stepper.cpp 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  33. #include "fsensor.h"
  34. int fsensor_counter; //counter for e-steps
  35. #endif //FILAMENT_SENSOR
  36. #include "mmu.h"
  37. #include "ConfigurationStore.h"
  38. #ifdef DEBUG_STACK_MONITOR
  39. uint16_t SP_min = 0x21FF;
  40. #endif //DEBUG_STACK_MONITOR
  41. /*
  42. * Stepping macros
  43. */
  44. #define _STEP_PIN_X_AXIS X_STEP_PIN
  45. #define _STEP_PIN_Y_AXIS Y_STEP_PIN
  46. #define _STEP_PIN_Z_AXIS Z_STEP_PIN
  47. #define _STEP_PIN_E_AXIS E0_STEP_PIN
  48. #ifdef DEBUG_XSTEP_DUP_PIN
  49. #define _STEP_PIN_X_DUP_AXIS DEBUG_XSTEP_DUP_PIN
  50. #endif
  51. #ifdef DEBUG_YSTEP_DUP_PIN
  52. #define _STEP_PIN_Y_DUP_AXIS DEBUG_YSTEP_DUP_PIN
  53. #endif
  54. #ifdef Y_DUAL_STEPPER_DRIVERS
  55. #error Y_DUAL_STEPPER_DRIVERS not fully implemented
  56. #define _STEP_PIN_Y2_AXIS Y2_STEP_PIN
  57. #endif
  58. #ifdef Z_DUAL_STEPPER_DRIVERS
  59. #error Z_DUAL_STEPPER_DRIVERS not fully implemented
  60. #define _STEP_PIN_Z2_AXIS Z2_STEP_PIN
  61. #endif
  62. #ifdef TMC2130
  63. #define STEPPER_MINIMUM_PULSE TMC2130_MINIMUM_PULSE
  64. #define STEPPER_SET_DIR_DELAY TMC2130_SET_DIR_DELAY
  65. #define STEPPER_MINIMUM_DELAY TMC2130_MINIMUM_DELAY
  66. #else
  67. #define STEPPER_MINIMUM_PULSE 2
  68. #define STEPPER_SET_DIR_DELAY 100
  69. #define STEPPER_MINIMUM_DELAY delayMicroseconds(STEPPER_MINIMUM_PULSE)
  70. #endif
  71. #ifdef TMC2130_DEDGE_STEPPING
  72. static_assert(TMC2130_MINIMUM_DELAY 1, // this will fail to compile when non-empty
  73. "DEDGE implies/requires an empty TMC2130_MINIMUM_DELAY");
  74. #define STEP_NC_HI(axis) TOGGLE(_STEP_PIN_##axis)
  75. #define STEP_NC_LO(axis) //NOP
  76. #else
  77. #define _STEP_HI_X_AXIS !INVERT_X_STEP_PIN
  78. #define _STEP_LO_X_AXIS INVERT_X_STEP_PIN
  79. #define _STEP_HI_Y_AXIS !INVERT_Y_STEP_PIN
  80. #define _STEP_LO_Y_AXIS INVERT_Y_STEP_PIN
  81. #define _STEP_HI_Z_AXIS !INVERT_Z_STEP_PIN
  82. #define _STEP_LO_Z_AXIS INVERT_Z_STEP_PIN
  83. #define _STEP_HI_E_AXIS !INVERT_E_STEP_PIN
  84. #define _STEP_LO_E_AXIS INVERT_E_STEP_PIN
  85. #define STEP_NC_HI(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_HI_##axis)
  86. #define STEP_NC_LO(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_LO_##axis)
  87. #endif //TMC2130_DEDGE_STEPPING
  88. //===========================================================================
  89. //=============================public variables ============================
  90. //===========================================================================
  91. block_t *current_block; // A pointer to the block currently being traced
  92. bool x_min_endstop = false;
  93. bool x_max_endstop = false;
  94. bool y_min_endstop = false;
  95. bool y_max_endstop = false;
  96. bool z_min_endstop = false;
  97. bool z_max_endstop = false;
  98. //===========================================================================
  99. //=============================private variables ============================
  100. //===========================================================================
  101. //static makes it inpossible to be called from outside of this file by extern.!
  102. // Variables used by The Stepper Driver Interrupt
  103. static unsigned char out_bits; // The next stepping-bits to be output
  104. static dda_isteps_t
  105. counter_x, // Counter variables for the bresenham line tracer
  106. counter_y,
  107. counter_z,
  108. counter_e;
  109. volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
  110. static int32_t acceleration_time, deceleration_time;
  111. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  112. static uint16_t acc_step_rate; // needed for deccelaration start point
  113. static uint8_t step_loops;
  114. static uint16_t OCR1A_nominal;
  115. static uint8_t step_loops_nominal;
  116. volatile long endstops_trigsteps[3]={0,0,0};
  117. volatile long endstops_stepsTotal,endstops_stepsDone;
  118. static volatile bool endstop_x_hit=false;
  119. static volatile bool endstop_y_hit=false;
  120. static volatile bool endstop_z_hit=false;
  121. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  122. bool abort_on_endstop_hit = false;
  123. #endif
  124. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  125. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  126. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  127. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  128. #endif
  129. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  130. static bool old_x_max_endstop=false;
  131. #endif
  132. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  133. static bool old_y_max_endstop=false;
  134. #endif
  135. static bool old_x_min_endstop=false;
  136. static bool old_y_min_endstop=false;
  137. static bool old_z_min_endstop=false;
  138. static bool old_z_max_endstop=false;
  139. static bool check_endstops = true;
  140. static bool check_z_endstop = false;
  141. static bool z_endstop_invert = false;
  142. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  143. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  144. #ifdef LIN_ADVANCE
  145. void advance_isr_scheduler();
  146. void advance_isr();
  147. static const uint16_t ADV_NEVER = 0xFFFF;
  148. static const uint8_t ADV_INIT = 0b01; // initialize LA
  149. static const uint8_t ADV_ACC_VARY = 0b10; // varying acceleration phase
  150. static uint16_t nextMainISR;
  151. static uint16_t nextAdvanceISR;
  152. static uint16_t main_Rate;
  153. static uint16_t eISR_Rate;
  154. static uint16_t eISR_Err;
  155. static uint16_t current_adv_steps;
  156. static uint16_t target_adv_steps;
  157. static int8_t e_steps; // scheduled e-steps during each isr loop
  158. static uint8_t e_step_loops; // e-steps to execute at most in each isr loop
  159. static uint8_t e_extruding; // current move is an extrusion move
  160. static int8_t LA_phase; // LA compensation phase
  161. #define _NEXT_ISR(T) main_Rate = nextMainISR = T
  162. #else
  163. #define _NEXT_ISR(T) OCR1A = T
  164. #endif
  165. #ifdef DEBUG_STEPPER_TIMER_MISSED
  166. extern bool stepper_timer_overflow_state;
  167. extern uint16_t stepper_timer_overflow_last;
  168. #endif /* DEBUG_STEPPER_TIMER_MISSED */
  169. //===========================================================================
  170. //=============================functions ============================
  171. //===========================================================================
  172. void checkHitEndstops()
  173. {
  174. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  175. SERIAL_ECHO_START;
  176. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  177. if(endstop_x_hit) {
  178. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
  179. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X")));
  180. }
  181. if(endstop_y_hit) {
  182. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
  183. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y")));
