Marlin_main.cpp 308 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. float extruder_multiplier[EXTRUDERS] = {1.0
  179. #if EXTRUDERS > 1
  180. , 1.0
  181. #if EXTRUDERS > 2
  182. , 1.0
  183. #endif
  184. #endif
  185. };
  186. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  187. //shortcuts for more readable code
  188. #define _x current_position[X_AXIS]
  189. #define _y current_position[Y_AXIS]
  190. #define _z current_position[Z_AXIS]
  191. #define _e current_position[E_AXIS]
  192. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  193. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  194. bool axis_known_position[3] = {false, false, false};
  195. // Extruder offset
  196. #if EXTRUDERS > 1
  197. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  198. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  199. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  200. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  201. #endif
  202. };
  203. #endif
  204. uint8_t active_extruder = 0;
  205. int fanSpeed=0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. #ifdef HOST_KEEPALIVE_FEATURE
  233. int busy_state = NOT_BUSY;
  234. static long prev_busy_signal_ms = -1;
  235. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  236. #else
  237. #define host_keepalive();
  238. #define KEEPALIVE_STATE(n);
  239. #endif
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. //===========================================================================
  302. //=============================Routines======================================
  303. //===========================================================================
  304. static void get_arc_coordinates();
  305. static bool setTargetedHotend(int code, uint8_t &extruder);
  306. static void print_time_remaining_init();
  307. static void wait_for_heater(long codenum, uint8_t extruder);
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. #ifdef SDSUPPORT
  317. #include "SdFatUtil.h"
  318. int freeMemory() { return SdFatUtil::FreeRam(); }
  319. #else
  320. extern "C" {
  321. extern unsigned int __bss_end;
  322. extern unsigned int __heap_start;
  323. extern void *__brkval;
  324. int freeMemory() {
  325. int free_memory;
  326. if ((int)__brkval == 0)
  327. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  328. else
  329. free_memory = ((int)&free_memory) - ((int)__brkval);
  330. return free_memory;
  331. }
  332. }
  333. #endif //!SDSUPPORT
  334. void setup_killpin()
  335. {
  336. #if defined(KILL_PIN) && KILL_PIN > -1
  337. SET_INPUT(KILL_PIN);
  338. WRITE(KILL_PIN,HIGH);
  339. #endif
  340. }
  341. // Set home pin
  342. void setup_homepin(void)
  343. {
  344. #if defined(HOME_PIN) && HOME_PIN > -1
  345. SET_INPUT(HOME_PIN);
  346. WRITE(HOME_PIN,HIGH);
  347. #endif
  348. }
  349. void setup_photpin()
  350. {
  351. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  352. SET_OUTPUT(PHOTOGRAPH_PIN);
  353. WRITE(PHOTOGRAPH_PIN, LOW);
  354. #endif
  355. }
  356. void setup_powerhold()
  357. {
  358. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  359. SET_OUTPUT(SUICIDE_PIN);
  360. WRITE(SUICIDE_PIN, HIGH);
  361. #endif
  362. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  363. SET_OUTPUT(PS_ON_PIN);
  364. #if defined(PS_DEFAULT_OFF)
  365. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  366. #else
  367. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  368. #endif
  369. #endif
  370. }
  371. void suicide()
  372. {
  373. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  374. SET_OUTPUT(SUICIDE_PIN);
  375. WRITE(SUICIDE_PIN, LOW);
  376. #endif
  377. }
  378. void servo_init()
  379. {
  380. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  381. servos[0].attach(SERVO0_PIN);
  382. #endif
  383. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  384. servos[1].attach(SERVO1_PIN);
  385. #endif
  386. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  387. servos[2].attach(SERVO2_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  390. servos[3].attach(SERVO3_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 5)
  393. #error "TODO: enter initalisation code for more servos"
  394. #endif
  395. }
  396. bool fans_check_enabled = true;
  397. #ifdef TMC2130
  398. extern int8_t CrashDetectMenu;
  399. void crashdet_enable()
  400. {
  401. tmc2130_sg_stop_on_crash = true;
  402. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  403. CrashDetectMenu = 1;
  404. }
  405. void crashdet_disable()
  406. {
  407. tmc2130_sg_stop_on_crash = false;
  408. tmc2130_sg_crash = 0;
  409. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  410. CrashDetectMenu = 0;
  411. }
  412. void crashdet_stop_and_save_print()
  413. {
  414. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  415. }
  416. void crashdet_restore_print_and_continue()
  417. {
  418. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  419. // babystep_apply();
  420. }
  421. void crashdet_stop_and_save_print2()
  422. {
  423. cli();
  424. planner_abort_hard(); //abort printing
  425. cmdqueue_reset(); //empty cmdqueue
  426. card.sdprinting = false;
  427. card.closefile();
  428. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  429. st_reset_timer();
  430. sei();
  431. }
  432. void crashdet_detected(uint8_t mask)
  433. {
  434. st_synchronize();
  435. static uint8_t crashDet_counter = 0;
  436. bool automatic_recovery_after_crash = true;
  437. if (crashDet_counter++ == 0) {
  438. crashDetTimer.start();
  439. }
  440. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  441. crashDetTimer.stop();
  442. crashDet_counter = 0;
  443. }
  444. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  445. automatic_recovery_after_crash = false;
  446. crashDetTimer.stop();
  447. crashDet_counter = 0;
  448. }
  449. else {
  450. crashDetTimer.start();
  451. }
  452. lcd_update_enable(true);
  453. lcd_clear();
  454. lcd_update(2);
  455. if (mask & X_AXIS_MASK)
  456. {
  457. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  458. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  459. }
  460. if (mask & Y_AXIS_MASK)
  461. {
  462. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  463. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  464. }
  465. lcd_update_enable(true);
  466. lcd_update(2);
  467. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  468. gcode_G28(true, true, false); //home X and Y
  469. st_synchronize();
  470. if (automatic_recovery_after_crash) {
  471. enquecommand_P(PSTR("CRASH_RECOVER"));
  472. }else{
  473. setTargetHotend(0, active_extruder);
  474. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  475. lcd_update_enable(true);
  476. if (yesno)
  477. {
  478. enquecommand_P(PSTR("CRASH_RECOVER"));
  479. }
  480. else
  481. {
  482. enquecommand_P(PSTR("CRASH_CANCEL"));
  483. }
  484. }
  485. }
  486. void crashdet_recover()
  487. {
  488. crashdet_restore_print_and_continue();
  489. tmc2130_sg_stop_on_crash = true;
  490. }
  491. void crashdet_cancel()
  492. {
  493. tmc2130_sg_stop_on_crash = true;
  494. if (saved_printing_type == PRINTING_TYPE_SD) {
  495. lcd_print_stop();
  496. }else if(saved_printing_type == PRINTING_TYPE_USB){
  497. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  498. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  499. }
  500. }
  501. #endif //TMC2130
  502. void failstats_reset_print()
  503. {
  504. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  505. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  506. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  508. }
  509. #ifdef MESH_BED_LEVELING
  510. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  511. #endif
  512. // Factory reset function
  513. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  514. // Level input parameter sets depth of reset
  515. int er_progress = 0;
  516. static void factory_reset(char level)
  517. {
  518. lcd_clear();
  519. switch (level) {
  520. // Level 0: Language reset
  521. case 0:
  522. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  523. WRITE(BEEPER, HIGH);
  524. _delay_ms(100);
  525. WRITE(BEEPER, LOW);
  526. lang_reset();
  527. break;
  528. //Level 1: Reset statistics
  529. case 1:
  530. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  531. WRITE(BEEPER, HIGH);
  532. _delay_ms(100);
  533. WRITE(BEEPER, LOW);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. lcd_menu_statistics();
  545. break;
  546. // Level 2: Prepare for shipping
  547. case 2:
  548. //lcd_puts_P(PSTR("Factory RESET"));
  549. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  550. // Force language selection at the next boot up.
  551. lang_reset();
  552. // Force the "Follow calibration flow" message at the next boot up.
  553. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  554. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  555. farm_no = 0;
  556. farm_mode = false;
  557. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  558. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  559. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  560. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  561. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  562. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  563. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  564. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  565. #ifdef FILAMENT_SENSOR
  566. fsensor_enable();
  567. fsensor_autoload_set(true);
  568. #endif //FILAMENT_SENSOR
  569. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  570. WRITE(BEEPER, HIGH);
  571. _delay_ms(100);
  572. WRITE(BEEPER, LOW);
  573. //_delay_ms(2000);
  574. break;
  575. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  576. case 3:
  577. lcd_puts_P(PSTR("Factory RESET"));
  578. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  579. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  580. WRITE(BEEPER, HIGH);
  581. _delay_ms(100);
  582. WRITE(BEEPER, LOW);
  583. er_progress = 0;
  584. lcd_puts_at_P(3, 3, PSTR(" "));
  585. lcd_set_cursor(3, 3);
  586. lcd_print(er_progress);
  587. // Erase EEPROM
  588. for (int i = 0; i < 4096; i++) {
  589. eeprom_update_byte((uint8_t*)i, 0xFF);
  590. if (i % 41 == 0) {
  591. er_progress++;
  592. lcd_puts_at_P(3, 3, PSTR(" "));
  593. lcd_set_cursor(3, 3);
  594. lcd_print(er_progress);
  595. lcd_puts_P(PSTR("%"));
  596. }
  597. }
  598. break;
  599. case 4:
  600. bowden_menu();
  601. break;
  602. default:
  603. break;
  604. }
  605. }
  606. extern "C" {
  607. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  608. }
  609. int uart_putchar(char c, FILE *)
  610. {
  611. MYSERIAL.write(c);
  612. return 0;
  613. }
  614. void lcd_splash()
  615. {
  616. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  617. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  618. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  619. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  620. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  621. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  622. }
  623. void factory_reset()
  624. {
  625. KEEPALIVE_STATE(PAUSED_FOR_USER);
  626. if (!READ(BTN_ENC))
  627. {
  628. _delay_ms(1000);
  629. if (!READ(BTN_ENC))
  630. {
  631. lcd_clear();
  632. lcd_puts_P(PSTR("Factory RESET"));
  633. SET_OUTPUT(BEEPER);
  634. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  635. WRITE(BEEPER, HIGH);
  636. while (!READ(BTN_ENC));
  637. WRITE(BEEPER, LOW);
  638. _delay_ms(2000);
  639. char level = reset_menu();
  640. factory_reset(level);
  641. switch (level) {
  642. case 0: _delay_ms(0); break;
  643. case 1: _delay_ms(0); break;
  644. case 2: _delay_ms(0); break;
  645. case 3: _delay_ms(0); break;
  646. }
  647. }
  648. }
  649. KEEPALIVE_STATE(IN_HANDLER);
  650. }
  651. void show_fw_version_warnings() {
  652. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  653. switch (FW_DEV_VERSION) {
  654. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  655. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  656. case(FW_VERSION_DEVEL):
  657. case(FW_VERSION_DEBUG):
  658. lcd_update_enable(false);
  659. lcd_clear();
  660. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  661. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  662. #else
  663. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  664. #endif
  665. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  666. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  667. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  668. lcd_wait_for_click();
  669. break;
  670. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  671. }
  672. lcd_update_enable(true);
  673. }
  674. uint8_t check_printer_version()
  675. {
  676. uint8_t version_changed = 0;
  677. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  678. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  679. if (printer_type != PRINTER_TYPE) {
  680. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  681. else version_changed |= 0b10;
  682. }
  683. if (motherboard != MOTHERBOARD) {
  684. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  685. else version_changed |= 0b01;
  686. }
  687. return version_changed;
  688. }
  689. #ifdef BOOTAPP
  690. #include "bootapp.h" //bootloader support
  691. #endif //BOOTAPP
  692. #if (LANG_MODE != 0) //secondary language support
  693. #ifdef W25X20CL
  694. // language update from external flash
  695. #define LANGBOOT_BLOCKSIZE 0x1000u
  696. #define LANGBOOT_RAMBUFFER 0x0800
  697. void update_sec_lang_from_external_flash()
  698. {
  699. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  700. {
  701. uint8_t lang = boot_reserved >> 4;
  702. uint8_t state = boot_reserved & 0xf;
  703. lang_table_header_t header;
  704. uint32_t src_addr;
  705. if (lang_get_header(lang, &header, &src_addr))
  706. {
  707. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  708. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  709. delay(100);
  710. boot_reserved = (state + 1) | (lang << 4);
  711. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  712. {
  713. cli();
  714. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  715. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  716. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  717. if (state == 0)
  718. {
  719. //TODO - check header integrity
  720. }
  721. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  722. }
  723. else
  724. {
  725. //TODO - check sec lang data integrity
  726. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  727. }
  728. }
  729. }
  730. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  731. }
  732. #ifdef DEBUG_W25X20CL
  733. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  734. {
  735. lang_table_header_t header;
  736. uint8_t count = 0;
  737. uint32_t addr = 0x00000;
  738. while (1)
  739. {
  740. printf_P(_n("LANGTABLE%d:"), count);
  741. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  742. if (header.magic != LANG_MAGIC)
  743. {
  744. printf_P(_n("NG!\n"));
  745. break;
  746. }
  747. printf_P(_n("OK\n"));
  748. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  749. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  750. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  751. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  752. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  753. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  754. addr += header.size;
  755. codes[count] = header.code;
  756. count ++;
  757. }
  758. return count;
  759. }
  760. void list_sec_lang_from_external_flash()
  761. {
  762. uint16_t codes[8];
  763. uint8_t count = lang_xflash_enum_codes(codes);
  764. printf_P(_n("XFlash lang count = %hhd\n"), count);
  765. }
  766. #endif //DEBUG_W25X20CL
  767. #endif //W25X20CL
  768. #endif //(LANG_MODE != 0)
  769. // "Setup" function is called by the Arduino framework on startup.
  770. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  771. // are initialized by the main() routine provided by the Arduino framework.
  772. void setup()
  773. {
  774. mmu_init();
  775. ultralcd_init();
  776. spi_init();
  777. lcd_splash();
  778. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  779. #ifdef W25X20CL
  780. if (!w25x20cl_init())
  781. kill(_i("External SPI flash W25X20CL not responding."));
  782. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  783. optiboot_w25x20cl_enter();
  784. #endif
  785. #if (LANG_MODE != 0) //secondary language support
  786. #ifdef W25X20CL
  787. if (w25x20cl_init())
  788. update_sec_lang_from_external_flash();
  789. #endif //W25X20CL
  790. #endif //(LANG_MODE != 0)
  791. setup_killpin();
  792. setup_powerhold();
  793. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  794. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  795. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  796. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  797. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  798. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  799. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  800. if (farm_mode)
  801. {
  802. no_response = true; //we need confirmation by recieving PRUSA thx
  803. important_status = 8;
  804. prusa_statistics(8);
  805. selectedSerialPort = 1;
  806. #ifdef TMC2130
  807. //increased extruder current (PFW363)
  808. tmc2130_current_h[E_AXIS] = 36;
  809. tmc2130_current_r[E_AXIS] = 36;
  810. #endif //TMC2130
  811. #ifdef FILAMENT_SENSOR
  812. //disabled filament autoload (PFW360)
  813. fsensor_autoload_set(false);
  814. #endif //FILAMENT_SENSOR
  815. }
  816. MYSERIAL.begin(BAUDRATE);
  817. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  818. stdout = uartout;
  819. SERIAL_ECHO_START;
  820. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  821. #ifdef DEBUG_SEC_LANG
  822. lang_table_header_t header;
  823. uint32_t src_addr = 0x00000;
  824. if (lang_get_header(1, &header, &src_addr))
  825. {
  826. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  827. #define LT_PRINT_TEST 2
  828. // flash usage
  829. // total p.test
  830. //0 252718 t+c text code
  831. //1 253142 424 170 254
  832. //2 253040 322 164 158
  833. //3 253248 530 135 395
  834. #if (LT_PRINT_TEST==1) //not optimized printf
  835. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  836. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  837. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  838. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  839. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  840. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  841. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  842. #elif (LT_PRINT_TEST==2) //optimized printf
  843. printf_P(
  844. _n(
  845. " _src_addr = 0x%08lx\n"
  846. " _lt_magic = 0x%08lx %S\n"
  847. " _lt_size = 0x%04x (%d)\n"
  848. " _lt_count = 0x%04x (%d)\n"
  849. " _lt_chsum = 0x%04x\n"
  850. " _lt_code = 0x%04x (%c%c)\n"
  851. " _lt_resv1 = 0x%08lx\n"
  852. ),
  853. src_addr,
  854. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  855. header.size, header.size,
  856. header.count, header.count,
  857. header.checksum,
  858. header.code, header.code >> 8, header.code & 0xff,
  859. header.signature
  860. );
  861. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  862. MYSERIAL.print(" _src_addr = 0x");
  863. MYSERIAL.println(src_addr, 16);
  864. MYSERIAL.print(" _lt_magic = 0x");
  865. MYSERIAL.print(header.magic, 16);
  866. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  867. MYSERIAL.print(" _lt_size = 0x");
  868. MYSERIAL.print(header.size, 16);
  869. MYSERIAL.print(" (");
  870. MYSERIAL.print(header.size, 10);
  871. MYSERIAL.println(")");
  872. MYSERIAL.print(" _lt_count = 0x");
  873. MYSERIAL.print(header.count, 16);
  874. MYSERIAL.print(" (");
  875. MYSERIAL.print(header.count, 10);
  876. MYSERIAL.println(")");
  877. MYSERIAL.print(" _lt_chsum = 0x");
  878. MYSERIAL.println(header.checksum, 16);
  879. MYSERIAL.print(" _lt_code = 0x");
  880. MYSERIAL.print(header.code, 16);
  881. MYSERIAL.print(" (");
  882. MYSERIAL.print((char)(header.code >> 8), 0);
  883. MYSERIAL.print((char)(header.code & 0xff), 0);
  884. MYSERIAL.println(")");
  885. MYSERIAL.print(" _lt_resv1 = 0x");
  886. MYSERIAL.println(header.signature, 16);
  887. #endif //(LT_PRINT_TEST==)
  888. #undef LT_PRINT_TEST
  889. #if 0
  890. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  891. for (uint16_t i = 0; i < 1024; i++)
  892. {
  893. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  894. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  895. if ((i % 16) == 15) putchar('\n');
  896. }
  897. #endif
  898. uint16_t sum = 0;
  899. for (uint16_t i = 0; i < header.size; i++)
  900. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  901. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  902. sum -= header.checksum; //subtract checksum
  903. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  904. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  905. if (sum == header.checksum)
  906. printf_P(_n("Checksum OK\n"), sum);
  907. else
  908. printf_P(_n("Checksum NG\n"), sum);
  909. }
  910. else
  911. printf_P(_n("lang_get_header failed!\n"));
  912. #if 0
  913. for (uint16_t i = 0; i < 1024*10; i++)
  914. {
  915. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  916. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  917. if ((i % 16) == 15) putchar('\n');
  918. }
  919. #endif
  920. #if 0
  921. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  922. for (int i = 0; i < 4096; ++i) {
  923. int b = eeprom_read_byte((unsigned char*)i);
  924. if (b != 255) {
  925. SERIAL_ECHO(i);
  926. SERIAL_ECHO(":");
  927. SERIAL_ECHO(b);
  928. SERIAL_ECHOLN("");
  929. }
  930. }
  931. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  932. #endif
  933. #endif //DEBUG_SEC_LANG
  934. // Check startup - does nothing if bootloader sets MCUSR to 0
  935. byte mcu = MCUSR;
  936. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  937. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  938. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  939. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  940. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  941. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  942. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  943. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  944. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  945. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  946. MCUSR = 0;
  947. //SERIAL_ECHORPGM(MSG_MARLIN);
  948. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  949. #ifdef STRING_VERSION_CONFIG_H
  950. #ifdef STRING_CONFIG_H_AUTHOR
  951. SERIAL_ECHO_START;
  952. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  953. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  954. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  955. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  956. SERIAL_ECHOPGM("Compiled: ");
  957. SERIAL_ECHOLNPGM(__DATE__);
  958. #endif
  959. #endif
  960. SERIAL_ECHO_START;
  961. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  962. SERIAL_ECHO(freeMemory());
  963. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  964. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  965. //lcd_update_enable(false); // why do we need this?? - andre
  966. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  967. bool previous_settings_retrieved = false;
  968. uint8_t hw_changed = check_printer_version();
  969. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  970. previous_settings_retrieved = Config_RetrieveSettings();
  971. }
  972. else { //printer version was changed so use default settings
  973. Config_ResetDefault();
  974. }
  975. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  976. tp_init(); // Initialize temperature loop
  977. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  978. plan_init(); // Initialize planner;
  979. factory_reset();
  980. lcd_encoder_diff=0;
  981. #ifdef TMC2130
  982. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  983. if (silentMode == 0xff) silentMode = 0;
  984. tmc2130_mode = TMC2130_MODE_NORMAL;
  985. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  986. if (crashdet && !farm_mode)
  987. {
  988. crashdet_enable();
  989. puts_P(_N("CrashDetect ENABLED!"));
  990. }
  991. else
  992. {
  993. crashdet_disable();
  994. puts_P(_N("CrashDetect DISABLED"));
  995. }
  996. #ifdef TMC2130_LINEARITY_CORRECTION
  997. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  998. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  999. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1000. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1001. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1002. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1003. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1004. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1005. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1006. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1007. #endif //TMC2130_LINEARITY_CORRECTION
  1008. #ifdef TMC2130_VARIABLE_RESOLUTION
  1009. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1010. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1011. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1012. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1013. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1014. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1015. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1016. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1017. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1018. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1019. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1020. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1021. #else //TMC2130_VARIABLE_RESOLUTION
  1022. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1023. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1024. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1025. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1026. #endif //TMC2130_VARIABLE_RESOLUTION
  1027. #endif //TMC2130
  1028. st_init(); // Initialize stepper, this enables interrupts!
  1029. #ifdef TMC2130
  1030. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1031. update_mode_profile();
  1032. tmc2130_init();
  1033. #endif //TMC2130
  1034. setup_photpin();
  1035. servo_init();
  1036. // Reset the machine correction matrix.
  1037. // It does not make sense to load the correction matrix until the machine is homed.
  1038. world2machine_reset();
  1039. #ifdef FILAMENT_SENSOR
  1040. fsensor_init();
  1041. #endif //FILAMENT_SENSOR
  1042. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1043. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1044. #endif
  1045. setup_homepin();
  1046. #ifdef TMC2130
  1047. if (1) {
  1048. // try to run to zero phase before powering the Z motor.
  1049. // Move in negative direction
  1050. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1051. // Round the current micro-micro steps to micro steps.
  1052. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1053. // Until the phase counter is reset to zero.
  1054. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1055. delay(2);
  1056. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1057. delay(2);
  1058. }
  1059. }
  1060. #endif //TMC2130
  1061. #if defined(Z_AXIS_ALWAYS_ON)
  1062. enable_z();
  1063. #endif
  1064. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1065. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1066. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1067. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1068. if (farm_mode)
  1069. {
  1070. prusa_statistics(8);
  1071. }
  1072. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1073. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1074. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1075. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1076. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1077. // where all the EEPROM entries are set to 0x0ff.
  1078. // Once a firmware boots up, it forces at least a language selection, which changes
  1079. // EEPROM_LANG to number lower than 0x0ff.
  1080. // 1) Set a high power mode.
  1081. #ifdef TMC2130
  1082. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1083. tmc2130_mode = TMC2130_MODE_NORMAL;
  1084. #endif //TMC2130
  1085. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1086. }
  1087. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1088. // but this times out if a blocking dialog is shown in setup().
  1089. card.initsd();
  1090. #ifdef DEBUG_SD_SPEED_TEST
  1091. if (card.cardOK)
  1092. {
  1093. uint8_t* buff = (uint8_t*)block_buffer;
  1094. uint32_t block = 0;
  1095. uint32_t sumr = 0;
  1096. uint32_t sumw = 0;
  1097. for (int i = 0; i < 1024; i++)
  1098. {
  1099. uint32_t u = micros();
  1100. bool res = card.card.readBlock(i, buff);
  1101. u = micros() - u;
  1102. if (res)
  1103. {
  1104. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1105. sumr += u;
  1106. u = micros();
  1107. res = card.card.writeBlock(i, buff);
  1108. u = micros() - u;
  1109. if (res)
  1110. {
  1111. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1112. sumw += u;
  1113. }
  1114. else
  1115. {
  1116. printf_P(PSTR("writeBlock %4d error\n"), i);
  1117. break;
  1118. }
  1119. }
  1120. else
  1121. {
  1122. printf_P(PSTR("readBlock %4d error\n"), i);
  1123. break;
  1124. }
  1125. }
  1126. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1127. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1128. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1129. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1130. }
  1131. else
  1132. printf_P(PSTR("Card NG!\n"));
  1133. #endif //DEBUG_SD_SPEED_TEST
  1134. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1135. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1136. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1137. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1138. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1139. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1140. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1141. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1142. #ifdef SNMM
  1143. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1144. int _z = BOWDEN_LENGTH;
  1145. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1146. }
  1147. #endif
  1148. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1149. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1150. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1151. #if (LANG_MODE != 0) //secondary language support
  1152. #ifdef DEBUG_W25X20CL
  1153. W25X20CL_SPI_ENTER();
  1154. uint8_t uid[8]; // 64bit unique id
  1155. w25x20cl_rd_uid(uid);
  1156. puts_P(_n("W25X20CL UID="));
  1157. for (uint8_t i = 0; i < 8; i ++)
  1158. printf_P(PSTR("%02hhx"), uid[i]);
  1159. putchar('\n');
  1160. list_sec_lang_from_external_flash();
  1161. #endif //DEBUG_W25X20CL
  1162. // lang_reset();
  1163. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1164. lcd_language();
  1165. #ifdef DEBUG_SEC_LANG
  1166. uint16_t sec_lang_code = lang_get_code(1);
  1167. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1168. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1169. lang_print_sec_lang(uartout);
  1170. #endif //DEBUG_SEC_LANG
  1171. #endif //(LANG_MODE != 0)
  1172. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1173. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1174. temp_cal_active = false;
  1175. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1176. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1177. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1178. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1179. int16_t z_shift = 0;
  1180. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1181. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1182. temp_cal_active = false;
  1183. }
  1184. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1185. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1186. }
  1187. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1188. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1189. }
  1190. check_babystep(); //checking if Z babystep is in allowed range
  1191. #ifdef UVLO_SUPPORT
  1192. setup_uvlo_interrupt();
  1193. #endif //UVLO_SUPPORT
  1194. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1195. setup_fan_interrupt();
  1196. #endif //DEBUG_DISABLE_FANCHECK
  1197. #ifdef FILAMENT_SENSOR
  1198. fsensor_setup_interrupt();
  1199. #endif //FILAMENT_SENSOR
  1200. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1201. #ifndef DEBUG_DISABLE_STARTMSGS
  1202. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1203. show_fw_version_warnings();
  1204. switch (hw_changed) {
  1205. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1206. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1207. case(0b01):
  1208. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1209. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1210. break;
  1211. case(0b10):
  1212. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1213. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1214. break;
  1215. case(0b11):
  1216. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1217. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1218. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1219. break;
  1220. default: break; //no change, show no message
  1221. }
  1222. if (!previous_settings_retrieved) {
  1223. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1224. Config_StoreSettings();
  1225. }
  1226. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1227. lcd_wizard(WizState::Run);
  1228. }
  1229. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1230. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1231. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1232. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1233. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1234. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1235. // Show the message.
  1236. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1237. }
  1238. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1239. // Show the message.
  1240. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1241. lcd_update_enable(true);
  1242. }
  1243. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1244. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1245. lcd_update_enable(true);
  1246. }
  1247. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1248. // Show the message.
