temperature.cpp 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float temp_iState[EXTRUDERS] = { 0 };
  88. static float temp_dState[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float temp_iState_min[EXTRUDERS];
  95. static float temp_iState_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. static unsigned long extruder_autofan_last_check;
  122. #endif
  123. #if EXTRUDERS > 3
  124. # error Unsupported number of extruders
  125. #elif EXTRUDERS > 2
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  127. #elif EXTRUDERS > 1
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  129. #else
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  131. #endif
  132. // Init min and max temp with extreme values to prevent false errors during startup
  133. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  134. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  135. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  136. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  137. #ifdef BED_MINTEMP
  138. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  139. #endif
  140. #ifdef BED_MAXTEMP
  141. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  142. #endif
  143. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  144. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  145. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  146. #else
  147. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  148. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  149. #endif
  150. static float analog2temp(int raw, uint8_t e);
  151. static float analog2tempBed(int raw);
  152. static float analog2tempAmbient(int raw);
  153. static void updateTemperaturesFromRawValues();
  154. enum TempRunawayStates
  155. {
  156. TempRunaway_INACTIVE = 0,
  157. TempRunaway_PREHEAT = 1,
  158. TempRunaway_ACTIVE = 2,
  159. };
  160. #ifdef WATCH_TEMP_PERIOD
  161. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  163. #endif //WATCH_TEMP_PERIOD
  164. #ifndef SOFT_PWM_SCALE
  165. #define SOFT_PWM_SCALE 0
  166. #endif
  167. //===========================================================================
  168. //============================= functions ============================
  169. //===========================================================================
  170. void PID_autotune(float temp, int extruder, int ncycles)
  171. {
  172. pid_number_of_cycles = ncycles;
  173. pid_tuning_finished = false;
  174. float input = 0.0;
  175. pid_cycle=0;
  176. bool heating = true;
  177. unsigned long temp_millis = millis();
  178. unsigned long t1=temp_millis;
  179. unsigned long t2=temp_millis;
  180. long t_high = 0;
  181. long t_low = 0;
  182. long bias, d;
  183. float Ku, Tu;
  184. float max = 0, min = 10000;
  185. uint8_t safety_check_cycles = 0;
  186. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  187. float temp_ambient;
  188. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  189. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  190. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  191. unsigned long extruder_autofan_last_check = millis();
  192. #endif
  193. if ((extruder >= EXTRUDERS)
  194. #if (TEMP_BED_PIN <= -1)
  195. ||(extruder < 0)
  196. #endif
  197. ){
  198. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  199. pid_tuning_finished = true;
  200. pid_cycle = 0;
  201. return;
  202. }
  203. SERIAL_ECHOLN("PID Autotune start");
  204. disable_heater(); // switch off all heaters.
  205. if (extruder<0)
  206. {
  207. soft_pwm_bed = (MAX_BED_POWER)/2;
  208. bias = d = (MAX_BED_POWER)/2;
  209. }
  210. else
  211. {
  212. soft_pwm[extruder] = (PID_MAX)/2;
  213. bias = d = (PID_MAX)/2;
  214. }
  215. for(;;) {
  216. wdt_reset();
  217. if(temp_meas_ready == true) { // temp sample ready
  218. updateTemperaturesFromRawValues();
  219. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  220. max=max(max,input);
  221. min=min(min,input);
  222. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  223. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  224. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  225. if(millis() - extruder_autofan_last_check > 2500) {
  226. checkExtruderAutoFans();
  227. extruder_autofan_last_check = millis();
  228. }
  229. #endif
  230. if(heating == true && input > temp) {
  231. if(millis() - t2 > 5000) {
  232. heating=false;
  233. if (extruder<0)
  234. soft_pwm_bed = (bias - d) >> 1;
  235. else
  236. soft_pwm[extruder] = (bias - d) >> 1;
  237. t1=millis();
  238. t_high=t1 - t2;
  239. max=temp;
  240. }
  241. }
  242. if(heating == false && input < temp) {
  243. if(millis() - t1 > 5000) {
  244. heating=true;
  245. t2=millis();
  246. t_low=t2 - t1;
  247. if(pid_cycle > 0) {
  248. bias += (d*(t_high - t_low))/(t_low + t_high);
  249. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  250. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  251. else d = bias;
  252. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  253. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  254. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  255. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  256. if(pid_cycle > 2) {
  257. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  258. Tu = ((float)(t_low + t_high)/1000.0);
  259. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  260. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  261. _Kp = 0.6*Ku;
  262. _Ki = 2*_Kp/Tu;
  263. _Kd = _Kp*Tu/8;
  264. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  265. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  266. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  267. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  268. /*
  269. _Kp = 0.33*Ku;
  270. _Ki = _Kp/Tu;
  271. _Kd = _Kp*Tu/3;
  272. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  273. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  274. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  275. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  276. _Kp = 0.2*Ku;
  277. _Ki = 2*_Kp/Tu;
  278. _Kd = _Kp*Tu/3;
  279. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  280. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  281. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  282. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  283. */
  284. }
  285. }
  286. if (extruder<0)
  287. soft_pwm_bed = (bias + d) >> 1;
  288. else
  289. soft_pwm[extruder] = (bias + d) >> 1;
  290. pid_cycle++;
  291. min=temp;
  292. }
  293. }
  294. }
  295. if(input > (temp + 20)) {
  296. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  297. pid_tuning_finished = true;
  298. pid_cycle = 0;
  299. return;
  300. }
  301. if(millis() - temp_millis > 2000) {
  302. int p;
  303. if (extruder<0){
  304. p=soft_pwm_bed;
  305. SERIAL_PROTOCOLPGM("B:");
  306. }else{
  307. p=soft_pwm[extruder];
  308. SERIAL_PROTOCOLPGM("T:");
  309. }
  310. SERIAL_PROTOCOL(input);
  311. SERIAL_PROTOCOLPGM(" @:");
  312. SERIAL_PROTOCOLLN(p);
  313. if (safety_check_cycles == 0) { //save ambient temp
  314. temp_ambient = input;
  315. //SERIAL_ECHOPGM("Ambient T: ");
  316. //MYSERIAL.println(temp_ambient);