  184. }
  185. if(endstop_z_hit) {
  186. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
  187. // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z")));
  188. }
  189. SERIAL_ECHOLN("");
  190. endstop_x_hit=false;
  191. endstop_y_hit=false;
  192. endstop_z_hit=false;
  193. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  194. if (abort_on_endstop_hit)
  195. {
  196. card.sdprinting = false;
  197. card.closefile();
  198. quickStop();
  199. setTargetHotend0(0);
  200. setTargetHotend1(0);
  201. setTargetHotend2(0);
  202. }
  203. #endif
  204. }
  205. }
  206. bool endstops_hit_on_purpose()
  207. {
  208. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  209. endstop_x_hit=false;
  210. endstop_y_hit=false;
  211. endstop_z_hit=false;
  212. return hit;
  213. }
  214. bool endstop_z_hit_on_purpose()
  215. {
  216. bool hit = endstop_z_hit;
  217. endstop_z_hit=false;
  218. return hit;
  219. }
  220. bool enable_endstops(bool check)
  221. {
  222. bool old = check_endstops;
  223. check_endstops = check;
  224. return old;
  225. }
  226. bool enable_z_endstop(bool check)
  227. {
  228. bool old = check_z_endstop;
  229. check_z_endstop = check;
  230. endstop_z_hit = false;
  231. return old;
  232. }
  233. void invert_z_endstop(bool endstop_invert)
  234. {
  235. z_endstop_invert = endstop_invert;
  236. }
  237. // __________________________
  238. // /| |\ _________________ ^
  239. // / | | \ /| |\ |
  240. // / | | \ / | | \ s
  241. // / | | | | | \ p
  242. // / | | | | | \ e
  243. // +-----+------------------------+---+--+---------------+----+ e
  244. // | BLOCK 1 | BLOCK 2 | d
  245. //
  246. // time ----->
  247. //
  248. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  249. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  250. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  251. // The slope of acceleration is calculated with the leib ramp alghorithm.
  252. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  253. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  254. ISR(TIMER1_COMPA_vect) {
  255. #ifdef DEBUG_STACK_MONITOR
  256. uint16_t sp = SPL + 256 * SPH;
  257. if (sp < SP_min) SP_min = sp;
  258. #endif //DEBUG_STACK_MONITOR
  259. #ifdef LIN_ADVANCE
  260. advance_isr_scheduler();
  261. #else
  262. isr();
  263. #endif
  264. // Don't run the ISR faster than possible
  265. // Is there a 8us time left before the next interrupt triggers?
  266. if (OCR1A < TCNT1 + 16) {
  267. #ifdef DEBUG_STEPPER_TIMER_MISSED
  268. // Verify whether the next planned timer interrupt has not been missed already.
  269. // This debugging test takes < 1.125us
  270. // This skews the profiling slightly as the fastest stepper timer
  271. // interrupt repeats at a 100us rate (10kHz).
  272. if (OCR1A + 40 < TCNT1) {
  273. // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
  274. // Give a warning.
  275. stepper_timer_overflow_state = true;
  276. stepper_timer_overflow_last = TCNT1 - OCR1A;
  277. // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
  278. WRITE(BEEPER, HIGH);
  279. }
  280. #endif
  281. // Fix the next interrupt to be executed after 8us from now.
  282. OCR1A = TCNT1 + 16;
  283. }
  284. }
  285. uint8_t last_dir_bits = 0;
  286. #ifdef BACKLASH_X
  287. uint8_t st_backlash_x = 0;
  288. #endif //BACKLASH_X
  289. #ifdef BACKLASH_Y
  290. uint8_t st_backlash_y = 0;
  291. #endif //BACKLASH_Y
  292. FORCE_INLINE void stepper_next_block()
  293. {
  294. // Anything in the buffer?
  295. //WRITE_NC(LOGIC_ANALYZER_CH2, true);
  296. current_block = plan_get_current_block();
  297. if (current_block != NULL) {
  298. #ifdef BACKLASH_X
  299. if (current_block->steps_x.wide)
  300. { //X-axis movement
  301. if ((current_block->direction_bits ^ last_dir_bits) & 1)
  302. {
  303. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
  304. if (current_block->direction_bits & 1)
  305. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  306. else
  307. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  308. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  309. for (uint8_t i = 0; i < st_backlash_x; i++)
  310. {
  311. STEP_NC_HI(X_AXIS);
  312. STEPPER_MINIMUM_DELAY;
  313. STEP_NC_LO(X_AXIS);
  314. _delay_us(900); // hard-coded jerk! *bad*
  315. }
  316. }
  317. last_dir_bits &= ~1;
  318. last_dir_bits |= current_block->direction_bits & 1;
  319. }
  320. #endif
  321. #ifdef BACKLASH_Y
  322. if (current_block->steps_y.wide)
  323. { //Y-axis movement
  324. if ((current_block->direction_bits ^ last_dir_bits) & 2)
  325. {
  326. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
  327. if (current_block->direction_bits & 2)
  328. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  329. else
  330. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  331. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  332. for (uint8_t i = 0; i < st_backlash_y; i++)
  333. {
  334. STEP_NC_HI(Y_AXIS);
  335. STEPPER_MINIMUM_DELAY;
  336. STEP_NC_LO(Y_AXIS);
  337. _delay_us(900); // hard-coded jerk! *bad*
  338. }
  339. }
  340. last_dir_bits &= ~2;
  341. last_dir_bits |= current_block->direction_bits & 2;
  342. }
  343. #endif
  344. // The busy flag is set by the plan_get_current_block() call.
  345. // current_block->busy = true;
  346. // Initializes the trapezoid generator from the current block. Called whenever a new
  347. // block begins.
  348. deceleration_time = 0;
  349. // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
  350. // That means, delay the initialization of nominal step rate and step loops until the steady
  351. // state is reached.
  352. step_loops_nominal = 0;
  353. acc_step_rate = uint16_t(current_block->initial_rate);
  354. acceleration_time = calc_timer(acc_step_rate, step_loops);
  355. #ifdef LIN_ADVANCE
  356. if (current_block->use_advance_lead) {
  357. e_step_loops = current_block->advance_step_loops;
  358. target_adv_steps = current_block->max_adv_steps;
  359. } else {
  360. e_step_loops = 1;
  361. }
  362. e_steps = 0;
  363. nextAdvanceISR = ADV_NEVER;
  364. LA_phase = -1;
  365. #endif
  366. if (current_block->flag & BLOCK_FLAG_E_RESET) {
  367. count_position[E_AXIS] = 0;
  368. }
  369. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
  370. counter_x.lo = -(current_block->step_event_count.lo >> 1);
  371. counter_y.lo = counter_x.lo;
  372. counter_z.lo = counter_x.lo;
  373. counter_e.lo = counter_x.lo;
  374. #ifdef LIN_ADVANCE
  375. e_extruding = current_block->steps_e.lo != 0;
  376. #endif
  377. } else {
  378. counter_x.wide = -(current_block->step_event_count.wide >> 1);
  379. counter_y.wide = counter_x.wide;
  380. counter_z.wide = counter_x.wide;
  381. counter_e.wide = counter_x.wide;
  382. #ifdef LIN_ADVANCE
  383. e_extruding = current_block->steps_e.wide != 0;
  384. #endif
  385. }
  386. step_events_completed.wide = 0;
  387. // Set directions.