  1249. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1250. }
  1251. }
  1252. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1253. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1254. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1255. update_current_firmware_version_to_eeprom();
  1256. lcd_selftest();
  1257. }
  1258. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1259. KEEPALIVE_STATE(IN_PROCESS);
  1260. #endif //DEBUG_DISABLE_STARTMSGS
  1261. lcd_update_enable(true);
  1262. lcd_clear();
  1263. lcd_update(2);
  1264. // Store the currently running firmware into an eeprom,
  1265. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1266. update_current_firmware_version_to_eeprom();
  1267. #ifdef TMC2130
  1268. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1269. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1270. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1271. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1272. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1273. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1274. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1275. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1276. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1277. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1278. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1279. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1280. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1281. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1282. #endif //TMC2130
  1283. #ifdef UVLO_SUPPORT
  1284. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1285. /*
  1286. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1287. else {
  1288. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1289. lcd_update_enable(true);
  1290. lcd_update(2);
  1291. lcd_setstatuspgm(_T(WELCOME_MSG));
  1292. }
  1293. */
  1294. manage_heater(); // Update temperatures
  1295. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1296. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1297. #endif
  1298. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1299. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1300. puts_P(_N("Automatic recovery!"));
  1301. #endif
  1302. recover_print(1);
  1303. }
  1304. else{
  1305. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1306. puts_P(_N("Normal recovery!"));
  1307. #endif
  1308. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1309. else {
  1310. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1311. lcd_update_enable(true);
  1312. lcd_update(2);
  1313. lcd_setstatuspgm(_T(WELCOME_MSG));
  1314. }
  1315. }
  1316. }
  1317. #endif //UVLO_SUPPORT
  1318. KEEPALIVE_STATE(NOT_BUSY);
  1319. #ifdef WATCHDOG
  1320. wdt_enable(WDTO_4S);
  1321. #endif //WATCHDOG
  1322. }
  1323. void trace();
  1324. #define CHUNK_SIZE 64 // bytes
  1325. #define SAFETY_MARGIN 1
  1326. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1327. int chunkHead = 0;
  1328. void serial_read_stream() {
  1329. setAllTargetHotends(0);
  1330. setTargetBed(0);
  1331. lcd_clear();
  1332. lcd_puts_P(PSTR(" Upload in progress"));
  1333. // first wait for how many bytes we will receive
  1334. uint32_t bytesToReceive;
  1335. // receive the four bytes
  1336. char bytesToReceiveBuffer[4];
  1337. for (int i=0; i<4; i++) {
  1338. int data;
  1339. while ((data = MYSERIAL.read()) == -1) {};
  1340. bytesToReceiveBuffer[i] = data;
  1341. }
  1342. // make it a uint32
  1343. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1344. // we're ready, notify the sender
  1345. MYSERIAL.write('+');
  1346. // lock in the routine
  1347. uint32_t receivedBytes = 0;
  1348. while (prusa_sd_card_upload) {
  1349. int i;
  1350. for (i=0; i<CHUNK_SIZE; i++) {
  1351. int data;
  1352. // check if we're not done
  1353. if (receivedBytes == bytesToReceive) {
  1354. break;
  1355. }
  1356. // read the next byte
  1357. while ((data = MYSERIAL.read()) == -1) {};
  1358. receivedBytes++;
  1359. // save it to the chunk
  1360. chunk[i] = data;
  1361. }
  1362. // write the chunk to SD
  1363. card.write_command_no_newline(&chunk[0]);
  1364. // notify the sender we're ready for more data
  1365. MYSERIAL.write('+');
  1366. // for safety
  1367. manage_heater();
  1368. // check if we're done
  1369. if(receivedBytes == bytesToReceive) {
  1370. trace(); // beep
  1371. card.closefile();
  1372. prusa_sd_card_upload = false;
  1373. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1374. }
  1375. }
  1376. }
  1377. #ifdef HOST_KEEPALIVE_FEATURE
  1378. /**
  1379. * Output a "busy" message at regular intervals
  1380. * while the machine is not accepting commands.
  1381. */
  1382. void host_keepalive() {
  1383. if (farm_mode) return;
  1384. long ms = millis();
  1385. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1386. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1387. switch (busy_state) {
  1388. case IN_HANDLER:
  1389. case IN_PROCESS:
  1390. SERIAL_ECHO_START;
  1391. SERIAL_ECHOLNPGM("busy: processing");
  1392. break;
  1393. case PAUSED_FOR_USER:
  1394. SERIAL_ECHO_START;
  1395. SERIAL_ECHOLNPGM("busy: paused for user");
  1396. break;
  1397. case PAUSED_FOR_INPUT:
  1398. SERIAL_ECHO_START;
  1399. SERIAL_ECHOLNPGM("busy: paused for input");
  1400. break;
  1401. default:
  1402. break;
  1403. }
  1404. }
  1405. prev_busy_signal_ms = ms;
  1406. }
  1407. #endif
  1408. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1409. // Before loop(), the setup() function is called by the main() routine.
  1410. void loop()
  1411. {
  1412. KEEPALIVE_STATE(NOT_BUSY);
  1413. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1414. {
  1415. is_usb_printing = true;
  1416. usb_printing_counter--;
  1417. _usb_timer = millis();
  1418. }
  1419. if (usb_printing_counter == 0)
  1420. {
  1421. is_usb_printing = false;
  1422. }
  1423. if (prusa_sd_card_upload)
  1424. {
  1425. //we read byte-by byte
  1426. serial_read_stream();
  1427. } else
  1428. {
  1429. get_command();
  1430. #ifdef SDSUPPORT
  1431. card.checkautostart(false);
  1432. #endif
  1433. if(buflen)
  1434. {
  1435. cmdbuffer_front_already_processed = false;
  1436. #ifdef SDSUPPORT
  1437. if(card.saving)
  1438. {
  1439. // Saving a G-code file onto an SD-card is in progress.
  1440. // Saving starts with M28, saving until M29 is seen.
  1441. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1442. card.write_command(CMDBUFFER_CURRENT_STRING);
  1443. if(card.logging)
  1444. process_commands();
  1445. else
  1446. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1447. } else {
  1448. card.closefile();
  1449. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1450. }
  1451. } else {
  1452. process_commands();
  1453. }
  1454. #else
  1455. process_commands();
  1456. #endif //SDSUPPORT
  1457. if (! cmdbuffer_front_already_processed && buflen)
  1458. {
  1459. // ptr points to the start of the block currently being processed.
  1460. // The first character in the block is the block type.
  1461. char *ptr = cmdbuffer + bufindr;
  1462. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1463. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1464. union {
  1465. struct {
  1466. char lo;
  1467. char hi;
  1468. } lohi;
  1469. uint16_t value;
  1470. } sdlen;
  1471. sdlen.value = 0;
  1472. {
  1473. // This block locks the interrupts globally for 3.25 us,
  1474. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1475. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1476. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1477. cli();
  1478. // Reset the command to something, which will be ignored by the power panic routine,
  1479. // so this buffer length will not be counted twice.
  1480. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1481. // Extract the current buffer length.
  1482. sdlen.lohi.lo = *ptr ++;
  1483. sdlen.lohi.hi = *ptr;
  1484. // and pass it to the planner queue.
  1485. planner_add_sd_length(sdlen.value);
  1486. sei();
  1487. }
  1488. }
  1489. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1490. cli();
  1491. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1492. // and one for each command to previous block in the planner queue.
  1493. planner_add_sd_length(1);
  1494. sei();
  1495. }
  1496. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1497. // this block's SD card length will not be counted twice as its command type has been replaced
  1498. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1499. cmdqueue_pop_front();
  1500. }
  1501. host_keepalive();
  1502. }
  1503. }
  1504. //check heater every n milliseconds
  1505. manage_heater();
  1506. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1507. checkHitEndstops();
  1508. lcd_update(0);
  1509. #ifdef TMC2130
  1510. tmc2130_check_overtemp();
  1511. if (tmc2130_sg_crash)
  1512. {
  1513. uint8_t crash = tmc2130_sg_crash;
  1514. tmc2130_sg_crash = 0;
  1515. // crashdet_stop_and_save_print();
  1516. switch (crash)
  1517. {
  1518. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1519. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1520. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1521. }
  1522. }
  1523. #endif //TMC2130
  1524. mmu_loop();
  1525. }
  1526. #define DEFINE_PGM_READ_ANY(type, reader) \
  1527. static inline type pgm_read_any(const type *p) \
  1528. { return pgm_read_##reader##_near(p); }
  1529. DEFINE_PGM_READ_ANY(float, float);
  1530. DEFINE_PGM_READ_ANY(signed char, byte);
  1531. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1532. static const PROGMEM type array##_P[3] = \
  1533. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1534. static inline type array(int axis) \
  1535. { return pgm_read_any(&array##_P[axis]); } \
  1536. type array##_ext(int axis) \
  1537. { return pgm_read_any(&array##_P[axis]); }
  1538. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1539. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1540. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1541. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1542. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1543. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1544. static void axis_is_at_home(int axis) {
  1545. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1546. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1547. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1548. }
  1549. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1550. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1551. //! @return original feedmultiply
  1552. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1553. saved_feedrate = feedrate;
  1554. int l_feedmultiply = feedmultiply;
  1555. feedmultiply = 100;
  1556. previous_millis_cmd = millis();
  1557. enable_endstops(enable_endstops_now);
  1558. return l_feedmultiply;
  1559. }
  1560. //! @param original_feedmultiply feedmultiply to restore
  1561. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1562. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1563. enable_endstops(false);
  1564. #endif
  1565. feedrate = saved_feedrate;
  1566. feedmultiply = original_feedmultiply;
  1567. previous_millis_cmd = millis();
  1568. }
  1569. #ifdef ENABLE_AUTO_BED_LEVELING
  1570. #ifdef AUTO_BED_LEVELING_GRID
  1571. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1572. {
  1573. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1574. planeNormal.debug("planeNormal");
  1575. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1576. //bedLevel.debug("bedLevel");
  1577. //plan_bed_level_matrix.debug("bed level before");
  1578. //vector_3 uncorrected_position = plan_get_position_mm();
  1579. //uncorrected_position.debug("position before");
  1580. vector_3 corrected_position = plan_get_position();
  1581. // corrected_position.debug("position after");
  1582. current_position[X_AXIS] = corrected_position.x;
  1583. current_position[Y_AXIS] = corrected_position.y;
  1584. current_position[Z_AXIS] = corrected_position.z;
  1585. // put the bed at 0 so we don't go below it.
  1586. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1587. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1588. }
  1589. #else // not AUTO_BED_LEVELING_GRID
  1590. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1591. plan_bed_level_matrix.set_to_identity();
  1592. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1593. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1594. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1595. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1596. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1597. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1598. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1599. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1600. vector_3 corrected_position = plan_get_position();
  1601. current_position[X_AXIS] = corrected_position.x;
  1602. current_position[Y_AXIS] = corrected_position.y;
  1603. current_position[Z_AXIS] = corrected_position.z;
  1604. // put the bed at 0 so we don't go below it.
  1605. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1606. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1607. }
  1608. #endif // AUTO_BED_LEVELING_GRID
  1609. static void run_z_probe() {
  1610. plan_bed_level_matrix.set_to_identity();
  1611. feedrate = homing_feedrate[Z_AXIS];
  1612. // move down until you find the bed
  1613. float zPosition = -10;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1615. st_synchronize();
  1616. // we have to let the planner know where we are right now as it is not where we said to go.
  1617. zPosition = st_get_position_mm(Z_AXIS);
  1618. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1619. // move up the retract distance
  1620. zPosition += home_retract_mm(Z_AXIS);
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1622. st_synchronize();
  1623. // move back down slowly to find bed
  1624. feedrate = homing_feedrate[Z_AXIS]/4;
  1625. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1627. st_synchronize();
  1628. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1629. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. }
  1632. static void do_blocking_move_to(float x, float y, float z) {
  1633. float oldFeedRate = feedrate;
  1634. feedrate = homing_feedrate[Z_AXIS];
  1635. current_position[Z_AXIS] = z;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1637. st_synchronize();
  1638. feedrate = XY_TRAVEL_SPEED;
  1639. current_position[X_AXIS] = x;
  1640. current_position[Y_AXIS] = y;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1642. st_synchronize();
  1643. feedrate = oldFeedRate;
  1644. }
  1645. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1646. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1647. }
  1648. /// Probe bed height at position (x,y), returns the measured z value
  1649. static float probe_pt(float x, float y, float z_before) {
  1650. // move to right place
  1651. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1652. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1653. run_z_probe();
  1654. float measured_z = current_position[Z_AXIS];
  1655. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1656. SERIAL_PROTOCOLPGM(" x: ");
  1657. SERIAL_PROTOCOL(x);
  1658. SERIAL_PROTOCOLPGM(" y: ");
  1659. SERIAL_PROTOCOL(y);
  1660. SERIAL_PROTOCOLPGM(" z: ");
  1661. SERIAL_PROTOCOL(measured_z);
  1662. SERIAL_PROTOCOLPGM("\n");
  1663. return measured_z;
  1664. }
  1665. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1666. #ifdef LIN_ADVANCE
  1667. /**
  1668. * M900: Set and/or Get advance K factor and WH/D ratio
  1669. *
  1670. * K<factor> Set advance K factor
  1671. * R<ratio> Set ratio directly (overrides WH/D)
  1672. * W<width> H<height> D<diam> Set ratio from WH/D
  1673. */
  1674. inline void gcode_M900() {
  1675. st_synchronize();
  1676. const float newK = code_seen('K') ? code_value_float() : -1;
  1677. if (newK >= 0) extruder_advance_k = newK;
  1678. float newR = code_seen('R') ? code_value_float() : -1;
  1679. if (newR < 0) {
  1680. const float newD = code_seen('D') ? code_value_float() : -1,
  1681. newW = code_seen('W') ? code_value_float() : -1,
  1682. newH = code_seen('H') ? code_value_float() : -1;
  1683. if (newD >= 0 && newW >= 0 && newH >= 0)
  1684. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1685. }
  1686. if (newR >= 0) advance_ed_ratio = newR;
  1687. SERIAL_ECHO_START;
  1688. SERIAL_ECHOPGM("Advance K=");
  1689. SERIAL_ECHOLN(extruder_advance_k);
  1690. SERIAL_ECHOPGM(" E/D=");
  1691. const float ratio = advance_ed_ratio;
  1692. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1693. }
  1694. #endif // LIN_ADVANCE
  1695. bool check_commands() {
  1696. bool end_command_found = false;
  1697. while (buflen)
  1698. {
  1699. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1700. if (!cmdbuffer_front_already_processed)
  1701. cmdqueue_pop_front();
  1702. cmdbuffer_front_already_processed = false;
  1703. }
  1704. return end_command_found;
  1705. }
  1706. #ifdef TMC2130
  1707. bool calibrate_z_auto()
  1708. {
  1709. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1710. lcd_clear();
  1711. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1712. bool endstops_enabled = enable_endstops(true);
  1713. int axis_up_dir = -home_dir(Z_AXIS);
  1714. tmc2130_home_enter(Z_AXIS_MASK);
  1715. current_position[Z_AXIS] = 0;
  1716. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1717. set_destination_to_current();
  1718. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1719. feedrate = homing_feedrate[Z_AXIS];
  1720. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1721. st_synchronize();
  1722. // current_position[axis] = 0;
  1723. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1724. tmc2130_home_exit();
  1725. enable_endstops(false);
  1726. current_position[Z_AXIS] = 0;
  1727. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1728. set_destination_to_current();
  1729. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1730. feedrate = homing_feedrate[Z_AXIS] / 2;
  1731. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1732. st_synchronize();
  1733. enable_endstops(endstops_enabled);
  1734. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1735. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1736. return true;
  1737. }
  1738. #endif //TMC2130
  1739. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1740. {
  1741. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1742. #define HOMEAXIS_DO(LETTER) \
  1743. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1744. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1745. {
  1746. int axis_home_dir = home_dir(axis);
  1747. feedrate = homing_feedrate[axis];
  1748. #ifdef TMC2130
  1749. tmc2130_home_enter(X_AXIS_MASK << axis);
  1750. #endif //TMC2130
  1751. // Move away a bit, so that the print head does not touch the end position,
  1752. // and the following movement to endstop has a chance to achieve the required velocity
  1753. // for the stall guard to work.
  1754. current_position[axis] = 0;
  1755. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1756. set_destination_to_current();
  1757. // destination[axis] = 11.f;
  1758. destination[axis] = -3.f * axis_home_dir;
  1759. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1760. st_synchronize();
  1761. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1762. endstops_hit_on_purpose();
  1763. enable_endstops(false);
  1764. current_position[axis] = 0;
  1765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1766. destination[axis] = 1. * axis_home_dir;
  1767. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. // Now continue to move up to the left end stop with the collision detection enabled.
  1770. enable_endstops(true);
  1771. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1772. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1773. st_synchronize();
  1774. for (uint8_t i = 0; i < cnt; i++)
  1775. {
  1776. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1777. endstops_hit_on_purpose();
  1778. enable_endstops(false);
  1779. current_position[axis] = 0;
  1780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. destination[axis] = -10.f * axis_home_dir;
  1782. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1783. st_synchronize();
  1784. endstops_hit_on_purpose();
  1785. // Now move left up to the collision, this time with a repeatable velocity.
  1786. enable_endstops(true);
  1787. destination[axis] = 11.f * axis_home_dir;
  1788. #ifdef TMC2130
  1789. feedrate = homing_feedrate[axis];
  1790. #else //TMC2130
  1791. feedrate = homing_feedrate[axis] / 2;
  1792. #endif //TMC2130
  1793. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1794. st_synchronize();
  1795. #ifdef TMC2130
  1796. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1797. if (pstep) pstep[i] = mscnt >> 4;
  1798. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1799. #endif //TMC2130
  1800. }
  1801. endstops_hit_on_purpose();
  1802. enable_endstops(false);
  1803. #ifdef TMC2130
  1804. uint8_t orig = tmc2130_home_origin[axis];
  1805. uint8_t back = tmc2130_home_bsteps[axis];
  1806. if (tmc2130_home_enabled && (orig <= 63))
  1807. {
  1808. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1809. if (back > 0)
  1810. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1811. }
  1812. else
  1813. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1814. tmc2130_home_exit();
  1815. #endif //TMC2130
  1816. axis_is_at_home(axis);
  1817. axis_known_position[axis] = true;
  1818. // Move from minimum
  1819. #ifdef TMC2130
  1820. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1821. #else //TMC2130
  1822. float dist = - axis_home_dir * 0.01f * 64;
  1823. #endif //TMC2130
  1824. current_position[axis] -= dist;
  1825. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1826. current_position[axis] += dist;
  1827. destination[axis] = current_position[axis];
  1828. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1829. st_synchronize();
  1830. feedrate = 0.0;
  1831. }
  1832. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1833. {
  1834. #ifdef TMC2130
  1835. FORCE_HIGH_POWER_START;
  1836. #endif
  1837. int axis_home_dir = home_dir(axis);
  1838. current_position[axis] = 0;
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1841. feedrate = homing_feedrate[axis];
  1842. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1843. st_synchronize();
  1844. #ifdef TMC2130
  1845. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1846. FORCE_HIGH_POWER_END;
  1847. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1848. return;
  1849. }
  1850. #endif //TMC2130
  1851. current_position[axis] = 0;
  1852. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1853. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1855. st_synchronize();
  1856. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1857. feedrate = homing_feedrate[axis]/2 ;
  1858. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1859. st_synchronize();
  1860. #ifdef TMC2130
  1861. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1862. FORCE_HIGH_POWER_END;
  1863. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1864. return;
  1865. }
  1866. #endif //TMC2130
  1867. axis_is_at_home(axis);
  1868. destination[axis] = current_position[axis];
  1869. feedrate = 0.0;
  1870. endstops_hit_on_purpose();
  1871. axis_known_position[axis] = true;
  1872. #ifdef TMC2130
  1873. FORCE_HIGH_POWER_END;
  1874. #endif
  1875. }
  1876. enable_endstops(endstops_enabled);
  1877. }
  1878. /**/
  1879. void home_xy()
  1880. {
  1881. set_destination_to_current();
  1882. homeaxis(X_AXIS);
  1883. homeaxis(Y_AXIS);
  1884. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1885. endstops_hit_on_purpose();
  1886. }
  1887. void refresh_cmd_timeout(void)
  1888. {
  1889. previous_millis_cmd = millis();
  1890. }
  1891. #ifdef FWRETRACT
  1892. void retract(bool retracting, bool swapretract = false) {
  1893. if(retracting && !retracted[active_extruder]) {
  1894. destination[X_AXIS]=current_position[X_AXIS];
  1895. destination[Y_AXIS]=current_position[Y_AXIS];
  1896. destination[Z_AXIS]=current_position[Z_AXIS];
  1897. destination[E_AXIS]=current_position[E_AXIS];
  1898. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1899. plan_set_e_position(current_position[E_AXIS]);
  1900. float oldFeedrate = feedrate;
  1901. feedrate=cs.retract_feedrate*60;
  1902. retracted[active_extruder]=true;
  1903. prepare_move();
  1904. current_position[Z_AXIS]-=cs.retract_zlift;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. prepare_move();
  1907. feedrate = oldFeedrate;
  1908. } else if(!retracting && retracted[active_extruder]) {
  1909. destination[X_AXIS]=current_position[X_AXIS];
  1910. destination[Y_AXIS]=current_position[Y_AXIS];
  1911. destination[Z_AXIS]=current_position[Z_AXIS];
  1912. destination[E_AXIS]=current_position[E_AXIS];
  1913. current_position[Z_AXIS]+=cs.retract_zlift;
  1914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1915. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1916. plan_set_e_position(current_position[E_AXIS]);
  1917. float oldFeedrate = feedrate;
  1918. feedrate=cs.retract_recover_feedrate*60;
  1919. retracted[active_extruder]=false;
  1920. prepare_move();
  1921. feedrate = oldFeedrate;
  1922. }
  1923. } //retract
  1924. #endif //FWRETRACT
  1925. void trace() {
  1926. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1927. tone(BEEPER, 440);
  1928. delay(25);
  1929. noTone(BEEPER);
  1930. delay(20);
  1931. }
  1932. /*
  1933. void ramming() {
  1934. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1935. if (current_temperature[0] < 230) {
  1936. //PLA
  1937. max_feedrate[E_AXIS] = 50;
  1938. //current_position[E_AXIS] -= 8;
  1939. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1940. //current_position[E_AXIS] += 8;
  1941. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1942. current_position[E_AXIS] += 5.4;
  1943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1944. current_position[E_AXIS] += 3.2;
  1945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1946. current_position[E_AXIS] += 3;
  1947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1948. st_synchronize();
  1949. max_feedrate[E_AXIS] = 80;
  1950. current_position[E_AXIS] -= 82;
  1951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1952. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1953. current_position[E_AXIS] -= 20;
  1954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1955. current_position[E_AXIS] += 5;
  1956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1957. current_position[E_AXIS] += 5;
  1958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1959. current_position[E_AXIS] -= 10;
  1960. st_synchronize();
  1961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1962. current_position[E_AXIS] += 10;
  1963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1964. current_position[E_AXIS] -= 10;
  1965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1966. current_position[E_AXIS] += 10;
  1967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1968. current_position[E_AXIS] -= 10;
  1969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1970. st_synchronize();
  1971. }
  1972. else {
  1973. //ABS
  1974. max_feedrate[E_AXIS] = 50;
  1975. //current_position[E_AXIS] -= 8;
  1976. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1977. //current_position[E_AXIS] += 8;
  1978. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1979. current_position[E_AXIS] += 3.1;
  1980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1981. current_position[E_AXIS] += 3.1;
  1982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1983. current_position[E_AXIS] += 4;
  1984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1985. st_synchronize();
  1986. //current_position[X_AXIS] += 23; //delay
  1987. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1988. //current_position[X_AXIS] -= 23; //delay
  1989. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1990. delay(4700);
  1991. max_feedrate[E_AXIS] = 80;
  1992. current_position[E_AXIS] -= 92;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1994. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1995. current_position[E_AXIS] -= 5;
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1997. current_position[E_AXIS] += 5;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1999. current_position[E_AXIS] -= 5;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2001. st_synchronize();
  2002. current_position[E_AXIS] += 5;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2004. current_position[E_AXIS] -= 5;
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2006. current_position[E_AXIS] += 5;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2008. current_position[E_AXIS] -= 5;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2010. st_synchronize();
  2011. }
  2012. }
  2013. */
  2014. #ifdef TMC2130
  2015. void force_high_power_mode(bool start_high_power_section) {
  2016. uint8_t silent;
  2017. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2018. if (silent == 1) {
  2019. //we are in silent mode, set to normal mode to enable crash detection
  2020. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2021. st_synchronize();
  2022. cli();
  2023. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2024. update_mode_profile();
  2025. tmc2130_init();
  2026. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2027. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2028. st_reset_timer();
  2029. sei();
  2030. }
  2031. }
  2032. #endif //TMC2130
  2033. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2034. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2035. }
  2036. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2037. st_synchronize();
  2038. #if 0
  2039. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2040. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2041. #endif
  2042. // Flag for the display update routine and to disable the print cancelation during homing.
  2043. homing_flag = true;
  2044. // Which axes should be homed?
  2045. bool home_x = home_x_axis;
  2046. bool home_y = home_y_axis;
  2047. bool home_z = home_z_axis;
  2048. // Either all X,Y,Z codes are present, or none of them.
  2049. bool home_all_axes = home_x == home_y && home_x == home_z;
  2050. if (home_all_axes)
  2051. // No X/Y/Z code provided means to home all axes.
  2052. home_x = home_y = home_z = true;
  2053. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2054. if (home_all_axes) {
  2055. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2056. feedrate = homing_feedrate[Z_AXIS];
  2057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2058. st_synchronize();
  2059. }
  2060. #ifdef ENABLE_AUTO_BED_LEVELING
  2061. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2062. #endif //ENABLE_AUTO_BED_LEVELING
  2063. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2064. // the planner will not perform any adjustments in the XY plane.
  2065. // Wait for the motors to stop and update the current position with the absolute values.
  2066. world2machine_revert_to_uncorrected();
  2067. // For mesh bed leveling deactivate the matrix temporarily.
  2068. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2069. // in a single axis only.
  2070. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2071. #ifdef MESH_BED_LEVELING
  2072. uint8_t mbl_was_active = mbl.active;
  2073. mbl.active = 0;
  2074. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2075. #endif
  2076. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2077. // consumed during the first movements following this statement.
  2078. if (home_z)
  2079. babystep_undo();
  2080. saved_feedrate = feedrate;
  2081. int l_feedmultiply = feedmultiply;
  2082. feedmultiply = 100;
  2083. previous_millis_cmd = millis();
  2084. enable_endstops(true);
  2085. memcpy(destination, current_position, sizeof(destination));
  2086. feedrate = 0.0;
  2087. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2088. if(home_z)
  2089. homeaxis(Z_AXIS);
  2090. #endif
  2091. #ifdef QUICK_HOME
  2092. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2093. if(home_x && home_y) //first diagonal move
  2094. {
  2095. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2096. int x_axis_home_dir = home_dir(X_AXIS);
  2097. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2098. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2099. feedrate = homing_feedrate[X_AXIS];
  2100. if(homing_feedrate[Y_AXIS]<feedrate)
  2101. feedrate = homing_feedrate[Y_AXIS];
  2102. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2103. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2104. } else {
  2105. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2106. }
  2107. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2108. st_synchronize();
  2109. axis_is_at_home(X_AXIS);
  2110. axis_is_at_home(Y_AXIS);
  2111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2112. destination[X_AXIS] = current_position[X_AXIS];
  2113. destination[Y_AXIS] = current_position[Y_AXIS];
  2114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2115. feedrate = 0.0;
  2116. st_synchronize();
  2117. endstops_hit_on_purpose();
  2118. current_position[X_AXIS] = destination[X_AXIS];
  2119. current_position[Y_AXIS] = destination[Y_AXIS];
  2120. current_position[Z_AXIS] = destination[Z_AXIS];
  2121. }
  2122. #endif /* QUICK_HOME */
  2123. #ifdef TMC2130
  2124. if(home_x)
  2125. {
  2126. if (!calib)
  2127. homeaxis(X_AXIS);
  2128. else
  2129. tmc2130_home_calibrate(X_AXIS);
  2130. }
  2131. if(home_y)
  2132. {
  2133. if (!calib)
  2134. homeaxis(Y_AXIS);
  2135. else
  2136. tmc2130_home_calibrate(Y_AXIS);
  2137. }
  2138. #endif //TMC2130
  2139. if(home_x_axis && home_x_value != 0)
  2140. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2141. if(home_y_axis && home_y_value != 0)
  2142. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2143. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2144. #ifndef Z_SAFE_HOMING
  2145. if(home_z) {
  2146. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2147. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2148. feedrate = max_feedrate[Z_AXIS];
  2149. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2150. st_synchronize();
  2151. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2152. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2153. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2154. {
  2155. homeaxis(X_AXIS);
  2156. homeaxis(Y_AXIS);
  2157. }
  2158. // 1st mesh bed leveling measurement point, corrected.
  2159. world2machine_initialize();
  2160. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2161. world2machine_reset();
  2162. if (destination[Y_AXIS] < Y_MIN_POS)
  2163. destination[Y_AXIS] = Y_MIN_POS;
  2164. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2165. feedrate = homing_feedrate[Z_AXIS]/10;
  2166. current_position[Z_AXIS] = 0;
  2167. enable_endstops(false);
  2168. #ifdef DEBUG_BUILD
  2169. SERIAL_ECHOLNPGM("plan_set_position()");
  2170. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2171. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2172. #endif
  2173. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2174. #ifdef DEBUG_BUILD
  2175. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2176. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2177. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2178. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2179. #endif
  2180. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2181. st_synchronize();
  2182. current_position[X_AXIS] = destination[X_AXIS];
  2183. current_position[Y_AXIS] = destination[Y_AXIS];
  2184. enable_endstops(true);
  2185. endstops_hit_on_purpose();
  2186. homeaxis(Z_AXIS);
  2187. #else // MESH_BED_LEVELING
  2188. homeaxis(Z_AXIS);
  2189. #endif // MESH_BED_LEVELING
  2190. }
  2191. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2192. if(home_all_axes) {
  2193. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2194. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2195. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2196. feedrate = XY_TRAVEL_SPEED/60;
  2197. current_position[Z_AXIS] = 0;
  2198. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2199. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2200. st_synchronize();
  2201. current_position[X_AXIS] = destination[X_AXIS];
  2202. current_position[Y_AXIS] = destination[Y_AXIS];
  2203. homeaxis(Z_AXIS);
  2204. }
  2205. // Let's see if X and Y are homed and probe is inside bed area.
  2206. if(home_z) {
  2207. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2208. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2209. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2210. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2211. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2212. current_position[Z_AXIS] = 0;
  2213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2214. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2215. feedrate = max_feedrate[Z_AXIS];
  2216. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2217. st_synchronize();
  2218. homeaxis(Z_AXIS);
  2219. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2220. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2221. SERIAL_ECHO_START;
  2222. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2223. } else {
  2224. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2225. SERIAL_ECHO_START;
  2226. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2227. }
  2228. }
  2229. #endif // Z_SAFE_HOMING
  2230. #endif // Z_HOME_DIR < 0
  2231. if(home_z_axis && home_z_value != 0)
  2232. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2233. #ifdef ENABLE_AUTO_BED_LEVELING
  2234. if(home_z)
  2235. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2236. #endif
  2237. // Set the planner and stepper routine positions.