  317. safety_check_cycles++;
  318. }
  319. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  320. safety_check_cycles++;
  321. }
  322. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  323. safety_check_cycles++;
  324. //SERIAL_ECHOPGM("Time from beginning: ");
  325. //MYSERIAL.print(safety_check_cycles_count * 2);
  326. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  327. //MYSERIAL.println(input - temp_ambient);
  328. if (abs(input - temp_ambient) < 5.0) {
  329. temp_runaway_stop(false, (extruder<0));
  330. pid_tuning_finished = true;
  331. return;
  332. }
  333. }
  334. temp_millis = millis();
  335. }
  336. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  337. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  338. pid_tuning_finished = true;
  339. pid_cycle = 0;
  340. return;
  341. }
  342. if(pid_cycle > ncycles) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. lcd_update();
  349. }
  350. }
  351. void updatePID()
  352. {
  353. #ifdef PIDTEMP
  354. for(int e = 0; e < EXTRUDERS; e++) {
  355. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  356. }
  357. #endif
  358. #ifdef PIDTEMPBED
  359. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  360. #endif
  361. }
  362. int getHeaterPower(int heater) {
  363. if (heater<0)
  364. return soft_pwm_bed;
  365. return soft_pwm[heater];
  366. }
  367. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  368. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  369. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  370. #if defined(FAN_PIN) && FAN_PIN > -1
  371. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  372. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  373. #endif
  374. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  375. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  376. #endif
  377. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #endif
  381. void setExtruderAutoFanState(int pin, bool state)
  382. {
  383. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  384. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  385. pinMode(pin, OUTPUT);
  386. digitalWrite(pin, newFanSpeed);
  387. analogWrite(pin, newFanSpeed);
  388. }
  389. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  390. void countFanSpeed()
  391. {
  392. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  393. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  394. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  395. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  396. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  397. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  398. SERIAL_ECHOLNPGM(" ");*/
  399. fan_edge_counter[0] = 0;
  400. fan_edge_counter[1] = 0;
  401. }
  402. extern bool fans_check_enabled;
  403. void checkFanSpeed()
  404. {
  405. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  406. static unsigned char fan_speed_errors[2] = { 0,0 };
  407. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  408. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  409. else fan_speed_errors[0] = 0;
  410. #endif
  411. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  412. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  413. else fan_speed_errors[1] = 0;
  414. #endif
  415. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  416. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  417. }
  418. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  419. extern void restore_print_from_ram_and_continue(float e_move);
  420. void fanSpeedError(unsigned char _fan) {
  421. if (get_message_level() != 0 && isPrintPaused) return;
  422. //to ensure that target temp. is not set to zero in case taht we are resuming print
  423. if (card.sdprinting) {
  424. if (heating_status != 0) {
  425. lcd_print_stop();
  426. }
  427. else {
  428. isPrintPaused = true;
  429. lcd_sdcard_pause();
  430. }
  431. }
  432. else {
  433. setTargetHotend0(0);
  434. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  435. }
  436. switch (_fan) {
  437. case 0:
  438. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  439. if (get_message_level() == 0) {
  440. WRITE(BEEPER, HIGH);
  441. delayMicroseconds(200);
  442. WRITE(BEEPER, LOW);
  443. delayMicroseconds(100);
  444. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  445. }
  446. break;
  447. case 1:
  448. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  449. if (get_message_level() == 0) {
  450. WRITE(BEEPER, HIGH);
  451. delayMicroseconds(200);
  452. WRITE(BEEPER, LOW);
  453. delayMicroseconds(100);
  454. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  455. }
  456. break;
  457. }
  458. }
  459. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  460. void checkExtruderAutoFans()
  461. {
  462. uint8_t fanState = 0;
  463. // which fan pins need to be turned on?
  464. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  465. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  466. fanState |= 1;
  467. #endif
  468. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  469. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  470. {
  471. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  472. fanState |= 1;
  473. else
  474. fanState |= 2;
  475. }
  476. #endif
  477. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  478. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  479. {
  480. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  481. fanState |= 1;
  482. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  483. fanState |= 2;
  484. else
  485. fanState |= 4;
  486. }
  487. #endif
  488. // update extruder auto fan states
  489. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  490. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  491. #endif
  492. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  493. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  494. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  495. #endif
  496. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  497. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  498. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  499. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  500. #endif
  501. }
  502. #endif // any extruder auto fan pins set
  503. void manage_heater()
  504. {
  505. wdt_reset();
  506. float pid_input;
  507. float pid_output;
  508. if(temp_meas_ready != true) //better readability
  509. return;
  510. updateTemperaturesFromRawValues();
  511. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  512. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  513. #endif
  514. for(int e = 0; e < EXTRUDERS; e++)
  515. {
  516. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  517. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  518. #endif
  519. #ifdef PIDTEMP
  520. pid_input = current_temperature[e];
  521. #ifndef PID_OPENLOOP
  522. pid_error[e] = target_temperature[e] - pid_input;
  523. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  524. pid_output = BANG_MAX;
  525. pid_reset[e] = true;
  526. }
  527. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  528. pid_output = 0;
  529. pid_reset[e] = true;
  530. }