  388. out_bits = current_block->direction_bits;
  389. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  390. if((out_bits & (1<<X_AXIS))!=0){
  391. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  392. count_direction[X_AXIS]=-1;
  393. } else {
  394. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  395. count_direction[X_AXIS]=1;
  396. }
  397. if((out_bits & (1<<Y_AXIS))!=0){
  398. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  399. count_direction[Y_AXIS]=-1;
  400. } else {
  401. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  402. count_direction[Y_AXIS]=1;
  403. }
  404. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  405. WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
  406. count_direction[Z_AXIS]=-1;
  407. } else { // +direction
  408. WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
  409. count_direction[Z_AXIS]=1;
  410. }
  411. if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
  412. #ifndef LIN_ADVANCE
  413. WRITE(E0_DIR_PIN,
  414. #ifdef SNMM
  415. (mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
  416. #endif // SNMM
  417. INVERT_E0_DIR);
  418. #endif /* LIN_ADVANCE */
  419. count_direction[E_AXIS] = -1;
  420. } else { // +direction
  421. #ifndef LIN_ADVANCE
  422. WRITE(E0_DIR_PIN,
  423. #ifdef SNMM
  424. (mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
  425. #endif // SNMM
  426. !INVERT_E0_DIR);
  427. #endif /* LIN_ADVANCE */
  428. count_direction[E_AXIS] = 1;
  429. }
  430. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  431. fsensor_st_block_begin(count_direction[E_AXIS] < 0);
  432. #endif //FILAMENT_SENSOR
  433. }
  434. else {
  435. _NEXT_ISR(2000); // 1kHz.
  436. #ifdef LIN_ADVANCE
  437. // reset LA state when there's no block
  438. nextAdvanceISR = ADV_NEVER;
  439. e_steps = 0;
  440. // incrementally lose pressure to give a chance for
  441. // a new LA block to be scheduled and recover
  442. if(current_adv_steps)
  443. --current_adv_steps;
  444. #endif
  445. }
  446. //WRITE_NC(LOGIC_ANALYZER_CH2, false);
  447. }
  448. // Check limit switches.
  449. FORCE_INLINE void stepper_check_endstops()
  450. {
  451. if(check_endstops)
  452. {
  453. #ifndef COREXY
  454. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
  455. #else
  456. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
  457. #endif
  458. {
  459. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  460. #ifdef TMC2130_SG_HOMING
  461. // Stall guard homing turned on
  462. x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
  463. #else
  464. // Normal homing
  465. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  466. #endif
  467. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
  468. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  469. endstop_x_hit=true;
  470. step_events_completed.wide = current_block->step_event_count.wide;
  471. }
  472. old_x_min_endstop = x_min_endstop;
  473. #endif
  474. } else { // +direction
  475. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  476. #ifdef TMC2130_SG_HOMING
  477. // Stall guard homing turned on
  478. x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
  479. #else
  480. // Normal homing
  481. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  482. #endif
  483. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
  484. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  485. endstop_x_hit=true;
  486. step_events_completed.wide = current_block->step_event_count.wide;
  487. }
  488. old_x_max_endstop = x_max_endstop;
  489. #endif
  490. }
  491. #ifndef COREXY
  492. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  493. #else
  494. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
  495. #endif
  496. {
  497. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  498. #ifdef TMC2130_SG_HOMING
  499. // Stall guard homing turned on
  500. y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
  501. #else
  502. // Normal homing
  503. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  504. #endif
  505. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
  506. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  507. endstop_y_hit=true;
  508. step_events_completed.wide = current_block->step_event_count.wide;
  509. }
  510. old_y_min_endstop = y_min_endstop;
  511. #endif
  512. } else { // +direction
  513. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  514. #ifdef TMC2130_SG_HOMING
  515. // Stall guard homing turned on
  516. y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
  517. #else
  518. // Normal homing
  519. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  520. #endif
  521. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
  522. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  523. endstop_y_hit=true;
  524. step_events_completed.wide = current_block->step_event_count.wide;
  525. }
  526. old_y_max_endstop = y_max_endstop;
  527. #endif
  528. }
  529. if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
  530. {
  531. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  532. if (! check_z_endstop) {
  533. #ifdef TMC2130_SG_HOMING
  534. // Stall guard homing turned on
  535. #ifdef TMC2130_STEALTH_Z
  536. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  537. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  538. else
  539. #endif //TMC2130_STEALTH_Z
  540. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  541. #else
  542. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  543. #endif //TMC2130_SG_HOMING
  544. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
  545. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  546. endstop_z_hit=true;
  547. step_events_completed.wide = current_block->step_event_count.wide;
  548. }
  549. old_z_min_endstop = z_min_endstop;
  550. }
  551. #endif
  552. } else { // +direction
  553. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  554. #ifdef TMC2130_SG_HOMING
  555. // Stall guard homing turned on
  556. #ifdef TMC2130_STEALTH_Z
  557. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  558. z_max_endstop = false;
  559. else
  560. #endif //TMC2130_STEALTH_Z
  561. z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
  562. #else
  563. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  564. #endif //TMC2130_SG_HOMING
  565. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
  566. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  567. endstop_z_hit=true;
  568. step_events_completed.wide = current_block->step_event_count.wide;
  569. }
  570. old_z_max_endstop = z_max_endstop;
  571. #endif
  572. }
  573. }
  574. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  575. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  576. if (check_z_endstop) {
  577. // Check the Z min end-stop no matter what.
  578. // Good for searching for the center of an induction target.
  579. #ifdef TMC2130_SG_HOMING
  580. // Stall guard homing turned on
  581. #ifdef TMC2130_STEALTH_Z
  582. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  583. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  584. else
  585. #endif //TMC2130_STEALTH_Z
  586. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  587. #else
  588. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  589. #endif //TMC2130_SG_HOMING
  590. if(z_min_endstop && old_z_min_endstop) {
  591. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  592. endstop_z_hit=true;
  593. step_events_completed.wide = current_block->step_event_count.wide;
  594. }
  595. old_z_min_endstop = z_min_endstop;
  596. }
  597. #endif
  598. }
  599. FORCE_INLINE void stepper_tick_lowres()
  600. {
  601. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  602. MSerial.checkRx(); // Check for serial chars.