  2238. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2239. // contains the machine coordinates.
  2240. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2241. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2242. enable_endstops(false);
  2243. #endif
  2244. feedrate = saved_feedrate;
  2245. feedmultiply = l_feedmultiply;
  2246. previous_millis_cmd = millis();
  2247. endstops_hit_on_purpose();
  2248. #ifndef MESH_BED_LEVELING
  2249. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2250. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2251. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2252. lcd_adjust_z();
  2253. #endif
  2254. // Load the machine correction matrix
  2255. world2machine_initialize();
  2256. // and correct the current_position XY axes to match the transformed coordinate system.
  2257. world2machine_update_current();
  2258. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2259. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2260. {
  2261. if (! home_z && mbl_was_active) {
  2262. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2263. mbl.active = true;
  2264. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2265. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2266. }
  2267. }
  2268. else
  2269. {
  2270. st_synchronize();
  2271. homing_flag = false;
  2272. }
  2273. #endif
  2274. if (farm_mode) { prusa_statistics(20); };
  2275. homing_flag = false;
  2276. #if 0
  2277. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2278. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2279. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2280. #endif
  2281. }
  2282. void adjust_bed_reset()
  2283. {
  2284. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2285. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2286. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2287. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2288. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2289. }
  2290. //! @brief Calibrate XYZ
  2291. //! @param onlyZ if true, calibrate only Z axis
  2292. //! @param verbosity_level
  2293. //! @retval true Succeeded
  2294. //! @retval false Failed
  2295. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2296. {
  2297. bool final_result = false;
  2298. #ifdef TMC2130
  2299. FORCE_HIGH_POWER_START;
  2300. #endif // TMC2130
  2301. // Only Z calibration?
  2302. if (!onlyZ)
  2303. {
  2304. setTargetBed(0);
  2305. setAllTargetHotends(0);
  2306. adjust_bed_reset(); //reset bed level correction
  2307. }
  2308. // Disable the default update procedure of the display. We will do a modal dialog.
  2309. lcd_update_enable(false);
  2310. // Let the planner use the uncorrected coordinates.
  2311. mbl.reset();
  2312. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2313. // the planner will not perform any adjustments in the XY plane.
  2314. // Wait for the motors to stop and update the current position with the absolute values.
  2315. world2machine_revert_to_uncorrected();
  2316. // Reset the baby step value applied without moving the axes.
  2317. babystep_reset();
  2318. // Mark all axes as in a need for homing.
  2319. memset(axis_known_position, 0, sizeof(axis_known_position));
  2320. // Home in the XY plane.
  2321. //set_destination_to_current();
  2322. int l_feedmultiply = setup_for_endstop_move();
  2323. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2324. home_xy();
  2325. enable_endstops(false);
  2326. current_position[X_AXIS] += 5;
  2327. current_position[Y_AXIS] += 5;
  2328. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2329. st_synchronize();
  2330. // Let the user move the Z axes up to the end stoppers.
  2331. #ifdef TMC2130
  2332. if (calibrate_z_auto())
  2333. {
  2334. #else //TMC2130
  2335. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2336. {
  2337. #endif //TMC2130
  2338. refresh_cmd_timeout();
  2339. #ifndef STEEL_SHEET
  2340. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2341. {
  2342. lcd_wait_for_cool_down();
  2343. }
  2344. #endif //STEEL_SHEET
  2345. if(!onlyZ)
  2346. {
  2347. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2348. #ifdef STEEL_SHEET
  2349. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2350. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2351. #endif //STEEL_SHEET
  2352. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2353. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2354. KEEPALIVE_STATE(IN_HANDLER);
  2355. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2356. lcd_set_cursor(0, 2);
  2357. lcd_print(1);
  2358. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2359. }
  2360. // Move the print head close to the bed.
  2361. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2362. bool endstops_enabled = enable_endstops(true);
  2363. #ifdef TMC2130
  2364. tmc2130_home_enter(Z_AXIS_MASK);
  2365. #endif //TMC2130
  2366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2367. st_synchronize();
  2368. #ifdef TMC2130
  2369. tmc2130_home_exit();
  2370. #endif //TMC2130
  2371. enable_endstops(endstops_enabled);
  2372. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2373. {
  2374. if (onlyZ)
  2375. {
  2376. clean_up_after_endstop_move(l_feedmultiply);
  2377. // Z only calibration.
  2378. // Load the machine correction matrix
  2379. world2machine_initialize();
  2380. // and correct the current_position to match the transformed coordinate system.
  2381. world2machine_update_current();
  2382. //FIXME
  2383. bool result = sample_mesh_and_store_reference();
  2384. if (result)
  2385. {
  2386. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2387. // Shipped, the nozzle height has been set already. The user can start printing now.
  2388. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2389. final_result = true;
  2390. // babystep_apply();
  2391. }
  2392. }
  2393. else
  2394. {
  2395. // Reset the baby step value and the baby step applied flag.
  2396. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2397. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2398. // Complete XYZ calibration.
  2399. uint8_t point_too_far_mask = 0;
  2400. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2401. clean_up_after_endstop_move(l_feedmultiply);
  2402. // Print head up.
  2403. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2405. st_synchronize();
  2406. //#ifndef NEW_XYZCAL
  2407. if (result >= 0)
  2408. {
  2409. #ifdef HEATBED_V2
  2410. sample_z();
  2411. #else //HEATBED_V2
  2412. point_too_far_mask = 0;
  2413. // Second half: The fine adjustment.
  2414. // Let the planner use the uncorrected coordinates.
  2415. mbl.reset();
  2416. world2machine_reset();
  2417. // Home in the XY plane.
  2418. int l_feedmultiply = setup_for_endstop_move();
  2419. home_xy();
  2420. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2421. clean_up_after_endstop_move(l_feedmultiply);
  2422. // Print head up.
  2423. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2425. st_synchronize();
  2426. // if (result >= 0) babystep_apply();
  2427. #endif //HEATBED_V2
  2428. }
  2429. //#endif //NEW_XYZCAL
  2430. lcd_update_enable(true);
  2431. lcd_update(2);
  2432. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2433. if (result >= 0)
  2434. {
  2435. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2436. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2437. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2438. final_result = true;
  2439. }
  2440. }
  2441. #ifdef TMC2130
  2442. tmc2130_home_exit();
  2443. #endif
  2444. }
  2445. else
  2446. {
  2447. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2448. final_result = false;
  2449. }
  2450. }
  2451. else
  2452. {
  2453. // Timeouted.
  2454. }
  2455. lcd_update_enable(true);
  2456. #ifdef TMC2130
  2457. FORCE_HIGH_POWER_END;
  2458. #endif // TMC2130
  2459. return final_result;
  2460. }
  2461. void gcode_M114()
  2462. {
  2463. SERIAL_PROTOCOLPGM("X:");
  2464. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2465. SERIAL_PROTOCOLPGM(" Y:");
  2466. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2467. SERIAL_PROTOCOLPGM(" Z:");
  2468. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2469. SERIAL_PROTOCOLPGM(" E:");
  2470. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2471. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2472. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2473. SERIAL_PROTOCOLPGM(" Y:");
  2474. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2475. SERIAL_PROTOCOLPGM(" Z:");
  2476. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2477. SERIAL_PROTOCOLPGM(" E:");
  2478. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2479. SERIAL_PROTOCOLLN("");
  2480. }
  2481. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2482. {
  2483. st_synchronize();
  2484. float lastpos[4];
  2485. if (farm_mode)
  2486. {
  2487. prusa_statistics(22);
  2488. }
  2489. //First backup current position and settings
  2490. int feedmultiplyBckp = feedmultiply;
  2491. float HotendTempBckp = degTargetHotend(active_extruder);
  2492. int fanSpeedBckp = fanSpeed;
  2493. lastpos[X_AXIS] = current_position[X_AXIS];
  2494. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2495. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2496. lastpos[E_AXIS] = current_position[E_AXIS];
  2497. //Retract E
  2498. current_position[E_AXIS] += e_shift;
  2499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2500. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2501. st_synchronize();
  2502. //Lift Z
  2503. current_position[Z_AXIS] += z_shift;
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2505. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2506. st_synchronize();
  2507. //Move XY to side
  2508. current_position[X_AXIS] = x_position;
  2509. current_position[Y_AXIS] = y_position;
  2510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2511. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2512. st_synchronize();
  2513. //Beep, manage nozzle heater and wait for user to start unload filament
  2514. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2515. lcd_change_fil_state = 0;
  2516. // Unload filament
  2517. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2518. else unload_filament(); //unload filament for single material (used also in M702)
  2519. //finish moves
  2520. st_synchronize();
  2521. if (!mmu_enabled)
  2522. {
  2523. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2524. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2525. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2526. if (lcd_change_fil_state == 0)
  2527. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2528. lcd_update_enable(true);
  2529. }
  2530. if (mmu_enabled)
  2531. {
  2532. if (!automatic) {
  2533. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2534. mmu_M600_wait_and_beep();
  2535. if (saved_printing) {
  2536. lcd_clear();
  2537. lcd_set_cursor(0, 2);
  2538. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2539. mmu_command(MMU_CMD_R0);
  2540. manage_response(false, false);
  2541. }
  2542. }
  2543. mmu_M600_load_filament(automatic);
  2544. }
  2545. else
  2546. M600_load_filament();
  2547. if (!automatic) M600_check_state();
  2548. lcd_update_enable(true);
  2549. //Not let's go back to print
  2550. fanSpeed = fanSpeedBckp;
  2551. //Feed a little of filament to stabilize pressure
  2552. if (!automatic)
  2553. {
  2554. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2556. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2557. }
  2558. //Move XY back
  2559. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2560. FILAMENTCHANGE_XYFEED, active_extruder);
  2561. st_synchronize();
  2562. //Move Z back
  2563. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2564. FILAMENTCHANGE_ZFEED, active_extruder);
  2565. st_synchronize();
  2566. //Set E position to original
  2567. plan_set_e_position(lastpos[E_AXIS]);
  2568. memcpy(current_position, lastpos, sizeof(lastpos));
  2569. memcpy(destination, current_position, sizeof(current_position));
  2570. //Recover feed rate
  2571. feedmultiply = feedmultiplyBckp;
  2572. char cmd[9];
  2573. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2574. enquecommand(cmd);
  2575. lcd_setstatuspgm(_T(WELCOME_MSG));
  2576. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2577. }
  2578. void gcode_M701()
  2579. {
  2580. printf_P(PSTR("gcode_M701 begin\n"));
  2581. if (mmu_enabled)
  2582. {
  2583. extr_adj(tmp_extruder);//loads current extruder
  2584. mmu_extruder = tmp_extruder;
  2585. }
  2586. else
  2587. {
  2588. enable_z();
  2589. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2590. #ifdef FSENSOR_QUALITY
  2591. fsensor_oq_meassure_start(40);
  2592. #endif //FSENSOR_QUALITY
  2593. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2594. current_position[E_AXIS] += 40;
  2595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2596. st_synchronize();
  2597. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2598. current_position[E_AXIS] += 30;
  2599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2600. st_synchronize();
  2601. current_position[E_AXIS] += 25;
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2603. st_synchronize();
  2604. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2605. delay_keep_alive(50);
  2606. noTone(BEEPER);
  2607. if (!farm_mode && loading_flag) {
  2608. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2609. while (!clean) {
  2610. lcd_update_enable(true);
  2611. lcd_update(2);
  2612. current_position[E_AXIS] += 25;
  2613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2614. st_synchronize();
  2615. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2616. }
  2617. }
  2618. lcd_update_enable(true);
  2619. lcd_update(2);
  2620. lcd_setstatuspgm(_T(WELCOME_MSG));
  2621. disable_z();
  2622. loading_flag = false;
  2623. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2624. #ifdef FSENSOR_QUALITY
  2625. fsensor_oq_meassure_stop();
  2626. if (!fsensor_oq_result())
  2627. {
  2628. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2629. lcd_update_enable(true);
  2630. lcd_update(2);
  2631. if (disable)
  2632. fsensor_disable();
  2633. }
  2634. #endif //FSENSOR_QUALITY
  2635. }
  2636. }
  2637. /**
  2638. * @brief Get serial number from 32U2 processor
  2639. *
  2640. * Typical format of S/N is:CZPX0917X003XC13518
  2641. *
  2642. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2643. *
  2644. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2645. * reply is transmitted to serial port 1 character by character.
  2646. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2647. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2648. * in any case.
  2649. */
  2650. static void gcode_PRUSA_SN()
  2651. {
  2652. if (farm_mode) {
  2653. selectedSerialPort = 0;
  2654. putchar(';');
  2655. putchar('S');
  2656. int numbersRead = 0;
  2657. ShortTimer timeout;
  2658. timeout.start();
  2659. while (numbersRead < 19) {
  2660. while (MSerial.available() > 0) {
  2661. uint8_t serial_char = MSerial.read();
  2662. selectedSerialPort = 1;
  2663. putchar(serial_char);
  2664. numbersRead++;
  2665. selectedSerialPort = 0;
  2666. }
  2667. if (timeout.expired(100u)) break;
  2668. }
  2669. selectedSerialPort = 1;
  2670. putchar('\n');
  2671. #if 0
  2672. for (int b = 0; b < 3; b++) {
  2673. tone(BEEPER, 110);
  2674. delay(50);
  2675. noTone(BEEPER);
  2676. delay(50);
  2677. }
  2678. #endif
  2679. } else {
  2680. puts_P(_N("Not in farm mode."));
  2681. }
  2682. }
  2683. #ifdef BACKLASH_X
  2684. extern uint8_t st_backlash_x;
  2685. #endif //BACKLASH_X
  2686. #ifdef BACKLASH_Y
  2687. extern uint8_t st_backlash_y;
  2688. #endif //BACKLASH_Y
  2689. //! @brief Parse and process commands
  2690. //!
  2691. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2692. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2693. //!
  2694. //! Implemented Codes
  2695. //! -------------------
  2696. //!
  2697. //!@n PRUSA CODES
  2698. //!@n P F - Returns FW versions
  2699. //!@n P R - Returns revision of printer
  2700. //!
  2701. //!@n G0 -> G1
  2702. //!@n G1 - Coordinated Movement X Y Z E
  2703. //!@n G2 - CW ARC
  2704. //!@n G3 - CCW ARC
  2705. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2706. //!@n G10 - retract filament according to settings of M207
  2707. //!@n G11 - retract recover filament according to settings of M208
  2708. //!@n G28 - Home all Axis
  2709. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2710. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2711. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2712. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2713. //!@n G80 - Automatic mesh bed leveling
  2714. //!@n G81 - Print bed profile
  2715. //!@n G90 - Use Absolute Coordinates
  2716. //!@n G91 - Use Relative Coordinates
  2717. //!@n G92 - Set current position to coordinates given
  2718. //!
  2719. //!@n M Codes
  2720. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2721. //!@n M1 - Same as M0
  2722. //!@n M17 - Enable/Power all stepper motors
  2723. //!@n M18 - Disable all stepper motors; same as M84
  2724. //!@n M20 - List SD card
  2725. //!@n M21 - Init SD card
  2726. //!@n M22 - Release SD card
  2727. //!@n M23 - Select SD file (M23 filename.g)
  2728. //!@n M24 - Start/resume SD print
  2729. //!@n M25 - Pause SD print
  2730. //!@n M26 - Set SD position in bytes (M26 S12345)
  2731. //!@n M27 - Report SD print status
  2732. //!@n M28 - Start SD write (M28 filename.g)
  2733. //!@n M29 - Stop SD write
  2734. //!@n M30 - Delete file from SD (M30 filename.g)
  2735. //!@n M31 - Output time since last M109 or SD card start to serial
  2736. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2737. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2738. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2739. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2740. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2741. //!@n M73 - Show percent done and print time remaining
  2742. //!@n M80 - Turn on Power Supply
  2743. //!@n M81 - Turn off Power Supply
  2744. //!@n M82 - Set E codes absolute (default)
  2745. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2746. //!@n M84 - Disable steppers until next move,
  2747. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2748. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2749. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2750. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2751. //!@n M104 - Set extruder target temp
  2752. //!@n M105 - Read current temp
  2753. //!@n M106 - Fan on
  2754. //!@n M107 - Fan off
  2755. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2756. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2757. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2758. //!@n M112 - Emergency stop
  2759. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2760. //!@n M114 - Output current position to serial port
  2761. //!@n M115 - Capabilities string
  2762. //!@n M117 - display message
  2763. //!@n M119 - Output Endstop status to serial port
  2764. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2765. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2766. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2767. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2768. //!@n M140 - Set bed target temp
  2769. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2770. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2771. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2772. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2773. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2774. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2775. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2776. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2777. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2778. //!@n M206 - set additional homing offset
  2779. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2780. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2781. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2782. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2783. //!@n M220 S<factor in percent>- set speed factor override percentage
  2784. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2785. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2786. //!@n M240 - Trigger a camera to take a photograph
  2787. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2788. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2789. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2790. //!@n M301 - Set PID parameters P I and D
  2791. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2792. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2793. //!@n M304 - Set bed PID parameters P I and D
  2794. //!@n M400 - Finish all moves
  2795. //!@n M401 - Lower z-probe if present
  2796. //!@n M402 - Raise z-probe if present
  2797. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2798. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2799. //!@n M406 - Turn off Filament Sensor extrusion control
  2800. //!@n M407 - Displays measured filament diameter
  2801. //!@n M500 - stores parameters in EEPROM
  2802. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2803. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2804. //!@n M503 - print the current settings (from memory not from EEPROM)
  2805. //!@n M509 - force language selection on next restart
  2806. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2807. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2808. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2809. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2810. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2811. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2812. //!@n M907 - Set digital trimpot motor current using axis codes.
  2813. //!@n M908 - Control digital trimpot directly.
  2814. //!@n M350 - Set microstepping mode.
  2815. //!@n M351 - Toggle MS1 MS2 pins directly.
  2816. //!
  2817. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2818. //!@n M999 - Restart after being stopped by error
  2819. void process_commands()
  2820. {
  2821. if (!buflen) return; //empty command
  2822. #ifdef FILAMENT_RUNOUT_SUPPORT
  2823. SET_INPUT(FR_SENS);
  2824. #endif
  2825. #ifdef CMDBUFFER_DEBUG
  2826. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2827. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2828. SERIAL_ECHOLNPGM("");
  2829. SERIAL_ECHOPGM("In cmdqueue: ");
  2830. SERIAL_ECHO(buflen);
  2831. SERIAL_ECHOLNPGM("");
  2832. #endif /* CMDBUFFER_DEBUG */
  2833. unsigned long codenum; //throw away variable
  2834. char *starpos = NULL;
  2835. #ifdef ENABLE_AUTO_BED_LEVELING
  2836. float x_tmp, y_tmp, z_tmp, real_z;
  2837. #endif
  2838. // PRUSA GCODES
  2839. KEEPALIVE_STATE(IN_HANDLER);
  2840. #ifdef SNMM
  2841. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2842. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2843. int8_t SilentMode;
  2844. #endif
  2845. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2846. starpos = (strchr(strchr_pointer + 5, '*'));
  2847. if (starpos != NULL)
  2848. *(starpos) = '\0';
  2849. lcd_setstatus(strchr_pointer + 5);
  2850. }
  2851. #ifdef TMC2130
  2852. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2853. {
  2854. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2855. {
  2856. uint8_t mask = 0;
  2857. if (code_seen('X')) mask |= X_AXIS_MASK;
  2858. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2859. crashdet_detected(mask);
  2860. }
  2861. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2862. crashdet_recover();
  2863. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2864. crashdet_cancel();
  2865. }
  2866. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2867. {
  2868. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2869. {
  2870. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2871. axis = (axis == 'E')?3:(axis - 'X');
  2872. if (axis < 4)
  2873. {
  2874. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2875. tmc2130_set_wave(axis, 247, fac);
  2876. }
  2877. }
  2878. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2879. {
  2880. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2881. axis = (axis == 'E')?3:(axis - 'X');
  2882. if (axis < 4)
  2883. {
  2884. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2885. uint16_t res = tmc2130_get_res(axis);
  2886. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2887. }
  2888. }
  2889. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2890. {
  2891. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2892. axis = (axis == 'E')?3:(axis - 'X');
  2893. if (axis < 4)
  2894. {
  2895. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2896. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2897. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2898. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2899. char* str_end = 0;
  2900. if (CMDBUFFER_CURRENT_STRING[14])
  2901. {
  2902. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2903. if (str_end && *str_end)
  2904. {
  2905. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2906. if (str_end && *str_end)
  2907. {
  2908. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2909. if (str_end && *str_end)
  2910. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2911. }
  2912. }
  2913. }
  2914. tmc2130_chopper_config[axis].toff = chop0;
  2915. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2916. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2917. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2918. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2919. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2920. }
  2921. }
  2922. }
  2923. #ifdef BACKLASH_X
  2924. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2925. {
  2926. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2927. st_backlash_x = bl;
  2928. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2929. }
  2930. #endif //BACKLASH_X
  2931. #ifdef BACKLASH_Y
  2932. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2933. {
  2934. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2935. st_backlash_y = bl;
  2936. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2937. }
  2938. #endif //BACKLASH_Y
  2939. #endif //TMC2130
  2940. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2941. fsensor_restore_print_and_continue();
  2942. }
  2943. else if(code_seen("PRUSA")){
  2944. if (code_seen("Ping")) { //! PRUSA Ping
  2945. if (farm_mode) {
  2946. PingTime = millis();
  2947. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2948. }
  2949. }
  2950. else if (code_seen("PRN")) { //! PRUSA PRN
  2951. printf_P(_N("%d"), status_number);
  2952. }else if (code_seen("FAN")) { //! PRUSA FAN
  2953. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2954. }else if (code_seen("fn")) { //! PRUSA fn
  2955. if (farm_mode) {
  2956. printf_P(_N("%d"), farm_no);
  2957. }
  2958. else {
  2959. puts_P(_N("Not in farm mode."));
  2960. }
  2961. }
  2962. else if (code_seen("thx")) //! PRUSA thx
  2963. {
  2964. no_response = false;
  2965. }
  2966. else if (code_seen("uvlo")) //! PRUSA uvlo
  2967. {
  2968. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2969. enquecommand_P(PSTR("M24"));
  2970. }
  2971. else if (code_seen("MMURES")) //! PRUSA MMURES
  2972. {
  2973. mmu_reset();
  2974. }
  2975. else if (code_seen("RESET")) { //! PRUSA RESET
  2976. // careful!
  2977. if (farm_mode) {
  2978. #ifdef WATCHDOG
  2979. boot_app_magic = BOOT_APP_MAGIC;
  2980. boot_app_flags = BOOT_APP_FLG_RUN;
  2981. wdt_enable(WDTO_15MS);
  2982. cli();
  2983. while(1);
  2984. #else //WATCHDOG
  2985. asm volatile("jmp 0x3E000");
  2986. #endif //WATCHDOG
  2987. }
  2988. else {
  2989. MYSERIAL.println("Not in farm mode.");
  2990. }
  2991. }else if (code_seen("fv")) { //! PRUSA fv
  2992. // get file version
  2993. #ifdef SDSUPPORT
  2994. card.openFile(strchr_pointer + 3,true);
  2995. while (true) {
  2996. uint16_t readByte = card.get();
  2997. MYSERIAL.write(readByte);
  2998. if (readByte=='\n') {
  2999. break;
  3000. }
  3001. }
  3002. card.closefile();
  3003. #endif // SDSUPPORT
  3004. } else if (code_seen("M28")) { //! PRUSA M28
  3005. trace();
  3006. prusa_sd_card_upload = true;
  3007. card.openFile(strchr_pointer+4,false);
  3008. } else if (code_seen("SN")) { //! PRUSA SN
  3009. gcode_PRUSA_SN();
  3010. } else if(code_seen("Fir")){ //! PRUSA Fir
  3011. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3012. } else if(code_seen("Rev")){ //! PRUSA Rev
  3013. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3014. } else if(code_seen("Lang")) { //! PRUSA Lang
  3015. lang_reset();
  3016. } else if(code_seen("Lz")) { //! PRUSA Lz
  3017. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3018. } else if(code_seen("Beat")) { //! PRUSA Beat
  3019. // Kick farm link timer
  3020. kicktime = millis();
  3021. } else if(code_seen("FR")) { //! PRUSA FR
  3022. // Factory full reset
  3023. factory_reset(0);
  3024. }
  3025. //else if (code_seen('Cal')) {
  3026. // lcd_calibration();
  3027. // }
  3028. }
  3029. else if (code_seen('^')) {
  3030. // nothing, this is a version line
  3031. } else if(code_seen('G'))
  3032. {
  3033. gcode_in_progress = (int)code_value();
  3034. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3035. switch (gcode_in_progress)
  3036. {
  3037. case 0: // G0 -> G1
  3038. case 1: // G1
  3039. if(Stopped == false) {
  3040. #ifdef FILAMENT_RUNOUT_SUPPORT
  3041. if(READ(FR_SENS)){
  3042. int feedmultiplyBckp=feedmultiply;
  3043. float target[4];
  3044. float lastpos[4];
  3045. target[X_AXIS]=current_position[X_AXIS];
  3046. target[Y_AXIS]=current_position[Y_AXIS];
  3047. target[Z_AXIS]=current_position[Z_AXIS];
  3048. target[E_AXIS]=current_position[E_AXIS];
  3049. lastpos[X_AXIS]=current_position[X_AXIS];
  3050. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3051. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3052. lastpos[E_AXIS]=current_position[E_AXIS];
  3053. //retract by E
  3054. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3056. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3058. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3059. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3061. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3062. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3063. //finish moves
  3064. st_synchronize();
  3065. //disable extruder steppers so filament can be removed
  3066. disable_e0();
  3067. disable_e1();
  3068. disable_e2();
  3069. delay(100);
  3070. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3071. uint8_t cnt=0;
  3072. int counterBeep = 0;
  3073. lcd_wait_interact();
  3074. while(!lcd_clicked()){
  3075. cnt++;
  3076. manage_heater();
  3077. manage_inactivity(true);
  3078. //lcd_update(0);
  3079. if(cnt==0)
  3080. {
  3081. #if BEEPER > 0
  3082. if (counterBeep== 500){
  3083. counterBeep = 0;
  3084. }
  3085. SET_OUTPUT(BEEPER);
  3086. if (counterBeep== 0){
  3087. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3088. WRITE(BEEPER,HIGH);
  3089. }
  3090. if (counterBeep== 20){
  3091. WRITE(BEEPER,LOW);
  3092. }
  3093. counterBeep++;
  3094. #else
  3095. #endif
  3096. }
  3097. }
  3098. WRITE(BEEPER,LOW);
  3099. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3100. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3101. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3102. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3103. lcd_change_fil_state = 0;
  3104. lcd_loading_filament();
  3105. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3106. lcd_change_fil_state = 0;
  3107. lcd_alright();
  3108. switch(lcd_change_fil_state){
  3109. case 2:
  3110. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3112. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3114. lcd_loading_filament();
  3115. break;
  3116. case 3:
  3117. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3119. lcd_loading_color();
  3120. break;
  3121. default:
  3122. lcd_change_success();
  3123. break;
  3124. }
  3125. }
  3126. target[E_AXIS]+= 5;
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3128. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3130. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3131. //plan_set_e_position(current_position[E_AXIS]);
  3132. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3133. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3134. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3135. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3136. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3137. plan_set_e_position(lastpos[E_AXIS]);
  3138. feedmultiply=feedmultiplyBckp;
  3139. char cmd[9];
  3140. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3141. enquecommand(cmd);
  3142. }
  3143. #endif
  3144. get_coordinates(); // For X Y Z E F
  3145. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3146. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3147. }
  3148. #ifdef FWRETRACT
  3149. if(cs.autoretract_enabled)
  3150. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3151. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3152. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3153. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3154. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3155. retract(!retracted[active_extruder]);
  3156. return;
  3157. }
  3158. }
  3159. #endif //FWRETRACT
  3160. prepare_move();
  3161. //ClearToSend();
  3162. }
  3163. break;
  3164. case 2: // G2 - CW ARC
  3165. if(Stopped == false) {
  3166. get_arc_coordinates();
  3167. prepare_arc_move(true);
  3168. }
  3169. break;
  3170. case 3: // G3 - CCW ARC
  3171. if(Stopped == false) {
  3172. get_arc_coordinates();
  3173. prepare_arc_move(false);
  3174. }
  3175. break;
  3176. case 4: // G4 dwell
  3177. codenum = 0;
  3178. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3179. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3180. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3181. st_synchronize();
  3182. codenum += millis(); // keep track of when we started waiting
  3183. previous_millis_cmd = millis();
  3184. while(millis() < codenum) {
  3185. manage_heater();
  3186. manage_inactivity();
  3187. lcd_update(0);
  3188. }
  3189. break;
  3190. #ifdef FWRETRACT
  3191. case 10: // G10 retract
  3192. #if EXTRUDERS > 1
  3193. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3194. retract(true,retracted_swap[active_extruder]);
  3195. #else
  3196. retract(true);
  3197. #endif
  3198. break;
  3199. case 11: // G11 retract_recover
  3200. #if EXTRUDERS > 1
  3201. retract(false,retracted_swap[active_extruder]);
  3202. #else
  3203. retract(false);
  3204. #endif
  3205. break;
  3206. #endif //FWRETRACT
  3207. case 28: //G28 Home all Axis one at a time
  3208. {
  3209. long home_x_value = 0;
  3210. long home_y_value = 0;
  3211. long home_z_value = 0;
  3212. // Which axes should be homed?
