fsensor.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. #include "Marlin.h"
  2. #include "fsensor.h"
  3. #include <avr/pgmspace.h>
  4. #include "pat9125.h"
  5. #include "stepper.h"
  6. #include "planner.h"
  7. #include "fastio.h"
  8. #include "cmdqueue.h"
  9. #include "mmu.h"
  10. //Basic params
  11. #define FSENSOR_CHUNK_LEN 0.64F //filament sensor chunk length 0.64mm
  12. #define FSENSOR_ERR_MAX 17 //filament sensor maximum error count for runout detection
  13. //Optical quality meassurement params
  14. #define FSENSOR_OQ_MAX_ES 6 //maximum error sum while loading (length ~64mm = 100chunks)
  15. #define FSENSOR_OQ_MAX_EM 2 //maximum error counter value while loading
  16. #define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk (applied to avg value)
  17. #define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk (applied to avg value)
  18. #define FSENSOR_OQ_MAX_PD 4 //maximum positive deviation (= yd_max/yd_avg)
  19. #define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min)
  20. #define FSENSOR_OQ_MAX_SH 13 //maximum shutter value
  21. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  22. #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
  23. #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
  24. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  25. extern void restore_print_from_ram_and_continue(float e_move);
  26. extern int8_t FSensorStateMenu;
  27. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  28. uint8_t fsensor_int_pin_old = 0;
  29. int16_t fsensor_chunk_len = 0;
  30. //enabled = initialized and sampled every chunk event
  31. bool fsensor_enabled = true;
  32. //runout watching is done in fsensor_update (called from main loop)
  33. bool fsensor_watch_runout = true;
  34. //not responding - is set if any communication error occured durring initialization or readout
  35. bool fsensor_not_responding = false;
  36. //enable/disable quality meassurement
  37. bool fsensor_oq_meassure_enabled = false;
  38. //number of errors, updated in ISR
  39. uint8_t fsensor_err_cnt = 0;
  40. //variable for accumolating step count (updated callbacks from stepper and ISR)
  41. int16_t fsensor_st_cnt = 0;
  42. //last dy value from pat9125 sensor (used in ISR)
  43. int16_t fsensor_dy_old = 0;
  44. //log flag: 0=log disabled, 1=log enabled
  45. uint8_t fsensor_log = 1;
  46. ////////////////////////////////////////////////////////////////////////////////
  47. //filament autoload variables
  48. //autoload feature enabled
  49. bool fsensor_autoload_enabled = true;
  50. //autoload watching enable/disable flag
  51. bool fsensor_watch_autoload = false;
  52. //
  53. uint16_t fsensor_autoload_y;
  54. //
  55. uint8_t fsensor_autoload_c;
  56. //
  57. uint32_t fsensor_autoload_last_millis;
  58. //
  59. uint8_t fsensor_autoload_sum;
  60. ////////////////////////////////////////////////////////////////////////////////
  61. //filament optical quality meassurement variables
  62. //meassurement enable/disable flag
  63. bool fsensor_oq_meassure = false;
  64. //skip-chunk counter, for accurate meassurement is necesary to skip first chunk...