  603. // Step in X axis
  604. counter_x.lo += current_block->steps_x.lo;
  605. if (counter_x.lo > 0) {
  606. STEP_NC_HI(X_AXIS);
  607. #ifdef DEBUG_XSTEP_DUP_PIN
  608. STEP_NC_HI(X_DUP_AXIS);
  609. #endif //DEBUG_XSTEP_DUP_PIN
  610. counter_x.lo -= current_block->step_event_count.lo;
  611. count_position[X_AXIS]+=count_direction[X_AXIS];
  612. STEP_NC_LO(X_AXIS);
  613. #ifdef DEBUG_XSTEP_DUP_PIN
  614. STEP_NC_LO(X_DUP_AXIS);
  615. #endif //DEBUG_XSTEP_DUP_PIN
  616. }
  617. // Step in Y axis
  618. counter_y.lo += current_block->steps_y.lo;
  619. if (counter_y.lo > 0) {
  620. STEP_NC_HI(Y_AXIS);
  621. #ifdef DEBUG_YSTEP_DUP_PIN
  622. STEP_NC_HI(Y_DUP_AXIS);
  623. #endif //DEBUG_YSTEP_DUP_PIN
  624. counter_y.lo -= current_block->step_event_count.lo;
  625. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  626. STEP_NC_LO(Y_AXIS);
  627. #ifdef DEBUG_YSTEP_DUP_PIN
  628. STEP_NC_LO(Y_DUP_AXIS);
  629. #endif //DEBUG_YSTEP_DUP_PIN
  630. }
  631. // Step in Z axis
  632. counter_z.lo += current_block->steps_z.lo;
  633. if (counter_z.lo > 0) {
  634. STEP_NC_HI(Z_AXIS);
  635. counter_z.lo -= current_block->step_event_count.lo;
  636. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  637. STEP_NC_LO(Z_AXIS);
  638. }
  639. // Step in E axis
  640. counter_e.lo += current_block->steps_e.lo;
  641. if (counter_e.lo > 0) {
  642. #ifndef LIN_ADVANCE
  643. STEP_NC_HI(E_AXIS);
  644. #endif /* LIN_ADVANCE */
  645. counter_e.lo -= current_block->step_event_count.lo;
  646. count_position[E_AXIS] += count_direction[E_AXIS];
  647. #ifdef LIN_ADVANCE
  648. e_steps += count_direction[E_AXIS];
  649. #else
  650. #ifdef FILAMENT_SENSOR
  651. fsensor_counter += count_direction[E_AXIS];
  652. #endif //FILAMENT_SENSOR
  653. STEP_NC_LO(E_AXIS);
  654. #endif
  655. }
  656. if(++ step_events_completed.lo >= current_block->step_event_count.lo)
  657. break;
  658. }
  659. }
  660. FORCE_INLINE void stepper_tick_highres()
  661. {
  662. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  663. MSerial.checkRx(); // Check for serial chars.
  664. // Step in X axis
  665. counter_x.wide += current_block->steps_x.wide;
  666. if (counter_x.wide > 0) {
  667. STEP_NC_HI(X_AXIS);
  668. #ifdef DEBUG_XSTEP_DUP_PIN
  669. STEP_NC_HI(X_DUP_AXIS);
  670. #endif //DEBUG_XSTEP_DUP_PIN
  671. counter_x.wide -= current_block->step_event_count.wide;
  672. count_position[X_AXIS]+=count_direction[X_AXIS];
  673. STEP_NC_LO(X_AXIS);
  674. #ifdef DEBUG_XSTEP_DUP_PIN
  675. STEP_NC_LO(X_DUP_AXIS);
  676. #endif //DEBUG_XSTEP_DUP_PIN
  677. }
  678. // Step in Y axis
  679. counter_y.wide += current_block->steps_y.wide;
  680. if (counter_y.wide > 0) {
  681. STEP_NC_HI(Y_AXIS);
  682. #ifdef DEBUG_YSTEP_DUP_PIN
  683. STEP_NC_HI(Y_DUP_AXIS);
  684. #endif //DEBUG_YSTEP_DUP_PIN
  685. counter_y.wide -= current_block->step_event_count.wide;
  686. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  687. STEP_NC_LO(Y_AXIS);
  688. #ifdef DEBUG_YSTEP_DUP_PIN
  689. STEP_NC_LO(Y_DUP_AXIS);
  690. #endif //DEBUG_YSTEP_DUP_PIN
  691. }
  692. // Step in Z axis
  693. counter_z.wide += current_block->steps_z.wide;
  694. if (counter_z.wide > 0) {
  695. STEP_NC_HI(Z_AXIS);
  696. counter_z.wide -= current_block->step_event_count.wide;
  697. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  698. STEP_NC_LO(Z_AXIS);
  699. }
  700. // Step in E axis
  701. counter_e.wide += current_block->steps_e.wide;
  702. if (counter_e.wide > 0) {
  703. #ifndef LIN_ADVANCE
  704. STEP_NC_HI(E_AXIS);
  705. #endif /* LIN_ADVANCE */
  706. counter_e.wide -= current_block->step_event_count.wide;
  707. count_position[E_AXIS]+=count_direction[E_AXIS];
  708. #ifdef LIN_ADVANCE
  709. e_steps += count_direction[E_AXIS];
  710. #else
  711. #ifdef FILAMENT_SENSOR
  712. fsensor_counter += count_direction[E_AXIS];
  713. #endif //FILAMENT_SENSOR
  714. STEP_NC_LO(E_AXIS);
  715. #endif
  716. }
  717. if(++ step_events_completed.wide >= current_block->step_event_count.wide)
  718. break;
  719. }
  720. }
  721. #ifdef LIN_ADVANCE
  722. // @wavexx: fast uint16_t division for small dividends<5
  723. // q/3 based on "Hacker's delight" formula
  724. FORCE_INLINE uint16_t fastdiv(uint16_t q, uint8_t d)
  725. {
  726. if(d != 3) return q >> (d / 2);
  727. else return ((uint32_t)0xAAAB * q) >> 17;
  728. }
  729. FORCE_INLINE void advance_spread(uint16_t timer)
  730. {
  731. if(eISR_Err > timer)
  732. {
  733. // advance-step skipped
  734. eISR_Err -= timer;
  735. eISR_Rate = timer;
  736. nextAdvanceISR = timer;
  737. return;
  738. }
  739. // at least one step
  740. uint8_t ticks = 1;
  741. uint32_t block = current_block->advance_rate;
  742. uint16_t max_t = timer - eISR_Err;
  743. while (block < max_t)
  744. {
  745. ++ticks;
  746. block += current_block->advance_rate;
  747. }
  748. if (block > timer)
  749. eISR_Err += block - timer;
  750. else
  751. eISR_Err -= timer - block;
  752. if (ticks <= 4)
  753. eISR_Rate = fastdiv(timer, ticks);
  754. else
  755. {
  756. // >4 ticks are still possible on slow moves
  757. eISR_Rate = timer / ticks;
  758. }
  759. nextAdvanceISR = eISR_Rate / 2;
  760. }
  761. #endif
  762. FORCE_INLINE void isr() {
  763. //WRITE_NC(LOGIC_ANALYZER_CH0, true);
  764. //if (UVLO) uvlo();
  765. // If there is no current block, attempt to pop one from the buffer
  766. if (current_block == NULL)
  767. stepper_next_block();
  768. if (current_block != NULL)
  769. {
  770. stepper_check_endstops();
  771. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
  772. stepper_tick_lowres();
  773. else
  774. stepper_tick_highres();
  775. #ifdef LIN_ADVANCE
  776. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  777. uint8_t la_state = 0;
  778. #endif
  779. // Calculate new timer value
  780. // 13.38-14.63us for steady state,
  781. // 25.12us for acceleration / deceleration.