  3213. bool home_x = code_seen(axis_codes[X_AXIS]);
  3214. home_x_value = code_value_long();
  3215. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3216. home_y_value = code_value_long();
  3217. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3218. home_z_value = code_value_long();
  3219. bool without_mbl = code_seen('W');
  3220. // calibrate?
  3221. bool calib = code_seen('C');
  3222. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3223. if ((home_x || home_y || without_mbl || home_z) == false) {
  3224. // Push the commands to the front of the message queue in the reverse order!
  3225. // There shall be always enough space reserved for these commands.
  3226. goto case_G80;
  3227. }
  3228. break;
  3229. }
  3230. #ifdef ENABLE_AUTO_BED_LEVELING
  3231. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3232. {
  3233. #if Z_MIN_PIN == -1
  3234. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3235. #endif
  3236. // Prevent user from running a G29 without first homing in X and Y
  3237. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3238. {
  3239. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3240. SERIAL_ECHO_START;
  3241. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3242. break; // abort G29, since we don't know where we are
  3243. }
  3244. st_synchronize();
  3245. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3246. //vector_3 corrected_position = plan_get_position_mm();
  3247. //corrected_position.debug("position before G29");
  3248. plan_bed_level_matrix.set_to_identity();
  3249. vector_3 uncorrected_position = plan_get_position();
  3250. //uncorrected_position.debug("position durring G29");
  3251. current_position[X_AXIS] = uncorrected_position.x;
  3252. current_position[Y_AXIS] = uncorrected_position.y;
  3253. current_position[Z_AXIS] = uncorrected_position.z;
  3254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3255. int l_feedmultiply = setup_for_endstop_move();
  3256. feedrate = homing_feedrate[Z_AXIS];
  3257. #ifdef AUTO_BED_LEVELING_GRID
  3258. // probe at the points of a lattice grid
  3259. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3260. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3261. // solve the plane equation ax + by + d = z
  3262. // A is the matrix with rows [x y 1] for all the probed points
  3263. // B is the vector of the Z positions
  3264. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3265. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3266. // "A" matrix of the linear system of equations
  3267. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3268. // "B" vector of Z points
  3269. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3270. int probePointCounter = 0;
  3271. bool zig = true;
  3272. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3273. {
  3274. int xProbe, xInc;
  3275. if (zig)
  3276. {
  3277. xProbe = LEFT_PROBE_BED_POSITION;
  3278. //xEnd = RIGHT_PROBE_BED_POSITION;
  3279. xInc = xGridSpacing;
  3280. zig = false;
  3281. } else // zag
  3282. {
  3283. xProbe = RIGHT_PROBE_BED_POSITION;
  3284. //xEnd = LEFT_PROBE_BED_POSITION;
  3285. xInc = -xGridSpacing;
  3286. zig = true;
  3287. }
  3288. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3289. {
  3290. float z_before;
  3291. if (probePointCounter == 0)
  3292. {
  3293. // raise before probing
  3294. z_before = Z_RAISE_BEFORE_PROBING;
  3295. } else
  3296. {
  3297. // raise extruder
  3298. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3299. }
  3300. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3301. eqnBVector[probePointCounter] = measured_z;
  3302. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3303. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3304. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3305. probePointCounter++;
  3306. xProbe += xInc;
  3307. }
  3308. }
  3309. clean_up_after_endstop_move(l_feedmultiply);
  3310. // solve lsq problem
  3311. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3312. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3313. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3314. SERIAL_PROTOCOLPGM(" b: ");
  3315. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3316. SERIAL_PROTOCOLPGM(" d: ");
  3317. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3318. set_bed_level_equation_lsq(plane_equation_coefficients);
  3319. free(plane_equation_coefficients);
  3320. #else // AUTO_BED_LEVELING_GRID not defined
  3321. // Probe at 3 arbitrary points
  3322. // probe 1
  3323. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3324. // probe 2
  3325. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3326. // probe 3
  3327. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3328. clean_up_after_endstop_move(l_feedmultiply);
  3329. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3330. #endif // AUTO_BED_LEVELING_GRID
  3331. st_synchronize();
  3332. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3333. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3334. // When the bed is uneven, this height must be corrected.
  3335. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3336. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3337. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3338. z_tmp = current_position[Z_AXIS];
  3339. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3340. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3341. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3342. }
  3343. break;
  3344. #ifndef Z_PROBE_SLED
  3345. case 30: // G30 Single Z Probe
  3346. {
  3347. st_synchronize();
  3348. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3349. int l_feedmultiply = setup_for_endstop_move();
  3350. feedrate = homing_feedrate[Z_AXIS];
  3351. run_z_probe();
  3352. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3353. SERIAL_PROTOCOLPGM(" X: ");
  3354. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3355. SERIAL_PROTOCOLPGM(" Y: ");
  3356. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3357. SERIAL_PROTOCOLPGM(" Z: ");
  3358. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3359. SERIAL_PROTOCOLPGM("\n");
  3360. clean_up_after_endstop_move(l_feedmultiply);
  3361. }
  3362. break;
  3363. #else
  3364. case 31: // dock the sled
  3365. dock_sled(true);
  3366. break;
  3367. case 32: // undock the sled
  3368. dock_sled(false);
  3369. break;
  3370. #endif // Z_PROBE_SLED
  3371. #endif // ENABLE_AUTO_BED_LEVELING
  3372. #ifdef MESH_BED_LEVELING
  3373. case 30: // G30 Single Z Probe
  3374. {
  3375. st_synchronize();
  3376. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3377. int l_feedmultiply = setup_for_endstop_move();
  3378. feedrate = homing_feedrate[Z_AXIS];
  3379. find_bed_induction_sensor_point_z(-10.f, 3);
  3380. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3381. clean_up_after_endstop_move(l_feedmultiply);
  3382. }
  3383. break;
  3384. case 75:
  3385. {
  3386. for (int i = 40; i <= 110; i++)
  3387. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3388. }
  3389. break;
  3390. case 76: //! G76 - PINDA probe temperature calibration
  3391. {
  3392. #ifdef PINDA_THERMISTOR
  3393. if (true)
  3394. {
  3395. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3396. //we need to know accurate position of first calibration point
  3397. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3398. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3399. break;
  3400. }
  3401. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3402. {
  3403. // We don't know where we are! HOME!
  3404. // Push the commands to the front of the message queue in the reverse order!
  3405. // There shall be always enough space reserved for these commands.
  3406. repeatcommand_front(); // repeat G76 with all its parameters
  3407. enquecommand_front_P((PSTR("G28 W0")));
  3408. break;
  3409. }
  3410. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3411. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3412. if (result)
  3413. {
  3414. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3416. current_position[Z_AXIS] = 50;
  3417. current_position[Y_AXIS] = 180;
  3418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3419. st_synchronize();
  3420. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3421. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3422. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3424. st_synchronize();
  3425. gcode_G28(false, false, true);
  3426. }
  3427. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3428. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3429. current_position[Z_AXIS] = 100;
  3430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3431. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3432. lcd_temp_cal_show_result(false);
  3433. break;
  3434. }
  3435. }
  3436. lcd_update_enable(true);
  3437. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3438. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3439. float zero_z;
  3440. int z_shift = 0; //unit: steps
  3441. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3442. if (start_temp < 35) start_temp = 35;
  3443. if (start_temp < current_temperature_pinda) start_temp += 5;
  3444. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3445. // setTargetHotend(200, 0);
  3446. setTargetBed(70 + (start_temp - 30));
  3447. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3448. custom_message_state = 1;
  3449. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3450. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3452. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3453. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3455. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3457. st_synchronize();
  3458. while (current_temperature_pinda < start_temp)
  3459. {
  3460. delay_keep_alive(1000);
  3461. serialecho_temperatures();
  3462. }
  3463. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3464. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3466. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3467. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3469. st_synchronize();
  3470. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3471. if (find_z_result == false) {
  3472. lcd_temp_cal_show_result(find_z_result);
  3473. break;
  3474. }
  3475. zero_z = current_position[Z_AXIS];
  3476. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3477. int i = -1; for (; i < 5; i++)
  3478. {
  3479. float temp = (40 + i * 5);
  3480. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3481. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3482. if (start_temp <= temp) break;
  3483. }
  3484. for (i++; i < 5; i++)
  3485. {
  3486. float temp = (40 + i * 5);
  3487. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3488. custom_message_state = i + 2;
  3489. setTargetBed(50 + 10 * (temp - 30) / 5);
  3490. // setTargetHotend(255, 0);
  3491. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3493. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3494. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3498. st_synchronize();
  3499. while (current_temperature_pinda < temp)
  3500. {
  3501. delay_keep_alive(1000);
  3502. serialecho_temperatures();
  3503. }
  3504. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3506. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3507. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. st_synchronize();
  3510. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3511. if (find_z_result == false) {
  3512. lcd_temp_cal_show_result(find_z_result);
  3513. break;
  3514. }
  3515. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3516. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3517. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3518. }
  3519. lcd_temp_cal_show_result(true);
  3520. break;
  3521. }
  3522. #endif //PINDA_THERMISTOR
  3523. setTargetBed(PINDA_MIN_T);
  3524. float zero_z;
  3525. int z_shift = 0; //unit: steps
  3526. int t_c; // temperature
  3527. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3528. // We don't know where we are! HOME!
  3529. // Push the commands to the front of the message queue in the reverse order!
  3530. // There shall be always enough space reserved for these commands.
  3531. repeatcommand_front(); // repeat G76 with all its parameters
  3532. enquecommand_front_P((PSTR("G28 W0")));
  3533. break;
  3534. }
  3535. puts_P(_N("PINDA probe calibration start"));
  3536. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3537. custom_message_state = 1;
  3538. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3539. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3540. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3541. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3543. st_synchronize();
  3544. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3545. delay_keep_alive(1000);
  3546. serialecho_temperatures();
  3547. }
  3548. //enquecommand_P(PSTR("M190 S50"));
  3549. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3550. delay_keep_alive(1000);
  3551. serialecho_temperatures();
  3552. }
  3553. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3554. current_position[Z_AXIS] = 5;
  3555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3556. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3557. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3559. st_synchronize();
  3560. find_bed_induction_sensor_point_z(-1.f);
  3561. zero_z = current_position[Z_AXIS];
  3562. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3563. for (int i = 0; i<5; i++) {
  3564. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3565. custom_message_state = i + 2;
  3566. t_c = 60 + i * 10;
  3567. setTargetBed(t_c);
  3568. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3569. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3570. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3572. st_synchronize();
  3573. while (degBed() < t_c) {
  3574. delay_keep_alive(1000);
  3575. serialecho_temperatures();
  3576. }
  3577. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3578. delay_keep_alive(1000);
  3579. serialecho_temperatures();
  3580. }
  3581. current_position[Z_AXIS] = 5;
  3582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3583. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3584. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3586. st_synchronize();
  3587. find_bed_induction_sensor_point_z(-1.f);
  3588. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3589. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3590. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3591. }
  3592. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3593. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3594. puts_P(_N("Temperature calibration done."));
  3595. disable_x();
  3596. disable_y();
  3597. disable_z();
  3598. disable_e0();
  3599. disable_e1();
  3600. disable_e2();
  3601. setTargetBed(0); //set bed target temperature back to 0
  3602. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3603. temp_cal_active = true;
  3604. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3605. lcd_update_enable(true);
  3606. lcd_update(2);
  3607. }
  3608. break;
  3609. #ifdef DIS
  3610. case 77:
  3611. {
  3612. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3613. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3614. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3615. float dimension_x = 40;
  3616. float dimension_y = 40;
  3617. int points_x = 40;
  3618. int points_y = 40;
  3619. float offset_x = 74;
  3620. float offset_y = 33;
  3621. if (code_seen('X')) dimension_x = code_value();
  3622. if (code_seen('Y')) dimension_y = code_value();
  3623. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3624. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3625. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3626. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3627. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3628. } break;
  3629. #endif
  3630. case 79: {
  3631. for (int i = 255; i > 0; i = i - 5) {
  3632. fanSpeed = i;
  3633. //delay_keep_alive(2000);
  3634. for (int j = 0; j < 100; j++) {
  3635. delay_keep_alive(100);
  3636. }
  3637. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3638. }
  3639. }break;
  3640. /**
  3641. * G80: Mesh-based Z probe, probes a grid and produces a
  3642. * mesh to compensate for variable bed height
  3643. *
  3644. * The S0 report the points as below
  3645. * @code{.unparsed}
  3646. * +----> X-axis
  3647. * |
  3648. * |
  3649. * v Y-axis
  3650. * @endcode
  3651. */
  3652. case 80:
  3653. #ifdef MK1BP
  3654. break;
  3655. #endif //MK1BP
  3656. case_G80:
  3657. {
  3658. mesh_bed_leveling_flag = true;
  3659. static bool run = false;
  3660. #ifdef SUPPORT_VERBOSITY
  3661. int8_t verbosity_level = 0;
  3662. if (code_seen('V')) {
  3663. // Just 'V' without a number counts as V1.
  3664. char c = strchr_pointer[1];
  3665. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3666. }
  3667. #endif //SUPPORT_VERBOSITY
  3668. // Firstly check if we know where we are
  3669. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3670. // We don't know where we are! HOME!
  3671. // Push the commands to the front of the message queue in the reverse order!
  3672. // There shall be always enough space reserved for these commands.
  3673. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3674. repeatcommand_front(); // repeat G80 with all its parameters
  3675. enquecommand_front_P((PSTR("G28 W0")));
  3676. }
  3677. else {
  3678. mesh_bed_leveling_flag = false;
  3679. }
  3680. break;
  3681. }
  3682. bool temp_comp_start = true;
  3683. #ifdef PINDA_THERMISTOR
  3684. temp_comp_start = false;
  3685. #endif //PINDA_THERMISTOR
  3686. if (temp_comp_start)
  3687. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3688. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3689. temp_compensation_start();
  3690. run = true;
  3691. repeatcommand_front(); // repeat G80 with all its parameters
  3692. enquecommand_front_P((PSTR("G28 W0")));
  3693. }
  3694. else {
  3695. mesh_bed_leveling_flag = false;
  3696. }
  3697. break;
  3698. }
  3699. run = false;
  3700. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3701. mesh_bed_leveling_flag = false;
  3702. break;
  3703. }
  3704. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3705. unsigned int custom_message_type_old = custom_message_type;
  3706. unsigned int custom_message_state_old = custom_message_state;
  3707. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3708. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3709. lcd_update(1);
  3710. mbl.reset(); //reset mesh bed leveling
  3711. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3712. // consumed during the first movements following this statement.
  3713. babystep_undo();
  3714. // Cycle through all points and probe them
  3715. // First move up. During this first movement, the babystepping will be reverted.
  3716. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3718. // The move to the first calibration point.
  3719. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3720. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3721. #ifdef SUPPORT_VERBOSITY
  3722. if (verbosity_level >= 1)
  3723. {
  3724. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3725. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3726. }
  3727. #endif //SUPPORT_VERBOSITY
  3728. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3730. // Wait until the move is finished.
  3731. st_synchronize();
  3732. int mesh_point = 0; //index number of calibration point
  3733. int ix = 0;
  3734. int iy = 0;
  3735. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3736. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3737. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3738. #ifdef SUPPORT_VERBOSITY
  3739. if (verbosity_level >= 1) {
  3740. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3741. }
  3742. #endif // SUPPORT_VERBOSITY
  3743. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3744. const char *kill_message = NULL;
  3745. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3746. // Get coords of a measuring point.
  3747. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3748. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3749. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3750. float z0 = 0.f;
  3751. if (has_z && mesh_point > 0) {
  3752. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3753. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3754. //#if 0
  3755. #ifdef SUPPORT_VERBOSITY
  3756. if (verbosity_level >= 1) {
  3757. SERIAL_ECHOLNPGM("");
  3758. SERIAL_ECHOPGM("Bed leveling, point: ");
  3759. MYSERIAL.print(mesh_point);
  3760. SERIAL_ECHOPGM(", calibration z: ");
  3761. MYSERIAL.print(z0, 5);
  3762. SERIAL_ECHOLNPGM("");
  3763. }
  3764. #endif // SUPPORT_VERBOSITY
  3765. //#endif
  3766. }
  3767. // Move Z up to MESH_HOME_Z_SEARCH.
  3768. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3770. st_synchronize();
  3771. // Move to XY position of the sensor point.
  3772. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3773. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3774. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3775. #ifdef SUPPORT_VERBOSITY
  3776. if (verbosity_level >= 1) {
  3777. SERIAL_PROTOCOL(mesh_point);
  3778. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3779. }
  3780. #endif // SUPPORT_VERBOSITY
  3781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3782. st_synchronize();
  3783. // Go down until endstop is hit
  3784. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3785. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3786. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3787. break;
  3788. }
  3789. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3790. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3791. break;
  3792. }
  3793. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3794. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3795. break;
  3796. }
  3797. #ifdef SUPPORT_VERBOSITY
  3798. if (verbosity_level >= 10) {
  3799. SERIAL_ECHOPGM("X: ");
  3800. MYSERIAL.print(current_position[X_AXIS], 5);
  3801. SERIAL_ECHOLNPGM("");
  3802. SERIAL_ECHOPGM("Y: ");
  3803. MYSERIAL.print(current_position[Y_AXIS], 5);
  3804. SERIAL_PROTOCOLPGM("\n");
  3805. }
  3806. #endif // SUPPORT_VERBOSITY
  3807. float offset_z = 0;
  3808. #ifdef PINDA_THERMISTOR
  3809. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3810. #endif //PINDA_THERMISTOR
  3811. // #ifdef SUPPORT_VERBOSITY
  3812. /* if (verbosity_level >= 1)
  3813. {
  3814. SERIAL_ECHOPGM("mesh bed leveling: ");
  3815. MYSERIAL.print(current_position[Z_AXIS], 5);
  3816. SERIAL_ECHOPGM(" offset: ");
  3817. MYSERIAL.print(offset_z, 5);
  3818. SERIAL_ECHOLNPGM("");
  3819. }*/
  3820. // #endif // SUPPORT_VERBOSITY
  3821. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3822. custom_message_state--;
  3823. mesh_point++;
  3824. lcd_update(1);
  3825. }
  3826. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3827. #ifdef SUPPORT_VERBOSITY
  3828. if (verbosity_level >= 20) {
  3829. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3830. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3831. MYSERIAL.print(current_position[Z_AXIS], 5);
  3832. }
  3833. #endif // SUPPORT_VERBOSITY
  3834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3835. st_synchronize();
  3836. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3837. kill(kill_message);
  3838. SERIAL_ECHOLNPGM("killed");
  3839. }
  3840. clean_up_after_endstop_move(l_feedmultiply);
  3841. // SERIAL_ECHOLNPGM("clean up finished ");
  3842. bool apply_temp_comp = true;
  3843. #ifdef PINDA_THERMISTOR
  3844. apply_temp_comp = false;
  3845. #endif
  3846. if (apply_temp_comp)
  3847. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3848. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3849. // SERIAL_ECHOLNPGM("babystep applied");
  3850. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3851. #ifdef SUPPORT_VERBOSITY
  3852. if (verbosity_level >= 1) {
  3853. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3854. }
  3855. #endif // SUPPORT_VERBOSITY
  3856. for (uint8_t i = 0; i < 4; ++i) {
  3857. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3858. long correction = 0;
  3859. if (code_seen(codes[i]))
  3860. correction = code_value_long();
  3861. else if (eeprom_bed_correction_valid) {
  3862. unsigned char *addr = (i < 2) ?
  3863. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3864. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3865. correction = eeprom_read_int8(addr);
  3866. }
  3867. if (correction == 0)
  3868. continue;
  3869. float offset = float(correction) * 0.001f;
  3870. if (fabs(offset) > 0.101f) {
  3871. SERIAL_ERROR_START;
  3872. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3873. SERIAL_ECHO(offset);
  3874. SERIAL_ECHOLNPGM(" microns");
  3875. }
  3876. else {
  3877. switch (i) {
  3878. case 0:
  3879. for (uint8_t row = 0; row < 3; ++row) {
  3880. mbl.z_values[row][1] += 0.5f * offset;
  3881. mbl.z_values[row][0] += offset;
  3882. }
  3883. break;
  3884. case 1:
  3885. for (uint8_t row = 0; row < 3; ++row) {
  3886. mbl.z_values[row][1] += 0.5f * offset;
  3887. mbl.z_values[row][2] += offset;
  3888. }
  3889. break;
  3890. case 2:
  3891. for (uint8_t col = 0; col < 3; ++col) {
  3892. mbl.z_values[1][col] += 0.5f * offset;
  3893. mbl.z_values[0][col] += offset;
  3894. }
  3895. break;
  3896. case 3:
  3897. for (uint8_t col = 0; col < 3; ++col) {
  3898. mbl.z_values[1][col] += 0.5f * offset;
  3899. mbl.z_values[2][col] += offset;
  3900. }
  3901. break;
  3902. }
  3903. }
  3904. }
  3905. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3906. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3907. // SERIAL_ECHOLNPGM("Upsample finished");
  3908. mbl.active = 1; //activate mesh bed leveling
  3909. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3910. go_home_with_z_lift();
  3911. // SERIAL_ECHOLNPGM("Go home finished");
  3912. //unretract (after PINDA preheat retraction)
  3913. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3914. current_position[E_AXIS] += default_retraction;
  3915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3916. }
  3917. KEEPALIVE_STATE(NOT_BUSY);
  3918. // Restore custom message state
  3919. lcd_setstatuspgm(_T(WELCOME_MSG));
  3920. custom_message_type = custom_message_type_old;
  3921. custom_message_state = custom_message_state_old;
  3922. mesh_bed_leveling_flag = false;
  3923. mesh_bed_run_from_menu = false;
  3924. lcd_update(2);
  3925. }
  3926. break;
  3927. /**
  3928. * G81: Print mesh bed leveling status and bed profile if activated
  3929. */
  3930. case 81:
  3931. if (mbl.active) {
  3932. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3933. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3934. SERIAL_PROTOCOLPGM(",");
  3935. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3936. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3937. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3938. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3939. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3940. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3941. SERIAL_PROTOCOLPGM(" ");
  3942. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3943. }
  3944. SERIAL_PROTOCOLPGM("\n");
  3945. }
  3946. }
  3947. else
  3948. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3949. break;
  3950. #if 0
  3951. /**
  3952. * G82: Single Z probe at current location
  3953. *
  3954. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3955. *
  3956. */
  3957. case 82:
  3958. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3959. int l_feedmultiply = setup_for_endstop_move();
  3960. find_bed_induction_sensor_point_z();
  3961. clean_up_after_endstop_move(l_feedmultiply);
  3962. SERIAL_PROTOCOLPGM("Bed found at: ");
  3963. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3964. SERIAL_PROTOCOLPGM("\n");
  3965. break;
  3966. /**
  3967. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3968. */
  3969. case 83:
  3970. {
  3971. int babystepz = code_seen('S') ? code_value() : 0;
  3972. int BabyPosition = code_seen('P') ? code_value() : 0;
  3973. if (babystepz != 0) {
  3974. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3975. // Is the axis indexed starting with zero or one?
  3976. if (BabyPosition > 4) {
  3977. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3978. }else{
  3979. // Save it to the eeprom
  3980. babystepLoadZ = babystepz;
  3981. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3982. // adjust the Z
  3983. babystepsTodoZadd(babystepLoadZ);
  3984. }
  3985. }
  3986. }
  3987. break;
  3988. /**
  3989. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3990. */
  3991. case 84:
  3992. babystepsTodoZsubtract(babystepLoadZ);
  3993. // babystepLoadZ = 0;
  3994. break;
  3995. /**
  3996. * G85: Prusa3D specific: Pick best babystep
  3997. */
  3998. case 85:
  3999. lcd_pick_babystep();
  4000. break;
  4001. #endif
  4002. /**
  4003. * G86: Prusa3D specific: Disable babystep correction after home.
  4004. * This G-code will be performed at the start of a calibration script.
  4005. */
  4006. case 86:
  4007. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4008. break;
  4009. /**
  4010. * G87: Prusa3D specific: Enable babystep correction after home
  4011. * This G-code will be performed at the end of a calibration script.
  4012. */
  4013. case 87:
  4014. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4015. break;
  4016. /**
  4017. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4018. */
  4019. case 88:
  4020. break;
  4021. #endif // ENABLE_MESH_BED_LEVELING
  4022. case 90: // G90
  4023. relative_mode = false;
  4024. break;
  4025. case 91: // G91
  4026. relative_mode = true;
  4027. break;
  4028. case 92: // G92
  4029. if(!code_seen(axis_codes[E_AXIS]))
  4030. st_synchronize();
  4031. for(int8_t i=0; i < NUM_AXIS; i++) {
  4032. if(code_seen(axis_codes[i])) {
  4033. if(i == E_AXIS) {
  4034. current_position[i] = code_value();
  4035. plan_set_e_position(current_position[E_AXIS]);
  4036. }
  4037. else {
  4038. current_position[i] = code_value()+cs.add_homing[i];
  4039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4040. }
  4041. }
  4042. }
  4043. break;
  4044. case 98: //! G98 (activate farm mode)
  4045. farm_mode = 1;
  4046. PingTime = millis();
  4047. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4048. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4049. SilentModeMenu = SILENT_MODE_OFF;
  4050. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4051. break;
  4052. case 99: //! G99 (deactivate farm mode)
  4053. farm_mode = 0;
  4054. lcd_printer_connected();
  4055. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4056. lcd_update(2);
  4057. break;
  4058. default:
  4059. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4060. }
  4061. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4062. gcode_in_progress = 0;
  4063. } // end if(code_seen('G'))
  4064. else if(code_seen('M'))
  4065. {
  4066. int index;
  4067. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4068. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4069. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4070. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4071. } else
  4072. {
  4073. mcode_in_progress = (int)code_value();
  4074. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4075. switch(mcode_in_progress)
  4076. {
  4077. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4078. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4079. {
  4080. char *src = strchr_pointer + 2;
  4081. codenum = 0;
  4082. bool hasP = false, hasS = false;
  4083. if (code_seen('P')) {
  4084. codenum = code_value(); // milliseconds to wait
  4085. hasP = codenum > 0;
  4086. }
  4087. if (code_seen('S')) {
  4088. codenum = code_value() * 1000; // seconds to wait
  4089. hasS = codenum > 0;
  4090. }
  4091. starpos = strchr(src, '*');
  4092. if (starpos != NULL) *(starpos) = '\0';
  4093. while (*src == ' ') ++src;
  4094. if (!hasP && !hasS && *src != '\0') {
  4095. lcd_setstatus(src);
  4096. } else {
  4097. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4098. }
  4099. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4100. st_synchronize();
  4101. previous_millis_cmd = millis();
  4102. if (codenum > 0){
  4103. codenum += millis(); // keep track of when we started waiting
  4104. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4105. while(millis() < codenum && !lcd_clicked()){
  4106. manage_heater();
  4107. manage_inactivity(true);
  4108. lcd_update(0);
  4109. }
  4110. KEEPALIVE_STATE(IN_HANDLER);
  4111. lcd_ignore_click(false);
  4112. }else{
  4113. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4114. while(!lcd_clicked()){
  4115. manage_heater();
  4116. manage_inactivity(true);
  4117. lcd_update(0);
  4118. }
  4119. KEEPALIVE_STATE(IN_HANDLER);
  4120. }
  4121. if (IS_SD_PRINTING)
  4122. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4123. else
  4124. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4125. }
  4126. break;
  4127. case 17:
  4128. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4129. enable_x();
  4130. enable_y();
  4131. enable_z();
  4132. enable_e0();
  4133. enable_e1();
  4134. enable_e2();
  4135. break;
  4136. #ifdef SDSUPPORT
  4137. case 20: // M20 - list SD card
  4138. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4139. card.ls();
  4140. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4141. break;
  4142. case 21: // M21 - init SD card
  4143. card.initsd();
  4144. break;
  4145. case 22: //M22 - release SD card
  4146. card.release();
  4147. break;
  4148. case 23: //M23 - Select file
  4149. starpos = (strchr(strchr_pointer + 4,'*'));
  4150. if(starpos!=NULL)
  4151. *(starpos)='\0';
  4152. card.openFile(strchr_pointer + 4,true);
  4153. break;
  4154. case 24: //M24 - Start SD print
  4155. if (!card.paused)
  4156. failstats_reset_print();
  4157. card.startFileprint();
  4158. starttime=millis();
  4159. break;
  4160. case 25: //M25 - Pause SD print
  4161. card.pauseSDPrint();
  4162. break;
  4163. case 26: //M26 - Set SD index
  4164. if(card.cardOK && code_seen('S')) {
  4165. card.setIndex(code_value_long());
  4166. }
  4167. break;
  4168. case 27: //M27 - Get SD status
  4169. card.getStatus();
  4170. break;
  4171. case 28: //M28 - Start SD write
  4172. starpos = (strchr(strchr_pointer + 4,'*'));
  4173. if(starpos != NULL){
  4174. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4175. strchr_pointer = strchr(npos,' ') + 1;
  4176. *(starpos) = '\0';
  4177. }
  4178. card.openFile(strchr_pointer+4,false);
  4179. break;
  4180. case 29: //M29 - Stop SD write
  4181. //processed in write to file routine above
  4182. //card,saving = false;
  4183. break;
  4184. case 30: //M30 <filename> Delete File
  4185. if (card.cardOK){
  4186. card.closefile();
  4187. starpos = (strchr(strchr_pointer + 4,'*'));
  4188. if(starpos != NULL){
  4189. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4190. strchr_pointer = strchr(npos,' ') + 1;
  4191. *(starpos) = '\0';
  4192. }
  4193. card.removeFile(strchr_pointer + 4);
  4194. }
  4195. break;
  4196. case 32: //M32 - Select file and start SD print
  4197. {
  4198. if(card.sdprinting) {
  4199. st_synchronize();
  4200. }
  4201. starpos = (strchr(strchr_pointer + 4,'*'));
  4202. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4203. if(namestartpos==NULL)
  4204. {
  4205. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4206. }
  4207. else
  4208. namestartpos++; //to skip the '!'