  65. uint8_t fsensor_oq_skipchunk;
  66. //number of samples from start of meassurement
  67. uint8_t fsensor_oq_samples;
  68. //sum of steps in positive direction movements
  69. uint16_t fsensor_oq_st_sum;
  70. //sum of deltas in positive direction movements
  71. uint16_t fsensor_oq_yd_sum;
  72. //sum of errors durring meassurement
  73. uint16_t fsensor_oq_er_sum;
  74. //max error counter value durring meassurement
  75. uint8_t fsensor_oq_er_max;
  76. //minimum delta value
  77. uint16_t fsensor_oq_yd_min;
  78. //maximum delta value
  79. uint16_t fsensor_oq_yd_max;
  80. //sum of shutter value
  81. uint16_t fsensor_oq_sh_sum;
  82. void fsensor_stop_and_save_print(void)
  83. {
  84. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  85. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  86. }
  87. void fsensor_restore_print_and_continue(void)
  88. {
  89. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  90. fsensor_watch_runout = true;
  91. fsensor_err_cnt = 0;
  92. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  93. }
  94. void fsensor_init(void)
  95. {
  96. uint8_t pat9125 = pat9125_init();
  97. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  98. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  99. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  100. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  101. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  102. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * axis_steps_per_unit[E_AXIS]);
  103. if (!pat9125)
  104. {
  105. fsensor = 0; //disable sensor
  106. fsensor_not_responding = true;
  107. }
  108. else
  109. fsensor_not_responding = false;
  110. if (fsensor)
  111. fsensor_enable();
  112. else
  113. fsensor_disable();
  114. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  115. }
  116. bool fsensor_enable(void)
  117. {
  118. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  119. uint8_t pat9125 = pat9125_init();
  120. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  121. if (pat9125)
  122. fsensor_not_responding = false;
  123. else
  124. fsensor_not_responding = true;
  125. fsensor_enabled = pat9125 ? true : false;
  126. fsensor_watch_runout = true;
  127. fsensor_oq_meassure = false;
  128. fsensor_err_cnt = 0;
  129. fsensor_dy_old = 0;
  130. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  131. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  132. }
  133. else //filament sensor is FINDA, always enable
  134. {
  135. fsensor_enabled = true;
  136. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  137. FSensorStateMenu = 1;
  138. }
  139. return fsensor_enabled;
  140. }
  141. void fsensor_disable(void)
  142. {
  143. fsensor_enabled = false;
  144. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  145. FSensorStateMenu = 0;
  146. }
  147. void fsensor_autoload_set(bool State)
  148. {
  149. fsensor_autoload_enabled = State;
  150. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  151. }
  152. void pciSetup(byte pin)
  153. {
  154. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  155. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  156. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  157. }
  158. void fsensor_autoload_check_start(void)
  159. {
  160. // puts_P(_N("fsensor_autoload_check_start\n"));
  161. if (!fsensor_enabled) return;
  162. if (!fsensor_autoload_enabled) return;
  163. if (fsensor_watch_autoload) return;
  164. if (!pat9125_update_y()) //update sensor
  165. {
  166. fsensor_disable();
  167. fsensor_not_responding = true;
  168. fsensor_watch_autoload = false;
  169. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  170. return;
  171. }
  172. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  173. fsensor_autoload_y = pat9125_y; //save current y value
  174. fsensor_autoload_c = 0; //reset number of changes counter
  175. fsensor_autoload_sum = 0;
  176. fsensor_autoload_last_millis = millis();
  177. fsensor_watch_runout = false;
  178. fsensor_watch_autoload = true;
  179. fsensor_err_cnt = 0;
  180. }
  181. void fsensor_autoload_check_stop(void)
  182. {
  183. // puts_P(_N("fsensor_autoload_check_stop\n"));
  184. if (!fsensor_enabled) return;
  185. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  186. if (!fsensor_autoload_enabled) return;
  187. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  188. if (!fsensor_watch_autoload) return;
  189. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  190. fsensor_autoload_sum = 0;
  191. fsensor_watch_autoload = false;
  192. fsensor_watch_runout = true;
  193. fsensor_err_cnt = 0;
  194. }