  782. {
  783. //WRITE_NC(LOGIC_ANALYZER_CH1, true);
  784. if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
  785. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  786. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  787. acc_step_rate += uint16_t(current_block->initial_rate);
  788. // upper limit
  789. if(acc_step_rate > uint16_t(current_block->nominal_rate))
  790. acc_step_rate = current_block->nominal_rate;
  791. // step_rate to timer interval
  792. uint16_t timer = calc_timer(acc_step_rate, step_loops);
  793. _NEXT_ISR(timer);
  794. acceleration_time += timer;
  795. #ifdef LIN_ADVANCE
  796. if (current_block->use_advance_lead) {
  797. if (step_events_completed.wide <= (unsigned long int)step_loops)
  798. la_state = ADV_INIT | ADV_ACC_VARY;
  799. }
  800. #endif
  801. }
  802. else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
  803. uint16_t step_rate;
  804. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  805. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  806. if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
  807. // Result is negative or too small.
  808. step_rate = uint16_t(current_block->final_rate);
  809. }
  810. // Step_rate to timer interval.
  811. uint16_t timer = calc_timer(step_rate, step_loops);
  812. _NEXT_ISR(timer);
  813. deceleration_time += timer;
  814. #ifdef LIN_ADVANCE
  815. if (current_block->use_advance_lead) {
  816. if (step_events_completed.wide <= (unsigned long int)current_block->decelerate_after + step_loops) {
  817. target_adv_steps = current_block->final_adv_steps;
  818. la_state = ADV_INIT | ADV_ACC_VARY;
  819. }
  820. }
  821. #endif
  822. }
  823. else {
  824. if (! step_loops_nominal) {
  825. // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
  826. // the initial interrupt blocking.
  827. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate), step_loops);
  828. step_loops_nominal = step_loops;
  829. #ifdef LIN_ADVANCE
  830. if(current_block->use_advance_lead) {
  831. if (!nextAdvanceISR) {
  832. // Due to E-jerk, there can be discontinuities in pressure state where an
  833. // acceleration or deceleration can be skipped or joined with the previous block.
  834. // If LA was not previously active, re-check the pressure level
  835. la_state = ADV_INIT;
  836. }
  837. }
  838. #endif
  839. }
  840. _NEXT_ISR(OCR1A_nominal);
  841. }
  842. //WRITE_NC(LOGIC_ANALYZER_CH1, false);
  843. }
  844. #ifdef LIN_ADVANCE
  845. // avoid multiple instances or function calls to advance_spread
  846. if (la_state & ADV_INIT) {
  847. if (current_adv_steps == target_adv_steps) {
  848. // nothing to be done in this phase
  849. la_state = 0;
  850. }
  851. else {
  852. eISR_Err = current_block->advance_rate / 4;
  853. if ((la_state & ADV_ACC_VARY) && e_extruding && (current_adv_steps > target_adv_steps)) {
  854. // LA could reverse the direction of extrusion in this phase
  855. LA_phase = 0;
  856. }
  857. }
  858. }
  859. if (la_state & ADV_INIT || nextAdvanceISR != ADV_NEVER) {
  860. // update timers & phase for the next iteration
  861. advance_spread(main_Rate);
  862. if (LA_phase >= 0) {
  863. if (step_loops == e_step_loops)
  864. LA_phase = (eISR_Rate > main_Rate);
  865. else {
  866. // avoid overflow through division. warning: we need to _guarantee_ step_loops
  867. // and e_step_loops are <= 4 due to fastdiv's limit
  868. LA_phase = (fastdiv(eISR_Rate, step_loops) > fastdiv(main_Rate, e_step_loops));
  869. }
  870. }
  871. }
  872. // Check for serial chars. This executes roughtly inbetween 50-60% of the total runtime of the
  873. // entire isr, making this spot a much better choice than checking during esteps
  874. MSerial.checkRx();
  875. #endif
  876. // If current block is finished, reset pointer
  877. if (step_events_completed.wide >= current_block->step_event_count.wide) {
  878. #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
  879. fsensor_st_block_chunk(fsensor_counter);
  880. fsensor_counter = 0;
  881. #endif //FILAMENT_SENSOR
  882. current_block = NULL;
  883. plan_discard_current_block();
  884. }
  885. #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
  886. else if ((abs(fsensor_counter) >= fsensor_chunk_len))
  887. {
  888. fsensor_st_block_chunk(fsensor_counter);
  889. fsensor_counter = 0;
  890. }
  891. #endif //FILAMENT_SENSOR
  892. }
  893. #ifdef TMC2130
  894. tmc2130_st_isr();
  895. #endif //TMC2130
  896. //WRITE_NC(LOGIC_ANALYZER_CH0, false);
  897. }
  898. #ifdef LIN_ADVANCE
  899. // Timer interrupt for E. e_steps is set in the main routine.
