5403. }
  5404. break;
  5405. #endif // M300
  5406. #ifdef PIDTEMP
  5407. case 301: // M301
  5408. {
  5409. if(code_seen('P')) Kp = code_value();
  5410. if(code_seen('I')) Ki = scalePID_i(code_value());
  5411. if(code_seen('D')) Kd = scalePID_d(code_value());
  5412. #ifdef PID_ADD_EXTRUSION_RATE
  5413. if(code_seen('C')) Kc = code_value();
  5414. #endif
  5415. updatePID();
  5416. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5417. SERIAL_PROTOCOL(" p:");
  5418. SERIAL_PROTOCOL(Kp);
  5419. SERIAL_PROTOCOL(" i:");
  5420. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5421. SERIAL_PROTOCOL(" d:");
  5422. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5423. #ifdef PID_ADD_EXTRUSION_RATE
  5424. SERIAL_PROTOCOL(" c:");
  5425. //Kc does not have scaling applied above, or in resetting defaults
  5426. SERIAL_PROTOCOL(Kc);
  5427. #endif
  5428. SERIAL_PROTOCOLLN("");
  5429. }
  5430. break;
  5431. #endif //PIDTEMP
  5432. #ifdef PIDTEMPBED
  5433. case 304: // M304
  5434. {
  5435. if(code_seen('P')) bedKp = code_value();
  5436. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5437. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5438. updatePID();
  5439. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5440. SERIAL_PROTOCOL(" p:");
  5441. SERIAL_PROTOCOL(bedKp);
  5442. SERIAL_PROTOCOL(" i:");
  5443. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5444. SERIAL_PROTOCOL(" d:");
  5445. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5446. SERIAL_PROTOCOLLN("");
  5447. }
  5448. break;
  5449. #endif //PIDTEMP
  5450. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5451. {
  5452. #ifdef CHDK
  5453. SET_OUTPUT(CHDK);
  5454. WRITE(CHDK, HIGH);
  5455. chdkHigh = millis();
  5456. chdkActive = true;
  5457. #else
  5458. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5459. const uint8_t NUM_PULSES=16;
  5460. const float PULSE_LENGTH=0.01524;
  5461. for(int i=0; i < NUM_PULSES; i++) {
  5462. WRITE(PHOTOGRAPH_PIN, HIGH);
  5463. _delay_ms(PULSE_LENGTH);
  5464. WRITE(PHOTOGRAPH_PIN, LOW);
  5465. _delay_ms(PULSE_LENGTH);
  5466. }
  5467. delay(7.33);
  5468. for(int i=0; i < NUM_PULSES; i++) {
  5469. WRITE(PHOTOGRAPH_PIN, HIGH);
  5470. _delay_ms(PULSE_LENGTH);
  5471. WRITE(PHOTOGRAPH_PIN, LOW);
  5472. _delay_ms(PULSE_LENGTH);
  5473. }
  5474. #endif
  5475. #endif //chdk end if
  5476. }
  5477. break;
  5478. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5479. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5480. {
  5481. float temp = .0;
  5482. if (code_seen('S')) temp=code_value();
  5483. set_extrude_min_temp(temp);
  5484. }
  5485. break;
  5486. #endif
  5487. case 303: // M303 PID autotune
  5488. {
  5489. float temp = 150.0;
  5490. int e=0;
  5491. int c=5;
  5492. if (code_seen('E')) e=code_value();
  5493. if (e<0)
  5494. temp=70;
  5495. if (code_seen('S')) temp=code_value();
  5496. if (code_seen('C')) c=code_value();
  5497. PID_autotune(temp, e, c);
  5498. }
  5499. break;
  5500. case 400: // M400 finish all moves
  5501. {
  5502. st_synchronize();
  5503. }
  5504. break;
  5505. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5506. {
  5507. //currently three different materials are needed (default, flex and PVA)
  5508. //add storing this information for different load/unload profiles etc. in the future
  5509. //firmware does not wait for "ok" from mmu
  5510. if (mmu_enabled)
  5511. {
  5512. uint8_t extruder = 255;
  5513. uint8_t filament = FILAMENT_UNDEFINED;
  5514. if(code_seen('E')) extruder = code_value();
  5515. if(code_seen('F')) filament = code_value();
  5516. mmu_set_filament_type(extruder, filament);
  5517. }
  5518. }
  5519. break;
  5520. case 500: // M500 Store settings in EEPROM
  5521. {
  5522. Config_StoreSettings(EEPROM_OFFSET);
  5523. }
  5524. break;
  5525. case 501: // M501 Read settings from EEPROM
  5526. {
  5527. Config_RetrieveSettings(EEPROM_OFFSET);
  5528. }
  5529. break;
  5530. case 502: // M502 Revert to default settings
  5531. {
  5532. Config_ResetDefault();
  5533. }
  5534. break;
  5535. case 503: // M503 print settings currently in memory
  5536. {
  5537. Config_PrintSettings();
  5538. }
  5539. break;
  5540. case 509: //M509 Force language selection
  5541. {
  5542. lang_reset();
  5543. SERIAL_ECHO_START;
  5544. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5545. }
  5546. break;
  5547. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5548. case 540:
  5549. {
  5550. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5551. }
  5552. break;
  5553. #endif
  5554. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5555. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5556. {
  5557. float value;
  5558. if (code_seen('Z'))
  5559. {
  5560. value = code_value();
  5561. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5562. {
  5563. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5564. SERIAL_ECHO_START;
  5565. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5566. SERIAL_PROTOCOLLN("");
  5567. }
  5568. else
  5569. {
  5570. SERIAL_ECHO_START;
  5571. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5572. SERIAL_ECHORPGM(MSG_Z_MIN);
  5573. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5574. SERIAL_ECHORPGM(MSG_Z_MAX);
  5575. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5576. SERIAL_PROTOCOLLN("");
  5577. }
  5578. }
  5579. else
  5580. {
  5581. SERIAL_ECHO_START;
  5582. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5583. SERIAL_ECHO(-zprobe_zoffset);
  5584. SERIAL_PROTOCOLLN("");
  5585. }
  5586. break;
  5587. }
  5588. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5589. #ifdef FILAMENTCHANGEENABLE
  5590. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5591. {
  5592. st_synchronize();
  5593. float x_position = current_position[X_AXIS];
  5594. float y_position = current_position[Y_AXIS];
  5595. float z_shift = 0;
  5596. float e_shift_init = 0;
  5597. float e_shift_late = 0;
  5598. bool automatic = false;
  5599. //Retract extruder
  5600. if(code_seen('E'))
  5601. {
  5602. e_shift_init = code_value();
  5603. }
  5604. else
  5605. {
  5606. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5607. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5608. #endif
  5609. }
  5610. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5611. if (code_seen('L'))
  5612. {
  5613. e_shift_late = code_value();
  5614. }
  5615. else
  5616. {
  5617. #ifdef FILAMENTCHANGE_FINALRETRACT
  5618. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5619. #endif
  5620. }
  5621. //Lift Z
  5622. if(code_seen('Z'))
  5623. {
  5624. z_shift = code_value();
  5625. }
  5626. else
  5627. {
  5628. #ifdef FILAMENTCHANGE_ZADD
  5629. z_shift= FILAMENTCHANGE_ZADD ;
  5630. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5631. #endif
  5632. }
  5633. //Move XY to side
  5634. if(code_seen('X'))
  5635. {
  5636. x_position = code_value();
  5637. }
  5638. else
  5639. {
  5640. #ifdef FILAMENTCHANGE_XPOS
  5641. x_position = FILAMENTCHANGE_XPOS;
  5642. #endif
  5643. }
  5644. if(code_seen('Y'))
  5645. {
  5646. y_position = code_value();
  5647. }
  5648. else
  5649. {
  5650. #ifdef FILAMENTCHANGE_YPOS
  5651. y_position = FILAMENTCHANGE_YPOS ;
  5652. #endif
  5653. }
  5654. if (mmu_enabled && code_seen("AUTO"))
  5655. automatic = true;
  5656. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5657. }
  5658. break;
  5659. #endif //FILAMENTCHANGEENABLE
  5660. case 601: {
  5661. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5662. }
  5663. break;
  5664. case 602: {
  5665. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5666. }
  5667. break;
  5668. #ifdef PINDA_THERMISTOR
  5669. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5670. {
  5671. int set_target_pinda = 0;
  5672. if (code_seen('S')) {
  5673. set_target_pinda = code_value();
  5674. }
  5675. else {
  5676. break;
  5677. }
  5678. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5679. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5680. SERIAL_PROTOCOL(set_target_pinda);
  5681. SERIAL_PROTOCOLLN("");
  5682. codenum = millis();
  5683. cancel_heatup = false;
  5684. bool is_pinda_cooling = false;
  5685. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5686. is_pinda_cooling = true;
  5687. }
  5688. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5689. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5690. {
  5691. SERIAL_PROTOCOLPGM("P:");
  5692. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5693. SERIAL_PROTOCOLPGM("/");
  5694. SERIAL_PROTOCOL(set_target_pinda);
  5695. SERIAL_PROTOCOLLN("");
  5696. codenum = millis();
  5697. }
  5698. manage_heater();
  5699. manage_inactivity();
  5700. lcd_update(0);
  5701. }
  5702. LCD_MESSAGERPGM(_T(MSG_OK));
  5703. break;
  5704. }
  5705. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5706. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5707. uint8_t cal_status = calibration_status_pinda();
  5708. int16_t usteps = 0;
  5709. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5710. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5711. for (uint8_t i = 0; i < 6; i++)
  5712. {
  5713. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5714. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5715. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5716. SERIAL_PROTOCOLPGM(", ");
  5717. SERIAL_PROTOCOL(35 + (i * 5));
  5718. SERIAL_PROTOCOLPGM(", ");
  5719. SERIAL_PROTOCOL(usteps);
  5720. SERIAL_PROTOCOLPGM(", ");
  5721. SERIAL_PROTOCOL(mm * 1000);
  5722. SERIAL_PROTOCOLLN("");
  5723. }
  5724. }
  5725. else if (code_seen('!')) { // ! - Set factory default values
  5726. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5727. int16_t z_shift = 8; //40C - 20um - 8usteps
  5728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5729. z_shift = 24; //45C - 60um - 24usteps
  5730. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5731. z_shift = 48; //50C - 120um - 48usteps
  5732. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5733. z_shift = 80; //55C - 200um - 80usteps
  5734. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5735. z_shift = 120; //60C - 300um - 120usteps
  5736. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5737. SERIAL_PROTOCOLLN("factory restored");
  5738. }
  5739. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5740. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5741. int16_t z_shift = 0;
  5742. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5743. SERIAL_PROTOCOLLN("zerorized");
  5744. }
  5745. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5746. int16_t usteps = code_value();
  5747. if (code_seen('I')) {
  5748. uint8_t index = code_value();
  5749. if (index < 5) {
  5750. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5751. SERIAL_PROTOCOLLN("OK");
  5752. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5753. for (uint8_t i = 0; i < 6; i++)
  5754. {
  5755. usteps = 0;
  5756. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5757. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5758. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5759. SERIAL_PROTOCOLPGM(", ");
  5760. SERIAL_PROTOCOL(35 + (i * 5));
  5761. SERIAL_PROTOCOLPGM(", ");
  5762. SERIAL_PROTOCOL(usteps);
  5763. SERIAL_PROTOCOLPGM(", ");
  5764. SERIAL_PROTOCOL(mm * 1000);
  5765. SERIAL_PROTOCOLLN("");
  5766. }
  5767. }
  5768. }
  5769. }
  5770. else {
  5771. SERIAL_PROTOCOLPGM("no valid command");
  5772. }
  5773. break;
  5774. #endif //PINDA_THERMISTOR
  5775. #ifdef LIN_ADVANCE
  5776. case 900: // M900: Set LIN_ADVANCE options.