  531. else {
  532. if(pid_reset[e] == true) {
  533. temp_iState[e] = 0.0;
  534. pid_reset[e] = false;
  535. }
  536. pTerm[e] = Kp * pid_error[e];
  537. temp_iState[e] += pid_error[e];
  538. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  539. iTerm[e] = Ki * temp_iState[e];
  540. //K1 defined in Configuration.h in the PID settings
  541. #define K2 (1.0-K1)
  542. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  543. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  544. if (pid_output > PID_MAX) {
  545. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  546. pid_output=PID_MAX;
  547. } else if (pid_output < 0){
  548. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  549. pid_output=0;
  550. }
  551. }
  552. temp_dState[e] = pid_input;
  553. #else
  554. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  555. #endif //PID_OPENLOOP
  556. #ifdef PID_DEBUG
  557. SERIAL_ECHO_START;
  558. SERIAL_ECHO(" PID_DEBUG ");
  559. SERIAL_ECHO(e);
  560. SERIAL_ECHO(": Input ");
  561. SERIAL_ECHO(pid_input);
  562. SERIAL_ECHO(" Output ");
  563. SERIAL_ECHO(pid_output);
  564. SERIAL_ECHO(" pTerm ");
  565. SERIAL_ECHO(pTerm[e]);
  566. SERIAL_ECHO(" iTerm ");
  567. SERIAL_ECHO(iTerm[e]);
  568. SERIAL_ECHO(" dTerm ");
  569. SERIAL_ECHOLN(dTerm[e]);
  570. #endif //PID_DEBUG
  571. #else /* PID off */
  572. pid_output = 0;
  573. if(current_temperature[e] < target_temperature[e]) {
  574. pid_output = PID_MAX;
  575. }
  576. #endif
  577. // Check if temperature is within the correct range
  578. #ifdef AMBIENT_THERMISTOR
  579. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  580. #else //AMBIENT_THERMISTOR
  581. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  582. #endif //AMBIENT_THERMISTOR
  583. {
  584. soft_pwm[e] = (int)pid_output >> 1;
  585. }
  586. else
  587. {
  588. soft_pwm[e] = 0;
  589. }
  590. #ifdef WATCH_TEMP_PERIOD
  591. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  592. {
  593. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  594. {
  595. setTargetHotend(0, e);
  596. LCD_MESSAGEPGM("Heating failed");
  597. SERIAL_ECHO_START;
  598. SERIAL_ECHOLN("Heating failed");
  599. }else{
  600. watchmillis[e] = 0;
  601. }
  602. }
  603. #endif
  604. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  605. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  606. disable_heater();
  607. if(IsStopped() == false) {
  608. SERIAL_ERROR_START;
  609. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  610. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  611. }
  612. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  613. Stop();
  614. #endif
  615. }
  616. #endif
  617. } // End extruder for loop
  618. #ifndef DEBUG_DISABLE_FANCHECK
  619. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  620. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  621. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  622. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  623. {
  624. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  625. countFanSpeed();
  626. checkFanSpeed();
  627. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  628. checkExtruderAutoFans();
  629. extruder_autofan_last_check = millis();
  630. }
  631. #endif
  632. #endif //DEBUG_DISABLE_FANCHECK
  633. #ifndef PIDTEMPBED
  634. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  635. return;
  636. previous_millis_bed_heater = millis();
  637. #endif
  638. #if TEMP_SENSOR_BED != 0
  639. #ifdef PIDTEMPBED
  640. pid_input = current_temperature_bed;
  641. #ifndef PID_OPENLOOP
  642. pid_error_bed = target_temperature_bed - pid_input;
  643. pTerm_bed = bedKp * pid_error_bed;
  644. temp_iState_bed += pid_error_bed;
  645. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  646. iTerm_bed = bedKi * temp_iState_bed;
  647. //K1 defined in Configuration.h in the PID settings
  648. #define K2 (1.0-K1)
  649. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  650. temp_dState_bed = pid_input;
  651. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  652. if (pid_output > MAX_BED_POWER) {
  653. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  654. pid_output=MAX_BED_POWER;
  655. } else if (pid_output < 0){
  656. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  657. pid_output=0;
  658. }
  659. #else
  660. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  661. #endif //PID_OPENLOOP
  662. #ifdef AMBIENT_THERMISTOR
  663. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  664. #else //AMBIENT_THERMISTOR
  665. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  666. #endif //AMBIENT_THERMISTOR
  667. {
  668. soft_pwm_bed = (int)pid_output >> 1;
  669. }
  670. else {
  671. soft_pwm_bed = 0;
  672. }
  673. #elif !defined(BED_LIMIT_SWITCHING)
  674. // Check if temperature is within the correct range
  675. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  676. {
  677. if(current_temperature_bed >= target_temperature_bed)
  678. {
  679. soft_pwm_bed = 0;
  680. }
  681. else
  682. {
  683. soft_pwm_bed = MAX_BED_POWER>>1;
  684. }
  685. }
  686. else
  687. {
  688. soft_pwm_bed = 0;
  689. WRITE(HEATER_BED_PIN,LOW);
  690. }
  691. #else //#ifdef BED_LIMIT_SWITCHING
  692. // Check if temperature is within the correct band
  693. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  694. {
  695. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  696. {
  697. soft_pwm_bed = 0;
  698. }
  699. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  700. {
  701. soft_pwm_bed = MAX_BED_POWER>>1;
  702. }
  703. }
  704. else
  705. {
  706. soft_pwm_bed = 0;
  707. WRITE(HEATER_BED_PIN,LOW);
  708. }
  709. #endif
  710. #endif
  711. #ifdef HOST_KEEPALIVE_FEATURE
  712. host_keepalive();
  713. #endif
  714. }
  715. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  716. // Derived from RepRap FiveD extruder::getTemperature()
  717. // For hot end temperature measurement.
  718. static float analog2temp(int raw, uint8_t e) {
  719. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  720. if(e > EXTRUDERS)
  721. #else
  722. if(e >= EXTRUDERS)
  723. #endif
  724. {
  725. SERIAL_ERROR_START;
  726. SERIAL_ERROR((int)e);
  727. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  728. kill("", 6);
  729. return 0.0;
  730. }
  731. #ifdef HEATER_0_USES_MAX6675
  732. if (e == 0)
  733. {
  734. return 0.25 * raw;
  735. }
  736. #endif
  737. if(heater_ttbl_map[e] != NULL)
  738. {
  739. float celsius = 0;
  740. uint8_t i;
  741. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  742. for (i=1; i<heater_ttbllen_map[e]; i++)
  743. {
  744. if (PGM_RD_W((*tt)[i][0]) > raw)
  745. {
  746. celsius = PGM_RD_W((*tt)[i-1][1]) +
  747. (raw - PGM_RD_W((*tt)[i-1][0])) *
  748. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  749. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  750. break;
  751. }
  752. }
  753. // Overflow: Set to last value in the table
  754. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  755. return celsius;
  756. }
  757. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  758. }
  759. // Derived from RepRap FiveD extruder::getTemperature()
  760. // For bed temperature measurement.