  195. bool fsensor_check_autoload(void)
  196. {
  197. if (!fsensor_enabled) return false;
  198. if (!fsensor_autoload_enabled) return false;
  199. if (!fsensor_watch_autoload)
  200. {
  201. fsensor_autoload_check_start();
  202. return false;
  203. }
  204. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  205. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  206. fsensor_autoload_last_millis = millis();
  207. if (!pat9125_update_y()) //update sensor
  208. {
  209. fsensor_disable();
  210. fsensor_not_responding = true;
  211. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  212. return false;
  213. }
  214. int16_t dy = pat9125_y - fsensor_autoload_y;
  215. if (dy) //? dy value is nonzero
  216. {
  217. if (dy > 0) //? delta-y value is positive (inserting)
  218. {
  219. fsensor_autoload_sum += dy;
  220. fsensor_autoload_c += 3; //increment change counter by 3
  221. }
  222. else if (fsensor_autoload_c > 1)
  223. fsensor_autoload_c -= 2; //decrement change counter by 2
  224. fsensor_autoload_y = pat9125_y; //save current value
  225. }
  226. else if (fsensor_autoload_c > 0)
  227. fsensor_autoload_c--;
  228. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  229. // puts_P(_N("fsensor_check_autoload\n"));
  230. // if (fsensor_autoload_c != fsensor_autoload_c_old)
  231. // printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  232. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  233. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  234. {
  235. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  236. return true;
  237. }
  238. return false;
  239. }
  240. void fsensor_oq_meassure_set(bool State)
  241. {
  242. fsensor_oq_meassure_enabled = State;
  243. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  244. }
  245. void fsensor_oq_meassure_start(uint8_t skip)
  246. {
  247. if (!fsensor_enabled) return;
  248. if (!fsensor_oq_meassure_enabled) return;
  249. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  250. fsensor_oq_skipchunk = skip;
  251. fsensor_oq_samples = 0;
  252. fsensor_oq_st_sum = 0;
  253. fsensor_oq_yd_sum = 0;
  254. fsensor_oq_er_sum = 0;
  255. fsensor_oq_er_max = 0;
  256. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  257. fsensor_oq_yd_max = 0;
  258. fsensor_oq_sh_sum = 0;
  259. pat9125_update();
  260. pat9125_y = 0;
  261. fsensor_watch_runout = false;
  262. fsensor_oq_meassure = true;
  263. }
  264. void fsensor_oq_meassure_stop(void)
  265. {
  266. if (!fsensor_enabled) return;
  267. if (!fsensor_oq_meassure_enabled) return;
  268. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  269. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  270. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  271. fsensor_oq_meassure = false;
  272. fsensor_watch_runout = true;
  273. fsensor_err_cnt = 0;
  274. }
  275. const char _OK[] PROGMEM = "OK";
  276. const char _NG[] PROGMEM = "NG!";
  277. bool fsensor_oq_result(void)
  278. {
  279. if (!fsensor_enabled) return true;
  280. if (!fsensor_oq_meassure_enabled) return true;
  281. printf_P(_N("fsensor_oq_result\n"));
  282. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  283. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  284. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  285. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  286. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  287. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  288. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  289. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  290. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  291. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  292. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  293. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  294. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  295. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  296. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  297. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  298. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  299. if (yd_qua >= 8) res_sh_avg = true;
  300. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  301. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  302. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  303. return res;
  304. }
  305. ISR(PCINT2_vect)
  306. {
  307. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  308. fsensor_int_pin_old = PINK;
  309. static bool _lock = false;
  310. if (_lock) return;
  311. _lock = true;
  312. int st_cnt = fsensor_st_cnt;
  313. fsensor_st_cnt = 0;
  314. sei();
  315. uint8_t old_err_cnt = fsensor_err_cnt;