  5777. gcode_M900();
  5778. break;
  5779. #endif
  5780. case 907: // M907 Set digital trimpot motor current using axis codes.
  5781. {
  5782. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5783. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5784. if(code_seen('B')) st_current_set(4,code_value());
  5785. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5786. #endif
  5787. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5788. if(code_seen('X')) st_current_set(0, code_value());
  5789. #endif
  5790. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5791. if(code_seen('Z')) st_current_set(1, code_value());
  5792. #endif
  5793. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5794. if(code_seen('E')) st_current_set(2, code_value());
  5795. #endif
  5796. }
  5797. break;
  5798. case 908: // M908 Control digital trimpot directly.
  5799. {
  5800. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5801. uint8_t channel,current;
  5802. if(code_seen('P')) channel=code_value();
  5803. if(code_seen('S')) current=code_value();
  5804. digitalPotWrite(channel, current);
  5805. #endif
  5806. }
  5807. break;
  5808. #ifdef TMC2130
  5809. case 910: // M910 TMC2130 init
  5810. {
  5811. tmc2130_init();
  5812. }
  5813. break;
  5814. case 911: // M911 Set TMC2130 holding currents
  5815. {
  5816. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5817. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5818. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5819. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5820. }
  5821. break;
  5822. case 912: // M912 Set TMC2130 running currents
  5823. {
  5824. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5825. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5826. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5827. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5828. }
  5829. break;
  5830. case 913: // M913 Print TMC2130 currents
  5831. {
  5832. tmc2130_print_currents();
  5833. }
  5834. break;
  5835. case 914: // M914 Set normal mode
  5836. {
  5837. tmc2130_mode = TMC2130_MODE_NORMAL;
  5838. update_mode_profile();
  5839. tmc2130_init();
  5840. }
  5841. break;
  5842. case 915: // M915 Set silent mode
  5843. {
  5844. tmc2130_mode = TMC2130_MODE_SILENT;
  5845. update_mode_profile();
  5846. tmc2130_init();
  5847. }
  5848. break;
  5849. case 916: // M916 Set sg_thrs
  5850. {
  5851. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5852. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5853. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5854. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5855. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5856. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5857. }
  5858. break;
  5859. case 917: // M917 Set TMC2130 pwm_ampl
  5860. {
  5861. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5862. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5863. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5864. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5865. }
  5866. break;
  5867. case 918: // M918 Set TMC2130 pwm_grad
  5868. {
  5869. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5870. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5871. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5872. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5873. }
  5874. break;
  5875. #endif //TMC2130
  5876. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5877. {
  5878. #ifdef TMC2130
  5879. if(code_seen('E'))
  5880. {
  5881. uint16_t res_new = code_value();
  5882. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5883. {
  5884. st_synchronize();
  5885. uint8_t axis = E_AXIS;
  5886. uint16_t res = tmc2130_get_res(axis);
  5887. tmc2130_set_res(axis, res_new);
  5888. if (res_new > res)
  5889. {
  5890. uint16_t fac = (res_new / res);
  5891. axis_steps_per_unit[axis] *= fac;
  5892. position[E_AXIS] *= fac;
  5893. }
  5894. else
  5895. {
  5896. uint16_t fac = (res / res_new);
  5897. axis_steps_per_unit[axis] /= fac;
  5898. position[E_AXIS] /= fac;
  5899. }
  5900. }
  5901. }
  5902. #else //TMC2130
  5903. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5904. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5905. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5906. if(code_seen('B')) microstep_mode(4,code_value());
  5907. microstep_readings();
  5908. #endif
  5909. #endif //TMC2130
  5910. }
  5911. break;
  5912. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5913. {
  5914. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5915. if(code_seen('S')) switch((int)code_value())
  5916. {
  5917. case 1:
  5918. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5919. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5920. break;
  5921. case 2:
  5922. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5923. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5924. break;
  5925. }
  5926. microstep_readings();
  5927. #endif
  5928. }
  5929. break;
  5930. case 701: //M701: load filament
  5931. {
  5932. if (mmu_enabled && code_seen('E'))
  5933. tmp_extruder = code_value();
  5934. gcode_M701();
  5935. }
  5936. break;
  5937. case 702:
  5938. {
  5939. if (mmu_enabled)
  5940. {
  5941. if (code_seen('U'))
  5942. extr_unload_used(); //unload all filaments which were used in current print
  5943. else if (code_seen('C'))
  5944. extr_unload(); //unload just current filament
  5945. else
  5946. extr_unload_all(); //unload all filaments
  5947. }
  5948. else
  5949. unload_filament();
  5950. }
  5951. break;
  5952. case 999: // M999: Restart after being stopped
  5953. Stopped = false;
  5954. lcd_reset_alert_level();
  5955. gcode_LastN = Stopped_gcode_LastN;
  5956. FlushSerialRequestResend();
  5957. break;
  5958. default:
  5959. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5960. }
  5961. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5962. mcode_in_progress = 0;
  5963. }
  5964. } // end if(code_seen('M')) (end of M codes)
  5965. else if(code_seen('T'))
  5966. {
  5967. int index;
  5968. st_synchronize();
  5969. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5970. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5971. SERIAL_ECHOLNPGM("Invalid T code.");
  5972. }
  5973. else {
  5974. if (*(strchr_pointer + index) == '?') {
  5975. tmp_extruder = choose_extruder_menu();
  5976. }
  5977. else {
  5978. tmp_extruder = code_value();
  5979. }
  5980. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5981. if (mmu_enabled)
  5982. {
  5983. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5984. manage_response(true, true);
  5985. mmu_command(MMU_CMD_C0);
  5986. mmu_extruder = tmp_extruder; //filament change is finished
  5987. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5988. {
  5989. mmu_load_to_nozzle();
  5990. }
  5991. }
  5992. else
  5993. {
  5994. #ifdef SNMM
  5995. #ifdef LIN_ADVANCE
  5996. if (mmu_extruder != tmp_extruder)
  5997. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5998. #endif
  5999. mmu_extruder = tmp_extruder;
  6000. delay(100);
  6001. disable_e0();
  6002. disable_e1();
  6003. disable_e2();
  6004. pinMode(E_MUX0_PIN, OUTPUT);
  6005. pinMode(E_MUX1_PIN, OUTPUT);
  6006. delay(100);
  6007. SERIAL_ECHO_START;
  6008. SERIAL_ECHO("T:");
  6009. SERIAL_ECHOLN((int)tmp_extruder);
  6010. switch (tmp_extruder) {
  6011. case 1:
  6012. WRITE(E_MUX0_PIN, HIGH);
  6013. WRITE(E_MUX1_PIN, LOW);
  6014. break;
  6015. case 2:
  6016. WRITE(E_MUX0_PIN, LOW);
  6017. WRITE(E_MUX1_PIN, HIGH);
  6018. break;
  6019. case 3:
  6020. WRITE(E_MUX0_PIN, HIGH);
  6021. WRITE(E_MUX1_PIN, HIGH);
  6022. break;
  6023. default:
  6024. WRITE(E_MUX0_PIN, LOW);
  6025. WRITE(E_MUX1_PIN, LOW);
  6026. break;
  6027. }
  6028. delay(100);
  6029. #else //SNMM
  6030. if (tmp_extruder >= EXTRUDERS) {
  6031. SERIAL_ECHO_START;
  6032. SERIAL_ECHOPGM("T");
  6033. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6034. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6035. }
  6036. else {
  6037. #if EXTRUDERS > 1
  6038. boolean make_move = false;
  6039. #endif
  6040. if (code_seen('F')) {
  6041. #if EXTRUDERS > 1
  6042. make_move = true;
  6043. #endif
  6044. next_feedrate = code_value();
  6045. if (next_feedrate > 0.0) {
  6046. feedrate = next_feedrate;
  6047. }
  6048. }
  6049. #if EXTRUDERS > 1
  6050. if (tmp_extruder != active_extruder) {
  6051. // Save current position to return to after applying extruder offset
  6052. memcpy(destination, current_position, sizeof(destination));
  6053. // Offset extruder (only by XY)
  6054. int i;
  6055. for (i = 0; i < 2; i++) {
  6056. current_position[i] = current_position[i] -
  6057. extruder_offset[i][active_extruder] +
  6058. extruder_offset[i][tmp_extruder];
  6059. }