  761. static float analog2tempBed(int raw) {
  762. #ifdef BED_USES_THERMISTOR
  763. float celsius = 0;
  764. byte i;
  765. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  766. {
  767. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  768. {
  769. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  770. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  771. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  772. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  773. break;
  774. }
  775. }
  776. // Overflow: Set to last value in the table
  777. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  778. // temperature offset adjustment
  779. #ifdef BED_OFFSET
  780. float _offset = BED_OFFSET;
  781. float _offset_center = BED_OFFSET_CENTER;
  782. float _offset_start = BED_OFFSET_START;
  783. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  784. float _second_koef = (_offset / 2) / (100 - _offset_center);
  785. if (celsius >= _offset_start && celsius <= _offset_center)
  786. {
  787. celsius = celsius + (_first_koef * (celsius - _offset_start));
  788. }
  789. else if (celsius > _offset_center && celsius <= 100)
  790. {
  791. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  792. }
  793. else if (celsius > 100)
  794. {
  795. celsius = celsius + _offset;
  796. }
  797. #endif
  798. return celsius;
  799. #elif defined BED_USES_AD595
  800. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  801. #else
  802. return 0;
  803. #endif
  804. }
  805. #ifdef AMBIENT_THERMISTOR
  806. static float analog2tempAmbient(int raw)
  807. {
  808. float celsius = 0;
  809. byte i;
  810. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  811. {
  812. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  813. {
  814. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  815. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  816. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  817. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  818. break;
  819. }
  820. }
  821. // Overflow: Set to last value in the table
  822. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  823. return celsius;
  824. }
  825. #endif //AMBIENT_THERMISTOR
  826. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  827. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  828. static void updateTemperaturesFromRawValues()
  829. {
  830. for(uint8_t e=0;e<EXTRUDERS;e++)
  831. {
  832. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  833. }
  834. #ifdef PINDA_THERMISTOR
  835. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  836. #endif
  837. #ifdef AMBIENT_THERMISTOR
  838. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  839. #endif
  840. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  841. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  842. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  843. #endif
  844. //Reset the watchdog after we know we have a temperature measurement.
  845. watchdog_reset();
  846. CRITICAL_SECTION_START;
  847. temp_meas_ready = false;
  848. CRITICAL_SECTION_END;
  849. }
  850. void tp_init()
  851. {
  852. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  853. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  854. MCUCR=(1<<JTD);
  855. MCUCR=(1<<JTD);
  856. #endif
  857. // Finish init of mult extruder arrays
  858. for(int e = 0; e < EXTRUDERS; e++) {
  859. // populate with the first value
  860. maxttemp[e] = maxttemp[0];
  861. #ifdef PIDTEMP
  862. temp_iState_min[e] = 0.0;
  863. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  864. #endif //PIDTEMP
  865. #ifdef PIDTEMPBED
  866. temp_iState_min_bed = 0.0;
  867. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  868. #endif //PIDTEMPBED
  869. }
  870. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  871. SET_OUTPUT(HEATER_0_PIN);
  872. #endif
  873. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  874. SET_OUTPUT(HEATER_1_PIN);
  875. #endif
  876. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  877. SET_OUTPUT(HEATER_2_PIN);
  878. #endif
  879. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  880. SET_OUTPUT(HEATER_BED_PIN);
  881. #endif
  882. #if defined(FAN_PIN) && (FAN_PIN > -1)
  883. SET_OUTPUT(FAN_PIN);
  884. #ifdef FAST_PWM_FAN
  885. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  886. #endif
  887. #ifdef FAN_SOFT_PWM
  888. soft_pwm_fan = fanSpeedSoftPwm / 2;
  889. #endif
  890. #endif
  891. #ifdef HEATER_0_USES_MAX6675
  892. #ifndef SDSUPPORT
  893. SET_OUTPUT(SCK_PIN);
  894. WRITE(SCK_PIN,0);
  895. SET_OUTPUT(MOSI_PIN);
  896. WRITE(MOSI_PIN,1);
  897. SET_INPUT(MISO_PIN);
  898. WRITE(MISO_PIN,1);
  899. #endif
  900. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  901. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  902. pinMode(SS_PIN, OUTPUT);
  903. digitalWrite(SS_PIN,0);
  904. pinMode(MAX6675_SS, OUTPUT);
  905. digitalWrite(MAX6675_SS,1);
  906. #endif
  907. adc_init();
  908. // Use timer0 for temperature measurement
  909. // Interleave temperature interrupt with millies interrupt
  910. OCR0B = 128;
  911. TIMSK0 |= (1<<OCIE0B);
  912. // Wait for temperature measurement to settle
  913. delay(250);
  914. #ifdef HEATER_0_MINTEMP
  915. minttemp[0] = HEATER_0_MINTEMP;
  916. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  917. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  918. minttemp_raw[0] += OVERSAMPLENR;
  919. #else
  920. minttemp_raw[0] -= OVERSAMPLENR;
  921. #endif
  922. }
  923. #endif //MINTEMP
  924. #ifdef HEATER_0_MAXTEMP
  925. maxttemp[0] = HEATER_0_MAXTEMP;
  926. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  927. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  928. maxttemp_raw[0] -= OVERSAMPLENR;
  929. #else
  930. maxttemp_raw[0] += OVERSAMPLENR;
  931. #endif
  932. }
  933. #endif //MAXTEMP
  934. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  935. minttemp[1] = HEATER_1_MINTEMP;
  936. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  937. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  938. minttemp_raw[1] += OVERSAMPLENR;
  939. #else
  940. minttemp_raw[1] -= OVERSAMPLENR;
  941. #endif
  942. }
  943. #endif // MINTEMP 1
  944. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  945. maxttemp[1] = HEATER_1_MAXTEMP;
  946. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  947. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  948. maxttemp_raw[1] -= OVERSAMPLENR;
  949. #else
  950. maxttemp_raw[1] += OVERSAMPLENR;
  951. #endif
  952. }
  953. #endif //MAXTEMP 1
  954. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  955. minttemp[2] = HEATER_2_MINTEMP;
  956. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  957. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  958. minttemp_raw[2] += OVERSAMPLENR;
  959. #else
  960. minttemp_raw[2] -= OVERSAMPLENR;
  961. #endif
  962. }
  963. #endif //MINTEMP 2
  964. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  965. maxttemp[2] = HEATER_2_MAXTEMP;
  966. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  967. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  968. maxttemp_raw[2] -= OVERSAMPLENR;
  969. #else
  970. maxttemp_raw[2] += OVERSAMPLENR;
  971. #endif
  972. }
  973. #endif //MAXTEMP 2
  974. #ifdef BED_MINTEMP
  975. /* No bed MINTEMP error implemented?!? */
  976. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  977. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  978. bed_minttemp_raw += OVERSAMPLENR;