  900. FORCE_INLINE void advance_isr() {
  901. if (current_adv_steps > target_adv_steps) {
  902. // decompression
  903. e_steps -= e_step_loops;
  904. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  905. if(current_adv_steps > e_step_loops)
  906. current_adv_steps -= e_step_loops;
  907. else
  908. current_adv_steps = 0;
  909. nextAdvanceISR = eISR_Rate;
  910. }
  911. else if (current_adv_steps < target_adv_steps) {
  912. // compression
  913. e_steps += e_step_loops;
  914. if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
  915. current_adv_steps += e_step_loops;
  916. nextAdvanceISR = eISR_Rate;
  917. }
  918. else {
  919. // advance steps completed
  920. nextAdvanceISR = ADV_NEVER;
  921. LA_phase = -1;
  922. e_step_loops = 1;
  923. }
  924. }
  925. FORCE_INLINE void advance_isr_scheduler() {
  926. // Integrate the final timer value, accounting for scheduling adjustments
  927. if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  928. {
  929. if(nextAdvanceISR > OCR1A)
  930. nextAdvanceISR -= OCR1A;
  931. else
  932. nextAdvanceISR = 0;
  933. }
  934. if(nextMainISR > OCR1A)
  935. nextMainISR -= OCR1A;
  936. else
  937. nextMainISR = 0;
  938. // Run main stepping ISR if flagged
  939. if (!nextMainISR)
  940. {
  941. #ifdef LA_DEBUG_LOGIC
  942. WRITE_NC(LOGIC_ANALYZER_CH0, true);
  943. #endif
  944. isr();
  945. #ifdef LA_DEBUG_LOGIC
  946. WRITE_NC(LOGIC_ANALYZER_CH0, false);
  947. #endif
  948. }
  949. // Run the next advance isr if triggered
  950. bool eisr = !nextAdvanceISR;
  951. if (eisr)
  952. {
  953. #ifdef LA_DEBUG_LOGIC
  954. WRITE_NC(LOGIC_ANALYZER_CH1, true);
  955. #endif
  956. advance_isr();
  957. #ifdef LA_DEBUG_LOGIC
  958. WRITE_NC(LOGIC_ANALYZER_CH1, false);
  959. #endif
  960. }
  961. // Tick E steps if any
  962. if (e_steps && (LA_phase < 0 || LA_phase == eisr)) {
  963. uint8_t max_ticks = (eisr? e_step_loops: step_loops);
  964. max_ticks = min(abs(e_steps), max_ticks);
  965. bool rev = (e_steps < 0);
  966. do
  967. {
  968. STEP_NC_HI(E_AXIS);
  969. e_steps += (rev? 1: -1);
  970. STEP_NC_LO(E_AXIS);
  971. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  972. fsensor_counter += (rev? -1: 1);
  973. #endif
  974. }
  975. while(--max_ticks);
  976. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  977. if (abs(fsensor_counter) >= fsensor_chunk_len)
  978. {
  979. fsensor_st_block_chunk(fsensor_counter);
  980. fsensor_counter = 0;
  981. }
  982. #endif
  983. }
  984. // Schedule the next closest tick, ignoring advance if scheduled too
  985. // soon in order to avoid skewing the regular stepper acceleration
  986. if (nextAdvanceISR != ADV_NEVER && (nextAdvanceISR + TCNT1 + 40) < nextMainISR)
  987. OCR1A = nextAdvanceISR;
  988. else
  989. OCR1A = nextMainISR;
  990. }
  991. #endif // LIN_ADVANCE
  992. void st_init()
  993. {
  994. #ifdef TMC2130
  995. tmc2130_init();
  996. #endif //TMC2130
  997. st_current_init(); //Initialize Digipot Motor Current
  998. microstep_init(); //Initialize Microstepping Pins
  999. //Initialize Dir Pins
  1000. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  1001. SET_OUTPUT(X_DIR_PIN);
  1002. #endif
  1003. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  1004. SET_OUTPUT(X2_DIR_PIN);
  1005. #endif
  1006. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  1007. SET_OUTPUT(Y_DIR_PIN);
  1008. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  1009. SET_OUTPUT(Y2_DIR_PIN);
  1010. #endif
  1011. #endif
  1012. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  1013. SET_OUTPUT(Z_DIR_PIN);
  1014. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  1015. SET_OUTPUT(Z2_DIR_PIN);
  1016. #endif
  1017. #endif
  1018. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  1019. SET_OUTPUT(E0_DIR_PIN);
  1020. #endif
  1021. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  1022. SET_OUTPUT(E1_DIR_PIN);
  1023. #endif
  1024. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  1025. SET_OUTPUT(E2_DIR_PIN);
  1026. #endif
  1027. //Initialize Enable Pins - steppers default to disabled.
  1028. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  1029. SET_OUTPUT(X_ENABLE_PIN);
  1030. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  1031. #endif
  1032. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  1033. SET_OUTPUT(X2_ENABLE_PIN);
  1034. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  1035. #endif
  1036. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  1037. SET_OUTPUT(Y_ENABLE_PIN);
  1038. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  1039. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  1040. SET_OUTPUT(Y2_ENABLE_PIN);
  1041. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  1042. #endif
  1043. #endif
  1044. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  1045. SET_OUTPUT(Z_ENABLE_PIN);
  1046. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  1047. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  1048. SET_OUTPUT(Z2_ENABLE_PIN);
  1049. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  1050. #endif
  1051. #endif
  1052. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  1053. SET_OUTPUT(E0_ENABLE_PIN);
  1054. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  1055. #endif
  1056. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  1057. SET_OUTPUT(E1_ENABLE_PIN);
  1058. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  1059. #endif
  1060. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  1061. SET_OUTPUT(E2_ENABLE_PIN);
  1062. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  1063. #endif
  1064. //endstops and pullups
  1065. #ifdef TMC2130_SG_HOMING
  1066. SET_INPUT(X_TMC2130_DIAG);
  1067. WRITE(X_TMC2130_DIAG,HIGH);
  1068. SET_INPUT(Y_TMC2130_DIAG);
  1069. WRITE(Y_TMC2130_DIAG,HIGH);
  1070. SET_INPUT(Z_TMC2130_DIAG);
  1071. WRITE(Z_TMC2130_DIAG,HIGH);
  1072. SET_INPUT(E0_TMC2130_DIAG);
  1073. WRITE(E0_TMC2130_DIAG,HIGH);
  1074. #endif
  1075. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1076. SET_INPUT(X_MIN_PIN);
  1077. #ifdef ENDSTOPPULLUP_XMIN
  1078. WRITE(X_MIN_PIN,HIGH);
  1079. #endif
  1080. #endif
  1081. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1082. SET_INPUT(Y_MIN_PIN);
  1083. #ifdef ENDSTOPPULLUP_YMIN
  1084. WRITE(Y_MIN_PIN,HIGH);
  1085. #endif
  1086. #endif
  1087. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1088. SET_INPUT(Z_MIN_PIN);
  1089. #ifdef ENDSTOPPULLUP_ZMIN
  1090. WRITE(Z_MIN_PIN,HIGH);
  1091. #endif
  1092. #endif
  1093. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1094. SET_INPUT(X_MAX_PIN);
  1095. #ifdef ENDSTOPPULLUP_XMAX
  1096. WRITE(X_MAX_PIN,HIGH);
  1097. #endif
  1098. #endif
  1099. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1100. SET_INPUT(Y_MAX_PIN);
  1101. #ifdef ENDSTOPPULLUP_YMAX
  1102. WRITE(Y_MAX_PIN,HIGH);
  1103. #endif
  1104. #endif
  1105. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1106. SET_INPUT(Z_MAX_PIN);
  1107. #ifdef ENDSTOPPULLUP_ZMAX
  1108. WRITE(Z_MAX_PIN,HIGH);
  1109. #endif
  1110. #endif
  1111. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1112. SET_INPUT(TACH_0);
  1113. #ifdef TACH0PULLUP
  1114. WRITE(TACH_0, HIGH);
  1115. #endif
  1116. #endif
  1117. //Initialize Step Pins
  1118. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  1119. SET_OUTPUT(X_STEP_PIN);
  1120. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  1121. #ifdef DEBUG_XSTEP_DUP_PIN
  1122. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  1123. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1124. #endif //DEBUG_XSTEP_DUP_PIN
  1125. disable_x();
  1126. #endif
  1127. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  1128. SET_OUTPUT(X2_STEP_PIN);
  1129. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  1130. disable_x();
  1131. #endif
  1132. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  1133. SET_OUTPUT(Y_STEP_PIN);
  1134. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  1135. #ifdef DEBUG_YSTEP_DUP_PIN
  1136. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  1137. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1138. #endif //DEBUG_YSTEP_DUP_PIN
  1139. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  1140. SET_OUTPUT(Y2_STEP_PIN);
  1141. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  1142. #endif
  1143. disable_y();
  1144. #endif
  1145. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  1146. SET_OUTPUT(Z_STEP_PIN);
  1147. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  1148. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  1149. SET_OUTPUT(Z2_STEP_PIN);
  1150. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  1151. #endif
  1152. #ifdef PSU_Delta
  1153. init_force_z();
  1154. #endif // PSU_Delta
  1155. disable_z();
  1156. #endif
  1157. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  1158. SET_OUTPUT(E0_STEP_PIN);
  1159. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  1160. disable_e0();
  1161. #endif
  1162. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  1163. SET_OUTPUT(E1_STEP_PIN);
  1164. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  1165. disable_e1();
  1166. #endif
  1167. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  1168. SET_OUTPUT(E2_STEP_PIN);
  1169. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  1170. disable_e2();
  1171. #endif
  1172. // waveform generation = 0100 = CTC
  1173. TCCR1B &= ~(1<<WGM13);
  1174. TCCR1B |= (1<<WGM12);
  1175. TCCR1A &= ~(1<<WGM11);
  1176. TCCR1A &= ~(1<<WGM10);
  1177. // output mode = 00 (disconnected)
  1178. TCCR1A &= ~(3<<COM1A0);
  1179. TCCR1A &= ~(3<<COM1B0);
  1180. // Set the timer pre-scaler
  1181. // Generally we use a divider of 8, resulting in a 2MHz timer
  1182. // frequency on a 16MHz MCU. If you are going to change this, be
  1183. // sure to regenerate speed_lookuptable.h with
  1184. // create_speed_lookuptable.py
  1185. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  1186. // Plan the first interrupt after 8ms from now.