  6060. // Set the new active extruder and position
  6061. active_extruder = tmp_extruder;
  6062. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6063. // Move to the old position if 'F' was in the parameters
  6064. if (make_move && Stopped == false) {
  6065. prepare_move();
  6066. }
  6067. }
  6068. #endif
  6069. SERIAL_ECHO_START;
  6070. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6071. SERIAL_PROTOCOLLN((int)active_extruder);
  6072. }
  6073. #endif //SNMM
  6074. }
  6075. }
  6076. } // end if(code_seen('T')) (end of T codes)
  6077. else if (code_seen('D')) // D codes (debug)
  6078. {
  6079. switch((int)code_value())
  6080. {
  6081. #ifdef DEBUG_DCODES
  6082. case -1: // D-1 - Endless loop
  6083. dcode__1(); break;
  6084. case 0: // D0 - Reset
  6085. dcode_0(); break;
  6086. case 1: // D1 - Clear EEPROM
  6087. dcode_1(); break;
  6088. case 2: // D2 - Read/Write RAM
  6089. dcode_2(); break;
  6090. #endif //DEBUG_DCODES
  6091. #ifdef DEBUG_DCODE3
  6092. case 3: // D3 - Read/Write EEPROM
  6093. dcode_3(); break;
  6094. #endif //DEBUG_DCODE3
  6095. #ifdef DEBUG_DCODES
  6096. case 4: // D4 - Read/Write PIN
  6097. dcode_4(); break;
  6098. case 5: // D5 - Read/Write FLASH
  6099. // dcode_5(); break;
  6100. break;
  6101. case 6: // D6 - Read/Write external FLASH
  6102. dcode_6(); break;
  6103. case 7: // D7 - Read/Write Bootloader
  6104. dcode_7(); break;
  6105. case 8: // D8 - Read/Write PINDA
  6106. dcode_8(); break;
  6107. case 9: // D9 - Read/Write ADC
  6108. dcode_9(); break;
  6109. case 10: // D10 - XYZ calibration = OK
  6110. dcode_10(); break;
  6111. #ifdef TMC2130
  6112. case 2130: // D9125 - TMC2130
  6113. dcode_2130(); break;
  6114. #endif //TMC2130
  6115. #ifdef FILAMENT_SENSOR
  6116. case 9125: // D9125 - FILAMENT_SENSOR
  6117. dcode_9125(); break;
  6118. #endif //FILAMENT_SENSOR
  6119. #endif //DEBUG_DCODES
  6120. }
  6121. }
  6122. else
  6123. {
  6124. SERIAL_ECHO_START;
  6125. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6126. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6127. SERIAL_ECHOLNPGM("\"(2)");
  6128. }
  6129. KEEPALIVE_STATE(NOT_BUSY);
  6130. ClearToSend();
  6131. }
  6132. void FlushSerialRequestResend()
  6133. {
  6134. //char cmdbuffer[bufindr][100]="Resend:";
  6135. MYSERIAL.flush();
  6136. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6137. }
  6138. // Confirm the execution of a command, if sent from a serial line.
  6139. // Execution of a command from a SD card will not be confirmed.
  6140. void ClearToSend()
  6141. {
  6142. previous_millis_cmd = millis();
  6143. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6144. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6145. }
  6146. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6147. void update_currents() {
  6148. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6149. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6150. float tmp_motor[3];
  6151. //SERIAL_ECHOLNPGM("Currents updated: ");
  6152. if (destination[Z_AXIS] < Z_SILENT) {
  6153. //SERIAL_ECHOLNPGM("LOW");
  6154. for (uint8_t i = 0; i < 3; i++) {
  6155. st_current_set(i, current_low[i]);
  6156. /*MYSERIAL.print(int(i));
  6157. SERIAL_ECHOPGM(": ");
  6158. MYSERIAL.println(current_low[i]);*/
  6159. }
  6160. }
  6161. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6162. //SERIAL_ECHOLNPGM("HIGH");
  6163. for (uint8_t i = 0; i < 3; i++) {
  6164. st_current_set(i, current_high[i]);
  6165. /*MYSERIAL.print(int(i));
  6166. SERIAL_ECHOPGM(": ");
  6167. MYSERIAL.println(current_high[i]);*/
  6168. }
  6169. }
  6170. else {
  6171. for (uint8_t i = 0; i < 3; i++) {
  6172. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6173. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6174. st_current_set(i, tmp_motor[i]);
  6175. /*MYSERIAL.print(int(i));
  6176. SERIAL_ECHOPGM(": ");
  6177. MYSERIAL.println(tmp_motor[i]);*/
  6178. }
  6179. }
  6180. }
  6181. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6182. void get_coordinates()
  6183. {
  6184. bool seen[4]={false,false,false,false};
  6185. for(int8_t i=0; i < NUM_AXIS; i++) {
  6186. if(code_seen(axis_codes[i]))
  6187. {
  6188. bool relative = axis_relative_modes[i] || relative_mode;
  6189. destination[i] = (float)code_value();
  6190. if (i == E_AXIS) {
  6191. float emult = extruder_multiplier[active_extruder];
  6192. if (emult != 1.) {
  6193. if (! relative) {
  6194. destination[i] -= current_position[i];
  6195. relative = true;
  6196. }
  6197. destination[i] *= emult;
  6198. }
  6199. }
  6200. if (relative)
  6201. destination[i] += current_position[i];
  6202. seen[i]=true;
  6203. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6204. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6205. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6206. }
  6207. else destination[i] = current_position[i]; //Are these else lines really needed?
  6208. }
  6209. if(code_seen('F')) {
  6210. next_feedrate = code_value();
  6211. #ifdef MAX_SILENT_FEEDRATE
  6212. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6213. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6214. #endif //MAX_SILENT_FEEDRATE
  6215. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6216. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6217. {
  6218. // float e_max_speed =
  6219. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6220. }
  6221. }
  6222. }
  6223. void get_arc_coordinates()
  6224. {
  6225. #ifdef SF_ARC_FIX
  6226. bool relative_mode_backup = relative_mode;
  6227. relative_mode = true;
  6228. #endif
  6229. get_coordinates();
  6230. #ifdef SF_ARC_FIX
  6231. relative_mode=relative_mode_backup;
  6232. #endif
  6233. if(code_seen('I')) {
  6234. offset[0] = code_value();
  6235. }
  6236. else {
  6237. offset[0] = 0.0;
  6238. }
  6239. if(code_seen('J')) {
  6240. offset[1] = code_value();
  6241. }
  6242. else {
  6243. offset[1] = 0.0;
  6244. }
  6245. }
  6246. void clamp_to_software_endstops(float target[3])
  6247. {
  6248. #ifdef DEBUG_DISABLE_SWLIMITS
  6249. return;
  6250. #endif //DEBUG_DISABLE_SWLIMITS
  6251. world2machine_clamp(target[0], target[1]);
  6252. // Clamp the Z coordinate.
  6253. if (min_software_endstops) {
  6254. float negative_z_offset = 0;
  6255. #ifdef ENABLE_AUTO_BED_LEVELING
  6256. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6257. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6258. #endif
  6259. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6260. }
  6261. if (max_software_endstops) {
  6262. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6263. }
  6264. }
  6265. #ifdef MESH_BED_LEVELING
  6266. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6267. float dx = x - current_position[X_AXIS];
  6268. float dy = y - current_position[Y_AXIS];
  6269. float dz = z - current_position[Z_AXIS];
  6270. int n_segments = 0;
  6271. if (mbl.active) {
  6272. float len = abs(dx) + abs(dy);
  6273. if (len > 0)
  6274. // Split to 3cm segments or shorter.
  6275. n_segments = int(ceil(len / 30.f));
  6276. }
  6277. if (n_segments > 1) {
  6278. float de = e - current_position[E_AXIS];
  6279. for (int i = 1; i < n_segments; ++ i) {
  6280. float t = float(i) / float(n_segments);
  6281. if (saved_printing || (mbl.active == false)) return;
  6282. plan_buffer_line(
  6283. current_position[X_AXIS] + t * dx,
  6284. current_position[Y_AXIS] + t * dy,
  6285. current_position[Z_AXIS] + t * dz,
  6286. current_position[E_AXIS] + t * de,
  6287. feed_rate, extruder);
  6288. }
  6289. }
  6290. // The rest of the path.
  6291. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6292. current_position[X_AXIS] = x;
  6293. current_position[Y_AXIS] = y;
  6294. current_position[Z_AXIS] = z;
  6295. current_position[E_AXIS] = e;
  6296. }
  6297. #endif // MESH_BED_LEVELING
  6298. void prepare_move()
  6299. {
  6300. clamp_to_software_endstops(destination);
  6301. previous_millis_cmd = millis();
  6302. // Do not use feedmultiply for E or Z only moves
  6303. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6305. }
  6306. else {
  6307. #ifdef MESH_BED_LEVELING
  6308. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6309. #else
  6310. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6311. #endif
  6312. }
  6313. for(int8_t i=0; i < NUM_AXIS; i++) {
  6314. current_position[i] = destination[i];
  6315. }
  6316. }
  6317. void prepare_arc_move(char isclockwise) {
  6318. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6319. // Trace the arc
  6320. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6321. // As far as the parser is concerned, the position is now == target. In reality the
  6322. // motion control system might still be processing the action and the real tool position
  6323. // in any intermediate location.