  979. #else
  980. bed_minttemp_raw -= OVERSAMPLENR;
  981. #endif
  982. }
  983. #endif //BED_MINTEMP
  984. #ifdef BED_MAXTEMP
  985. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  986. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  987. bed_maxttemp_raw -= OVERSAMPLENR;
  988. #else
  989. bed_maxttemp_raw += OVERSAMPLENR;
  990. #endif
  991. }
  992. #endif //BED_MAXTEMP
  993. }
  994. void setWatch()
  995. {
  996. #ifdef WATCH_TEMP_PERIOD
  997. for (int e = 0; e < EXTRUDERS; e++)
  998. {
  999. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1000. {
  1001. watch_start_temp[e] = degHotend(e);
  1002. watchmillis[e] = millis();
  1003. }
  1004. }
  1005. #endif
  1006. }
  1007. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1008. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1009. {
  1010. float __hysteresis = 0;
  1011. int __timeout = 0;
  1012. bool temp_runaway_check_active = false;
  1013. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1014. static int __preheat_counter[2] = { 0,0};
  1015. static int __preheat_errors[2] = { 0,0};
  1016. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1017. if (_isbed)
  1018. {
  1019. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1020. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1021. }
  1022. #endif
  1023. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1024. if (!_isbed)
  1025. {
  1026. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1027. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1028. }
  1029. #endif
  1030. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1031. {
  1032. temp_runaway_timer[_heater_id] = millis();
  1033. if (_output == 0)
  1034. {
  1035. temp_runaway_check_active = false;
  1036. temp_runaway_error_counter[_heater_id] = 0;
  1037. }
  1038. if (temp_runaway_target[_heater_id] != _target_temperature)
  1039. {
  1040. if (_target_temperature > 0)
  1041. {
  1042. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1043. temp_runaway_target[_heater_id] = _target_temperature;
  1044. __preheat_start[_heater_id] = _current_temperature;
  1045. __preheat_counter[_heater_id] = 0;
  1046. }
  1047. else
  1048. {
  1049. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1050. temp_runaway_target[_heater_id] = _target_temperature;
  1051. }
  1052. }
  1053. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1054. {
  1055. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1056. {
  1057. __preheat_counter[_heater_id]++;
  1058. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1059. {
  1060. /*SERIAL_ECHOPGM("Heater:");
  1061. MYSERIAL.print(_heater_id);
  1062. SERIAL_ECHOPGM(" T:");
  1063. MYSERIAL.print(_current_temperature);
  1064. SERIAL_ECHOPGM(" Tstart:");
  1065. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1066. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1067. __preheat_errors[_heater_id]++;
  1068. /*SERIAL_ECHOPGM(" Preheat errors:");
  1069. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1070. }
  1071. else {
  1072. //SERIAL_ECHOLNPGM("");
  1073. __preheat_errors[_heater_id] = 0;
  1074. }
  1075. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1076. {
  1077. if (farm_mode) { prusa_statistics(0); }
  1078. temp_runaway_stop(true, _isbed);
  1079. if (farm_mode) { prusa_statistics(91); }
  1080. }
  1081. __preheat_start[_heater_id] = _current_temperature;
  1082. __preheat_counter[_heater_id] = 0;
  1083. }
  1084. }
  1085. }
  1086. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1087. {
  1088. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1089. temp_runaway_check_active = false;
  1090. }
  1091. if (!temp_runaway_check_active && _output > 0)
  1092. {
  1093. temp_runaway_check_active = true;
  1094. }
  1095. if (temp_runaway_check_active)
  1096. {
  1097. // we are in range
  1098. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1099. {
  1100. temp_runaway_check_active = false;
  1101. temp_runaway_error_counter[_heater_id] = 0;
  1102. }
  1103. else
  1104. {
  1105. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1106. {
  1107. temp_runaway_error_counter[_heater_id]++;
  1108. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1109. {
  1110. if (farm_mode) { prusa_statistics(0); }
  1111. temp_runaway_stop(false, _isbed);
  1112. if (farm_mode) { prusa_statistics(90); }
  1113. }
  1114. }
  1115. }
  1116. }
  1117. }
  1118. }
  1119. void temp_runaway_stop(bool isPreheat, bool isBed)
  1120. {
  1121. cancel_heatup = true;
  1122. quickStop();
  1123. if (card.sdprinting)
  1124. {
  1125. card.sdprinting = false;
  1126. card.closefile();
  1127. }
  1128. // Clean the input command queue
  1129. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1130. cmdqueue_reset();
  1131. disable_heater();
  1132. disable_x();
  1133. disable_y();
  1134. disable_e0();
  1135. disable_e1();
  1136. disable_e2();
  1137. manage_heater();
  1138. lcd_update();
  1139. WRITE(BEEPER, HIGH);
  1140. delayMicroseconds(500);
  1141. WRITE(BEEPER, LOW);
  1142. delayMicroseconds(100);
  1143. if (isPreheat)
  1144. {
  1145. Stop();
  1146. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1147. SERIAL_ERROR_START;
  1148. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1149. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1150. SET_OUTPUT(FAN_PIN);
  1151. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1152. analogWrite(FAN_PIN, 255);
  1153. fanSpeed = 255;
  1154. delayMicroseconds(2000);
  1155. }
  1156. else
  1157. {
  1158. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1159. SERIAL_ERROR_START;
  1160. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1161. }
  1162. }
  1163. #endif
  1164. void disable_heater()
  1165. {
  1166. for(int i=0;i<EXTRUDERS;i++)
  1167. setTargetHotend(0,i);
  1168. setTargetBed(0);
  1169. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1170. target_temperature[0]=0;
  1171. soft_pwm[0]=0;
  1172. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1173. WRITE(HEATER_0_PIN,LOW);
  1174. #endif
  1175. #endif
  1176. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1177. target_temperature[1]=0;
  1178. soft_pwm[1]=0;
  1179. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1180. WRITE(HEATER_1_PIN,LOW);
  1181. #endif
  1182. #endif
  1183. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1184. target_temperature[2]=0;
  1185. soft_pwm[2]=0;
  1186. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1187. WRITE(HEATER_2_PIN,LOW);
  1188. #endif
  1189. #endif
  1190. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1191. target_temperature_bed=0;
  1192. soft_pwm_bed=0;
  1193. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1194. WRITE(HEATER_BED_PIN,LOW);
  1195. #endif
  1196. #endif
  1197. }
  1198. void max_temp_error(uint8_t e) {
  1199. disable_heater();
  1200. if(IsStopped() == false) {
  1201. SERIAL_ERROR_START;
  1202. SERIAL_ERRORLN((int)e);
  1203. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1204. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1205. }
  1206. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1207. Stop();
  1208. #endif
  1209. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1210. SET_OUTPUT(FAN_PIN);
  1211. SET_OUTPUT(BEEPER);
  1212. WRITE(FAN_PIN, 1);
  1213. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1214. WRITE(BEEPER, 1);
  1215. // fanSpeed will consumed by the check_axes_activity() routine.