  1187. OCR1A = 0x4000;
  1188. TCNT1 = 0;
  1189. #ifdef LIN_ADVANCE
  1190. #ifdef LA_DEBUG_LOGIC
  1191. LOGIC_ANALYZER_CH0_ENABLE;
  1192. LOGIC_ANALYZER_CH1_ENABLE;
  1193. WRITE_NC(LOGIC_ANALYZER_CH0, false);
  1194. WRITE_NC(LOGIC_ANALYZER_CH1, false);
  1195. #endif
  1196. // Initialize state for the linear advance scheduler
  1197. nextMainISR = 0;
  1198. nextAdvanceISR = ADV_NEVER;
  1199. main_Rate = ADV_NEVER;
  1200. current_adv_steps = 0;
  1201. #endif
  1202. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  1203. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1204. sei();
  1205. }
  1206. void st_reset_timer()
  1207. {
  1208. // Clear a possible pending interrupt on OCR1A overflow.
  1209. TIFR1 |= 1 << OCF1A;
  1210. // Reset the counter.
  1211. TCNT1 = 0;
  1212. // Wake up after 1ms from now.
  1213. OCR1A = 2000;
  1214. #ifdef LIN_ADVANCE
  1215. nextMainISR = 0;
  1216. if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  1217. nextAdvanceISR = 0;
  1218. #endif
  1219. }
  1220. // Block until all buffered steps are executed
  1221. void st_synchronize()
  1222. {
  1223. while(blocks_queued())
  1224. {
  1225. #ifdef TMC2130
  1226. manage_heater();
  1227. // Vojtech: Don't disable motors inside the planner!
  1228. if (!tmc2130_update_sg())
  1229. {
  1230. manage_inactivity(true);
  1231. lcd_update(0);
  1232. }
  1233. #else //TMC2130
  1234. manage_heater();
  1235. // Vojtech: Don't disable motors inside the planner!
  1236. manage_inactivity(true);
  1237. lcd_update(0);
  1238. #endif //TMC2130
  1239. }
  1240. }
  1241. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1242. {
  1243. CRITICAL_SECTION_START;
  1244. // Copy 4x4B.
  1245. // This block locks the interrupts globally for 4.56 us,
  1246. // which corresponds to a maximum repeat frequency of 219.18 kHz.
  1247. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1248. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1249. count_position[X_AXIS] = x;
  1250. count_position[Y_AXIS] = y;
  1251. count_position[Z_AXIS] = z;
  1252. count_position[E_AXIS] = e;
  1253. CRITICAL_SECTION_END;
  1254. }
  1255. void st_set_e_position(const long &e)
  1256. {
  1257. CRITICAL_SECTION_START;
  1258. count_position[E_AXIS] = e;
  1259. CRITICAL_SECTION_END;
  1260. }
  1261. long st_get_position(uint8_t axis)
  1262. {
  1263. long count_pos;
  1264. CRITICAL_SECTION_START;
  1265. count_pos = count_position[axis];
  1266. CRITICAL_SECTION_END;
  1267. return count_pos;
  1268. }
  1269. void st_get_position_xy(long &x, long &y)
  1270. {
  1271. CRITICAL_SECTION_START;
  1272. x = count_position[X_AXIS];
  1273. y = count_position[Y_AXIS];
  1274. CRITICAL_SECTION_END;
  1275. }
  1276. float st_get_position_mm(uint8_t axis)
  1277. {
  1278. float steper_position_in_steps = st_get_position(axis);
  1279. return steper_position_in_steps / cs.axis_steps_per_unit[axis];
  1280. }
  1281. void quickStop()
  1282. {
  1283. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1284. while (blocks_queued()) plan_discard_current_block();
  1285. current_block = NULL;
  1286. #ifdef LIN_ADVANCE
  1287. nextAdvanceISR = ADV_NEVER;
  1288. current_adv_steps = 0;
  1289. #endif
  1290. st_reset_timer();
  1291. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1292. }
  1293. #ifdef BABYSTEPPING
  1294. void babystep(const uint8_t axis,const bool direction)
  1295. {
  1296. // MUST ONLY BE CALLED BY A ISR as stepper pins are manipulated directly.
  1297. // note: when switching direction no delay is inserted at the end when the
  1298. // original is restored. We assume enough time passes as the function
  1299. // returns and the stepper is manipulated again (to avoid dead times)
  1300. switch(axis)
  1301. {
  1302. case X_AXIS:
  1303. {
  1304. enable_x();
  1305. uint8_t old_x_dir_pin = READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1306. uint8_t new_x_dir_pin = (INVERT_X_DIR)^direction;
  1307. //setup new step
  1308. if (new_x_dir_pin != old_x_dir_pin) {
  1309. WRITE_NC(X_DIR_PIN, new_x_dir_pin);
  1310. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1311. }
  1312. //perform step
  1313. STEP_NC_HI(X_AXIS);
  1314. #ifdef DEBUG_XSTEP_DUP_PIN
  1315. STEP_NC_HI(X_DUP_AXIS);
  1316. #endif
  1317. STEPPER_MINIMUM_DELAY;
  1318. STEP_NC_LO(X_AXIS);
  1319. #ifdef DEBUG_XSTEP_DUP_PIN
  1320. STEP_NC_LO(X_DUP_AXIS);
  1321. #endif
  1322. //get old pin state back.