  6324. for(int8_t i=0; i < NUM_AXIS; i++) {
  6325. current_position[i] = destination[i];
  6326. }
  6327. previous_millis_cmd = millis();
  6328. }
  6329. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6330. #if defined(FAN_PIN)
  6331. #if CONTROLLERFAN_PIN == FAN_PIN
  6332. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6333. #endif
  6334. #endif
  6335. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6336. unsigned long lastMotorCheck = 0;
  6337. void controllerFan()
  6338. {
  6339. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6340. {
  6341. lastMotorCheck = millis();
  6342. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6343. #if EXTRUDERS > 2
  6344. || !READ(E2_ENABLE_PIN)
  6345. #endif
  6346. #if EXTRUDER > 1
  6347. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6348. || !READ(X2_ENABLE_PIN)
  6349. #endif
  6350. || !READ(E1_ENABLE_PIN)
  6351. #endif
  6352. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6353. {
  6354. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6355. }
  6356. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6357. {
  6358. digitalWrite(CONTROLLERFAN_PIN, 0);
  6359. analogWrite(CONTROLLERFAN_PIN, 0);
  6360. }
  6361. else
  6362. {
  6363. // allows digital or PWM fan output to be used (see M42 handling)
  6364. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6365. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6366. }
  6367. }
  6368. }
  6369. #endif
  6370. #ifdef TEMP_STAT_LEDS
  6371. static bool blue_led = false;
  6372. static bool red_led = false;
  6373. static uint32_t stat_update = 0;
  6374. void handle_status_leds(void) {
  6375. float max_temp = 0.0;
  6376. if(millis() > stat_update) {
  6377. stat_update += 500; // Update every 0.5s
  6378. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6379. max_temp = max(max_temp, degHotend(cur_extruder));
  6380. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6381. }
  6382. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6383. max_temp = max(max_temp, degTargetBed());
  6384. max_temp = max(max_temp, degBed());
  6385. #endif
  6386. if((max_temp > 55.0) && (red_led == false)) {
  6387. digitalWrite(STAT_LED_RED, 1);
  6388. digitalWrite(STAT_LED_BLUE, 0);
  6389. red_led = true;
  6390. blue_led = false;
  6391. }
  6392. if((max_temp < 54.0) && (blue_led == false)) {
  6393. digitalWrite(STAT_LED_RED, 0);
  6394. digitalWrite(STAT_LED_BLUE, 1);
  6395. red_led = false;
  6396. blue_led = true;
  6397. }
  6398. }
  6399. }
  6400. #endif
  6401. #ifdef SAFETYTIMER
  6402. /**
  6403. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6404. *
  6405. * Full screen blocking notification message is shown after heater turning off.
  6406. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6407. * damage print.
  6408. *
  6409. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6410. */
  6411. static void handleSafetyTimer()
  6412. {
  6413. #if (EXTRUDERS > 1)
  6414. #error Implemented only for one extruder.
  6415. #endif //(EXTRUDERS > 1)
  6416. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6417. {
  6418. safetyTimer.stop();
  6419. }
  6420. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6421. {
  6422. safetyTimer.start();
  6423. }
  6424. else if (safetyTimer.expired(safetytimer_inactive_time))
  6425. {
  6426. setTargetBed(0);
  6427. setAllTargetHotends(0);
  6428. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6429. }
  6430. }
  6431. #endif //SAFETYTIMER
  6432. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6433. {
  6434. #ifdef FILAMENT_SENSOR
  6435. if (mmu_enabled == false)
  6436. {
  6437. if (mcode_in_progress != 600) //M600 not in progress
  6438. {
  6439. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6440. {
  6441. if (fsensor_check_autoload())
  6442. {
  6443. fsensor_autoload_check_stop();
  6444. if (degHotend0() > EXTRUDE_MINTEMP)
  6445. {
  6446. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6447. tone(BEEPER, 1000);
  6448. delay_keep_alive(50);
  6449. noTone(BEEPER);
  6450. loading_flag = true;
  6451. enquecommand_front_P((PSTR("M701")));
  6452. }
  6453. else
  6454. {
  6455. lcd_update_enable(false);
  6456. lcd_clear();
  6457. lcd_set_cursor(0, 0);
  6458. lcd_puts_P(_T(MSG_ERROR));
  6459. lcd_set_cursor(0, 2);
  6460. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6461. delay(2000);
  6462. lcd_clear();
  6463. lcd_update_enable(true);
  6464. }
  6465. }
  6466. }
  6467. else
  6468. fsensor_autoload_check_stop();
  6469. }
  6470. }
  6471. #endif //FILAMENT_SENSOR
  6472. #ifdef SAFETYTIMER
  6473. handleSafetyTimer();
  6474. #endif //SAFETYTIMER
  6475. #if defined(KILL_PIN) && KILL_PIN > -1
  6476. static int killCount = 0; // make the inactivity button a bit less responsive
  6477. const int KILL_DELAY = 10000;
  6478. #endif
  6479. if(buflen < (BUFSIZE-1)){
  6480. get_command();
  6481. }
  6482. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6483. if(max_inactive_time)
  6484. kill(_n(""), 4);
  6485. if(stepper_inactive_time) {
  6486. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6487. {
  6488. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6489. disable_x();
  6490. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6491. disable_y();
  6492. disable_z();
  6493. disable_e0();
  6494. disable_e1();
  6495. disable_e2();
  6496. }
  6497. }
  6498. }
  6499. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6500. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6501. {
  6502. chdkActive = false;
  6503. WRITE(CHDK, LOW);
  6504. }
  6505. #endif
  6506. #if defined(KILL_PIN) && KILL_PIN > -1
  6507. // Check if the kill button was pressed and wait just in case it was an accidental
  6508. // key kill key press
  6509. // -------------------------------------------------------------------------------
  6510. if( 0 == READ(KILL_PIN) )
  6511. {
  6512. killCount++;
  6513. }
  6514. else if (killCount > 0)
  6515. {
  6516. killCount--;
  6517. }
  6518. // Exceeded threshold and we can confirm that it was not accidental
  6519. // KILL the machine
  6520. // ----------------------------------------------------------------
  6521. if ( killCount >= KILL_DELAY)
  6522. {
  6523. kill("", 5);
  6524. }
  6525. #endif
  6526. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6527. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6528. #endif
  6529. #ifdef EXTRUDER_RUNOUT_PREVENT
  6530. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6531. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6532. {
  6533. bool oldstatus=READ(E0_ENABLE_PIN);
  6534. enable_e0();
  6535. float oldepos=current_position[E_AXIS];
  6536. float oldedes=destination[E_AXIS];
  6537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6538. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6539. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6540. current_position[E_AXIS]=oldepos;
  6541. destination[E_AXIS]=oldedes;
  6542. plan_set_e_position(oldepos);
  6543. previous_millis_cmd=millis();
  6544. st_synchronize();
  6545. WRITE(E0_ENABLE_PIN,oldstatus);
  6546. }
  6547. #endif
  6548. #ifdef TEMP_STAT_LEDS
  6549. handle_status_leds();
  6550. #endif
  6551. check_axes_activity();
  6552. mmu_loop();
  6553. }
  6554. void kill(const char *full_screen_message, unsigned char id)
  6555. {
  6556. printf_P(_N("KILL: %d\n"), id);
  6557. //return;
  6558. cli(); // Stop interrupts
  6559. disable_heater();
  6560. disable_x();
  6561. // SERIAL_ECHOLNPGM("kill - disable Y");
  6562. disable_y();
  6563. disable_z();
  6564. disable_e0();
  6565. disable_e1();
  6566. disable_e2();
  6567. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6568. pinMode(PS_ON_PIN,INPUT);
  6569. #endif
  6570. SERIAL_ERROR_START;
  6571. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6572. if (full_screen_message != NULL) {
  6573. SERIAL_ERRORLNRPGM(full_screen_message);
  6574. lcd_display_message_fullscreen_P(full_screen_message);
  6575. } else {
  6576. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6577. }
  6578. // FMC small patch to update the LCD before ending
  6579. sei(); // enable interrupts
  6580. for ( int i=5; i--; lcd_update(0))
  6581. {
  6582. delay(200);
  6583. }
  6584. cli(); // disable interrupts
  6585. suicide();
  6586. while(1)
  6587. {
  6588. #ifdef WATCHDOG
  6589. wdt_reset();
  6590. #endif //WATCHDOG
  6591. /* Intentionally left empty */
  6592. } // Wait for reset
  6593. }
  6594. void Stop()
  6595. {
  6596. disable_heater();
  6597. if(Stopped == false) {
  6598. Stopped = true;
  6599. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6600. SERIAL_ERROR_START;
  6601. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6602. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6603. }
  6604. }
  6605. bool IsStopped() { return Stopped; };
  6606. #ifdef FAST_PWM_FAN
  6607. void setPwmFrequency(uint8_t pin, int val)
  6608. {
  6609. val &= 0x07;
  6610. switch(digitalPinToTimer(pin))
  6611. {
  6612. #if defined(TCCR0A)
  6613. case TIMER0A:
  6614. case TIMER0B:
  6615. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6616. // TCCR0B |= val;
  6617. break;
  6618. #endif
  6619. #if defined(TCCR1A)
  6620. case TIMER1A:
  6621. case TIMER1B:
  6622. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6623. // TCCR1B |= val;
  6624. break;
  6625. #endif
  6626. #if defined(TCCR2)
  6627. case TIMER2:
  6628. case TIMER2:
  6629. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6630. TCCR2 |= val;
  6631. break;
  6632. #endif
  6633. #if defined(TCCR2A)
  6634. case TIMER2A:
  6635. case TIMER2B:
  6636. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6637. TCCR2B |= val;
  6638. break;
  6639. #endif
  6640. #if defined(TCCR3A)
  6641. case TIMER3A:
  6642. case TIMER3B:
  6643. case TIMER3C:
  6644. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6645. TCCR3B |= val;
  6646. break;
  6647. #endif
  6648. #if defined(TCCR4A)
  6649. case TIMER4A:
  6650. case TIMER4B:
  6651. case TIMER4C:
  6652. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6653. TCCR4B |= val;
  6654. break;
  6655. #endif
  6656. #if defined(TCCR5A)
  6657. case TIMER5A:
  6658. case TIMER5B:
  6659. case TIMER5C:
  6660. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6661. TCCR5B |= val;
  6662. break;
  6663. #endif
  6664. }
  6665. }
  6666. #endif //FAST_PWM_FAN
  6667. //! @brief Get and validate extruder number
  6668. //!