  1216. fanSpeed=255;
  1217. if (farm_mode) { prusa_statistics(93); }
  1218. }
  1219. void min_temp_error(uint8_t e) {
  1220. #ifdef DEBUG_DISABLE_MINTEMP
  1221. return;
  1222. #endif
  1223. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1224. disable_heater();
  1225. if(IsStopped() == false) {
  1226. SERIAL_ERROR_START;
  1227. SERIAL_ERRORLN((int)e);
  1228. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1229. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1230. }
  1231. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1232. Stop();
  1233. #endif
  1234. if (farm_mode) { prusa_statistics(92); }
  1235. }
  1236. void bed_max_temp_error(void) {
  1237. #if HEATER_BED_PIN > -1
  1238. WRITE(HEATER_BED_PIN, 0);
  1239. #endif
  1240. if(IsStopped() == false) {
  1241. SERIAL_ERROR_START;
  1242. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1243. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1244. }
  1245. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1246. Stop();
  1247. #endif
  1248. }
  1249. void bed_min_temp_error(void) {
  1250. #ifdef DEBUG_DISABLE_MINTEMP
  1251. return;
  1252. #endif
  1253. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1254. #if HEATER_BED_PIN > -1
  1255. WRITE(HEATER_BED_PIN, 0);
  1256. #endif
  1257. if(IsStopped() == false) {
  1258. SERIAL_ERROR_START;
  1259. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1260. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1261. }
  1262. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1263. Stop();
  1264. #endif*/
  1265. }
  1266. #ifdef HEATER_0_USES_MAX6675
  1267. #define MAX6675_HEAT_INTERVAL 250
  1268. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1269. int max6675_temp = 2000;
  1270. int read_max6675()
  1271. {
  1272. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1273. return max6675_temp;
  1274. max6675_previous_millis = millis();
  1275. max6675_temp = 0;
  1276. #ifdef PRR
  1277. PRR &= ~(1<<PRSPI);
  1278. #elif defined PRR0
  1279. PRR0 &= ~(1<<PRSPI);
  1280. #endif
  1281. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1282. // enable TT_MAX6675
  1283. WRITE(MAX6675_SS, 0);
  1284. // ensure 100ns delay - a bit extra is fine
  1285. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1286. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1287. // read MSB
  1288. SPDR = 0;
  1289. for (;(SPSR & (1<<SPIF)) == 0;);
  1290. max6675_temp = SPDR;
  1291. max6675_temp <<= 8;
  1292. // read LSB
  1293. SPDR = 0;
  1294. for (;(SPSR & (1<<SPIF)) == 0;);
  1295. max6675_temp |= SPDR;
  1296. // disable TT_MAX6675
  1297. WRITE(MAX6675_SS, 1);
  1298. if (max6675_temp & 4)
  1299. {
  1300. // thermocouple open
  1301. max6675_temp = 2000;
  1302. }
  1303. else
  1304. {
  1305. max6675_temp = max6675_temp >> 3;
  1306. }
  1307. return max6675_temp;
  1308. }
  1309. #endif
  1310. extern "C" {
  1311. void adc_ready(void) //callback from adc when sampling finished
  1312. {
  1313. current_temperature_raw[0] = adc_values[0];
  1314. current_temperature_bed_raw = adc_values[2];
  1315. current_temperature_raw_pinda = adc_values[3];
  1316. #ifdef VOLT_PWR_PIN
  1317. current_voltage_raw_pwr = adc_values[4];
  1318. #endif
  1319. #ifdef AMBIENT_THERMISTOR
  1320. current_temperature_raw_ambient = adc_values[5];
  1321. #endif //AMBIENT_THERMISTOR
  1322. #ifdef VOLT_BED_PIN
  1323. current_voltage_raw_bed = adc_values[6];
  1324. #endif
  1325. temp_meas_ready = true;
  1326. }
  1327. } // extern "C"
  1328. // Timer 0 is shared with millies
  1329. ISR(TIMER0_COMPB_vect)
  1330. {
  1331. static bool _lock = false;
  1332. if (_lock) return;
  1333. _lock = true;
  1334. asm("sei");
  1335. if (!temp_meas_ready) adc_cycle();
  1336. else
  1337. {
  1338. check_max_temp();
  1339. check_min_temp();
  1340. }
  1341. lcd_buttons_update();
  1342. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1343. static unsigned char soft_pwm_0;
  1344. #ifdef SLOW_PWM_HEATERS
  1345. static unsigned char slow_pwm_count = 0;
  1346. static unsigned char state_heater_0 = 0;
  1347. static unsigned char state_timer_heater_0 = 0;
  1348. #endif
  1349. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1350. static unsigned char soft_pwm_1;
  1351. #ifdef SLOW_PWM_HEATERS
  1352. static unsigned char state_heater_1 = 0;
  1353. static unsigned char state_timer_heater_1 = 0;
  1354. #endif
  1355. #endif
  1356. #if EXTRUDERS > 2
  1357. static unsigned char soft_pwm_2;
  1358. #ifdef SLOW_PWM_HEATERS
  1359. static unsigned char state_heater_2 = 0;
  1360. static unsigned char state_timer_heater_2 = 0;
  1361. #endif
  1362. #endif
  1363. #if HEATER_BED_PIN > -1
  1364. static unsigned char soft_pwm_b;
  1365. #ifdef SLOW_PWM_HEATERS
  1366. static unsigned char state_heater_b = 0;
  1367. static unsigned char state_timer_heater_b = 0;
  1368. #endif
  1369. #endif
  1370. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1371. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1372. #endif
  1373. #ifndef SLOW_PWM_HEATERS
  1374. /*
  1375. * standard PWM modulation
  1376. */
  1377. if (pwm_count == 0)
  1378. {
  1379. soft_pwm_0 = soft_pwm[0];
  1380. if(soft_pwm_0 > 0)
  1381. {
  1382. WRITE(HEATER_0_PIN,1);
  1383. #ifdef HEATERS_PARALLEL
  1384. WRITE(HEATER_1_PIN,1);
  1385. #endif
  1386. } else WRITE(HEATER_0_PIN,0);
  1387. #if EXTRUDERS > 1
  1388. soft_pwm_1 = soft_pwm[1];