  4209. if(starpos!=NULL)
  4210. *(starpos)='\0';
  4211. bool call_procedure=(code_seen('P'));
  4212. if(strchr_pointer>namestartpos)
  4213. call_procedure=false; //false alert, 'P' found within filename
  4214. if( card.cardOK )
  4215. {
  4216. card.openFile(namestartpos,true,!call_procedure);
  4217. if(code_seen('S'))
  4218. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4219. card.setIndex(code_value_long());
  4220. card.startFileprint();
  4221. if(!call_procedure)
  4222. starttime=millis(); //procedure calls count as normal print time.
  4223. }
  4224. } break;
  4225. case 928: //M928 - Start SD write
  4226. starpos = (strchr(strchr_pointer + 5,'*'));
  4227. if(starpos != NULL){
  4228. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4229. strchr_pointer = strchr(npos,' ') + 1;
  4230. *(starpos) = '\0';
  4231. }
  4232. card.openLogFile(strchr_pointer+5);
  4233. break;
  4234. #endif //SDSUPPORT
  4235. case 31: //M31 take time since the start of the SD print or an M109 command
  4236. {
  4237. stoptime=millis();
  4238. char time[30];
  4239. unsigned long t=(stoptime-starttime)/1000;
  4240. int sec,min;
  4241. min=t/60;
  4242. sec=t%60;
  4243. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4244. SERIAL_ECHO_START;
  4245. SERIAL_ECHOLN(time);
  4246. lcd_setstatus(time);
  4247. autotempShutdown();
  4248. }
  4249. break;
  4250. case 42: //M42 -Change pin status via gcode
  4251. if (code_seen('S'))
  4252. {
  4253. int pin_status = code_value();
  4254. int pin_number = LED_PIN;
  4255. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4256. pin_number = code_value();
  4257. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4258. {
  4259. if (sensitive_pins[i] == pin_number)
  4260. {
  4261. pin_number = -1;
  4262. break;
  4263. }
  4264. }
  4265. #if defined(FAN_PIN) && FAN_PIN > -1
  4266. if (pin_number == FAN_PIN)
  4267. fanSpeed = pin_status;
  4268. #endif
  4269. if (pin_number > -1)
  4270. {
  4271. pinMode(pin_number, OUTPUT);
  4272. digitalWrite(pin_number, pin_status);
  4273. analogWrite(pin_number, pin_status);
  4274. }
  4275. }
  4276. break;
  4277. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4278. // Reset the baby step value and the baby step applied flag.
  4279. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4280. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4281. // Reset the skew and offset in both RAM and EEPROM.
  4282. reset_bed_offset_and_skew();
  4283. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4284. // the planner will not perform any adjustments in the XY plane.
  4285. // Wait for the motors to stop and update the current position with the absolute values.
  4286. world2machine_revert_to_uncorrected();
  4287. break;
  4288. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4289. {
  4290. int8_t verbosity_level = 0;
  4291. bool only_Z = code_seen('Z');
  4292. #ifdef SUPPORT_VERBOSITY
  4293. if (code_seen('V'))
  4294. {
  4295. // Just 'V' without a number counts as V1.
  4296. char c = strchr_pointer[1];
  4297. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4298. }
  4299. #endif //SUPPORT_VERBOSITY
  4300. gcode_M45(only_Z, verbosity_level);
  4301. }
  4302. break;
  4303. /*
  4304. case 46:
  4305. {
  4306. // M46: Prusa3D: Show the assigned IP address.
  4307. uint8_t ip[4];
  4308. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4309. if (hasIP) {
  4310. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4311. SERIAL_ECHO(int(ip[0]));
  4312. SERIAL_ECHOPGM(".");
  4313. SERIAL_ECHO(int(ip[1]));
  4314. SERIAL_ECHOPGM(".");
  4315. SERIAL_ECHO(int(ip[2]));
  4316. SERIAL_ECHOPGM(".");
  4317. SERIAL_ECHO(int(ip[3]));
  4318. SERIAL_ECHOLNPGM("");
  4319. } else {
  4320. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4321. }
  4322. break;
  4323. }
  4324. */
  4325. case 47:
  4326. //! M47: Prusa3D: Show end stops dialog on the display.
  4327. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4328. lcd_diag_show_end_stops();
  4329. KEEPALIVE_STATE(IN_HANDLER);
  4330. break;
  4331. #if 0
  4332. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4333. {
  4334. // Disable the default update procedure of the display. We will do a modal dialog.
  4335. lcd_update_enable(false);
  4336. // Let the planner use the uncorrected coordinates.
  4337. mbl.reset();
  4338. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4339. // the planner will not perform any adjustments in the XY plane.
  4340. // Wait for the motors to stop and update the current position with the absolute values.
  4341. world2machine_revert_to_uncorrected();
  4342. // Move the print head close to the bed.
  4343. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4344. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4345. st_synchronize();
  4346. // Home in the XY plane.
  4347. set_destination_to_current();
  4348. int l_feedmultiply = setup_for_endstop_move();
  4349. home_xy();
  4350. int8_t verbosity_level = 0;
  4351. if (code_seen('V')) {
  4352. // Just 'V' without a number counts as V1.
  4353. char c = strchr_pointer[1];
  4354. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4355. }
  4356. bool success = scan_bed_induction_points(verbosity_level);
  4357. clean_up_after_endstop_move(l_feedmultiply);
  4358. // Print head up.
  4359. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4361. st_synchronize();
  4362. lcd_update_enable(true);
  4363. break;
  4364. }
  4365. #endif
  4366. #ifdef ENABLE_AUTO_BED_LEVELING
  4367. #ifdef Z_PROBE_REPEATABILITY_TEST
  4368. //! M48 Z-Probe repeatability measurement function.
  4369. //!
  4370. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4371. //!
  4372. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4373. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4374. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4375. //! regenerated.
  4376. //!
  4377. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4378. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4379. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4380. //!
  4381. case 48: // M48 Z-Probe repeatability
  4382. {
  4383. #if Z_MIN_PIN == -1
  4384. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4385. #endif
  4386. double sum=0.0;
  4387. double mean=0.0;
  4388. double sigma=0.0;
  4389. double sample_set[50];
  4390. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4391. double X_current, Y_current, Z_current;
  4392. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4393. if (code_seen('V') || code_seen('v')) {
  4394. verbose_level = code_value();
  4395. if (verbose_level<0 || verbose_level>4 ) {
  4396. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4397. goto Sigma_Exit;
  4398. }
  4399. }
  4400. if (verbose_level > 0) {
  4401. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4402. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4403. }
  4404. if (code_seen('n')) {
  4405. n_samples = code_value();
  4406. if (n_samples<4 || n_samples>50 ) {
  4407. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4408. goto Sigma_Exit;
  4409. }
  4410. }
  4411. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4412. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4413. Z_current = st_get_position_mm(Z_AXIS);
  4414. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4415. ext_position = st_get_position_mm(E_AXIS);
  4416. if (code_seen('X') || code_seen('x') ) {
  4417. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4418. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4419. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4420. goto Sigma_Exit;
  4421. }
  4422. }
  4423. if (code_seen('Y') || code_seen('y') ) {
  4424. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4425. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4426. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4427. goto Sigma_Exit;
  4428. }
  4429. }
  4430. if (code_seen('L') || code_seen('l') ) {
  4431. n_legs = code_value();
  4432. if ( n_legs==1 )
  4433. n_legs = 2;
  4434. if ( n_legs<0 || n_legs>15 ) {
  4435. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4436. goto Sigma_Exit;
  4437. }
  4438. }
  4439. //
  4440. // Do all the preliminary setup work. First raise the probe.
  4441. //
  4442. st_synchronize();
  4443. plan_bed_level_matrix.set_to_identity();
  4444. plan_buffer_line( X_current, Y_current, Z_start_location,
  4445. ext_position,
  4446. homing_feedrate[Z_AXIS]/60,
  4447. active_extruder);
  4448. st_synchronize();
  4449. //
  4450. // Now get everything to the specified probe point So we can safely do a probe to
  4451. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4452. // use that as a starting point for each probe.
  4453. //
  4454. if (verbose_level > 2)
  4455. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4456. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4457. ext_position,
  4458. homing_feedrate[X_AXIS]/60,
  4459. active_extruder);
  4460. st_synchronize();
  4461. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4462. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4463. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4464. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4465. //
  4466. // OK, do the inital probe to get us close to the bed.
  4467. // Then retrace the right amount and use that in subsequent probes
  4468. //
  4469. int l_feedmultiply = setup_for_endstop_move();
  4470. run_z_probe();
  4471. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4472. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4473. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4474. ext_position,
  4475. homing_feedrate[X_AXIS]/60,
  4476. active_extruder);
  4477. st_synchronize();
  4478. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4479. for( n=0; n<n_samples; n++) {
  4480. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4481. if ( n_legs) {
  4482. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4483. int rotational_direction, l;
  4484. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4485. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4486. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4487. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4488. //SERIAL_ECHOPAIR(" theta: ",theta);
  4489. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4490. //SERIAL_PROTOCOLLNPGM("");
  4491. for( l=0; l<n_legs-1; l++) {
  4492. if (rotational_direction==1)
  4493. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4494. else
  4495. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4496. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4497. if ( radius<0.0 )
  4498. radius = -radius;
  4499. X_current = X_probe_location + cos(theta) * radius;
  4500. Y_current = Y_probe_location + sin(theta) * radius;
  4501. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4502. X_current = X_MIN_POS;
  4503. if ( X_current>X_MAX_POS)
  4504. X_current = X_MAX_POS;
  4505. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4506. Y_current = Y_MIN_POS;
  4507. if ( Y_current>Y_MAX_POS)
  4508. Y_current = Y_MAX_POS;
  4509. if (verbose_level>3 ) {
  4510. SERIAL_ECHOPAIR("x: ", X_current);
  4511. SERIAL_ECHOPAIR("y: ", Y_current);
  4512. SERIAL_PROTOCOLLNPGM("");
  4513. }
  4514. do_blocking_move_to( X_current, Y_current, Z_current );
  4515. }
  4516. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4517. }
  4518. int l_feedmultiply = setup_for_endstop_move();
  4519. run_z_probe();
  4520. sample_set[n] = current_position[Z_AXIS];
  4521. //
  4522. // Get the current mean for the data points we have so far
  4523. //
  4524. sum=0.0;
  4525. for( j=0; j<=n; j++) {
  4526. sum = sum + sample_set[j];
  4527. }
  4528. mean = sum / (double (n+1));
  4529. //
  4530. // Now, use that mean to calculate the standard deviation for the
  4531. // data points we have so far
  4532. //
  4533. sum=0.0;
  4534. for( j=0; j<=n; j++) {
  4535. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4536. }
  4537. sigma = sqrt( sum / (double (n+1)) );
  4538. if (verbose_level > 1) {
  4539. SERIAL_PROTOCOL(n+1);
  4540. SERIAL_PROTOCOL(" of ");
  4541. SERIAL_PROTOCOL(n_samples);
  4542. SERIAL_PROTOCOLPGM(" z: ");
  4543. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4544. }
  4545. if (verbose_level > 2) {
  4546. SERIAL_PROTOCOL(" mean: ");
  4547. SERIAL_PROTOCOL_F(mean,6);
  4548. SERIAL_PROTOCOL(" sigma: ");
  4549. SERIAL_PROTOCOL_F(sigma,6);
  4550. }
  4551. if (verbose_level > 0)
  4552. SERIAL_PROTOCOLPGM("\n");
  4553. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4554. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4555. st_synchronize();
  4556. }
  4557. delay(1000);
  4558. clean_up_after_endstop_move(l_feedmultiply);
  4559. // enable_endstops(true);
  4560. if (verbose_level > 0) {
  4561. SERIAL_PROTOCOLPGM("Mean: ");
  4562. SERIAL_PROTOCOL_F(mean, 6);
  4563. SERIAL_PROTOCOLPGM("\n");
  4564. }
  4565. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4566. SERIAL_PROTOCOL_F(sigma, 6);
  4567. SERIAL_PROTOCOLPGM("\n\n");
  4568. Sigma_Exit:
  4569. break;
  4570. }
  4571. #endif // Z_PROBE_REPEATABILITY_TEST
  4572. #endif // ENABLE_AUTO_BED_LEVELING
  4573. case 73: //M73 show percent done and time remaining
  4574. if(code_seen('P')) print_percent_done_normal = code_value();
  4575. if(code_seen('R')) print_time_remaining_normal = code_value();
  4576. if(code_seen('Q')) print_percent_done_silent = code_value();
  4577. if(code_seen('S')) print_time_remaining_silent = code_value();
  4578. {
  4579. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4580. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4581. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4582. }
  4583. break;
  4584. case 104: // M104
  4585. {
  4586. uint8_t extruder;
  4587. if(setTargetedHotend(104,extruder)){
  4588. break;
  4589. }
  4590. if (code_seen('S'))
  4591. {
  4592. setTargetHotendSafe(code_value(), extruder);
  4593. }
  4594. setWatch();
  4595. break;
  4596. }
  4597. case 112: // M112 -Emergency Stop
  4598. kill(_n(""), 3);
  4599. break;
  4600. case 140: // M140 set bed temp
  4601. if (code_seen('S')) setTargetBed(code_value());
  4602. break;
  4603. case 105 : // M105
  4604. {
  4605. uint8_t extruder;
  4606. if(setTargetedHotend(105, extruder)){
  4607. break;
  4608. }
  4609. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4610. SERIAL_PROTOCOLPGM("ok T:");
  4611. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4612. SERIAL_PROTOCOLPGM(" /");
  4613. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4614. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4615. SERIAL_PROTOCOLPGM(" B:");
  4616. SERIAL_PROTOCOL_F(degBed(),1);
  4617. SERIAL_PROTOCOLPGM(" /");
  4618. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4619. #endif //TEMP_BED_PIN
  4620. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4621. SERIAL_PROTOCOLPGM(" T");
  4622. SERIAL_PROTOCOL(cur_extruder);
  4623. SERIAL_PROTOCOLPGM(":");
  4624. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4625. SERIAL_PROTOCOLPGM(" /");
  4626. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4627. }
  4628. #else
  4629. SERIAL_ERROR_START;
  4630. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4631. #endif
  4632. SERIAL_PROTOCOLPGM(" @:");
  4633. #ifdef EXTRUDER_WATTS
  4634. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4635. SERIAL_PROTOCOLPGM("W");
  4636. #else
  4637. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4638. #endif
  4639. SERIAL_PROTOCOLPGM(" B@:");
  4640. #ifdef BED_WATTS
  4641. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4642. SERIAL_PROTOCOLPGM("W");
  4643. #else
  4644. SERIAL_PROTOCOL(getHeaterPower(-1));
  4645. #endif
  4646. #ifdef PINDA_THERMISTOR
  4647. SERIAL_PROTOCOLPGM(" P:");
  4648. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4649. #endif //PINDA_THERMISTOR
  4650. #ifdef AMBIENT_THERMISTOR
  4651. SERIAL_PROTOCOLPGM(" A:");
  4652. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4653. #endif //AMBIENT_THERMISTOR
  4654. #ifdef SHOW_TEMP_ADC_VALUES
  4655. {float raw = 0.0;
  4656. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4657. SERIAL_PROTOCOLPGM(" ADC B:");
  4658. SERIAL_PROTOCOL_F(degBed(),1);
  4659. SERIAL_PROTOCOLPGM("C->");
  4660. raw = rawBedTemp();
  4661. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4662. SERIAL_PROTOCOLPGM(" Rb->");
  4663. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4664. SERIAL_PROTOCOLPGM(" Rxb->");
  4665. SERIAL_PROTOCOL_F(raw, 5);
  4666. #endif
  4667. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4668. SERIAL_PROTOCOLPGM(" T");
  4669. SERIAL_PROTOCOL(cur_extruder);
  4670. SERIAL_PROTOCOLPGM(":");
  4671. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4672. SERIAL_PROTOCOLPGM("C->");
  4673. raw = rawHotendTemp(cur_extruder);
  4674. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4675. SERIAL_PROTOCOLPGM(" Rt");
  4676. SERIAL_PROTOCOL(cur_extruder);
  4677. SERIAL_PROTOCOLPGM("->");
  4678. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4679. SERIAL_PROTOCOLPGM(" Rx");
  4680. SERIAL_PROTOCOL(cur_extruder);
  4681. SERIAL_PROTOCOLPGM("->");
  4682. SERIAL_PROTOCOL_F(raw, 5);
  4683. }}
  4684. #endif
  4685. SERIAL_PROTOCOLLN("");
  4686. KEEPALIVE_STATE(NOT_BUSY);
  4687. return;
  4688. break;
  4689. }
  4690. case 109:
  4691. {// M109 - Wait for extruder heater to reach target.
  4692. uint8_t extruder;
  4693. if(setTargetedHotend(109, extruder)){
  4694. break;
  4695. }
  4696. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4697. heating_status = 1;
  4698. if (farm_mode) { prusa_statistics(1); };
  4699. #ifdef AUTOTEMP
  4700. autotemp_enabled=false;
  4701. #endif
  4702. if (code_seen('S')) {
  4703. setTargetHotendSafe(code_value(), extruder);
  4704. CooldownNoWait = true;
  4705. } else if (code_seen('R')) {
  4706. setTargetHotendSafe(code_value(), extruder);
  4707. CooldownNoWait = false;
  4708. }
  4709. #ifdef AUTOTEMP
  4710. if (code_seen('S')) autotemp_min=code_value();
  4711. if (code_seen('B')) autotemp_max=code_value();
  4712. if (code_seen('F'))
  4713. {
  4714. autotemp_factor=code_value();
  4715. autotemp_enabled=true;
  4716. }
  4717. #endif
  4718. setWatch();
  4719. codenum = millis();
  4720. /* See if we are heating up or cooling down */
  4721. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4722. KEEPALIVE_STATE(NOT_BUSY);
  4723. cancel_heatup = false;
  4724. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4725. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4726. KEEPALIVE_STATE(IN_HANDLER);
  4727. heating_status = 2;
  4728. if (farm_mode) { prusa_statistics(2); };
  4729. //starttime=millis();
  4730. previous_millis_cmd = millis();
  4731. }
  4732. break;
  4733. case 190: // M190 - Wait for bed heater to reach target.
  4734. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4735. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4736. heating_status = 3;
  4737. if (farm_mode) { prusa_statistics(1); };
  4738. if (code_seen('S'))
  4739. {
  4740. setTargetBed(code_value());
  4741. CooldownNoWait = true;
  4742. }
  4743. else if (code_seen('R'))
  4744. {
  4745. setTargetBed(code_value());
  4746. CooldownNoWait = false;
  4747. }
  4748. codenum = millis();
  4749. cancel_heatup = false;
  4750. target_direction = isHeatingBed(); // true if heating, false if cooling
  4751. KEEPALIVE_STATE(NOT_BUSY);
  4752. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4753. {
  4754. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4755. {
  4756. if (!farm_mode) {
  4757. float tt = degHotend(active_extruder);
  4758. SERIAL_PROTOCOLPGM("T:");
  4759. SERIAL_PROTOCOL(tt);
  4760. SERIAL_PROTOCOLPGM(" E:");
  4761. SERIAL_PROTOCOL((int)active_extruder);
  4762. SERIAL_PROTOCOLPGM(" B:");
  4763. SERIAL_PROTOCOL_F(degBed(), 1);
  4764. SERIAL_PROTOCOLLN("");
  4765. }
  4766. codenum = millis();
  4767. }
  4768. manage_heater();
  4769. manage_inactivity();
  4770. lcd_update(0);
  4771. }
  4772. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4773. KEEPALIVE_STATE(IN_HANDLER);
  4774. heating_status = 4;
  4775. previous_millis_cmd = millis();
  4776. #endif
  4777. break;
  4778. #if defined(FAN_PIN) && FAN_PIN > -1
  4779. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4780. if (code_seen('S')){
  4781. fanSpeed=constrain(code_value(),0,255);
  4782. }
  4783. else {
  4784. fanSpeed=255;
  4785. }
  4786. break;
  4787. case 107: //M107 Fan Off
  4788. fanSpeed = 0;
  4789. break;
  4790. #endif //FAN_PIN
  4791. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4792. case 80: // M80 - Turn on Power Supply
  4793. SET_OUTPUT(PS_ON_PIN); //GND
  4794. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4795. // If you have a switch on suicide pin, this is useful
  4796. // if you want to start another print with suicide feature after
  4797. // a print without suicide...
  4798. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4799. SET_OUTPUT(SUICIDE_PIN);
  4800. WRITE(SUICIDE_PIN, HIGH);
  4801. #endif
  4802. powersupply = true;
  4803. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4804. lcd_update(0);
  4805. break;
  4806. #endif
  4807. case 81: // M81 - Turn off Power Supply
  4808. disable_heater();
  4809. st_synchronize();
  4810. disable_e0();
  4811. disable_e1();
  4812. disable_e2();
  4813. finishAndDisableSteppers();
  4814. fanSpeed = 0;
  4815. delay(1000); // Wait a little before to switch off
  4816. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4817. st_synchronize();
  4818. suicide();
  4819. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4820. SET_OUTPUT(PS_ON_PIN);
  4821. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4822. #endif
  4823. powersupply = false;
  4824. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4825. lcd_update(0);
  4826. break;
  4827. case 82:
  4828. axis_relative_modes[3] = false;
  4829. break;
  4830. case 83:
  4831. axis_relative_modes[3] = true;
  4832. break;
  4833. case 18: //compatibility
  4834. case 84: // M84
  4835. if(code_seen('S')){
  4836. stepper_inactive_time = code_value() * 1000;
  4837. }
  4838. else
  4839. {
  4840. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4841. if(all_axis)
  4842. {
  4843. st_synchronize();
  4844. disable_e0();
  4845. disable_e1();
  4846. disable_e2();
  4847. finishAndDisableSteppers();
  4848. }
  4849. else
  4850. {
  4851. st_synchronize();
  4852. if (code_seen('X')) disable_x();
  4853. if (code_seen('Y')) disable_y();
  4854. if (code_seen('Z')) disable_z();
  4855. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4856. if (code_seen('E')) {
  4857. disable_e0();
  4858. disable_e1();
  4859. disable_e2();
  4860. }
  4861. #endif
  4862. }
  4863. }
  4864. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4865. print_time_remaining_init();
  4866. snmm_filaments_used = 0;
  4867. break;
  4868. case 85: // M85
  4869. if(code_seen('S')) {
  4870. max_inactive_time = code_value() * 1000;
  4871. }
  4872. break;
  4873. #ifdef SAFETYTIMER
  4874. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4875. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4876. if (code_seen('S')) {
  4877. safetytimer_inactive_time = code_value() * 1000;
  4878. safetyTimer.start();
  4879. }
  4880. break;
  4881. #endif
  4882. case 92: // M92
  4883. for(int8_t i=0; i < NUM_AXIS; i++)
  4884. {
  4885. if(code_seen(axis_codes[i]))
  4886. {
  4887. if(i == 3) { // E
  4888. float value = code_value();
  4889. if(value < 20.0) {
  4890. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4891. cs.max_jerk[E_AXIS] *= factor;
  4892. max_feedrate[i] *= factor;
  4893. axis_steps_per_sqr_second[i] *= factor;
  4894. }
  4895. cs.axis_steps_per_unit[i] = value;
  4896. }
  4897. else {
  4898. cs.axis_steps_per_unit[i] = code_value();
  4899. }
  4900. }
  4901. }
  4902. break;
  4903. case 110: //! M110 N<line number> - reset line pos
  4904. if (code_seen('N'))
  4905. gcode_LastN = code_value_long();
  4906. break;
  4907. #ifdef HOST_KEEPALIVE_FEATURE
  4908. case 113: // M113 - Get or set Host Keepalive interval
  4909. if (code_seen('S')) {
  4910. host_keepalive_interval = (uint8_t)code_value_short();
  4911. // NOMORE(host_keepalive_interval, 60);
  4912. }
  4913. else {
  4914. SERIAL_ECHO_START;
  4915. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4916. SERIAL_PROTOCOLLN("");
  4917. }
  4918. break;
  4919. #endif
  4920. case 115: // M115
  4921. if (code_seen('V')) {
  4922. // Report the Prusa version number.
  4923. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4924. } else if (code_seen('U')) {
  4925. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4926. // pause the print and ask the user to upgrade the firmware.
  4927. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4928. } else {
  4929. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4930. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4931. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4932. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4933. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4934. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4935. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4936. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4937. SERIAL_ECHOPGM(" UUID:");
  4938. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4939. }
  4940. break;
  4941. /* case 117: // M117 display message
  4942. starpos = (strchr(strchr_pointer + 5,'*'));
  4943. if(starpos!=NULL)
  4944. *(starpos)='\0';
  4945. lcd_setstatus(strchr_pointer + 5);
  4946. break;*/
  4947. case 114: // M114
  4948. gcode_M114();
  4949. break;
  4950. case 120: //! M120 - Disable endstops
  4951. enable_endstops(false) ;
  4952. break;
  4953. case 121: //! M121 - Enable endstops
  4954. enable_endstops(true) ;
  4955. break;
  4956. case 119: // M119
  4957. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4958. SERIAL_PROTOCOLLN("");
  4959. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4960. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4961. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4962. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4963. }else{
  4964. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4965. }
  4966. SERIAL_PROTOCOLLN("");
  4967. #endif
  4968. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4969. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4970. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4971. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4972. }else{
  4973. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4974. }
  4975. SERIAL_PROTOCOLLN("");
  4976. #endif
  4977. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4978. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4979. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4980. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4981. }else{
  4982. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4983. }
  4984. SERIAL_PROTOCOLLN("");
  4985. #endif
  4986. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4987. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4988. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4989. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4990. }else{
  4991. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4992. }
  4993. SERIAL_PROTOCOLLN("");
  4994. #endif
  4995. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4996. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4997. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4998. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4999. }else{
  5000. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5001. }
  5002. SERIAL_PROTOCOLLN("");
  5003. #endif
  5004. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5005. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5006. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5007. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5008. }else{
  5009. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5010. }
  5011. SERIAL_PROTOCOLLN("");
  5012. #endif
  5013. break;
  5014. //TODO: update for all axis, use for loop
  5015. #ifdef BLINKM
  5016. case 150: // M150
  5017. {
  5018. byte red;
  5019. byte grn;
  5020. byte blu;
  5021. if(code_seen('R')) red = code_value();
  5022. if(code_seen('U')) grn = code_value();
  5023. if(code_seen('B')) blu = code_value();
  5024. SendColors(red,grn,blu);
  5025. }
  5026. break;
  5027. #endif //BLINKM
  5028. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5029. {
  5030. uint8_t extruder = active_extruder;
  5031. if(code_seen('T')) {
  5032. extruder = code_value();
  5033. if(extruder >= EXTRUDERS) {
  5034. SERIAL_ECHO_START;
  5035. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5036. break;
  5037. }
  5038. }
  5039. if(code_seen('D')) {
  5040. float diameter = (float)code_value();
  5041. if (diameter == 0.0) {
  5042. // setting any extruder filament size disables volumetric on the assumption that
  5043. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5044. // for all extruders
  5045. cs.volumetric_enabled = false;
  5046. } else {
  5047. cs.filament_size[extruder] = (float)code_value();
  5048. // make sure all extruders have some sane value for the filament size
  5049. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5050. #if EXTRUDERS > 1
  5051. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5052. #if EXTRUDERS > 2
  5053. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5054. #endif
  5055. #endif
  5056. cs.volumetric_enabled = true;
  5057. }
  5058. } else {
  5059. //reserved for setting filament diameter via UFID or filament measuring device
  5060. break;
  5061. }
  5062. calculate_extruder_multipliers();
  5063. }
  5064. break;
  5065. case 201: // M201
  5066. for (int8_t i = 0; i < NUM_AXIS; i++)
  5067. {
  5068. if (code_seen(axis_codes[i]))
  5069. {
  5070. unsigned long val = code_value();
  5071. #ifdef TMC2130
  5072. unsigned long val_silent = val;
  5073. if ((i == X_AXIS) || (i == Y_AXIS))
  5074. {
  5075. if (val > NORMAL_MAX_ACCEL_XY)
  5076. val = NORMAL_MAX_ACCEL_XY;
  5077. if (val_silent > SILENT_MAX_ACCEL_XY)
  5078. val_silent = SILENT_MAX_ACCEL_XY;
  5079. }
  5080. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5081. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5082. #else //TMC2130
  5083. max_acceleration_units_per_sq_second[i] = val;
  5084. #endif //TMC2130
  5085. }
  5086. }
  5087. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5088. reset_acceleration_rates();
  5089. break;
  5090. #if 0 // Not used for Sprinter/grbl gen6
  5091. case 202: // M202
  5092. for(int8_t i=0; i < NUM_AXIS; i++) {
  5093. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5094. }
  5095. break;
  5096. #endif
  5097. case 203: // M203 max feedrate mm/sec
  5098. for (int8_t i = 0; i < NUM_AXIS; i++)
  5099. {
  5100. if (code_seen(axis_codes[i]))
  5101. {
  5102. float val = code_value();
  5103. #ifdef TMC2130
  5104. float val_silent = val;
  5105. if ((i == X_AXIS) || (i == Y_AXIS))
  5106. {
  5107. if (val > NORMAL_MAX_FEEDRATE_XY)
  5108. val = NORMAL_MAX_FEEDRATE_XY;
  5109. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5110. val_silent = SILENT_MAX_FEEDRATE_XY;
  5111. }
  5112. cs.max_feedrate_normal[i] = val;
  5113. cs.max_feedrate_silent[i] = val_silent;
  5114. #else //TMC2130
  5115. max_feedrate[i] = val;
  5116. #endif //TMC2130
  5117. }
  5118. }
  5119. break;
  5120. case 204:
  5121. //! M204 acclereration settings.