  6669. //! If it is not specified, active_extruder is returned in parameter extruder.
  6670. //! @param [in] code M code number
  6671. //! @param [out] extruder
  6672. //! @return error
  6673. //! @retval true Invalid extruder specified in T code
  6674. //! @retval false Valid extruder specified in T code, or not specifiead
  6675. bool setTargetedHotend(int code, uint8_t &extruder)
  6676. {
  6677. extruder = active_extruder;
  6678. if(code_seen('T')) {
  6679. extruder = code_value();
  6680. if(extruder >= EXTRUDERS) {
  6681. SERIAL_ECHO_START;
  6682. switch(code){
  6683. case 104:
  6684. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6685. break;
  6686. case 105:
  6687. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6688. break;
  6689. case 109:
  6690. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6691. break;
  6692. case 218:
  6693. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6694. break;
  6695. case 221:
  6696. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6697. break;
  6698. }
  6699. SERIAL_PROTOCOLLN((int)extruder);
  6700. return true;
  6701. }
  6702. }
  6703. return false;
  6704. }
  6705. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6706. {
  6707. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6708. {
  6709. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6710. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6711. }
  6712. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6713. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6714. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6715. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6716. total_filament_used = 0;
  6717. }
  6718. float calculate_extruder_multiplier(float diameter) {
  6719. float out = 1.f;
  6720. if (volumetric_enabled && diameter > 0.f) {
  6721. float area = M_PI * diameter * diameter * 0.25;
  6722. out = 1.f / area;
  6723. }
  6724. if (extrudemultiply != 100)
  6725. out *= float(extrudemultiply) * 0.01f;
  6726. return out;
  6727. }
  6728. void calculate_extruder_multipliers() {
  6729. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6730. #if EXTRUDERS > 1
  6731. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6732. #if EXTRUDERS > 2
  6733. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6734. #endif
  6735. #endif
  6736. }
  6737. void delay_keep_alive(unsigned int ms)
  6738. {
  6739. for (;;) {
  6740. manage_heater();
  6741. // Manage inactivity, but don't disable steppers on timeout.
  6742. manage_inactivity(true);
  6743. lcd_update(0);
  6744. if (ms == 0)
  6745. break;
  6746. else if (ms >= 50) {
  6747. delay(50);
  6748. ms -= 50;
  6749. } else {
  6750. delay(ms);
  6751. ms = 0;
  6752. }
  6753. }
  6754. }
  6755. static void wait_for_heater(long codenum, uint8_t extruder) {
  6756. #ifdef TEMP_RESIDENCY_TIME
  6757. long residencyStart;
  6758. residencyStart = -1;
  6759. /* continue to loop until we have reached the target temp
  6760. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6761. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6762. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6763. #else
  6764. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6765. #endif //TEMP_RESIDENCY_TIME
  6766. if ((millis() - codenum) > 1000UL)
  6767. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6768. if (!farm_mode) {
  6769. SERIAL_PROTOCOLPGM("T:");
  6770. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6771. SERIAL_PROTOCOLPGM(" E:");
  6772. SERIAL_PROTOCOL((int)extruder);
  6773. #ifdef TEMP_RESIDENCY_TIME
  6774. SERIAL_PROTOCOLPGM(" W:");
  6775. if (residencyStart > -1)
  6776. {
  6777. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6778. SERIAL_PROTOCOLLN(codenum);
  6779. }
  6780. else
  6781. {
  6782. SERIAL_PROTOCOLLN("?");
  6783. }
  6784. }
  6785. #else
  6786. SERIAL_PROTOCOLLN("");
  6787. #endif
  6788. codenum = millis();
  6789. }
  6790. manage_heater();
  6791. manage_inactivity();
  6792. lcd_update(0);
  6793. #ifdef TEMP_RESIDENCY_TIME
  6794. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6795. or when current temp falls outside the hysteresis after target temp was reached */
  6796. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6797. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6798. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6799. {
  6800. residencyStart = millis();
  6801. }
  6802. #endif //TEMP_RESIDENCY_TIME
  6803. }
  6804. }
  6805. void check_babystep()
  6806. {
  6807. int babystep_z;
  6808. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6809. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6810. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6811. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6812. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6813. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6814. lcd_update_enable(true);
  6815. }
  6816. }
  6817. #ifdef DIS
  6818. void d_setup()
  6819. {
  6820. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6821. pinMode(D_DATA, INPUT_PULLUP);
  6822. pinMode(D_REQUIRE, OUTPUT);
  6823. digitalWrite(D_REQUIRE, HIGH);
  6824. }
  6825. float d_ReadData()
  6826. {
  6827. int digit[13];
  6828. String mergeOutput;
  6829. float output;
  6830. digitalWrite(D_REQUIRE, HIGH);
  6831. for (int i = 0; i<13; i++)
  6832. {
  6833. for (int j = 0; j < 4; j++)
  6834. {
  6835. while (digitalRead(D_DATACLOCK) == LOW) {}
  6836. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6837. bitWrite(digit[i], j, digitalRead(D_DATA));
  6838. }
  6839. }
  6840. digitalWrite(D_REQUIRE, LOW);
  6841. mergeOutput = "";
  6842. output = 0;
  6843. for (int r = 5; r <= 10; r++) //Merge digits
  6844. {
  6845. mergeOutput += digit[r];
  6846. }
  6847. output = mergeOutput.toFloat();
  6848. if (digit[4] == 8) //Handle sign
  6849. {
  6850. output *= -1;
  6851. }
  6852. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6853. {
  6854. output /= 10;
  6855. }
  6856. return output;
  6857. }
  6858. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6859. int t1 = 0;
  6860. int t_delay = 0;
  6861. int digit[13];
  6862. int m;
  6863. char str[3];
  6864. //String mergeOutput;
  6865. char mergeOutput[15];
  6866. float output;
  6867. int mesh_point = 0; //index number of calibration point
  6868. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6869. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6870. float mesh_home_z_search = 4;
  6871. float row[x_points_num];
  6872. int ix = 0;
  6873. int iy = 0;
  6874. const char* filename_wldsd = "wldsd.txt";
  6875. char data_wldsd[70];
  6876. char numb_wldsd[10];
  6877. d_setup();
  6878. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6879. // We don't know where we are! HOME!
  6880. // Push the commands to the front of the message queue in the reverse order!
  6881. // There shall be always enough space reserved for these commands.
  6882. repeatcommand_front(); // repeat G80 with all its parameters
  6883. enquecommand_front_P((PSTR("G28 W0")));
  6884. enquecommand_front_P((PSTR("G1 Z5")));
  6885. return;
  6886. }
  6887. unsigned int custom_message_type_old = custom_message_type;
  6888. unsigned int custom_message_state_old = custom_message_state;
  6889. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6890. custom_message_state = (x_points_num * y_points_num) + 10;
  6891. lcd_update(1);
  6892. mbl.reset();
  6893. babystep_undo();
  6894. card.openFile(filename_wldsd, false);
  6895. current_position[Z_AXIS] = mesh_home_z_search;
  6896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6897. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6898. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6899. setup_for_endstop_move(false);
  6900. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6901. SERIAL_PROTOCOL(x_points_num);
  6902. SERIAL_PROTOCOLPGM(",");
  6903. SERIAL_PROTOCOL(y_points_num);
  6904. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6905. SERIAL_PROTOCOL(mesh_home_z_search);
  6906. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6907. SERIAL_PROTOCOL(x_dimension);
  6908. SERIAL_PROTOCOLPGM(",");
  6909. SERIAL_PROTOCOL(y_dimension);
  6910. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6911. while (mesh_point != x_points_num * y_points_num) {
  6912. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6913. iy = mesh_point / x_points_num;
  6914. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6915. float z0 = 0.f;
  6916. current_position[Z_AXIS] = mesh_home_z_search;
  6917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6918. st_synchronize();
  6919. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6920. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6922. st_synchronize();
  6923. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6924. break;
  6925. card.closefile();
  6926. }
  6927. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6928. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6929. //strcat(data_wldsd, numb_wldsd);
  6930. //MYSERIAL.println(data_wldsd);
  6931. //delay(1000);
  6932. //delay(3000);
  6933. //t1 = millis();
  6934. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6935. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6936. memset(digit, 0, sizeof(digit));
  6937. //cli();
  6938. digitalWrite(D_REQUIRE, LOW);
  6939. for (int i = 0; i<13; i++)
  6940. {
  6941. //t1 = millis();
  6942. for (int j = 0; j < 4; j++)
  6943. {
  6944. while (digitalRead(D_DATACLOCK) == LOW) {}
  6945. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6946. bitWrite(digit[i], j, digitalRead(D_DATA));
  6947. }
  6948. //t_delay = (millis() - t1);
  6949. //SERIAL_PROTOCOLPGM(" ");
  6950. //SERIAL_PROTOCOL_F(t_delay, 5);
  6951. //SERIAL_PROTOCOLPGM(" ");
  6952. }
  6953. //sei();
  6954. digitalWrite(D_REQUIRE, HIGH);
  6955. mergeOutput[0] = '\0';
  6956. output = 0;
  6957. for (int r = 5; r <= 10; r++) //Merge digits
  6958. {
  6959. sprintf(str, "%d", digit[r]);
  6960. strcat(mergeOutput, str);
  6961. }
  6962. output = atof(mergeOutput);
  6963. if (digit[4] == 8) //Handle sign
  6964. {
  6965. output *= -1;
  6966. }
  6967. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6968. {
  6969. output *= 0.1;
  6970. }
  6971. //output = d_ReadData();
  6972. //row[ix] = current_position[Z_AXIS];
  6973. memset(data_wldsd, 0, sizeof(data_wldsd));
  6974. for (int i = 0; i <3; i++) {
  6975. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6976. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6977. strcat(data_wldsd, numb_wldsd);
  6978. strcat(data_wldsd, ";");
  6979. }
  6980. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6981. dtostrf(output, 8, 5, numb_wldsd);
  6982. strcat(data_wldsd, numb_wldsd);
  6983. //strcat(data_wldsd, ";");
  6984. card.write_command(data_wldsd);
  6985. //row[ix] = d_ReadData();
  6986. row[ix] = output; // current_position[Z_AXIS];
  6987. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6988. for (int i = 0; i < x_points_num; i++) {
  6989. SERIAL_PROTOCOLPGM(" ");
  6990. SERIAL_PROTOCOL_F(row[i], 5);
  6991. }
  6992. SERIAL_PROTOCOLPGM("\n");
  6993. }
  6994. custom_message_state--;
  6995. mesh_point++;
  6996. lcd_update(1);
  6997. }
  6998. card.closefile();
  6999. }
  7000. #endif
  7001. void temp_compensation_start() {