  1389. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1390. #endif
  1391. #if EXTRUDERS > 2
  1392. soft_pwm_2 = soft_pwm[2];
  1393. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1394. #endif
  1395. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1396. soft_pwm_b = soft_pwm_bed;
  1397. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1398. #endif
  1399. #ifdef FAN_SOFT_PWM
  1400. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1401. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1402. #endif
  1403. }
  1404. if(soft_pwm_0 < pwm_count)
  1405. {
  1406. WRITE(HEATER_0_PIN,0);
  1407. #ifdef HEATERS_PARALLEL
  1408. WRITE(HEATER_1_PIN,0);
  1409. #endif
  1410. }
  1411. #if EXTRUDERS > 1
  1412. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1413. #endif
  1414. #if EXTRUDERS > 2
  1415. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1416. #endif
  1417. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1418. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1419. #endif
  1420. #ifdef FAN_SOFT_PWM
  1421. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1422. #endif
  1423. pwm_count += (1 << SOFT_PWM_SCALE);
  1424. pwm_count &= 0x7f;
  1425. #else //ifndef SLOW_PWM_HEATERS
  1426. /*
  1427. * SLOW PWM HEATERS
  1428. *
  1429. * for heaters drived by relay
  1430. */
  1431. #ifndef MIN_STATE_TIME
  1432. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1433. #endif
  1434. if (slow_pwm_count == 0) {
  1435. // EXTRUDER 0
  1436. soft_pwm_0 = soft_pwm[0];
  1437. if (soft_pwm_0 > 0) {
  1438. // turn ON heather only if the minimum time is up
  1439. if (state_timer_heater_0 == 0) {
  1440. // if change state set timer
  1441. if (state_heater_0 == 0) {
  1442. state_timer_heater_0 = MIN_STATE_TIME;
  1443. }
  1444. state_heater_0 = 1;
  1445. WRITE(HEATER_0_PIN, 1);
  1446. #ifdef HEATERS_PARALLEL
  1447. WRITE(HEATER_1_PIN, 1);
  1448. #endif
  1449. }
  1450. } else {
  1451. // turn OFF heather only if the minimum time is up
  1452. if (state_timer_heater_0 == 0) {
  1453. // if change state set timer
  1454. if (state_heater_0 == 1) {
  1455. state_timer_heater_0 = MIN_STATE_TIME;
  1456. }
  1457. state_heater_0 = 0;
  1458. WRITE(HEATER_0_PIN, 0);
  1459. #ifdef HEATERS_PARALLEL
  1460. WRITE(HEATER_1_PIN, 0);
  1461. #endif
  1462. }
  1463. }
  1464. #if EXTRUDERS > 1
  1465. // EXTRUDER 1
  1466. soft_pwm_1 = soft_pwm[1];
  1467. if (soft_pwm_1 > 0) {
  1468. // turn ON heather only if the minimum time is up
  1469. if (state_timer_heater_1 == 0) {
  1470. // if change state set timer
  1471. if (state_heater_1 == 0) {
  1472. state_timer_heater_1 = MIN_STATE_TIME;
  1473. }
  1474. state_heater_1 = 1;
  1475. WRITE(HEATER_1_PIN, 1);
  1476. }
  1477. } else {
  1478. // turn OFF heather only if the minimum time is up
  1479. if (state_timer_heater_1 == 0) {
  1480. // if change state set timer
  1481. if (state_heater_1 == 1) {
  1482. state_timer_heater_1 = MIN_STATE_TIME;
  1483. }
  1484. state_heater_1 = 0;
  1485. WRITE(HEATER_1_PIN, 0);
  1486. }
  1487. }
  1488. #endif
  1489. #if EXTRUDERS > 2
  1490. // EXTRUDER 2
  1491. soft_pwm_2 = soft_pwm[2];
  1492. if (soft_pwm_2 > 0) {
  1493. // turn ON heather only if the minimum time is up
  1494. if (state_timer_heater_2 == 0) {
  1495. // if change state set timer
  1496. if (state_heater_2 == 0) {
  1497. state_timer_heater_2 = MIN_STATE_TIME;
  1498. }
  1499. state_heater_2 = 1;
  1500. WRITE(HEATER_2_PIN, 1);
  1501. }
  1502. } else {
  1503. // turn OFF heather only if the minimum time is up
  1504. if (state_timer_heater_2 == 0) {
  1505. // if change state set timer
  1506. if (state_heater_2 == 1) {
  1507. state_timer_heater_2 = MIN_STATE_TIME;
  1508. }
  1509. state_heater_2 = 0;
  1510. WRITE(HEATER_2_PIN, 0);
  1511. }
  1512. }
  1513. #endif
  1514. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1515. // BED
  1516. soft_pwm_b = soft_pwm_bed;
  1517. if (soft_pwm_b > 0) {
  1518. // turn ON heather only if the minimum time is up
  1519. if (state_timer_heater_b == 0) {
  1520. // if change state set timer
  1521. if (state_heater_b == 0) {
  1522. state_timer_heater_b = MIN_STATE_TIME;
  1523. }
  1524. state_heater_b = 1;
  1525. WRITE(HEATER_BED_PIN, 1);
  1526. }
  1527. } else {
  1528. // turn OFF heather only if the minimum time is up
  1529. if (state_timer_heater_b == 0) {
  1530. // if change state set timer
  1531. if (state_heater_b == 1) {
  1532. state_timer_heater_b = MIN_STATE_TIME;
  1533. }
  1534. state_heater_b = 0;
  1535. WRITE(HEATER_BED_PIN, 0);
  1536. }
  1537. }
  1538. #endif
  1539. } // if (slow_pwm_count == 0)
  1540. // EXTRUDER 0
  1541. if (soft_pwm_0 < slow_pwm_count) {
  1542. // turn OFF heather only if the minimum time is up
  1543. if (state_timer_heater_0 == 0) {
  1544. // if change state set timer
  1545. if (state_heater_0 == 1) {
  1546. state_timer_heater_0 = MIN_STATE_TIME;
  1547. }
  1548. state_heater_0 = 0;
  1549. WRITE(HEATER_0_PIN, 0);
  1550. #ifdef HEATERS_PARALLEL
  1551. WRITE(HEATER_1_PIN, 0);
  1552. #endif
  1553. }
  1554. }
  1555. #if EXTRUDERS > 1
  1556. // EXTRUDER 1
  1557. if (soft_pwm_1 < slow_pwm_count) {
  1558. // turn OFF heather only if the minimum time is up
  1559. if (state_timer_heater_1 == 0) {
  1560. // if change state set timer
  1561. if (state_heater_1 == 1) {
  1562. state_timer_heater_1 = MIN_STATE_TIME;