  5122. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5123. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5124. {
  5125. if(code_seen('S')) {
  5126. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5127. // and it is also generated by Slic3r to control acceleration per extrusion type
  5128. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5129. cs.acceleration = code_value();
  5130. // Interpret the T value as retract acceleration in the old Marlin format.
  5131. if(code_seen('T'))
  5132. cs.retract_acceleration = code_value();
  5133. } else {
  5134. // New acceleration format, compatible with the upstream Marlin.
  5135. if(code_seen('P'))
  5136. cs.acceleration = code_value();
  5137. if(code_seen('R'))
  5138. cs.retract_acceleration = code_value();
  5139. if(code_seen('T')) {
  5140. // Interpret the T value as the travel acceleration in the new Marlin format.
  5141. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5142. // travel_acceleration = code_value();
  5143. }
  5144. }
  5145. }
  5146. break;
  5147. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5148. {
  5149. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5150. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5151. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5152. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5153. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5154. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5155. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5156. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5157. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5158. }
  5159. break;
  5160. case 206: // M206 additional homing offset
  5161. for(int8_t i=0; i < 3; i++)
  5162. {
  5163. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5164. }
  5165. break;
  5166. #ifdef FWRETRACT
  5167. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5168. {
  5169. if(code_seen('S'))
  5170. {
  5171. cs.retract_length = code_value() ;
  5172. }
  5173. if(code_seen('F'))
  5174. {
  5175. cs.retract_feedrate = code_value()/60 ;
  5176. }
  5177. if(code_seen('Z'))
  5178. {
  5179. cs.retract_zlift = code_value() ;
  5180. }
  5181. }break;
  5182. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5183. {
  5184. if(code_seen('S'))
  5185. {
  5186. cs.retract_recover_length = code_value() ;
  5187. }
  5188. if(code_seen('F'))
  5189. {
  5190. cs.retract_recover_feedrate = code_value()/60 ;
  5191. }
  5192. }break;
  5193. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5194. {
  5195. if(code_seen('S'))
  5196. {
  5197. int t= code_value() ;
  5198. switch(t)
  5199. {
  5200. case 0:
  5201. {
  5202. cs.autoretract_enabled=false;
  5203. retracted[0]=false;
  5204. #if EXTRUDERS > 1
  5205. retracted[1]=false;
  5206. #endif
  5207. #if EXTRUDERS > 2
  5208. retracted[2]=false;
  5209. #endif
  5210. }break;
  5211. case 1:
  5212. {
  5213. cs.autoretract_enabled=true;
  5214. retracted[0]=false;
  5215. #if EXTRUDERS > 1
  5216. retracted[1]=false;
  5217. #endif
  5218. #if EXTRUDERS > 2
  5219. retracted[2]=false;
  5220. #endif
  5221. }break;
  5222. default:
  5223. SERIAL_ECHO_START;
  5224. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5225. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5226. SERIAL_ECHOLNPGM("\"(1)");
  5227. }
  5228. }
  5229. }break;
  5230. #endif // FWRETRACT
  5231. #if EXTRUDERS > 1
  5232. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5233. {
  5234. uint8_t extruder;
  5235. if(setTargetedHotend(218, extruder)){
  5236. break;
  5237. }
  5238. if(code_seen('X'))
  5239. {
  5240. extruder_offset[X_AXIS][extruder] = code_value();
  5241. }
  5242. if(code_seen('Y'))
  5243. {
  5244. extruder_offset[Y_AXIS][extruder] = code_value();
  5245. }
  5246. SERIAL_ECHO_START;
  5247. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5248. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5249. {
  5250. SERIAL_ECHO(" ");
  5251. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5252. SERIAL_ECHO(",");
  5253. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5254. }
  5255. SERIAL_ECHOLN("");
  5256. }break;
  5257. #endif
  5258. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5259. {
  5260. if(code_seen('S'))
  5261. {
  5262. feedmultiply = code_value() ;
  5263. }
  5264. }
  5265. break;
  5266. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5267. {
  5268. if(code_seen('S'))
  5269. {
  5270. int tmp_code = code_value();
  5271. if (code_seen('T'))
  5272. {
  5273. uint8_t extruder;
  5274. if(setTargetedHotend(221, extruder)){
  5275. break;
  5276. }
  5277. extruder_multiply[extruder] = tmp_code;
  5278. }
  5279. else
  5280. {
  5281. extrudemultiply = tmp_code ;
  5282. }
  5283. }
  5284. calculate_extruder_multipliers();
  5285. }
  5286. break;
  5287. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5288. {
  5289. if(code_seen('P')){
  5290. int pin_number = code_value(); // pin number
  5291. int pin_state = -1; // required pin state - default is inverted
  5292. if(code_seen('S')) pin_state = code_value(); // required pin state
  5293. if(pin_state >= -1 && pin_state <= 1){
  5294. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5295. {
  5296. if (sensitive_pins[i] == pin_number)
  5297. {
  5298. pin_number = -1;
  5299. break;
  5300. }
  5301. }
  5302. if (pin_number > -1)
  5303. {
  5304. int target = LOW;
  5305. st_synchronize();
  5306. pinMode(pin_number, INPUT);
  5307. switch(pin_state){
  5308. case 1:
  5309. target = HIGH;
  5310. break;
  5311. case 0:
  5312. target = LOW;
  5313. break;
  5314. case -1:
  5315. target = !digitalRead(pin_number);
  5316. break;
  5317. }
  5318. while(digitalRead(pin_number) != target){
  5319. manage_heater();
  5320. manage_inactivity();
  5321. lcd_update(0);
  5322. }
  5323. }
  5324. }
  5325. }
  5326. }
  5327. break;
  5328. #if NUM_SERVOS > 0
  5329. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5330. {
  5331. int servo_index = -1;
  5332. int servo_position = 0;
  5333. if (code_seen('P'))
  5334. servo_index = code_value();
  5335. if (code_seen('S')) {
  5336. servo_position = code_value();
  5337. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5338. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5339. servos[servo_index].attach(0);
  5340. #endif
  5341. servos[servo_index].write(servo_position);
  5342. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5343. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5344. servos[servo_index].detach();
  5345. #endif
  5346. }
  5347. else {
  5348. SERIAL_ECHO_START;
  5349. SERIAL_ECHO("Servo ");
  5350. SERIAL_ECHO(servo_index);
  5351. SERIAL_ECHOLN(" out of range");
  5352. }
  5353. }
  5354. else if (servo_index >= 0) {
  5355. SERIAL_PROTOCOL(_T(MSG_OK));
  5356. SERIAL_PROTOCOL(" Servo ");
  5357. SERIAL_PROTOCOL(servo_index);
  5358. SERIAL_PROTOCOL(": ");
  5359. SERIAL_PROTOCOL(servos[servo_index].read());
  5360. SERIAL_PROTOCOLLN("");
  5361. }
  5362. }
  5363. break;
  5364. #endif // NUM_SERVOS > 0
  5365. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5366. case 300: // M300
  5367. {
  5368. int beepS = code_seen('S') ? code_value() : 110;
  5369. int beepP = code_seen('P') ? code_value() : 1000;
  5370. if (beepS > 0)
  5371. {
  5372. #if BEEPER > 0
  5373. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5374. tone(BEEPER, beepS);
  5375. delay(beepP);
  5376. noTone(BEEPER);
  5377. #endif
  5378. }
  5379. else
  5380. {
  5381. delay(beepP);
  5382. }
  5383. }
  5384. break;
  5385. #endif // M300
  5386. #ifdef PIDTEMP
  5387. case 301: // M301
  5388. {
  5389. if(code_seen('P')) cs.Kp = code_value();
  5390. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5391. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5392. #ifdef PID_ADD_EXTRUSION_RATE
  5393. if(code_seen('C')) Kc = code_value();
  5394. #endif
  5395. updatePID();
  5396. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5397. SERIAL_PROTOCOL(" p:");
  5398. SERIAL_PROTOCOL(cs.Kp);
  5399. SERIAL_PROTOCOL(" i:");
  5400. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5401. SERIAL_PROTOCOL(" d:");
  5402. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5403. #ifdef PID_ADD_EXTRUSION_RATE
  5404. SERIAL_PROTOCOL(" c:");
  5405. //Kc does not have scaling applied above, or in resetting defaults
  5406. SERIAL_PROTOCOL(Kc);
  5407. #endif
  5408. SERIAL_PROTOCOLLN("");
  5409. }
  5410. break;
  5411. #endif //PIDTEMP
  5412. #ifdef PIDTEMPBED
  5413. case 304: // M304
  5414. {
  5415. if(code_seen('P')) cs.bedKp = code_value();
  5416. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5417. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5418. updatePID();
  5419. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5420. SERIAL_PROTOCOL(" p:");
  5421. SERIAL_PROTOCOL(cs.bedKp);
  5422. SERIAL_PROTOCOL(" i:");
  5423. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5424. SERIAL_PROTOCOL(" d:");
  5425. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5426. SERIAL_PROTOCOLLN("");
  5427. }
  5428. break;
  5429. #endif //PIDTEMP
  5430. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5431. {
  5432. #ifdef CHDK
  5433. SET_OUTPUT(CHDK);
  5434. WRITE(CHDK, HIGH);
  5435. chdkHigh = millis();
  5436. chdkActive = true;
  5437. #else
  5438. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5439. const uint8_t NUM_PULSES=16;
  5440. const float PULSE_LENGTH=0.01524;
  5441. for(int i=0; i < NUM_PULSES; i++) {
  5442. WRITE(PHOTOGRAPH_PIN, HIGH);
  5443. _delay_ms(PULSE_LENGTH);
  5444. WRITE(PHOTOGRAPH_PIN, LOW);
  5445. _delay_ms(PULSE_LENGTH);
  5446. }
  5447. delay(7.33);
  5448. for(int i=0; i < NUM_PULSES; i++) {
  5449. WRITE(PHOTOGRAPH_PIN, HIGH);
  5450. _delay_ms(PULSE_LENGTH);
  5451. WRITE(PHOTOGRAPH_PIN, LOW);
  5452. _delay_ms(PULSE_LENGTH);
  5453. }
  5454. #endif
  5455. #endif //chdk end if
  5456. }
  5457. break;
  5458. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5459. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5460. {
  5461. float temp = .0;
  5462. if (code_seen('S')) temp=code_value();
  5463. set_extrude_min_temp(temp);
  5464. }
  5465. break;
  5466. #endif
  5467. case 303: // M303 PID autotune
  5468. {
  5469. float temp = 150.0;
  5470. int e=0;
  5471. int c=5;
  5472. if (code_seen('E')) e=code_value();
  5473. if (e<0)
  5474. temp=70;
  5475. if (code_seen('S')) temp=code_value();
  5476. if (code_seen('C')) c=code_value();
  5477. PID_autotune(temp, e, c);
  5478. }
  5479. break;
  5480. case 400: // M400 finish all moves
  5481. {
  5482. st_synchronize();
  5483. }
  5484. break;
  5485. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5486. {
  5487. //! currently three different materials are needed (default, flex and PVA)
  5488. //! add storing this information for different load/unload profiles etc. in the future
  5489. //!firmware does not wait for "ok" from mmu
  5490. if (mmu_enabled)
  5491. {
  5492. uint8_t extruder = 255;
  5493. uint8_t filament = FILAMENT_UNDEFINED;
  5494. if(code_seen('E')) extruder = code_value();
  5495. if(code_seen('F')) filament = code_value();
  5496. mmu_set_filament_type(extruder, filament);
  5497. }
  5498. }
  5499. break;
  5500. case 500: // M500 Store settings in EEPROM
  5501. {
  5502. Config_StoreSettings();
  5503. }
  5504. break;
  5505. case 501: // M501 Read settings from EEPROM
  5506. {
  5507. Config_RetrieveSettings();
  5508. }
  5509. break;
  5510. case 502: // M502 Revert to default settings
  5511. {
  5512. Config_ResetDefault();
  5513. }
  5514. break;
  5515. case 503: // M503 print settings currently in memory
  5516. {
  5517. Config_PrintSettings();
  5518. }
  5519. break;
  5520. case 509: //M509 Force language selection
  5521. {
  5522. lang_reset();
  5523. SERIAL_ECHO_START;
  5524. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5525. }
  5526. break;
  5527. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5528. case 540:
  5529. {
  5530. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5531. }
  5532. break;
  5533. #endif
  5534. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5535. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5536. {
  5537. float value;
  5538. if (code_seen('Z'))
  5539. {
  5540. value = code_value();
  5541. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5542. {
  5543. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5544. SERIAL_ECHO_START;
  5545. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5546. SERIAL_PROTOCOLLN("");
  5547. }
  5548. else
  5549. {
  5550. SERIAL_ECHO_START;
  5551. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5552. SERIAL_ECHORPGM(MSG_Z_MIN);
  5553. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5554. SERIAL_ECHORPGM(MSG_Z_MAX);
  5555. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5556. SERIAL_PROTOCOLLN("");
  5557. }
  5558. }
  5559. else
  5560. {
  5561. SERIAL_ECHO_START;
  5562. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5563. SERIAL_ECHO(-cs.zprobe_zoffset);
  5564. SERIAL_PROTOCOLLN("");
  5565. }
  5566. break;
  5567. }
  5568. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5569. #ifdef FILAMENTCHANGEENABLE
  5570. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5571. {
  5572. st_synchronize();
  5573. float x_position = current_position[X_AXIS];
  5574. float y_position = current_position[Y_AXIS];
  5575. float z_shift = 0;
  5576. float e_shift_init = 0;
  5577. float e_shift_late = 0;
  5578. bool automatic = false;
  5579. //Retract extruder
  5580. if(code_seen('E'))
  5581. {
  5582. e_shift_init = code_value();
  5583. }
  5584. else
  5585. {
  5586. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5587. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5588. #endif
  5589. }
  5590. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5591. if (code_seen('L'))
  5592. {
  5593. e_shift_late = code_value();
  5594. }
  5595. else
  5596. {
  5597. #ifdef FILAMENTCHANGE_FINALRETRACT
  5598. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5599. #endif
  5600. }
  5601. //Lift Z
  5602. if(code_seen('Z'))
  5603. {
  5604. z_shift = code_value();
  5605. }
  5606. else
  5607. {
  5608. #ifdef FILAMENTCHANGE_ZADD
  5609. z_shift= FILAMENTCHANGE_ZADD ;
  5610. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5611. #endif
  5612. }
  5613. //Move XY to side
  5614. if(code_seen('X'))
  5615. {
  5616. x_position = code_value();
  5617. }
  5618. else
  5619. {
  5620. #ifdef FILAMENTCHANGE_XPOS
  5621. x_position = FILAMENTCHANGE_XPOS;
  5622. #endif
  5623. }
  5624. if(code_seen('Y'))
  5625. {
  5626. y_position = code_value();
  5627. }
  5628. else
  5629. {
  5630. #ifdef FILAMENTCHANGE_YPOS
  5631. y_position = FILAMENTCHANGE_YPOS ;
  5632. #endif
  5633. }
  5634. if (mmu_enabled && code_seen("AUTO"))
  5635. automatic = true;
  5636. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5637. }
  5638. break;
  5639. #endif //FILAMENTCHANGEENABLE
  5640. case 601: //! M601 - Pause print
  5641. {
  5642. lcd_pause_print();
  5643. }
  5644. break;
  5645. case 602: { //! M602 - Resume print
  5646. lcd_resume_print();
  5647. }
  5648. break;
  5649. #ifdef PINDA_THERMISTOR
  5650. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5651. {
  5652. int set_target_pinda = 0;
  5653. if (code_seen('S')) {
  5654. set_target_pinda = code_value();
  5655. }
  5656. else {
  5657. break;
  5658. }
  5659. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5660. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5661. SERIAL_PROTOCOL(set_target_pinda);
  5662. SERIAL_PROTOCOLLN("");
  5663. codenum = millis();
  5664. cancel_heatup = false;
  5665. bool is_pinda_cooling = false;
  5666. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5667. is_pinda_cooling = true;
  5668. }
  5669. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5670. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5671. {
  5672. SERIAL_PROTOCOLPGM("P:");
  5673. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5674. SERIAL_PROTOCOLPGM("/");
  5675. SERIAL_PROTOCOL(set_target_pinda);
  5676. SERIAL_PROTOCOLLN("");
  5677. codenum = millis();
  5678. }
  5679. manage_heater();
  5680. manage_inactivity();
  5681. lcd_update(0);
  5682. }
  5683. LCD_MESSAGERPGM(_T(MSG_OK));
  5684. break;
  5685. }
  5686. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5687. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5688. uint8_t cal_status = calibration_status_pinda();
  5689. int16_t usteps = 0;
  5690. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5691. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5692. for (uint8_t i = 0; i < 6; i++)
  5693. {
  5694. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5695. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5696. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5697. SERIAL_PROTOCOLPGM(", ");
  5698. SERIAL_PROTOCOL(35 + (i * 5));
  5699. SERIAL_PROTOCOLPGM(", ");
  5700. SERIAL_PROTOCOL(usteps);
  5701. SERIAL_PROTOCOLPGM(", ");
  5702. SERIAL_PROTOCOL(mm * 1000);
  5703. SERIAL_PROTOCOLLN("");
  5704. }
  5705. }
  5706. else if (code_seen('!')) { // ! - Set factory default values
  5707. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5708. int16_t z_shift = 8; //40C - 20um - 8usteps
  5709. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5710. z_shift = 24; //45C - 60um - 24usteps
  5711. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5712. z_shift = 48; //50C - 120um - 48usteps
  5713. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5714. z_shift = 80; //55C - 200um - 80usteps
  5715. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5716. z_shift = 120; //60C - 300um - 120usteps
  5717. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5718. SERIAL_PROTOCOLLN("factory restored");
  5719. }
  5720. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5721. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5722. int16_t z_shift = 0;
  5723. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5724. SERIAL_PROTOCOLLN("zerorized");
  5725. }
  5726. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5727. int16_t usteps = code_value();
  5728. if (code_seen('I')) {
  5729. uint8_t index = code_value();
  5730. if (index < 5) {
  5731. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5732. SERIAL_PROTOCOLLN("OK");
  5733. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5734. for (uint8_t i = 0; i < 6; i++)
  5735. {
  5736. usteps = 0;
  5737. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5738. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5739. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5740. SERIAL_PROTOCOLPGM(", ");
  5741. SERIAL_PROTOCOL(35 + (i * 5));
  5742. SERIAL_PROTOCOLPGM(", ");
  5743. SERIAL_PROTOCOL(usteps);
  5744. SERIAL_PROTOCOLPGM(", ");
  5745. SERIAL_PROTOCOL(mm * 1000);
  5746. SERIAL_PROTOCOLLN("");
  5747. }
  5748. }
  5749. }
  5750. }
  5751. else {
  5752. SERIAL_PROTOCOLPGM("no valid command");
  5753. }
  5754. break;
  5755. #endif //PINDA_THERMISTOR
  5756. #ifdef LIN_ADVANCE
  5757. case 900: // M900: Set LIN_ADVANCE options.
  5758. gcode_M900();
  5759. break;
  5760. #endif
  5761. case 907: // M907 Set digital trimpot motor current using axis codes.
  5762. {
  5763. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5764. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5765. if(code_seen('B')) st_current_set(4,code_value());
  5766. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5767. #endif
  5768. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5769. if(code_seen('X')) st_current_set(0, code_value());
  5770. #endif
  5771. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5772. if(code_seen('Z')) st_current_set(1, code_value());
  5773. #endif
  5774. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5775. if(code_seen('E')) st_current_set(2, code_value());
  5776. #endif
  5777. }
  5778. break;
  5779. case 908: // M908 Control digital trimpot directly.
  5780. {
  5781. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5782. uint8_t channel,current;
  5783. if(code_seen('P')) channel=code_value();
  5784. if(code_seen('S')) current=code_value();
  5785. digitalPotWrite(channel, current);
  5786. #endif
  5787. }
  5788. break;
  5789. #ifdef TMC2130
  5790. case 910: //! M910 - TMC2130 init
  5791. {
  5792. tmc2130_init();
  5793. }
  5794. break;
  5795. case 911: //! M911 - Set TMC2130 holding currents
  5796. {
  5797. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5798. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5799. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5800. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5801. }
  5802. break;
  5803. case 912: //! M912 - Set TMC2130 running currents
  5804. {
  5805. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5806. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5807. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5808. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5809. }
  5810. break;
  5811. case 913: //! M913 - Print TMC2130 currents
  5812. {
  5813. tmc2130_print_currents();
  5814. }
  5815. break;
  5816. case 914: //! M914 - Set normal mode
  5817. {
  5818. tmc2130_mode = TMC2130_MODE_NORMAL;
  5819. update_mode_profile();
  5820. tmc2130_init();
  5821. }
  5822. break;
  5823. case 915: //! M915 - Set silent mode
  5824. {
  5825. tmc2130_mode = TMC2130_MODE_SILENT;
  5826. update_mode_profile();
  5827. tmc2130_init();
  5828. }
  5829. break;
  5830. case 916: //! M916 - Set sg_thrs
  5831. {
  5832. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5833. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5834. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5835. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5836. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5837. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5838. }
  5839. break;
  5840. case 917: //! M917 - Set TMC2130 pwm_ampl
  5841. {
  5842. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5843. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5844. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5845. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5846. }
  5847. break;
  5848. case 918: //! M918 - Set TMC2130 pwm_grad
  5849. {
  5850. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5851. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5852. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5853. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5854. }
  5855. break;
  5856. #endif //TMC2130
  5857. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5858. {
  5859. #ifdef TMC2130
  5860. if(code_seen('E'))
  5861. {
  5862. uint16_t res_new = code_value();
  5863. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5864. {
  5865. st_synchronize();
  5866. uint8_t axis = E_AXIS;
  5867. uint16_t res = tmc2130_get_res(axis);
  5868. tmc2130_set_res(axis, res_new);
  5869. if (res_new > res)
  5870. {
  5871. uint16_t fac = (res_new / res);
  5872. cs.axis_steps_per_unit[axis] *= fac;
  5873. position[E_AXIS] *= fac;
  5874. }
  5875. else
  5876. {
  5877. uint16_t fac = (res / res_new);
  5878. cs.axis_steps_per_unit[axis] /= fac;
  5879. position[E_AXIS] /= fac;
  5880. }
  5881. }
  5882. }
  5883. #else //TMC2130
  5884. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5885. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5886. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5887. if(code_seen('B')) microstep_mode(4,code_value());
  5888. microstep_readings();
  5889. #endif
  5890. #endif //TMC2130
  5891. }
  5892. break;
  5893. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5894. {
  5895. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5896. if(code_seen('S')) switch((int)code_value())
  5897. {
  5898. case 1:
  5899. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5900. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5901. break;
  5902. case 2:
  5903. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5904. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5905. break;
  5906. }
  5907. microstep_readings();
  5908. #endif
  5909. }
  5910. break;
  5911. case 701: //! M701 - load filament
  5912. {
  5913. if (mmu_enabled && code_seen('E'))
  5914. tmp_extruder = code_value();
  5915. gcode_M701();
  5916. }
  5917. break;
  5918. case 702: //! M702 [U C] -
  5919. {
  5920. if (mmu_enabled)
  5921. {
  5922. if (code_seen('U'))
  5923. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  5924. else if (code_seen('C'))
  5925. extr_unload(); //! if "C" unload just current filament
  5926. else
  5927. extr_unload_all(); //! otherwise unload all filaments
  5928. }
  5929. else
  5930. unload_filament();
  5931. }
  5932. break;
  5933. case 999: // M999: Restart after being stopped
  5934. Stopped = false;
  5935. lcd_reset_alert_level();
  5936. gcode_LastN = Stopped_gcode_LastN;
  5937. FlushSerialRequestResend();
  5938. break;
  5939. default:
  5940. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5941. }
  5942. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5943. mcode_in_progress = 0;
  5944. }
  5945. } // end if(code_seen('M')) (end of M codes)
  5946. //! T<extruder nr.> - select extruder in case of multi extruder printer
  5947. //! select filament in case of MMU_V2
  5948. //! if extruder is "?", open menu to let the user select extruder/filament
  5949. //!
  5950. //! For MMU_V2:
  5951. //! @n T<n> Gcode to extrude must follow immediately to load to extruder wheels
  5952. //! @n T? Gcode to extrude doesn't have to follow, load to extruder wheels is done automatically
  5953. else if(code_seen('T'))
  5954. {
  5955. int index;
  5956. st_synchronize();
  5957. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5958. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5959. SERIAL_ECHOLNPGM("Invalid T code.");
  5960. }
  5961. else {
  5962. if (*(strchr_pointer + index) == '?')
  5963. {
  5964. if(mmu_enabled)
  5965. {
  5966. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  5967. } else
  5968. {
  5969. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  5970. }
  5971. }
  5972. else {
  5973. tmp_extruder = code_value();
  5974. }
  5975. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5976. if (mmu_enabled)
  5977. {
  5978. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5979. manage_response(true, true);
  5980. mmu_command(MMU_CMD_C0);
  5981. mmu_extruder = tmp_extruder; //filament change is finished
  5982. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5983. {
  5984. mmu_load_to_nozzle();
  5985. }
  5986. }
  5987. else
  5988. {
  5989. #ifdef SNMM
  5990. #ifdef LIN_ADVANCE
  5991. if (mmu_extruder != tmp_extruder)
  5992. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5993. #endif
  5994. mmu_extruder = tmp_extruder;
  5995. delay(100);
  5996. disable_e0();
  5997. disable_e1();
  5998. disable_e2();
  5999. pinMode(E_MUX0_PIN, OUTPUT);
  6000. pinMode(E_MUX1_PIN, OUTPUT);
  6001. delay(100);
  6002. SERIAL_ECHO_START;
  6003. SERIAL_ECHO("T:");
  6004. SERIAL_ECHOLN((int)tmp_extruder);
  6005. switch (tmp_extruder) {
  6006. case 1:
  6007. WRITE(E_MUX0_PIN, HIGH);
  6008. WRITE(E_MUX1_PIN, LOW);
  6009. break;
  6010. case 2:
  6011. WRITE(E_MUX0_PIN, LOW);
  6012. WRITE(E_MUX1_PIN, HIGH);
  6013. break;
  6014. case 3:
  6015. WRITE(E_MUX0_PIN, HIGH);
  6016. WRITE(E_MUX1_PIN, HIGH);
  6017. break;
  6018. default:
  6019. WRITE(E_MUX0_PIN, LOW);
  6020. WRITE(E_MUX1_PIN, LOW);
  6021. break;
  6022. }
  6023. delay(100);
  6024. #else //SNMM
  6025. if (tmp_extruder >= EXTRUDERS) {
  6026. SERIAL_ECHO_START;
  6027. SERIAL_ECHOPGM("T");
  6028. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6029. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6030. }
  6031. else {
  6032. #if EXTRUDERS > 1
  6033. boolean make_move = false;
  6034. #endif
  6035. if (code_seen('F')) {
  6036. #if EXTRUDERS > 1
  6037. make_move = true;
  6038. #endif
  6039. next_feedrate = code_value();
  6040. if (next_feedrate > 0.0) {
  6041. feedrate = next_feedrate;
  6042. }
  6043. }
  6044. #if EXTRUDERS > 1
  6045. if (tmp_extruder != active_extruder) {
  6046. // Save current position to return to after applying extruder offset
  6047. memcpy(destination, current_position, sizeof(destination));
  6048. // Offset extruder (only by XY)
  6049. int i;
  6050. for (i = 0; i < 2; i++) {
  6051. current_position[i] = current_position[i] -
  6052. extruder_offset[i][active_extruder] +
  6053. extruder_offset[i][tmp_extruder];
  6054. }
  6055. // Set the new active extruder and position
  6056. active_extruder = tmp_extruder;
  6057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6058. // Move to the old position if 'F' was in the parameters
  6059. if (make_move && Stopped == false) {
  6060. prepare_move();
  6061. }
  6062. }
  6063. #endif
  6064. SERIAL_ECHO_START;
  6065. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6066. SERIAL_PROTOCOLLN((int)active_extruder);
  6067. }
  6068. #endif //SNMM
  6069. }
  6070. }
  6071. } // end if(code_seen('T')) (end of T codes)
  6072. else if (code_seen('D')) // D codes (debug)
  6073. {
  6074. switch((int)code_value())
  6075. {
  6076. #ifdef DEBUG_DCODES
  6077. case -1: //! D-1 - Endless loop
  6078. dcode__1(); break;
  6079. case 0: //! D0 - Reset
  6080. dcode_0(); break;
  6081. case 1: //! D1 - Clear EEPROM
  6082. dcode_1(); break;
  6083. case 2: //! D2 - Read/Write RAM
  6084. dcode_2(); break;
  6085. #endif //DEBUG_DCODES
  6086. #ifdef DEBUG_DCODE3
  6087. case 3: //! D3 - Read/Write EEPROM
  6088. dcode_3(); break;
  6089. #endif //DEBUG_DCODE3
  6090. #ifdef DEBUG_DCODES
  6091. case 4: //! D4 - Read/Write PIN
  6092. dcode_4(); break;
  6093. #endif //DEBUG_DCODES
  6094. #ifdef DEBUG_DCODE5
  6095. case 5: // D5 - Read/Write FLASH
  6096. dcode_5(); break;
  6097. break;
  6098. #endif //DEBUG_DCODE5
  6099. #ifdef DEBUG_DCODES
  6100. case 6: // D6 - Read/Write external FLASH
  6101. dcode_6(); break;
  6102. case 7: //! D7 - Read/Write Bootloader
  6103. dcode_7(); break;
  6104. case 8: //! D8 - Read/Write PINDA
  6105. dcode_8(); break;
  6106. case 9: //! D9 - Read/Write ADC
  6107. dcode_9(); break;
  6108. case 10: //! D10 - XYZ calibration = OK
  6109. dcode_10(); break;
  6110. #ifdef TMC2130
  6111. case 2130: //! D2130 - TMC2130
  6112. dcode_2130(); break;
  6113. #endif //TMC2130
  6114. #ifdef FILAMENT_SENSOR
  6115. case 9125: //! D9125 - FILAMENT_SENSOR
  6116. dcode_9125(); break;
  6117. #endif //FILAMENT_SENSOR
  6118. #endif //DEBUG_DCODES
  6119. }
  6120. }
  6121. else
  6122. {
  6123. SERIAL_ECHO_START;
  6124. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6125. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6126. SERIAL_ECHOLNPGM("\"(2)");
  6127. }
  6128. KEEPALIVE_STATE(NOT_BUSY);
  6129. ClearToSend();
  6130. }
  6131. void FlushSerialRequestResend()
  6132. {
  6133. //char cmdbuffer[bufindr][100]="Resend:";
  6134. MYSERIAL.flush();
  6135. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6136. }
  6137. // Confirm the execution of a command, if sent from a serial line.