  7002. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7003. custom_message_state = PINDA_HEAT_T + 1;
  7004. lcd_update(2);
  7005. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7006. current_position[E_AXIS] -= default_retraction;
  7007. }
  7008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7009. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7010. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7011. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7013. st_synchronize();
  7014. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7015. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7016. delay_keep_alive(1000);
  7017. custom_message_state = PINDA_HEAT_T - i;
  7018. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7019. else lcd_update(1);
  7020. }
  7021. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7022. custom_message_state = 0;
  7023. }
  7024. void temp_compensation_apply() {
  7025. int i_add;
  7026. int z_shift = 0;
  7027. float z_shift_mm;
  7028. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7029. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7030. i_add = (target_temperature_bed - 60) / 10;
  7031. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7032. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7033. }else {
  7034. //interpolation
  7035. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7036. }
  7037. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7039. st_synchronize();
  7040. plan_set_z_position(current_position[Z_AXIS]);
  7041. }
  7042. else {
  7043. //we have no temp compensation data
  7044. }
  7045. }
  7046. float temp_comp_interpolation(float inp_temperature) {
  7047. //cubic spline interpolation
  7048. int n, i, j;
  7049. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7050. int shift[10];
  7051. int temp_C[10];
  7052. n = 6; //number of measured points
  7053. shift[0] = 0;
  7054. for (i = 0; i < n; i++) {
  7055. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7056. temp_C[i] = 50 + i * 10; //temperature in C
  7057. #ifdef PINDA_THERMISTOR
  7058. temp_C[i] = 35 + i * 5; //temperature in C
  7059. #else
  7060. temp_C[i] = 50 + i * 10; //temperature in C
  7061. #endif
  7062. x[i] = (float)temp_C[i];
  7063. f[i] = (float)shift[i];
  7064. }
  7065. if (inp_temperature < x[0]) return 0;
  7066. for (i = n - 1; i>0; i--) {
  7067. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7068. h[i - 1] = x[i] - x[i - 1];
  7069. }
  7070. //*********** formation of h, s , f matrix **************
  7071. for (i = 1; i<n - 1; i++) {
  7072. m[i][i] = 2 * (h[i - 1] + h[i]);
  7073. if (i != 1) {
  7074. m[i][i - 1] = h[i - 1];
  7075. m[i - 1][i] = h[i - 1];
  7076. }
  7077. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7078. }
  7079. //*********** forward elimination **************
  7080. for (i = 1; i<n - 2; i++) {
  7081. temp = (m[i + 1][i] / m[i][i]);
  7082. for (j = 1; j <= n - 1; j++)
  7083. m[i + 1][j] -= temp*m[i][j];
  7084. }
  7085. //*********** backward substitution *********
  7086. for (i = n - 2; i>0; i--) {
  7087. sum = 0;
  7088. for (j = i; j <= n - 2; j++)
  7089. sum += m[i][j] * s[j];
  7090. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7091. }
  7092. for (i = 0; i<n - 1; i++)
  7093. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7094. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7095. b = s[i] / 2;
  7096. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7097. d = f[i];
  7098. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7099. }
  7100. return sum;
  7101. }
  7102. #ifdef PINDA_THERMISTOR
  7103. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7104. {
  7105. if (!temp_cal_active) return 0;
  7106. if (!calibration_status_pinda()) return 0;
  7107. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7108. }
  7109. #endif //PINDA_THERMISTOR
  7110. void long_pause() //long pause print
  7111. {
  7112. st_synchronize();
  7113. //save currently set parameters to global variables
  7114. saved_feedmultiply = feedmultiply;
  7115. HotendTempBckp = degTargetHotend(active_extruder);
  7116. fanSpeedBckp = fanSpeed;
  7117. start_pause_print = millis();
  7118. //save position
  7119. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7120. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7121. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7122. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7123. //retract
  7124. current_position[E_AXIS] -= default_retraction;
  7125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7126. //lift z
  7127. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7128. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7130. //set nozzle target temperature to 0
  7131. setAllTargetHotends(0);
  7132. //Move XY to side
  7133. current_position[X_AXIS] = X_PAUSE_POS;
  7134. current_position[Y_AXIS] = Y_PAUSE_POS;
  7135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7136. // Turn off the print fan
  7137. fanSpeed = 0;
  7138. st_synchronize();
  7139. }
  7140. void serialecho_temperatures() {
  7141. float tt = degHotend(active_extruder);
  7142. SERIAL_PROTOCOLPGM("T:");
  7143. SERIAL_PROTOCOL(tt);
  7144. SERIAL_PROTOCOLPGM(" E:");
  7145. SERIAL_PROTOCOL((int)active_extruder);
  7146. SERIAL_PROTOCOLPGM(" B:");
  7147. SERIAL_PROTOCOL_F(degBed(), 1);
  7148. SERIAL_PROTOCOLLN("");
  7149. }
  7150. extern uint32_t sdpos_atomic;
  7151. #ifdef UVLO_SUPPORT
  7152. void uvlo_()
  7153. {
  7154. unsigned long time_start = millis();
  7155. bool sd_print = card.sdprinting;
  7156. // Conserve power as soon as possible.
  7157. disable_x();
  7158. disable_y();
  7159. #ifdef TMC2130
  7160. tmc2130_set_current_h(Z_AXIS, 20);
  7161. tmc2130_set_current_r(Z_AXIS, 20);
  7162. tmc2130_set_current_h(E_AXIS, 20);
  7163. tmc2130_set_current_r(E_AXIS, 20);
  7164. #endif //TMC2130
  7165. // Indicate that the interrupt has been triggered.
  7166. // SERIAL_ECHOLNPGM("UVLO");
  7167. // Read out the current Z motor microstep counter. This will be later used
  7168. // for reaching the zero full step before powering off.
  7169. uint16_t z_microsteps = 0;
  7170. #ifdef TMC2130
  7171. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7172. #endif //TMC2130
  7173. // Calculate the file position, from which to resume this print.
  7174. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7175. {
  7176. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7177. sd_position -= sdlen_planner;
  7178. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7179. sd_position -= sdlen_cmdqueue;
  7180. if (sd_position < 0) sd_position = 0;
  7181. }
  7182. // Backup the feedrate in mm/min.
  7183. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7184. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7185. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7186. // are in action.
  7187. planner_abort_hard();
  7188. // Store the current extruder position.
  7189. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7190. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7191. // Clean the input command queue.
  7192. cmdqueue_reset();
  7193. card.sdprinting = false;
  7194. // card.closefile();
  7195. // Enable stepper driver interrupt to move Z axis.
  7196. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7197. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7198. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7199. sei();
  7200. plan_buffer_line(
  7201. current_position[X_AXIS],
  7202. current_position[Y_AXIS],
  7203. current_position[Z_AXIS],
  7204. current_position[E_AXIS] - default_retraction,
  7205. 95, active_extruder);
  7206. st_synchronize();
  7207. disable_e0();
  7208. plan_buffer_line(
  7209. current_position[X_AXIS],
  7210. current_position[Y_AXIS],
  7211. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7212. current_position[E_AXIS] - default_retraction,
  7213. 40, active_extruder);
  7214. st_synchronize();
  7215. disable_e0();
  7216. plan_buffer_line(
  7217. current_position[X_AXIS],
  7218. current_position[Y_AXIS],
  7219. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7220. current_position[E_AXIS] - default_retraction,
  7221. 40, active_extruder);
  7222. st_synchronize();
  7223. disable_e0();
  7224. disable_z();
  7225. // Move Z up to the next 0th full step.
  7226. // Write the file position.
  7227. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7228. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7229. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7230. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7231. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7232. // Scale the z value to 1u resolution.
  7233. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7234. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7235. }
  7236. // Read out the current Z motor microstep counter. This will be later used
  7237. // for reaching the zero full step before powering off.
  7238. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7239. // Store the current position.
  7240. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7241. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7242. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7243. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7244. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7245. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7246. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7247. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7248. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7249. #if EXTRUDERS > 1
  7250. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7251. #if EXTRUDERS > 2
  7252. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7253. #endif
  7254. #endif
  7255. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7256. // Finaly store the "power outage" flag.
  7257. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7258. st_synchronize();
  7259. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7260. disable_z();
  7261. // Increment power failure counter
  7262. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7263. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7264. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7265. #if 0
  7266. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7267. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7269. st_synchronize();
  7270. #endif
  7271. wdt_enable(WDTO_500MS);
  7272. WRITE(BEEPER,HIGH);
  7273. while(1)
  7274. ;
  7275. }
  7276. void uvlo_tiny()
  7277. {
  7278. uint16_t z_microsteps=0;
  7279. // Conserve power as soon as possible.
  7280. disable_x();
  7281. disable_y();
  7282. disable_e0();
  7283. #ifdef TMC2130
  7284. tmc2130_set_current_h(Z_AXIS, 20);
  7285. tmc2130_set_current_r(Z_AXIS, 20);
  7286. #endif //TMC2130
  7287. // Read out the current Z motor microstep counter
  7288. #ifdef TMC2130
  7289. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7290. #endif //TMC2130
  7291. planner_abort_hard();
  7292. sei();
  7293. plan_buffer_line(
  7294. current_position[X_AXIS],
  7295. current_position[Y_AXIS],
  7296. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7297. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7298. current_position[E_AXIS],
  7299. 40, active_extruder);
  7300. st_synchronize();
  7301. disable_z();
  7302. // Finaly store the "power outage" flag.