  1323. WRITE_NC(X_DIR_PIN, old_x_dir_pin);
  1324. }
  1325. break;
  1326. case Y_AXIS:
  1327. {
  1328. enable_y();
  1329. uint8_t old_y_dir_pin = READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1330. uint8_t new_y_dir_pin = (INVERT_Y_DIR)^direction;
  1331. //setup new step
  1332. if (new_y_dir_pin != old_y_dir_pin) {
  1333. WRITE_NC(Y_DIR_PIN, new_y_dir_pin);
  1334. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1335. }
  1336. //perform step
  1337. STEP_NC_HI(Y_AXIS);
  1338. #ifdef DEBUG_YSTEP_DUP_PIN
  1339. STEP_NC_HI(Y_DUP_AXIS);
  1340. #endif
  1341. STEPPER_MINIMUM_DELAY;
  1342. STEP_NC_LO(Y_AXIS);
  1343. #ifdef DEBUG_YSTEP_DUP_PIN
  1344. STEP_NC_LO(Y_DUP_AXIS);
  1345. #endif
  1346. //get old pin state back.
  1347. WRITE_NC(Y_DIR_PIN, old_y_dir_pin);
  1348. }
  1349. break;
  1350. case Z_AXIS:
  1351. {
  1352. enable_z();
  1353. uint8_t old_z_dir_pin = READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1354. uint8_t new_z_dir_pin = (INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z;
  1355. //setup new step
  1356. if (new_z_dir_pin != old_z_dir_pin) {
  1357. WRITE_NC(Z_DIR_PIN, new_z_dir_pin);
  1358. #ifdef Z_DUAL_STEPPER_DRIVERS
  1359. WRITE_NC(Z2_DIR_PIN, new_z_dir_pin);
  1360. #endif
  1361. delayMicroseconds(STEPPER_SET_DIR_DELAY);
  1362. }
  1363. //perform step
  1364. STEP_NC_HI(Z_AXIS);
  1365. #ifdef Z_DUAL_STEPPER_DRIVERS
  1366. STEP_NC_HI(Z2_AXIS);
  1367. #endif
  1368. STEPPER_MINIMUM_DELAY;
  1369. STEP_NC_LO(Z_AXIS);
  1370. #ifdef Z_DUAL_STEPPER_DRIVERS
  1371. STEP_NC_LO(Z2_AXIS);
  1372. #endif
  1373. //get old pin state back.
  1374. if (new_z_dir_pin != old_z_dir_pin) {
  1375. WRITE_NC(Z_DIR_PIN, old_z_dir_pin);
  1376. #ifdef Z_DUAL_STEPPER_DRIVERS
  1377. WRITE_NC(Z2_DIR_PIN, old_z_dir_pin);
  1378. #endif
  1379. }
  1380. }
  1381. break;
  1382. default: break;
  1383. }
  1384. }
  1385. #endif //BABYSTEPPING
  1386. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1387. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1388. {
  1389. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1390. SPI.transfer(address); // send in the address and value via SPI:
  1391. SPI.transfer(value);
  1392. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1393. //_delay(10);
  1394. }
  1395. #endif
  1396. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1397. {
  1398. do
  1399. {
  1400. *value = eeprom_read_byte((unsigned char*)pos);
  1401. pos++;
  1402. value++;
  1403. }while(--size);
  1404. }
  1405. void st_current_init() //Initialize Digipot Motor Current
  1406. {
  1407. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1408. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1409. SilentModeMenu = SilentMode;
  1410. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1411. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1412. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1413. if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
  1414. motor_current_setting[0] = motor_current_setting_loud[0];
  1415. motor_current_setting[1] = motor_current_setting_loud[1];
  1416. motor_current_setting[2] = motor_current_setting_loud[2];
  1417. }else{
  1418. motor_current_setting[0] = motor_current_setting_silent[0];
  1419. motor_current_setting[1] = motor_current_setting_silent[1];
  1420. motor_current_setting[2] = motor_current_setting_silent[2];
  1421. }
  1422. st_current_set(0, motor_current_setting[0]);
  1423. st_current_set(1, motor_current_setting[1]);
  1424. st_current_set(2, motor_current_setting[2]);
  1425. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1426. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1427. #endif
  1428. }
  1429. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1430. void st_current_set(uint8_t driver, int current)
  1431. {
  1432. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1433. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1434. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1435. }
  1436. #else //MOTOR_CURRENT_PWM_XY_PIN
  1437. void st_current_set(uint8_t, int ){}
  1438. #endif //MOTOR_CURRENT_PWM_XY_PIN
  1439. void microstep_init()
  1440. {
  1441. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1442. pinMode(E1_MS1_PIN,OUTPUT);
  1443. pinMode(E1_MS2_PIN,OUTPUT);
  1444. #endif
  1445. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1446. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1447. pinMode(X_MS1_PIN,OUTPUT);
  1448. pinMode(X_MS2_PIN,OUTPUT);
  1449. pinMode(Y_MS1_PIN,OUTPUT);
  1450. pinMode(Y_MS2_PIN,OUTPUT);
  1451. pinMode(Z_MS1_PIN,OUTPUT);
  1452. pinMode(Z_MS2_PIN,OUTPUT);
  1453. pinMode(E0_MS1_PIN,OUTPUT);
  1454. pinMode(E0_MS2_PIN,OUTPUT);
  1455. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1456. #endif
  1457. }
  1458. #ifndef TMC2130
  1459. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1460. {
  1461. if(ms1 > -1) switch(driver)
  1462. {
  1463. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1464. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1465. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1466. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1467. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1468. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1469. #endif
  1470. }
  1471. if(ms2 > -1) switch(driver)
  1472. {
  1473. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1474. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1475. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1476. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1477. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1478. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1479. #endif
  1480. }
  1481. }
  1482. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1483. {
  1484. switch(stepping_mode)
  1485. {
  1486. case 1: microstep_ms(driver,MICROSTEP1); break;
  1487. case 2: microstep_ms(driver,MICROSTEP2); break;
  1488. case 4: microstep_ms(driver,MICROSTEP4); break;
  1489. case 8: microstep_ms(driver,MICROSTEP8); break;
  1490. case 16: microstep_ms(driver,MICROSTEP16); break;
  1491. }
  1492. }
  1493. void microstep_readings()
  1494. {
  1495. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1496. SERIAL_PROTOCOLPGM("X: ");
  1497. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1498. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1499. SERIAL_PROTOCOLPGM("Y: ");
  1500. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1501. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1502. SERIAL_PROTOCOLPGM("Z: ");
  1503. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1504. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1505. SERIAL_PROTOCOLPGM("E0: ");
  1506. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1507. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1508. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1509. SERIAL_PROTOCOLPGM("E1: ");
  1510. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1511. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1512. #endif
  1513. }
  1514. #endif //TMC2130
  1515. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  1516. void st_reset_fsensor()
  1517. {
  1518. CRITICAL_SECTION_START;
  1519. fsensor_counter = 0;
  1520. CRITICAL_SECTION_END;
  1521. }
  1522. #endif //FILAMENT_SENSOR