  1563. }
  1564. state_heater_1 = 0;
  1565. WRITE(HEATER_1_PIN, 0);
  1566. }
  1567. }
  1568. #endif
  1569. #if EXTRUDERS > 2
  1570. // EXTRUDER 2
  1571. if (soft_pwm_2 < slow_pwm_count) {
  1572. // turn OFF heather only if the minimum time is up
  1573. if (state_timer_heater_2 == 0) {
  1574. // if change state set timer
  1575. if (state_heater_2 == 1) {
  1576. state_timer_heater_2 = MIN_STATE_TIME;
  1577. }
  1578. state_heater_2 = 0;
  1579. WRITE(HEATER_2_PIN, 0);
  1580. }
  1581. }
  1582. #endif
  1583. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1584. // BED
  1585. if (soft_pwm_b < slow_pwm_count) {
  1586. // turn OFF heather only if the minimum time is up
  1587. if (state_timer_heater_b == 0) {
  1588. // if change state set timer
  1589. if (state_heater_b == 1) {
  1590. state_timer_heater_b = MIN_STATE_TIME;
  1591. }
  1592. state_heater_b = 0;
  1593. WRITE(HEATER_BED_PIN, 0);
  1594. }
  1595. }
  1596. #endif
  1597. #ifdef FAN_SOFT_PWM
  1598. if (pwm_count == 0){
  1599. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1600. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1601. }
  1602. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1603. #endif
  1604. pwm_count += (1 << SOFT_PWM_SCALE);
  1605. pwm_count &= 0x7f;
  1606. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1607. if ((pwm_count % 64) == 0) {
  1608. slow_pwm_count++;
  1609. slow_pwm_count &= 0x7f;
  1610. // Extruder 0
  1611. if (state_timer_heater_0 > 0) {
  1612. state_timer_heater_0--;
  1613. }
  1614. #if EXTRUDERS > 1
  1615. // Extruder 1
  1616. if (state_timer_heater_1 > 0)
  1617. state_timer_heater_1--;
  1618. #endif
  1619. #if EXTRUDERS > 2
  1620. // Extruder 2
  1621. if (state_timer_heater_2 > 0)
  1622. state_timer_heater_2--;
  1623. #endif
  1624. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1625. // Bed
  1626. if (state_timer_heater_b > 0)
  1627. state_timer_heater_b--;
  1628. #endif
  1629. } //if ((pwm_count % 64) == 0) {
  1630. #endif //ifndef SLOW_PWM_HEATERS
  1631. #ifdef BABYSTEPPING
  1632. for(uint8_t axis=0;axis<3;axis++)
  1633. {
  1634. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1635. if(curTodo>0)
  1636. {
  1637. asm("cli");
  1638. babystep(axis,/*fwd*/true);
  1639. babystepsTodo[axis]--; //less to do next time
  1640. asm("sei");
  1641. }
  1642. else
  1643. if(curTodo<0)
  1644. {
  1645. asm("cli");
  1646. babystep(axis,/*fwd*/false);
  1647. babystepsTodo[axis]++; //less to do next time
  1648. asm("sei");
  1649. }
  1650. }
  1651. #endif //BABYSTEPPING
  1652. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1653. check_fans();
  1654. #endif //(defined(TACH_0))
  1655. _lock = false;
  1656. }
  1657. void check_max_temp()
  1658. {
  1659. //heater
  1660. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1661. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1662. #else
  1663. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1664. #endif
  1665. max_temp_error(0);
  1666. }
  1667. //bed
  1668. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1669. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1670. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1671. #else
  1672. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1673. #endif
  1674. target_temperature_bed = 0;
  1675. bed_max_temp_error();
  1676. }
  1677. #endif
  1678. }
  1679. void check_min_temp_heater0()
  1680. {
  1681. //heater
  1682. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1683. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1684. #else
  1685. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1686. #endif
  1687. min_temp_error(0);
  1688. }
  1689. }
  1690. void check_min_temp_bed()
  1691. {
  1692. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1693. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1694. #else
  1695. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1696. #endif
  1697. bed_min_temp_error();
  1698. }
  1699. }
  1700. void check_min_temp()
  1701. {
  1702. #ifdef AMBIENT_THERMISTOR
  1703. static uint8_t heat_cycles = 0;
  1704. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1705. {
  1706. if (READ(HEATER_0_PIN) == HIGH)
  1707. {
  1708. // if ((heat_cycles % 10) == 0)
  1709. // printf_P(PSTR("X%d\n"), heat_cycles);
  1710. if (heat_cycles > 50) //reaction time 5-10s
  1711. check_min_temp_heater0();
  1712. else
  1713. heat_cycles++;
  1714. }
  1715. else
  1716. heat_cycles = 0;
  1717. return;
  1718. }
  1719. #endif //AMBIENT_THERMISTOR
  1720. check_min_temp_heater0();
  1721. check_min_temp_bed();
  1722. }
  1723. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1724. void check_fans() {
  1725. if (READ(TACH_0) != fan_state[0]) {
  1726. fan_edge_counter[0] ++;
  1727. fan_state[0] = !fan_state[0];
  1728. }
  1729. //if (READ(TACH_1) != fan_state[1]) {
  1730. // fan_edge_counter[1] ++;
  1731. // fan_state[1] = !fan_state[1];
  1732. //}
  1733. }
  1734. #endif //TACH_0
  1735. #ifdef PIDTEMP
  1736. // Apply the scale factors to the PID values
  1737. float scalePID_i(float i)
  1738. {
  1739. return i*PID_dT;
  1740. }
  1741. float unscalePID_i(float i)
  1742. {
  1743. return i/PID_dT;
  1744. }
  1745. float scalePID_d(float d)
  1746. {
  1747. return d/PID_dT;
  1748. }
  1749. float unscalePID_d(float d)
  1750. {
  1751. return d*PID_dT;
  1752. }
  1753. #endif //PIDTEMP