  7303. //if(sd_print)
  7304. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7305. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7306. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7307. // Increment power failure counter
  7308. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7309. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7310. wdt_enable(WDTO_500MS);
  7311. WRITE(BEEPER,HIGH);
  7312. while(1)
  7313. ;
  7314. }
  7315. #endif //UVLO_SUPPORT
  7316. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7317. void setup_fan_interrupt() {
  7318. //INT7
  7319. DDRE &= ~(1 << 7); //input pin
  7320. PORTE &= ~(1 << 7); //no internal pull-up
  7321. //start with sensing rising edge
  7322. EICRB &= ~(1 << 6);
  7323. EICRB |= (1 << 7);
  7324. //enable INT7 interrupt
  7325. EIMSK |= (1 << 7);
  7326. }
  7327. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7328. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7329. ISR(INT7_vect) {
  7330. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7331. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7332. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7333. t_fan_rising_edge = millis_nc();
  7334. }
  7335. else { //interrupt was triggered by falling edge
  7336. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7337. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7338. }
  7339. }
  7340. EICRB ^= (1 << 6); //change edge
  7341. }
  7342. #endif
  7343. #ifdef UVLO_SUPPORT
  7344. void setup_uvlo_interrupt() {
  7345. DDRE &= ~(1 << 4); //input pin
  7346. PORTE &= ~(1 << 4); //no internal pull-up
  7347. //sensing falling edge
  7348. EICRB |= (1 << 0);
  7349. EICRB &= ~(1 << 1);
  7350. //enable INT4 interrupt
  7351. EIMSK |= (1 << 4);
  7352. }
  7353. ISR(INT4_vect) {
  7354. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7355. SERIAL_ECHOLNPGM("INT4");
  7356. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7357. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7358. }
  7359. void recover_print(uint8_t automatic) {
  7360. char cmd[30];
  7361. lcd_update_enable(true);
  7362. lcd_update(2);
  7363. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7364. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7365. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7366. // Lift the print head, so one may remove the excess priming material.
  7367. if(!bTiny&&(current_position[Z_AXIS]<25))
  7368. enquecommand_P(PSTR("G1 Z25 F800"));
  7369. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7370. enquecommand_P(PSTR("G28 X Y"));
  7371. // Set the target bed and nozzle temperatures and wait.
  7372. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7373. enquecommand(cmd);
  7374. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7375. enquecommand(cmd);
  7376. enquecommand_P(PSTR("M83")); //E axis relative mode
  7377. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7378. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7379. if(automatic == 0){
  7380. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7381. }
  7382. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7383. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7384. // Restart the print.
  7385. restore_print_from_eeprom();
  7386. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7387. }
  7388. void recover_machine_state_after_power_panic(bool bTiny)
  7389. {
  7390. char cmd[30];
  7391. // 1) Recover the logical cordinates at the time of the power panic.
  7392. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7393. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7394. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7395. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7396. // The current position after power panic is moved to the next closest 0th full step.
  7397. if(bTiny)
  7398. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7399. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7400. else
  7401. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7402. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7403. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7404. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7405. sprintf_P(cmd, PSTR("G92 E"));
  7406. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7407. enquecommand(cmd);
  7408. }
  7409. memcpy(destination, current_position, sizeof(destination));
  7410. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7411. print_world_coordinates();
  7412. // 2) Initialize the logical to physical coordinate system transformation.
  7413. world2machine_initialize();
  7414. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7415. mbl.active = false;
  7416. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7417. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7418. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7419. // Scale the z value to 10u resolution.
  7420. int16_t v;
  7421. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7422. if (v != 0)
  7423. mbl.active = true;
  7424. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7425. }
  7426. if (mbl.active)
  7427. mbl.upsample_3x3();
  7428. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7429. // print_mesh_bed_leveling_table();
  7430. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7431. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7432. babystep_load();
  7433. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7434. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7435. // 6) Power up the motors, mark their positions as known.
  7436. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7437. axis_known_position[X_AXIS] = true; enable_x();
  7438. axis_known_position[Y_AXIS] = true; enable_y();
  7439. axis_known_position[Z_AXIS] = true; enable_z();
  7440. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7441. print_physical_coordinates();
  7442. // 7) Recover the target temperatures.
  7443. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7444. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7445. // 8) Recover extruder multipilers
  7446. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7447. #if EXTRUDERS > 1
  7448. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7449. #if EXTRUDERS > 2
  7450. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7451. #endif
  7452. #endif
  7453. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7454. }
  7455. void restore_print_from_eeprom() {
  7456. int feedrate_rec;
  7457. uint8_t fan_speed_rec;
  7458. char cmd[30];
  7459. char filename[13];
  7460. uint8_t depth = 0;
  7461. char dir_name[9];
  7462. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7463. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7464. SERIAL_ECHOPGM("Feedrate:");
  7465. MYSERIAL.println(feedrate_rec);
  7466. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7467. MYSERIAL.println(int(depth));
  7468. for (int i = 0; i < depth; i++) {
  7469. for (int j = 0; j < 8; j++) {
  7470. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7471. }
  7472. dir_name[8] = '\0';
  7473. MYSERIAL.println(dir_name);
  7474. strcpy(dir_names[i], dir_name);
  7475. card.chdir(dir_name);
  7476. }
  7477. for (int i = 0; i < 8; i++) {
  7478. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7479. }
  7480. filename[8] = '\0';
  7481. MYSERIAL.print(filename);
  7482. strcat_P(filename, PSTR(".gco"));
  7483. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7484. enquecommand(cmd);
  7485. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7486. SERIAL_ECHOPGM("Position read from eeprom:");
  7487. MYSERIAL.println(position);
  7488. // E axis relative mode.
  7489. enquecommand_P(PSTR("M83"));
  7490. // Move to the XY print position in logical coordinates, where the print has been killed.
  7491. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7492. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7493. strcat_P(cmd, PSTR(" F2000"));
  7494. enquecommand(cmd);
  7495. // Move the Z axis down to the print, in logical coordinates.
  7496. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7497. enquecommand(cmd);
  7498. // Unretract.
  7499. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7500. // Set the feedrate saved at the power panic.
  7501. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7502. enquecommand(cmd);
  7503. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7504. {
  7505. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7506. }
  7507. // Set the fan speed saved at the power panic.
  7508. strcpy_P(cmd, PSTR("M106 S"));
  7509. strcat(cmd, itostr3(int(fan_speed_rec)));
  7510. enquecommand(cmd);
  7511. // Set a position in the file.
  7512. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7513. enquecommand(cmd);
  7514. enquecommand_P(PSTR("G4 S0"));
  7515. enquecommand_P(PSTR("PRUSA uvlo"));
  7516. }
  7517. #endif //UVLO_SUPPORT
  7518. ////////////////////////////////////////////////////////////////////////////////
  7519. // save/restore printing
  7520. void stop_and_save_print_to_ram(float z_move, float e_move)
  7521. {
  7522. if (saved_printing) return;
  7523. #if 0
  7524. unsigned char nplanner_blocks;
  7525. #endif
  7526. unsigned char nlines;
  7527. uint16_t sdlen_planner;
  7528. uint16_t sdlen_cmdqueue;
  7529. cli();
  7530. if (card.sdprinting) {
  7531. #if 0
  7532. nplanner_blocks = number_of_blocks();
  7533. #endif
  7534. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7535. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7536. saved_sdpos -= sdlen_planner;
  7537. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7538. saved_sdpos -= sdlen_cmdqueue;
  7539. saved_printing_type = PRINTING_TYPE_SD;
  7540. }
  7541. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7542. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7543. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7544. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7545. saved_sdpos -= nlines;
  7546. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7547. saved_printing_type = PRINTING_TYPE_USB;
  7548. }
  7549. else {
  7550. //not sd printing nor usb printing
  7551. }
  7552. #if 0
  7553. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7554. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7555. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7556. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7557. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7558. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7559. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7560. {
  7561. card.setIndex(saved_sdpos);
  7562. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7563. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7564. MYSERIAL.print(char(card.get()));
  7565. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7566. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7567. MYSERIAL.print(char(card.get()));
  7568. SERIAL_ECHOLNPGM("End of command buffer");
  7569. }
  7570. {
  7571. // Print the content of the planner buffer, line by line:
  7572. card.setIndex(saved_sdpos);
  7573. int8_t iline = 0;
  7574. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7575. SERIAL_ECHOPGM("Planner line (from file): ");
  7576. MYSERIAL.print(int(iline), DEC);
  7577. SERIAL_ECHOPGM(", length: ");
  7578. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7579. SERIAL_ECHOPGM(", steps: (");
  7580. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7581. SERIAL_ECHOPGM(",");
  7582. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7583. SERIAL_ECHOPGM(",");
  7584. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7585. SERIAL_ECHOPGM(",");
  7586. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7587. SERIAL_ECHOPGM("), events: ");
  7588. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7589. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7590. MYSERIAL.print(char(card.get()));
  7591. }
  7592. }
  7593. {
  7594. // Print the content of the command buffer, line by line:
  7595. int8_t iline = 0;
  7596. union {
  7597. struct {
  7598. char lo;
  7599. char hi;
  7600. } lohi;
  7601. uint16_t value;
  7602. } sdlen_single;
  7603. int _bufindr = bufindr;
  7604. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7605. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7606. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7607. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7608. }
  7609. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7610. MYSERIAL.print(int(iline), DEC);
  7611. SERIAL_ECHOPGM(", type: ");
  7612. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7613. SERIAL_ECHOPGM(", len: ");
  7614. MYSERIAL.println(sdlen_single.value, DEC);
  7615. // Print the content of the buffer line.
  7616. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7617. SERIAL_ECHOPGM("Buffer line (from file): ");
  7618. MYSERIAL.println(int(iline), DEC);
  7619. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7620. MYSERIAL.print(char(card.get()));
  7621. if (-- _buflen == 0)
  7622. break;
  7623. // First skip the current command ID and iterate up to the end of the string.