  6138. // Execution of a command from a SD card will not be confirmed.
  6139. void ClearToSend()
  6140. {
  6141. previous_millis_cmd = millis();
  6142. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6143. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6144. }
  6145. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6146. void update_currents() {
  6147. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6148. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6149. float tmp_motor[3];
  6150. //SERIAL_ECHOLNPGM("Currents updated: ");
  6151. if (destination[Z_AXIS] < Z_SILENT) {
  6152. //SERIAL_ECHOLNPGM("LOW");
  6153. for (uint8_t i = 0; i < 3; i++) {
  6154. st_current_set(i, current_low[i]);
  6155. /*MYSERIAL.print(int(i));
  6156. SERIAL_ECHOPGM(": ");
  6157. MYSERIAL.println(current_low[i]);*/
  6158. }
  6159. }
  6160. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6161. //SERIAL_ECHOLNPGM("HIGH");
  6162. for (uint8_t i = 0; i < 3; i++) {
  6163. st_current_set(i, current_high[i]);
  6164. /*MYSERIAL.print(int(i));
  6165. SERIAL_ECHOPGM(": ");
  6166. MYSERIAL.println(current_high[i]);*/
  6167. }
  6168. }
  6169. else {
  6170. for (uint8_t i = 0; i < 3; i++) {
  6171. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6172. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6173. st_current_set(i, tmp_motor[i]);
  6174. /*MYSERIAL.print(int(i));
  6175. SERIAL_ECHOPGM(": ");
  6176. MYSERIAL.println(tmp_motor[i]);*/
  6177. }
  6178. }
  6179. }
  6180. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6181. void get_coordinates()
  6182. {
  6183. bool seen[4]={false,false,false,false};
  6184. for(int8_t i=0; i < NUM_AXIS; i++) {
  6185. if(code_seen(axis_codes[i]))
  6186. {
  6187. bool relative = axis_relative_modes[i] || relative_mode;
  6188. destination[i] = (float)code_value();
  6189. if (i == E_AXIS) {
  6190. float emult = extruder_multiplier[active_extruder];
  6191. if (emult != 1.) {
  6192. if (! relative) {
  6193. destination[i] -= current_position[i];
  6194. relative = true;
  6195. }
  6196. destination[i] *= emult;
  6197. }
  6198. }
  6199. if (relative)
  6200. destination[i] += current_position[i];
  6201. seen[i]=true;
  6202. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6203. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6204. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6205. }
  6206. else destination[i] = current_position[i]; //Are these else lines really needed?
  6207. }
  6208. if(code_seen('F')) {
  6209. next_feedrate = code_value();
  6210. #ifdef MAX_SILENT_FEEDRATE
  6211. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6212. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6213. #endif //MAX_SILENT_FEEDRATE
  6214. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6215. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6216. {
  6217. // float e_max_speed =
  6218. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6219. }
  6220. }
  6221. }
  6222. void get_arc_coordinates()
  6223. {
  6224. #ifdef SF_ARC_FIX
  6225. bool relative_mode_backup = relative_mode;
  6226. relative_mode = true;
  6227. #endif
  6228. get_coordinates();
  6229. #ifdef SF_ARC_FIX
  6230. relative_mode=relative_mode_backup;
  6231. #endif
  6232. if(code_seen('I')) {
  6233. offset[0] = code_value();
  6234. }
  6235. else {
  6236. offset[0] = 0.0;
  6237. }
  6238. if(code_seen('J')) {
  6239. offset[1] = code_value();
  6240. }
  6241. else {
  6242. offset[1] = 0.0;
  6243. }
  6244. }
  6245. void clamp_to_software_endstops(float target[3])
  6246. {
  6247. #ifdef DEBUG_DISABLE_SWLIMITS
  6248. return;
  6249. #endif //DEBUG_DISABLE_SWLIMITS
  6250. world2machine_clamp(target[0], target[1]);
  6251. // Clamp the Z coordinate.
  6252. if (min_software_endstops) {
  6253. float negative_z_offset = 0;
  6254. #ifdef ENABLE_AUTO_BED_LEVELING
  6255. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6256. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6257. #endif
  6258. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6259. }
  6260. if (max_software_endstops) {
  6261. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6262. }
  6263. }
  6264. #ifdef MESH_BED_LEVELING
  6265. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6266. float dx = x - current_position[X_AXIS];
  6267. float dy = y - current_position[Y_AXIS];
  6268. float dz = z - current_position[Z_AXIS];
  6269. int n_segments = 0;
  6270. if (mbl.active) {
  6271. float len = abs(dx) + abs(dy);
  6272. if (len > 0)
  6273. // Split to 3cm segments or shorter.
  6274. n_segments = int(ceil(len / 30.f));
  6275. }
  6276. if (n_segments > 1) {
  6277. float de = e - current_position[E_AXIS];
  6278. for (int i = 1; i < n_segments; ++ i) {
  6279. float t = float(i) / float(n_segments);
  6280. if (saved_printing || (mbl.active == false)) return;
  6281. plan_buffer_line(
  6282. current_position[X_AXIS] + t * dx,
  6283. current_position[Y_AXIS] + t * dy,
  6284. current_position[Z_AXIS] + t * dz,
  6285. current_position[E_AXIS] + t * de,
  6286. feed_rate, extruder);
  6287. }
  6288. }
  6289. // The rest of the path.
  6290. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6291. current_position[X_AXIS] = x;
  6292. current_position[Y_AXIS] = y;
  6293. current_position[Z_AXIS] = z;
  6294. current_position[E_AXIS] = e;
  6295. }
  6296. #endif // MESH_BED_LEVELING
  6297. void prepare_move()
  6298. {
  6299. clamp_to_software_endstops(destination);
  6300. previous_millis_cmd = millis();
  6301. // Do not use feedmultiply for E or Z only moves
  6302. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6304. }
  6305. else {
  6306. #ifdef MESH_BED_LEVELING
  6307. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6308. #else
  6309. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6310. #endif
  6311. }
  6312. for(int8_t i=0; i < NUM_AXIS; i++) {
  6313. current_position[i] = destination[i];
  6314. }
  6315. }
  6316. void prepare_arc_move(char isclockwise) {
  6317. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6318. // Trace the arc
  6319. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6320. // As far as the parser is concerned, the position is now == target. In reality the
  6321. // motion control system might still be processing the action and the real tool position
  6322. // in any intermediate location.
  6323. for(int8_t i=0; i < NUM_AXIS; i++) {
  6324. current_position[i] = destination[i];
  6325. }
  6326. previous_millis_cmd = millis();
  6327. }
  6328. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6329. #if defined(FAN_PIN)
  6330. #if CONTROLLERFAN_PIN == FAN_PIN
  6331. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6332. #endif
  6333. #endif
  6334. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6335. unsigned long lastMotorCheck = 0;
  6336. void controllerFan()
  6337. {
  6338. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6339. {
  6340. lastMotorCheck = millis();
  6341. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6342. #if EXTRUDERS > 2
  6343. || !READ(E2_ENABLE_PIN)
  6344. #endif
  6345. #if EXTRUDER > 1
  6346. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6347. || !READ(X2_ENABLE_PIN)
  6348. #endif
  6349. || !READ(E1_ENABLE_PIN)
  6350. #endif
  6351. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6352. {
  6353. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6354. }
  6355. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6356. {
  6357. digitalWrite(CONTROLLERFAN_PIN, 0);
  6358. analogWrite(CONTROLLERFAN_PIN, 0);
  6359. }
  6360. else
  6361. {
  6362. // allows digital or PWM fan output to be used (see M42 handling)
  6363. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6364. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6365. }
  6366. }
  6367. }
  6368. #endif
  6369. #ifdef TEMP_STAT_LEDS
  6370. static bool blue_led = false;
  6371. static bool red_led = false;
  6372. static uint32_t stat_update = 0;
  6373. void handle_status_leds(void) {
  6374. float max_temp = 0.0;
  6375. if(millis() > stat_update) {
  6376. stat_update += 500; // Update every 0.5s
  6377. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6378. max_temp = max(max_temp, degHotend(cur_extruder));
  6379. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6380. }
  6381. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6382. max_temp = max(max_temp, degTargetBed());
  6383. max_temp = max(max_temp, degBed());
  6384. #endif
  6385. if((max_temp > 55.0) && (red_led == false)) {
  6386. digitalWrite(STAT_LED_RED, 1);
  6387. digitalWrite(STAT_LED_BLUE, 0);
  6388. red_led = true;
  6389. blue_led = false;
  6390. }
  6391. if((max_temp < 54.0) && (blue_led == false)) {
  6392. digitalWrite(STAT_LED_RED, 0);
  6393. digitalWrite(STAT_LED_BLUE, 1);
  6394. red_led = false;
  6395. blue_led = true;
  6396. }
  6397. }
  6398. }
  6399. #endif
  6400. #ifdef SAFETYTIMER
  6401. /**
  6402. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6403. *
  6404. * Full screen blocking notification message is shown after heater turning off.
  6405. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6406. * damage print.
  6407. *
  6408. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6409. */
  6410. static void handleSafetyTimer()
  6411. {
  6412. #if (EXTRUDERS > 1)
  6413. #error Implemented only for one extruder.
  6414. #endif //(EXTRUDERS > 1)
  6415. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6416. {
  6417. safetyTimer.stop();
  6418. }
  6419. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6420. {
  6421. safetyTimer.start();
  6422. }
  6423. else if (safetyTimer.expired(safetytimer_inactive_time))
  6424. {
  6425. setTargetBed(0);
  6426. setAllTargetHotends(0);
  6427. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6428. }
  6429. }
  6430. #endif //SAFETYTIMER
  6431. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6432. {
  6433. #ifdef FILAMENT_SENSOR
  6434. if (mmu_enabled == false)
  6435. {
  6436. if (mcode_in_progress != 600) //M600 not in progress
  6437. {
  6438. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6439. {
  6440. if (fsensor_check_autoload())
  6441. {
  6442. fsensor_autoload_check_stop();
  6443. if (degHotend0() > EXTRUDE_MINTEMP)
  6444. {
  6445. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6446. tone(BEEPER, 1000);
  6447. delay_keep_alive(50);
  6448. noTone(BEEPER);
  6449. loading_flag = true;
  6450. enquecommand_front_P((PSTR("M701")));
  6451. }
  6452. else
  6453. {
  6454. lcd_update_enable(false);
  6455. lcd_clear();
  6456. lcd_set_cursor(0, 0);
  6457. lcd_puts_P(_T(MSG_ERROR));
  6458. lcd_set_cursor(0, 2);
  6459. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6460. delay(2000);
  6461. lcd_clear();
  6462. lcd_update_enable(true);
  6463. }
  6464. }
  6465. }
  6466. else
  6467. {
  6468. fsensor_autoload_check_stop();
  6469. fsensor_update();
  6470. }
  6471. }
  6472. }
  6473. #endif //FILAMENT_SENSOR
  6474. #ifdef SAFETYTIMER
  6475. handleSafetyTimer();
  6476. #endif //SAFETYTIMER
  6477. #if defined(KILL_PIN) && KILL_PIN > -1
  6478. static int killCount = 0; // make the inactivity button a bit less responsive
  6479. const int KILL_DELAY = 10000;
  6480. #endif
  6481. if(buflen < (BUFSIZE-1)){
  6482. get_command();
  6483. }
  6484. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6485. if(max_inactive_time)
  6486. kill(_n(""), 4);
  6487. if(stepper_inactive_time) {
  6488. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6489. {
  6490. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6491. disable_x();
  6492. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6493. disable_y();
  6494. disable_z();
  6495. disable_e0();
  6496. disable_e1();
  6497. disable_e2();
  6498. }
  6499. }
  6500. }
  6501. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6502. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6503. {
  6504. chdkActive = false;
  6505. WRITE(CHDK, LOW);
  6506. }
  6507. #endif
  6508. #if defined(KILL_PIN) && KILL_PIN > -1
  6509. // Check if the kill button was pressed and wait just in case it was an accidental
  6510. // key kill key press
  6511. // -------------------------------------------------------------------------------
  6512. if( 0 == READ(KILL_PIN) )
  6513. {
  6514. killCount++;
  6515. }
  6516. else if (killCount > 0)
  6517. {
  6518. killCount--;
  6519. }
  6520. // Exceeded threshold and we can confirm that it was not accidental
  6521. // KILL the machine
  6522. // ----------------------------------------------------------------
  6523. if ( killCount >= KILL_DELAY)
  6524. {
  6525. kill("", 5);
  6526. }
  6527. #endif
  6528. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6529. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6530. #endif
  6531. #ifdef EXTRUDER_RUNOUT_PREVENT
  6532. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6533. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6534. {
  6535. bool oldstatus=READ(E0_ENABLE_PIN);
  6536. enable_e0();
  6537. float oldepos=current_position[E_AXIS];
  6538. float oldedes=destination[E_AXIS];
  6539. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6540. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6541. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6542. current_position[E_AXIS]=oldepos;
  6543. destination[E_AXIS]=oldedes;
  6544. plan_set_e_position(oldepos);
  6545. previous_millis_cmd=millis();
  6546. st_synchronize();
  6547. WRITE(E0_ENABLE_PIN,oldstatus);
  6548. }
  6549. #endif
  6550. #ifdef TEMP_STAT_LEDS
  6551. handle_status_leds();
  6552. #endif
  6553. check_axes_activity();
  6554. mmu_loop();
  6555. }
  6556. void kill(const char *full_screen_message, unsigned char id)
  6557. {
  6558. printf_P(_N("KILL: %d\n"), id);
  6559. //return;
  6560. cli(); // Stop interrupts
  6561. disable_heater();
  6562. disable_x();
  6563. // SERIAL_ECHOLNPGM("kill - disable Y");
  6564. disable_y();
  6565. disable_z();
  6566. disable_e0();
  6567. disable_e1();
  6568. disable_e2();
  6569. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6570. pinMode(PS_ON_PIN,INPUT);
  6571. #endif
  6572. SERIAL_ERROR_START;
  6573. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6574. if (full_screen_message != NULL) {
  6575. SERIAL_ERRORLNRPGM(full_screen_message);
  6576. lcd_display_message_fullscreen_P(full_screen_message);
  6577. } else {
  6578. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6579. }
  6580. // FMC small patch to update the LCD before ending
  6581. sei(); // enable interrupts
  6582. for ( int i=5; i--; lcd_update(0))
  6583. {
  6584. delay(200);
  6585. }
  6586. cli(); // disable interrupts
  6587. suicide();
  6588. while(1)
  6589. {
  6590. #ifdef WATCHDOG
  6591. wdt_reset();
  6592. #endif //WATCHDOG
  6593. /* Intentionally left empty */
  6594. } // Wait for reset
  6595. }
  6596. void Stop()
  6597. {
  6598. disable_heater();
  6599. if(Stopped == false) {
  6600. Stopped = true;
  6601. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6602. SERIAL_ERROR_START;
  6603. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6604. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6605. }
  6606. }
  6607. bool IsStopped() { return Stopped; };
  6608. #ifdef FAST_PWM_FAN
  6609. void setPwmFrequency(uint8_t pin, int val)
  6610. {
  6611. val &= 0x07;
  6612. switch(digitalPinToTimer(pin))
  6613. {
  6614. #if defined(TCCR0A)
  6615. case TIMER0A:
  6616. case TIMER0B:
  6617. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6618. // TCCR0B |= val;
  6619. break;
  6620. #endif
  6621. #if defined(TCCR1A)
  6622. case TIMER1A:
  6623. case TIMER1B:
  6624. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6625. // TCCR1B |= val;
  6626. break;
  6627. #endif
  6628. #if defined(TCCR2)
  6629. case TIMER2:
  6630. case TIMER2:
  6631. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6632. TCCR2 |= val;
  6633. break;
  6634. #endif
  6635. #if defined(TCCR2A)
  6636. case TIMER2A:
  6637. case TIMER2B:
  6638. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6639. TCCR2B |= val;
  6640. break;
  6641. #endif
  6642. #if defined(TCCR3A)
  6643. case TIMER3A:
  6644. case TIMER3B:
  6645. case TIMER3C:
  6646. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6647. TCCR3B |= val;
  6648. break;
  6649. #endif
  6650. #if defined(TCCR4A)
  6651. case TIMER4A:
  6652. case TIMER4B:
  6653. case TIMER4C:
  6654. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6655. TCCR4B |= val;
  6656. break;
  6657. #endif
  6658. #if defined(TCCR5A)
  6659. case TIMER5A:
  6660. case TIMER5B:
  6661. case TIMER5C:
  6662. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6663. TCCR5B |= val;
  6664. break;
  6665. #endif
  6666. }
  6667. }
  6668. #endif //FAST_PWM_FAN
  6669. //! @brief Get and validate extruder number
  6670. //!
  6671. //! If it is not specified, active_extruder is returned in parameter extruder.
  6672. //! @param [in] code M code number
  6673. //! @param [out] extruder
  6674. //! @return error
  6675. //! @retval true Invalid extruder specified in T code
  6676. //! @retval false Valid extruder specified in T code, or not specifiead
  6677. bool setTargetedHotend(int code, uint8_t &extruder)
  6678. {
  6679. extruder = active_extruder;
  6680. if(code_seen('T')) {
  6681. extruder = code_value();
  6682. if(extruder >= EXTRUDERS) {
  6683. SERIAL_ECHO_START;
  6684. switch(code){
  6685. case 104:
  6686. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6687. break;
  6688. case 105:
  6689. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6690. break;
  6691. case 109:
  6692. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6693. break;
  6694. case 218:
  6695. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6696. break;
  6697. case 221:
  6698. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6699. break;
  6700. }
  6701. SERIAL_PROTOCOLLN((int)extruder);
  6702. return true;
  6703. }
  6704. }
  6705. return false;
  6706. }
  6707. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6708. {
  6709. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6710. {
  6711. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6712. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6713. }
  6714. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6715. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6716. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6717. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6718. total_filament_used = 0;
  6719. }
  6720. float calculate_extruder_multiplier(float diameter) {
  6721. float out = 1.f;
  6722. if (cs.volumetric_enabled && diameter > 0.f) {
  6723. float area = M_PI * diameter * diameter * 0.25;
  6724. out = 1.f / area;
  6725. }
  6726. if (extrudemultiply != 100)
  6727. out *= float(extrudemultiply) * 0.01f;
  6728. return out;
  6729. }
  6730. void calculate_extruder_multipliers() {
  6731. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6732. #if EXTRUDERS > 1
  6733. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6734. #if EXTRUDERS > 2
  6735. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6736. #endif
  6737. #endif
  6738. }
  6739. void delay_keep_alive(unsigned int ms)
  6740. {
  6741. for (;;) {
  6742. manage_heater();
  6743. // Manage inactivity, but don't disable steppers on timeout.
  6744. manage_inactivity(true);
  6745. lcd_update(0);
  6746. if (ms == 0)
  6747. break;
  6748. else if (ms >= 50) {
  6749. delay(50);
  6750. ms -= 50;
  6751. } else {
  6752. delay(ms);
  6753. ms = 0;
  6754. }
  6755. }
  6756. }
  6757. static void wait_for_heater(long codenum, uint8_t extruder) {
  6758. #ifdef TEMP_RESIDENCY_TIME
  6759. long residencyStart;
  6760. residencyStart = -1;
  6761. /* continue to loop until we have reached the target temp
  6762. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6763. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6764. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6765. #else
  6766. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6767. #endif //TEMP_RESIDENCY_TIME
  6768. if ((millis() - codenum) > 1000UL)
  6769. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6770. if (!farm_mode) {
  6771. SERIAL_PROTOCOLPGM("T:");
  6772. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6773. SERIAL_PROTOCOLPGM(" E:");
  6774. SERIAL_PROTOCOL((int)extruder);
  6775. #ifdef TEMP_RESIDENCY_TIME
  6776. SERIAL_PROTOCOLPGM(" W:");
  6777. if (residencyStart > -1)
  6778. {
  6779. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6780. SERIAL_PROTOCOLLN(codenum);
  6781. }
  6782. else
  6783. {
  6784. SERIAL_PROTOCOLLN("?");
  6785. }
  6786. }
  6787. #else
  6788. SERIAL_PROTOCOLLN("");
  6789. #endif
  6790. codenum = millis();
  6791. }
  6792. manage_heater();
  6793. manage_inactivity();
  6794. lcd_update(0);
  6795. #ifdef TEMP_RESIDENCY_TIME
  6796. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6797. or when current temp falls outside the hysteresis after target temp was reached */
  6798. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6799. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6800. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6801. {
  6802. residencyStart = millis();
  6803. }
  6804. #endif //TEMP_RESIDENCY_TIME
  6805. }
  6806. }
  6807. void check_babystep()
  6808. {
  6809. int babystep_z;
  6810. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6811. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6812. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6813. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6814. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6815. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6816. lcd_update_enable(true);
  6817. }
  6818. }
  6819. #ifdef DIS
  6820. void d_setup()
  6821. {
  6822. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6823. pinMode(D_DATA, INPUT_PULLUP);
  6824. pinMode(D_REQUIRE, OUTPUT);
  6825. digitalWrite(D_REQUIRE, HIGH);
  6826. }
  6827. float d_ReadData()
  6828. {
  6829. int digit[13];
  6830. String mergeOutput;
  6831. float output;
  6832. digitalWrite(D_REQUIRE, HIGH);
  6833. for (int i = 0; i<13; i++)
  6834. {
  6835. for (int j = 0; j < 4; j++)
  6836. {
  6837. while (digitalRead(D_DATACLOCK) == LOW) {}
  6838. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6839. bitWrite(digit[i], j, digitalRead(D_DATA));
  6840. }
  6841. }
  6842. digitalWrite(D_REQUIRE, LOW);
  6843. mergeOutput = "";
  6844. output = 0;
  6845. for (int r = 5; r <= 10; r++) //Merge digits
  6846. {
  6847. mergeOutput += digit[r];
  6848. }
  6849. output = mergeOutput.toFloat();
  6850. if (digit[4] == 8) //Handle sign
  6851. {
  6852. output *= -1;
  6853. }
  6854. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6855. {
  6856. output /= 10;
  6857. }
  6858. return output;
  6859. }
  6860. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6861. int t1 = 0;
  6862. int t_delay = 0;
  6863. int digit[13];
  6864. int m;
  6865. char str[3];
  6866. //String mergeOutput;
  6867. char mergeOutput[15];
  6868. float output;
  6869. int mesh_point = 0; //index number of calibration point
  6870. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6871. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6872. float mesh_home_z_search = 4;
  6873. float row[x_points_num];
  6874. int ix = 0;
  6875. int iy = 0;
  6876. const char* filename_wldsd = "wldsd.txt";
  6877. char data_wldsd[70];
  6878. char numb_wldsd[10];
  6879. d_setup();
  6880. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6881. // We don't know where we are! HOME!
  6882. // Push the commands to the front of the message queue in the reverse order!
  6883. // There shall be always enough space reserved for these commands.