  316. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  317. if (!pat9125_res)
  318. {
  319. fsensor_disable();
  320. fsensor_not_responding = true;
  321. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  322. }
  323. if (st_cnt != 0)
  324. { //movement
  325. if (st_cnt > 0) //positive movement
  326. {
  327. if (pat9125_y < 0)
  328. {
  329. if (fsensor_err_cnt)
  330. fsensor_err_cnt += 2;
  331. else
  332. fsensor_err_cnt++;
  333. }
  334. else if (pat9125_y > 0)
  335. {
  336. if (fsensor_err_cnt)
  337. fsensor_err_cnt--;
  338. }
  339. else //(pat9125_y == 0)
  340. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  341. fsensor_err_cnt++;
  342. if (fsensor_oq_meassure)
  343. {
  344. if (fsensor_oq_skipchunk)
  345. {
  346. fsensor_oq_skipchunk--;
  347. fsensor_err_cnt = 0;
  348. }
  349. else
  350. {
  351. if (st_cnt == fsensor_chunk_len)
  352. {
  353. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  354. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  355. }
  356. fsensor_oq_samples++;
  357. fsensor_oq_st_sum += st_cnt;
  358. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  359. if (fsensor_err_cnt > old_err_cnt)
  360. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  361. if (fsensor_oq_er_max < fsensor_err_cnt)
  362. fsensor_oq_er_max = fsensor_err_cnt;
  363. fsensor_oq_sh_sum += pat9125_s;
  364. }
  365. }
  366. }
  367. else //negative movement
  368. {
  369. }
  370. }
  371. else
  372. { //no movement
  373. }
  374. #ifdef DEBUG_FSENSOR_LOG
  375. if (fsensor_log)
  376. {
  377. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  378. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  379. }
  380. #endif //DEBUG_FSENSOR_LOG
  381. fsensor_dy_old = pat9125_y;
  382. pat9125_y = 0;
  383. _lock = false;
  384. return;
  385. }
  386. void fsensor_st_block_begin(block_t* bl)
  387. {
  388. if (!fsensor_enabled) return;
  389. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  390. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  391. {
  392. if (_READ(63)) _WRITE(63, LOW);
  393. else _WRITE(63, HIGH);
  394. }
  395. }
  396. void fsensor_st_block_chunk(block_t* bl, int cnt)
  397. {
  398. if (!fsensor_enabled) return;
  399. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  400. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  401. {
  402. if (_READ(63)) _WRITE(63, LOW);
  403. else _WRITE(63, HIGH);
  404. }
  405. }
  406. void fsensor_update(void)
  407. {
  408. if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  409. {
  410. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  411. fsensor_autoload_enabled = false;
  412. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  413. fsensor_oq_meassure_enabled = true;
  414. fsensor_stop_and_save_print();
  415. fsensor_err_cnt = 0;
  416. fsensor_oq_meassure_start(0);
  417. // st_synchronize();
  418. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  419. // current_position[axis] = st_get_position_mm(axis);
  420. /*
  421. current_position[E_AXIS] -= 3;
  422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
  423. st_synchronize();
  424. current_position[E_AXIS] += 3;
  425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
  426. st_synchronize();
  427. */
  428. enquecommand_front_P((PSTR("G1 E-3 F200")));
  429. process_commands();
  430. KEEPALIVE_STATE(IN_HANDLER);
  431. cmdqueue_pop_front();
  432. st_synchronize();
  433. enquecommand_front_P((PSTR("G1 E3 F200")));
  434. process_commands();
  435. KEEPALIVE_STATE(IN_HANDLER);
  436. cmdqueue_pop_front();
  437. st_synchronize();
  438. uint8_t err_cnt = fsensor_err_cnt;
  439. fsensor_oq_meassure_stop();
  440. bool err = false;
  441. err |= (err_cnt > 1);
  442. err |= (fsensor_oq_er_sum > 2);
  443. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  444. if (!err)
  445. {
  446. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  447. fsensor_restore_print_and_continue();
  448. }
  449. else
  450. {
  451. printf_P(PSTR("fsensor_update - M600\n"));
  452. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  453. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  454. enquecommand_front_P(PSTR("FSENSOR_RECOVER"));
  455. enquecommand_front_P((PSTR("M600")));
  456. fsensor_watch_runout = false;
  457. }
  458. fsensor_autoload_enabled = autoload_enabled_tmp;
  459. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  460. }
  461. }
  462. void fsensor_setup_interrupt(void)
  463. {
  464. pinMode(FSENSOR_INT_PIN, OUTPUT);
  465. digitalWrite(FSENSOR_INT_PIN, LOW);
  466. fsensor_int_pin_old = 0;
  467. pciSetup(FSENSOR_INT_PIN);
  468. }