  7624. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7625. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7626. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7627. // If the end of the buffer was empty,
  7628. if (_bufindr == sizeof(cmdbuffer)) {
  7629. // skip to the start and find the nonzero command.
  7630. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7631. }
  7632. }
  7633. }
  7634. #endif
  7635. #if 0
  7636. saved_feedrate2 = feedrate; //save feedrate
  7637. #else
  7638. // Try to deduce the feedrate from the first block of the planner.
  7639. // Speed is in mm/min.
  7640. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7641. #endif
  7642. planner_abort_hard(); //abort printing
  7643. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7644. saved_active_extruder = active_extruder; //save active_extruder
  7645. saved_extruder_temperature = degTargetHotend(active_extruder);
  7646. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7647. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7648. saved_fanSpeed = fanSpeed;
  7649. cmdqueue_reset(); //empty cmdqueue
  7650. card.sdprinting = false;
  7651. // card.closefile();
  7652. saved_printing = true;
  7653. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7654. st_reset_timer();
  7655. sei();
  7656. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7657. #if 1
  7658. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7659. char buf[48];
  7660. // First unretract (relative extrusion)
  7661. if(!saved_extruder_relative_mode){
  7662. strcpy_P(buf, PSTR("M83"));
  7663. enquecommand(buf, false);
  7664. }
  7665. //retract 45mm/s
  7666. strcpy_P(buf, PSTR("G1 E"));
  7667. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7668. strcat_P(buf, PSTR(" F"));
  7669. dtostrf(2700, 8, 3, buf + strlen(buf));
  7670. enquecommand(buf, false);
  7671. // Then lift Z axis
  7672. strcpy_P(buf, PSTR("G1 Z"));
  7673. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7674. strcat_P(buf, PSTR(" F"));
  7675. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7676. // At this point the command queue is empty.
  7677. enquecommand(buf, false);
  7678. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7679. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7680. repeatcommand_front();
  7681. #else
  7682. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7683. st_synchronize(); //wait moving
  7684. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7685. memcpy(destination, current_position, sizeof(destination));
  7686. #endif
  7687. }
  7688. }
  7689. void restore_print_from_ram_and_continue(float e_move)
  7690. {
  7691. if (!saved_printing) return;
  7692. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7693. // current_position[axis] = st_get_position_mm(axis);
  7694. active_extruder = saved_active_extruder; //restore active_extruder
  7695. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7696. heating_status = 1;
  7697. wait_for_heater(millis(),saved_active_extruder);
  7698. heating_status = 2;
  7699. feedrate = saved_feedrate2; //restore feedrate
  7700. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7701. fanSpeed = saved_fanSpeed;
  7702. float e = saved_pos[E_AXIS] - e_move;
  7703. plan_set_e_position(e);
  7704. //first move print head in XY to the saved position:
  7705. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7706. st_synchronize();
  7707. //then move Z
  7708. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7709. st_synchronize();
  7710. //and finaly unretract (35mm/s)
  7711. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7712. st_synchronize();
  7713. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7714. memcpy(destination, current_position, sizeof(destination));
  7715. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7716. card.setIndex(saved_sdpos);
  7717. sdpos_atomic = saved_sdpos;
  7718. card.sdprinting = true;
  7719. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7720. }
  7721. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7722. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7723. serial_count = 0;
  7724. FlushSerialRequestResend();
  7725. }
  7726. else {
  7727. //not sd printing nor usb printing
  7728. }
  7729. lcd_setstatuspgm(_T(WELCOME_MSG));
  7730. saved_printing = false;
  7731. }
  7732. void print_world_coordinates()
  7733. {
  7734. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7735. }
  7736. void print_physical_coordinates()
  7737. {
  7738. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7739. }
  7740. void print_mesh_bed_leveling_table()
  7741. {
  7742. SERIAL_ECHOPGM("mesh bed leveling: ");
  7743. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7744. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7745. MYSERIAL.print(mbl.z_values[y][x], 3);
  7746. SERIAL_ECHOPGM(" ");
  7747. }
  7748. SERIAL_ECHOLNPGM("");
  7749. }
  7750. uint16_t print_time_remaining() {
  7751. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7752. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7753. else print_t = print_time_remaining_silent;
  7754. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7755. return print_t;
  7756. }
  7757. uint8_t calc_percent_done()
  7758. {
  7759. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7760. uint8_t percent_done = 0;
  7761. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7762. percent_done = print_percent_done_normal;
  7763. }
  7764. else if (print_percent_done_silent <= 100) {
  7765. percent_done = print_percent_done_silent;
  7766. }
  7767. else {
  7768. percent_done = card.percentDone();
  7769. }
  7770. return percent_done;
  7771. }
  7772. static void print_time_remaining_init()
  7773. {
  7774. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7775. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7776. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7777. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7778. }
  7779. void M600_check_state()
  7780. {
  7781. //Wait for user to check the state
  7782. lcd_change_fil_state = 0;
  7783. while (lcd_change_fil_state != 1){
  7784. lcd_change_fil_state = 0;
  7785. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7786. lcd_alright();
  7787. KEEPALIVE_STATE(IN_HANDLER);
  7788. switch(lcd_change_fil_state){
  7789. // Filament failed to load so load it again
  7790. case 2:
  7791. if (mmu_enabled)
  7792. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7793. else
  7794. M600_load_filament_movements();
  7795. break;
  7796. // Filament loaded properly but color is not clear
  7797. case 3:
  7798. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7800. lcd_loading_color();
  7801. break;
  7802. // Everything good
  7803. default:
  7804. lcd_change_success();
  7805. break;
  7806. }
  7807. }
  7808. }
  7809. void M600_wait_for_user() {
  7810. //Beep, manage nozzle heater and wait for user to start unload filament
  7811. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7812. int counterBeep = 0;
  7813. unsigned long waiting_start_time = millis();
  7814. uint8_t wait_for_user_state = 0;
  7815. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7816. bool bFirst=true;
  7817. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7818. manage_heater();
  7819. manage_inactivity(true);
  7820. #if BEEPER > 0
  7821. if (counterBeep == 500) {
  7822. counterBeep = 0;
  7823. }
  7824. SET_OUTPUT(BEEPER);
  7825. if (counterBeep == 0) {
  7826. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7827. {
  7828. bFirst=false;
  7829. WRITE(BEEPER, HIGH);
  7830. }
  7831. }
  7832. if (counterBeep == 20) {
  7833. WRITE(BEEPER, LOW);
  7834. }
  7835. counterBeep++;
  7836. #endif //BEEPER > 0
  7837. switch (wait_for_user_state) {
  7838. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7839. delay_keep_alive(4);
  7840. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7841. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7842. wait_for_user_state = 1;
  7843. setAllTargetHotends(0);
  7844. st_synchronize();
  7845. disable_e0();
  7846. disable_e1();
  7847. disable_e2();
  7848. }
  7849. break;
  7850. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7851. delay_keep_alive(4);
  7852. if (lcd_clicked()) {
  7853. setTargetHotend(HotendTempBckp, active_extruder);
  7854. lcd_wait_for_heater();
  7855. wait_for_user_state = 2;
  7856. }
  7857. break;
  7858. case 2: //waiting for nozzle to reach target temperature
  7859. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7860. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7861. waiting_start_time = millis();
  7862. wait_for_user_state = 0;
  7863. }
  7864. else {
  7865. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7866. lcd_set_cursor(1, 4);
  7867. lcd_print(ftostr3(degHotend(active_extruder)));
  7868. }
  7869. break;
  7870. }
  7871. }
  7872. WRITE(BEEPER, LOW);
  7873. }
  7874. void M600_load_filament_movements()
  7875. {
  7876. #ifdef SNMM
  7877. display_loading();
  7878. do
  7879. {
  7880. current_position[E_AXIS] += 0.002;
  7881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7882. delay_keep_alive(2);
  7883. }
  7884. while (!lcd_clicked());
  7885. st_synchronize();
  7886. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7888. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7890. current_position[E_AXIS] += 40;
  7891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7892. current_position[E_AXIS] += 10;
  7893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7894. #else
  7895. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7897. #endif
  7898. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7900. lcd_loading_filament();
  7901. }
  7902. void M600_load_filament() {
  7903. //load filament for single material and SNMM
  7904. lcd_wait_interact();
  7905. //load_filament_time = millis();
  7906. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7907. #ifdef FILAMENT_SENSOR
  7908. fsensor_autoload_check_start();
  7909. #endif //FILAMENT_SENSOR
  7910. while(!lcd_clicked())
  7911. {
  7912. manage_heater();
  7913. manage_inactivity(true);
  7914. #ifdef FILAMENT_SENSOR
  7915. if (fsensor_check_autoload())
  7916. {
  7917. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7918. tone(BEEPER, 1000);
  7919. delay_keep_alive(50);
  7920. noTone(BEEPER);
  7921. break;
  7922. }
  7923. #endif //FILAMENT_SENSOR
  7924. }
  7925. #ifdef FILAMENT_SENSOR
  7926. fsensor_autoload_check_stop();
  7927. #endif //FILAMENT_SENSOR
  7928. KEEPALIVE_STATE(IN_HANDLER);
  7929. #ifdef FILAMENT_SENSOR
  7930. fsensor_oq_meassure_start(70);
  7931. #endif //FILAMENT_SENSOR
  7932. M600_load_filament_movements();
  7933. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7934. tone(BEEPER, 500);
  7935. delay_keep_alive(50);
  7936. noTone(BEEPER);
  7937. #ifdef FILAMENT_SENSOR
  7938. fsensor_oq_meassure_stop();
  7939. if (!fsensor_oq_result())
  7940. {
  7941. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7942. lcd_update_enable(true);
  7943. lcd_update(2);
  7944. if (disable)
  7945. fsensor_disable();
  7946. }
  7947. #endif //FILAMENT_SENSOR
  7948. lcd_update_enable(false);
  7949. }
  7950. #define FIL_LOAD_LENGTH 60