  6884. repeatcommand_front(); // repeat G80 with all its parameters
  6885. enquecommand_front_P((PSTR("G28 W0")));
  6886. enquecommand_front_P((PSTR("G1 Z5")));
  6887. return;
  6888. }
  6889. unsigned int custom_message_type_old = custom_message_type;
  6890. unsigned int custom_message_state_old = custom_message_state;
  6891. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6892. custom_message_state = (x_points_num * y_points_num) + 10;
  6893. lcd_update(1);
  6894. mbl.reset();
  6895. babystep_undo();
  6896. card.openFile(filename_wldsd, false);
  6897. current_position[Z_AXIS] = mesh_home_z_search;
  6898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6899. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6900. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6901. int l_feedmultiply = setup_for_endstop_move(false);
  6902. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6903. SERIAL_PROTOCOL(x_points_num);
  6904. SERIAL_PROTOCOLPGM(",");
  6905. SERIAL_PROTOCOL(y_points_num);
  6906. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6907. SERIAL_PROTOCOL(mesh_home_z_search);
  6908. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6909. SERIAL_PROTOCOL(x_dimension);
  6910. SERIAL_PROTOCOLPGM(",");
  6911. SERIAL_PROTOCOL(y_dimension);
  6912. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6913. while (mesh_point != x_points_num * y_points_num) {
  6914. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6915. iy = mesh_point / x_points_num;
  6916. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6917. float z0 = 0.f;
  6918. current_position[Z_AXIS] = mesh_home_z_search;
  6919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6920. st_synchronize();
  6921. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6922. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6924. st_synchronize();
  6925. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6926. break;
  6927. card.closefile();
  6928. }
  6929. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6930. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6931. //strcat(data_wldsd, numb_wldsd);
  6932. //MYSERIAL.println(data_wldsd);
  6933. //delay(1000);
  6934. //delay(3000);
  6935. //t1 = millis();
  6936. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6937. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6938. memset(digit, 0, sizeof(digit));
  6939. //cli();
  6940. digitalWrite(D_REQUIRE, LOW);
  6941. for (int i = 0; i<13; i++)
  6942. {
  6943. //t1 = millis();
  6944. for (int j = 0; j < 4; j++)
  6945. {
  6946. while (digitalRead(D_DATACLOCK) == LOW) {}
  6947. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6948. bitWrite(digit[i], j, digitalRead(D_DATA));
  6949. }
  6950. //t_delay = (millis() - t1);
  6951. //SERIAL_PROTOCOLPGM(" ");
  6952. //SERIAL_PROTOCOL_F(t_delay, 5);
  6953. //SERIAL_PROTOCOLPGM(" ");
  6954. }
  6955. //sei();
  6956. digitalWrite(D_REQUIRE, HIGH);
  6957. mergeOutput[0] = '\0';
  6958. output = 0;
  6959. for (int r = 5; r <= 10; r++) //Merge digits
  6960. {
  6961. sprintf(str, "%d", digit[r]);
  6962. strcat(mergeOutput, str);
  6963. }
  6964. output = atof(mergeOutput);
  6965. if (digit[4] == 8) //Handle sign
  6966. {
  6967. output *= -1;
  6968. }
  6969. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6970. {
  6971. output *= 0.1;
  6972. }
  6973. //output = d_ReadData();
  6974. //row[ix] = current_position[Z_AXIS];
  6975. memset(data_wldsd, 0, sizeof(data_wldsd));
  6976. for (int i = 0; i <3; i++) {
  6977. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6978. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6979. strcat(data_wldsd, numb_wldsd);
  6980. strcat(data_wldsd, ";");
  6981. }
  6982. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6983. dtostrf(output, 8, 5, numb_wldsd);
  6984. strcat(data_wldsd, numb_wldsd);
  6985. //strcat(data_wldsd, ";");
  6986. card.write_command(data_wldsd);
  6987. //row[ix] = d_ReadData();
  6988. row[ix] = output; // current_position[Z_AXIS];
  6989. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6990. for (int i = 0; i < x_points_num; i++) {
  6991. SERIAL_PROTOCOLPGM(" ");
  6992. SERIAL_PROTOCOL_F(row[i], 5);
  6993. }
  6994. SERIAL_PROTOCOLPGM("\n");
  6995. }
  6996. custom_message_state--;
  6997. mesh_point++;
  6998. lcd_update(1);
  6999. }
  7000. card.closefile();
  7001. clean_up_after_endstop_move(l_feedmultiply);
  7002. }
  7003. #endif
  7004. void temp_compensation_start() {
  7005. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7006. custom_message_state = PINDA_HEAT_T + 1;
  7007. lcd_update(2);
  7008. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7009. current_position[E_AXIS] -= default_retraction;
  7010. }
  7011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7012. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7013. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7014. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7016. st_synchronize();
  7017. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7018. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7019. delay_keep_alive(1000);
  7020. custom_message_state = PINDA_HEAT_T - i;
  7021. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7022. else lcd_update(1);
  7023. }
  7024. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7025. custom_message_state = 0;
  7026. }
  7027. void temp_compensation_apply() {
  7028. int i_add;
  7029. int z_shift = 0;
  7030. float z_shift_mm;
  7031. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7032. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7033. i_add = (target_temperature_bed - 60) / 10;
  7034. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7035. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7036. }else {
  7037. //interpolation
  7038. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7039. }
  7040. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7042. st_synchronize();
  7043. plan_set_z_position(current_position[Z_AXIS]);
  7044. }
  7045. else {
  7046. //we have no temp compensation data
  7047. }
  7048. }
  7049. float temp_comp_interpolation(float inp_temperature) {
  7050. //cubic spline interpolation
  7051. int n, i, j;
  7052. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7053. int shift[10];
  7054. int temp_C[10];
  7055. n = 6; //number of measured points
  7056. shift[0] = 0;
  7057. for (i = 0; i < n; i++) {
  7058. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7059. temp_C[i] = 50 + i * 10; //temperature in C
  7060. #ifdef PINDA_THERMISTOR
  7061. temp_C[i] = 35 + i * 5; //temperature in C
  7062. #else
  7063. temp_C[i] = 50 + i * 10; //temperature in C
  7064. #endif
  7065. x[i] = (float)temp_C[i];
  7066. f[i] = (float)shift[i];
  7067. }
  7068. if (inp_temperature < x[0]) return 0;
  7069. for (i = n - 1; i>0; i--) {
  7070. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7071. h[i - 1] = x[i] - x[i - 1];
  7072. }
  7073. //*********** formation of h, s , f matrix **************
  7074. for (i = 1; i<n - 1; i++) {
  7075. m[i][i] = 2 * (h[i - 1] + h[i]);
  7076. if (i != 1) {
  7077. m[i][i - 1] = h[i - 1];
  7078. m[i - 1][i] = h[i - 1];
  7079. }
  7080. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7081. }
  7082. //*********** forward elimination **************
  7083. for (i = 1; i<n - 2; i++) {
  7084. temp = (m[i + 1][i] / m[i][i]);
  7085. for (j = 1; j <= n - 1; j++)
  7086. m[i + 1][j] -= temp*m[i][j];
  7087. }
  7088. //*********** backward substitution *********
  7089. for (i = n - 2; i>0; i--) {
  7090. sum = 0;
  7091. for (j = i; j <= n - 2; j++)
  7092. sum += m[i][j] * s[j];
  7093. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7094. }
  7095. for (i = 0; i<n - 1; i++)
  7096. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7097. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7098. b = s[i] / 2;
  7099. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7100. d = f[i];
  7101. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7102. }
  7103. return sum;
  7104. }
  7105. #ifdef PINDA_THERMISTOR
  7106. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7107. {
  7108. if (!temp_cal_active) return 0;
  7109. if (!calibration_status_pinda()) return 0;
  7110. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7111. }
  7112. #endif //PINDA_THERMISTOR
  7113. void long_pause() //long pause print
  7114. {
  7115. st_synchronize();
  7116. start_pause_print = millis();
  7117. //retract
  7118. current_position[E_AXIS] -= default_retraction;
  7119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7120. //lift z
  7121. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7122. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7124. //Move XY to side
  7125. current_position[X_AXIS] = X_PAUSE_POS;
  7126. current_position[Y_AXIS] = Y_PAUSE_POS;
  7127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7128. // Turn off the print fan
  7129. fanSpeed = 0;
  7130. st_synchronize();
  7131. }
  7132. void serialecho_temperatures() {
  7133. float tt = degHotend(active_extruder);
  7134. SERIAL_PROTOCOLPGM("T:");
  7135. SERIAL_PROTOCOL(tt);
  7136. SERIAL_PROTOCOLPGM(" E:");
  7137. SERIAL_PROTOCOL((int)active_extruder);
  7138. SERIAL_PROTOCOLPGM(" B:");
  7139. SERIAL_PROTOCOL_F(degBed(), 1);
  7140. SERIAL_PROTOCOLLN("");
  7141. }
  7142. extern uint32_t sdpos_atomic;
  7143. #ifdef UVLO_SUPPORT
  7144. void uvlo_()
  7145. {
  7146. unsigned long time_start = millis();
  7147. bool sd_print = card.sdprinting;
  7148. // Conserve power as soon as possible.
  7149. disable_x();
  7150. disable_y();
  7151. #ifdef TMC2130
  7152. tmc2130_set_current_h(Z_AXIS, 20);
  7153. tmc2130_set_current_r(Z_AXIS, 20);
  7154. tmc2130_set_current_h(E_AXIS, 20);
  7155. tmc2130_set_current_r(E_AXIS, 20);
  7156. #endif //TMC2130
  7157. // Indicate that the interrupt has been triggered.
  7158. // SERIAL_ECHOLNPGM("UVLO");
  7159. // Read out the current Z motor microstep counter. This will be later used
  7160. // for reaching the zero full step before powering off.
  7161. uint16_t z_microsteps = 0;
  7162. #ifdef TMC2130
  7163. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7164. #endif //TMC2130
  7165. // Calculate the file position, from which to resume this print.
  7166. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7167. {
  7168. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7169. sd_position -= sdlen_planner;
  7170. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7171. sd_position -= sdlen_cmdqueue;
  7172. if (sd_position < 0) sd_position = 0;
  7173. }
  7174. // Backup the feedrate in mm/min.
  7175. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7176. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7177. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7178. // are in action.
  7179. planner_abort_hard();
  7180. // Store the current extruder position.
  7181. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7182. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7183. // Clean the input command queue.
  7184. cmdqueue_reset();
  7185. card.sdprinting = false;
  7186. // card.closefile();
  7187. // Enable stepper driver interrupt to move Z axis.
  7188. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7189. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7190. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7191. sei();
  7192. plan_buffer_line(
  7193. current_position[X_AXIS],
  7194. current_position[Y_AXIS],
  7195. current_position[Z_AXIS],
  7196. current_position[E_AXIS] - default_retraction,
  7197. 95, active_extruder);
  7198. st_synchronize();
  7199. disable_e0();
  7200. plan_buffer_line(
  7201. current_position[X_AXIS],
  7202. current_position[Y_AXIS],
  7203. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7204. current_position[E_AXIS] - default_retraction,
  7205. 40, active_extruder);
  7206. st_synchronize();
  7207. disable_e0();
  7208. plan_buffer_line(
  7209. current_position[X_AXIS],
  7210. current_position[Y_AXIS],
  7211. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7212. current_position[E_AXIS] - default_retraction,
  7213. 40, active_extruder);
  7214. st_synchronize();
  7215. disable_e0();
  7216. disable_z();
  7217. // Move Z up to the next 0th full step.
  7218. // Write the file position.
  7219. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7220. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7221. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7222. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7223. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7224. // Scale the z value to 1u resolution.
  7225. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7226. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7227. }
  7228. // Read out the current Z motor microstep counter. This will be later used
  7229. // for reaching the zero full step before powering off.
  7230. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7231. // Store the current position.
  7232. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7233. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7234. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7235. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7236. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7237. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7238. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7239. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7240. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7241. #if EXTRUDERS > 1
  7242. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7243. #if EXTRUDERS > 2
  7244. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7245. #endif
  7246. #endif
  7247. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7248. // Finaly store the "power outage" flag.
  7249. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7250. st_synchronize();
  7251. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7252. disable_z();
  7253. // Increment power failure counter
  7254. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7255. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7256. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7257. #if 0
  7258. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7259. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7261. st_synchronize();
  7262. #endif
  7263. wdt_enable(WDTO_500MS);
  7264. WRITE(BEEPER,HIGH);
  7265. while(1)
  7266. ;
  7267. }
  7268. void uvlo_tiny()
  7269. {
  7270. uint16_t z_microsteps=0;
  7271. // Conserve power as soon as possible.
  7272. disable_x();
  7273. disable_y();
  7274. disable_e0();
  7275. #ifdef TMC2130
  7276. tmc2130_set_current_h(Z_AXIS, 20);
  7277. tmc2130_set_current_r(Z_AXIS, 20);
  7278. #endif //TMC2130
  7279. // Read out the current Z motor microstep counter
  7280. #ifdef TMC2130
  7281. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7282. #endif //TMC2130
  7283. planner_abort_hard();
  7284. sei();
  7285. plan_buffer_line(
  7286. current_position[X_AXIS],
  7287. current_position[Y_AXIS],
  7288. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7289. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7290. current_position[E_AXIS],
  7291. 40, active_extruder);
  7292. st_synchronize();
  7293. disable_z();
  7294. // Finaly store the "power outage" flag.
  7295. //if(sd_print)
  7296. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7297. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7298. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7299. // Increment power failure counter
  7300. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7301. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7302. wdt_enable(WDTO_500MS);
  7303. WRITE(BEEPER,HIGH);
  7304. while(1)
  7305. ;
  7306. }
  7307. #endif //UVLO_SUPPORT
  7308. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7309. void setup_fan_interrupt() {
  7310. //INT7
  7311. DDRE &= ~(1 << 7); //input pin
  7312. PORTE &= ~(1 << 7); //no internal pull-up
  7313. //start with sensing rising edge
  7314. EICRB &= ~(1 << 6);
  7315. EICRB |= (1 << 7);
  7316. //enable INT7 interrupt
  7317. EIMSK |= (1 << 7);
  7318. }
  7319. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7320. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7321. ISR(INT7_vect) {
  7322. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7323. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7324. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7325. t_fan_rising_edge = millis_nc();
  7326. }
  7327. else { //interrupt was triggered by falling edge
  7328. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7329. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7330. }
  7331. }
  7332. EICRB ^= (1 << 6); //change edge
  7333. }
  7334. #endif
  7335. #ifdef UVLO_SUPPORT
  7336. void setup_uvlo_interrupt() {
  7337. DDRE &= ~(1 << 4); //input pin
  7338. PORTE &= ~(1 << 4); //no internal pull-up
  7339. //sensing falling edge
  7340. EICRB |= (1 << 0);
  7341. EICRB &= ~(1 << 1);
  7342. //enable INT4 interrupt
  7343. EIMSK |= (1 << 4);
  7344. }
  7345. ISR(INT4_vect) {
  7346. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7347. SERIAL_ECHOLNPGM("INT4");
  7348. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7349. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7350. }
  7351. void recover_print(uint8_t automatic) {
  7352. char cmd[30];
  7353. lcd_update_enable(true);
  7354. lcd_update(2);
  7355. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7356. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7357. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7358. // Lift the print head, so one may remove the excess priming material.
  7359. if(!bTiny&&(current_position[Z_AXIS]<25))
  7360. enquecommand_P(PSTR("G1 Z25 F800"));
  7361. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7362. enquecommand_P(PSTR("G28 X Y"));
  7363. // Set the target bed and nozzle temperatures and wait.
  7364. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7365. enquecommand(cmd);
  7366. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7367. enquecommand(cmd);
  7368. enquecommand_P(PSTR("M83")); //E axis relative mode
  7369. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7370. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7371. if(automatic == 0){
  7372. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7373. }
  7374. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7375. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7376. // Restart the print.
  7377. restore_print_from_eeprom();
  7378. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7379. }
  7380. void recover_machine_state_after_power_panic(bool bTiny)
  7381. {
  7382. char cmd[30];
  7383. // 1) Recover the logical cordinates at the time of the power panic.
  7384. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7385. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7386. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7387. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7388. // The current position after power panic is moved to the next closest 0th full step.
  7389. if(bTiny)
  7390. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7391. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7392. else
  7393. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7394. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7395. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7396. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7397. sprintf_P(cmd, PSTR("G92 E"));
  7398. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7399. enquecommand(cmd);
  7400. }
  7401. memcpy(destination, current_position, sizeof(destination));
  7402. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7403. print_world_coordinates();
  7404. // 2) Initialize the logical to physical coordinate system transformation.
  7405. world2machine_initialize();
  7406. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7407. mbl.active = false;
  7408. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7409. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7410. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7411. // Scale the z value to 10u resolution.
  7412. int16_t v;
  7413. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7414. if (v != 0)
  7415. mbl.active = true;
  7416. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7417. }
  7418. if (mbl.active)
  7419. mbl.upsample_3x3();
  7420. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7421. // print_mesh_bed_leveling_table();
  7422. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7423. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7424. babystep_load();
  7425. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7426. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7427. // 6) Power up the motors, mark their positions as known.
  7428. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7429. axis_known_position[X_AXIS] = true; enable_x();
  7430. axis_known_position[Y_AXIS] = true; enable_y();
  7431. axis_known_position[Z_AXIS] = true; enable_z();
  7432. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7433. print_physical_coordinates();
  7434. // 7) Recover the target temperatures.
  7435. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7436. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7437. // 8) Recover extruder multipilers
  7438. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7439. #if EXTRUDERS > 1
  7440. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7441. #if EXTRUDERS > 2
  7442. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7443. #endif
  7444. #endif
  7445. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7446. }
  7447. void restore_print_from_eeprom() {
  7448. int feedrate_rec;
  7449. uint8_t fan_speed_rec;
  7450. char cmd[30];
  7451. char filename[13];
  7452. uint8_t depth = 0;
  7453. char dir_name[9];
  7454. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7455. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7456. SERIAL_ECHOPGM("Feedrate:");
  7457. MYSERIAL.println(feedrate_rec);
  7458. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7459. MYSERIAL.println(int(depth));
  7460. for (int i = 0; i < depth; i++) {
  7461. for (int j = 0; j < 8; j++) {
  7462. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7463. }
  7464. dir_name[8] = '\0';
  7465. MYSERIAL.println(dir_name);
  7466. strcpy(dir_names[i], dir_name);
  7467. card.chdir(dir_name);
  7468. }
  7469. for (int i = 0; i < 8; i++) {
  7470. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7471. }
  7472. filename[8] = '\0';
  7473. MYSERIAL.print(filename);
  7474. strcat_P(filename, PSTR(".gco"));
  7475. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7476. enquecommand(cmd);
  7477. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7478. SERIAL_ECHOPGM("Position read from eeprom:");
  7479. MYSERIAL.println(position);
  7480. // E axis relative mode.
  7481. enquecommand_P(PSTR("M83"));
  7482. // Move to the XY print position in logical coordinates, where the print has been killed.
  7483. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7484. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7485. strcat_P(cmd, PSTR(" F2000"));
  7486. enquecommand(cmd);
  7487. // Move the Z axis down to the print, in logical coordinates.
  7488. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7489. enquecommand(cmd);
  7490. // Unretract.
  7491. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7492. // Set the feedrate saved at the power panic.
  7493. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7494. enquecommand(cmd);
  7495. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7496. {
  7497. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7498. }
  7499. // Set the fan speed saved at the power panic.
  7500. strcpy_P(cmd, PSTR("M106 S"));
  7501. strcat(cmd, itostr3(int(fan_speed_rec)));
  7502. enquecommand(cmd);
  7503. // Set a position in the file.
  7504. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7505. enquecommand(cmd);
  7506. enquecommand_P(PSTR("G4 S0"));
  7507. enquecommand_P(PSTR("PRUSA uvlo"));
  7508. }
  7509. #endif //UVLO_SUPPORT
  7510. //! @brief Immediately stop print moves
  7511. //!
  7512. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7513. //! If printing from sd card, position in file is saved.
  7514. //! If printing from USB, line number is saved.
  7515. //!
  7516. //! @param z_move
  7517. //! @param e_move
  7518. void stop_and_save_print_to_ram(float z_move, float e_move)
  7519. {
  7520. if (saved_printing) return;
  7521. #if 0
  7522. unsigned char nplanner_blocks;
  7523. #endif
  7524. unsigned char nlines;
  7525. uint16_t sdlen_planner;
  7526. uint16_t sdlen_cmdqueue;
  7527. cli();
  7528. if (card.sdprinting) {
  7529. #if 0
  7530. nplanner_blocks = number_of_blocks();
  7531. #endif
  7532. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7533. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7534. saved_sdpos -= sdlen_planner;
  7535. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7536. saved_sdpos -= sdlen_cmdqueue;
  7537. saved_printing_type = PRINTING_TYPE_SD;
  7538. }
  7539. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7540. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7541. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7542. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7543. saved_sdpos -= nlines;
  7544. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7545. saved_printing_type = PRINTING_TYPE_USB;
  7546. }
  7547. else {
  7548. //not sd printing nor usb printing
  7549. }
  7550. #if 0
  7551. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7552. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7553. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7554. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7555. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7556. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7557. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7558. {
  7559. card.setIndex(saved_sdpos);
  7560. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7561. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7562. MYSERIAL.print(char(card.get()));
  7563. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7564. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7565. MYSERIAL.print(char(card.get()));
  7566. SERIAL_ECHOLNPGM("End of command buffer");
  7567. }
  7568. {
  7569. // Print the content of the planner buffer, line by line:
  7570. card.setIndex(saved_sdpos);
  7571. int8_t iline = 0;
  7572. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7573. SERIAL_ECHOPGM("Planner line (from file): ");
  7574. MYSERIAL.print(int(iline), DEC);
  7575. SERIAL_ECHOPGM(", length: ");
  7576. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7577. SERIAL_ECHOPGM(", steps: (");
  7578. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7579. SERIAL_ECHOPGM(",");
  7580. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7581. SERIAL_ECHOPGM(",");
  7582. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7583. SERIAL_ECHOPGM(",");
  7584. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7585. SERIAL_ECHOPGM("), events: ");
  7586. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7587. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7588. MYSERIAL.print(char(card.get()));
  7589. }
  7590. }
  7591. {
  7592. // Print the content of the command buffer, line by line:
  7593. int8_t iline = 0;
  7594. union {
  7595. struct {
  7596. char lo;
  7597. char hi;
  7598. } lohi;
  7599. uint16_t value;
  7600. } sdlen_single;
  7601. int _bufindr = bufindr;
  7602. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7603. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7604. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7605. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7606. }
  7607. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7608. MYSERIAL.print(int(iline), DEC);
  7609. SERIAL_ECHOPGM(", type: ");
  7610. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7611. SERIAL_ECHOPGM(", len: ");
  7612. MYSERIAL.println(sdlen_single.value, DEC);
  7613. // Print the content of the buffer line.
  7614. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7615. SERIAL_ECHOPGM("Buffer line (from file): ");
  7616. MYSERIAL.println(int(iline), DEC);
  7617. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7618. MYSERIAL.print(char(card.get()));
  7619. if (-- _buflen == 0)
  7620. break;
  7621. // First skip the current command ID and iterate up to the end of the string.
  7622. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7623. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7624. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7625. // If the end of the buffer was empty,
  7626. if (_bufindr == sizeof(cmdbuffer)) {
  7627. // skip to the start and find the nonzero command.
  7628. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7629. }
  7630. }
  7631. }
  7632. #endif
  7633. #if 0
  7634. saved_feedrate2 = feedrate; //save feedrate
  7635. #else
  7636. // Try to deduce the feedrate from the first block of the planner.
  7637. // Speed is in mm/min.
  7638. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7639. #endif
  7640. planner_abort_hard(); //abort printing
  7641. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7642. saved_active_extruder = active_extruder; //save active_extruder
  7643. saved_extruder_temperature = degTargetHotend(active_extruder);
  7644. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7645. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7646. saved_fanSpeed = fanSpeed;
  7647. cmdqueue_reset(); //empty cmdqueue
  7648. card.sdprinting = false;
  7649. // card.closefile();
  7650. saved_printing = true;
  7651. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7652. st_reset_timer();
  7653. sei();
  7654. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7655. #if 1
  7656. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7657. char buf[48];
  7658. // First unretract (relative extrusion)
  7659. if(!saved_extruder_relative_mode){
  7660. strcpy_P(buf, PSTR("M83"));
  7661. enquecommand(buf, false);
  7662. }
  7663. //retract 45mm/s
  7664. strcpy_P(buf, PSTR("G1 E"));
  7665. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7666. strcat_P(buf, PSTR(" F"));
  7667. dtostrf(2700, 8, 3, buf + strlen(buf));
  7668. enquecommand(buf, false);
  7669. // Then lift Z axis
  7670. strcpy_P(buf, PSTR("G1 Z"));
  7671. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7672. strcat_P(buf, PSTR(" F"));
  7673. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7674. // At this point the command queue is empty.
  7675. enquecommand(buf, false);
  7676. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7677. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7678. repeatcommand_front();
  7679. #else
  7680. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7681. st_synchronize(); //wait moving
  7682. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7683. memcpy(destination, current_position, sizeof(destination));
  7684. #endif
  7685. }
  7686. }
  7687. //! @brief Restore print from ram
  7688. //!
  7689. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7690. //! waits for extruder temperature restore, then restores position and continues
  7691. //! print moves.
  7692. //! Internaly lcd_update() is called by wait_for_heater().
  7693. //!
  7694. //! @param e_move
  7695. void restore_print_from_ram_and_continue(float e_move)
  7696. {
  7697. if (!saved_printing) return;
  7698. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7699. // current_position[axis] = st_get_position_mm(axis);
  7700. active_extruder = saved_active_extruder; //restore active_extruder
  7701. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7702. heating_status = 1;
  7703. wait_for_heater(millis(),saved_active_extruder);
  7704. heating_status = 2;
  7705. feedrate = saved_feedrate2; //restore feedrate
  7706. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7707. fanSpeed = saved_fanSpeed;
  7708. float e = saved_pos[E_AXIS] - e_move;
  7709. plan_set_e_position(e);
  7710. //first move print head in XY to the saved position:
  7711. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7712. st_synchronize();
  7713. //then move Z
  7714. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7715. st_synchronize();
  7716. //and finaly unretract (35mm/s)
  7717. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7718. st_synchronize();
  7719. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7720. memcpy(destination, current_position, sizeof(destination));
  7721. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7722. card.setIndex(saved_sdpos);
  7723. sdpos_atomic = saved_sdpos;
  7724. card.sdprinting = true;
  7725. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7726. }
  7727. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7728. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7729. serial_count = 0;
  7730. FlushSerialRequestResend();
  7731. }
  7732. else {
  7733. //not sd printing nor usb printing
  7734. }
  7735. lcd_setstatuspgm(_T(WELCOME_MSG));
  7736. saved_printing = false;
  7737. }
  7738. void print_world_coordinates()
  7739. {
  7740. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7741. }
  7742. void print_physical_coordinates()
  7743. {
  7744. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7745. }
  7746. void print_mesh_bed_leveling_table()
  7747. {
  7748. SERIAL_ECHOPGM("mesh bed leveling: ");
  7749. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7750. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7751. MYSERIAL.print(mbl.z_values[y][x], 3);
  7752. SERIAL_ECHOPGM(" ");
  7753. }
  7754. SERIAL_ECHOLNPGM("");
  7755. }
  7756. uint16_t print_time_remaining() {
  7757. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7758. #ifdef TMC2130
  7759. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7760. else print_t = print_time_remaining_silent;
  7761. #else
  7762. print_t = print_time_remaining_normal;
  7763. #endif //TMC2130
  7764. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7765. return print_t;
  7766. }
  7767. uint8_t calc_percent_done()
  7768. {
  7769. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7770. uint8_t percent_done = 0;
  7771. #ifdef TMC2130
  7772. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7773. percent_done = print_percent_done_normal;
  7774. }
  7775. else if (print_percent_done_silent <= 100) {
  7776. percent_done = print_percent_done_silent;
  7777. }
  7778. #else
  7779. if (print_percent_done_normal <= 100) {
  7780. percent_done = print_percent_done_normal;
  7781. }
  7782. #endif //TMC2130
  7783. else {
  7784. percent_done = card.percentDone();
  7785. }
  7786. return percent_done;
  7787. }
  7788. static void print_time_remaining_init()
  7789. {
  7790. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7791. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7792. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7793. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7794. }
  7795. void M600_check_state()
  7796. {
  7797. //Wait for user to check the state
  7798. lcd_change_fil_state = 0;
  7799. while (lcd_change_fil_state != 1){
  7800. lcd_change_fil_state = 0;
  7801. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7802. lcd_alright();
  7803. KEEPALIVE_STATE(IN_HANDLER);
  7804. switch(lcd_change_fil_state){
  7805. // Filament failed to load so load it again
  7806. case 2:
  7807. if (mmu_enabled)
  7808. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7809. else
  7810. M600_load_filament_movements();
  7811. break;
  7812. // Filament loaded properly but color is not clear
  7813. case 3:
  7814. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7816. lcd_loading_color();
  7817. break;
  7818. // Everything good
  7819. default:
  7820. lcd_change_success();
  7821. break;
  7822. }
  7823. }
  7824. }
  7825. //! @brief Wait for user action
  7826. //!
  7827. //! Beep, manage nozzle heater and wait for user to start unload filament
  7828. //! If times out, active extruder temperature is set to 0.
  7829. //!
  7830. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7831. void M600_wait_for_user(float HotendTempBckp) {
  7832. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7833. int counterBeep = 0;
  7834. unsigned long waiting_start_time = millis();
  7835. uint8_t wait_for_user_state = 0;
  7836. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7837. bool bFirst=true;
  7838. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7839. manage_heater();
  7840. manage_inactivity(true);
  7841. #if BEEPER > 0
  7842. if (counterBeep == 500) {
  7843. counterBeep = 0;
  7844. }
  7845. SET_OUTPUT(BEEPER);
  7846. if (counterBeep == 0) {
  7847. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7848. {
  7849. bFirst=false;
  7850. WRITE(BEEPER, HIGH);
  7851. }
  7852. }
  7853. if (counterBeep == 20) {
  7854. WRITE(BEEPER, LOW);
  7855. }
  7856. counterBeep++;
  7857. #endif //BEEPER > 0
  7858. switch (wait_for_user_state) {
  7859. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7860. delay_keep_alive(4);
  7861. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7862. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7863. wait_for_user_state = 1;
  7864. setAllTargetHotends(0);
  7865. st_synchronize();
  7866. disable_e0();
  7867. disable_e1();
  7868. disable_e2();
  7869. }
  7870. break;
  7871. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7872. delay_keep_alive(4);
  7873. if (lcd_clicked()) {
  7874. setTargetHotend(HotendTempBckp, active_extruder);
  7875. lcd_wait_for_heater();
  7876. wait_for_user_state = 2;
  7877. }
  7878. break;
  7879. case 2: //waiting for nozzle to reach target temperature
  7880. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7881. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7882. waiting_start_time = millis();
  7883. wait_for_user_state = 0;
  7884. }
  7885. else {
  7886. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7887. lcd_set_cursor(1, 4);
  7888. lcd_print(ftostr3(degHotend(active_extruder)));
  7889. }
  7890. break;
  7891. }
  7892. }
  7893. WRITE(BEEPER, LOW);
  7894. }
  7895. void M600_load_filament_movements()
  7896. {
  7897. #ifdef SNMM
  7898. display_loading();
  7899. do
  7900. {
  7901. current_position[E_AXIS] += 0.002;
  7902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7903. delay_keep_alive(2);
  7904. }
  7905. while (!lcd_clicked());
  7906. st_synchronize();
  7907. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7909. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7911. current_position[E_AXIS] += 40;
  7912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7913. current_position[E_AXIS] += 10;
  7914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7915. #else
  7916. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7918. #endif
  7919. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7921. lcd_loading_filament();
  7922. }
  7923. void M600_load_filament() {
  7924. //load filament for single material and SNMM
  7925. lcd_wait_interact();
  7926. //load_filament_time = millis();
  7927. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7928. #ifdef FILAMENT_SENSOR
  7929. fsensor_autoload_check_start();
  7930. #endif //FILAMENT_SENSOR
  7931. while(!lcd_clicked())
  7932. {
  7933. manage_heater();
  7934. manage_inactivity(true);
  7935. #ifdef FILAMENT_SENSOR
  7936. if (fsensor_check_autoload())
  7937. {
  7938. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7939. tone(BEEPER, 1000);
  7940. delay_keep_alive(50);
  7941. noTone(BEEPER);
  7942. break;
  7943. }
  7944. #endif //FILAMENT_SENSOR
  7945. }
  7946. #ifdef FILAMENT_SENSOR
  7947. fsensor_autoload_check_stop();
  7948. #endif //FILAMENT_SENSOR
  7949. KEEPALIVE_STATE(IN_HANDLER);
  7950. #ifdef FSENSOR_QUALITY
  7951. fsensor_oq_meassure_start(70);
  7952. #endif //FSENSOR_QUALITY
  7953. M600_load_filament_movements();
  7954. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7955. tone(BEEPER, 500);
  7956. delay_keep_alive(50);
  7957. noTone(BEEPER);
  7958. #ifdef FSENSOR_QUALITY
  7959. fsensor_oq_meassure_stop();
  7960. if (!fsensor_oq_result())
  7961. {
  7962. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7963. lcd_update_enable(true);
  7964. lcd_update(2);
  7965. if (disable)
  7966. fsensor_disable();
  7967. }
  7968. #endif //FSENSOR_QUALITY
  7969. lcd_update_enable(false);
  7970. }
  7971. #define FIL_LOAD_LENGTH 60